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We establish existence of global solutions to a dynamic problem of bilateral con-

tact between a rigid surface and a viscoelastic body, subject to rate-and-state fric-

tion. The term rate-and-state friction describes friction laws where the friction is

rate-dependent and depends on an additional internal state variable defined on the

contact surface. Our mathematical conditions rule out certain slip laws, but do cover

the ageing law, and thus at least one of the rate-and-state friction laws commonly used

in the geoscience.
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1 INTRODUCTION

We consider here the dynamic motion of a viscoelastic bodyΩ ⊂ ℝ𝑑 in bilateral contact with a rigid foundation (on the boundary

segment Γ𝐶 ), undergoing infinitesimal displacement 𝒖 and linear viscoelastic total strain 𝝈. Following [2,18] the rate-and-state

friction along the contact set Γ𝐶 is given in terms of the sliding velocity �̇� and a scalar internal state variable 𝛼 defined only on

Γ𝐶 , see below for more details.

To that end, we will derive a weak formulation of the following problem.

Problem 1.1. Find a displacement field 𝒖 on Ω of the appropriate regularity that satisfies

𝝈 = 𝜺(�̇�) +𝜺(𝒖) in Ω × 𝐼 (1.1)

∇ ⋅ 𝝈 + 𝒃 = 𝜌�̈� in Ω × 𝐼 (1.2)

with the boundary conditions

�̇� = 0 on Γ𝐷 × 𝐼 (1.3)

𝝈𝒏 = 0 on Γ𝑁 × 𝐼 (1.4)

�̇� ⋅ 𝒏 = 0 on Γ𝐶 × 𝐼 (1.5)

𝑏 − 𝝈t =
𝜇(|�̇�|, 𝛼)�̄�n + 𝐶|�̇�| �̇� for �̇� ≠ 0||𝝈t|| ≤ 𝜇(0, 𝛼)�̄�n + 𝐶 for �̇� = 0

⎫⎪⎬⎪⎭ on Γ𝐶 × 𝐼 (1.6)

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited and is not used for commercial purposes.

© 2019 The Authors. ZAMM - Journal of Applied Mathematics and Mechanics Published by Wiley-VCH Verlag GmbH & Co. KGaA

Z Angew Math Mech. 2019;e201800263. www.zamm-journal.org 1 of 10
https://doi.org/10.1002/zamm.201800263

http://creativecommons.org/licenses/by-nc/4.0/


2 of 10 PIPPING

with prescribed 𝒖(0, ⋅) ∶ Ω → ℝ𝑑 and �̇�(0, ⋅) ∶ Ω → ℝ𝑑 as well as a scalar state field 𝛼 on Γ𝐶 that satisfies

�̇� + 𝐴(𝛼) = 𝑓 (|�̇�|) on Γ𝐶 × 𝐼 (1.7)

with prescribed 𝛼(0, ⋅) ∶ Γ𝐶 → ℝ.

Here, the nonlinear functions 𝐴, 𝑓 ∶ ℝ → ℝ in (1.7) define the flow law for the internal state variable 𝛼. Moreover, we write

𝒖 for the displacement, 𝒃 for the body force, 𝝈 for the stress tensor, and 𝝈t for its tangential component where the tangential

direction is computed from the outer normal 𝒏. Linear Kelvin–Voigt viscoelasticity is prescribed in (1.1), formulated in terms of

the linearized strain tensor 𝜺(𝒖) = 1
2 (∇𝒖 + ∇𝒖⊤), a viscosity tensor and an elasticity tensor. The unilateral contact conditions

(1.5)– (1.7) model the unilateral contact with a rigid body in the small-strain idealization. This is the simplest theoretical or real

experiment for testing friction in geophysics. Real-world models should use bilateral contact of two viscoelastic bodies along

an interface (the fault). For notational simplicity and in accordance with the analog experiments in [14,15]. More specifically,

the friction law (1.6) on Γ𝐶 is made up of the friction coefficient 𝜇, the cohesion 𝐶 ≥ 0 and a prescribed, constant quantity

denoted by �̄�n > 0, meant to approximate the state-dependent normal stress 𝜎n. This approximation is usually called “Tresca-

friction model”. It simplifies the mathematics compared to true Coulomb friction (cf. [3]), and is well acceptable in geophysical

applications, where �̄�n maybe understood as the difference between the lithostatic and the hydrostatic pressures, which nearly

constant in fluid-saturated poroelastic rocks. Dirichlet and Neumann boundary conditions are, furthermore, imposed on the

boundary segments Γ𝐷 and Γ𝑁 , respectively. The mass density is denoted by 𝜌.

The plan of the paper is as follows. In Section 2 we describe the background of the model and its applications in geoscience.

In Section 3 we discussion several examples of rate-and-state fraction laws (�̇�, 𝛼) → 𝜇(|�̇�|, 𝛼)+𝐶 . In Section 4 we provide the

necessary mathematical assumptions for such laws and discuss their validity in specific cases. In Section 5 we start the analysis

of the problem by reformulating it as an evolutionary variational inequality in weak form. The solution method relies on a

splitting method where we first show that for fixed 𝛼 in a suitable function class we obtain a unique solution 𝒖 = 𝑅(𝛼), and then

we show that for fixed 𝒖 the problem for 𝛼 has a unique solution 𝛼 = 𝑆(𝒖), see Sections 6 and 7, respectively. In Section 8 the

final global existence result of Theorem 8.2 is obtained by first showing that the mapping 𝑅◦𝑆 is a contraction for small final

times 𝑇 , thus providing a local existence result. By concatenation of small time steps the global result is then deduced.

2 BACKGROUND

Rate-and-state friction plays an important role in the modeling of faults, which in turn play an important role in earthquake

nucleation, see [4,8,18,19] and the references therein. It expresses frictional resistance in terms of the sliding velocity or slip
rate|�̇�| and an internal state variable 𝛼 defined on the contact boundary Γ𝐶 , which may have different physical interpretations

depending on the context. In Geophysics, it is often called ageing parameter (see below); in engineering the name ‘interfacial

damage variable’ is used; and the model in [6] allows for the interpretation that 𝛼 > 0 is an interfacial temperature.

The evolution of 𝛼 is coupled to the sliding velocity |�̇�| and in a specific way, as well as the friction coefficient 𝜇 depends on|�̇�|| and 𝛼 is crucial. The dependence 𝜇 = 𝜇(|�̇�|, 𝛼) should can be thought of as 𝜇 depending on |�̇�| in two different ways: firstly

directly on |�̇�| in a monotone fashion, and secondly indirectly, through 𝛼, which reacts less immediately to changes in |�̇�|, but

generally in an anti-monotone fashion.

Although laws that go by this name have been derived from experiments [2,18], they could just as easily have been proposed

as a regularization of slip rate dependent friction (in which the coefficient of friction is a function of the sliding rate only but the

dependence is generally anti-monotone) due to the analytical and numerical difficulties that such ostensibly simpler stateless

laws present, see [7].

The existence and uniqueness of solutions to (weak formulations of) dynamic problems of viscoelasticity and friction has been

thoroughly studied. Rate-and-state friction falls outside the scope of these studies, however, because of the variable coupling

between the rate and the state: Neither is typically known. The approach taken in this work is thus to consider the situation where

𝛼 is known a-priori, to then compute �̇� under this assumption (such problems are covered by the current literature) and to then

account for the actual lack of knowledge of 𝛼 through a fixed-point iteration.

Even though this model for rate-and-state dependent friction is very popular in geophysics, it does not have an underlying

thermodynamical structure allowing for a proper balance of energies through external powers and dissipation. This mathematical

drawback was already pointed out in [13], where two energies have been used to govern separately the momentum balance for 𝒖

and the flow rule for the internal variable 𝛼, or in [17], where an energetic formulation was obtained for a slightly expanded model.
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The quasistatic rate-and-state friction model (i.e. without the kinetic term 𝜌�̈�) but even with a Coulomb-friction variant has

recently been analyzed in [11]. General dynamic friction models, even including true Coulomb friction, but without additional

internal variables, are studied analytically in [3].

This work thus parallels earlier work from the author’s dissertation in which the time-discrete setting was considered.[12]

3 EXAMPLES

The following two rate-and-state friction laws are commonly used: the ageing law (also known as slowness law), which states

𝜇 = 𝜇∗ + 𝑎 log
𝑟

𝑟∗
+ 𝑏𝛼, �̇� =

𝑟∗e−𝛼 − 𝑟
𝐿

, (3.1)

and the slip law, which states

𝜇 = 𝜇∗ + 𝑎 log
𝑟

𝑟∗
+ 𝑏𝛼, �̇� = − 𝑟

𝐿

(
log 𝑟

𝑟∗
+ 𝛼

)
, (3.2)

with positive constants 𝑎 and 𝑏. When presented in this form, both laws use the same expression for 𝜇, so that their respective state

variables 𝛼 can be identified; consequently, the names of these laws are typically used to refer to the associated state evolution

equations for 𝛼 only.

The ageing law and the slip law as proposed by Dieterich and Ruina in [2] and [18], respectively, employ the term log(𝑟∕𝑟∗),
which becomes arbitrarily negative for sliding rates 𝑟 close to zero; consequently, we have

𝜇(𝑟, 𝛼) → −∞ whenever 𝑟→ 0

for fixed 𝛼. They are thus unphysical for sufficiently small 𝑟, since they predict a negative coefficient of friction. If we introduce

the quantity

𝑟𝛼 = 𝑟∗ exp
(
−
𝜇∗ + 𝑏𝛼
𝑎

)
,

this issue becomes even clearer, since now 𝜇 can be written as

𝜇(𝑟, 𝛼) = 𝑎 log 𝑟

𝑟𝛼
, (3.3)

so that 𝑟𝛼 denotes the rate at which the predicted coefficient of friction undergoes a sign change. In the literature, this undesirable

behavior of the Dieterich–Ruina laws (cf. [2,18]) has been addressed by means of regularization, see [16]. To be precise, the

logarithm on the right-hand side of (3.3) is replaced by the nonnegative function 𝑧 → asinh(𝑧∕2), yielding the regularized law

𝜇r (𝑟, 𝛼) = 𝑎asinh
(
𝑟

2𝑟𝛼

)
. (3.4)

A different approach is to trust the original law as much as possible, and only modify it whenever it predicts a negative coefficient

of friction. The requirement of monotonicity then leads to the truncated law

𝜇t (𝑟, 𝛼) = 𝑎log+
𝑟

𝑟𝛼
with log+𝑧 = logmax(1, 𝑧) (3.5)

Both adjustments clearly guarantee nonnegativity of the friction coefficient.

In what follows, rather than consider such laws directly, we choose to work in an abstract setting where friction is described

through the friction coefficient 𝜇 ∶ ℝ+
0 ×ℝ → ℝ+

0 and two functions 𝐴 ∶ ℝ → ℝ, 𝑓 ∶ ℝ+
0 → ℝ that govern the state evolution

through the equation

�̇� + 𝐴(𝛼) = 𝑓 (𝑟).

It is immediately clear that the slip law does not fall into this setting, unfortunately. The ageing law and potentially other laws

of interest, however, do.
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4 ABSTRACT RATE-AND-STATE FRICTION

In working with 𝜇, 𝐴, and 𝑓 , we find it necessary to make the following assumptions.

The function 𝜇 is nondecreasing and continuous in its first argument. (A1)

The function 𝜇 is uniformly Lipschitz in its second argument, i.e. we have

|𝜇(𝑟, 𝛼) − 𝜇(𝑟, 𝛽)| ≤ 𝐿𝜇|𝛼 − 𝛽| for all 𝛼, 𝛽, and 𝑟 ≥ 0.

⎫⎪⎬⎪⎭ (A2)

The function 𝜇 can be bounded as follows:

0 ≤ 𝜇(𝑟, 𝛼) ≤ 𝐶𝜇(1 + 𝑟 + |𝛼|) for all 𝛼 and 𝑟 ≥ 0.

⎫⎪⎬⎪⎭ (A3)

The function 𝐴 is nondecreasing and continuous. (A4)

The function 𝑓 is Lipschitz, so that we have

|𝑓 (𝑟) − 𝑓 (𝑣)| ≤ 𝐿𝑓 |𝑟 − 𝑣| for all 𝑟 and 𝑣.

⎫⎪⎬⎪⎭ (A5)

Assumptions (A2) and (A3) are not independent; indeed, if we assume the former, the latter reduces to requiring 𝜇(𝑟, 0) ≤
𝐶𝜇(1+𝑟).

As mentioned earlier, the slip law clearly does not fit into this framework because of the requirement that �̇� can be written as

a sum of two terms, one of which depends solely on 𝛼 with the other depending solely on 𝑟. The ageing law, in contrast, satisfies

all of the assumptions made above.

Proposition 4.1. Consider the ageing law (3.1), either regularized as per (3.4) or truncated as per (3.5). Then the resulting law
satisfies (A1)–(A5).

Proof. That 𝜇r and 𝜇t satisfy (A1) is clear. To show that 𝜇r satisfies (A2), it suffices to prove

||𝜇r (𝑟, 𝛼) − 𝜇r (𝑟, 𝛽)|| = 𝑎 |||||asinh
(
𝑟

2𝑟𝛼

)
− asinh

(
𝑟

2𝑟𝛽

)||||| ≤ 𝑎 ||||log
𝑟𝛽

𝑟𝛼

||||
for any 𝛼, 𝛽, and 𝑟 ≥ 0, since the right-hand side equals 𝑏 ⋅ |𝛼 − 𝛽|. For 𝑟 = 0, this is immediate; for 𝑟 > 0, it becomes clear once

we prove the more general claim

|asinh(𝑥) − asinh(𝑦)| ≤ |log 𝑥 − log 𝑦|
for 𝑥, 𝑦 > 0. Without loss of generality, assume 𝑥 ≥ 𝑦, so that we need to show

asinh(𝑥) − asinh(𝑦) ≤ log 𝑥 − log 𝑦.

From the logarithmic representation of the asinh function, we obtain that this is equivalent to

log 𝑥 +
√
𝑥2 + 1

𝑦 +
√
𝑦2 + 1

≤ log 𝑥
𝑦

and thus

𝑦
√
𝑥2 + 1 ≤ 𝑥√𝑦2 + 1

which is obviously true. For 𝜇t , we proceed analogously and prove

||𝜇t (𝑟, 𝛼) − 𝜇t (𝑟, 𝛽)|| = 𝑎 |||||log+ 𝑟𝑟𝛼 − log+ 𝑟
𝑟𝛽

||||| ≤ 𝑎 ||||log
𝑟𝛽

𝑟𝛼

|||| .
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Again, this is trivially true if 𝑟 = 0. For 𝑟 > 0, we have|||||log+ 𝑟𝑟𝛼 − log+ 𝑟
𝑟𝛽

||||| =
|||||logmax

{
𝑟

𝑟𝛼
, 1
}

− logmax
{
𝑟

𝑟𝛽
, 1
}|||||

=
|||||max

{
log 𝑟

𝑟𝛼
, 0
}

− max
{
log 𝑟

𝑟𝛽
, 0
}||||| ≤

|||||log
(
𝑟

𝑟𝛼

)
− log

(
𝑟

𝑟𝛽

)|||||
since max{⋅, 0} is nonexpansive, so that the claim follows. To see that 𝜇t and 𝜇r satisfy (A3), observe only

𝜇t (𝑟, 𝛼) = 𝑎log+
𝑟

𝑟𝛼
≤ 𝑎

(
log+ 𝑟

𝑟∗
+
||||log 𝑟𝛼𝑟∗ ||||

)
≤ 𝑎 𝑟

𝑟∗
+ 𝜇∗ + 𝑏|𝛼|.

and

𝜇r (𝑟, 𝛼) = 𝑎asinh
𝑟

2𝑟𝛼
= 𝑎 log

⎛⎜⎜⎝ 𝑟

2𝑟𝛼
+

√(
𝑟

2𝑟𝛼

)2
+ 1

⎞⎟⎟⎠ ≤ 𝑎 log
(
𝑟

𝑟𝛼
+ 1

)

≤ 𝑎 log
(
2max

{
1, 𝑟
𝑟𝛼

})
= 𝑎 log 2 + 𝜇t (𝑟, 𝛼).

Finally, each law clearly satisfies the assumptions (A4) and (A5) with

𝐴(𝛼) = −
𝑟∗
𝐿
e−𝛼 , 𝑓 (𝑟) = 𝑟∕𝐿, and 𝐿𝑓 = 𝐿. □

5 WEAK FORMULATION

Here and in what follows, we will make the following typical assumptions on the domain Ω, the viscoelastic parameters, the

body force, and the normal stress that we prescribe on the frictional boundary Γ𝐶 .

The domain Ω is a bounded open subset of ℝ𝑑 with a Lipschitz boundary such that the

𝑑-dimensional trace map 𝛾 is well-defined from 𝐻1(Ω)𝑑 to 𝐿2(Γ)𝑑 with norm ‖𝛾‖.

}
(A6)

The viscosity tensor is symmetric as well as uniformly bounded from above and below

through 0 < 𝑚 ≤𝑀, so that for all 𝒗, 𝒘 ∈ 𝑉 we have

𝑚‖𝒗‖2𝑉 ≤ ⟨𝔄𝒗, 𝒗⟩ = ∫Ω ⟨𝜺(𝒗), 𝜺(𝒗)⟩ and

∫Ω ⟨𝜺(𝒗), 𝜺(𝒘)⟩ = ⟨𝔄𝒗,𝒘⟩ ≤𝑀‖𝒗‖𝑉 ‖𝒘‖𝑉 .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A7)

The elasticity tensor is symmetric as well as uniformly bounded from above and below

through 0 < 𝑚 ≤𝑀, so that for all 𝒗, 𝒘 ∈ 𝑉 we have

𝑚‖𝒗‖2𝑉 ≤ ⟨𝔅𝒗, 𝒗⟩ = ∫Ω ⟨𝜺(𝒗), 𝜺(𝒗)⟩ and

∫Ω ⟨𝜺(𝒗), 𝜺(𝒘)⟩ = ⟨𝔅𝒗,𝒘⟩ ≤𝑀‖𝒗‖𝑉 ‖𝒘‖𝑉 .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A8)

The body force 𝒃 satisfies ‖𝒃‖𝐿2(0,𝑇 ,𝑉 ∗) < ∞. (A9)

The prescribed normal stress �̄�n > 0 satisfies ‖‖�̄�n‖‖𝐿∞(Γ𝐶 )
<∞. (A10)
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We will work with the spaces

𝑉 = {𝒗 ∈ 𝐻1(Ω)𝑑 ∶ 𝒗 = 0 on Γ𝐷, 𝒗 ⋅ 𝒏 = 0 on Γ𝐶}, 𝐻 = 𝐿2(Ω)𝑑, and 𝑋 = 𝐿2(Γ𝐶 ),

In a standard fashion, by testing (1.2) with functions from 𝑉 at fixed points in time, and putting (1.1) as well as (1.3)– (1.6)

to use, we obtain the following weak rate problem in the form of an evolutionary variational inequality.

Problem 5.1. For given 𝛼 ∈ 𝐶(0, 𝑇 ,𝑋), find 𝒖 ∈ 𝐿2(0, 𝑇 , 𝑉 ) with �̇� ∈ 𝐿2(0, 𝑇 , 𝑉 ) and �̈� ∈ 𝐿2(0, 𝑇 , 𝑉 ∗) such that

∫Ω 𝜌⟨�̈�(𝑡), 𝒗−�̇�(𝑡)⟩ + ∫Ω ⟨𝜺(�̇�(𝑡)), 𝜺(𝒗−�̇�(𝑡))⟩ + ∫Ω ⟨𝜺(𝒖(𝑡)), 𝜺(𝒗−�̇�(𝑡))⟩ + Φ𝛼(𝑡, 𝛾𝒗) − Φ𝛼(𝑡, 𝛾 �̇�(𝑡))

≥ ∫Ω ⟨𝒃(𝑡), 𝒗−�̇�(𝑡)⟩ for all 𝒗 ∈ 𝑉 (5.1)

for almost every 𝑡 ∈ [0, 𝑇 ] with prescribed 𝒖(0) = 𝒖0, �̇�(0) = �̇�0 and the friction nonlinearities given by

Φ𝛼(𝑡, 𝒗) = ∫Γ𝐶 𝜑𝛼(𝑡, 𝑥, |𝒗(𝑥)|) d𝑥 and 𝜑𝛼(𝑡, 𝑥, 𝑣) = ∫
𝑣

0

(
𝜇(𝑟, 𝛼(𝑡, 𝑥))�̄�n + 𝐶

)
d𝑟. (5.2)

(To simplify notation we often do not make the 𝑥-dependence of integrand explicit, cf. (5.1) as an example, but we keep it in

case of ambiguity as in (5.2).)

In contrast, we will stick to the strong formulation for the state variable 𝛼 ∶ [0, 𝑇 ] × Γ𝐶 → ℝ by requiring the following.

Problem 5.2. For given �̇� ∈ 𝐿2(0, 𝑇 , 𝑉 ), find 𝛼 ∈ 𝐶(0, 𝑇 ,𝑋) such that

�̇�(𝑡) + 𝐴(𝛼(𝑡)) = 𝑓 (|𝛾 �̇�(𝑡)|) almost everywhere on Γ𝐶

for almost every 𝑡 ∈ [0, 𝑇 ], with prescribed 𝛼(0) = 𝛼0.

The reformulation of the coupled Problem 1.1 we will work with from here on is thus the problem of finding a pair (�̇�, 𝛼) ∈
𝐿2(0, 𝑇 , 𝑉 ) × 𝐶(0, 𝑇 ,𝑋) such that 𝒖 solves Problem 5.1 with state 𝛼 and 𝛼 solves Problem 5.2 with rate �̇�. To analyze this

problem coupling, we first consider each problem separately

6 ANALYSIS OF THE RATE PROBLEM (THE MECHANICAL PROBLEM
FOR 𝒖)

In operator notation, we can rewrite (5.1) as the variational inequality

⟨𝜌�̈�(𝑡) +𝔄�̇�(𝑡) +𝔅𝒖(𝑡) − 𝒃(𝑡), 𝒗 − �̇�(𝑡)⟩ + Φ𝛼(𝑡, 𝛾𝒗) ≥ Φ𝛼(𝑡, 𝛾 �̇�(𝑡)) for all 𝒗 ∈ 𝑉 (6.1)

or as the subdifferential inclusion

𝒃(𝑡) − 𝜌�̈�(𝑡) −𝔅𝒖(𝑡) ∈ 𝜕𝛼(𝑡, �̇�(𝑡)) (6.2)

with the operators 𝔄, 𝔅 ∶ 𝑉 → 𝑉 ∗ and the dissipation potential 𝛼 given by

𝔄𝒗 = ∫Ω ⟨𝜺(𝒗), 𝜺(⋅)⟩, 𝔅𝒖 = ∫Ω ⟨𝜺(𝒖), 𝜺(⋅)⟩, and 𝛼(𝒗) =
1
2
⟨𝔄𝒗, 𝒗⟩ + Φ𝛼(𝑡, 𝛾𝒗).

In (6.2) the term 𝜕𝛼(𝑡, 𝒗) denotes the set-valued convex subdifferential with respect to 𝒗 (keeping 𝑡 and 𝛼 fixed), namely

𝜕𝛼(𝑡, 𝒗) = 𝔄𝒗 + 𝛾∗𝜕Φ𝛼(𝑡, 𝛾𝒗), where 𝛾∗ is the adjoint of the trace operator 𝛾 .

The following existence result can be obtained by classical monotone operator theory for linear dynamic models with linear

dissipation, see e.g. [5,20] or [3, Sect. 4.4.1]. However, none of the results covers our special situation with time-dependent

friction. Hence, we use a result on second-order hemivariational inequalities now applies in particular to our variational setting.

Proposition 6.1. Problem 5.1 has a unique solution for any 𝛼 ∈ 𝐶(0, 𝑇 ,𝑋), 𝒖0 ∈ 𝑉 , and �̇�0 ∈ 𝐻 .
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Proof. The existence of a solution for the dynamic problem (6.1) will be derived from [9, Cor. 12]. The uniqueness follows in

particular from Proposition 6.3 which is proved below.

A few comments are in order to justify why Theorem 8, and thus Corollary 12, of [9] can be applied: Assumptions (A7) and

(A8) make 𝔄 and 𝔅 strongly monotone and symmetric bounded linear operators. Moreover, assumption (A1) makes 𝜑𝛼(𝑡, 𝑥, ⋅)
convex for almost every (𝑡, 𝑥) ∈ [0, 𝑇 ] × Γ𝐶 , so that the Clarke subdifferential of 𝜑𝛼(𝑡, 𝑥, ⋅) is actually a usual convex subdiffer-

ential. Finally, assumption (A3) guarantees

||𝜕𝜑𝛼(𝑡, 𝑥, ⋅)(𝑣)|| ≤ 𝐶𝜇(1 + |𝑣| + |𝛼(𝑡, 𝑥)|) �̄�n + 𝐶 . (6.3)

While [9, Thm. 8] requires (6.3) to hold without dependence on 𝑡 or 𝑥, a look at the proof reveals that we are free to add any

term from 𝐿2(0, 𝑇 ,𝑋), and thus we can allow for arbitrary 𝛼 ∈ 𝐶(0, 𝑇 ,𝑋), see also [10]. □

For given initial data 𝒖0 ∈ 𝑉 and �̇� ∈ 𝐻 , the above proposition allows us to define a mapping

𝑹 ∶ 𝐶(0, 𝑇 ,𝑋) → 𝐿2(0, 𝑇 , 𝑉 ); 𝛼 → �̇�,

and the next result shows that this mapping is Lipschitz continuous. The crucial observation is the following lemma that uses

the special form of the friction law. While for smooth Φ such a product estimate for the double differences is to be expected, it

is in general false for non-smooth functions.

Lemma 6.2 (An estimate for double differences). Let the function Φ𝛼 be defined as in (5.2) with 𝜇 satisfying (A2). Then, for all
𝛼, 𝛽 ∈ 𝐶(0, 𝑇 ,𝑋), all 𝑠 ∈ [0, 𝑇 ], and all 𝑣,𝑤 ∈ 𝐿2(Γ𝐶 ) with 𝑣,𝑤 ≥ 0 we have

|Φ𝛼(𝑠, 𝑣) − Φ𝛽(𝑠, 𝑣) − Φ𝛼(𝑠,𝑤) + Φ𝛽(𝑠,𝑤)| ≤ 𝐿𝜇‖�̄�n‖𝐿∞(Γ𝐶 )‖𝛼(𝑠, ⋅)−𝛽(𝑠, ⋅)‖𝐿2(Γ𝐶 )‖𝑣−𝑤‖𝐿2(Γ𝐶 ).

Proof. We first observe 𝜑𝛼(𝑠, 𝑥, 𝑣) − 𝜑𝛽(𝑠, 𝑥, 𝑣) = ∫ 𝑣0 (𝜇(𝑟, 𝛼(𝑠, 𝑥))−𝜇(𝑠, 𝛽(𝑡, 𝑥)))�̄�n(𝑥)d𝑟. Hence, we find

|𝜑𝛼(𝑠, 𝑥, 𝑣(𝑥)) − 𝜑𝛽(𝑠, 𝑥, 𝑣(𝑥)) − 𝜑𝛼(𝑠, 𝑥,𝑤(𝑥)) + 𝜑𝛽(𝑠, 𝑥,𝑤(𝑥))|
= |||∫ 𝑤(𝑥)

𝑣(𝑥)
(𝜇(𝑟, 𝛼(𝑠, 𝑥))−𝜇(𝑟, 𝛽(𝑠, 𝑥)))�̄�n(𝑥)d𝑟

|||
≤ 𝐿𝜇�̄�n(𝑥)|𝛼(𝑠, 𝑥)−𝛽(𝑠, 𝑥)| |𝑣(𝑥)−𝑤(𝑥)|.

Integration over Ω and applying Hölder’s inequality gives the desired result. □

With this we obtain the desirable Lipschitz continuity of 𝑹 by simply comparing the two different solutions.

Proposition 6.3 (Lipschitz continuity of 𝑹). For two solutions 𝒖 and 𝒘 of Problem 5.1 corresponding to 𝛼 and 𝛽, respectively,
with identical initial conditions, we have

‖�̇� − �̇�‖𝐿2(0,𝑡,𝑉 ) ≤
√
𝑡
𝐿𝜇‖𝛾‖
𝑚

‖‖�̄�n‖‖𝐿∞(Γ𝐶 )
‖𝛽 − 𝛼‖𝐶(0,𝑡,𝑋) for all 𝑡 ∈ [0, 𝑇 ].

In particular, the mapping 𝑹 ∶ 𝐶(0, 𝑇 ,𝑋) → 𝐿2(0, 𝑇 , 𝑉 ) is single-valued and Lipschitz with the constant

𝐿𝑹 =
√
𝑇
𝐿𝜇‖𝛾‖
𝑚

‖‖�̄�n‖‖𝐿∞(Γ𝐶 )
.

Proof. We test (6.1) for 𝒖 with �̇� and for 𝒘 with �̇� to obtain

⟨𝜌(�̈�(𝑠) − �̈�(𝑠)) +𝔄(�̇�(𝑠) − �̇�(𝑠)) +𝔅(𝒘(𝑠) − 𝒖(𝑠)), �̇�(𝑠) − �̇�(𝑠)⟩
≤ Φ𝛼(𝑠, 𝛾�̇�(𝑠)) − Φ𝛼(𝑠, 𝛾 �̇�(𝑠)) + Φ𝛽(𝑠, 𝛾 �̇�(𝑠)) − Φ𝛽(𝑠, 𝛾�̇�(𝑠))

≤ 𝐿𝜇‖‖�̄�n‖‖𝐿∞(Γ𝐶 )
‖𝛾‖ ‖�̇�(𝑠) − �̇�(𝑠)‖𝑉 ‖𝛽(𝑠) − 𝛼(𝑠)‖𝑋
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for almost every 𝑠 ∈ [0, 𝑇 ], where we used Lemma 6.2 and (A6). Integrating this inequality over the time interval [0, 𝑡] ⊂ [0, 𝑇 ]
and using (A7) and (A8) yields

𝑚‖�̇�−�̇�‖2
𝐿2(0,𝑡,𝑉 ) ≤ 𝜌

2
‖�̇�(𝑡)−�̇�(𝑡)‖2

𝐻
+ ∫

𝑡

0
⟨𝔄(�̇�−�̇�), �̇�−�̇�⟩ d𝑠 + 1

2
⟨𝔅(𝒘(𝑡)−𝒖(𝑡)),𝒘(𝑡)−𝒖(𝑡)⟩

≤ 𝐿𝜇‖𝛾‖‖‖�̄�n‖‖𝐿∞(Γ𝐶 ) ∫
𝑡

0
‖�̇�−�̇�‖𝑉 ‖𝛽−𝛼‖𝑋d𝑠

≤ 𝐿𝜇‖𝛾‖‖‖�̄�n‖‖𝐿∞(Γ𝐶 )
‖�̇�−�̇�‖𝐿2(0,𝑡,𝑉 )

√
𝑡 ‖𝛽−𝛼‖𝐶(0,𝑡,𝑋),

where we used Hölder’s inequality in the last step. This provides the desired estimate. □

7 ANALYSIS OF THE STATE PROBLEM (THE FLOW RULE FOR 𝜶)

In Problem 5.2, we view the monotone function 𝐴 from (A4) as a monotone operator on the function space 𝑋 and obtain a

problem that has the structure of an evolution equation associated with a maximal monotone operator; in doing so, we do not

put the superposition operator structure of 𝐴 to use: To solve Problem 5.2 is to solve a family of ordinary differential equations

at once. In what follows, we apply the first and second line of thinking, in this order.

Proposition 7.1. Problem 5.2 has a unique solution for any �̇� ∈ 𝐿2(0, 𝑇 , 𝑉 ) and 𝛼0 ∈ 𝑋.

Proof. The desired result follows for example from [1, Thm. 1.3]. For this we remark that the requirement 𝛼0 ∈ dom(𝐴) is

automatically fulfilled since we have 𝐿∞(Γ𝐶 ) ⊂ dom(𝐴) and 𝐿∞(Γ𝐶 ) is dense in 𝐿1(Γ𝑐). □

For given initial value 𝛼0 ∈ 𝑋, the solution operator derived in Proposition 7.1 will be denoted by

𝑺 ∶ 𝐿2(0, 𝑇 , 𝑉 ) → 𝐶(0, 𝑇 ,𝑋); �̇� → 𝛼.

The following results states that 𝑆 is Lipschitz continuous.

Proposition 7.2 (Lipschitz continuity of 𝑺). For two solutions 𝛼 and 𝛽 of Problem 5.2 corresponding to �̇� and �̇�, respectively,
with identical initial conditions and 𝑡 ∈ [0, 𝑇 ], we have

‖𝛼(⋅, 𝑥) − 𝛽(⋅, 𝑥)‖𝐶(0,𝑡) ≤ 𝐿𝑓‖𝛾 �̇�(⋅, 𝑥) − 𝛾�̇�(⋅, 𝑥)‖𝐿1(0,𝑡,ℝ𝑑 ) (7.1)

for almost every 𝑥 ∈ Γ𝐶 and thus

‖𝛼 − 𝛽‖𝐶(0,𝑇 ,𝑋) ≤
√
𝑇 𝐿𝑓‖𝛾 �̇� − 𝛾�̇�‖𝐿2(0,𝑇 ,𝑋𝑑 ). (7.2)

In particular, the solution operator 𝑆 ∶ 𝐿2(0, 𝑇 , 𝑉 ) → 𝐶(0, 𝑇 ,𝑋) is Lipschitz with the constant

𝐿𝑺 =
√
𝑇 ‖𝛾‖𝐿𝑓 .

Proof. For almost every 𝑥 ∈ Γ𝐶 and 𝑠 ∈ [0, 𝑇 ], we have

�̇�(𝑠, 𝑥) + 𝐴(𝛼(𝑠, 𝑥)) = 𝑓 (|𝛾 �̇�(𝑠, 𝑥)|) and �̇�(𝑠, 𝑥) + 𝐴(𝛽(𝑠, 𝑥)) = 𝑓 (|𝛾�̇�(𝑠, 𝑥)|).
Thus a pair of evolution equations that have the same structure as Problem 5.2 and are additionally one-dimensional. For each

such pair we can derive

|𝛼(𝑡, 𝑥) − 𝛽(𝑡, 𝑥)| ≤ ‖𝑓 (|𝛾 �̇�(⋅, 𝑥)|) − 𝑓 (|𝛾�̇�(⋅, 𝑥)|)‖𝐿1(0,𝑡,ℝ𝑛)

for example from [1, Thm. 1.2(ii)]). Because of (A5), this implies (7.1).

To obtain (7.2), we apply Hölder’s inequality which yields

|𝛼(𝑡, 𝑥) − 𝛽(𝑡, 𝑥)| ≤ 𝐿𝑓‖𝛾 �̇�(⋅, 𝑥) − 𝛾�̇�(⋅, 𝑥)‖𝐿1(0,𝑡,ℝ𝑑 ) ≤
√
𝑡 𝐿𝑓‖𝛾 �̇�(⋅, 𝑥) − 𝛾�̇�(⋅, 𝑥)‖𝐿2(0,𝑡,ℝ𝑑 )
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for almost every (𝑡, 𝑥) ∈ [0, 𝑇 ] × Γ𝐶 . Hence, by integrating over Γ𝐶 we find

‖𝛼(𝑡, ⋅) − 𝛽(𝑡, ⋅)‖𝑋 ≤ √
𝑡 𝐿𝑓‖𝛾 �̇� − 𝛾�̇�‖𝐿2(0,𝑡,𝑋𝑑 ).

Since 𝑡 ∈ [0, 𝑇 ] was arbitrary, this proves (7.2). □

8 ANALYSIS OF THE COUPLED PROBLEM

We first establish short-time existence and uniqueness of a solution.

Proposition 8.1 (Local existence result). For sufficiently small 𝑇 > 0, the Problems 5.1 and 5.2 have a unique joint solution
(�̇�, 𝛼) ∈ 𝐿2(0, 𝑇 , 𝑉 ) × 𝐶(0, 𝑇 ,𝑋) provided that 𝒖0 ∈ 𝑉 , �̇�0 ∈ 𝐻 , and 𝛼0 ∈ 𝑋, i.e., 𝛼 = 𝑺(�̇�) and �̇� = 𝑹(𝛼).

Proof. By Propositions 6.3 and 7.2, the operator 𝑹◦𝑺 ∶ 𝐿2(0, 𝑇 , 𝑉 ) → 𝐿2(0, 𝑇 , 𝑉 ) is Lipschitz with the constant 𝐿𝑹◦𝑺 ≤
𝐿𝑹𝐿𝑺 , which satisfies 𝐿𝑹◦𝑺 ≤ 𝐶∗𝑇 < 1 for sufficiently small 𝑇 > 0. The claim now follows from Banach’s fixed

point theorem. □

We note that 𝑇 is not constrained in any way by the values of the initial data 𝒖0, �̇�0 or 𝛼0. We can thus extend a solution

provided by Proposition 8.1 to the interval [0, 2𝑇 ] by applying the aforementioned proposition repeatedly. Indeed, the actual

initial data gives a solution on the time interval [0, 𝑇 ] producing the final data 𝒖(𝑇 ), �̇�(𝑇 ), and 𝛼(𝑇 ). To be sure that we can

continue the solution, we have to show (𝒖(𝑇 ), �̇�(𝑇 ), 𝛼(𝑇 )) ∈ 𝑉 ×𝐻 ×𝑋.

For this we use that with the space 𝐻1(0, 𝑇 , 𝑉 , 𝑉 ∗) = {𝒗 ∈ 𝐿2(0, 𝑇 , 𝑉 ) ∶ �̇� ∈ 𝐿2(0, 𝑇 , 𝑉 ∗)} equipped with the norm‖𝒗‖𝐻1(0,𝑇 ,𝑉 ) = ‖𝒗‖𝐿2(0,𝑇 ,𝑉 ) + ‖�̇�‖𝐿2(0,𝑇 ,𝑉 ∗) we have the embeddings

𝒖 ∈ 𝐻1(0, 𝑇 , 𝑉 ) ⊂ 𝐶(0, 𝑇 , 𝑉 ) and �̇� ∈ 𝐻1(0, 𝑇 , 𝑉 , 𝑉 ∗) ⊂ 𝐶(0, 𝑇 ,𝐻).

Thus, we find 𝒖(𝑇 ) ∈ 𝑉 and �̇�(𝑇 ) ∈ 𝐻 in addition to 𝛼(𝑇 ) ∈ 𝑋. Now, the aforementioned continuation procedure can be

repeated an arbitrary number of times, we can obtain solutions on [0, 𝑛𝑇 ] for arbitrary 𝑛 ∈ ℕ and thus intervals of arbitrary

size. This provides the final global existence result.

Theorem 8.2 (Global existence result). For all 𝑇 > 0, Problems 5.1 and 5.2 have a unique solution (�̇�, 𝛼) ∈ 𝐿2(0, 𝑇 , 𝑉 ) ×
𝐶(0, 𝑇 ,𝑋) provided that 𝒖0 ∈ 𝑉 , �̇�0 ∈ 𝐻 , and 𝛼0 ∈ 𝑋.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via the project B01 Fault networks and scaling
properties of deformation accumulation within the Collaborative Research Center SFB 1114 Scaling Cascades in Complex
Systems. The author is grateful to Alexander Mielke and Ralf Kornhuber for continuing support and helpful discussions. A.

Mielke is grateful to two anonymous referees for helpful comments that improved the readability of the paper.

R E F E R E N C E S

[1] H. Attouch, A. Damlamian, On multivalued evolution equations in Hilbert spaces, Isr. J. Math. 1972, 12, 373.

[2] J. H. Dieterich, Modeling of rock friction: 1. experimental results and constitutive equations, J. Geophys. Res.: Solid Earth 1979, 84, 2161.

[3] C. Eck, J. Jarušek, M. Krbec, Unilateral contact problems, vol. 270, Chapman & Hall/CRC, Boca Raton, FL 2005.

[4] D. R. Faulkner, C. A. L. Jackson, R. J. Lunn, R. W. Schlische, Z. K. Shipton, C. A. J. Wibberley, M. O. Withjack, A review of recent developments

concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol. 2010, 32, 1557.

[5] K. Gröger, Zur Theorie des dynamischen Verhaltens von elastisch-plastischen Körpern, Zeits. Angew. Math. Mech. 1978, 58, 483.

[6] M. Heida, A. Mielke, E. Pipping, Rate-and-state friction from a thermodynamical viewpoint, In preparation, 2019.

[7] I. R. Ionescu, Viscosity solutions for dynamic problems with slip-rate dependent friction, Q. Appl. Math. 2002, 60, 461.

[8] V. Lyakhovsky, Y. Ben-Zion, A. Agnon, A viscoelastic damage rheology and rate- and state-dependent friction, Geophys. J. Int. 2005, 161, 179.

[9] S. Migórski, A. Ochal, Hemivariational inequality for viscoelastic contact problem with slip-dependent friction, Nonlinear Anal., Theory Methods
Appl., Ser. A 2005, 61, 135.

[10] S. Migórski, P. Szafraniec, A class of dynamic frictional contact problems governed by a system of hemivariational inequalities in thermovis-

coelasticity, arXiv, 1901.08643, 2019.

[11] F. Patrulescu, M. Sofonea, Analysis of rate-and-state fiction problem with viscoelastic materials, Elect. J. Diff. Eqns. 2017, 299, 1.

[12] E. Pipping, Dynamic Problems of Rate-and-State Friction in Viscoelasticity, Dissertation, Freie Universität Berlin 2014.



10 of 10 PIPPING

[13] E. Pipping, O. Sander, R. Kornhuber, Variational formulation of rate and state dependent friction problems, Zeits. Angew. Math. Mech. 2015, 95,

377.

[14] M. Rosenau, F. Corbi, S. Dominguez, M. Rudolf, M. Ritter, E. Pipping, Supplement to [15], GFZ Data Services. https://doi.org/10.5880/

GFZ.4.1.2016.008, 2016.

[15] M. Rosenau, F. Corbi, S. Dominguez, Analogue earthquakes and seismic cycles: experimental modelling across timescales, Solid Earth 2017, 8,

597.

[16] J. R. Rice, N. Lapusta, K. Ranjith, Rate and state dependent friction and the stability of sliding between elastically deformable solids, J. Mech.
Phys. Solids 2001, 49, 1865.

[17] T. Roubíček, A note about the rate-and-state-dependent friction model in a thermodynamical framework of the Biot-type equation, Geophys. J.
Int. 2014, 199, 286.

[18] A. Ruina, Slip instability and state variable friction laws, J. Geophys. Res.: Solid Earth 1983, 88, 10359.

[19] C. H. Scholz, Earthquakes and friction laws, Nature 1998, 391, 37.

[20] R. E. Showalter, P. Shi, Plasticity models and nonlinear semigroups, J. Math. Anal. Appl. 1997, 216, 218.

How to cite this article: E. Pipping. Existence of long-time solutions to dynamic problems of viscoelasticity with rate-

and-state friction. Z Angew Math Mech. 2019;e201800263. https://doi.org/10.1002/zamm.201800263

https://doi.org/10.5880/GFZ.4.1.2016.008
https://doi.org/10.5880/GFZ.4.1.2016.008
https://doi.org/10.1002/zamm.201800263

