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Holography and criticality in matchgate
tensor networks
A. Jahn1*, M. Gluza1, F. Pastawski1, J. Eisert1,2,3

The AdS/CFT correspondence conjectures a holographic duality between gravity in a bulk space and a critical
quantum field theory on its boundary. Tensor networks have come to provide toy models to understand these
bulk-boundary correspondences, shedding light on connections between geometry and entanglement. We intro-
duce a versatile and efficient framework for studying tensor networks, extending previous tools for Gaussian
matchgate tensors in 1 + 1 dimensions. Using regular bulk tilings, we show that the critical Ising theory can be
realized on the boundary of both flat and hyperbolic bulk lattices, obtaining highly accurate critical data. Within
our framework, we also produce translation-invariant critical states by an efficiently contractible tensor network
with the geometry of the multiscale entanglement renormalization ansatz. Furthermore, we establish a link be-
tween holographic quantum error–correcting codes and tensor networks. This work is expected to stimulate a
more comprehensive study of tensor network models capturing bulk-boundary correspondences.
ow

 on S

eptem
ber 5, 2019

http://advances.sciencem
ag.org/

nloaded from
 

INTRODUCTION
The notion of holography in the context of bulk-boundary dualities,
most famously expressed through the anti–de Sitter space/conformal
field theory (AdS/CFT) correspondence (1), has had an enormously
stimulating effect on recent developments in theoretical physics. A key
feature of these dualities is the relationship between bulk geometry
and boundary entanglement entropies (2–4), prominently elucidated
by the Ryu-Takayanagi formula (5). Because of the importance of en-
tanglement in the context of AdS/CFT (6), it was quickly realized that
tensor networks are ideally suited for constructing holographic toy
models, most notably the multiscale entanglement renormalization
ansatz (MERA) (7–9). The realization that quantum error correction
could be realized by a holographic duality (10) further connected to
ideas from quantum information theory. Despite the successful con-
struction of several tensor network models that reproduce various as-
pects of AdS/CFT [see, e.g., (11–13)], a general understanding of the
features and limits of tensor network holography is still lacking. Par-
ticular obstacles are the potentially large parameter spaces of tensor
networks and the considerable computational cost of contraction.

In this work, we overcome some of these challenges by applying
highly efficient contraction techniques developed for matchgate ten-
sors (14, 15), which replace tensor contraction by aGrassmann-variate
integration scheme. These techniques allow us to comprehensively
study the interplay of geometry and correlations in Gaussian fermionic
tensor networks in a versatile fashion, incorporating toy models for
quantum error correction and tensor network approaches for CFT,
such as the MERA, into a single framework, highlighting the connec-
tions between them. Furthermore, this framework includes highly
symmetrical tensor networks based on regular tilings (see Fig. 1, A
and B). We are thus in a position to efficiently probe the full space
of Gaussian bulk-boundary correspondences from a small set of pa-
rameters, including the bulk curvature.We show thatmatchgate tensor
networks with a variety of bulk geometries contain the Ising CFT in
their parameter space to remarkably good approximation as a special
case, with properties similar to the wavelet MERA model (16, 17).
While regular hyperbolic tilings have recently been considered as a
MERA alternative (18), we show that flat tilings can lead to very sim-
ilar boundary states. In our studies, we restrict ourselves to tensor
networks that are nonunitary and real, resembling a Euclidean evolu-
tion frombulk to boundary. In particular, we do not require the causal
constraints of the MERA for efficient contraction, thus providing new
approaches in the context of tensor network renormalization (19, 20).
While we provide substantial evidence that tensor networks are capa-
ble of describing bulk-boundary correspondences beyond known
models and introduce a framework for their study, our work is by
nomeans exhaustive.We do hope to provide a starting point for more
systematic studies of holography in tensor networks.
MATERIALS AND METHODS
We constructed two-dimensional planar tensor networks with fer-
mionic bulk and boundary degrees of freedom. The bulk degrees of
freedom are associated with a set V of vertices of a tensor network.
At each vertex, v ∈ V, a local tensor Tv with kv indices is placed, which
can be interpreted as a local fermionic state on kv sites. After contrac-
tion over all connected bulk indices, the L remaining open indices are
interpreted as boundary sites with the boundary state specified by the
full contracted tensor. Because of the planarity of the network, the
boundary sites form a loop. The bulk geometry can be flat or negatively
curved (a positively curvednetwork closes inon itself after finite distance).
We visualized our tensor networks by representing each tensor Tv as
a kv-gonwhose edges correspond to indices. Thus, the tensor network is
represented by a polygon tiling, which determines the bulk geometry.
Adjacent edges between two polygons correspond to contracted indices
and boundary edges to open ones. See Fig. 1 for examples.

Concretely, each bulk degree of freedom v ∈ V is associated with a
local tensor Tv : {0,1}

×r → ℂ of tensor rank r (equal to the number of
edges of the corresponding tile), all of which are contracted to form ten-
sors of higher rank. We denote the tensor component at indices j ∈
{0,1}×r as Tv( j) and the standard computational basis for r boundary
spins as ∣j〉≔⊗r

k¼1∣jk〉. Each tensor is then equivalent to a state vector

∣yv〉 ¼ ∑
j∈f0;1g�r

Tvð jÞ∣j〉 ð1Þ
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For a broader introduction to tensor networks and their contractions,
see (21–24).

Instead of explicit tensor contraction along pairs of indices, we used
the formalism from (15) using Grassmann integration. Any tensor
T can be represented by a Grassmann-variate characteristic function

FTðqÞ ¼ ∑
j∈f0;1g�r

Tð jÞq j1
1 q

j2
2…q jr

r ð2Þ

where the qk are Grassmann numbers defined by the anticommuta-
tion relation qkqk′ + qk′qk = 0. The contraction T1*2 of two tensors T1
and T2 (of rank r1 and r2, respectively) over the last index of T1 and
the first index of T2 is given by

T1*2ðx; yÞ ¼ ∑
z∈f0;1g

T1ðx; zÞT2ðz; yÞ ð3Þ

where x ∈ {0,1}×(r1 − 1), y ∈ {0,1}×(r2 − 1). T1 * 2 has rank r1 + r2 − 2. The
characteristic function of the contraction is obtained as

FT1*2ðxÞ ¼ ∫dh1∫dqr1FT1ðqÞFT2ðhÞexpðqr1h1Þ ð4Þ

where we used x = (q1,…, qr1 − 1, h2,…, hr2) and ∫ dh1 ∫ dqr1 denotes
Grassmann integrals, anticommuting multilinear functionals obey-
ing ∫dxjx

zj
j ¼ dzj;1 [see (15, 25–27) for more details]. A self-contained

derivation of the equivalence of (4) with tensor contraction, as well as
a note on iterated integrals, is given in the Supplementary Materials.
Anticommutativity requires an appropriate labeling of all Grassmann
Jahn et al., Sci. Adv. 2019;5 : eaaw0092 9 August 2019
variables, but such a labeling can always be found for contractions of
planar networks (15). These Grassmann integrations are particularly
efficient to compute for the case of matchgate tensors, where their
computation scales polynomially in the number of tensor indices.

Consider a rank r tensor T(x) with inputs x ∈ {0,1}×r. One calls
T(x) amatchgate if there exists an antisymmetricmatrixA ∈ℂr × r and
a z ∈ {0,1}×r so that one can write

TðxÞ ¼ PfðA∣x XOR zÞTðzÞ ð5Þ

where Pf(A) is the Pfaffian ofA andA∣x is the principal submatrix ofA
acting on the subspace supported by x. Furthermore, one calls T(x) an
even tensor if T(x) = 0 for any x with odd ∑j xj.

A generic evenmatchgate has a simple Gaussian characteristic func-
tion of the form

FT ðqÞ ¼ Tð0Þexp 1
2
∑
r

j;k¼1
Aj;kqjqk

� �
ð6Þ

where T(0), the tensor component for all-zero input, acts as a normal-
ization factor. Apart from normalization, the full tensor is completely
determined byA, which we therefore call the generating matrix. Thus,
the rules for contracting matchgate tensors can be written as rules for
combining generatingmatrices. Full derivations of these, including the
calculation of physical covariance matrices from the generating
matrices, are provided in the SupplementaryMaterials. With our con-
traction rules, the computational cost of contracting two tensors is
quadratic in the number of indices of the final tensor. Thus, we could
bound the total computational cost for contracting an entire network
of the type considered here by O(L2N), where L is the number of
boundary sites and N is the number of contracted tensors [for similar
bounds on matchgate contraction, see (15)].

Using Pauli matrices sa with a ∈ {x, y, z}, one can defineMajorana
operators gi via the Jordan-Wigner transformation

g2k�1 ¼ ðszÞ⊗ðk�1Þ⊗sx⊗ð12Þ⊗ðr�kÞ ð7Þ

g2k ¼ ðszÞ⊗ðk�1Þ⊗sy⊗ð12Þ⊗ðr�kÞ ð8Þ

The computational basis is then equivalent to an occupational
basis. In this context, we proved that any fermionic Gaussian state
vector in the form of Eq. 1 has coefficients T( j) constituting a match-
gate tensor. For details on this proof, refer to the Supplementary
Materials. The converse statement is also true, providing a further per-
spective on the connection to free fermions (28).
RESULTS
The holographic pentagon code
We will now apply our framework to the highly symmetric class of
regular bulk tilings, first implementing the holographic error correct-
ing code (HaPPY code) proposed in (12) and then exploiting the ver-
satility of our framework to extend it toward more physical setups.
The HaPPY code furnishes a mapping between additional (uncon-
tracted) bulk degrees of freedom on each tensor and the boundary
state, realized by a bulk tiling of pentagons. Each pentagon tile encodes
A Flat {3,6} tiling B Hyperbolic {3,7} tiling

C Hyperbolic mMERA tiling

Fig. 1. Geometries of tensor networks. Discretizations of flat (A) and hyperbolic
space (B and C) with a triangular tiling (blue edges), into which a tensor network is
embedded (black lattice). In the matchgate formalism, joint edges between triangles
correspond to an integration over a pair of Grassmann numbers, analogous to tensor
network contraction over indices. While (A) and (B) show regular tilings, (C) presents a
nonregular MERA-like tiling we call the matchgate MERA (mMERA).
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one fault-tolerant logical qubit via the encoding isometry of the five-
qubit code. This [[5,1,3]] quantum error–correcting code (29) satu-
rates both the quantum Hamming bound (30, 31) and the singleton
bound (31) and can be expressed as a stabilizer code (32).

We observe that fixing the bulk degrees of freedom to computational
basis states gives rise to a matchgate tensor network, as the logical com-
putational basis states of the holographic pentagon code can be viewed
as ground states of a quadratic fermionic Hamiltonian. This can be seen
directly by applying Eqs. 7 and 8 onto the stabilizers Sk of the underlying
[[5,1,3]] code, thus expressing it in terms ofMajorana operators gi and a
total parity operator Ptot ¼ ðszÞ⊗5 as

S1 ¼ sx⊗sz⊗sz⊗sx⊗12 ¼ ig7g2
S2 ¼ 12⊗sx⊗sz⊗sz⊗sx ¼ ig9g4
S3 ¼ sx⊗12⊗sx⊗sz⊗sz ¼ iPtotg6g1
S4 ¼ sz⊗sx⊗12⊗sx⊗sz ¼ iPtotg8g3
S5 ¼ sz⊗sz⊗sx⊗12⊗sx ¼ iPtotg10g5

ð9Þ

As the corresponding stabilizer Hamiltonian is given by H ¼
�∑5k¼1Sk , we find a doubly degenerate ground state whose degen-
eracy is lifted by the parity operatorPtot. The resulting two states with
parity eigenvalues ±1 correspond to the logical eigenstates �0 and �1,
which are themselves ground states of purely quadratic Hamiltonians
with different parity factors. Thus, both computational basis states are
pure Gaussian, leading us to the conclusion that for fixed computa-
Jahn et al., Sci. Adv. 2019;5 : eaaw0092 9 August 2019
tional input in the bulk, the holographic pentagon code yields a
matchgate tensor on the boundary (see Fig. 2). The explicit construc-
tion is given in the Supplementary Materials. Using the Schläfli sym-
bol {p, q}, where p is the number of edges per polygon and q is the
number of polygons around each corner, we can specify the hy-
perbolic geometry of the HaPPY model as a regular {5, 4} tiling.

We find that the correlation structure of thismodel is best captured
in theMajorana picture. Explicitly, consider the pentagon tiling of (12)
with all bulk inputs set to the positive-parity eigenvector ∣�0〉. The en-
tries of the Majorana covariance matrixGj;k ¼ i

2 〈y∣½gj; gk�∣y〉 result-
ing from successive contraction steps are shown in Fig. 3 (A to C). As
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Fig. 2. HaPPY/matchgate equivalence. The holographic pentagon code of the
HaPPY model for fixed computational bulk input (left) is equal to a matchgate
tensor network on a hyperbolic pentagon tiling (right).
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Fig. 3. Boundary state correlations. (A to C) Majorana covariance matrix G with color-coded entries for a boundary state of a hyperbolic {5,4} tiling of the HaPPY code
with fixed �0 input on each tile. Boundary consists of 2L = 10, 40, and 50 Majorana sites, respectively. (D to F) Field correlation matrix 〈yjyk − ykyj〉/2 = (G2j,2k−1 + G2j−1,2k)/4
for boundary states of the {3,6}, {3,7}, and mMERA tiling at criticality with L = 63, 69, and 64 boundary sites, respectively. Matrix entries are normalized to the same color
scale. The tiling corresponding to each correlation matrix in (A) to (F) is shown in the lower left corner.
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we can see, both the individual pentagon state and the larger contracted
states are characterized by a nonlocal pairing ofMajorana fermions. The
contractions effectively connect Majorana pairs from each pentagon to
a larger chain, so the pairs on the boundary of the contracted network
can be seen as end points of a discretized “geodesic” spanning the bulk.
While this discontinuous correlation pattern of Gj,k makes the com-
putation of CFT observables difficult, we can estimate the average
correlation falloff by counting the relative frequency n(d) of Majorana
pairs at distance d = ∣ j − k∣ over which they connect points on the
boundary. According to the results shown in Fig. 4A, correlation falloff
follows a power law n(d)º d−1, as expected of a CFT. Furthermore, we
compute the entanglement entropy SA of a subsystem A of size l aver-
aged over all boundary positions, defined as

ElðSÞ ¼ ∑
L

k¼1
S½k;kþl� ð10Þ

The result, shown in Fig. 4B, closely follows the Calabrese-Cardy
formula for periodic 1 + 1–dimensional CFTs, given by (33, 34)

SA ¼ c
3
log

L
pe

sin
pl
L

� �
≃

c
3
log

l
e
þ Oððl=LÞ2Þ ð11Þ

with a numerical fit yielding c≈ 4.2 and e≈ 1.1 for a cutoff at L = 2605
boundary sites.
Jahn et al., Sci. Adv. 2019;5 : eaaw0092 9 August 2019

dvances.
The peculiar pairwise correlation of boundary Majorana modes,
suggesting a connection to Majorana dimer models (35), is more
deeply explored in a separate publication (36). However, as the cor-
relation structure breaks the translation and scale invariance expected
of CFT ground states, we now consider regular tilings with generic
matchgate input.

Regular triangulations
As the boundary states of triangular tilings are necessarily Gaussian
(15), we can study their properties comprehensively using matchgate
tensors. The simplest such tilings are regular and isotropic, i.e., with
each local tensor specified by the same antisymmetric 3 × 3–generating
matrix A. Isotropy constrains its components to one parameter a =
A1,2 =A1,3 =A2,3. The bulk topology follows from our choice of tiling.
For triangular tilings (p = 3), setting q = 6 produces a flat tiling, whereas
q > 6 leads to a hyperbolic one (see Fig. 1, A and B). Triangular tilings
with q < 6 produce closed polyhedra that are positively curved and lack
the notion of an asymptotic boundary. As a convention, we choose the
local orientation of the triangles so that the generating matrix for the
contracted boundary state satisfies A′

i;j > 0 for i > j, corresponding to
antiperiodic boundary conditions: Covariance matrix entries Gi,j

acquire a sign flip when cyclic permutions push either index i or j over
the boundary, as relative ordering is reversed.

Wenow consider the boundary states of {3, k} bulk tilings. The falloff
of correlations along the boundary generally depends on k, i.e., the bulk
curvature, as shown in Fig. 5 (A and B) for the a = 0.25 case. While
correlations between the boundaryMajorana fermions of a flat bulk fall
off exponentially, a hyperbolic bulk produces a polynomial decay (up to
 on S
eptem

ber 5, 2019
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ag.org/
A B

C

Fig. 4. Critical correlations and entanglement scaling. (A and B) Boundary
state properties of the HaPPY code at 2605 boundary sites. (A) shows average corre-
lations at boundary distance d, computed as the relative frequency n of Majorana
pairs. Dashed gray line shows an n(d)~1/d numerical fit. (B) shows the scaling of av-
erage entanglement entropy ElðSÞ with subsystem size l. Dashed gray line shows
numerical fit using (11). (C) ElðSÞ for regular tilings at the critical values a = 0.580
for a {3,6} tiling (blue) and at a = 0.609 for the {3,7} tiling (yellow) with 348 boundary
sites each. The dashed gray line shows the exact c = 1/2 CFT solution.
A B

C D

Fig. 5. Boundary correlations for regular tilings. (A and B) Mean value of
Majorana covariance EdðGÞ ¼ ∑Lk¼1∣Gk;kþd∣=L (with Gi,L+j = Gi, j) at boundary dis-
tance d. For {3,6} tiling with 150 boundary Majorana fermions (left) and {3,7} tiling
with 348 (right). a = 0.25 in both cases. (C and D) Dependence of correlation
falloff on a for {3,6} tiling with falloff ~e−d/l (left) and {3,7} tiling with ºd−p (right).
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finite-size effects at large distances and rounding errors at very small
correlations). In the hyperbolic case, geodesics between boundary
points scale logarithmically in boundary distance, so the falloff is still
exponential in bulk distance, as we would expect in AdS/CFT (37).

Restricting ourselves to the 0 < a < 1 region, we explore how
quickly correlations decay in both settings. At a = 0 and a = 1, the
boundary Majorana fermions only have neighboring pair correla-
tions, either pairing within each edge (a = 0) or across the corners
(a = 1). Thus, correlation decay becomes infinite in the limits a→ 0
and a→ 1, independent of bulk geometry. We use numerical fits to
study the remaining region 0 < a < 1 (see Fig. 5, C and D). For a
hyperbolic bulk geometry, the power law is generic with the slowest
decay at a ≈ 0.61, where we see a ºd−1 falloff over distance d. The
exponential decay ºe−d/l generally produced by a flat bulk geome-
try, however, slows down to a power law (with correlation length l
diverging) around a≈ 0.58, where correlations again decay asºd−1.
At their critical values, the boundary states of both bulk geometries
have the same average properties.

Up to finite-size effects, this critical boundary theory turns out to be
the Ising CFT, as we confirm by computing a range of critical proper-
ties from the covariance matrix, shown in Table 1. The entanglement
entropy scaling, shown in Fig. 4C, again matches the expected form
(11) irrespective of the choice of tiling. The Ising CFT state that we
observe at the critical value of a is the ground state of the Hamiltonian

H ¼ i ∑
N�1

k¼1
gkgkþ1 þ g1gN

 !
ð12Þ

where the sign of the boundary term g1gN signifies antiperiodic bound-
ary conditions. Triangular tilings also incorporatemore genericmodels:
By associating each edge with a bond dimension c > 2, it is possible to
produce boundary theories with central charges c larger than 1/2. In the
simplest case, we choose a generating matrix that only couples between
sets of fermionic modes, resulting in a boundary theory that consists of
multiple copies of the Ising CFT and a corresponding central charge
that is a multiple of 1/2 (note that this construction is only possible
for {n, k} tilings with even k). Furthermore, by changing the tensor con-
tent in a central region of the network, a mass gap can be introduced,
highlighting how radii in a hyperbolic bulk correspond to a re-
Jahn et al., Sci. Adv. 2019;5 : eaaw0092 9 August 2019
normalization scale on the boundary. Details are provided in the Sup-
plementary Materials.

Translation invariance and MERA
The regular bulk tilings considered so far have a set of discrete symme-
tries. When choosing identical tensors on each polygon, the boundary
states necessarily inherit these symmetries, breaking translation in-
variance. To recover it, we consider a tiling with the same geometry
as the MERA network. As we restrict ourselves to real generating
matrices for the three- and four-legmatchgate tensors in this geometry,
our model is not a unitary circuit but a model of Euclidean entangle-
ment renormalization resembling imaginary time evolution, extending
ideas from (19, 20). This may provide amore realistic representation of
the causal structure of an AdS time slice than the standardMERA. Ac-
cordingly, the tensors of our matchgate MERA (mMERA) do not cor-
respond to the usual (norm-preserving) isometries and disentanglers.
We can still produce almost perfectly translation-invariant boundary
states (Fig. 3F) while optimizing over only three parameters and re-
cover the expected CFT properties (Table 1). In particular, at bond
dimension c = 2, the ground-state energy has a relative error of only
0.02% compared to the exact solution. Note that the optimization pro-
cess only takes a few minutes on a desktop computer for a network
with hundreds of tensors. We also find that the c = 2 mMERA has a
symmetry that allows us to write its four-leg tensors as contractions of
simpler three-leg tensors (see Fig. 1C), yielding a nonregular triangular
tiling. An interesting question to pursue is whether alternating or qua-
siperiodic tilings with a larger parameter space than regular tilings can
also produce translation-invariant states.
19
DISCUSSION
In this work, we have studied bulk-boundary correspondences in fer-
mionic Gaussian tensor networks, introducing a versatile framework
and a highly efficient contractionmethod based onmatchgate tensors
(14, 15) for a wide class of flat and hyperbolic bulk tilings. We showed
that our framework includes the holographic pentagon code built
from five-qubit stabilizer states for fixed bulk inputs. Its boundary
states correspond to a nonlocal bulk pairing of Majorana fermions,
opening an avenue to studying the state properties of this holographic
model at large sizes.We explicitly computed two-point correlators and
entanglement entropies, whichwere found to exhibit critical scaling. Be-
yond known models, we showed that critical and gapped Gaussian
boundary states can be realized by various bulk tilings. In particular,
the average scaling properties of the c ¼ 1

2= Ising CFT (and multiples
thereof) can be reproduced using regular one-parameter bulk trian-
gulations with both flat and hyperbolic curvature. This is particularly
unexpected for the flat case where boundary theories are typically
gapped and raises the question whether this appearance of criticality
is retained in strongly interacting models as well. The appearance of
equivalent boundary CFT states for flat and hyperbolic bulks resem-
bles the effect of local Weyl transformations in Euclidean path inte-
grals (38). Our reproduction of conformal properties froman isotropic
tensor network with only a single parameter further suggests that isot-
ropy is a powerful symmetry for numerical CFT computations. Fur-
thermore, we constructed the mMERA, a Euclidean matchgate tensor
network based on the MERA geometry. Beyond the results achievable
with regular triangulations, this tiling, which can also be expressed as a
triangulation, recovers the Ising CFTwith translation invariance while
requiring only three free parameters and little computational cost.
Table 1. Table of conformal data for the regular {3, 6} and {3, 7} bulk
tilings as well as the mMERA, compared to the exact results and
the wavelet MERA (16). Listed are the ground-state energy density D0,
central charge c, scaling dimensions Df of the fields f ¼ y; �y; D; s, and
the structure constant Cs,s,D. The nonscaling of the identity 1 is discussed
in the Supplementary Materials.
Exact
 {3, 6} bulk
 {3, 7} bulk
 mMERA
 Wavelets
D0
 −0.6366
 −0.6139
 −0.5617
 −0.6365
 −0.6211
c
 0.5000
 0.5006
 0.5018
 0.4958
 0.4957
Dy;D�y
 0.5000
 0.4948
 0.4951
 0.5023
 0.5000
DD
 1.0000
 0.9856
 1.0121
 1.0027
 1.0000
Ds
 0.1250
 0.1403
 0.1368
 0.1417
 0.1402
Cs,s,D
 0.5000
 0.5470
 0.5336
 0.5156
 0.4584
5 of 7
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curved bulks, higher-dimensionalmodels, and random tensors. Beyond
Gaussianity, one could also explore interacting fermionic tensor net-
works (39–43) by a weak-coupling expansion or under locally restricted
interactions. Both of these possible extensions to our framework would
require computations scaling only polynomially in the system size, thus
still avoiding the prohibitive computational effort of general methods
for exact tensor contraction.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/8/eaaw0092/DC1
Section S1. Tensor contractions in the Grassmann formalism
Section S2. Matchgates and fermionic Gaussian states
Section S3. Conversion of generating matrices to covariance matrices
Section S4. Contraction rules for generating matrices
Section S5. Explicit generating matrices and numerical results
Fig. S1. Combining tiles of matchgates.
Fig. S2. Tile orientations under contraction.
Fig. S3. Constructing the mMERA.
Fig. S4. Energy convergence of the mMERA.
Fig. S5. Determining scaling dimensions of flat tilings.
Fig. S6. Determining scaling dimensions of hyperbolic tilings.
Fig. S7. Determining scaling dimensions of mMERA.
Fig. S8. Determining structure constants.
Fig. S9. Correlations and entanglement with IR cutoff.
Fig. S10. Construction of triangle states with bond dimension c = 2, 4, 8.
Table S1. Values of the critical generating matrix parameter a for different {3, k} triangular
tilings and ultraviolet cutoffs.
Table S2. Exact conformal scaling dimension of various (quasi-)primary fields f of the
Ising CFT.
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