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Programmed cell death protein (PD-1) and its ligands play a fundamental role in the

evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the

PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated

by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is

observed during acute virus infection and after infection with persistent viruses including

important human pathogens such as human immunodeficiency virus (HIV), hepatitis C

virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient

signaling through the PD-1 pathway promotes immunopathology during acute infection

by exaggerating primary T cell responses. If chronic infection is established, however,

high levels of PD-1 expression can have unfavorable immunological consequences.

Exhaustion and suppression of antiviral immune responses can result in viral immune

evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated

by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an

immune response. In this review, we discuss the intricate interplay between viruses and

the PD-1/PD-L1 axis.

Keywords: PD-1, PD-L1, PD-L2, antiviral immune responses, viral immune evasion, virus-induced

immunopathogenesis, viruses

INTRODUCTION

Programmed cell death 1 (PD-1, also known as CD279) was discovered by Tasuku Honjo et al. at
Kyoto University from a screen of genes involved in programmed cell death (Ishida et al., 1992).
PD-1 expression is rapidly induced after signaling through the T cell receptor (TCR) andmodulated
by cytokines (Agata et al., 1996; Yamazaki et al., 2002; Wherry et al., 2007; Chikuma et al., 2009;
Terawaki et al., 2011; Ahn et al., 2018). Other types of immune cells such as B cells, natural killer
(NK) cells, NKT cells, dendritic cells (DCs), and monocytes also express PD-1 (Sharpe et al., 2007;
Keir et al., 2008).

There is ample evidence that PD-1, a member of the immunoglobulin superfamily, regulates
the magnitude and quality of T cell responses. It plays a pivotal role in the induction and
maintenance of central as well as peripheral tolerance (Nishimura et al., 1999, 2001; Wang et al.,
2005; Okazaki andHonjo, 2006; Francisco et al., 2010; Fife and Pauken, 2011). For example, antigen
presentation by resting DCs induces peripheral CD8+ T cell tolerance by signaling through PD-
1 on CD8+ T cells (Probst et al., 2005). In fact, PD-1 has been called a ‘rheostat’ that calibrates
threshold, strength, and duration of T cell responses (Okazaki et al., 2013; Honda et al., 2014).
PD-1 belongs to a group of structurally different surface molecules that function as co-inhibitory
receptors during immune responses against pathogens and cancer (Attanasio and Wherry, 2016;
Hashimoto et al., 2018; Sharpe and Pauken, 2018). These molecules counterbalance co-stimulatory

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2019.00207
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2019.00207&domain=pdf&date_stamp=2019-06-13
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:guenther.schoenrich@charite.de
https://doi.org/10.3389/fcimb.2019.00207
https://www.frontiersin.org/articles/10.3389/fcimb.2019.00207/full
http://loop.frontiersin.org/people/198387/overview
http://loop.frontiersin.org/people/202415/overview


Schönrich and Raftery PD-1 and Antiviral Immune Responses

receptors on T cells such as CD28, which bind to CD80
and CD86 on professional APCs and facilitate T cell
activation (Esensten et al., 2016).

Clinical studies have shown that blocking the PD-1 pathway
is effective against several types of cancer including melanoma,
lymphoma, lung, and renal cancer (Sanmamed and Chen, 2018).
This type of treatment is referred to as immune checkpoint
therapy and the blocking reagents are called immune checkpoint-
inhibitors (ICIs). Together with James P. Allison, who worked
on another co-inhibitory receptor called cytotoxic T-lymphocyte-
associated Protein 4 (CTLA-4), Tasuku Honjo was awarded the
Nobel Prize in Physiology or Medicine 2018 for the discovery
of cancer therapy by inhibition of negative immune regulation
(Wolchok, 2018).

PD-1 interacts with the ligands PD-L1 (CD274; also called B7-
H1) and PD-L2 (CD273; also called B7-DC), which show distinct
expression patterns. In vitro, PD-1 inhibits T cell activation by
recruiting Src homology region 2-containing protein tyrosine
phosphatase 2 (SHP2) after interaction with its ligands on APCs
(Chen and Flies, 2013; Okazaki et al., 2013; Sharpe and Pauken,
2018). This is associated with dephopshorylation of crucial
tyrosine residues within the CD3 complex and CD28. In virus-
infected mice lacking SHP2 in T cells, however, PD-1 signaling
is not impaired, suggesting the existence of redundant inhibitory
pathways downstream of PD-1 (Rota et al., 2018).

PD-L1 is expressed not only by all hematopoietic cells
but also by many non-hematopoietic cell types such as
endothelial cells and epithelial cells (Sharpe and Pauken, 2018).
In contrast, PD-L2 expression is more restricted and can be
induced on hematopoietic cells such as DCs, B cells, and
monocytes/macrophages. Besides PD-1, there are other known
interacting partners for PD-L1 and PD-L2. PD-L1 also binds
to CD80 whereas PD-L2 uses RGM domain family member
B (RGMB) as an alternative binding partner. Both types of
interaction also inhibit immune responses (Butte et al., 2007;
Xiao et al., 2014).

Viruses have to overcome strong barriers to replicate in the
hostile environment of their hosts (Virgin et al., 2009). An arsenal
of weapons helps viruses to subvert antiviral immunity. This
includes the exploitation of host inhibitory receptor signaling
pathways (Ong et al., 2016). The impact of the PD-1/PD-L1
axis in chronic virus infections is well described whereas its role
during the acute phase of viral infections is less clear (Brown et al.,
2010; Attanasio and Wherry, 2016). However, whether virus-
induced upregulation of PD-1 ligands represents a viral immune
evasion strategy or an adaption of the host defense to minimize
immunopathology is a moot point. In this review, we highlight
the diverse roles of PD-1 and its ligands during virus infections
and their implications for host-pathogen interaction.

THE ROLE OF THE PD-1 PATHWAY IN
ACUTE VIRUS INFECTIONS

In mice acutely infected with lymphocytic choriomeningitis
virus (LCMV) strain Armstrong (LCMV Arm) PD-1 is rapidly
upregulated on naïve virus-specific CD8+ T cells before they

clonally expand (Ahn et al., 2018). In this model of acute LCMV
infection, CD4+ T cells are not required for virus clearance,
which occurs within 1–2 weeks after infection (Matloubian
et al., 1994). Blockade of the PD-1 pathway at this stage further
increases effector functions of CD8+ T cells by enhancing
granzyme B expression and mechanistic Target of Rapamycin
(mTOR) signaling. Consequently, virus elimination is accelerated
although the total number of virus-specific CD8+ T cells
does not change (Ahn et al., 2018). Similarly, the PD-1/PD-L
axis inhibits the differentiation of CD8+ T lymphocytes into
polyfunctional cytotoxic T cells during acute infection of mice
with murine retrovirus (David et al., 2019). This implies that
PD-1 negatively regulates the terminal differentiation of naïve
CD8+ T cells into effector CD8+ T lymphocytes during acute
virus infection.

After virus clearance, PD-1 expression on virus-specific T cells
returns to normal levels (Barber et al., 2006; Blattman et al., 2009).
The expanded pool of virus-specific effector T lymphocytes
contracts due to increased cell death and memory T cells arise
from a subset of fate-permissive effector T cells (Akondy et al.,
2017; Omilusik and Goldrath, 2017; Youngblood et al., 2017).
There are at least three major memory T cell subsets: central
memory T cells (Tcm cells), effector memory T cells (Tem cells),
and recently defined tissue-resident memory T cells (Trm cells).
Tcm cells lack effector functions but express lymph node homing
molecules and circulate through the blood and the secondary
lymphoid organs (Sallusto et al., 1999). After stimulation, Tcm
cells differentiate into Tem cells that lack lymph node homing
molecules and continuously recirculate between blood, lymph
and non-lymphoid tissues. Tem cells are bestowed with various
effector functions (Sallusto et al., 1999). In contrast, Trm cells
do not recirculate (Wakim et al., 2008; Gebhardt et al., 2009;
Masopust et al., 2010) and express core phenotypic markers
including co-inhibitory receptors such as PD-1 (Hombrink et al.,
2016; Kumar et al., 2017; Pallett et al., 2017). Functionally,
Trm cells participate in the first line of defense to viruses by
establishing an antiviral state and recruiting circulating memory
T cells to sites of viral infection (Schenkel et al., 2013, 2014;
Ariotti et al., 2014; Carbone and Gebhardt, 2014). Located in
multiple anatomical sites including barrier tissue such as lung,
skin and gut, Trm cells are indispensable for antiviral immunity
and immunosurveillance (Shin, 2018;Wu et al., 2018; Szabo et al.,
2019). The functional role of the PD-1/PD-L1 axis for CD8+Trm
cells is unclear at the moment but it may prevent uncontrolled
Trm activation and inflammation in virus-infected tissues and
other inflammatory conditions. In accordance, blockade of PD-
1 on Trm cells increases the severity of eczema in a mouse model
of allergic contact dermatitis (Gamradt et al., 2019).

Intriguingly, the number of memory precursor T cells
increases if PD-1 is blocked by antibodies during acute LCMV
infection, possibly due to faster virus elimination (Ahn et al.,
2018). Virus-specific memory CD8+ T cells that develop after
the elimination of LCMV persist without antigen and are capable
of self-renewal due to homeostatic proliferation in response
to IL-7 and IL-15 (Wherry et al., 2004; Surh and Sprent,
2008; Abdelsamed et al., 2017). Although the blockade of the
PD-1/PD-L1 axis in mice infected with LCMV Arm increases
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effector CD8+ T cell function, no excessive tissue damage is
observed (Ahn et al., 2018). Similar to the LCMV strain WE
(LCMV WE), LCMV Arm does not disseminate but instead is
eliminated from infected laboratory mice after acute infection. In
contrast, derivatives of LCMV Arm and LCMV WE (“clone 13”
and “docile,” respectively) replicate more vigorously and persist
(Matloubian et al., 1990; Welsh and Seedhom, 2008). These
LCMV strains cause lethal immunopathology in mice deficient
of the PD-1/PD-L1 axis (PD-L1 KOmice, PD-1 KOmice) during
the acute phase of infection (Barber et al., 2006; Mueller et al.,
2010; Frebel et al., 2012; Zinselmeyer et al., 2013; Shaabani et al.,
2016). This is due to the killing of LCMV-infected vascular
endothelium by CD8+ T cells resulting in vascular leakage with
pulmonary edema and severe hypotension (Frebel et al., 2012).
In a mouse model of acute viral hepatitis, the absence of PD-1 is
associated not only with more rapid virus clearance but also with
more severe hepatitis (Iwai et al., 2003). These results imply that
the stimulation of the PD-1/PD-L1 axis during the acute phase
of virus infection helps to adjust the strength and quality of the
cytotoxic CD8+ T cell attack so that the good (virus elimination)
and the bad (tissue damage) is balanced, preventing excessive
tissue damage.

VIRUS-DRIVEN PD-L1/2 EXPRESSION

Many viruses increase PD-L1/2 expression on hematopoietic
cells (Table 1) and non-hematopoietic cells (Table 2). PD-
L1/2 expression is regulated by proinflammatory and anti-
inflammatory signals (Sun et al., 2018). The promotor regions
of PD-L1 and PD-L2, which are paralog genes, are differentially
regulated although they show similarly arranged binding sites for
transcription factors (Garcia-Diaz et al., 2017).

Type I and type III interferons (IFNs) are important antiviral
cytokines. They are induced early in virus-infected barrier tissue
such as lung/gut epithelial cells and serve as the first line of
antiviral defense (Okabayashi et al., 2011; Wack et al., 2015;
Andreakos et al., 2017; Galani et al., 2017; Zanoni et al., 2017;
Good et al., 2019; Lazear et al., 2019). Type I IFNs, which in
humans include several IFN-α subtypes and IFN-β, increase
PD-L1 expression but to a lesser extent than PD-L2 expression
(Garcia-Diaz et al., 2017). PD-L2 responds equally well to IFN-
γ (type II IFN) and IFN-β (Garcia-Diaz et al., 2017). IL-4 may
be an even more potent inducer of PD-L2 (Loke and Allison,
2003) thus accounting for the presence of PD-L2 on monocyte-
derived DCs generated in vitro. Blockade or absence of type I
IFN signaling during chronic LCMV infection results in reduced
PD-L1 expression despite enhanced viral replication (Teijaro
et al., 2013; Wilson et al., 2013; Shaabani et al., 2016). Although
type I IFNs moderately upregulate PD-L1 (Sun et al., 2018)
they increase NK cytotoxicity and allow clonal expansion and
memory formation of antiviral cytotoxic CD8+ T cells (Biron
et al., 2002; Kolumam et al., 2005; Aichele et al., 2006). Type III
IFNs signal through a unique heterodimeric receptor and induce
the expression of antiviral IFN-stimulated genes (ISGs) similar
to type I IFNs (Davidson et al., 2015). Intriguingly, type III IFNs
do not upregulate PD-L1 (Raftery et al., 2018). Accordingly, in

this early phase of acute infection the PD-1/PD-L1 axis does not
inhibit antiviral immune cells.

Recognition of viruses by pattern recognition receptors
(PRRs) also upregulates PD-L1. TLR3 signaling in particular
strongly increases PD-L1 levels on DCs (Pulko et al., 2009;
Boes and Meyer-Wentrup, 2015; Raftery et al., 2018) whereas
RIG-I signaling alone has no significant effect (Raftery et al.,
2018). Triggering of TLR3, which transmits downstream signals
through the TIR-domain-containing adapter-inducing IFN-β
(TRIF), also enhances PD-L1 on other cell types including
endothelial cells (Cole et al., 2011) and epithelial cells (Tsuda
et al., 2005). In accordance, virus-induced PD-L1 upregulation
on neuronal cells is severely impaired in TLR3-deficient mice
(Lafon et al., 2008). Recently, viral proteins inducing PD-L1/PD-
L2 expression have been identified. For example, HIV Tat protein
increases PD-L1 expression on DCs through TNF-α and TLR4
signaling (Planes et al., 2014). The HCV core protein in vitro
induces strong PD-L1 upregulation on primary human Kupffer
cells andmonocytes in a TLR2- and PI3K-dependentmanner (Tu
et al., 2010; Zhai et al., 2017). In accordance, the PD-L1 levels on
monocytes from HCV-infected patients were significantly higher
than onmonocytes from healthy individuals (Zhai et al., 2017). A
recent study has shown that extracellular vesicles (EVs) produced
by HBV-infected hepatocytes are endocytosed by circulating
monocytes resulting in PD-L1 upregulation (Huang et al.,
2017; Kakizaki et al., 2018). Moreover, PD-L1 and PD-L2 are
upregulated by hantaviral N protein most likely via hantavirus-
induced TLR3 signaling (Raftery et al., 2018). In addition, the
latency-associated transcripts (LATs) of herpes simplex virus type
1 (HSV-1) upregulate PD-L1 on mouse neuroblastoma cells by
an unknown mechanism (Chentoufi et al., 2011). Remarkably, as
of yet no viral immunoevasin has been discovered that directly
interacts with the molecules of the PD-1/PD-L1 axis to exploit its
immunosuppressive function.

Viral replication can also result in the production of anti-
inflammatory cytokines such as IL-10 (Brooks et al., 2006b;
Ejrnaes et al., 2006). Cellular IL-10 has been shown to upregulate
the expression of PD-1 and PD-L1 in a STAT-3 dependent
manner in DCs and monocytes (Curiel et al., 2003; Selenko-
Gebauer et al., 2003; Sun et al., 2015; Lamichhane et al.,
2017). Accordingly, the absence of cellular IL-10 in LCMV
infected mice results in enhanced effector T cell responses,
rapid virus elimination, and generation of antiviral memory T
cells (Brooks et al., 2006b; Ejrnaes et al., 2006). Intriguingly,
during coevolution with their hosts members of the virus
family Herpesviridae have acquired numerous genes from their
hosts including those that mimic cellular IL-10 (Raftery et al.,
2000; Ouyang et al., 2014; Schonrich et al., 2017). These viral
IL-10 (vIL-10) molecules act as immunosuppressive cytokines
that also paralyze co-stimulatory B7 molecules (Muller et al.,
1998; Raftery et al., 2004). It is possible that vIL-10 molecules
also increase signaling through the PD-1/PD-L1 axis similar
to their cellular counterparts thereby contributing to viral
persistence. However, combined blockade of both, IL-10 and PD-
L1, during chronic LCMV infection enhances T-cell function
more efficiently than a single blockade (Brooks et al., 2008).
Thus, IL-10 is pleiotropic and has immunosuppressive functions
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TABLE 1 | Virus-induced upregulation of PD-1 ligands on hematopoietic cells.

Virus Findings References

LCMV Arm and clone13 Increased PD-L1 expression on myeloid DCs and marginal zone macrophages;

decreased T cell motility in the marginal zone of the spleen due to PD-L1

Zinselmeyer et al., 2013

LCMV High PD-L1 expression on Kupffer cells in the liver Shaabani et al., 2016

IAV Type I IFN induced PD-L1 expression on virus-infected professional APCs in the

airways

Erickson et al., 2012; Valero-Pacheco et al., 2013;

Rutigliano et al., 2014; Staples et al., 2015;

McKendry et al., 2016

JEV PD-L1 upregulation on virus-infected DCs in vitro and decreased expansion of

Treg cells by virus-infected DCs after PD-L1 blockade

Gupta et al., 2014

EOBV Increased numbers of PD-L1 transcripts during EOBV infection of monocytes

derived from macaques

Menicucci et al., 2017

HV PD-L1/2 upregulation on DCs; high amounts of soluble PD-1 and PD-L2 in the

circulation of HV-infected patients

Raftery et al., 2018

FV PD-L1 expression on erythroid precursor cells and CD4+ T lymphocytes Akhmetzyanova et al., 2015

HIV PD-L1/2 upregulation on monocytes, DCs and macrophages; Correlation

between level of PD-L1 expression and disease progression

Boasso et al., 2008; Meier et al., 2008; Wang et al.,

2008; Rodriguez-Garcia et al., 2011

SIV Upregulation of PD-L1 on DCs; correlation between level of PD-L1 expression

and disease progression; improved function of antiviral T cells function after

PD-L1 blockade

Xu et al., 2010

HSV-1 Increased PD-L1 expression on DCs in the draining lymph nodes after virus

inoculation into foot pads of mice

Channappanavar et al., 2012

VZV PD-L1/2 upregulation on human monocytes, B cells, NK cells, and NKT cells Jones et al., 2019

KSHV Increased PD-L1 expression on monocytes Host et al., 2017

Ad, adenovirus; EOBV, Ebola virus; FV, Friend retrovirus; HIV, human immunodeficiency virus; HSV-1, herpes simplex virus type 1; HV, hantavirus; IAV, Influenza A virus; JEV, Japanese

encephalitis virus; KSHV, Kaposi’s sarcoma-associated herpesvirus; LCMV, lymphocytic choriomeningitis virus; LCMV Arm, LCMV strain Armstrong; LCMV clone13, LCMV strain

clone13; RSV, respiratory syncytial virus; Treg cells, regulatory T cells; VZV, varicella zoster virus.

TABLE 2 | Virus-induced PD-L1 upregulation on non-hematopoietic cells.

Viruses Findings References

LCMV PD-L1 upregulation on fibroblastic reticular cells Zinselmeyer et al., 2013

Ad Increased PD-L1 expression on primary human hepatocytes Grakoui et al., 2006; Muhlbauer et al., 2006

HBV Upregulated PD-L1 expression on hepatocytes derived from a transgenic mouse

model of BV infection

Maier et al., 2007

IAV, MHPV, PIV-3, RSV Increased levels of PD-L1 on alveolar and bronchiolar epithelial cells after virus

infection in vitro and in patients with viral acute lower tract infections

Stanciu et al., 2006; Telcian et al., 2011; Erickson

et al., 2012; McNally et al., 2013

RABV Type I IFN-dependent PD-L1 upregulation on virus-infected mouse and human

neuronal cells in vitro and on neuronal cells in virus-infected mice

Lafon et al., 2008

HSV-1 PD-L1 upregulation on mouse neuroblastoma cells Chentoufi et al., 2011

HSV-1 PD-L1 upregulation on virus-infected neurons in ganglia Jeon et al., 2013

HSV-1 PD-L1 upregulation on epithelial cells in the virus-infected cornea Jeon et al., 2018

Ad, adenovirus; EOBV, Ebola virus; HMPV, human metapneumovirus; HBV, hepatitis B virus; HSV-1, herpes simplex virus type 1; HV, hantavirus; IAV, Influenza A virus; JEV, Japanese

encephalitis virus; LCMV, lymphocytic choriomeningitis virus; LCMV Arm, LCMV strain Armstrong; LCMV WE, LCMV strain WE; PIV-3, parainfluenza virus type 3; RABV, rabies virus;

RSV, respiratory syncytial virus; Treg cells, regulatory T cells; VHF, viral hemorrhagic fever.

independent of the PD-1/PD-L1 axis during persisting virus
infections (Ouyang et al., 2011).

In the late phase of acute virus infection, type II IFN
and several other cytokines including TNF-α and IL-10 are
released by immune cells such as CD8+ T cell cells (Zhang
and Bevan, 2011). IFN-γ strongly upregulates PD-L1 (Garcia-
Diaz et al., 2017; Raftery et al., 2018; Sun et al., 2018). In
addition, plasmacytoid DCs (pDCs) migrate into virus-infected
tissue and secrete large amounts of type I IFNs (Siegal et al.,

1999). These cytokines not only induce antiviral ISGs but also
drive inflammatory responses such as secretion of TNF-α, IL-1β,
or IL-6 (Davidson et al., 2015), which can further increase PD-
L1 on various cell types including endothelial cells and at the
same time promote non-lytic virus elimination (Sun et al., 2018).
Thus, in the late phase of acute viral infection, PD-L1 is strongly
upregulated thereby downregulating terminal differentiation of
CD8+ T cells and preventing excessive tissue damage due to
uncontrolled cytotoxic attack.
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FUNCTION OF PD-L1 DURING ACUTE
VIRUS INFECTIONS

PD-L1 expressed on hematopoietic or non-hematopoietic cells
has different functions (Keir et al., 2006; Mueller et al., 2010). For
example, PD-L1 expression on parenchymal cells of the pancreas
rather than hematopoietic cells prevent autoimmune diabetes
(Keir et al., 2006). In accordance, during LCMV infection of
mice PD-L1 expression on non-hematopoietic cells reduces
viral clearance and immunopathology (Keir et al., 2008). Thus,
upregulation of PD-L1 expression may protect virus-infected
cells from being eliminated by cytotoxic CD8+ T cells. On
the other hand, selective absence of PD-L1 on hematopoietic
cells results in lethal immunopathology (Mueller et al., 2010).
This is best explained by an increase in number and function
of cytotoxic CD8+ T lymphocytes, which may overwhelm
the PD-L1-conferred protection in non-hematopoietic target
cells (Frebel et al., 2012).

Virus-induced PD-L1 on professional APCs may help to focus
the antiviral CD8+ T cell response on a few strongly stimulatory,
i.e., immunodominant, virus-derived epitopes by increasing the
threshold of CD8+ T cell activation. In this way, the majority
of weakly immunogenic viral peptides fail to activate CD8+ T
cells. The adjustment of the “rheostat” on professional APCs
may be necessary to prevent autoimmune disease and maintain
peripheral tolerance in the face of a highly inflammatory milieu.
Indeed, a recent study has shown that the PD-L1/PD-1 axis
regulates T cell responses at the activation stage (Sugiura et al.,
2019). CD80, which binds to CD28 and CTLA-4 on T cells,
also interacts with PD-L1 (Butte et al., 2007, 2008). Importantly,
this interaction occurs only in cis (Chaudhri et al., 2018) and
prevents PD-L1 on DCs from co-inhibitory signaling to T
cells via PD-1 (Chaudhri et al., 2018; Sugiura et al., 2019). In
contrast, the functions of CD28 (co-stimulatory) and CTLA-4
(co-inhibitory) are not impaired by cis-PD-L1/CD80 interactions
on DCs (Sugiura et al., 2019). Many viruses upregulate PD-
L1 on professional APCs such as DCs (Table 1) either directly
or through IFN release. Low PD-L1 levels on uninfected DCs
have only a weak impact on T cell activation (Brown et al.,
2003) due to cis-PD-L1/CD80 interactions (Figure 1, upper
scheme). It is likely, that the high PD-L1 levels on DCs in
the context of viral infection will overwhelm the cis-binding
capacity of CD80 resulting in increased co-inhibitory signaling
via PD-1 (Figure 1, lower scheme). PD-L1 on professional APCs
also promotes the induction and maintenance of regulatory
T cells (Treg cells; Francisco et al., 2009). Treg cells help to
confine the antiviral defense and to prevent immunopathology
during virus infections (Veiga-Parga et al., 2013). Taken together,
viruses can reprogram DC function in antiviral immune
responses by tipping the balance between co-inhibitory and
co-stimulatory signals as shown for murine cytomegalovirus
(Loewendorf et al., 2004; Benedict et al., 2008) and vaccinia
virus (Kleinpeter et al., 2019).

Strong stimulation of the PD-1/PD-L1 does not prevent
immunopathology during viral hemorrhagic fever (VHF). VHF
is a designation for distinct but pathogenically similar zoonotic
diseases that are caused by several enveloped RNA viruses
including Ebola virus (EBOV), hantavirus, and dengue virus

(DENV) (Paessler and Walker, 2013). VHF viruses target
endothelial cells thereby causing vascular leakage (Zampieri
et al., 2007; Schonrich et al., 2008; Basler, 2017). In fact, type
III IFN and TNF-α, which upregulate PD-L1 on endothelial
cells, also mediate dysfunction of the endothelial barrier (Brett
et al., 1989; Koh et al., 2004). Virus-specific CD8+ T cells show
high levels of PD-1 on the surface during acute infection with
EBOV (McElroy et al., 2015). Moreover, fatal EBOV infection
is characterized by a high percentage of T cells expressing PD-
1 and other co-inhibitory receptors such as CTLA-4 (Ruibal
et al., 2016). Monocytes are susceptible to EBOV infection and
upregulate production of PD-L1 transcripts in response to EBOV
replication (Menicucci et al., 2017), whereas DENV-infected DCs
express higher levels of PD-L2 but reduced PD-L1 (Nightingale
et al., 2008). In patients with acute hantavirus infection large
amounts of soluble PD-L1/PD-L2 are found in the sera indicating
that these molecules are strongly upregulated in hantavirus-
infected cells in vivo (Raftery et al., 2018). In accordance, strongly
increased PD-L1 levels are detected after hantavirus infection
of immature DCs in vitro and in hantavirus-infected mice with
a humanized immune system (Raftery et al., 2018). In striking
contrast, CD8+ T cells do not upregulate PD-1 during acute
hantavirus infection (Lindgren et al., 2011).

Taken together, in the acute phase of viral infection virus-
specific T cells rapidly upregulate the co-inhibitory receptor PD-1
upon recognition of antigen. Simultaneously, viruses upregulate
PD-L1 on hematopoietic and non-hematopoietic cells directly
through PRR signaling or indirectly by inducing the release of
IFNs and other inflammatory cytokines. Ideally, a tailor-made
antiviral CD8+ T cell response eliminates viral pathogens with
minimal immunopathology (Figure 2). The antiviral immune
response during VHF, however, eliminates viruses at the cost
of vascular leakage. The dysregulation of the immune responses
could be due to variations in PD-L1 expression (e.g., timing,
cell type, or strength), imbalance between co-stimulatory vs.
co-inhibitory receptors (failure of “checks and balances”), or
altered usage of PD-L1 interaction partners (PD-1, CD80, and
possibly additional unknown partners). On the other hand
viruses can also manipulate the “checks and balances” of
the immune system in such a way that an effective antiviral
immune response is prevented helping the pathogen to persist in
the organism.

THE PD-1/PD-L1 AXIS DURING
PERSISTING VIRUS INFECTIONS

Chronic Virus Infection
Chronic infections with viruses such as hepatitis B virus,
hepatitis C virus (HCV), and human immunodeficiency
virus (HIV) represent major causes of chronic disease and
death worldwide (Ott et al., 2012; Schweitzer et al., 2015;
GBD 2015 HIV Collaborators, 2016; Stanaway et al., 2016).
During chronic infection virus particles are continuously
released from virus-infected cells and maintain a network
of immunosuppressive mechanisms that interfere with virus
elimination (Ng et al., 2013). Therefore, T cells enter a state called
T cell exhaustion.
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FIGURE 1 | PD-L1 mediated viral regulation of T cell activation. Upper graph: In the absence of viral infection mature dendritic cells (DCs) express relatively low levels

of PD-L1. Recognition of cognate antigen (Ag) bound to MHC class I molecules by T cell receptor (TCR) results in upregulation of PD-1 on T cells. DCs express

co-stimulatory molecules CD80 and CD86 allowing efficient co-stimulation of T cells via CD28. The PD-1/PD-L1 axis is not co-inhibitory due to restriction by

cis-PD-L1/CD80 interactions, and thus T cells are activated. Lower graph: In the context of viral infection DCs upregulate PD-L1 due to exposure to viral PAMPs and

high levels of type I IFN. The restricting cis-PD-L1/CD80 interactions are most likely overwhelmed by virus-induced PD-L1 resulting in PD-1 signaling and prevention of

T cell activation. The consequences of this for the generation of Tregs is as of yet unknown.

T Cell Exhaustion and Partial Restoration
of T Cell Function by Blockade of the
PD-1/PD-L1 Axis
The first evidence for T cell exhaustion was gathered in
paradigmatic experiments using LCMV-infected mice (Zehn
and Wherry, 2015; Kahan and Zajac, 2019). Derivatives of
LCMV Arm and LCMV WE (LCMV clone13 and LCMV
docile, respectively) vigorously replicate and disseminate in
mice thereby persisting for more than 100 days (Moskophidis
et al., 1993; Gallimore et al., 1998; Zajac et al., 1998). In this
model of chronic virus infection, CD4+ T cells are crucial to
sustain the virus-specific CD8+ T cell responses (Matloubian
et al., 1994). Sustained upregulation of PD-1 and other co-
inhibitory receptors such as 2B4, CTLA-4, and lymphocyte-
activation gene 3 (Lag3) has become the defining characteristic
of exhausted T (Tex) cells (Barber et al., 2006; Wherry et al.,

2007; Blackburn et al., 2009; Crawford et al., 2014). These
phenotypic changes are accompanied by a multistep loss of T cell
effector functions (Speiser et al., 2014; Kahan et al., 2015; Wherry
and Kurachi, 2015; McKinney and Smith, 2018). Dependent on
the strength of PD-1 signaling CD8+ T lymphocytes gradually
lose important effector functions (Wherry et al., 2003; Wei
et al., 2013). Some are lost early (such as cytotoxicity, IL-
2 production, and proliferation), whereas others (e.g., IFN-γ

production) are maintained for a longer time (Wherry et al.,

2003; Wei et al., 2013). Finally, Tex cells undergo apoptosis

(Kahan et al., 2015). As an underlying mechanism of T cell

exhaustion during chronic LCMV infection, PD-1 signaling

impairs T cell motility facilitating engagement of inhibitory
pathways in T cells (Zinselmeyer et al., 2013). In another

experimental setting, PD-L1 blocking antibodies prolong the
T cell migration arrest suggesting that PD-1 signaling in fact
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FIGURE 2 | The PD-1/PD-L1 checkpoint in acute virus infection. Early phase:

The infected tissue produces type I IFNs and possibly type III IFNs, which

strongly induce antiviral IFN-stimulated genes (ISGs) but only moderate PD-L1

levels. Antiviral CD8+ T cells eliminate virus-infected cells. At this stage, the

PD-1/PD-L1 checkpoint activity is low and does not restrict the antiviral

immune response. Late Phase: Type II IFN and TNF-α is secreted by CD8+ T

cells and other immune cells. In addition, hematopoietic cells such as

plasmacytoid DCs (pDCs) produce large amounts of type I IFN. This results

not only in virus elimination but also increases PD-L1 expression. The high

checkpoint activity downregulates terminal differentiation of antiviral CD8+ T

cells. Ideally, the strength and quality of the CD8+ T cell response is balanced

out in such a way that the viral intruder is eliminated without causing

immunopathology.

enhances T cell motility (Honda et al., 2014). The reason for
these contrasting results are unclear at the moment. Intriguingly,
PD-1-regulated changes in several metabolic pathways occur at
the very beginning of Tex cell development underlining the
importance of these metabolic processes in the execution of
the Tex program (Bengsch et al., 2016; Schurich et al., 2016;
McKinney and Smith, 2018).

Several reports have found differences in the transcriptional
program and epigenetic profile of Tex cells as compared to
memory and effector T lymphocytes (Wherry et al., 2007;
Doering et al., 2012; Pauken et al., 2016). In Tex cells derived
from LCMV-infected mice, the Pdcd1 regulatory region is
completely demethylated and remains so even when virus titers
decrease (Youngblood et al., 2011). They do not show antigen-
independent persistence driven by IL-7 and IL-15, the hallmark
of memory T cells, and instead require the continuous presence
of their cognate antigen (Wherry and Ahmed, 2004; Shin
et al., 2007). This can be explained by the observation that
the TCR-induced transcription factors IRF4, BATF, and NFATc1
not only drive T cell exhaustion but also impair memory T
cell development during chronic LCMV infection (Man et al.,
2017). Recently, microRNA (miR)-155 has been identified as a

key molecule that promotes long-term persistence of Tex cells
(Stelekati et al., 2018).

T cells that have been rendered dysfunctional during
persisting virus infections can be reinvigorated (Brooks et al.,
2006a). Blockade of the PD-1/PD-L1 axis during chronic LCMV
infection reinvigorates antiviral T cell functions and reduces viral
load (Barber et al., 2006). Of note, CD8+ T cells also become
exhausted in the absence of PD-1 (Odorizzi et al., 2015). These
experiments show that other coinhibitory receptors contribute to
T cell exhaustion. In line with this view, a combined blockade
of PD-1 and LAG-3 or PD-1 and Tim-3 synergistically improves
antiviral CD8+ T cell responses and viral control in mice with
chronic LCMV infection (Blackburn et al., 2009; Jin et al., 2010).
Reinvigorated CD8+ T cells in chronically LCMV-infected mice
become exhausted again after termination of the PD-L1 blockade
(Pauken et al., 2016; Sen et al., 2016; Turner and Russ, 2016). This
finding indicates that inflexibility of the epigenetic regulation in
Tex cells may limit the success of therapies using ICIs.

The studies of chronic LCMV infection in mice also relate to
important human infectious diseases. In a recently established
mouse model of HCV infection Tex cells are observed in
the liver of mice infected with a newly identified Norway rat
hepacivirus (NrHV), which belong to the same virus family as
HCV (Billerbeck et al., 2017; Klenerman and Barnes, 2017). In
NrHV-infected mice, CD4+ T cells were important to maintain
the antiviral CD8+ T cell response similar to the LCMV model
of chronic virus infection (Billerbeck et al., 2017). Blockade of
the PD-1/PD-L1 axis in early chronic infection reduced the
viral load whereas no beneficial effects were observed at later
time points (Billerbeck et al., 2017). Moreover, ICIs blocking
the PD-1 pathway can reinvigorate to some extent Tex cells
in humans chronically infected with HBV or HCV (McKinney
and Smith, 2016; Cox et al., 2017; Saeidi et al., 2018; Wykes
and Lewin, 2018). Targeting the PD-1/PD-L1 pathway during
retroviral infections has beneficial effects for virus control (Velu
et al., 2015). PD-1 upregulation is linked to a loss of function
in HIV-specific CD8+ T cells, which can be partially reversed
in vitro by a blockade of the PD-1/PD-L1 axis (Day et al., 2006;
Trautmann et al., 2006). Surprisingly, the context and timing of
PD-1 blockade seems to be important for its functional outcome:
PD-1 signaling inhibition during stimulation of naive CD8+ T
cells results in diminished activation, whereas PD-1 blockade
during the T cell effector phase increases activation (Garcia-Bates
et al., 2019). PD-1 blockade in rhesus macaques infected with
simian immunodeficiency (SIV) rapidly increases the number
and functional quality of virus-specific CD8+ T cells (Velu et al.,
2009). Intriguingly, the combination of anti-PD-1 antibodies and
antiretroviral therapy further improves antiviral CD8+ T cell
function in SIV-infected rhesus macaques (Mylvaganam et al.,
2018). This observation implies that directly acting antivirals
(DAAs) reducing the viral load and ICIs releasing the brake in
Tex cells synergistically increase antiviral T cell responses.

Recent data suggest that PD-1 expression does not necessarily
reflect T cell failure but rather adaption of T cell function to
chronic inflammation (Utzschneider et al., 2013, 2016; Speiser
et al., 2014; Staron et al., 2014; Zehn et al., 2016; Barnes, 2018;
Petrelli et al., 2018). In fact, at least two CD8+ Tex cell subsets
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exist that act in concert to mount a partially effective CD8+ T
cell response for control of chronic virus infection (Paley et al.,
2012). Moreover, Tex cells have the capacity for self-renewal and
are not entirely functionally inactive (Paley et al., 2012). The latter
finding implies that Tex cells may represent a form of antiviral
defense that is evolutionary adapted to the need to control a
chronically replicating non-lytic virus with minimal collateral
tissue damage and immunopathology. Moreover, experiments
in mice with genetic ablation of PD-1 suggest that PD-1 is not
required for induction of Tex cells (Odorizzi et al., 2015). In
fact, PD-1 may play a pivotal role in maintaining Tex cells
by preventing excessive stimulation that leads to proliferation
and terminal differentiation (Odorizzi et al., 2015). After the
elimination of HCV by DAAs, PD-1 expressing CD8+ T cell
populations remain that display characteristics of memory cells
including antigen-independent survival and proliferation after
re-challenge with antigen (Wieland et al., 2017).

Latent Infection and Reactivation
Viruses that establish latent infection include the members
of the family Herpesviridae. In contrast to chronic infection,
latent infection is characterized by periodic suspension of virus
replication. However, the blueprint of viral particles is preserved
in the latently infected host cells enabling the virus to reactivate
and resume virus production. It is a matter of debate whether
reactivation from latent virus infection creates enough antigenic
load to induce exhaustion of antiviral CD8+ T cells. Memory
CD8+ T cells recognizing viral antigens in the context of
chronic virus infections (e.g., HIV) more frequently express PD-
1 than memory CD8+ T cells stimulated by virus periodically
reactivating from latency, e.g., human cytomegalovirus (HCMV)
(Petrovas et al., 2006). This finding is consistent with the
idea that the amount of available antigen regulates PD-1
expression on reactive T cells (Petrovas et al., 2006). In
accordance, increased virus replication in immunosuppressed
patients with HCMV disease after allogeneic hematopoietic
cell transplantation is associated with PD-1 upregulation on T
cells (Gallez-Hawkins et al., 2009). In mice with a humanized
immune system, HCMV reactivations induced by granulocyte-
colony stimulating factor (G-CSF) resulted in a shift toward
PD-1 expressing T cells (Theobald et al., 2018). Whether
this phenotype corresponds to Tex cells is unclear, however.
Upregulation of co-inhibitory receptors such as PD-1 on CD8+
T cells is tightly linked to activation and differentiation and
not per se proof of T cell exhaustion (Legat et al., 2013).
In addition, studies of HSV-1 infection in mice did not
reveal evidence for functional impairment of virus-specific
CD8+ T cells during latency and subsequent reactivations
(Mackay et al., 2012).

PD-1 expression on brain Trm cells is maintained
independently from antigen (Shwetank et al., 2017). Recently,
it has been shown that Trm cells provide immunosurveillance
in the human brain to eliminate neurotropic viruses (Smolders
et al., 2018). In accordance, reactivation of HSV-1 from latently
infected neurons of the mouse is controlled by CD8+ Trm
lymphocytes (Liu et al., 2000; Khanna et al., 2003; Verjans et al.,
2007). These immune cells provide IFN-γ which upregulates

PD-L1 on HSV-1-infected neurons (Jeon et al., 2013). CD8+
T cells recognizing subdominant epitopes derived from HSV-1
proteins other than glycoprotein B (gB) but not CD8+ T cells
specific for the dominant gB-derived epitope show a partial
exhausted phenotype with increased PD-1 expression (Jeon
et al., 2013). Blockade of PD-L1 resulted in increased survival
of exhausted CD8+ T cells that were non-functional and not
protective, however (Jeon et al., 2013). In contrast, it has been
reported that HSV-1 LATs promotes functional exhaustion of
CD8+ T cells specific for the dominant gB-derived epitope
(Allen et al., 2011; Chentoufi et al., 2011).

During coevolution with their host, herpesviruses developed
numerous mechanisms to evade the antiviral immune response
such as modulation of programmed cell death (Raftery et al.,
1999, 2001; Muller et al., 2004; Kather et al., 2010) and
downregulation of MHC class I molecules (Schuren et al.,
2016). Intriguingly, replication competent varicella-zoster virus
(VZV) downregulates MHC class I and PD-L1 molecules in
human brain vascular adventitial fibroblasts, perineurial cells,
and human lung fibroblasts (Jones et al., 2016). In contrast, VZV
upregulates PD-L1 in hematopoietic cells (Jones et al., 2019).
The mechanism underlying VZV-associated downregulation of
PD-L1 is posttranscriptional in nature but the VZV-encoded
protein responsible has not yet been identified (Jones et al.,
2016). VZV might target PD-L1 to increase the migration
arrest of T cells (Honda et al., 2014). In this way, the virus
could more efficiently spread from lung fibroblasts to T cells,
which play crucial role in VZV dissemination to the skin
(Arvin et al., 2010).

CONCLUDING REMARKS

It is a seductive proposition that a virus induces PD-1 ligands in
order to inhibit and thus evade the host immune response. On the
other hand, recent data on the regulation of PD-L1 expression
during viral infection suggest that PD-L1 upregulation is rather
a part of the normal innate response induced by IFNs and PRR
signaling. The reason for this is still enigmatic. PD-L1 may have
a yet not defined immunostimulatory role in the very early phase
of viral infection. Later, it may adjust the quantity and quality
of the antiviral CD8+ T cell response in such a way that virus
is eliminated with minimal collateral tissue damage. The PD-
1/PD-L1 axis may also be important to maintain antiviral Trm
cells and Tex cells. Virus-induced PD-1 ligand expression as an
immune evasion strategy should always be rigorously tested with
this in mind.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

The authors acknowledge support from the German Research
Foundation (DFG) and the Open Access Publication Fund of
Charité – Universitätsmedizin Berlin.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 June 2019 | Volume 9 | Article 207

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Schönrich and Raftery PD-1 and Antiviral Immune Responses

REFERENCES

Abdelsamed, H. A., Moustaki, A., Fan, Y., Dogra, P., Ghoneim, H. E., and

Youngblood, B. (2017). Human memory CD8T cell effector potential is

epigenetically preserved during in vivo homeostasis. J. Exp. Med. 214,

1593–1606. doi: 10.1084/jem.20161760

Agata, Y., Kawasaki, A., Nishimura, H., Ishida, Y., Tsubata, T., Yagita, H., et al.

(1996). Expression of the PD-1 antigen on the surface of stimulated mouse T

and B lymphocytes. Int. Immunol. 8, 765–772.

Ahn, E., Araki, K., Hashimoto, M., Li, W., Riley, J. L., Cheung, J., et al. (2018). Role

of PD-1 during effector CD8T cell differentiation. Proc. Natl. Acad. Sci. U.S.A.

115, 4749–4754. doi: 10.1073/pnas.1718217115

Aichele, P., Unsoeld, H., Koschella, M., Schweier, O., Kalinke, U., and Vucikuja,

S. (2006). CD8T cells specific for lymphocytic choriomeningitis virus require

type I IFN receptor for clonal expansion. J. Immunol. 176, 4525–4529.

doi: 10.4049/jimmunol.176.8.4525

Akhmetzyanova, I., Drabczyk, M., Neff, C. P., Gibbert, K., Dietze, K.

K., and Zelinskyy, G. (2015). PD-L1 expression on retrovirus-infected

cells mediates immune escape from CD8+ T cell killing. PLoS Pathog.

11:e1005224. doi: 10.1371/journal.ppat.1005224

Akondy, R. S., Fitch, M., Edupuganti, S., Yang, S., Kissick, H. T., and Ahmed,

R. (2017). Origin and differentiation of human memory CD8T cells after

vaccination. Nature 552, 362–367. doi: 10.1038/nature24633

Allen, S. J., Hamrah, P., Gate, D., Mott, K. R., Mantopoulos, D., and Ghiasi, H.

(2011). The role of LAT in increased CD8+ T cell exhaustion in trigeminal

ganglia of mice latently infected with herpes simplex virus 1. J. Virol. 85,

4184–4197. doi: 10.1128/JVI.02290-10

Andreakos, E., Salagianni, M., Galani, I. E., and Koltsida, O. (2017). Interferon-

lambdas: front-line guardians of immunity and homeostasis in the respiratory

tract. Front. Immunol. 8:1232. doi: 10.3389/fimmu.2017.01232

Ariotti, S., Hogenbirk, M. A., Dijkgraaf, F. E., Visser, L. L., Hoekstra, M.

E., and Schumacher, T. N. (2014). Skin-resident memory CD8(+) T

cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105.

doi: 10.1126/science.1254803

Arvin, A. M., Moffat, J. F., Sommer, M., Oliver, S, Che, X., Vleck, S., et al. (2010).

Varicella-zoster virus T cell tropism and the pathogenesis of skin infection.

Curr. Top. Microbiol. Immunol. 342, 189–209. doi: 10.1007/82_2010_29

Attanasio, J., and Wherry, E. J. (2016). Costimulatory and coinhibitory

receptor pathways in infectious disease. Immunity 44, 1052–1068.

doi: 10.1016/j.immuni.2016.04.022

Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., and Ahmed,

R. (2006). Restoring function in exhausted CD8T cells during chronic viral

infection. Nature 439, 682–687. doi: 10.1038/nature04444

Barnes, E. (2018). Unravelling the fate of functional PD1+ T cells in chronic viral

hepatitis. J. Clin. Invest. 128, 573–576. doi: 10.1172/JCI99035

Basler, C. F. (2017). Molecular pathogenesis of viral hemorrhagic fever. Semin.

Immunopathol. 39, 551–561. doi: 10.1007/s00281-017-0637-x

Benedict, C. A., Loewendorf, A., Garcia, Z., Blazar, B. R., and Janssen, E.

M. (2008). Dendritic cell programming by cytomegalovirus stunts naive T

cell responses via the PD-L1/PD-1 pathway. J. Immunol. 180, 4836–4847.

doi: 10.4049/jimmunol.180.7.4836

Bengsch, B., Johnson, A. L., Kurachi, M., Odorizzi, P. M., Pauken, K. E., Attanasio,

J., et al. (2016). Bioenergetic insufficiencies due to metabolic alterations

regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell

exhaustion. Immunity 45, 358–373. doi: 10.1016/j.immuni.2016.07.008

Billerbeck, E., Wolfisberg, R., Fahnoe, U., Xiao, J. W., Quirk, C., and Rice, C. M.

(2017). Mouse models of acute and chronic hepacivirus infection. Science 357,

204–208. doi: 10.1126/science.aal1962

Biron, C. A., Nguyen, K. B., and Pien, G. C. (2002). Innate immune responses

to LCMV infections: natural killer cells and cytokines. Curr. Top. Microbiol.

Immunol. 263, 7–27. doi: 10.1007/978-3-642-56055-2_2

Blackburn, S. D., Shin, H., Haining, W. N., Zou, T., Workman, C. J., and

Wherry, E. J. (2009). Coregulation of CD8+ T cell exhaustion by multiple

inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37.

doi: 10.1038/ni.1679

Blattman, J. N., Wherry, E. J., Ha, S. J., van der Most, R. G., and Ahmed, R. (2009).

Impact of epitope escape on PD-1 expression and CD8 T-cell exhaustion during

chronic infection. J. Virol. 83, 4386–4394. doi: 10.1128/JVI.02524-08

Boasso, A., Hardy, A. W., Landay, A. L., Martinson, J. L., Anderson, S. A.,

and Shearer, G. M. (2008). PDL-1 upregulation on monocytes and T cells

by HIV via type I interferon: restricted expression of type I interferon

receptor by CCR5-expressing leukocytes. Clin. Immunol. 129, 132–144.

doi: 10.1016/j.clim.2008.05.009

Boes, M., and Meyer-Wentrup, F. (2015). TLR3 triggering regulates PD-L1

(CD274) expression in human neuroblastoma cells. Cancer Lett. 361, 49–56.

doi: 10.1016/j.canlet.2015.02.027

Brett, J., Gerlach, H., Nawroth, P., Steinberg, S., Godman, G., and Stern, D.

(1989). Tumor necrosis factor/cachectin increases permeability of endothelial

cell monolayers by a mechanism involving regulatory G proteins. J. Exp. Med.

169, 1977–1991.

Brooks, D. G., Ha, S. J., Elsaesser, H., Sharpe, A. H., Freeman, G. J., and Oldstone,

M. B. (2008). IL-10 and PD-L1 operate through distinct pathways to suppress

T-cell activity during persistent viral infection. Proc. Natl. Acad. Sci. U.S.A. 105,

20428–20433. doi: 10.1073/pnas.0811139106

Brooks, D. G., McGavern, D. B., and Oldstone, M. B. (2006a). Reprogramming

of antiviral T cells prevents inactivation and restores T cell activity during

persistent viral infection. J. Clin. Invest. 116, 1675–1685. doi: 10.1172/JCI

26856

Brooks, D. G., Trifilo, M. J., Edelmann, K. H., Teyton, L., McGavern, D. B.,

and Oldstone, M. B. (2006b). Interleukin-10 determines viral clearance or

persistence in vivo. Nat. Med. 12, 1301–1309. doi: 10.1038/nm1492

Brown, J. A., Dorfman, D. M., Ma, F. R., Sullivan, E. L., Munoz, O., and

Freeman, G. J. (2003). Blockade of programmed death-1 ligands on dendritic

cells enhances T cell activation and cytokine production. J. Immunol. 170,

1257–1266. doi: 10.4049/jimmunol.170.3.1257

Brown, K. E., Freeman, G. J., Wherry, E. J., and Sharpe, A. H. (2010). Role

of PD-1 in regulating acute infections. Curr. Opin. Immunol. 22, 397–401.

doi: 10.1016/j.coi.2010.03.007

Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H., and Freeman, G. J.

(2007). Programmed death-1 ligand 1 interacts specifically with the B7-1

costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122.

doi: 10.1016/j.immuni.2007.05.016

Butte, M. J., Pena-Cruz, V., Kim, M. J., Freeman, G. J., and Sharpe, A. H.

(2008). Interaction of human PD-L1 and B7-1. Mol. Immunol. 45, 3567–3572.

doi: 10.1016/j.molimm.2008.05.014

Carbone, F. R., and Gebhardt, T. (2014). A neighborhood watch upholds local

immune protection. Science 346, 40–41. doi: 10.1126/science.1259925

Channappanavar, R., Twardy, B. S., and Suvas, S. (2012). Blocking

of PDL-1 interaction enhances primary and secondary CD8T cell

response to herpes simplex virus-1 infection. PLoS ONE 7:e39757.

doi: 10.1371/journal.pone.0039757

Chaudhri, A., Xiao, Y., Klee, A. N., Wang, X., Zhu, B., and Freeman, G. J. (2018).

PD-L1 binds to B7-1 only in Cis on the same cell surface. Cancer Immunol. Res.

6, 921–929. doi: 10.1158/2326-6066.CIR-17-0316

Chen, L., and Flies, D. B. (2013). Molecular mechanisms of T cell co-stimulation

and co-inhibition. Nat. Rev. Immunol. 13, 227–242. doi: 10.1038/nri3405

Chentoufi, A. A., Kritzer, E., Tran, M. V., Dasgupta, G., Lim, C. H., and

BenMohamed, L. (2011). The herpes simplex virus 1 latency-associated

transcript promotes functional exhaustion of virus-specific CD8+ T cells in

latently infected trigeminal ganglia: a novel immune evasion mechanism. J.

Virol. 85, 9127–9138. doi: 10.1128/JVI.00587-11

Chikuma, S., Terawaki, S., Hayashi, T., Nabeshima, R., Yoshida, T.,

Shibayama, S., et al. (2009). PD-1-mediated suppression of IL-2 production

induces CD8+ T cell anergy in vivo. J. Immunol. 182, 6682–6689.

doi: 10.4049/jimmunol.0900080

Cole, J. E., Navin, T. J., Cross, A. J., Goddard, M. E., Alexopoulou, L., and Monaco,

C. (2011). Unexpected protective role for Toll-like receptor 3 in the arterial

wall. Proc. Natl. Acad. Sci. U.S.A. 108, 2372–2377. doi: 10.1073/pnas.10185

15108

Cox, M. A., Nechanitzky, R., and Mak, T. W. (2017). Check point inhibitors

as therapies for infectious diseases. Curr. Opin. Immunol. 48, 61–67.

doi: 10.1016/j.coi.2017.07.016

Crawford, A., Angelosanto, J. M., Kao, C., Doering, T. A., Odorizzi, P.

M., and Wherry, E. J. (2014). Molecular and transcriptional basis of

CD4(+) T cell dysfunction during chronic infection. Immunity 40, 289–302.

doi: 10.1016/j.immuni.2014.01.005

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9 June 2019 | Volume 9 | Article 207

https://doi.org/10.1084/jem.20161760
https://doi.org/10.1073/pnas.1718217115
https://doi.org/10.4049/jimmunol.176.8.4525
https://doi.org/10.1371/journal.ppat.1005224
https://doi.org/10.1038/nature24633
https://doi.org/10.1128/JVI.02290-10
https://doi.org/10.3389/fimmu.2017.01232
https://doi.org/10.1126/science.1254803
https://doi.org/10.1007/82_2010_29
https://doi.org/10.1016/j.immuni.2016.04.022
https://doi.org/10.1038/nature04444
https://doi.org/10.1172/JCI99035
https://doi.org/10.1007/s00281-017-0637-x
https://doi.org/10.4049/jimmunol.180.7.4836
https://doi.org/10.1016/j.immuni.2016.07.008
https://doi.org/10.1126/science.aal1962
https://doi.org/10.1007/978-3-642-56055-2_2
https://doi.org/10.1038/ni.1679
https://doi.org/10.1128/JVI.02524-08
https://doi.org/10.1016/j.clim.2008.05.009
https://doi.org/10.1016/j.canlet.2015.02.027
https://doi.org/10.1073/pnas.0811139106
https://doi.org/10.1172/JCI26856
https://doi.org/10.1038/nm1492
https://doi.org/10.4049/jimmunol.170.3.1257
https://doi.org/10.1016/j.coi.2010.03.007
https://doi.org/10.1016/j.immuni.2007.05.016
https://doi.org/10.1016/j.molimm.2008.05.014
https://doi.org/10.1126/science.1259925
https://doi.org/10.1371/journal.pone.0039757
https://doi.org/10.1158/2326-6066.CIR-17-0316
https://doi.org/10.1038/nri3405
https://doi.org/10.1128/JVI.00587-11
https://doi.org/10.4049/jimmunol.0900080
https://doi.org/10.1073/pnas.1018515108
https://doi.org/10.1016/j.coi.2017.07.016
https://doi.org/10.1016/j.immuni.2014.01.005
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Schönrich and Raftery PD-1 and Antiviral Immune Responses

Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., and Zou, W. (2003).

Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor

immunity. Nat. Med. 9, 562–567. doi: 10.1038/nm863

David, P., Megger, D. A., Kaiser, T., Werner, T., Liu, J., and Zelinskyy, G. (2019).

The PD-1/PD-L1 pathway affects the expansion and function of cytotoxic

CD8(+) T cells during an acute retroviral infection. Front. Immunol. 10:54.

doi: 10.3389/fimmu.2019.00054

Davidson, S., Maini, M. K., andWack, A. (2015). Disease-promoting effects of type

I interferons in viral, bacterial, and coinfections. J. Interferon Cytokine Res. 35,

252–264. doi: 10.1089/jir.2014.0227

Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A., Moodley, E. S.,

and Walker, B. D. (2006). PD-1 expression on HIV-specific T cells is

associated with T-cell exhaustion and disease progression.Nature 443, 350–354.

doi: 10.1038/nature05115

Doering, T. A., Crawford, A., Angelosanto, J. M., Paley, M. A., Ziegler, C. G., and

Wherry, E. J. (2012). Network analysis reveals centrally connected genes and

pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37,

1130–1144. doi: 10.1016/j.immuni.2012.08.021

Ejrnaes, M., Filippi, C. M., Martinic, M. M., Ling, E. M., Togher, L. M., and von

Herrath, M. G. (2006). Resolution of a chronic viral infection after interleukin-

10 receptor blockade. J. Exp. Med. 203, 2461–2472. doi: 10.1084/jem.20061462

Erickson, J. J., Gilchuk, P., Hastings, A. K., Tollefson, S. J., Johnson, M., and

Williams, J. V. (2012). Viral acute lower respiratory infections impair CD8+

T cells through PD-1. J. Clin. Invest. 122, 2967–2982. doi: 10.1172/JCI62860

Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A., and Bluestone, J. A. (2016).

CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988.

doi: 10.1016/j.immuni.2016.04.020

Fife, B. T., and Pauken, K. E. (2011). The role of the PD-1 pathway in

autoimmunity and peripheral tolerance. Ann. N. Y. Acad. Sci. 1217, 45–59.

doi: 10.1111/j.1749-6632.2010.05919.x

Francisco, L. M., Sage, P. T., and Sharpe, A. H. (2010). The PD-1

pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242.

doi: 10.1111/j.1600-065X.2010.00923.x

Francisco, L. M., Salinas, V. H., Brown, K. E., Vanguri, V. K., Freeman, G. J.,

and Sharpe, A. H. (2009). PD-L1 regulates the development, maintenance,

and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029.

doi: 10.1084/jem.20090847

Frebel, H., Nindl, V., Schuepbach, R. A., Braunschweiler, T., Richter, K., and

Oxenius, A. (2012). Programmed death 1 protects from fatal circulatory

failure during systemic virus infection of mice. J. Exp. Med. 209, 2485–2499.

doi: 10.1084/jem.20121015

Galani, I. E., Triantafyllia, V., Eleminiadou, E. E., Koltsida, O., Stavropoulos,

A., and Andreakos, E. (2017). Interferon-lambda mediates non-

redundant front-line antiviral protection against influenza virus

infection without compromising host fitness. Immunity 46, 875–890 e6.

doi: 10.1016/j.immuni.2017.04.025

Gallez-Hawkins, G. M., Thao, L., Palmer, J., Dagis, A., Li, X., and Zaia,

J. A. (2009). Increased programmed death-1 molecule expression in

cytomegalovirus disease and acute graft-versus-host disease after allogeneic

hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 15,

872–880. doi: 10.1016/j.bbmt.2009.03.022

Gallimore, A., Glithero, A., Godkin, A., Tissot, A. C., Pluckthun, A.,

and Zinkernagel, R. (1998). Induction and exhaustion of lymphocytic

choriomeningitis virus-specific cytotoxic T lymphocytes visualized using

soluble tetrameric major histocompatibility complex class I-peptide complexes.

J. Exp. Med. 187, 1383–1393.

Gamradt, P., Laoubi, L., Nosbaum, A., Mutez, V., Lenief, V., Grande, S.,

et al. (2019). Inhibitory checkpoint receptors control CD8(+) resident

memory T cells to prevent skin allergy. J. Allergy Clin. Immunol.

2019:48. doi: 10.1016/j.jaci.2018.11.048

Garcia-Bates, T. M., Palma, M. L., Shen, C., Gambotto, A., Macatangay, B. J. C.,

and Mailliard, R. B. (2019). Contrasting roles of the PD-1 signaling pathway in

dendritic cell-mediated induction and regulation of HIV-1-specific effector T

cell functions. J. Virol. 93:5. doi: 10.1128/JVI.02035-18

Garcia-Diaz, A., Shin, D. S., Moreno, B. H., Saco, J., Escuin-Ordinas, H., and

Ribas, A. (2017). Interferon receptor signaling pathways regulating PD-L1

and PD-L2 expression. Cell Rep. 19, 1189–1201. doi: 10.1016/j.celrep.2017.

04.031

GBD 2015 HIV Collaborators (2016). Estimates of global, regional, and

national incidence, prevalence, and mortality of HIV, 1980-2015: the

Global Burden of Disease Study 2015. Lancet HIV 3, e361–e387.

doi: 10.1016/S2352-3018(16)30087-X

Gebhardt, T.,Wakim, L.M., Eidsmo, L., Reading, P. C., Heath,W. R., and Carbone,

F. R. (2009). Memory T cells in nonlymphoid tissue that provide enhanced

local immunity during infection with herpes simplex virus. Nat. Immunol. 10,

524–530. doi: 10.1038/ni.1718

Good, C., Wells, A. I., and Coyne, C. B. (2019). Type III interferon signaling

restricts enterovirus 71 infection of goblet cells. Sci. Adv. 5:eaau4255.

doi: 10.1126/sciadv.aau4255

Grakoui, A., John Wherry, E., Hanson, H. L., Walker, C., and Ahmed,

R. (2006). Turning on the off switch: regulation of anti-viral T cell

responses in the liver by the PD-1/PD-L1 pathway. J. Hepatol. 45, 468–472.

doi: 10.1016/j.jhep.2006.07.009

Gupta, N., Hegde, P., Lecerf, M., Nain, M., Kaur, M., Kalia, M., et al. (2014).

Japanese encephalitis virus expands regulatory T cells by increasing the

expression of PD-L1 on dendritic cells. Eur. J. Immunol. 44, 1363–1374.

doi: 10.1002/eji.201343701

Hashimoto, M., Kamphorst, A. O., Im, S. J., Kissick, H. T., Pillai, R. N.,

and Ahmed, R. (2018). CD8T cell exhaustion in chronic infection and

cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318.

doi: 10.1146/annurev-med-012017-043208

Hombrink, P., Helbig, C., Backer, R. A., Piet, B., Oja, A. E., and van Lier, R.

A. (2016). Programs for the persistence, vigilance and control of human

CD8(+) lung-resident memory T cells. Nat. Immunol. 17, 1467–1478.

doi: 10.1038/ni.3589

Honda, T., Egen, J. G., Lammermann, T., Kastenmuller, W., Torabi-Parizi, P.,

and Germain, R. N. (2014). Tuning of antigen sensitivity by T cell receptor-

dependent negative feedback controls T cell effector function in inflamed

tissues. Immunity 40, 235–247. doi: 10.1016/j.immuni.2013.11.017

Host, K. M., Jacobs, S. R., West, J. A., Zhang, Z., Costantini, L. M., and

Damania, B. (2017). Kaposi’s sarcoma-associated herpesvirus increases PD-

L1 and proinflammatory cytokine expression in human monocytes. MBio 8:5.

doi: 10.1128/mBio.00917-17

Huang, Z. Y., Xu, P., Li, J. H., Zeng, C. H., Song, H. F., and Wang, X.

F. (2017). Clinical significance of dynamics of programmed death ligand-

1 expression on circulating CD14(+) monocytes and CD19(+) B cells with

the progression of hepatitis B virus infection. Viral Immunol. 30, 224–231.

doi: 10.1089/vim.2016.0122

Ishida, Y., Agata, Y., Shibahara, K., and Honjo, T. (1992). Induced expression

of PD-1, a novel member of the immunoglobulin gene superfamily, upon

programmed cell death. EMBO J. 11, 3887–3895.

Iwai, Y., Terawaki, S., Ikegawa, M., Okazaki, T., and Honjo, T. (2003). PD-1

inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med. 198,

39–50. doi: 10.1084/jem.20022235

Jeon, S., Rowe, A. M., Carroll, K. L., Harvey, S. A. K., and Hendricks, R.

L. (2018). PD-L1/B7-H1 inhibits viral clearance by macrophages in HSV-

1-infected corneas. J. Immunol. 200, 3711–3719. doi: 10.4049/jimmunol.17

00417

Jeon, S., St. Leger, A. J., Cherpes, T. L., Sheridan, B. S., and Hendricks, R. L. (2013).

PD-L1/B7-H1 regulates the survival but not the function of CD8+ T cells in

herpes simplex virus type 1 latently infected trigeminal ganglia. J. Immunol.

190, 6277–6286. doi: 10.4049/jimmunol.1300582

Jin, H. T., Anderson, A. C., Tan, W. G., West, E. E., Ha, S. J., and Ahmed,

R. (2010). Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during

chronic viral infection. Proc. Natl. Acad. Sci. U.S.A. 107, 14733–14738.

doi: 10.1073/pnas.1009731107

Jones, D., Blackmon, A., Neff, C. P., Palmer, B. E., Gilden, D., and Nagel, M. A.

(2016). Varicella-zoster virus downregulates programmed death ligand 1 and

major histocompatibility complex class I in human brain vascular adventitial

fibroblasts, perineurial cells, and lung fibroblasts. J. Virol. 90, 10527–10534.

doi: 10.1128/JVI.01546-16

Jones, D., Como, C. N., Jing, L., Blackmon, A., Neff, C. P., and Nagel, M. A.

(2019). Varicella zoster virus productively infects human peripheral blood

mononuclear cells to modulate expression of immunoinhibitory proteins and

blocking PD-L1 enhances virus-specific CD8+ T cell effector function. PLoS

Pathog. 15:e1007650. doi: 10.1371/journal.ppat.1007650

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10 June 2019 | Volume 9 | Article 207

https://doi.org/10.1038/nm863
https://doi.org/10.3389/fimmu.2019.00054
https://doi.org/10.1089/jir.2014.0227
https://doi.org/10.1038/nature05115
https://doi.org/10.1016/j.immuni.2012.08.021
https://doi.org/10.1084/jem.20061462
https://doi.org/10.1172/JCI62860
https://doi.org/10.1016/j.immuni.2016.04.020
https://doi.org/10.1111/j.1749-6632.2010.05919.x
https://doi.org/10.1111/j.1600-065X.2010.00923.x
https://doi.org/10.1084/jem.20090847
https://doi.org/10.1084/jem.20121015
https://doi.org/10.1016/j.immuni.2017.04.025
https://doi.org/10.1016/j.bbmt.2009.03.022
https://doi.org/10.1016/j.jaci.2018.11.048
https://doi.org/10.1128/JVI.02035-18
https://doi.org/10.1016/j.celrep.2017.04.031
https://doi.org/10.1016/S2352-3018(16)30087-X
https://doi.org/10.1038/ni.1718
https://doi.org/10.1126/sciadv.aau4255
https://doi.org/10.1016/j.jhep.2006.07.009
https://doi.org/10.1002/eji.201343701
https://doi.org/10.1146/annurev-med-012017-043208
https://doi.org/10.1038/ni.3589
https://doi.org/10.1016/j.immuni.2013.11.017
https://doi.org/10.1128/mBio.00917-17
https://doi.org/10.1089/vim.2016.0122
https://doi.org/10.1084/jem.20022235
https://doi.org/10.4049/jimmunol.1700417
https://doi.org/10.4049/jimmunol.1300582
https://doi.org/10.1073/pnas.1009731107
https://doi.org/10.1128/JVI.01546-16
https://doi.org/10.1371/journal.ppat.1007650
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Schönrich and Raftery PD-1 and Antiviral Immune Responses

Kahan, S. M., Wherry, E. J., and Zajac, A. J. (2015). T cell exhaustion

during persistent viral infections. Virology 479–480, 180–193.

doi: 10.1016/j.virol.2014.12.033

Kahan, S. M., and Zajac, A. J. (2019). Immune exhaustion: past lessons

and new insights from lymphocytic choriomeningitis virus. Viruses 11:2.

doi: 10.3390/v11020156

Kakizaki, M., Yamamoto, Y., Yabuta, S., Kurosaki, N., Kagawa, T., and

Kotani, A. (2018). The immunological function of extracellular vesicles

in hepatitis B virus-infected hepatocytes. PLoS ONE 13:e0205886.

doi: 10.1371/journal.pone.0205886

Kather, A., Raftery, M. J., Devi-Rao, G., Lippmann, J., Giese, T., and Schonrich,

G. (2010). Herpes simplex virus type 1 (HSV-1)-induced apoptosis in human

dendritic cells as a result of downregulation of cellular FLICE-inhibitory

protein and reduced expression of HSV-1 antiapoptotic latency-associated

transcript sequences. J. Virol. 84, 1034–1046. doi: 10.1128/JVI.01409-09

Keir, M. E., Butte, M. J., Freeman, G. J., and Sharpe, A. H. (2008). PD-1 and

its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704.

doi: 10.1146/annurev.immunol.26.021607.090331

Keir, M. E., Liang, S. C., Guleria, I., Latchman, Y. E., Qipo, A., and Sharpe, A. H.

(2006). Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp.

Med. 203, 883–895. doi: 10.1084/jem.20051776

Khanna, K. M., Bonneau, R. H., Kinchington, P. R., and Hendricks, R. L. (2003).

Herpes simplex virus-specific memory CD8+ T cells are selectively activated

and retained in latently infected sensory ganglia. Immunity 18, 593–603.

doi: 10.1016/S1074-7613(03)00112-2

Kleinpeter, P., Remy-Ziller, C., Winter, E., Gantzer, M., Nourtier, V., Kempf, J.,

et al. (2019). By binding CD80 and CD86, the vaccinia virus’ M2 protein blocks

their interactions with both CD28 and CTLA4 and potentiates CD80’s binding

to PD-L1. J. Virol. 2019:19. doi: 10.1128/JVI.00207-19

Klenerman, P., and Barnes, E. J. (2017). Immunology taught by rats. Science 357,

129–130. doi: 10.1126/science.aao0184

Koh, K. P., Wang, Y., Yi, T., Shiao, S. L., Lorber, M. I., and Pober, J. S.

(2004). T cell-mediated vascular dysfunction of human allografts results from

IFN-gamma dysregulation of NO synthase. J. Clin. Invest. 114, 846–856.

doi: 10.1172/JCI21767

Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J., and Murali-Krishna, K.

(2005). Type I interferons act directly on CD8T cells to allow clonal expansion

andmemory formation in response to viral infection. J. Exp.Med. 202, 637–650.

doi: 10.1084/jem.20050821

Kumar, B. V., Ma, W., Miron, M., Granot, T., Guyer, R. S., and Farber, D. L. (2017).

Human tissue-resident memory T cells are defined by core transcriptional and

functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934.

doi: 10.1016/j.celrep.2017.08.078

Lafon, M., Megret, F., Meuth, S. G., Simon, O., Velandia Romero, M.

L., and Wiendl, H. (2008). Detrimental contribution of the immuno-

inhibitor B7-H1 to rabies virus encephalitis. J. Immunol. 180, 7506–7515.

doi: 10.4049/jimmunol.180.11.7506

Lamichhane, P., Karyampudi, L., Shreeder, B., Krempski, J., Bahr, D.,

Daum, J., et al. (2017). IL10 Release upon PD-1 blockade sustains

immunosuppression in ovarian cancer. Cancer Res. 77, 6667–6678.

doi: 10.1158/0008-5472.CAN-17-0740

Lazear, H. M., Schoggins, J. W., and Diamond, M. S. (2019). Shared and

distinct functions of type I and type III interferons. Immunity 50, 907–923.

doi: 10.1016/j.immuni.2019.03.025

Legat, A., Speiser, D. E., Pircher, H., Zehn, D., and Fuertes Marraco, S. A. (2013).

Inhibitory receptor expression depends more dominantly on differentiation

and activation than “exhaustion” of human CD8T cells. Front. Immunol.

4:455. doi: 10.3389/fimmu.2013.00455

Lindgren, T., Ahlm, C., Mohamed, N., Evander, M., Ljunggren, H. G., and

Bjorkstrom, N. K. (2011). Longitudinal analysis of the human T cell

response during acute hantavirus infection. J. Virol. 85, 10252–10260.

doi: 10.1128/JVI.05548-11

Liu, T., Khanna, K. M., Chen, X., Fink, D. J., and Hendricks, R. L. (2000).

CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from

latency in sensory neurons. J. Exp. Med. 191, 1459–1466. doi: 10.1084/jem.191.

9.1459

Loewendorf, A., Kruger, C., Borst, E. M., Wagner, M., Just, U., and Messerle, M.

(2004). Identification of a mouse cytomegalovirus gene selectively targeting

CD86 expression on antigen-presenting cells. J. Virol. 78, 13062–13071.

doi: 10.1128/JVI.78.23.13062-13071.2004

Loke, P., and Allison, J. P. (2003). PD-L1 and PD-L2 are differentially regulated

by Th1 and Th2 cells. Proc. Natl. Acad. Sci. U.S.A. 100, 5336–5341.

doi: 10.1073/pnas.0931259100

Mackay, L. K.,Wakim, L., van Vliet, C. J., Jones, C.M., Mueller, S. N., and Carbone,

F. R. (2012). Maintenance of T cell function in the face of chronic antigen

stimulation and repeated reactivation for a latent virus infection. J. Immunol.

188, 2173–2178. doi: 10.4049/jimmunol.1102719

Maier, H., Isogawa, M., Freeman, G. J., and Chisari, F. V. (2007). PD-

1:PD-L1 interactions contribute to the functional suppression of virus-

specific CD8+ T lymphocytes in the liver. J. Immunol. 178, 2714–2720.

doi: 10.4049/jimmunol.178.5.2714

Man, K., Gabriel, S. S., Liao, Y., Gloury, R., Preston, S., and Kallies, A. (2017).

Transcription factor IRF4 promotes CD8(+) T cell exhaustion and limits the

development of memory-like T cells during chronic infection. Immunity 47,

1129–1141 e5. doi: 10.1016/j.immuni.2017.11.021

Masopust, D., Choo, D., Vezys, V., Wherry, E. J., Duraiswamy, J., and Ahmed, R.

(2010). Dynamic T cell migration program provides resident memory within

intestinal epithelium. J. Exp. Med. 207, 553–564. doi: 10.1084/jem.20090858

Matloubian, M., Concepcion, R. J., and Ahmed, R. (1994). CD4+ T cells are

required to sustain CD8+ cytotoxic T-cell responses during chronic viral

infection. J. Virol. 68, 8056–8063.

Matloubian, M., Somasundaram, T., Kolhekar, S. R., Selvakumar, R., and Ahmed,

R. (1990). Genetic basis of viral persistence: single amino acid change in

the viral glycoprotein affects ability of lymphocytic choriomeningitis virus to

persist in adult mice. J. Exp. Med. 172, 1043–1048.

McElroy, A. K., Akondy, R. S., Davis, C. W., Ellebedy, A. H., Mehta,

A. K., and Ahmed, R. (2015). Human Ebola virus infection results in

substantial immune activation. Proc. Natl. Acad. Sci. U.S.A. 112, 4719–4724.

doi: 10.1073/pnas.1502619112

McKendry, R. T., Spalluto, C. M., Burke, H., Nicholas, B., Cellura, D.,

and Wilkinson, T. M. (2016). Dysregulation of antiviral function of

CD8(+) T cells in the chronic obstructive pulmonary disease lung. Role

of the PD-1-PD-L1 Axis. Am. J. Respir. Crit. Care Med. 193, 642–651.

doi: 10.1164/rccm.201504-0782OC

McKinney, E. F., and Smith, K. G. (2016). T cell exhaustion and immune-mediated

disease-the potential for therapeutic exhaustion. Curr. Opin. Immunol. 43,

74–80. doi: 10.1016/j.coi.2016.09.005

McKinney, E. F., and Smith, K. G. C. (2018). Metabolic exhaustion in

infection, cancer and autoimmunity. Nat. Immunol. 19, 213–221.

doi: 10.1038/s41590-018-0045-y

McNally, B., Ye, F., Willette, M., and Flano, E. (2013). Local blockade of epithelial

PDL-1 in the airways enhances T cell function and viral clearance during

influenza virus infection. J. Virol. 87, 12916–12924. doi: 10.1128/JVI.02423-13

Meier, A., Bagchi, A., Sidhu, H. K., Alter, G., Suscovich, T. J., and Altfeld,M. (2008).

Upregulation of PD-L1 onmonocytes and dendritic cells byHIV-1 derived TLR

ligands. AIDS 22, 655–658. doi: 10.1097/QAD.0b013e3282f4de23

Menicucci, A. R., Versteeg, K., Woolsey, C., Mire, C. E., Geisbert, J. B., and

Messaoudi, I. (2017). Transcriptome analysis of circulating immune cell subsets

highlight the role of monocytes in zaire ebola virus makona pathogenesis.

Front. Immunol. 8:1372. doi: 10.3389/fimmu.2017.01372

Moskophidis, D., Lechner, F., Pircher, H., and Zinkernagel, R. M. (1993). Virus

persistence in acutely infected immunocompetent mice by exhaustion of

antiviral cytotoxic effector T cells. Nature 362, 758–761. doi: 10.1038/362

758a0

Mueller, S. N., Vanguri, V. K., Ha, S. J., West, E. E., Keir, M. E., and Ahmed, R.

(2010). PD-L1 has distinct functions in hematopoietic and nonhematopoietic

cells in regulating T cell responses during chronic infection in mice. J. Clin.

Invest. 120, 2508–2515. doi: 10.1172/JCI40040

Muhlbauer, M., Fleck, M., Schutz, C., Weiss, T., Froh, M., Blank, C., et al.

(2006). PD-L1 is induced in hepatocytes by viral infection and by interferon-

alpha and -gamma and mediates T cell apoptosis. J. Hepatol. 45, 520–528.

doi: 10.1016/j.jhep.2006.05.007

Muller, A., Schmitt, L., Raftery, M., and Schonrich, G. (1998). Paralysis of B7 co-

stimulation through the effect of viral IL-10 on T cells as a mechanism of local

tolerance induction. Eur. J. Immunol. 28, 3488–3498. doi: 10.1002/(SICI)1521-

4141(199811)28:11<3488::AID-IMMU3488>3.0.CO;2-Y

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11 June 2019 | Volume 9 | Article 207

https://doi.org/10.1016/j.virol.2014.12.033
https://doi.org/10.3390/v11020156
https://doi.org/10.1371/journal.pone.0205886
https://doi.org/10.1128/JVI.01409-09
https://doi.org/10.1146/annurev.immunol.26.021607.090331
https://doi.org/10.1084/jem.20051776
https://doi.org/10.1016/S1074-7613(03)00112-2
https://doi.org/10.1128/JVI.00207-19
https://doi.org/10.1126/science.aao0184
https://doi.org/10.1172/JCI21767
https://doi.org/10.1084/jem.20050821
https://doi.org/10.1016/j.celrep.2017.08.078
https://doi.org/10.4049/jimmunol.180.11.7506
https://doi.org/10.1158/0008-5472.CAN-17-0740
https://doi.org/10.1016/j.immuni.2019.03.025
https://doi.org/10.3389/fimmu.2013.00455
https://doi.org/10.1128/JVI.05548-11
https://doi.org/10.1084/jem.191.9.1459
https://doi.org/10.1128/JVI.78.23.13062-13071.2004
https://doi.org/10.1073/pnas.0931259100
https://doi.org/10.4049/jimmunol.1102719
https://doi.org/10.4049/jimmunol.178.5.2714
https://doi.org/10.1016/j.immuni.2017.11.021
https://doi.org/10.1084/jem.20090858
https://doi.org/10.1073/pnas.1502619112
https://doi.org/10.1164/rccm.201504-0782OC
https://doi.org/10.1016/j.coi.2016.09.005
https://doi.org/10.1038/s41590-018-0045-y
https://doi.org/10.1128/JVI.02423-13
https://doi.org/10.1097/QAD.0b013e3282f4de23
https://doi.org/10.3389/fimmu.2017.01372
https://doi.org/10.1038/362758a0
https://doi.org/10.1172/JCI40040
https://doi.org/10.1016/j.jhep.2006.05.007
https://doi.org/10.1002/(SICI)1521-4141(199811)28:11<3488::AID-IMMU3488>3.0.CO;2-Y
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Schönrich and Raftery PD-1 and Antiviral Immune Responses

Muller, D. B., Raftery, M. J., Kather, A., Giese, T., and Schonrich, G. (2004).

Frontline: Induction of apoptosis and modulation of c-FLIPL and p53 in

immature dendritic cells infected with herpes simplex virus. Eur. J. Immunol.

34, 941–951. doi: 10.1002/eji.200324509

Mylvaganam, G. H., Chea, L. S., Tharp, G. K., Hicks, S., Velu, V., and Amara,

R. R. (2018). Combination anti-PD-1 and antiretroviral therapy provides

therapeutic benefit against SIV. JCI Insight 3:18. doi: 10.1172/jci.insight.12

2940

Ng, C. T., Snell, L. M., Brooks, D. G., and Oldstone, M. B. (2013). Networking

at the level of host immunity: immune cell interactions during persistent viral

infections. Cell Host Microbe 13, 652–664. doi: 10.1016/j.chom.2013.05.014

Nightingale, Z. D., Patkar, C., and Rothman, A. L. (2008). Viral replication

and paracrine effects result in distinct, functional responses of dendritic

cells following infection with dengue 2 virus. J. Leukoc. Biol. 84, 1028–1038.

doi: 10.1189/jlb.0208105

Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999). Development

of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an

ITIM motif-carrying immunoreceptor. Immunity 11, 141–151.

Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A.,

et al. (2001). Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient

mice. Science 291, 319–322. doi: 10.1126/science.291.5502.319

Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A., and Wherry, E.

J. (2015). Genetic absence of PD-1 promotes accumulation of terminally

differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137.

doi: 10.1084/jem.20142237

Okabayashi, T., Kojima, T., Masaki, T., Yokota, S., Imaizumi, T., Tsutsumi, H.,

et al. (2011). Type-III interferon, not type-I, is the predominant interferon

induced by respiratory viruses in nasal epithelial cells. Virus Res. 160, 360–366.

doi: 10.1016/j.virusres.2011.07.011

Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S., and Honjo, T. (2013). A rheostat

for immune responses: the unique properties of PD-1 and their advantages for

clinical application. Nat. Immunol. 14, 1212–1218. doi: 10.1038/ni.2762

Okazaki, T., and Honjo, T. (2006). The PD-1-PD-L pathway in immunological

tolerance. Trends Immunol. 27, 195–201. doi: 10.1016/j.it.2006.02.001

Omilusik, K. D., andGoldrath, A.W. (2017). The origins ofmemory T cells.Nature

552, 337–339. doi: 10.1038/d41586-017-08280-8

Ong, E. Z., Chan, K. R., and Ooi, E. E. (2016). Viral manipulation of host

inhibitory receptor signaling for immune evasion. PLoS Pathog. 12:e1005776.

doi: 10.1371/journal.ppat.1005776

Ott, J. J., Stevens, G. A., Groeger, J., and Wiersma, S. T. (2012). Global

epidemiology of hepatitis B virus infection: new estimates of age-

specific HBsAg seroprevalence and endemicity. Vaccine 30, 2212–2219.

doi: 10.1016/j.vaccine.2011.12.116

Ouyang, P., Rakus, K., van Beurden, S. J., Westphal, A. H., Davison, A. J.,

and Vanderplasschen, A. F. (2014). IL-10 encoded by viruses: a remarkable

example of independent acquisition of a cellular gene by viruses and its

subsequent evolution in the viral genome. J. Gen. Virol. 95(Pt 2), 245–262.

doi: 10.1099/vir.0.058966-0

Ouyang, W., Rutz, S., Crellin, N. K., Valdez, P. A., and Hymowitz, S.

G. (2011). Regulation and functions of the IL-10 family of cytokines

in inflammation and disease. Annu. Rev. Immunol. 29, 71–109.

doi: 10.1146/annurev-immunol-031210-101312

Paessler, S., andWalker, D. H. (2013). Pathogenesis of the viral hemorrhagic fevers.

Annu. Rev. Pathol. 8, 411–440. doi: 10.1146/annurev-pathol-020712-164041

Paley, M. A., Kroy, D. C., Odorizzi, P. M., Johnnidis, J. B., Dolfi, D. V.,

and Wherry, E. J. (2012). Progenitor and terminal subsets of CD8+ T

cells cooperate to contain chronic viral infection. Science 338, 1220–1225.

doi: 10.1126/science.1229620

Pallett, L. J., Davies, J., Colbeck, E. J., Robertson, F., Hansi, N., and Maini, M.

K. (2017). IL-2(high) tissue-resident T cells in the human liver: sentinels for

hepatotropic infection. J. Exp.Med. 214, 1567–1580. doi: 10.1084/jem.20162115

Pauken, K. E., Sammons, M. A., Odorizzi, P. M., Manne, S., Godec, J.,

and Wherry, E. J. (2016). Epigenetic stability of exhausted T cells limits

durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165.

doi: 10.1126/science.aaf2807

Petrelli, A., Mijnheer, G., van Konijnenburg, D. P. H., van der Wal, M.

M., Giovannone, B., Mocholi, E., et al. (2018). PD-1+CD8+ T cells are

clonally expanding effectors in human chronic inflammation. J. Clin. Invest.

2018:6107. doi: 10.1172/JCI96107

Petrovas, C., Casazza, J. P., Brenchley, J. M., Price, D. A., Gostick, E., and Koup,

R. A. (2006). PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV

infection. J. Exp. Med. 203, 2281–2292. doi: 10.1084/jem.20061496

Planes, R., BenMohamed, L., Leghmari, K., Delobel, P., Izopet, J., and Bahraoui,

E. (2014). HIV-1 Tat protein induces PD-L1 (B7-H1) expression on dendritic

cells through tumor necrosis factor alpha- and toll-like receptor 4-mediated

mechanisms. J. Virol. 88, 6672–6689. doi: 10.1128/JVI.00825-14

Probst, H. C., McCoy, K., Okazaki, T., Honjo, T., and van den Broek, M. (2005).

Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1

and CTLA-4. Nat. Immunol. 6, 280–286. doi: 10.1038/ni1165

Pulko, V., Liu, X., Krco, C. J., Harris, K. J., Frigola, X., and Dong, H. (2009).

TLR3-stimulated dendritic cells up-regulate B7-H1 expression and influence

the magnitude of CD8T cell responses to tumor vaccination. J. Immunol. 183,

3634–3641. doi: 10.4049/jimmunol.0900974

Raftery, M., Muller, A., and Schonrich, G. (2000). Herpesvirus homologues of

cellular genes. Virus Genes 21, 65–75. doi: 10.1023/A:1008184330127

Raftery, M. J., Abdelaziz, M. O., Hofmann, J., and Schonrich, G. (2018).

Hantavirus-driven PD-L1/PD-L2 upregulation: an imperfect viral immune

evasion mechanism. Front. Immunol. 9:2560. doi: 10.3389/fimmu.2018.02560

Raftery, M. J., Behrens, C. K., Muller, A., Krammer, P. H., Walczak, H., and

Schonrich, G. (1999). Herpes simplex virus type 1 infection of activated

cytotoxic T cells: induction of fratricide as a mechanism of viral immune

evasion. J. Exp. Med. 190, 1103–1114.

Raftery, M. J., Schwab, M., Eibert, S. M., Samstag, Y., Walczak, H., and

Schonrich, G. (2001). Targeting the function ofmature dendritic cells by human

cytomegalovirus: a multilayered viral defense strategy. Immunity 15, 997–1009.

doi: 10.1016/S1074-7613(01)00239-4

Raftery, M. J., Wieland, D., Gronewald, S., Kraus, A. A., Giese, T., and

Schonrich, G. (2004). Shaping phenotype, function, and survival of dendritic

cells by cytomegalovirus-encoded IL-10. J. Immunol. 173, 3383–3391.

doi: 10.4049/jimmunol.173.5.3383

Rodriguez-Garcia, M., Porichis, F., de Jong, O. G., Levi, K., Diefenbach, T. J.,

and Kavanagh, D. G. (2011). Expression of PD-L1 and PD-L2 on human

macrophages is up-regulated by HIV-1 and differentially modulated by IL-10.

J. Leukoc. Biol. 89, 507–515. doi: 10.1189/jlb.0610327

Rota, G., Niogret, C., Dang, A. T., Barros, C. R., Fonta, N. P., and Guarda, G.

(2018). Shp-2 is dispensable for establishing T cell exhaustion and for PD-1

signaling in vivo. Cell Rep. 23, 39–49. doi: 10.1016/j.celrep.2018.03.026

Ruibal, P., Oestereich, L., Ludtke, A., Becker-Ziaja, B., Wozniak, D. M., and

Munoz-Fontela, C. (2016). Unique human immune signature of Ebola virus

disease in Guinea. Nature 533, 100–104. doi: 10.1038/nature17949

Rutigliano, J. A., Sharma, S., Morris, M. Y., Oguin, T. H. III., McClaren, J. L.,

and Thomas, P. G. (2014). Highly pathological influenza A virus infection is

associated with augmented expression of PD-1 by functionally compromised

virus-specific CD8+ T cells. J. Virol. 88, 1636–1651. doi: 10.1128/JVI.02

851-13

Saeidi, A., Zandi, K., Cheok, Y. Y., Saeidi, H., Wong, W. F., and Shankar, E. M.

(2018). T-cell exhaustion in chronic infections: reversing the state of exhaustion

and reinvigorating optimal protective immune responses. Front. Immunol.

9:2569. doi: 10.3389/fimmu.2018.02569

Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two

subsets of memory T lymphocytes with distinct homing potentials and effector

functions. Nature 401, 708–712. doi: 10.1038/44385

Sanmamed, M. F., and Chen, L. (2018). A paradigm shift in cancer

immunotherapy: from enhancement to normalization. Cell 175, 313–326.

doi: 10.1016/j.cell.2018.09.035

Schenkel, J. M., Fraser, K. A., Beura, L. K., Pauken, K. E., Vezys, V., and Masopust,

D. (2014). Resident memory CD8T cells trigger protective innate and adaptive

immune responses. Science 346, 98–101. doi: 10.1126/science.1254536

Schenkel, J. M., Fraser, K. A., Vezys, V., and Masopust, D. (2013). Sensing and

alarm function of residentmemory CD8(+) T cells.Nat. Immunol. 14, 509–513.

doi: 10.1038/ni.2568

Schonrich, G., Abdelaziz, M. O., and Raftery, M. J. (2017). Herpesviral

capture of immunomodulatory host genes. Virus Genes 53, 762–773.

doi: 10.1007/s11262-017-1460-0

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12 June 2019 | Volume 9 | Article 207

https://doi.org/10.1002/eji.200324509
https://doi.org/10.1172/jci.insight.122940
https://doi.org/10.1016/j.chom.2013.05.014
https://doi.org/10.1189/jlb.0208105
https://doi.org/10.1126/science.291.5502.319
https://doi.org/10.1084/jem.20142237
https://doi.org/10.1016/j.virusres.2011.07.011
https://doi.org/10.1038/ni.2762
https://doi.org/10.1016/j.it.2006.02.001
https://doi.org/10.1038/d41586-017-08280-8
https://doi.org/10.1371/journal.ppat.1005776
https://doi.org/10.1016/j.vaccine.2011.12.116
https://doi.org/10.1099/vir.0.058966-0
https://doi.org/10.1146/annurev-immunol-031210-101312
https://doi.org/10.1146/annurev-pathol-020712-164041
https://doi.org/10.1126/science.1229620
https://doi.org/10.1084/jem.20162115
https://doi.org/10.1126/science.aaf2807
https://doi.org/10.1172/JCI96107
https://doi.org/10.1084/jem.20061496
https://doi.org/10.1128/JVI.00825-14
https://doi.org/10.1038/ni1165
https://doi.org/10.4049/jimmunol.0900974
https://doi.org/10.1023/A:1008184330127
https://doi.org/10.3389/fimmu.2018.02560
https://doi.org/10.1016/S1074-7613(01)00239-4
https://doi.org/10.4049/jimmunol.173.5.3383
https://doi.org/10.1189/jlb.0610327
https://doi.org/10.1016/j.celrep.2018.03.026
https://doi.org/10.1038/nature17949
https://doi.org/10.1128/JVI.02851-13
https://doi.org/10.3389/fimmu.2018.02569
https://doi.org/10.1038/44385
https://doi.org/10.1016/j.cell.2018.09.035
https://doi.org/10.1126/science.1254536
https://doi.org/10.1038/ni.2568
https://doi.org/10.1007/s11262-017-1460-0
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Schönrich and Raftery PD-1 and Antiviral Immune Responses

Schonrich, G., Rang, A., Lutteke, N., Raftery, M. J., Charbonnel, N., and Ulrich,

R. G. (2008). Hantavirus-induced immunity in rodent reservoirs and humans.

Immunol. Rev. 225, 163–189. doi: 10.1111/j.1600-065X.2008.00694.x

Schuren, A. B., Costa, A. I., and Wiertz, E. J. (2016). Recent advances in viral

evasion of the MHC Class I processing pathway. Curr. Opin. Immunol. 40,

43–50. doi: 10.1016/j.coi.2016.02.007

Schurich, A., Pallett, L. J., Jajbhay, D., Wijngaarden, J., Otano, I., and Maini,

M. K. (2016). Distinct metabolic requirements of exhausted and functional

virus-specific CD8T cells in the same host. Cell Rep. 16, 1243–1252.

doi: 10.1016/j.celrep.2016.06.078

Schweitzer, A., Horn, J., Mikolajczyk, R. T., Krause, G., and Ott, J. J. (2015).

Estimations of worldwide prevalence of chronic hepatitis B virus infection:

a systematic review of data published between 1965 and 2013. Lancet 386,

1546–1555. doi: 10.1016/S0140-6736(15)61412-X

Selenko-Gebauer, N., Majdic, O., Szekeres, A., Hofler, G., Guthann, E., Korthauer,

U., et al. (2003). B7-H1 (programmed death-1 ligand) on dendritic cells is

involved in the induction and maintenance of T cell anergy. J. Immunol. 170,

3637–3644. doi: 10.4049/jimmunol.170.7.3637

Sen, D. R., Kaminski, J., Barnitz, R. A., Kurachi, M., Gerdemann, U., and Haining,

W. N. (2016). The epigenetic landscape of T cell exhaustion. Science 354,

1165–1169. doi: 10.1126/science.aae0491

Shaabani, N., Duhan, V., Khairnar, V., Gassa, A., Ferrer-Tur, R., Haussinger, D.,

et al. (2016). CD169(+) macrophages regulate PD-L1 expression via type I

interferon and thereby prevent severe immunopathology after LCMV infection.

Cell Death Dis. 7:e2446. doi: 10.1038/cddis.2016.350

Sharpe, A. H., and Pauken, K. E. (2018). The diverse functions of the PD1

inhibitory pathway. Nat. Rev. Immunol. 18, 153–167. doi: 10.1038/nri.2017.108

Sharpe, A. H., Wherry, E. J., Ahmed, R., and Freeman, G. J. (2007). The function

of programmed cell death 1 and its ligands in regulating autoimmunity and

infection. Nat. Immunol. 8, 239–245. doi: 10.1038/ni1443

Shin, H. (2018). Formation and function of tissue-resident memory T cells during

viral infection. Curr. Opin. Virol. 28, 61–67. doi: 10.1016/j.coviro.2017.11.001

Shin, H., Blackburn, S. D., Blattman, J. N., and Wherry, E. J. (2007). Viral antigen

and extensive division maintain virus-specific CD8T cells during chronic

infection. J. Exp. Med. 204, 941–949. doi: 10.1084/jem.20061937

Shwetank., Abdelsamed, H. A., Frost, E. L., Schmitz, H. M., Mockus, T. E.,

Youngblood, B. A., et al. (2017). Maintenance of PD-1 on brain-resident

memory CD8T cells is antigen independent. Immunol. Cell Biol. 95, 953–959.

doi: 10.1038/icb.2017.62

Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., and

Liu, Y. J. (1999). The nature of the principal type 1 interferon-producing cells

in human blood. Science 284, 1835–1837.

Smolders, J., Heutinck, K. M., Fransen, N. L., Remmerswaal, E. B. M., Hombrink,

P., and Hamann, J. (2018). Tissue-resident memory T cells populate the human

brain. Nat. Commun. 9:4593. doi: 10.1038/s41467-018-07053-9

Speiser, D. E., Utzschneider, D. T., Oberle, S. G., Munz, C., Romero, P., and

Zehn, D. (2014). T cell differentiation in chronic infection and cancer:

functional adaptation or exhaustion? Nat. Rev. Immunol. 14, 768–774.

doi: 10.1038/nri3740

Stanaway, J. D., Flaxman, A. D., Naghavi, M., Fitzmaurice, C., Vos, T., Abubakar,

I., et al. (2016). The global burden of viral hepatitis from 1990 to 2013:

findings from the Global Burden of Disease Study 2013. Lancet 388, 1081–1088.

doi: 10.1016/S0140-6736(16)30579-7

Stanciu, L. A., Bellettato, C. M., Laza-Stanca, V., Coyle, A. J., Papi, A., and

Johnston, S. L. (2006). Expression of programmed death-1 ligand (PD-L) 1,

PD-L2, B7-H3, and inducible costimulator ligand on human respiratory tract

epithelial cells and regulation by respiratory syncytial virus and type 1 and 2

cytokines. J. Infect. Dis. 193, 404–412. doi: 10.1086/499275

Staples, K. J., Nicholas, B., McKendry, R. T., Spalluto, C. M., Wallington,

J. C., and Wilkinson, T. M. (2015). Viral infection of human lung

macrophages increases PDL1 expression via IFNbeta. PLoS ONE 10:e0121527.

doi: 10.1371/journal.pone.0121527

Staron, M. M., Gray, S. M., Marshall, H. D., Parish, I. A., Chen, J. H., and

Kaech, S. M. (2014). The transcription factor FoxO1 sustains expression of

the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during

chronic infection. Immunity 41, 802–814. doi: 10.1016/j.immuni.2014.10.013

Stelekati, E., Chen, Z., Manne, S., Kurachi, M., Ali, M. A., and Wherry, E.

J. (2018). Long-term persistence of exhausted CD8T cells in chronic

infection is regulated by microRNA-155. Cell Rep. 23, 2142–2156.

doi: 10.1016/j.celrep.2018.04.038

Sugiura, D., Maruhashi, T., Okazaki, I. M., Shimizu, K., Maeda, T. K.,

and Okazaki, T. (2019). Restriction of PD-1 function by cis-PD-L1/CD80

interactions is required for optimal T cell responses. Science 2019:7062.

doi: 10.1126/science.aav7062

Sun, C., Mezzadra, R., and Schumacher, T. N. (2018). Regulation

and function of the PD-L1 checkpoint. Immunity 48, 434–452.

doi: 10.1016/j.immuni.2018.03.014

Sun, Z., Fourcade, J., Pagliano, O., Chauvin, J. M., Sander, C., and Zarour, H. M.

(2015). IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+

T cells. Cancer Res. 75, 1635–1644. doi: 10.1158/0008-5472.CAN-14-3016

Surh, C. D., and Sprent, J. (2008). Homeostasis of naive and memory T cells.

Immunity 29, 848–862. doi: 10.1016/j.immuni.2008.11.002

Szabo, P. A., Miron, M., and Farber, D. L. (2019). Location, location, location:

tissue resident memory T cells in mice and humans. Sci. Immunol. 4:34.

doi: 10.1126/sciimmunol.aas9673

Teijaro, J. R., Ng, C., Lee, A. M., Sullivan, B. M., Sheehan, K. C., Welch, M., et al.

(2013). Persistent LCMV infection is controlled by blockade of type I interferon

signaling. Science 340, 207–211. doi: 10.1126/science.1235214

Telcian, A. G., Laza-Stanca, V., Edwards, M. R., Harker, J. A., Wang, H., and

Johnston, S. L. (2011). RSV-induced bronchial epithelial cell PD-L1 expression

inhibits CD8+ T cell nonspecific antiviral activity. J. Infect. Dis. 203, 85–94.

doi: 10.1093/infdis/jiq020

Terawaki, S., Chikuma, S., Shibayama, S., Hayashi, T., Yoshida, T., Okazaki,

T., et al. (2011). IFN-alpha directly promotes programmed cell death-1

transcription and limits the duration of T cell-mediated immunity. J. Immunol.

186, 2772–2779. doi: 10.4049/jimmunol.1003208

Theobald, S. J., Khailaie, S., Meyer-Hermann, M., Volk, V., Olbrich, H., and

Stripecke, R. (2018). Signatures of T and B cell development, functional

responses and PD-1 upregulation after HCMV latent infections and

reactivations in Nod.Rag.gamma mice humanized with cord blood CD34(+)

cells. Front. Immunol. 9:2734. doi: 10.3389/fimmu.2018.02734

Trautmann, L., Janbazian, L., Chomont, N., Said, E. A., Gimmig, S., and Sekaly,

R. P. (2006). Upregulation of PD-1 expression on HIV-specific CD8+ T

cells leads to reversible immune dysfunction. Nat. Med. 12, 1198–1202.

doi: 10.1038/nm1482

Tsuda, M., Matsumoto, K., Inoue, H., Matsumura, M., Nakano, T., Mori, A.,

et al. (2005). Expression of B7-H1 and B7-DC on the airway epithelium is

enhanced by double-stranded RNA. Biochem. Biophys. Res. Commun. 330,

263–270. doi: 10.1016/j.bbrc.2005.02.161

Tu, Z., Pierce, R. H., Kurtis, J., Kuroki, Y., Crispe, I. N., and Orloff, M. S. (2010).

Hepatitis C virus core protein subverts the antiviral activities of human Kupffer

cells. Gastroenterology 138, 305–314. doi: 10.1053/j.gastro.2009.09.009

Turner, S. J., and Russ, B. E. (2016). Can T cells be too exhausted to fight back?

Science 354, 1104–1105. doi: 10.1126/science.aal3204

Utzschneider, D. T., Alfei, F., Roelli, P., Barras, D., Chennupati, V., and Zehn,

D. (2016). High antigen levels induce an exhausted phenotype in a chronic

infectiwithout impairing T cell expansion and survival. J. Exp. Med. 213,

1819–1834. doi: 10.1084/jem.20150598

Utzschneider, D. T., Legat, A., Fuertes Marraco, S. A., Carrie, L., Luescher,

I., and Zehn, D. (2013). T cells maintain an exhausted phenotype after

antigen withdrawal and population reexpansion. Nat. Immunol. 14, 603–610.

doi: 10.1038/ni.2606

Valero-Pacheco, N., Arriaga-Pizano, L., Ferat-Osorio, E., Mora-Velandia, L. M.,

Pastelin-Palacios, R., and Lopez-Macias, C. (2013). PD-L1 expression induced

by the 2009 pandemic influenza A(H1N1) virus impairs the human T cell

response. Clin. Dev. Immunol. 2013:989673. doi: 10.1155/2013/989673

Veiga-Parga, T., Sehrawat, S., and Rouse, B. T. (2013). Role of regulatory T cells

during virus infection. Immunol. Rev. 255, 182–196. doi: 10.1111/imr.12085

Velu, V., Shetty, R. D., Larsson, M., and Shankar, E. M. (2015). Role of PD-

1 co-inhibitory pathway in HIV infection and potential therapeutic options.

Retrovirology 12:14. doi: 10.1186/s12977-015-0144-x

Velu, V., Titanji, K., Zhu, B., Husain, S., Pladevega, A., Lai, L., et al. (2009).

Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458,

206–210. doi: 10.1038/nature07662

Verjans, G. M., Hintzen, R. Q., van Dun, J. M., Poot, A., Milikan, J. C., and

Osterhaus, A. D. (2007). Selective retention of herpes simplex virus-specific T

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13 June 2019 | Volume 9 | Article 207

https://doi.org/10.1111/j.1600-065X.2008.00694.x
https://doi.org/10.1016/j.coi.2016.02.007
https://doi.org/10.1016/j.celrep.2016.06.078
https://doi.org/10.1016/S0140-6736(15)61412-X
https://doi.org/10.4049/jimmunol.170.7.3637
https://doi.org/10.1126/science.aae0491
https://doi.org/10.1038/cddis.2016.350
https://doi.org/10.1038/nri.2017.108
https://doi.org/10.1038/ni1443
https://doi.org/10.1016/j.coviro.2017.11.001
https://doi.org/10.1084/jem.20061937
https://doi.org/10.1038/icb.2017.62
https://doi.org/10.1038/s41467-018-07053-9
https://doi.org/10.1038/nri3740
https://doi.org/10.1016/S0140-6736(16)30579-7
https://doi.org/10.1086/499275
https://doi.org/10.1371/journal.pone.0121527
https://doi.org/10.1016/j.immuni.2014.10.013
https://doi.org/10.1016/j.celrep.2018.04.038
https://doi.org/10.1126/science.aav7062
https://doi.org/10.1016/j.immuni.2018.03.014
https://doi.org/10.1158/0008-5472.CAN-14-3016
https://doi.org/10.1016/j.immuni.2008.11.002
https://doi.org/10.1126/sciimmunol.aas9673
https://doi.org/10.1126/science.1235214
https://doi.org/10.1093/infdis/jiq020
https://doi.org/10.4049/jimmunol.1003208
https://doi.org/10.3389/fimmu.2018.02734
https://doi.org/10.1038/nm1482
https://doi.org/10.1016/j.bbrc.2005.02.161
https://doi.org/10.1053/j.gastro.2009.09.009
https://doi.org/10.1126/science.aal3204
https://doi.org/10.1084/jem.20150598
https://doi.org/10.1038/ni.2606
https://doi.org/10.1155/2013/989673
https://doi.org/10.1111/imr.12085
https://doi.org/10.1186/s12977-015-0144-x
https://doi.org/10.1038/nature07662
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Schönrich and Raftery PD-1 and Antiviral Immune Responses

cells in latently infected human trigeminal ganglia. Proc. Natl. Acad. Sci. U.S.A.

104, 3496–3501. doi: 10.1073/pnas.0610847104

Virgin, H. W., Wherry, E. J., and Ahmed, R. (2009). Redefining chronic viral

infection. Cell 138, 30–50. doi: 10.1016/j.cell.2009.06.036

Wack, A., Terczynska-Dyla, E., and Hartmann, R. (2015). Guarding the

frontiers: the biology of type III interferons. Nat. Immunol. 16, 802–809.

doi: 10.1038/ni.3212

Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R., and Carbone, F.

R. (2008). Dendritic cell-induced memory T cell activation in nonlymphoid

tissues. Science 319, 198–202. doi: 10.1126/science.1151869

Wang, J., Yoshida, T., Nakaki, F., Hiai, H., Okazaki, T., and Honjo,

T. (2005). Establishment of NOD-Pdcd1-/- mice as an efficient animal

model of type I diabetes. Proc. Natl. Acad. Sci. U.S.A. 102, 11823–11828.

doi: 10.1073/pnas.0505497102

Wang, X., Zhang, Z., Zhang, S., Fu, J., Yao, J., Jiao, Y., et al. (2008).

B7-H1 up-regulation impairs myeloid DC and correlates with disease

progression in chronic HIV-1 infection. Eur. J. Immunol. 38, 3226–3236.

doi: 10.1002/eji.200838285

Wei, F., Zhong, S., Ma, Z., Kong, H., Medvec, A., Ahmed, R., et al. (2013). Strength

of PD-1 signaling differentially affects T-cell effector functions. Proc. Natl. Acad.

Sci. U.S.A. 110, E2480–E2489. doi: 10.1073/pnas.1305394110

Welsh, R. M., and Seedhom, M. O. (2008). Lymphocytic choriomeningitis virus

(LCMV): propagation, quantitation, and storage. Curr. Protoc. Microbiol.

15A:1. doi: 10.1002/9780471729259.mc15a01s8

Wherry, E. J., and Ahmed, R. (2004). Memory CD8 T-cell differentiation during

viral infection. J. Virol. 78, 5535–5545. doi: 10.1128/JVI.78.11.5535-5545.2004

Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N., and Ahmed, R.

(2004). Antigen-independent memory CD8T cells do not develop during

chronic viral infection. Proc. Natl. Acad. Sci. U.S.A. 101, 16004–16009.

doi: 10.1073/pnas.0407192101

Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most R., and Ahmed,

R. (2003). Viral persistence alters CD8 T-cell immunodominance and tissue

distribution and results in distinct stages of functional impairment. J. Virol. 77,

4911–4927. doi: 10.1128/jvi.77.8.4911-4927.2003

Wherry, E. J., Ha, S. J., Kaech, S. M., Haining, W. N., Sarkar, S., and Ahmed, R.

(2007). Molecular signature of CD8+ T cell exhaustion during chronic viral

infection. Immunity 27, 670–684. doi: 10.1016/j.immuni.2007.09.006

Wherry, E. J., and Kurachi, M. (2015). Molecular and cellular insights into T cell

exhaustion. Nat. Rev. Immunol. 15, 486–499. doi: 10.1038/nri3862

Wieland, D., Kemming, J., Schuch, A., Emmerich, F., Knolle, P., Neumann-

Haefelin, C., et al. (2017). TCF1(+) hepatitis C virus-specific CD8(+) T cells

are maintained after cessation of chronic antigen stimulation. Nat. Commun.

8:15050. doi: 10.1038/ncomms15050

Wilson, E. B., Yamada, D. H., Elsaesser, H., Herskovitz, J., Deng, J., Cheng, G.,

et al. (2013). Blockade of chronic type I interferon signaling to control persistent

LCMV infection. Science 340, 202–207. doi: 10.1126/science.1235208

Wolchok, J. (2018). Putting the immunologic brakes on cancer. Cell 175,

1452–1454. doi: 10.1016/j.cell.2018.11.006

Wu, X., Wu, P., Shen, Y., Jiang, X., and Xu, F. (2018). CD8(+)

resident memory T cells and viral infection. Front. Immunol. 9:2093.

doi: 10.3389/fimmu.2018.02093

Wykes, M. N., and Lewin, S. R. (2018). Immune checkpoint blockade in infectious

diseases. Nat. Rev. Immunol. 18, 91–104. doi: 10.1038/nri.2017.112

Xiao, Y., Yu, S., Zhu, B., Bedoret, D., Bu, X., Francisco, L., et al. (2014). RGMb is

a novel binding partner for PD-L2 and its engagement with PD-L2 promotes

respiratory tolerance. J. Exp. Med. 211, 943–959. doi: 10.1084/jem.20130790

Xu, H., Wang, X., Pahar, B., Moroney-Rasmussen, T., Alvarez, X., Lackner, A.,

et al. (2010). Increased B7-H1 expression on dendritic cells correlates with

programmed death 1 expression on T cells in simian immunodeficiency virus-

infected macaques and may contribute to T cell dysfunction and disease

progression. J. Immunol. 185, 7340–7348. doi: 10.4049/jimmunol.1001642

Yamazaki, T., Akiba, H., Iwai, H., Matsuda, H., Aoki, M., Tanno, Y., et al. (2002).

Expression of programmed death 1 ligands by murine T cells and AP. J.

Immunol. 169, 5538–5545. doi: 10.4049/jimmunol.169.10.5538

Youngblood, B., Hale, J. S., Kissick, H. T., Ahn, E., Xu, X., and Ahmed, R. (2017).

Effector CD8T cells dedifferentiate into long-lived memory cells. Nature 552,

404–409. doi: 10.1038/nature25144

Youngblood, B., Oestreich, K. J., Ha, S. J., Duraiswamy, J., Akondy, R. S., and

Ahmed, R. (2011). Chronic virus infection enforces demethylation of the locus

that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35, 400–412.

doi: 10.1016/j.immuni.2011.06.015

Zajac, A. J., Blattman, J. N., Murali-Krishna, K., Sourdive, D. J., Suresh, M., and

Ahmed, R. (1998). Viral immune evasion due to persistence of activated T cells

without effector function. J. Exp. Med. 188, 2205–2213.

Zampieri, C. A., Sullivan, N. J., andNabel, G. J. (2007). Immunopathology of highly

virulent pathogens: insights from Ebola virus. Nat. Immunol. 8, 1159–1164.

doi: 10.1038/ni1519

Zanoni, I., Granucci, F., and Broggi, A. (2017). Interferon (IFN)-lambda takes

the helm: immunomodulatory roles of type III IFNs. Front. Immunol. 8:1661.

doi: 10.3389/fimmu.2017.01661

Zehn, D., Utzschneider, D. T., and Thimme, R. (2016). Immune-surveillance

through exhausted effector T-cells. Curr. Opin. Virol. 16, 49–54.

doi: 10.1016/j.coviro.2016.01.002

Zehn, D., and Wherry, E. J. (2015). Immune memory and exhaustion: clinically

relevant lessons from the LCMV model. Adv. Exp. Med. Biol. 850, 137–152.

doi: 10.1007/978-3-319-15774-0_10

Zhai, N., Li, H., Song, H., Yang, Y., Cui, A., Li, T., et al. (2017). Hepatitis C virus

induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling.

PLoS ONE 12:e0170516. doi: 10.1371/journal.pone.0170516

Zhang, N., and Bevan, M. J. (2011). CD8(+) T cells: foot soldiers of the immune

system. Immunity 35, 161–168. doi: 10.1016/j.immuni.2011.07.010

Zinselmeyer, B. H., Heydari, S., Sacristan, C., Nayak, D., Cammer, M.,

and McGavern, D. B. (2013). PD-1 promotes immune exhaustion by

inducing antiviral T cell motility paralysis. J. Exp. Med. 210, 757–774.

doi: 10.1084/jem.20121416

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Schönrich and Raftery. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14 June 2019 | Volume 9 | Article 207

https://doi.org/10.1073/pnas.0610847104
https://doi.org/10.1016/j.cell.2009.06.036
https://doi.org/10.1038/ni.3212
https://doi.org/10.1126/science.1151869
https://doi.org/10.1073/pnas.0505497102
https://doi.org/10.1002/eji.200838285
https://doi.org/10.1073/pnas.1305394110
https://doi.org/10.1002/9780471729259.mc15a01s8
https://doi.org/10.1128/JVI.78.11.5535-5545.2004
https://doi.org/10.1073/pnas.0407192101
https://doi.org/10.1128/jvi.77.8.4911-4927.2003
https://doi.org/10.1016/j.immuni.2007.09.006
https://doi.org/10.1038/nri3862
https://doi.org/10.1038/ncomms15050
https://doi.org/10.1126/science.1235208
https://doi.org/10.1016/j.cell.2018.11.006
https://doi.org/10.3389/fimmu.2018.02093
https://doi.org/10.1038/nri.2017.112
https://doi.org/10.1084/jem.20130790
https://doi.org/10.4049/jimmunol.1001642
https://doi.org/10.4049/jimmunol.169.10.5538
https://doi.org/10.1038/nature25144
https://doi.org/10.1016/j.immuni.2011.06.015
https://doi.org/10.1038/ni1519
https://doi.org/10.3389/fimmu.2017.01661
https://doi.org/10.1016/j.coviro.2016.01.002
https://doi.org/10.1007/978-3-319-15774-0_10
https://doi.org/10.1371/journal.pone.0170516
https://doi.org/10.1016/j.immuni.2011.07.010
https://doi.org/10.1084/jem.20121416
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance
	Introduction
	The Role of the PD-1 Pathway in Acute Virus Infections
	Virus-Driven PD-L1/2 Expression
	Function of PD-L1 During Acute Virus Infections
	The PD-1/PD-L1 Axis During Persisting Virus Infections
	Chronic Virus Infection
	T Cell Exhaustion and Partial Restoration of T Cell Function by Blockade of the PD-1/PD-L1 Axis
	Latent Infection and Reactivation

	Concluding Remarks
	Author Contributions
	Acknowledgments
	References


