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Not marble, nor the gilded monuments 

Of princes, shall outlive this powerful rhyme; 

    William Shakespeare, Sonnets 55 (ll. 1-2) 

Introduction 

When was the last time you read a poem, or a piece of 

literature? The answer of many people might well be 

‘today’ or ‘yesterday’. Even though reading literature 

may no longer count among the essential activities of 

people’s leisure time, it still has a significant number of 

benefits in promoting, for example, general and cross-

cultural education, social cognition or cognitive devel-

opment (e.g., Kidd & Castano, 2013; Koopman, 2016; 

Marr, 2018; Samur et al., 2018). However, within the 

fields of reading and eye tracking research, single words 

or single sentences from non-literary materials appear to 

be the most extensively investigated text materials (e.g., 

Clifton et al., 2007; Radach & Kennedy, 2013; Rayner, 

2009). Although psycholinguistic features, e.g., word 

length or word frequency, work differently in a connected 

text context (Kuperman et al., 2010, 2013; Wallot et al., 

2013), empirical research using natural materials like 

narrative texts or poems are quite rare and the majority of 

studies on literary works confine to text-based qualitative 

aspects (e.g., ‘close reading’). Reading research seems to 

be experiencing difficulty to open itself for empirical 

studies focusing on more natural and ecologically valid 

reading acts, as recently admonished by several research-

ers (e.g., Jacobs, 2015a; Radach et al., 2008; Wallot et al., 

2013).  
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With the present study, we aim to explore which and 

how psycholinguistic features influence literary reading 

(e.g., some famous poems) by analyzing participants’ eye 

movement behavior which provides a valid measure of 

moment-to-moment comprehension processes (e.g., 

Rayner, 1998; Rayner et al., 2006). To achieve our objec-

tive, we faced two major challenges: dissecting the com-

plex literary works into measurable and testable features 

and applying computational methods which can handle 

the intercorrelated psycholinguistic features and the non-

linear relationship between them and reading behavior. In 

the following sections, we expound the two challenges 

separately, and at the end put forward our hypotheses. 

Quantitative Narrative Analysis (QNA) 

As we all know, natural texts mostly show a high lev-

el of complexity. They are built of single words that can 

be characterized by more than 50 lexical and sublexical 

features influencing their processing in single-word 

recognition tasks (Graf et al., 2005). The actual amount 

of these (or other) lexical features influencing eye move-

ment parameters in natural reading of literary texts is a 

wide-open empirical question. These complex units then 

are combined to larger units like phrases, sentences, stan-

zas or paragraphs which again are characterized by an 

overabundance of text features (Jacobs, 2015a, 2018b) 

including a great variety of rhetorical devices (cf. Laus-

berg, 1960). While it is far from easy to qualitatively 

describe all these features—as evidenced by extensive 

debates on e.g., the classification of metaphors and simi-

les (Schrott & Jacobs, 2011)—, the challenge to quantify 

relevant text features properly is even greater and still in 

its beginnings. To start empirical investigations using 

(more) natural and complex materials, appropriate mod-

els and methods are necessary to handle the plethora of 

text and/or reader features and their multiple (nonlinear) 

interactions. On the modeling side, the Neurocognitive 

Poetics Model of literary reading (NCPM; Jacobs, 2011, 

2015a, b; Nicklas & Jacobs, 2017; Willems & Jacobs, 

2016) is a first theoretical account offering predictions 

about the relationship between different kinds of text 

features and reader responses, e.g., in eye tracking studies 

using natural text materials (Müller et al., 2017; van den 

Hoven et al., 2016). On the methods side, inspired by the 

NCPM, our group has been working for quite some time 

on different QNA approaches. In contrast to qualitative 

analysis, these try to quantitatively describe a maximum 

of the psycholinguistic features of complex natural verbal 

materials, as impressively demonstrated using the exam-

ple of the 154 Shakespeare sonnets (Jacobs et al., 2017). 

Additionally, this approach proposes advanced tools for 

computing both cognitive and affective-aesthetic features 

potentially influencing reader responses at all three levels 

of observation, i.e., the experiential (e.g., questionnaires 

and ratings; Jacobs, 2017; Jacobs et al., 2015a, 2016a, b, 

2017; Jacobs & Kinder, 2017, 2018; Jacobs & Lüdtke, 

2017), the behavioral (e.g., eye movements; Xue et al., 

2017), and the neuronal (Hsu et al., 2015). 

Shakespeare’s sonnets indeed are a particularly chal-

lenging and fascinating stimulus material for QNA and 

count among the most aesthetically successful or popular 

pieces of verbal art in the world. Facilitating QNA, most 

of them have the same structure and rhythmic pattern, 

typically decasyllabic 14-liners in iambic pentameter with 

three quatrains and a concluding couplet, making them 

perfect research materials. They have been the object of 

countless essays by literary critics and of theoretical sci-

entific studies (e.g., Jakobson & Jones, 1970; Simonton, 

1989; Vendler, 1997). Furthermore, all 154 sonnets have 

been extensively ‘QNA-ed’ in our previous work yielding 

precise predictions concerning e.g., eye movement data 

(Jacobs et al., 2017). Furthermore, to our knowledge, 

none of the previous studies on reading literary texts or 

poems (e.g., Carrol & Conklin, 2014; Dixon & Bortolussi, 

2016; Jacobs et al., 2016b; van den Hoven et al., 2016; 

Lauwereyns & d'Ydewalle, 1996; Müller et al., 2017; Sun 

et al., 1985) examined the eye movement behavior of 

Shakespeare sonnets. 

Since it is not possible to identify all relevant features 

characterizing a natural text [e.g., over 50 features men-

tioned for single word recognition (Graf et al., 2005) or 

over 100 features computed for the corpus of Shake-

speare sonnets (Jacobs et al., 2017)], nearly all empirical 

studies we know of tested only a few selected features 

while ignoring the others without giving explicit reasons 

for this neglect, e.g., by using eye tracking (Rayner et al., 

2001; Reichle, 2003; Rayner & Pollatsek, 2006; Engbert 

et al., 2005; Reilly & Radach, 2006; Rayner, 2009). Thus, 

for the present study about the influence of basic psycho-

linguistic features we decided to start –relatively– simple 

by concentrating on a set of seven easily computable 

(sub)lexical surface features combining well established 

and less tested ones. We excluded complex inter- and 

supralexical features (e.g., surprisal, syntactic simplicity), 

as well as any features that cannot be computed via QNA 
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(e.g., age-of-acquisition, metaphoricity). The resulting set 

of surface features consists of two standard features 

(word length, word frequency) used in many eye move-

ment studies and three standard features from word 

recognition studies much less used in the eye movement 

field (orthographic neighborhood density, higher fre-

quent neighbors, and orthographic dissimilarity), and two 

phonological features theoretically playing a role in poet-

ry reading (consonant vowel quotient, sonority score). In 

the following paragraphs, we further explain these fea-

tures and summarize their effects, if available, observed 

in eye tracking studies using single sentences or short 

nonliterary texts: 

In eye tracking studies of reading non-literary texts it 

is widely acknowledged that longer and low frequency 

words attract longer total reading time (sum of all fixa-

tions on the target word) and more fixations (e.g., Just & 

Carpenter, 1980; Inhoff & Rayner, 1986; Raney & 

Rayner, 1995; Pynte et al., 2008). Apart from these two 

basic surface features, a wealth of research also found 

effects of orthographic neighborhood density (number of 

words that can be created by changing a single letter of a 

target word, e.g., bat, fat, and cab are neighbors of cat, 

Coltheart et al., 1977) in word recognition and reading 

tasks (see Andrews, 1997, for a review). While effects of 

orthographic neighborhood density are usually facilita-

tive, the presence of higher frequent neighbors in the 

hypothetical mental lexicon inhibits processing of a target 

word (Grainger et al., 1989; Grainger & Jacobs, 1996; 

Perea & Pollatsek, 1998). However, there are no clear 

conclusions as to the effects of both features on eye 

movements in reading (Williams et al., 2006). Further-

more, using the Levenshtein distance metric, we can also 

compute an additional orthographic dissimilarity index 

for all words, going beyond the standard operationaliza-

tion based on words of the same length. As far as we 

know, systematic effects of the above features on eye 

movements in the reading of poetry have not been report-

ed so far. 

Most people will agree with the statement that poetry 

is an artful combination of sound and meaning (Schrott & 

Jacobs, 2011). While the above features are basically 

‘orthographic’, the effects of sublexical and lexical pho-

nological features that have been found in a variety of 

silent reading studies (e.g., Aryani et al., 2013, 2016, 

2018a, 2018b; Braun et al., 2009; Schmidtke et al., 2014b; 

Jacobs, 2015b, c; Ullrich et al., 2017; Ziegler & Jacobs, 

1995) and the wide use of phonetic rhetorical devices in 

poetic language lead us to include also two phonological 

features: the consonant vowel quotient and the sonority 

score. Consonant vowel quotient is a simple proxy for the 

pronounceability of a word—which hypothetically is 

related to its ease of automatic phonological recoding 

(Lee et al., 2001). To quantify the acoustic energy or 

loudness of a sound, called sonority (Ladefoged, 1993), 

we used the sonority score, a simplified index based on 

the sonority hierarchy of English phonemes, which al-

lows to estimate the degree of distance from the optimal 

syllable structure (e.g., Clements, 1990). It was previous-

ly applied in the study of aphasia (Stenneken et al., 2005) 

and has recently been proposed as an important feature 

influencing the subjective beauty of words (Jacobs, 2017). 

There is evidence that consonant status and sonority play 

a role in silent reading (Maïonchi-Pino et al., 2008; Ber-

ent, 2013), especially of poetic texts (Kraxenberger, 

2017). Both features have not been examined in literary 

reading studies using eye tracking. 

Non-linear Interactive Models and Predictive Model-

ing 

With the help of QNA, we can quantify psycholin-

guistic features and predict reader responses successfully 

(e.g., Jacobs & Kinder, 2018). However, we still need to 

tackle the second challenge: within and between the dis-

ciplines involved in reading research there is an unspoken 

consent that all these psycholinguistic features influence 

the reading and interpretation of literary texts in a highly 

interactive and nonlinear way (Jacobs, 2015a, 2018b; 

Leech, 1969; Schrott & Jacobs, 2011). Kliegl et al. (1982) 

already pointed out that using standard accounts like 

hierarchical regressions is not a solution for handling 

intercorrelated predictors and the nonlinear relationship 

between predictors and reading behavior. Consequently, 

we must look for appropriate tools to tackle these prob-

lems. One option is offered by recent developments e.g., 

in the fields of bioinformatics (Strobl et al., 2009), ecolo-

gy (e.g., Manel et al., 1999; Were et al., 2015), geology 

and risk analysis (Nefeslioglu et al., 2008; Saltelli, 2002), 

quantitative sociolinguistics (Tagliamonte & Baayen, 

2012; Van Halteren et al., 2005), epidemiology (e.g., Tu, 

1996), neurocognitive poetics (Jacobs, 2017, 2018b; 

Jacobs & Kinder, 2017, 2018; Jacobs et al., 2017), fMRI 

data analysis (e.g., Cichy et al., 2017) or applied reading 

research (Lou et al., 2017; Matsuki et al., 2016) high-

lighting the application of machine learning tools like 
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neural nets or bootstrap forests to predictive modeling 

accounts of big data sets with complex interactions and 

intercorrelations. Moreover, as an alternative and com-

plement to the traditional ‘explanation approach’ of ex-

perimental psychology, machine learning principles and 

techniques can also help psychology become a more 

predictive and explorative science (Yarkoni & Westfall, 

2017; Cichy & Kaiser, 2019). Thanks to such computa-

tional methods, tackling the challenge of analyzing hu-

man cognition, emotion or eye movement behavior in 

rich naturalistic settings (Lappi, 2015) has become a 

viable option especially as concerns literary reading (e.g., 

Jacobs & Willems, 2018; Willems, 2015; Willems & 

Jacobs, 2016). 

For present study, two non-linear interactive models, 

i.e., neural nets and bootstrap forests, were compared 

with one general linear model (standard least squares 

regression), to find out which approach optimally pre-

dicted relevant eye movement parameters during the 

reading and experiencing of poetry. The neural net model 

is a multi-layer perceptron which can predict one or more 

response variables using a flexible function of the input 

variables. It has the ability to implicitly detect all possible 

(nonlinear) interactions between predictor variables and a 

number of other advantages over regression models when 

dealing with complex stimulus-response environments 

(e.g., Tu, 1996). Bootstrap forests predict a response by 

averaging the predicted response values across many 

decision trees. Each tree is grown on a bootstrap sample 

of the training data (Hastie et al., 2009). Both the non-

linear interactive models and the general linear model 

were evaluated in a predictive modeling approach com-

paring a goodness of fit index (R2) for training and vali-

dation sets. 

Taken together, in the context of our QNA-based pre-

dictive modeling approach, here we considered a mini-

malistic first attempt at introducing an already considera-

bly more complex way of analyzing eye movements in 

reading poetic texts. We focused on potential effects of 

seven simple ‘surface’ features: word length, word fre-

quency, orthographic neighborhood density, higher fre-

quency neighbors, orthographic dissimilarity index, con-

sonant vowel quotient, and sonority score on three eye 

movement parameters (first fixation duration, total read-

ing time and fixation probability). 

Hypotheses 

Since non-linear interactive models can deal with 

complex interactions and detect hidden structures in 

complex data sets (LeCun et al., 2015), we proposed that 

they would outperform the general linear model and pro-

duce satisfactory model fits for both the training and 

validation sets. 

Based on previous eye tracking studies and existent 

models of eye movement control (e.g., Engbert et al., 

2005; Klitz et al., 2000; Legge et al., 1997; Reichle et al., 

2003; Reilly & Radach, 2006), we assumed that word 

length and word frequency play a key role in accounting 

for variance in total reading time and fixation probability, 

i.e., longer and low frequency words should attract longer 

total reading time and higher fixation probability also in 

poetry reading. 

On account of the facilitative effect of orthographic 

neighborhood density and the inhibitory effect of higher 

frequency neighbors in the above mentioned word recog-

nition studies, we also expected words with many (lower 

frequency) orthographic neighbors to produce shorter 

total reading time and lower fixation probability than low 

orthographic neighborhood density words and words 

with higher frequency neighbors. Similarly, we hypothe-

sized that higher orthographic dissimilarity of a word (as 

a proxy for its orthographic salience) would increase its 

total reading time and fixation probability. 

As concerns the two phonological features, consonant 

vowel quotient and sonority score, our hypothesis was 

that words with a high consonant vowel quotient (as a 

proxy for hindered phonological processing) and sonority 

score (as a proxy for increased aesthetic potential) require 

a more exigent processing (e.g., Jacobs et al., 1998; Maï-

onchi-Pino et al., 2008, 2012) and thus would attract 

longer reading time and higher fixation probability. All 

effects were assumed to be smaller or non-significant for 

first fixation durations which usually reflect fast and 

automatic reading behavior less influenced by lexical 

parameters (Hyönä & Hujanen, 1997; Clifton et al., 2007). 

Methods 

Participants 

Fifteen native English participants (five female; Mage= 

31.5 years, SDage = 14.1, age range: 18–68 years) were 

recruited from an announcement released at Freie Uni-
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versität Berlin. All participants had normal or corrected-

to-normal vision. They were naive to the purposes of the 

experiment and were not trained literature scholars of 

poetry. Participants gave their informed, written consent 

before commencing the experiment and received either 

course credit or volunteered freely. This study was con-

ducted in line with the standards of the ethics committee 

of the Department of Education and Psychology at Freie 

Universität Berlin. 

Apparatus 

Participants’ eye movements were recorded with a 

sampling rate of 1000 Hz, using a remote SR Research 

EyeLink 1000 desktop-mount eye tracker (SR Research 

Ltd., Mississauga, Ontario, Canada). Stimulus presenta-

tion was controlled by Eyelink Experiment Builder soft-

ware (version 1.10.1630, https://www.sr-

research.com/experiment-builder). Stimuli were present-

ed on a 19-inch LCD monitor with a refresh rate of 60 Hz 

and a resolution of 1,024 × 768 pixels. A chin-and-head 

rest was used to minimize head movements. The distance 

from the participant’s eyes to the stimulus monitor was 

approximately 50 cm. We only tracked the right eye. 

Each tracking session was initialized by a standard 9-

point calibration and validation procedure to ensure a 

spatial resolution error of less than 0.5° of visual angle. 

Design and Stimuli 

The three Sonnets chosen from the Shakespeare Cor-

pus of 154 sonnets were: Sonnets 27 (‘Weary with 

toil…’), 60 (‘Like as the waves…’) and 66 (‘Tired with 

all these…’). The choice was made by an interdiscipli-

nary team of experts taking into account the considerable 

poetic quality and representativeness of the motifs not 

only within the Shakespeare Sonnet’s corpus but also 

within European poetry. The motifs are: love as tension 

between body and soul (sonnet 27), death as related to 

time and soul (sonnet 60) and social evils during the 

period Shakespeare lived (sonnet 66). All three have the 

same metrical and rhythmical structure as most Shake-

speare sonnets (see Introduction). Inspired by our previ-

ous QNA study on Shakespeare sonnets (Jacobs et al., 

2017), we conducted a fine-grained lexical analysis of all 

words used in the present three sonnets, summarized in 

Table 1. The Pearson Chi-square test indicated no signifi-

cant differences in the distribution of four main word 

classes between the three sonnets (χ2 = 6.31, df = 6, p 

= .39). We therefore collapsed the data across all sonnets 

to increase statistical power for predictive modeling. 

Table 1. Number of Words per Category within Each Sonnet 

and within all Three Sonnets 

Sonnet 

Closed-class Adj./ Adv. N. V. 

Total count 

[ % ] 

count 

[ % ] 

count 

[ % ] 

count 

[ % ] 

27 49 

[44.14] 

20 

[18.02] 

28 

[25.23] 

14 

[12.61] 

111 

60 48 

[44.44] 

12 

[11.11] 

30 

[27.78] 

18 

[16.67] 

108 

66 33 

[36.26] 

20 

[21.98] 

21 

[23.08] 

17 

[18.68] 

91 

Total 130 

[41.94] 

52 

[16.77] 

79 

[25.48] 

49 

[15.81] 

310 

Note. Closed-class refers to the category of function words; 

Adj./ Adv. refers to adjective or adverb; N. refers to noun; V. 

refers to verb; % is the percentage of each word category within 

each sonnet or within all three sonnets. 

Procedure 

The experiment was conducted in a dimly lit and 

sound-attenuated room. The data acquisition for each 

sonnet was split in two parts: a first initial reading of the 

sonnet with eye tracking and a following paper-pencil 

memory test accompanied by several rating questions and 

marking tasks. 

For the initial reading participants were instructed to 

“read each sonnet attentively and naturally” for their own 

understanding. Prior to the onset of the sonnet on a given 

trial, participants were presented with a black dot fixation 

marker (0.6° of visual angle), to the left of (the left-side 

boundary of) the first word in line 1; the distance between 

the cross and first word was 4.6°. The sonnets were pre-

sented to the participants automatically, when they fixat-

ed on a fixation marker presented left to the first line. 

Participants read the sonnets following their own reading 

speed. They could go back and forth as often as they 

wanted within a maximum time window of two minutes. 

Thirteen participants stopped reading before this deadline. 

To achieve a certain level of ecological validity, all son-

nets were presented left-aligned in the center of the moni-

tor (distance: 8.0° from the left margin of the screen) by 

using a variable-width font (Arial) with a letter size of 

22-point size (approximately 4.5 × 6.5 mm, 0.5 × 0.7 

degrees of visual). In order to facilitate accurate eye 

tracking 1.5-line spacing was used. 
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For the second part of data acquisition, participants 

went to another desk to work on the paper-pencil tasks 

self-developed in close cooperation with literature schol-

ars. Our questionnaire had altogether 18 close- and open-

ended questions concerning memory, topic identification, 

attention, understanding and emotional reactions. It also 

included three marking tasks where participants had to 

indicate unknown words, key words and the most beauti-

ful line of the poem (the rating results will be reported 

elsewhere by the ‘humanities’ section of our interdisci-

plinary team; Papp-Zipernovszky, Mangen, Lüdtke & 

Jacobs, in preparation). After answering the questionnaire 

for the first sonnet, participants continued with reading 

the second sonnet in front of the eye tracker and so on. 

The order of the three sonnets was counterbalanced 

across participants. In order to make the reading of the 

first sonnet comparable to the reading of the latter two, 

participants became acquainted with the questionnaire 

before the initial reading of the first sonnet. 

At the beginning and end of the experiment, we used 

an English translation of the German multidimensional 

mood questionnaire (MDBF; Steyer et al., 1997) to eval-

uate the participants’ mood state. This questionnaire 

assesses three bipolar dimensions of subjective feeling 

(depressed vs. elevated, calmness vs. restlessness, sleepi-

ness vs. wakefulness) on a 7-point rating scale. The re-

sults showed that our participants were in a neutral mood 

of calmness and slight sleepiness. Simple t-tests compar-

ing the mood ratings at the beginning and the end of the 

experiments indicated no significant mood changes (all t 

(14)s < 1). Thus, reading sonnets did not induce longer-

lasting changes in the global dimensions assessed by the 

MDBF. 

Altogether, the experiment took about 40 minutes (see 

Figure 1 for an illustration of the procedure). 

 

Figure 1. The Procedure of the Experiment. An English 

translation of the German multidimensional mood questionnaire 

(MDBF; Steyer et al., 1997) was presented to the participants 

before and after the main tasks to evaluate whether sonnets 

reading induced longer-lasting changes in participants’ mood 

state. The data acquisition for each sonnet was split in two 

parts: first initial reading of the sonnet with eye tracking and the 

following paper-pencil tasks. After answering the questionnaire 

for the first sonnet, participants continued with reading the 

second sonnet in front of the eye tracker and so on. The order of 

the three sonnets was counterbalanced across participants. In 

order to make the reading of the first sonnet comparable to the 

reading of the latter two, participants became acquainted with a 

questionnaire example before the initial reading of the first 

sonnet.  

Data Analysis 

Psycholinguistic features. All seven psycholinguistic 

features were computed for all unique words (word-type, 

205 words, data for words appearing several times in the 

texts were the same) in the three sonnets based on the 

Gutenberg Literary English Corpus as reference (GLEC; 

Jacobs, 2018a): word length (wl) is the number of letters 

per word; word frequency (logf) is the log transformed 

number of occurrences of word; orthographic neighbor-

hood density (on) is the number of words of the same 

length as the target word differing by one letter; higher 

frequent neighbors (hfn) is the number of orthographic 

neighbors with higher word frequency than the target 

word; orthographic dissimilarity density (odc) is the 

target word’s mean Levenshtein distance from all other 

words in the corpus, a metric that generalizes on to words 

of different lengths; consonant vowel quotient (cvq) is the 

quotient of consonants and vowels in one word; sonority 

score (sonscore) is the sum of phonemes’ sonority hierar-

chy with a division by the square root of wl (the sonority 
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hierarchy of English phonemes yields 10 ranks: [a] > [e 

o] > [i u j w] > [ɾ] > [l] > [m n ŋ] > [z v] > [f θ s] > [b d 

ɡ] > [p t k]; Clements, 1990; Jacobs & Kinder, 2018), e.g., 

in our three sonnets, ART got the sonscore of 10×1 [a] + 

7×1 [r] + 1×1 [t] = 18/ SQRT (3) = 10.39. 

The correlations between our seven features are given 

in Table 2. There were several significant correlations 

(e.g., wl & on, r = .81, p < .0001) indicating the useful-

ness of machine learning tools in literary text reading 

studies. 

Table 2. Correlations between Seven QNA Features 

Variables 1 2 3 4 5 6 7 

1. wl −           

2. logf -.75 −           

3. on -.81  .68 −         

4. hfn -.31  .00  .36 −       

5. odc .74 -.48  -.39  -.18 −     

6. cvq .19 -.10  -.24  -.05 .10 −   

7. sonscore .72  -.55  -.57 -.28 .62 .00 − 

Eye tracking parameters. Raw data were pre-

processed using the EyeLink Data Viewer 

(https://www.sr-research.com/data-viewer/)1. Rectangular 

areas of interest (AOI) were defined automatically for 

each word; their centers were coincident with the center 

of each word. For the upcoming analysis we first calcu-

lated for each word, participant and sonnet the first fixa-

tion duration (duration of first fixation on the target word) 

as a measure of word identification, gaze duration (the 

sum of all fixations on the target word during first pass), 

re-reading time (sum of fixations on the target word after 

first pass), and the total reading time (sum of all fixations 

on the target word) as a measure of general comprehen-

sion difficulty (Boston et al., 2008). In a next step we 

aggregated the data over all participants to obtain the 

mean values for each word within each sonnet. For this 

aggregation skipped words were treated as missing values 

(skipping rate: M = .13, SD = .04). The amount of skip-

ping was taken into account by calculating the fixation 

probability for each word. Words fixated by all partici-

pants, like ‘captain’ (sonnet 66), ‘cruel’ (sonnet 60) or 

                                                 

1 Firstly, if fixations of a line drifted from the whole line, we 

corrected them into the right position. Secondly, fixation dura-

tions less than 80 ms were merged with nearby fixations (if the 

distance between them was less than one degree) or removed 

from further analysis. 

‘quiet’ (sonnet 27) had a probability of 100%. Words 

fixated by only one or two participants like ‘to’ (sonnet 

27), ‘in’ (sonnet 60), or ‘I’ (sonnet 27) had fixation prob-

abilities below 20%. In total, over 40% of the words had 

a fixation probability of 100% leading to a highly asym-

metric distribution. Due to the fact that our psycholin-

guistic features do not differ for the same word occurring 

at different positions within a poem all eye tracking 

measures were aggregated again across sonnets. For all 

words appearing twice or more often within all three 

sonnets data were collapsed into a general mean. 

Before running the three different models we calcu-

lated the correlations between the five aggregated eye 

tracking parameters. Because gaze duration had a high 

correlation with first fixation duration (r = .56, p < .0001) 

and total reading time (r = .73, p < .0001), and regression 

time had a high correlation with total reading time (r 

= .97, p < .0001), we only chose first fixation duration, 

total reading time and fixation probability as response 

parameters in the predictive modeling analyses (see Table 

3). 

Table 3. Correlations between Five Common Eye-movement 

Parameters used in Reading Research 

Variables 1 2 3 4 5 

1. First fixation duration −     

2. Gaze duration .56 −    

3. Total reading time .30 .73 −   

4. Fixation probability .13 .31 .48 −  

5. Regression time .16 .53 .97 .47 − 

Predictive modeling. JMP 14 Pro 

(https://www.jmp.com/en_us/software/predictive-

analytics-software.html) was used to run all statistical 

analyses2. The values of all variables (seven predictors 

and three eye movement parameters) were standardized 

                                                 
2 Based on the results of pilot and related work (e.g., Jacobs & 

Lüdtke, 2017), for the neural nets model we used the following 

parameter set: one hidden layer with 3 nodes, hyperbolic tan 

(TanH) activation function; number of boosting models = 10, 

learning rate = 0.1; number of tours = 10. For the bootstrap 

forests model, we used the default set: number of trees in the 

forest = 100, number of terms sampled per split = 1, mini-

mum/maximum splits per tree = 10/ 2000, minimum size split = 

5, except that we defined the max number of terms = 3. For 

standard least squares regression analysis, we only specified the 

seven fixed effects (wl, logf, on, hfn, odc, cvq, and sonscore) 

and predicted each eye tracking parameter using the same seven 

predictors (emphasis option: effect leverage). 
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before modeling. To counter possible overfitting, for all 

three models we used a cross-validation procedure using 

90% of the data as training set and the remaining 10% as 

validation set3. Given the intrinsic probabilistic nature of 

two of the models and the limited sample size (N = 205 

words, i.e., about 20 in the validation sets), predictive 

modeling results varied across repeated runs, depending 

on which words were selected as training or validation 

subset. Therefore, the procedure was repeated 1000 times 

and the model fit scores were averaged (e.g., Were et al., 

2015). 

When the model fits of non-linear interactive tools 

(i.e., neural nets, bootstrap forests) were acceptable 

(R2 > .30; low SD), feature importances (FIs) were calcu-

lated. FI is a term used in machine learning (https://scikit-

learn.org/stable/modules/feature_selection.html). They 

were computed as the total effect of each predictor as-

sessed by the dependent resampled inputs option of the 

JMP14 Pro software. The total effect is an index quanti-

fied by sensitivity analysis reflecting the relative contri-

bution of a feature both alone and in combination with 

other features (for details, see also Saltelli, 2002). This 

measure is interpreted as an ordinal value on a scale of 0 

to 1 with FI values > .1 considered ‘important’ (Strobl et 

al., 2009). To make our results better comparable with 

previous work, we also tested the effects of ‘important 

predictors’ (FIs > .10) in simple linear regressions using 

again the cross-validation procedure (90%/ 10% split) for 

1000 times, although the intercorrelations between the 

predictors were not eliminated. If general linear model, 

i.e., standard least squares regression, got acceptable 

model fit as described above, instead of reporting FIs and 

simple regression results, we would report the mean of 

1000 iterations’ parameter estimates. 

We repeated the described analytical procedure for all 

three eye tracking parameters separately. 

Results 

Figure 2 shows the overall mean R2s (averaged across 

1000 iterations) for the three eye tracking parameters for 

both the training and validation sets using all three mod-

eling approaches. Figure 3 shows the seven FIs for the 

                                                 
3 Using a 70/30% training/test cross-validation decreased mod-

el fits, probably due to the limited sample size. 

optimal non-linear interactive approach. Below we illus-

trate our results for the three eye tracking parameters 

respectively. At the end of the results section we also 

reported the effects of ‘important predictors’ (FI > .10) in 

simple linear regressions. 

 

Figure 2. Model Fits of Different Measure Groups via Dif-

ferent Modeling Methods. This figure shows the mean R2s 

from 1000 iterations for three eye tracking parameters for both 

the training and validation sets using all three modeling ap-

proaches. Each error bar is constructed using 1 standard devia-

tion from the mean. 

 

Figure 3. Feature Importances for Total Reading Time and 

Fixation Probability. Figure 3 shows the feature importances 

(FIs) for the neural net model. The FIs were calculated by using 

the dependent resampled inputs option and mean total effects of 

1000 iterations. The total effect is an index quantified by sensi-

tivity analysis, which reflects the relative contribution of that 

feature both alone and in combination with other features (for 

details, see Saltelli, 2002). All seven psycholinguistic features 

were computed for all unique words (word-type, 205 words, 

data for words appearing several times in the texts were the 

same) in the three sonnets based on the Gutenberg Literary 

English Corpus as reference (GLEC; Jacobs, 2018a): wl was the 

number of letters per word; logf was log transformed word, on 

was the number of words of the same length as the target differ-

ing by one letter, hfn was the number of orthographic neighbors 

with higher word frequency than the target word; odc was the 

target word’s mean Levenshtein distance from all other words 

in the corpus; cvq was the quotient of consonant and vowels in 

one word; sonscore was a simplified index based on the sonori-

ty hierarchy of English phonemes which yields 10 ranks (Clem-

ents, 1990; Jacobs & Kinder, 2018). Each error bar is construct-
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ed using 1 standard deviation from the mean. (Note that, be-

cause of the bad model fits (see Figure 2), the FIs in explaining 

first fixation duration were excluded from this figure).  

Mean First Fixation Duration 

Figure 2 shows that while in the training set (train) 

the bootstrap forests model’s fit was satisfactory (mean 

R2
train = .38, SD = .10), it did not generalize to the valida-

tion set (val) at all (mean R2
val = -.10, SD = .19). The 

neural nets model and standard least squares regression 

also showed poor fits for both training (neural nets: mean 

R2
train = .11, SD = .07; standard least squares: mean R2

train 

= .05, SD = .01) and validation set (neural nets: mean 

R2
val = .15, SD = .16; mean R2

val = -.10, SD = .17). Thus, 

none of the three models seemed appropriate for predict-

ing first fixation durations during poetry reading (at least 

not in the present text-reader context). Given the poor 

model fits, FIs were not calculated. 

Mean Total Reading Time 

As illustrated in Figure 2, all three model fits in the 

training set were good (neural nets: mean R2
train = .42, SD 

= .07; bootstrap forests: mean R2
train = .63, SD = .06; 

standard least squares: mean R2
train = .43, SD = .02). 

However, only the neural net model performed well for 

both the training and validation sets (mean R2
val = .54, SD 

= .14), while bootstrap forests’ and standard least squares 

regression’s fits in the validation set were smaller and 

had higher standard deviations (bootstrap forests: mean 

R2
val = .35, SD = .25; standard least squares: mean R2

val 

= .30, SD = .24). 

The FI analysis of the optimal neural nets model, 

shown in Figure 3, suggests that two of the seven features 

were of minor importance (FIs for hfn and cvq were < 

.10), the rest being important: wl (.23), logf (.22), and on 

(.20) turned out to be vital predictors, followed by two 

other less important ones: sonscore (.13) and odc (.12). 

Fixation Probability 

Similar to total reading time, for fixation probability 

Figure 2 also shows that the fits for the training set of all 

three models were good (neural nets: mean R2
train = .58, 

SD = .13; bootstrap forests: mean R2
train = .70, SD = .05; 

standard least squares: mean R2
train = .48, SD = .02). 

Again, only the neural nets performed well for both the 

training and validation sets (mean R2
val = .68, SD = .18), 

while the model fits in the validation sets of bootstrap 

forests and standard least squares regression were insuffi-

cient (bootstrap forests: mean R2
val = .43, SD = .39; stand-

ard least squares: mean R2
val = .23, SD = .49). 

For the FIs of neural net model shown in Figure 3, 

only four predictors were of importance: wl (.30) > on 

(.23) > logf (.18) > sonscore (.14) (FIs for odc, hfn and 

cvq were < .10). 

Simple linear regressions 

Simple linear regression results indicate that: Words 

with longer wl (total reading time: mean R2
train = .37, SD 

= .02; mean R2
val = .29, SD = .27; fixation probability: 

mean R2
train = .33, SD = .01; mean R2

val = .14, SD = .75), 

lower logf (total reading time: mean R2
train = .36, SD = .02; 

mean R2
val = .25, SD = .26; fixation probability: mean 

R2
train = .27, SD = .02; mean R2

val = .06, SD = .66) and 

smaller on (total reading time: mean R2
train = .26, SD = 

.01; mean R2
val = .18, SD = .23; fixation probability: mean 

R2
train = .33, SD = .02; mean R2

val = .09, SD = .73) had 

longer total reading time and a higher fixation probability. 

Words with higher odc (total reading time: mean R2
train = 

.17, SD = .02; mean R2
val = .07 SD = .26) attracted longer 

total reading time. The linear relationship between 

sonscore and the two eye movement parameters was 

positive: total reading time: mean R2
train = .19, SD = .01; 

mean R2
val = .11, SD = .20; fixation probability: mean 

R2
train = .15, SD = .001; mean R2

val = .02, SD = .41. 

Discussion 

Following up on earlier proposals (Jacobs et al., 

2017), this study aimed to identify psycholinguistic sur-

face features that shape eye movement behavior while 

reading Shakespeare sonnets by using a combination of 

QNA and predictive modeling techniques. Since under-

standing what happens while readers read poetry is a very 

complex task, a major challenge of Neurocognitive Poet-

ics is to develop appropriate tools facilitating this task 

(Jacobs, 2015b), in particular new combined computa-

tional QNA and machine learning tools (e.g., Jacobs, 

2017; Jacobs & Kinder, 2017, 2018). A wealth of text 

features can be quantified via QNA and their likely non-

linear interactive effects can best be analyzed with state-

of-the-art predictive modeling techniques which can 

produce results largely differing from standard general 

linear model analyses (e.g., van Halteren et al., 2005; 

Yarkoni & Westfall, 2017). Such techniques can deal 

with complex interactions difficult to model in a mixed-
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effects logistic framework (Tagliamonte & Baayen, 

2012) and detect hidden structure in complex data sets, 

e.g., by recursively scanning and (re-)combining varia-

bles (LeCun et al., 2015). 

Our results provide evidence for current theoretical 

discussions which highlight the good reputation regarding 

the predictive performance of non-linear interactive mod-

els (Yarkoni & Westfall, 2017; Cichy & Kaiser, 2019): 

both non-linear interactive models outperformed the 

general linear model with higher model fits (mean R2) in 

the training sets. Regarding the validation sets, again the 

general linear model performed poorly. Among the two 

non-linear interactive models, although bootstrap forests 

produced higher mean R2 in the training sets, they could 

not generalize well to the validation set (high SD). The 

poor performance of the general linear model suggests 

that there are relatively large low-order (e.g., two-way) 

interactions or other nonlinearities that the non-linear 

interactive models implicitly captured but that regression 

did not (cf. Breiman, 2001a; Yarkoni & Wetsfall, 2017). 

The good cross-validated performance of our neural nets 

together with the FI analysis offers a considerable heuris-

tic potential for generating hypotheses that can be tested 

in subsequent experimental designs. Thus, our results 

suggest that five out of seven surface features (word 

length, word frequency, orthographic neighborhood 

density, sonority score, and orthographic dissimilarity 

index) are important predictors of mean total reading 

time, while four (all previous ones minus orthographic 

dissimilarity index) are important for fixation probability, 

at least in the context of classical poetry. 

In line with previous studies, the results from simple 

linear regressions indicate that longer words with lower 

word frequency and smaller orthographic neighborhood 

density attract longer total reading times and more likely 

fixations (e.g., Just & Carpenter, 1980; Inhoff & Rayner, 

1986; Raney & Rayner, 1995; Pynte et al., 2008; An-

drews, 1997).Words with higher orthographic dissimilar-

ity also attract longer total reading time. Moreover, a 

higher sonority of a word increased both its total reading 

time and fixation probability, which is a new finding in 

poetry reading studies. 

Our findings confirm those of previous studies in that 

longer and low frequency words tend to be fixated more 

often and longer (e.g., Just & Carpenter, 1980; Inhoff & 

Rayner, 1986; Raney & Rayner, 1995; Pynte et al., 2008), 

but also suggest other important predictors, at least for 

the reading of poetry: words high in orthographic neigh-

borhood density attract less fixations and shorter total 

reading time supporting the facilitative effect hypothesis 

of Andrews (1989, 1992). Additionally, words which 

were more orthographically dissimilar (i.e., more salient) 

attracted longer total reading time. The results concerning 

the feature higher frequent neighbors are inconclusive 

across the three models which may be due to the fact that 

in our texts target words had relatively small higher fre-

quent neighbors values (M = .62, SD = 1.24). The effect 

of this feature requires further investigation using differ-

ent texts. 

Our results also support the hypothesis that through a 

process of more or less unconscious phonological recod-

ing (Braun et al., 2009; Ziegler & Jacobs, 1995), text 

sonority may play a role in reading poetic texts: indeed, a 

higher sonority of a word increased both its total reading 

time and fixation probability supporting our hypothesis. 

Although replications—e.g. in studies with experimental 

designs—are required before any conclusions can be 

drawn, we propose that readers tend to have a more in-

tensive phonological recoding during poetry reading 

(e.g., Kraxenberger, 2017). 

In sum, we take our results as first encouraging evi-

dence that QNA in combination with predictive modeling 

can be usefully applied to the study of eye tracking be-

havior in reading complex literary texts. We are also 

confident that in future studies with bigger samples (i.e., 

more and longer texts, more readers) and extended fea-

ture sets (including interlexical and supralexical ones; 

Jacobs, 2015b) better generalization performance will be 

obtained. Here we focused on a few relatively simple 

QNA-based lexical surface features, but in future studies 

we will also use computable semantic and syntactic fea-

tures at the sentence or paragraph levels, as well as pre-

dictors related to aesthetic aspects (cf. Jacobs, 2018b). 

Limitations and Outlook 

A first obvious limitation of the present analyses is 

the focus on (sub)lexical surface features. There is little 

doubt that also other sublexical, lexico-semantic, as well 

as complex interlexical and supralexical features (e.g., 

syntactic complexity) affect eye tracking parameters 

during literary reading and, in fact, the multilevel hypoth-

esis of the NCPM—empirically supported by behavioral, 
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peripheral-physiological and neuronal data predicts just 

that (e.g., Hsu et al., 2015; Jacobs et al., 2016b). Howev-

er, for this first study with a relatively small sample size, 

we felt that using these seven features—several of which 

are novel to the field of eye tracking in reading—already 

made things complicated enough. We think that the pre-

sent five ‘important’ features will also play a role in fu-

ture extended predictive modeling studies including other 

features, but this is of course an open empirical question. 

We are currently working on extending the present re-

search to other lexical and inter/supra-lexical features 

including qualitative ones like metaphoricity (e.g., Abra-

mo et al., in preparation), but including more features 

also requires extending sample sizes (i.e., more/longer 

texts and more participants), a costly enterprise. 

Another issue concerns the fact that word repetition or 

position was not included in the present analyses (i.e., 

data for words appearing several times in the texts were 

averaged). In contrast to the immediacy assumption of 

Just and Carpenter (1980), parafoveal preview effects as 

predicted by current eye movement control models indi-

cate that both spatial and temporal eye tracking parame-

ters are affected by other factors than the features of the 

fixated word (for review see Radach & Kennedy, 2013; 

Reichle et al., 2003). Moreover, since Just and Carpen-

ter’s (1980) study, it is known that words at line begin-

nings or ends have a special status. This should also be 

true for rhyming words at line ends in sonnets or similar 

poem forms. While we think that our averaging proce-

dure might have added some noise to our data without 

invalidating them, future studies should definitely have a 

closer look at word position and repetition effects in 

poetry reading. 

Another limitation is the relatively small sample size 

of our study. In all, only 15 participants read only three 

Shakespeare sonnets with only 205 words. Even though 

we used predictive modeling with 1000 iterations, our 

findings require replication and extension. However, our 

goal in this study was to reach out to bridge the gap be-

tween text based qualitative analyses (dominant in the 

humanities) and empirical research on literature reading. 

In the future, we need to check the validity of our find-

ings with larger samples and the generalizability to other 

literary works. 

In sum, with all caution due to the limitations of this 

first exploratory study, the present results offer the per-

spective that some psycholinguistic features so far unused 

in (or unknown to) the ‘eye tracking in reading communi-

ty’, in particular orthographic neighborhood density and 

sonority score could be important predictors to be looked 

at more closely in future research. Whether they are spe-

cific to the current selection of three sonnets or of more 

general interest is a valid open research issue not only for 

neurocognitive poetics but also for research on eye 

movements in reading in general. 
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