
Neighborhood Data Structures,
Manifold Properties, and

Processing of Point Set Surfaces

Martin Skrodzki, M.Sc.

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenscha�en (Dr. rer. nat.),

eingereicht am

Fachbereich Mathematik und Informatik der Freien Universität Berlin

Berlin, 2019

Erstgutachter und Betreuer: Prof. Dr. Konrad Polthier (Freie Universität Berlin)

Zweitgutachter: Prof. David Levin (Tel Aviv University)

Datum der Disputation: 3. Juli 2019

i

Table of Contents

Introduction 1
Structure of the �esis and Summary of Main Contributions 2

Acknowledgment . 6

I Notions of Neighborhood and corresponding Data Structures 7
1 Neighborhoods in Point Sets . 7

1.1 Neighborhood Concepts . 7

1.2 Neighborhood Sizes . 10

1.3 Method . 13

1.4 Experimental Results . 14

1.5 Applications . 17

1.6 Conclusion . 20

2 k-d Trees . 21

2.1 �e Data Structure of k-d Trees . 21

2.2 Neighborhood �eries in Logarithmic Time 23

2.3 Conclusion and Addendum: k-d Trees in Arts 28

3 �e Neighborhood Grid . 30

3.1 Introduction of the Data Structure and a Polynomial Time-Optimal Build-

ing Algorithm . 31

3.2 Combinatorial Results on Stable States of the Neighborhood Grid 34

3.3 Uniqueness of Stable States . 36

3.4 �e worst Stable State . 41

3.5 General Case, Parallelization, and Di�erent Sorting Algorithms 43

3.6 �ality of Neighborhood Approximation 47

3.7 Conclusion and Future Work . 49

II Manifold Structure for Point Set Surfaces 51
4 Manifold �eory and Formulations for Point Set Manifolds 51

4.1 De�nition of a Smooth Manifold . 52

4.2 Point Sets as 0-Manifolds . 52

4.3 Recovered d′-Manifolds . 54

4.4 Manifold Reconstruction using the Moving Least Squares Approach . . . 55

4.5 Conclusion: Local versus Global Charts 57

5 Variational Shape Approximation . 60

5.1 Related Work . 60

5.2 �e VSA Procedure . 62

5.3 Simpli�ed Shape Reconstruction . 67

5.4 Experimental Results . 70

5.5 Conclusion . 72

iii

Table of Contents

III Robust and E�icient Processing of Point Sets 75
6 Directional Density Measure to Intrinsically Estimate and Counteract Non-uniformity

in Point Sets . 75

6.1 Related Work . 76

6.2 �ree Approaches to Directional Density Measures 77

6.3 Experimental Results . 83

6.4 Conclusion . 93

7 Feature Detection from Moving Least Squares . 95

7.1 Related Work . 95

7.2 �e Feature Detection Method . 96

7.3 Experimental Results . 99

7.4 Conclusion and Future Work . 101

8 Constraint-Based Point Set Denoising using the Normal Voting Tensor and Re-

stricted �adratic Error Metrics . 103

8.1 Related Work . 104

8.2 �e Proposed Method . 105

8.3 Experimental Results . 113

8.4 �antitative Analysis . 116

8.5 Conclusion . 118

Conclusion and Further Research 125

Appendices I

A Notation III

B Statistical Experiment Results for the Shape-Aware Neighborhoods V

C Beta Distribution XI

D Densities from Covariance Matrix XIII

Bibliography XV

iv

Introduction
Starting from its �rst presentation at the E3 fair in 2009, the Microso� Kinect sensor introduced

geometry processing to living rooms worldwide. In real-time, the scanned bodies of players are

processed, joints are recognized and animated models are rendered according to the motions

of the users. In Apple’s iPhones, infrared lights project a pa�ern onto the face of the user. A

corresponding camera reads the re�ection and thereby creates a 3-dimensional �ngerprint of

the user’s face which is in turn used to unlock the device. �e whole procedure is performed

within milliseconds. While the Kinect sensor and the iPhone acquire geometrical data to be used,

3D printers create solid manifestations of such data. �e corresponding techniques are available

since the 1980s and have even transcended earth, as 3D printing is performed on the international

space station, see [Joh+14].

For both of these and more applications, geometric models have to be represented on a multi-

tude of devices. �us, real-world models have to be discretized for digital storage. Here, one can

distinguish between the following three scenarios.

1. �e discrete geometry is represented as a simplicial mesh, the most prominent instances

being triangulated surfaces or tetrahedralized volumes embedded in R3
. �e motivation

for this representation comes both from a classical mathematical perspective (for instance

topological results can o�en be computed using the purely combinatorial nature of a trian-

gulation) as well as from a computer graphics perspective since it is these primitives that

can be e�ciently rendered by the established graphics pipeline. Consequently, there is a

rich theory of discretized concepts from di�erential geometry such as discretized Laplace

operators, curvature �ows, or parametrization methods, to name just a few.

2. �e discrete geometry is represented by a higher-order spline model. �is representation is

mostly motivated from modern modeling applications used in industrial design and com-

puter graphics. However, due to the more complicated nature of each cell in this represen-

tation, the discretization of di�erential geometric concepts on these geometries turns out

to be much more involved. A be�er understanding e.g. of appropriate test functions and

�nite-element formulations on such spline surfaces is a vivid research topic in the isogeo-

metric analysis community.

3. �e discrete geometry is a raw point set, without any connectivity information. �is rep-

resentation is motivated by the nowadays wide-spread availability of 3D scanning devices,

both in the professional market as well as in the entertainment industry. �ese devices

deliver point sets as a most natural representation of the scanned objects. However, the

theory for possible discretizations of di�erential geometric concepts is still underdeveloped

in comparison with simplicial or spline representations.

It is these mesh-less geometries we would like to focus our research on. �ey have a long history

in geometry processing and computer graphics as they naturally arise in 3D acquisition processes.

A guiding principle of these algorithms is the direct processing of raw scanning data without prior

meshing—a principle that is well-established in classical numerical computations. However, the

1

Introduction

usage of these computations mostly restricts to full dimensional domains embedded in R2
or

R3
, where point sets usually represent surfaces and therefore lower-dimensional domains. A

thorough investigation of a di�erential geometric representation of point set surfaces and their

properties is not available.

Points have been introduced in 1985 as display primitives for computer graphics by the authors

of [LW85]. �ere has been substantial research progress in the years 2004–2007 as presented at

the Symposia on Point Based Graphics, see [Gro+04; Ale+05; Bot+06; Bot+07]. Despite the diverse

applications of point sets, e.g. in face recognition [BF05], tra�c accident analysis [Buc+07], or

archeology [Lev+00], the �eld still lacks mathematically sound theory, in particular for the newer

developments in this area.

�e use of mesh-less methods has several direct implications: Computation is performed on

the point set and does not require any preprocessing step for meshing. �erefore, data can be

processed immediately a�er acquisition, cf. [Lin01]. Since no mesh is computed, also, one does

not have to store the edges and faces, resulting in a more memory-e�cient setup. However,

there are also disadvantages. Point sets do neither provide explicit connectivity information nor

do they include faces for the use as area weighting terms or for easy rendering. To overcome

some of these disadvantages while retaining the advantages is the aim of this thesis.

Structure of the Thesis and Summary of Main Contributions
�e thesis covers three topics all centered in the context of point set processing. In the following,

we will shortly present each topic with its motivation, explain the performed research, and high-

light the contributions. In case the presented results have been published prior to the publication

of this thesis, the corresponding reference is given.

Notions of Neighborhood and corresponding Data Structures
�e �rst topic concerns notions of neighborhood and corresponding data structures. Many re-

searchers have recognized the importance of high-quality neighborhood relations. For example,

the authors of [LP05] report that the results of their anisotropic smoothing algorithm heavily

depend on the neighborhood structure imposed on the point set. Despite their advantages in

storage space and easy acquisition, the missing neighborhood relation is a signi�cant downside

to point set representations. �e purpose of this �rst part is to discuss neighborhood concepts as

well as a data structure for fast single-core and fast parallelized computation respectively.

Neighborhoods in Point Sets Usual approaches to point set neighborhoods include combina-

torial k nearest neighbors or geometric neighborhoods. However, both do not include curvature

or normal information of the point set. Following an idea presented in [YRP17], in Section 1, we

formulate the concept of neighborhoods that do not aim for a heuristically chosen size or try to

obtain an optimal size by a specialized error measure. Our neighborhoods rather adapt to the

shape of the geometry. �e presented approach is evaluated experimentally with error measures

derived in the work of [WJM14]. In experiments on both CAD and real-world models, we estab-

lish that incorporating shape-aware weights into the computation yields smaller error measures

than the uniform weights from [WJM14] or the sharp cut-o� neighborhoods used in [Yad+18a].

Furthermore, we improve the denoising results of [Yad+18a] and incorporate our neighborhood

concept in the Moving Least Squares (MLS) procedure of [SL16]. Here, we see that it delivers

results comparable to those of RIMLS, see [ÖGG09].

2

Structure of the �esis and Summary of Main Contributions

k-d Trees In any practical application, the fast determination of neighborhoods is of high im-

portance. �e most prominent choice for a data structure is—despite its age—a k-d tree. It has been

presented in 1977, with the groundbreaking result of a very low runtime for a neighborhood �nd-

ing algorithm. Namely, for n points, the authors of [FBF77] prove that a nearest neighbor query

can be answered in an expected time of ΘO(log(n)). Even though this key result is used far and

wide, no modern formulation of the original proof is available. �erefore, Section 2 presents a

modern and elaborate version of the original proof.

The NeighborhoodGrid Despite the praise given to k-d trees in the previous paragraph, they

have a signi�cant downside. Namely, they are not designed for parallelization. As workstations

nowadays can make use of graphics cards to speed up computations, it is necessary to also inves-

tigate the �eld of neighborhood computing data structures to bene�t from parallelization. A cor-

responding structure—the neighborhood grid—was presented by the authors of [Jos+09; Jos+15]

and further investigated by [MW15]. Nonetheless, many open questions concerning both com-

binatorial properties of the data structure and the quality of its results remain. In Section 3, the

thesis answers several of them, namely:

I Give a proof of asymptotic time-optimality of a building algorithm.

I Comparison of the single-core building algorithm with the parallel building algorithm of

Malheiros and Walter, cf. [MW15].

I Combinatorial results on the number of states of the data structure.

I Analysis of the neighborhood quality obtained from the data structure.

�e results of this research are available on ArXiv, see [SRP17], and have been presented at the

EuroCG18 conference, see [Skr+18].

Manifold Structure for Point Set Surfaces
�e second main topic of this thesis deals with manifold structures for point set surfaces. From

a signi�cant amount of real-world objects, while 3D-scanning them, only the surface is acquired

for further processing in CAD or other applications. When the surface of the underlying real-

world geometry has the structure of a manifold, it can be expected that this structure is re�ected

by any point set acquired from the geometry. Even when the faces of the geometry are smooth

manifold patches, there is no theory available in the se�ing of point sets to re�ect their manifold

properties.

Manifold Theory and Formulations for Point Set Manifolds By de�nition, each point of

a point set is itself a 0-dimensional object. Naturally, they could be seen as a 0-manifold. In

Section 4, we establish that this is not a meaningful choice in the given application process. �en,

we proceed to construct a scheme to handle point sets acquired from surfaces as 2-dimensional

representations of a 3D object’s surface by considering a transition manifold. �is transition

manifold is provided e.g. by the MLS procedure of [SL16].

Variational Shape Approximation Having established a manifold scheme in Section 4, the

crucial question is how to de�ne charts on a point set. �e aforementioned MLS procedure results

in highly localized charts. �at is, each point of the point set is assigned its own chart, which

results in a large number of transition maps to be computed. A completely di�erent approach

is taken by [Li+11] who aim at a global parametrization of a given point set by generalizing

3

Introduction

a technique presented by [KNP07] and [BZK09] for meshes. �is in turn gives one very large

representation. We aim at a solution between these two extremes. To achieve this, in Section 5,

we turn to an algorithm of [CAD04]. Similar to [LB16], we translate it to the se�ing of point sets.

It generates charts which each incorporate regions of similar normal behavior. We further enrich

the algorithm by a split and merge procedure to become independent of a prescribed number

of charts which comes from the underlying algorithm of [Llo82]. Finally, we provide several

numerical examples concerning its performance.

Robust and E�icient Processing of Point Sets

�ird and �nally, algorithms have to work e�ciently and robustly on the point set. While meshed

geometries provide an intuitive and natural weighting by the areas of the faces, point sets can

at most work with distances between the points. �is introduces a new level of di�culty to be

overcome by any point set processing algorithm.

Directional Density Measure to Intrinsically Estimate and Counteract Non-uniformity
in Point Sets When considering point set samples, many algorithms make the explicit or im-

plicit assumption of a uniform sampling. However, many acquisition processes do not produce

such results, but provide rather non-uniform representations. In order to counteract this non-

uniformity, we introduce new weights in Section 6. �ese are based on a discrete directional

density measure for point sets and can be computed intrinsically from the point set without ad-

ditional information. Our evaluation within two discrete di�erential operators showcases the

bene�ts of our technique. �is research has been published in [SJP18].

Feature Detection from Moving Least Squares A frequent problem in the processing of

geometries is the detection of features like corners or edges. For example, in the context of

denoising—see next paragraph—features should be retained while removing noise that was addi-

tionally added during acquisition. In addition to many feature detection algorithms present, we

aim at a procedure which mathematically guarantees features of a certain size to be detected. For

this, in Section 7, we turn to the MLS method, see [SL16]. First, we derive the necessary theory to

prove that the MLS approach will detect features of a certain size. Second, from several di�erent

feature quantities derived from MLS, we identify four which can be used to detect features. �ese

are compared experimentally.

Constraint-Based Point Set Denoising using the Normal Voting Tensor and Restricted
�adratic Error Metrics As mentioned above, additional noise added to the point set dur-

ing the acquisition process is problematic for several steps of the geometry processing pipeline.

�us, reliable denoising algorithms are necessary to remove noise components. �ese still have

to retain the features of the geometry. �e authors of [YRP17] present an algorithm for denoising

of meshes using the element-based normal voting tensor. Following this idea, we derive a normal

voting tensor based on point sets and thus generalize the concept to the mesh-free se�ing. To

assure feature preservation in particular at the corners, we include quadratic error metrics fol-

lowing [GH97]. �e result is a robust iterative smoothing algorithm which has been published

in [Yad+18a].

For an overview on the notation used in this thesis, see Appendix A. Possibly ambiguous no-

tation is also de�ned there.

4

Acknowledgment

Publications prior to the Thesis

Several parts of this thesis have been published as journal articles or in conference proceedings as

indicated in the paragraphs above. �e work on k-d trees is related to results of a Master thesis,

see [Skr14a]. It led to a publication in a series of articles at the Bridges conference, refer to [SRP16;

SP17; SP18]. Works in other �elds, published or handed in prior to this thesis, are: [DVS18; Skr19].

List of Publications prior to the thesis

[DVS18] Milena Damrau, Hernán Villamizar, and Martin Skrodzki. “Eine Datenanalyse der

Persistenz und Leistung von Schulkindern im We�bewerb “Mathe im Advent””. In:

Beiträge zumMathematikunterricht 2018. Münster: WTM Verlag für wissenscha�liche

Texte und Medien, 2018, pp. 421–424.

[SJP18] Martin Skrodzki, Johanna Jansen, and Konrad Polthier. “Directional density mea-

sure to intrinsically estimate and counteract non-uniformity in point clouds”. In:

Computer Aided Geometric Design (2018). issn: 0167-8396.

[Skr+18] Martin Skrodzki et al. “Combinatorial and Asymptotical Results on the Neighbor-

hood Grid Data Structure”. In: EuroCG18 Extended Abstracts. 2018, 30:1–30:6.

[Skr14a] Martin Skrodzki. “Neighborhood Computation of Point Set Surfaces”. MA thesis.

Freie Universität Berlin, 2014.

[Skr19] Martin Skrodzki. “Einfach erstaunlich schwierig: Vom Staunen in der Mathematik”.

In: Staunen. Perspektiven eines Phänomens zwischen Natur und Kultur. Fink, 2019.

[SP17] Martin Skrodzki and Konrad Polthier. “Turing-Like Pa�erns Revisited: A Peek Into

�e �ird Dimension”. In: Proceedings of Bridges 2017: Mathematics, Art, Music, Archi-
tecture, Education, Culture. Ed. by David Swart, Carlo H. Séquin, and Kristóf Fenyvesi.

Phoenix, Arizona: Tessellations Publishing, 2017, pp. 415–418. isbn: 978-1-938664-

22-9.

[SP18] Martin Skrodzki and Konrad Polthier. “Mondrian Revisited: A Peek Into �e �ird

Dimension”. In: Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture,
Education, Culture. Ed. by Eve Torrence et al. Phoenix, Arizona: Tessellations Pub-

lishing, 2018, pp. 99–106. isbn: 978-1-938664-27-4.

[SRP16] Martin Skrodzki, Ulrich Reitebuch, and Konrad Polthier. “Chladni Figures Revisited:

A Peek Into �e �ird Dimension”. In: Proceedings of Bridges 2016: Mathematics, Mu-
sic, Art, Architecture, Education, Culture. Ed. by Eve Torrence et al. Phoenix, Arizona:

Tessellations Publishing, 2016, pp. 481–484. isbn: 978-1-938664-19-9.

[SRP17] Martin Skrodzki, Ulrich Reitebuch, and Konrad Polthier. “Combinatorial and Asymp-

totical Results on the Neighborhood Grid”. In: ArXiv e-prints (Oct. 2017).

[Yad+18a] Sunil Kumar Yadav et al. “Constraint-based point set denoising using normal voting

tensor and restricted quadratic error metrics”. In: Computers & Graphics 74 (2018),

pp. 234–243. issn: 0097-8493.

List of Publications prior to the thesis

Acknowledgment
�is thesis has been supported both �nancially and ideally by several parties. I would like to

thank both the Einstein Center for Mathematics (ECMath) in Berlin and the German National

Academic Foundation for bestowing a scholarship on me which made the writing of this thesis

possible. By the generous support of Freie Universität Berlin and Tel Aviv University, I was able

to a�end a joint workshop with Tel Aviv University in 2016 where I got to know Prof. Levin. �e

Minerva foundation sponsored a short-term research grant by which I was able to travel to Tel

Aviv University in 2017 which sparked a fruitful collaboration on the MLS procedure. �rough-

out the process of writing, I have been supported by several seminars organized by both my

graduate schools, the Berlin Mathematical School (BMS) and the Dahlem Research School (DRS).

I acknowledge the support by the DFG Collaborative Research Center TRR 109, ‘Discretization

in Geometry and Dynamics’, within whose project C05 most of the presented research was con-

ducted. Furthermore, the Society of Industrial and Applied Mathematics (SIAM) sponsored two

travel grants which enabled me to visit two conferences in 2017 and 2019 respectively. Finally, I

wish to thank AIM@SHAPE and Stanford 3D scanning repository
1

for providing several datasets

and the Gemeentemuseum Den Haag for allowing me to print “Tableau I” by Piet Mondrian in

this thesis.

1
Find the repositories at h�p://visionair.ge.imati.cnr.it/ and h�p://graphics.stanford.edu/data/3Dscanrep/ respec-

tively.

6

http://visionair.ge.imati.cnr.it/
http://graphics.stanford.edu/data/3Dscanrep/

I Notions of Neighborhood and
corresponding Data Structures

1 Neighborhoods in Point Sets
Despite their versatility and their advantages—like low storage costs—point sets have a signi�-

cant downside to them when compared with mesh representations: �ey are not equipped with

connectivity information. �is is mostly due to the acquisition process. Consider for example a

manually guided scanning device. �e operator will scan those areas of the real-world objects

multiple times that have very sharp features. �us, occlusion is prevented and the whole geome-

try is captured. Even though each scan can provide connectivity information on the respectively

acquired points, the complete point set P obtained via registration of the individual scans (see

e.g. [Bel+14]) does not provide global connectivity information in general. �us, the notion of

neighborhoods has to be de�ned and computed for each point p ∈ P .

In particular in the context of geometry processing, high quality neighborhood relations on the

processed point sets are of great importance. For example, in the context of anisotropic smooth-

ing of noisy point sets, the authors of [LP05] remark on the relevance of point set neighborhoods.

�ey �nd that the quality of the smoothed point set is drastically ampli�ed when using neigh-

borhoods as close as possible to those of the originally sampled object. However, the authors do

not provide an algorithm to produce these neighborhoods.

�is section presents di�erent notions of neighborhoods: combinatorial k nearest neighbors

(Section 1.1.1), metric neighborhoods (Section 1.1.2), a combination of both (Section 1.1.3), and the

concept of relaxed neighborhoods (Section 1.1.4). A brief discussion on related work concerning

optimal neighborhood sizes (Section 1.2) se�les the ground for the main contributions of this

section:

I De�nition of anisotropic neighborhood selection for shape-aware computations on point

sets (Section 1.3).

I Experimental evaluation of the anisotropic neighborhood selection on both a variety of

models (Section 1.4) and within applications (Section 1.5).

�e results of this section are currently under review for the SPM’2019 conference, see list of

publications prior to the thesis, page 5.

1.1 Neighborhood Concepts
1.1.1 k Nearest Neighbors

�e widest used de�nition of neighborhood in the context of point sets is the k nearest neigh-
borhood. For a point set P = {pi ∈ Rd | i = 1, . . . , n}, a point pi ∈ P , a distance mea-

7

I Notions of Neighborhood and corresponding Data Structures

Figure 1.1: Several points are shown in R2. �e arrows indicate the corresponding k = 2 nearest
neighbor graph resulting from (1.2) which clearly has non-symmetric edges. Note how the blue point
in the center favors neighbors in the dense le� region instead of favoring a neighborhood which is
distributed as uniformly as possible around the blue point. See Section 6 for a thorough discussion
for non-uniformity in point sets.

sure
1 d : Rd × Rd → R, and a number k ∈ [n− 1] it is de�ned to be

Nk(pi) = {pi1 , . . . , pik ∈ P\{pi}
s.t. d(pi, pik) ≤ d(pi, q) ∀q ∈ P\{pi, pi1 , . . . , pik} and

d(pi, pi1) ≤ . . . ≤ d(pi, pik), i1, . . . , ik ∈ [n], i` 6= im ∀`,m ∈ [k]}.
(1.1)

It is a strictly combinatorial notion as any point pi is given exactly k neighbors, no ma�er how

far those are from pi in the given distance measure. From theNk(pi) one can de�ne the k nearest
neighbor graph by considering vertices V = {pi | i ∈ [n]} and a set of directed edges given by

E = {(pi, pj) | pj ∈ Nk(pi)}. (1.2)

Note that the edges of this graph are directed. �at is, the neighborhood relation de�ned in Equa-

tion (1.1) is not symmetric. A simple example is given in Figure 1.1. Furthermore, the k nearest

neighborhood favors densely sampled regions resulting in biased neighborhoods, as depicted in

Figure 1.1.

Finally, it is a priori unclear what is a good and suitable choice for the value k in a given

application. It is well-known that the average valence of a triangle mesh is 6. �is can be derived

from Euler’s formula

v − e+ f = χ (1.3)

with v, e, and f the number of vertices, edges, and faces of the mesh respectively and χ the Euler

characteristic of the geometry. For su�ciently large meshes of su�ciently small genus and no

present boundary, χ is negligible and 2e = 3f , so that e/v = 3 and since every edge is shared

by two vertices, the average vertex has valence 6. �erefore, typically k is small (k < 20), but in

particular for varying densities in the point set, it might be important to vary k throughout the

process and even to determine a speci�c ki for every point pi ∈ P .

1.1.2 Metric Balls

A di�erent approach to de�ning neighborhoods, as opposed to the k nearest neighborhood of

Section 1.1.1, is utilizing metric balls. Given a point set P = {pi ∈ Rd | i = 1, . . . , n}, pi ∈ P ,

1
While the theory holds for any distance measure, i.e. any metric, in the following we will use the Euclidean metric.

8

1 Neighborhoods in Point Sets

and a value ε ∈ R≥0 the ε nearest neighborhood is de�ned to be

Nε(pi) = (P\{pi}) ∩Bε(pi), (1.4)

where Bε(pi) = {p ∈ R3 | d(p, pi) ≤ ε} for some distance measure
2 d. Compared to the

combinatorial de�nition of Equation (1.1), this neighborhood de�nition preserves more metric

information. However, for a given ε ∈ R≥0 and pi ∈ P , the set Nε(pi) might be empty or could

contain the whole set P . As in Section 1.1.1, the neighborhood can be used to de�ne the ε nearest
neighbor graph by V = {pi | i ∈ [n]} and a set of edges given by

E = {(pi, pj) | pi ∈ Nε(pj)}. (1.5)

Note that the edges of this graph are undirected, since the neighborhood relation implied by (1.4)

is symmetric, as long as the same ε is used for all Nε(pi). In [FR01, p. 8], the authors discuss the

advantage of symmetric neighborhoods in the context of surface reconstruction utilizing radial

basis functions. Although the ε nearest neighborhood might still favor densely sampled regions,

by adjusting ε, this issue can be recti�ed easier than for k nearest neighborhoods. Still, it is

unclear what choice of ε is suitable for a given point set P and di�erent applications. As in the

combinatorial case, varying the value of ε over the point set might be bene�cial.

1.1.3 Combination

Having de�ned k as well as ε nearest neighborhoods, a natural next step is to combine the two

de�nitions. Namely, we de�ne a k-ε nearest neighborhood by considering the intersection of both,

i.e. for some point set P = {pi ∈ Rd | i ∈ [n]}, pi ∈ P , k ∈ [n− 1], ε ∈ R≥0 we de�ne

Nk,ε(pi) = Nk(pi) ∩Nε(pi). (1.6)

Note that this does carry disadvantages from both de�nitions. �e relation induced by Equa-

tion (1.6) is not symmetric. Although a point pi now has at most k neighbors, the set Nk,ε could

contain any number of points from 0 to k. Furthermore, the neighbors found are local, i.e. at most

ε away from pi. �is type of neighborhood was successfully used e.g. in [LP05] and also studied

in [Skr14b].

1.1.4 Relaxed Neighborhoods

As pointed out above, the de�nition of neighborhood used might depend on the speci�c appli-

cation. In [Jan17], the data of interest is obtained via a LiDaR scanner on a driving car. �e

grid of points returned from the scanner is very regular with only slight disturbances. In order

to keep the symmetry of the data present despite the small perturbations, Jansen proposes to

introduce a relaxation range εr. Furthermore, as points too close to the original query point pi
introduce numerical errors, these are excluded using the machine accuracy εm. �e relaxed ver-

sions of both the combinatorial neighborhood from Equation (1.1) and the metric neighborhood

from Equation (1.4) are then given by

Ñk(pi) = (Nk(pi)\{pj ∈ P | d(pi, pj) < εm})
∪ {pj ∈ P | abs(d(pj, pi)− max

p`∈Nk(pi)
d(p`, pi)) ≤ εr}, (1.7)

2
See Footnote 1, page 8.

9

I Notions of Neighborhood and corresponding Data Structures

Ñε(pi) = (Nε(pi)\{pj ∈ P | d(pi, pj) < εm})
∪ {pj ∈ P | abs(d(pj, pi)− max

p`∈Nε(pi)
d(p`, pi)) ≤ εr}, (1.8)

where abs(x) denotes the absolute value of x ∈ R. Utilizing these relaxed versions of neigh-

borhoods comes with all advantages and disadvantages of the original de�nitions. However, the

additional advantage is the avoidance of numerical errors caused by too closely clustered points

and the inclusion of points that miss the original neighborhood de�nition by a small margin εr.
�is de�nition of neighborhood was successfully applied in the context of discrete directional

density measures, see Section 6.

1.2 Neighborhood Sizes
All neighborhood de�nitions presented above (1.1), (1.4), (1.6), (1.7), and (1.8) depend completely

on the chosen values for the number k of neighbors or the radius ε of the neighborhood. Choosing

these important values in an optimal manner is therefore an important research question.

1.2.1 Heuristics

�e authors of [Ale+01] use a global radius ε as in Equation (1.4). �ey change it to a�ect the

running time of their algorithm. In [PGK02], the authors �x a combinatorial number k of neigh-

bors to be sought. �en, for each point pi, these k neighbors are found, which �xes a radius εi
to the farthest of them. Finally, the neighbors within radius εi/3 are used. �us, their approach

resembles the neighborhood from Equation (1.4).

�e method used in [Pau+03] is more involved. �e authors recognize that both a too large

or too small radius ε leads to problems and thus aim for a local adaption like [PGK02]. A local

density estimate δi around each point pi ∈ P is computed from the smallest ball centered at pi,
containing Nk(pi), where k is found experimentally to be best chosen from {6, . . . , 20} ⊂ N.

Given the radius εi of this ball, the local density is set to be δi = k/ε2
i . In a second step, a smooth

density function δ is interpolated from the local density estimates δi.
In the context of surface reconstruction, the authors of [FR01] discuss several choices for neigh-

borhoods and corresponding weights. While two of the three presented methods simply use ge-

ometric neighborhoods (1.4), the third method takes a di�erent approach. Namely, the authors

collect all neighbors of pi in a “large” ball ([FR01, page 7]) around pi. �en, they �t a plane to this

preliminary neighborhood and project all neighbors and pi onto this plane. On the projections, a

Delaunay triangulation is built and the induced neighborhood of the triangulation is used in the

following computations.

A completely di�erent approach is taken by [BL12]. �e authors �rst calculate features of a

point set based on di�erently sized neighborhoods. �en, they use a training procedure to �nd the

combination of neighborhood sizes that provides the best separation of di�erent feature classes.

1.2.2 Neighborhood Sizes from Error Functionals

While the approaches presented above are based on heuristics, some works try to deduce an opti-

mal k for the k nearest neighborhoods based on error functions. While investigating a method for

nonparametric density estimation using the k nearest neighbor approach, the authors of [FH73]

optimize the value for k according to a mean-square-error criterion. �ey �nd that the optimal k
depends upon the dimension of the observation space and the underlying distribution of the the

point set.

10

1 Neighborhoods in Point Sets

�e authors of [LCL06] work in the context of the MLS framework (see [Ale+01; Ale+03; Lev98;

Lev04; SL16]) for function approximation. �e authors perform an extensive error analysis to

quantify the approximation error both independent and depending on the given data. Finally,

they obtain an error functional. �is functional is then evaluated for di�erent neighborhood

sizes k. �e neighborhood Nk yielding the smallest error is then chosen to be used in the actual

MLS approximation.

In contrast, the authors of [MNG03] deduce an error bound on the normal estimation obtained

from di�erent neighborhood sizes. Utilizing this error functional, they obtain the best suited

neighborhood size for normal computation.

�e work of [LCL06] heavily depends on the MLS framework in which the error analysis is

deduced, while the work of [MNG03] depends on the framework of normal computation. Both

methods aim at �nding an optimal neighborhood size k or ε. In the following, we will consider

neighborhoods that are not derived by their size, but by their shape, i.e. guided by normal or

curvature information. �e �rst to mention such an idea were Hoppe et al. in their 1992 pa-

per [Hop+92], where they asked for an adaptive neighborhood size k and proposed:

To select and adapt k, the algorithm could incrementally gather points while monitoring
the changing eigenvalues of the covariance matrix.

Following this idea, several authors take into account the covariance matrix at a point pi ∈ P
given as

Ci :=
∑

pj∈Nk(pi)

(pj − p̄i)(pj − p̄i)T , Ci ∈ R3×3
(1.9)

where p̄i = 1
k

∑
pj∈Nk(pi)

pj is the barycenter of the neighbors of pi and vT denotes the transpose

of a vector v ∈ R3
. �e covariance matrixCi is symmetric and positive-semi-de�nite. �us, it has

three non-negative eigenvalues, which in the following we will denote by λi,1 ≥ λi,2 ≥ λi,3 ≥ 0.

Furthermore, we will denote their sum by λΣ
i =

∑3
`=1 λi,`.

In the work of [Pau+03], the authors grow a neighborhood and consider the surface variation
3

Cλ
i =

λi,3
λΣ
i

as a measure how large to consider a neighborhood around each point pi. �e same quantityCi is

used by [BL06]. However, they do not grow a neighborhood, but choose a size k for it according

to a consistent curvature level.

�e authors of [WJM14] take a more general approach in the context of segmentation of 3D

point sets. �ey also use the concept of a combinatorial neighborhood (1.1), going back to results

of [LP01]. �ey proceed to consider three more quantities derived from the eigenvalues of the

covariance matrix. Namely, they work with linearity Lλ, planarity Pλ, and sca�ering Sλ given

by
3

Lλi =
λi,1 − λi,2

λi,1
, P λ

i =
λi,2 − λi,3

λi,1
, Sλi =

λi,3
λi,1

(1.10)

and representing 1D, 2D, and 3D features in the point set [Dem+11]. Finally, following the concept

of entropy by Shannon [Sha48], the authors consider the measure
4

Edim
i = −Lλi ln(Lλi)− P λ

i ln(P λ
i)− Sλi ln(Sλi). (1.11)

3
See Section 1.3 for a discussion of the cases λΣ

i = 0 and λi,1 = 0.

4
See Section 1.3 for a discussion of the cases Lλi = 0, Pλi = 0, Sλi = 0, or λΣ

i = 0.

11

I Notions of Neighborhood and corresponding Data Structures

By segmenting the interval [rmin, rmax] into 16 (not equally large) scales and evaluating the mea-

sure Edim
i for each corresponding metric neighborhood as given in Equation (1.4), the neighbor-

hood with smallest error Edim
i over all scales is chosen. �ereby, the neighborhood is assured to

favor one of the three cases: Classifying the point pi as either a corner, an edge point, or a planar

point of the geometry.

�e authors then proceed to give an even more general solution for the optimal selection of

neighborhood sizes. For this, recall that the eigenvalues correspond to the size of the principal

components spanning a 3D covariance ellipsoid, see [PLL12]. �us, by normalizing the eigenval-

ues and considering their entropy, the quantity
5

Eλ
i = −λi,1

λΣ
i

ln

(
λi,1
λΣ
i

)
− λi,2
λΣ
i

ln

(
λi,2
λΣ
i

)
− λi,3
λΣ
i

ln

(
λi,3
λΣ
i

)
(1.12)

measures the sca�ering of the points with respect to the covariance ellipsoid [WJM14]. Finally, as

in the work of [LCL06], the measures (1.11) and (1.12) are evaluated for each point pi with di�er-

ent respective neighborhood sizes r in the metric neighborhood given by Equation (1.4) and the

neighborhood with the lowest value is chosen. In our evaluation of shape-aware neighborhoods,

we will turn to the measures (1.11) and (1.12) in order to assess our concepts.

1.2.3 Segmentation

In the process of geometry segmentation—independent of the application setup with meshes or

point sets—neighborhoods arise as regions with common properties. �ese segments are built to

re�ect the shape of the model on a coarse level. For both the mesh and the point set se�ing, there

are thorough surveys: the authors of [A�+06] and [NL13] present the relevant developments for

mesh and point set segmentation respectively. Some of the approaches presented use the concept

of region growing, where a�er an initial selection of seed faces or points, applicants are added to a

region identi�ed by a seed point, if some conditions are ful�lled. For instance, a possible condition

to rank an applicant to be added to an existing region is to determine its normal variation when

compared to the normals of the points already present in the segment.

A particular segmentation problem is solved in the algorithm presented by the authors of [Hua+13].

Here, the aim is to resample a given input point set in a feature-aware manner. It is done in a

three-stage process. First, reliable normals are created. Second, features are extracted and the

point set is resampled away from the features following the approach of [Lip+07]. �is second

step yields a segmentation of the underlying geometry in piecewise �at parts. �ird and �nally,

the features are approximated by introducing new points to sample them.

A similar idea—to extract large �at segments from the input point set—is presented in the

more recent work [LB16]. �e authors also deal with feature extraction, extending the idea

from [CAD04], going from meshes to point sets. �ey use the concept of regions which re-

spect the shape of the geometry characterized by its normals, to extract feature lines. In contrast

to [Lip+07], they work with normal directions obtained from the covariance matrix (1.9). �ere-

fore, their approach does not provide robustness against noise. Refer to Section 5.1.1 for further

related work and a discussion of segmentation in the context of Variational Shape Approximation.

In consequence, some geometry segmentation algorithms utilize the concept of shape aware

neighborhoods as natural ingredients. However, as stated above, all of these approaches aim at a

coarse representation of the geometry. �us, they have high tolerances in the normal variation

of neighboring entities. �ereby, they create a faithful simpli�cation of the underlying geometry.

5
See Section 1.3 for a discussion of the cases λi,1 = 0, λi,2 = 0, λi,3 = 0, or λΣ

i = 0.

12

1 Neighborhoods in Point Sets

Our approach does not only work on a smaller scale—the local point neighborhoods—but thereby

also serves as input for any algorithm depending on local neighborhoods, as shown for point set

denoising and MLS approximation in Sections 1.5.1 and 1.5.2 respectively.

1.3 Method
�e works presented in the above Sections 1.2.1 and 1.2.2 all aim at improving the neighborhood

information within a point set. However, they all take a similar approach, namely altering the

size of the neighborhood, either heuristically or by utilizing an error functional.

We follow an idea from [Yad+18b], Section 8, to choose the size of the neighborhood not solely

depending on a combinatorial value k or a metric value ε, but we build the neighborhood being

aware of the geometrical shape. We assume that for each point pi ∈ P of the point set, we are

given a normal ni ∈ R3
and we assume them to be normalized. We further assume that the

normal �eld on the point set consists of oriented outward normals.

Similar to [Lip+07], we face the problem of computing reliable normals without having neigh-

borhoods at hand. Following the presented solution, we �rst compute normals from combina-

torial or metric neighborhoods using one of the available algorithms (e.g. [MNG03; MWP18]).

�ese initial normals are then oriented (e.g. [Hop+92]) and in the presence of noise, additional

denoising is performed on the normal �eld (e.g. [JDZ04; Avr+10]). �ereby, we obtain the desired

normal �eld to work with in the following.

To select neighbors of a point in a shape-aware manner we de�ne the following sigmoid func-

tion. It is related to the sigmoid used in [Mar+06], but we �x the image of the function to be [0, 1]
on the interval [0, 1].

De�nition 1. Let a ∈ [0, 1) ⊂ R, b ∈ R≥1 ∪ {∞}, c = b(1− a)−1π, and a′ = (1− a)b−1 + a, i.e.
a′ ∈ (a, 1]. �en we de�ne the sigmoid function sigcos

a,b(x) as

sigcos
a,b(x) : [0, 1]→ [0, 1]

x 7→

0 x ∈ [0, a)

−1
2

cos (c(x− a)) + 1
2

x ∈ [a, a′)

1 x ∈ [a′, 1]

.

Observe that the parameter a in De�nition 1 translates the sigmoid along the x-axis and b
scales the incline of the cosine-curve. �us, the sigmoid can be used to model a sharp cuto� at

an arbitrary point a ∈ [0, 1) by using b =∞. Utilizing this sigmoid, we obtain the weights

wsig
ij (a, b) = sigcos

a,b

(
〈ni, nj〉+ 1

2

)
, (1.13)

for given values a and b. Recall that we asked for normalized outward normals. �ereby, very

similar normals enter as argument close to 1, while opposing normals have a scalar product of−1
s.t. the argument of sigcos

a,b is 0. In combination with the neighborhoods (1.1) or (1.4), these weights

create a geometrically weighted covariance matrix (see [HBC11]) by

Csig
i (a, b) =

∑
pj∈Nk(pi)

wsig
ij (a, b)(pj − p̄i)(pj − p̄i)T , (1.14)

where again p̄i = 1
k

∑
pj∈Nk(pi)

pj . Observe that in dependence on the parameters a and b the co-

variance matrix might degenerate when all weights are equal to 0. In other words, choosing a too

13

I Notions of Neighborhood and corresponding Data Structures

Figure 1.2: Illustration of the behavior of the eigenvalues obtained from the PCA at the di�erent
locations, i.e. a planar region, edge, and corner. All of these draw a box around the marked vertex of
the cubemodel with 1906 vertices, with its expansion linked to themagnitude of the three eigenvalues.
In the image, we set k = 20 for Nk(pi).

high value for a and thereby shi�ing the curve too far towards 1 reduces the number of neighbors

receiving a strictly positive weight w.r.t. the normal similarity. �erefore, the parameter a has to

be chosen carefully.

Given weights (1.13) such that the weighted covariance matrix (1.14) does not degenerate, note

that Csig
i (a, b) is symmetric and positive-semi-de�nite. �is is because the weights are symmet-

ric, i.e.wsig
ij (a, b) = wsig

ji (a, b). �erefore, the weighted covariance matrix gives rise to eigenvalues

λ̃i,1 ≥ λ̃i,2 ≥ λ̃i,3 ≥ 0. �ese in turn can be used in the evaluation of measures (1.11) and (1.12).

However, this is not unconditionally possible. In particular on CAD models, cases λ̃i,1 = λ̃i,2,

λ̃i,2 = λ̃i,3, or λ̃i,3 = 0 can arise, see Figure 1.2. Depending on the occurrence of any of these

cases, we set the related term in Equation (1.11) to 0. We proceed similarly in the case of mea-

sure (1.12): �e sum of the eigenvalues cannot be 0, because we assumed a non-degenerated

covariance matrix and thereby we have at least one strictly positive eigenvalue. But it might oc-

cur that λ̃i,3 = 0 or even λ̃i,2 = 0. �e la�er happens, when we collect neighbors along a straight

line in R3
. If any of these problematic cases occur, we once more neglect the related terms in

Equation (1.12) and calculate only the remaining ones.

Note that all considerations are due to the fact, that equal eigenvalues arise from the identical

propagation of the neighborhoods in multiple directions and eigenvalues with magnitude zero

indicate no propagation in the related direction at all. Neglecting the relevant terms in both

measures (1.11) and (1.12) is owed to the fact that the natural logarithm is not de�ned at zero.

In the original publication [WJM14], these modi�cations were probably unnecessary due to the

noise levels in the considered geometries.

Using weights (1.13) with a high parameter b for the sigmoid will result in a sharp cuto�. �us,

points will not only be assigned a low, but a complete 0 weight. When disregarding these points,

connectedness in a neighborhood weighted by (1.13) no longer means necessarily geometrical

closeness. See Figure 1.3 for an example, in which the weighted neighborhood collects neighbors

being similar w.r.t. point normals and the result is visually disconnected.

1.4 Experimental Results
We evaluate our neighborhood concept on several synthetic (fandisk, bearing) and real-world

models (bunny, ki�en). Compared to [WJM14], we use the error measures (1.11) and (1.12), with

the modi�cations mentioned in Section 1.3. �e experiments evaluate the behavior of several

sigmoids generated by di�erent parameter choices for a and b as well as results deduced by equal

weights all set to one (a = 0, b =∞) and a sharp cut-o� as used in [Yad+18b], (a = ρ, b =∞),

14

1 Neighborhoods in Point Sets

Figure 1.3: A point on the fandisk model and its cut-o� neighborhood for a large parameter b. Note
how the visual impression of connectivity is lost and the neighborhood seems to consist of several
separate parts.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1.4: Sigmoids for di�erent values of a and b, see De�nition 1.

with threshold ρ from [Yad+18b], see Section 8. Figure 1.4 illustrates di�erent sigmoids for

{(a, b) | a ∈ {0, 0.25, 0.5, 0.75}, b ∈ {1, 2, 4}} in yellow (a = 0), dark blue (a = 0.25), blue

(a = 0.5), and light blue (a = 0.75) respectively. �e extreme cases where b =∞ are not shown,

as they simply “jump” from 0 to 1 at a.

We run the experiments as follows: For each k ∈ {6, . . . , 20} and the resulting neighbor-

hood (1.1) as well as for each of the sigmoids given above and an additional set of parameters

with a = 0.9 (default parameter for ρ in [Yad+18b], Section 8), we compute the measures (1.11)

and (1.12) at every point pi of the given point set. �en, for each choice of parameters (a, b), we

pick two neighborhood sizes kdim
i , kλi such that the error measures are minimal respectively at

the point pi:

kdim
i = arg mink∈{6,...,20}E

dim
i ,

kλi = arg mink∈{6,...,20}E
λ
i .

�is yields a local neighborhood size at each point pi for a given sigmoid obtained from (a, b).

�en, for each parameter choice (a, b), we consider the average measure over all points of the

point set:

Edim
avg =

1

n

n∑
i=1

(
min

k∈{6,...,20}
Edim
i

)
, (1.15)

Eλ
avg =

1

n

n∑
i=1

(
min

k∈{6,...,20}
Eλ
i

)
. (1.16)

15

I Notions of Neighborhood and corresponding Data Structures

Aside from the average, we also consider the minimum, maximum, and standard deviation which

are given for all models and both error measures in Appendix B.

1.4.1 CAD Models

At �rst, we are going to consider the noiseless CAD models bearing and fandisk, see Figures B.1

and B.2. Both models carry a variety of features, such as curved edges, corners, creases, etc.

Consider Tables B.1 and B.2 for a comparison of the obtained measures for di�erent choices

of parameters a and b. Both CAD models obtain the smallest measures when evaluated with a

relatively high comparison parameter (a ≥ 0.75) and a so� increase (b = 1). �is contrasts the

use of a sharp cuto� as utilized in [Yad+18b], Section 8. See Section 1.5.1 for a more detailed

evaluation in the context of this application. Observe that both models obtain lowest measures

for the highest a possible with so� increase, as long as the collected neighborhoods are not empty.

In Table B.1, we can see that a = 0.9 is too strict for the given model, such that in consequence

for at least one point pi of the model all neighborhoods for k ∈ {6, . . . , 20} are empty. In this

case, we do not report the results as the computation clearly failed.

1.4.2 Real-World Models

Additionally to the arti�cial CAD models, we run our experiments on real-world models aris-

ing from 3D scanners which introduce noise during the acquisition process. We use the bunny

(Figure B.3) and ki�en model (Figure B.4).

Here, we �nd a similar behavior. For both real-world models, their results are given in Ta-

bles B.3 and B.4. Once more, as high as possible values of the comparison parameter a ∈ {0.75, 0.9}
yield the lowest measures, while also a so� increase is favored (b ∈ {1, 2}).

1.4.3 Assessment of Results

Our numerical experiments show that all considered models, being them CAD or real-word, ask

for the highest comparison parameter a possible and so� increases b of the sigmoid curve. Note

that the authors of [WJM14] also use that neighborhood size k which gives the lowest value of

Edim
and Eλ

respectively. However, they do not incorporate weights, that is they assign each

possible neighbor a weight of 1. �is is exactly achieved in our setup for a = 0 and b = ∞.

Hence, in Tables B.1–B.4, the measures a�ained by the approach of [WJM14] are given in the

rightmost cell of the �rst row. Note that none of these a�ain smallest measure Edim
or Eλ

in any

of our experiments.

Furthermore, in [Yad+18b], Section 8, we favor a sharp cut-o�. In the setup presented here, this

corresponds to parameters a = 0.9 and b =∞. For two of the four geometries considered, these

parameters yield empty neighborhoods for at least one point of the geometry. In the remaining

two cases, only for the bunny model, the least standard deviation is a�ained for the sharp cut-

o� in the measure Edim
, see Table B.3. In all other cases, our sigmoid approaches a�ain smaller

measures. In the following, we will evaluate our shape-aware neighborhood concepts within two

applications to validate the experimental results.

16

1 Neighborhoods in Point Sets

(a) Noisy cube (b) Denoised with sharp cut-o�. (c) Denoised with sigmoid so�
increase.

Figure 1.5: Visual comparison of denoising following [Yad+18b], Section 8, with original sharp cut-
o� and a so� increasing sigmoid.

(a) Noisy fandisk (b) Denoised with sharp cut-o�. (c) Denoised with sigmoid so�
increase.

Figure 1.6: Visual comparison of denoising following [Yad+18b], Section 8, with original sharp cut-
o� and a so� increasing sigmoid.

1.5 Applications

1.5.1 Application: Point Set Denoising

In [Yad+18b], Section 8, we propose a three-staged algorithm for point set denoising, where we

use a sharp cut-o� to detect neighborhoods. Here, similar point normals receive weight 1 w.r.t.

a user-given threshold ρ, while non-similar normals are assigned weight 0. �e le�most im-

ages of Figures 1.5 and 1.6 show the cube and fandisk models equipped with Gaussian noise

σ ≈ 0.2`nn and σ ≈ 0.33`nn, respectively. �e value `nn describes the average distance of all

one-nearest-neighbor distances of all points in the point set. �e second image in both �gures

gives the results using the denoising algorithm described in [Yad+18b], Section 8, with parameters

ρ = 0.95, I = 150 iterations (cube) and ρ = 0.9, I = 50 iterations (fandisk), while the remaining

parameters are kept default. �e third image in both �gures shows the results, when we replace

the sharp cut-o� with our sigmoid se�ing a = 0.95 (cube), a = 0.9 (fandisk) and b = 1 for both

models, which results in a so� increase instead of a sharp cut-o�.

A comparison of the results gained with the cut-o� used in [Yad+18b], Section 8, and a so�

increase with our sigmoid is displayed in Table 1.1. Here, we use the Metro algorithm of [CRS98]

available as part of [Cig+08]. We present the values: minimum distance (Min), maximum dis-

17

I Notions of Neighborhood and corresponding Data Structures

Model Nhd Min Max Mean RMS

Cube Cut-o� 0 0.011415 0.000775 0.001035

Sigmoid 1.E-6 0.005939 0.000746 0.000968

fandisk Cut-o� 1.E-6 0.018277 0.004145 0.006250

Sigmoid 1.E-6 0.017518 0.004264 0.006085

Table 1.1: Results of the Hausdor� distances (given as Min, Max, Mean, RMS) measured between
denoised cube and fandisk models (using sharp cut-o� and so�er increase) and their clean represen-
tatives using the Metro algorithm of [CRS98] available as part of [Cig+08].

tance (Max), mean distance (Mean), and root mean square distance (RMS). Note that the values

are taken w.r.t. the bounding box diagonal.

Both models and the chosen parameters are proven to yield very good results in [Yad+18b],

Section 8. When we replace the binary weight assignment in the neighborhood detection in

Stage 1 of the iterative procedure and do not jump to 1 at ρ, but let the curve increase so�ly, this

gives comparable, or even be�er results, see Table 1.1.

From this exploration, we see that the general concept of shape-aware neighborhoods, inde-

pendent of the speci�c parameters used, already provides good results. �is was shown in an

extensive comparison to other state-of-the-art methods in [Yad+18b]. As the denoising method

of [Yad+18b], Section 8, already incorporates shape-aware neighborhoods, the following ques-

tion remains: How much does a non-shape-aware application gain from the presented concept?

In order to answer this question, we turn to the MLS framework.

1.5.2 Application: Moving Least Squares (MLS)

We will now evaluate the di�erent neighborhood concepts in the context of a non-shape-aware

application, namely the MLS framework ([Lev98; Lev04; Ale+01; SL16]). �e MLS procedure

takes a point set as input and locally computes a best-��ing smooth manifold approximating the

given point set. Naturally, the obtained result does not re�ect features of the input geometry.

However, in many applications, it is important to have a smooth representation everywhere but

at the features, which can for example be obtained by the Robust Implicit Moving Least Sqaures
(RIMLS) approach of [ÖGG09]. We will incorporate the concept of shape-aware neighborhoods

to the MLS approach and then compare the results to RIMLS.

For implementing the MLS, we follow the description of [SL16, Sections 3.1 and 3.2]. �e

procedure outlined there to perform the MLS projection for a point pi consists of two steps:

Finding the local coordinates and performing the MLS projection. Both include the use of a non-

negative rapidly decreasing weight function θ(‖pj − q‖), where q is the sought for projection

of pi and pj are its neighbors. In order to incorporate our sigmoid weights (1.13), we replace

each occurrence of θ by θ ·wsig
ij (a, b). Furthermore, we incorporate them in the evaluation of the

polynomial approximation in step 2. For a more thorough introduction to MLS, see Section 4.4.1.

�e e�ect of the incorporation of our weights into the MLS procedure can be seen in Figure 1.7.

�e input geometry consists of two evenly sampled planes with normals pointing away from the

respective other. Consider now a point pi on one of the two planes. When using the standard

k nearest neighborhoods (1.1), the neighborhood of pi will include points from both planes, see

Figure 1.7a. �us, when performing the MLS procedure, the two planes are merged into one, as

can be seen in Figure 1.7a. In contrast, when using shape-aware neighborhoods, the neighbors

of pi all live on the same plane. �us, a�er performing the MLS procedure, the two planes stay

separated, see Figure 1.7b.

18

1 Neighborhoods in Point Sets

(a) k nearest neighbors (top), MLS projection
(bo�om)

(b) shape-aware neighbors (top), MLS pro-
jection (bo�om)

Figure 1.7:MLS procedure using k nearest neighbors (le�) and shape-aware neighborhoods (right).
�e upper row shows the neighborhood for the marked dark blue point, and the lower row shows the
result a�er applying MLS to all points of the two planes. Note how the neighborhood includes points
from both planes when using k nearest neighbors and only points from the plane of the query point
when using shape-aware weights.

Figure 1.8: Comparison of MLS (le�), MLS with shape-aware neighborhoods (center), and RIMLS
of [ÖGG09] (right).

For a more practical example, we apply the MLS procedure to they fandisk model corrupted

by Gaussian noise (σ ≈ 0.26`nn, with `nn being the average one-nearest-neighbor distance). �e

result is seen in the le� image of Figure 1.8. As highlighted, the narrow part of the model is

glued together by the MLS projection. �e center image shows the modi�ed MLS procedure

incorporating our shape-aware weights. Note how the narrow segment keeps separated. For

comparison, the right image shows the application of RIMLS.

A comparison of the results gained with the RIMLS approach and the modi�ed MLS with our

sigmoid is displayed in Table 1.2. Again, we use the Metro algorithm of [CRS98] available as

part of [Cig+08]. We present the values: minimum distance (Min), maximum distance (Max), the

mean distance (Mean), and the root mean square distance (RMS). Note that the values are taken

w.r.t. the bounding box diagonal.

From the results of Table 1.2, we see that RIMLS outperforms our simple approach of solely

including shape-aware neighborhoods into the MLS procedure. Visually, this e�ect becomes ap-

parent in Figure 1.8, where the right image obtained by RIMLS is smoother than the middle image

from MLS with shape-aware neighborhoods. Nonetheless, our approach is easily included in the

MLS pipeline and does not di�er from RIMLS by an order of magnitude. �erefore, further re-

search has to be invested in tuning this procedure in order to compete with RIMLS and similar

other approaches.

19

I Notions of Neighborhood and corresponding Data Structures

Model Nhd Min Max Mean RMS

cube (clean) RIMLS 0 0.014427 0.002916 0.003696

Sigmoid 0 0.018776 0.002618 0.003622

cube (noisy) RIMLS 0 0.014427 0.002890 0.003704

Sigmoid 0 0.029943 0.003352 0.004447

bearing RIMLS 0 0.023033 0.002109 0.002768

Sigmoid 0 0.043271 0.003344 0.005272

fandisk RIMLS 0 0.007133 0.001227 0.001541

Sigmoid 0 0.024058 0.002246 0.003433

Table 1.2: Results of the Hausdor� distances (given as Min, Max, Mean, and RMS) measured between
the results of RIMLS, see [ÖGG09], and MLS utilizing shape-aware neighborhoods with the clean
model respectively.

1.6 Conclusion
In this section, we followed up on an idea of [Yad+18b], see Section 8, and formulated the concept

of neighborhoods that do not aim for a heuristically chosen size or try to obtain an optimal size

by a specialized error measure. Our neighborhoods rather adapt to the shape of the geometry.

�e presented approach was evaluated experimentally with measuresEdim
andEλ

derived in the

work of [WJM14]. In our experiments on both CAD and real-world models, we found that incor-

porating sigmoid weights into the computation yields smaller error measures than the uniform

weights from [WJM14] or the sharp cut-o� neighborhoods used in [Yad+18b], Section 8.

We further evaluate our approach in two application contexts. First, we implement it in the

denoising setup of [Yad+18b]. �e changes in results are minor here, as the algorithm already

utilizes shape-aware neighborhoods, only with a sharp cut-o�. �erefore, we secondly embed

our concept in the MLS procedure of [SL16]. Here, we show that undesired e�ect of MLS such

as the merging of two originally separated parts of a geometry can e�ciently be prohibited.

Furthermore, we compare to the RIMLS approach of [ÖGG09] and show that our method can

compete with it visually and quantitatively, even though it is derived only from �rst principles

and does not utilize an involved statistical framework like RIMLS does. However, RIMLS still

provides smoother results. �us, further research has to be invested in �ne-tuning MLS with

shape-aware neighborhoods.

20

2 k-d Trees

2 k-d Trees
In the previous section, we have presented several notions of neighborhoods for point sets. For

practical applications, these concepts are not of any use if they cannot be computed e�ciently.

�us, in this section, we give an introduction to the data structure of k-d trees, �rst presented by

Friedman, Bentley, and Finkel in 1977, see [FBF77]. A�er a short introduction to the data structure

(Section 2.1), we turn to the proof of e�ciency by Friedman and his colleagues (Section 2.2). �e

main contribution of this section is:

I Translation into modern terms and elaboration of the proof of Friedman, Bentley, and

Finkel (Section 2.2).

2.1 The Data Structure of k-d Trees
In this section, we will give a brief introduction to the k-d tree data structure. It was originally pre-

sented by Jon Louis Bentley in 1975, see [Ben75]. A modern introduction to the two-dimensional

case can be found in [Ber+00, Chapter 5.2].

Let P = {p1, . . . , pn} ⊂ Rd
be a �nite point set with pi = (p1

i , . . . , p
d
i)
T ∈ Rd

for i = 1, . . . , n.

A k-d tree for P is de�ned recursively. If P is empty or contains only one point, an empty tree or

a tree with one node containing the one point is returned. Otherwise, it is determined in which

dimension d′ ∈ [d] the point set has the largest spread. �at is, d′ is chosen such that there are

two points pi, pj with

∣∣pd′i − pd′j ∣∣ ≥ ∣∣pd′′` − qd′′m ∣∣ for all d′′ ∈ [d], `,m ∈ [n]. Now, �nd the median
6

of the points pi according to a sorting along this dimension, i.e. pd
′
i1
≤ . . . ≤ pd

′
idn/2e

≤ . . . ≤ pd
′
in ,

denote it by q = pidn/2e . Note that the points do not necessarily have to be sorted, as the median

can be found in linear time, see [Blu+73]. However, there has to be a unique ordering on the

points to determine the resulting k-d tree uniquely. �us, we assume that the point set P can

be uniquely ordered
7

along any dimension d′ ∈ [d]. A�er �nding the median, a hyperplane

H = {x ∈ Rd | xd′ = qd
′} is introduced, which splits the set P into two subsets

P1 = {pi1 , . . . , pidn/2e−1
}, P2 = {pidn/2e+1

, . . . , pin}

with P1 containing at most one point more than P2. A node is created, holding q and H . Par-

titioning P into the two subsets P1 and P2 can be performed in Θ(n). �e node is given the

results of recursively processing P1 and P2 as children and then it is returned. An example for

the building process in the two-dimensional case is given in Figure 2.1. �e algorithm is given in

pseudo code as Algorithm 1. From this building procedure, we see that the building time T (n) of

a k-d tree satis�es the following recursion

T (n) =

{
Θ(1) n = 1

Θ(n) + 2 · T (dn/2e) n > 1
,

which solves to T (n) = Θ(n · log(n)), see [SW11, pp. 272–274]. By the above and by noting

that each node of the k-d tree stores a distinct point of the input set P , we proved the following

theorem.

6
For any number n ∈ N of ordered points, we de�ne the median to be the point with index dn/2e. Note that

bn/2c + 1 would also give a valid choice which has to be considered slightly di�erently when building the k-d

tree.

7
In any practical application, this can be achieve by e.g. sorting points with equal entries according to their indices,

i.e. in the case pi = pj we order by i < j.

21

I Notions of Neighborhood and corresponding Data Structures

p1

p2

p3

p4

p5

p6

p7

p8 p1

p2

p3

p4

p5

p6

p7

p8 p1

p2

p3

p4

p5

p6

p7

p8

p1

p2

p3

p4

p5

p6

p7

p8 p1

p2

p3

p4

p5

p6

p7

p8

p4

p3

p2 p1

p5

p7 p6

∅ p8

Figure 2.1: Recursively building a k-d tree on eight points. �e hyperplanes are shown in the �rst
�ve �gures, while the whole tree is shown in the last �gure on the lower right.

�eorem 1 (Storage requirement and building time of a k-d tree, [Ber+00]). A k-d tree for a set
of n points uses Θ(n) storage and can be constructed in Θ(n · log(n)) time.

�e k-d tree data structure has applications in orthogonal range searches, as discussed in

[Ber+00, Chapter 5.2] and [Skr14b, Chapter 3.2]. In the following, we will focus on applications

in the context of neighborhood queries.

Algorithm 1 Build k-d tree

1: procedure Build k-d tree(point set P)

2: if |P | ≤ 1 then
3: return node containing P
4: end if
5: d′ ← most spread dimension of P
6: q ← median according to dimension d′

7: P1 ← {pi ∈ P | pd
′
i ≤ qd

′
, pi 6= q}

8: P2 ← P\(P1 ∪ {q})
9: H ← {x ∈ Rd | xd′ = qd

′}
10: N` ←Build k-d tree(P1)

11: Nr ←Build k-d tree(P2)

12: return node containing q, H with N` and Nr as children

13: end procedure

22

2 k-d Trees

2.2 Neighborhood�eries in Logarithmic Time

Amongst the data structures computing the k nearest neighborhood (1.1), the most prominent

choice is the k-d tree data structure presented above. �e reason is that in 1977, Friedmann,

Bentley, and Finkel were able to prove an average case running time of O(log(n)) for a single

neighbor query in a k-d tree built on n points. �e proof in their paper is very concise and covers

roughly three pages [FBF77, pp. 214–216]. �us, we will give a more elaborate version of their

proof in modern wording here.

Let a point set P and a corresponding k-d tree built according to Section 2.1 be given. A

neighborhood query for any point p ∈ Rd
is then performed by traversing the tree to the leaf

representing the box which contains the query point. From there, the query goes back to the

root, investigating subtrees along the path where the spli�ing hyperplane is closer to p than the

currently found nearest neighbors. When reaching a node, all elements in it are investigated as to

whether they are closer to p than the current closest points found. �e algorithm is fast, as it can

be expected that several subtrees do not have to be investigated. See Algorithm 2 for a pseudo

code version and see [Skr14b, Section 5.2] for an illustration of the nearest neighbor search for a

single nearest neighbor, i.e. k = 1.

We will now investigate the following question: What is the expected query time for a neigh-

borhood query in a k-d tree? We will do this by considering a di�erent setup compared to the

construction in Section 2.1. Namely, we will store points only in the leaves of the tree and we

will further allow for more than one point to be stored in each leaf. Collecting all factors that can

a�ect the runtime of the neighborhood search, we get the following list:

I total number n of points,

I dimension d of the ambient space,

I number of neighbors sought k,

I number b of points to be stored in each leaf,

I distance measure
8 d : Rd × Rd → R≥0, (p, q) 7→ d(p, q),

I density δ : Rd → [0, 1] of points in space.

�e density is taken into account as a way to analyze an arbitrary point set. As we will not make

any assumption on the actual positions of the points pi ∈ P throughout the proof, we turn to a

probabilistic argument. �us, we consider an arbitrary non-empty sample space Ω and random

variables X1, . . . , Xn, Xp : Ω → Rd
. Draw a sample ω ∈ Ω. Now, our point set P is given by

P = {X1(ω), . . . , Xn(ω)} and the point p to search neighbors for is given as Xp(ω). �at is,

we want to �nd k points from {X1(ω), . . . , Xn(ω)} ⊂ Rd
that are the k nearest neighbors to

Xp(ω) ∈ Rd
within the set {X1(ω), . . . , Xn(ω)} ⊂ Rd

.

Without loss of generality we assume X1(ω), . . . , Xk(ω) to be the k nearest neighbors with

Xk(ω) being the farthest from Xp(ω). Now, denote

Bk(Xp(ω)) = {x ∈ Rd | d(x,Xp(ω)) ≤ d(Xk(ω), Xp(ω))}

to be the ball around Xp(ω) containing all points in Rd
with distance less than or equal to the

distance to Xk(ω). �e volume of this ball is

vk(Xp(ω)) :=

∫
Bk(Xp(ω))

1 dx.

8
See Footnote 1, page 8.

23

I Notions of Neighborhood and corresponding Data Structures

Algorithm 2 Nearest Neighbor Search in k-d trees

1: procedure NNk-dTree(point p, k-d tree T , distance ε, number k)

2: L←empty list

3: return NNk-dTreeRec(p,root,ε, k, L)

4: end procedure

5: procedure NNk-dTreeRec(point p, k-d tree T , distance ε, number k, list L)

6: if T = ∅ then
7: return L
8: end if
9: Extract point pj from T .root and store it in L if ‖pj − p‖ ≤ ε.

10: if L is larger than k then
11: Delete the point with largest distance to p from L.

12: end if
13: if T is just a leaf then
14: return L
15: end if
16: if T .root.le�Subtree contains p then
17: T1 = T .root.le�Subtree, T2 = T .root.rightSubtree

18: else
19: T2 = T .root.le�Subtree, T1 = T .root.rightSubtree

20: end if
21: NNk-dTreeRec(p, T1, ε, k, L)

22: if |L| < k and ‖p− T .root.hyperplane‖ < ε then
23: NNk-dTreeRec(p, T2, ε, k, L)

24: else if ‖L.farthest− p‖ > ‖p− T.root.hyperplane‖ and ‖p− T.root.hyperplane‖ ≤ ε
then

25: NNk-dTreeRec(p, T2, ε, k, L)

26: end if
27: return L
28: end procedure

24

2 k-d Trees

Furthermore, the probability content of this region—according to the density δ(x)—is

uk(Xp(ω)) =

∫
Bk(Xp(ω))

δ(x) dx.

Since

∫
Rd δ(x)dx = 1, we haveuk(Xp(Ω)) ≤ 1. Furthermore, since δ(x) ≥ 0 for allx ∈ Bk(Xp(ω)),

we have 0 ≤ uk(Xp(ω)). Consider some additional random variable X : Ω→ Rd
with density δ.

�en,

uk(Xp(ω)) =

∫
Bk(Xp(ω))

δ(x) dx

=

∫
Rd
δ(x) · 1Bk(Xp(ω))(x) dx

�
= E(1Bk(Xp(ω))(X)),

where � holds by the law of the unconscious statistician: E(g(X)) =
∫
Rd g(x) · δ(x) dx, [BH14,

p. 156], with g(x) := 1Bk(Xp(ω))(x). Furthermore, we have

1Bk(Xp(ω))(x) =

{
1, if x ∈ Bk(Xp(ω))

0, otherwise

.

�erefore,

E(1Bk(Xp(ω))(X)) = P(X ∈ Bk(Xp(ω)))

= P(d(X,Xp(ω)) ≤ d(Xk(ω), Xp(ω))).

Now, from X and Xi we de�ne new random variables

ξ := d(X,Xp(ω)), ξi := d(Xi, Xp(ω)),

which provide distances

ξi(ω) := d(Xi(ω), Xp(ω)).

�en, uk(Xp(ω)) = P(ξ ≤ ξk(ω)) by the above computations. Furthermore, ξ : Ω→ R is a ran-

dom variable with distribution Fξ(x) = P(ξ ≤ x), therefore uk(Xp(ω)) = Fξ(ξk(ω)). �e ques-

tion to be answered now is: What is the distribution Fξ at ξk(ω)?

Order the distances ξi(ω), then we have the following one-to-one correspondence:

ξ1(ω) ≤ . . . ≤ ξn(ω)
1:1←→ Fξ(ξ1(ω)) ≤ . . . ≤ Fξ(ξn(ω)).

Now, consider the random variable F (ξi) : Ω→ [0, 1]. It is de�ned by

F (ξi)(ω) := Fξ(ξi(ω))

and its distribution is

P(F (ξi) ≤ x) = P(ξi ≤ F−1
ξ (x))

?
= Fξi(F

−1
ξ (x))

�
= x,

where ? holds because Fξi(x) = P(ξi ≤ x) and where � holds because ξ and ξi have the same

density δ and thus the same distribution Fξ = Fξi . Hence, a single F (ξi) is uniformly distributed.

25

I Notions of Neighborhood and corresponding Data Structures

However, when choosing an ordering, the k-th distance ξk is β-distributed (see Appendix C),

therefore

uk(Xp(ω)) = β(ω).

It can be shown that

uk(Xp(ω)) =
k

(n+ 1)
, (2.1)

see Appendix C. �is states that any compact volume enclosing exactly k points has probability

content
k

(n+1)
on average. Now, assume that n is large enough such that Bk(Xp(ω)) is small and

thus δ(x) can be approximated by a constant p̄(Xp(ω)) on Bk(Xp(ω)). In this case∫
Bk(Xp(ω))

δ(x) dx = uk(Xp(ω)) ≈ p̄(Xp(ω)) · vk(Xp(ω)). (2.2)

Assume further that δ(x) is continuous (which enables us to approximate it over a small region

in the �rst place), then by de�nition of Bk(Xp(ω)), there are small neighborhoods Bεi(Xi(ω)),

i = 1, . . . , k − 1 such that δ(x) > 0 for all x ∈ Bεi(Xi(ω)), i = 1, . . . , k − 1. �erefore,

p̄(Xp(ω)) =

∫
Bk(Xp(ω))

δ(x) dx
δ(x)≥0 ∀x∈Rd

≥
k−1∑
i=1

∫
Bεi (Xi(ω))

δ(x) dx︸ ︷︷ ︸
>0

> 0.

Now, we obtain

k

(n+ 1)

(2.1)
= uk(Xp(ω))

(2.2)
≈ p̄(Xp(ω)) · vk(Xp(ω)),

which is equivalent to

vk(Xp(ω)) ≈ k

(n+ 1) · p̄(Xp(ω))
. (2.3)

Observe now the e�ect of the k-d tree partitioning algorithm described in Section 2.1. Choosing

the median ensures that the bucket sizes of all non-empty buckets will be between db/2e and b,
where b is the maximum bucket size. Choosing to split on the widest spread dimension ensures

that the geometric shape of these buckets will be reasonably compact. In fact, the expected edge

lengths of these buckets at most di�er pairwise by a factor of 2. �e buckets themselves are by

this approximation hypercubical with edge length equal to the d-th root of the volume of space

occupied by the bucket. �e edges are parallel to the coordinate axes. �e e�ect of the k-d tree

partitioning, then, is to divide the coordinate space into approximately hypercubical subregions,

each containing the aforementioned roughly same number of records. Because of (2.3) we have

that the expected volume of such a bucket is

E(vb(Xb)) ≈
b

(n+ 1) · p̄(Xb)
, (2.4)

whereXb : Ω→ Rd
is a random variable yielding a point that locates the bucket in the coordinate

space.

26

2 k-d Trees

(a) Ball Bk and Cube Ck for
d = 2.

(b) Ball Bk and Cube Ck for
d = 3.

(c) A hypercube Ck overlapped
by ¯̀= 5 buckets.

Figure 2.2: Illustration of hypercubes in di�erent dimensions.

Consider now the smallest d-dimensional hypercube Ck(Xp(ω)) with edges parallel to the

coordinate axes that completely contains the ball Bk(Xp(ω)). �e volume Vk(Xp(ω)) of this

hypercube is proportional to vk(Xp(ω)), with proportionality constant

volume(d− dim cube)

volume(d− dim ball)
=

(2r)d

rd · πd/2

Γ(d/2+1)

=
2d · Γ(d/2 + 1)

πd/2
=: G(d),

where r is the radius of the ball. See Figures 2.2a and 2.2b for an illustration of Bk and Ck.

�erefore,

Vk(Xp(ω)) = G(d) · vk(Xp(ω))
(2.3)
≈ G(d) · k

(n+ 1) · p̄(Xp(ω))
. (2.5)

In order to calculate the average number of buckets
¯̀

examined by the k-d tree during a search

for the k nearest neighbors, we need to �nd the buckets overlapping the ball Bk(Xp(ω)), see

Figure 2.2c for an illustration. �is number
¯̀

is bounded from above by L̄, the number of buckets

overlapping the hypercube Ck(Xp(ω)), where

L̄ =

(⌊

ek(Xp(ω))

eb(Xp(ω))

⌋
+ 1
)d

for eb(Xp(ω)) ≤ ek(Xp(ω))

2d otherwise

where ek(Xp(ω)) denotes the edge length of Ck(Xp(ω)) and eb(Xp(ω)) denotes the edge length

of the buckets in the neighborhood. However, the edge length of a hypercube is the d-th root of

its volume, hence

ek(Xp(ω)) = d

√
Vk(Xp(ω)), eb(Xp(ω)) = d

√
Vb(Xb(ω)).

Assume that buckets around Bk(Xp(ω)) are smaller than Bk(Xp(ω)) and since they are close,

p̄(Xp(ω)) ≈ p̄(Xb(ω)). �en, by (2.5) we have

ek(Xp(ω)) ≈ d

√
k ·G(d)

(n+ 1)p̄(Xp(ω))
, eb(Xp(ω)) = d

√
b ·G(d)

(n+ 1)p̄(Xb(ω))
.

Finally,

l̄ ≤ L̄ =

(⌊
ek(Xp(ω))

eb(Xp(ω))

⌋
+ 1

)d
≈

 d

√
k·G(d)

(n+1)p̄(Xp(ω))

d

√
b·G(d)

(n+1)·p̄(Xb(ω))

+ 1

d

=

(⌊
d

√
k

b

⌋
+ 1

)d

≤

((
k

b

) 1
d

+ 1

)d

27

I Notions of Neighborhood and corresponding Data Structures

is an upper bound for the average number of buckets overlapping Bk(Xp(ω)). Here, we use

that Bk(Xp(ω)) is small and thus we have Xp(ω) ≈ Xb(ω). Note that the inequality holds as

d
√
k/b ≥ 0. �e number of records in each bucket is b, so an upper bound on the number of

records examined is

R̄ ≤ b · L̄ ≤ b ·

((
k

b

)1/d

+ 1

)d

=
(
k1/d + b1/d

)d
.

�is expression is minimized when choosing b = 1 (which explains the corresponding choice in

Section 2.1), yielding

R̄ ≤
(
k1/d + 1

)d
, (2.6)

which is independent of the number of records n and the density δ(x).

�e constancy of the number of records examined as the number of records increases implies

that the time required for a nearest neighbor search is equal to �nding the record in the balanced

binary tree, the k-d tree, which takes O(log(n)) on average. �us, the following theorem is

proven:

�eorem 2 (Runtime of nearest neighbor queries in a k-d tree, [FBF77]). �e expected query time
for a neighborhood query in a k-d tree is O(log(n)).

2.3 Conclusion and Addendum: k-d Trees in Arts
We have presented the data structure of k-d trees and have given the classical proof of Friedman,

Bentley, and Finkel in a modernized form. �e proof shows the practical relevance of k-d trees

for the �eld of geometry processing, as all neighborhood concepts presented in Section 1 can be

computed e�ciently utilizing the k-d tree data structure.

Additionally, k-d trees have surprising applications aside from geometry processing. We have

recently shown that they can be used to automatically generate art pieces that bear a striking

resemblance to those of the dutch artist Piet Mondrian. Furthermore, as k-d trees are not lim-

ited to two-dimensional data, they provide a mean to create three-dimensional “Mondrian-like”

structures. See Figure 2.3a for a painting of Piet Mondrian, Figure 2.3b for a reproduction of this

paining by a two-dimensional k-d tree, and Figure 2.3c for a three-dimensional “Mondrian-like”

structure. Further details on this work, as well as other generalization of artworks from two to

three dimensions can be found in the works published at the “Bridges” conference, see the list of

publications prior to the thesis, page 5.

28

2 k-d Trees

(a) Piet Mondrian, “Tableau I”, 1921, oil on canvas, Collection Gemeentemuseum Den Haag.

1

23
4

5

6

78

9

10

11

12

13

1

23 3’

4

4’

4”

5

5’

6

6’

6”

78

9

9’

10

10’

10”

11 11’

12

12’

1313’ 13”

a2

a2
a6 a2

a2

a5

a6 a2 a2 a5

(b) Reproduction of “Tableau I” utilizing a k-d tree.

(c) Visualization of a three-dimensional k-d tree on 43 points, colored as a “Mondrian-like” structure.

29

I Notions of Neighborhood and corresponding Data Structures

(a) Point set with nine points in
R2.

(b)�e points are initially placed
randomly.

4.07,5.13

2.06,7.76

8.23,4.79

3.73,6.84

1.77,5.46

8.41,1.96

4.27,1.45

9.18,9.05

1.53,1.30

(c)�e point coordinates are con-
sidered.

Figure 3.1: First part of the neighborhood grid pipeline.

3 The Neighborhood Grid
In the previous section, we have discussed the data structure of k-d trees to compute results to

neighborhood queries. As proven, it works well in practice on a single-core system, but does not

bene�t from parallelization. With the wide availability of graphic cards and computing clusters,

this application becomes more and more important. �us, in this section, we turn to a di�erent

data structure: the neighborhood grid. In contrast to k-d trees, the answers to neighborhood

queries computed by the neighborhood grid are not always exact, but can be easily parallelized

and can thus be computed faster.

We collect new results on the neighborhood grid data structure. �e data structure has been

introduced by Joselli et al., see [Jos+09; Jos+15]. Malheiros and Walter [MW15] investigated

several iterative building strategies for the data structure. Despite the evidences of practical

relevance, as demonstrated in the publications cited above, Joselli et al. did not investigate the

asymptotic building times of the grid. Malheiros and Walter gave a proof for time-optimality of

a building algorithm, which, however, does contain a �aw. �erefore, the main contributions of

this chapter are:

I Proof of asymptotic time-optimality of a presented building algorithm (�eorem 5).

I Comparison of the single-core building algorithm with the parallel building algorithm of

Malheiros and Walter [MW15] (Section 3.5.2).

I Combinatorial results on the number of possible sorted placements (�eorem 4).

I A complete list of unique sorted placements for n ∈ {1, 2, 3} (Section 3.3.3).

I A proof of non-existence of unique sorted placements for n ≥ 4 (Section 3.3.3).

I Results on the neighborhood quality obtained from the neighborhood grid (Section 3.6).

Finally, we present a conjecture (Conjecture 1) on a part of the following open question:

I For a given n ∈ N, n ≥ 4, what is a point set with the least or largest number of stable

states?

�e results of this section are available on ArXiv and have been presented at the EuroCG18 con-

ference, see list of publications prior to the thesis, page 5. Additional to the content in the pub-

lications, this section contains elaborate combinatorial results, illustrations of the unique stable

states, and experiments on the neighborhood quality.

30

3 �e Neighborhood Grid

4.07,5.13

2.06,7.76

8.23,4.79

3.73,6.84

1.77,5.46

8.41,1.964.27,1.45

9.18,9.05

1.53,1.30

(a) Coordinates are sorted to
grow in columns and rows.

4.07,5.13

2.06,7.76

8.23,4.79

3.73,6.84

1.77,5.46

8.41,1.964.27,1.45

9.18,9.05

1.53,1.30

(b) Determining the neighbors of
the upper le� point by looking
at its neighbors in the grid.

Figure 3.2: Second part of the neighborhood grid pipeline.

3.1 Introduction of the Data Structure and a Polynomial Time-Optimal
Building Algorithm

3.1.1 A Short Informal Introduction to the Neighborhood Grid

In order to give a short introduction to the data structure, consider the example in Figure 3.1. It

shows how points from a point set (Figure 3.1a) are placed in a grid (Figure 3.1b). �e order in

which the points are given is random, thus their initial placement in the grid is also. A�er the

placement, only the coordinates of the points are considered in the grid (Figure 3.1c).

�e grid as obtained in Figure 3.1c will now be sorted. Each row should grow in the �rst

coordinates from le� to right, each column should grow in the second coordinates from bo�om

to top. A corresponding sorted grid is given in Figure 3.2a. Note how it—in this example—recovers

the combinatorial neighborhood relation from the points.

In order to use the neighborhood grid to determine a neighborhood estimate for a given point,

�nd that point in the sorted grid. �en, consider a small neighborhood around that point, e.g. the

one-ring around it. �e size of this neighborhood should not depend on the number of inserted

points such that the time of this lookup only depends on the dimension and is asymptotically

constant for some �xed dimension d. From that neighborhood, �nd the closest point to the con-

sidered point and output it as estimated nearest neighbor, see Figure 3.2b.

3.1.2 Definition of the Data Structure

Given a set of points P = {p1, . . . , pN | pi ∈ Rd}. In the following we will assume that N = n2

for some n ∈ N and d = 2. �erefore each point is given by pi = (p1
i , p

2
i) ∈ R2

, where p1
i will be

referred to as x- and p2
i as y-value of the points pi. Furthermore, we assume that pi 6= pj for all

i 6= j. Consider Section 3.5.1 for the general case without these restrictions.

31

I Notions of Neighborhood and corresponding Data Structures

(55, 42) (60, 82)

(26, 61) (13, 69)

(95, 13) (95, 10)

(06, 69) (26, 61) (86, 89)

(02, 55) (80, 34) (86, 41)

(05, 19) (47, 11) (95, 13)

Figure 3.3:On the le� three cases where twomarked in blue satisfy the �rst condition of De�nition 3,
while the yellow case violates it. On the right a 3× 3 matrixMπ(P) in stable state.

De�nition 2. Given a set of pointsP as speci�ed above, a placement π : [n2]→ [n]× [n], i 7→ (k, `)
is a bijective map such that the matrixMπ(P) is given as

Mπ(P) =

(p1
π−1(n,1), p

2
π−1(n,1)) . . . (p1

π−1(n,n), p
2
π−1(n,n))

... . .
. ...

(p1
π−1(1,1), p

2
π−1(1,1)) . . . (p1

π−1(1,n), p
2
π−1(1,n))

. (3.1)

Ultimately, we want to order the points in the matrix such that the following state is reached.

De�nition 3. �e matrix Mπ(P) as given in (3.1) is said to be in a stable state, respectively the
placement π of De�nition 2 is stable, if and only if the following two conditions are satis�ed for any
i, j ∈ [n], i 6= j.

1. For all k ∈ [n] it is:
i < j ⇒ p1

π−1(k,i) < p1
π−1(k,j) ∨

(
p1
π−1(k,i) = p1

π−1(k,j) ∧ p2
π−1(k,i) < p2

π−1(k,j)

)
.

2. For all ` ∈ [n] it is:
i < j ⇒ p2

π−1(i,`) < p2
π−1(j,`) ∨

(
p2
π−1(i,`) = p2

π−1(j,`) ∧ p1
π−1(i,`) < p1

π−1(j,`)

)
.

Note that these conditions are well-de�ned as we assumed pi 6= pj . See Section 3.5.1 for the general
case.

In other words, a matrix Mπ(P) is in a stable state, if the points in each row of M are ordered

lexicographically according to the �rst and then the second coordinate. Also, all columns of M
have to be ordered lexicographically according to the second and then the �rst coordinate. An

illustration of De�nition 3 is given in Figure 3.3. We call a stable state unique, if there exists no

other stable state for the same point set P .

3.1.3 Polynomial-Time Building Algorithm

Now the following question arises naturally: for any set of points P as speci�ed above, can we

�nd a stable placement? In other words, given n2
points, can these be wri�en into an n×nmatrix

s.t. it is in a stable state as de�ned in De�nition 3. Indeed, Malheiros and Walter [MW15] gave

an algorithm to create a stable state from any given point set P . We state it here as a theorem.

32

3 �e Neighborhood Grid

{(26, 61), (06, 69), (95, 13), (86, 41), (05, 19), (02, 55), (86, 89), (47, 11), (80, 34)}

↓ Consider all points as one sequence. ↓

(26, 61) (06, 69) (95, 13) (86, 41) (05, 19) (02, 55) (86, 89) (47, 11) (80, 34)

↓ Sort the sequence according to the �rst condition of De�nition 3. ↓

(02, 55) (05, 19) (06, 69) (26, 61) (47, 11) (80, 34) (86, 41) (86, 89) (95, 13)

↓ Separate into chunks of size n and sort them according to the second condition of

De�nition 3. ↓

(05, 19)

(02, 55)

(06, 69)

(47, 11)

(80, 34)

(26, 61)

(95, 13)

(86, 41)

(86, 89)

Figure 3.4: An illustration of the algorithm outlined in �eorem 3. �e last step gives the rows of
the �nal matrix which is then in a stable state.

�eorem 3 (Construction of a stable sate, [MW15]). For every set of points
P = {p1, . . . , pN | pi ∈ R2} there is a stable placement π. Such a stable placement can be found in
at most O(N log(N)) when considering a comparison-based se�ing9.

Proof. Consider the points p1, . . . , pN as a sequence. Sort this sequence according to the �rst

condition given in De�nition 3. Obtain a sequence

(q1
1, q

2
1), (q1

2, q
2
2), . . . , (q1

N , q
2
N),

where for i, j ∈ [N], i < j we have q1
i < q1

j or (q1
i = q1

j ∧ q2
i < q2

j). Now split this sequence into

n blocks of size n as follows:

(q1
1, q

2
1), . . . , (q1

n, q
2
n)︸ ︷︷ ︸

=:Q1

, (q1
n+1, q

2
n+1), . . . , (q1

2n, q
2
2n)︸ ︷︷ ︸

=:Q2

,

. . . (q1
n2−n+1, q

2
n2−n+1), . . . , (q1

N , q
2
N),︸ ︷︷ ︸

=:Qn

.

Now consider each sequence Qi and sort it according to the second condition given in De�ni-

tion 3. Obtain a sequence

Rk := (r1
1, r

2
1), (r1

2, r
2
2), . . . , (r1

n, r
2
n), k ∈ [n],

9
�roughout the remainder of this section, we will assume a comparison-based model. �at is, when sorting keys,

we assume that information on a pair of keys is given solely by a comparison running in constant time. �is

implies that we neglect e�ects of the bit length of the real numbers considered. In more general se�ings, sorting

of n integers can be achieved in O(n log(log(n))), see [And+98].

33

I Notions of Neighborhood and corresponding Data Structures

where for i, j ∈ [n], i < j we have r2
i < r2

j or (r2
i = r2

j ∧ r1
i < r1

j). �at is, the points in

the sequence Rk are sorted according to the second condition of De�nition 3. Furthermore, for

i, j ∈ [n], i < j, any point from Ri satis�es the �rst condition of De�nition 3 when compared

to any point from Rj , since the Rk are derived from the Qk. �erefore, placing the sequence Rk

into the kth column of the matrix M results in a stable state.

Concerning the runtime, in the �rst step, N points were sorted, which is well known to take

O(N log(N)). In the second step, n sets of n points each were sorted, which takes

n · O(n log(n)) = O(n2 log(
√
N)) = O(N log(N))

Hence, the stable state was computed in O(N log(N)).

An illustration of the procedure presented by this theorem is given in Figure 3.4.

�eorem 3 imposes an upper bound on the runtime of any time-optimal comparison-based

algorithm that creates a stable state of a matrix Mπ(P). �e next question is then: What is a

lower bound? At this point, Malheiros and Walter [MW15] state:

Note that the problem of sorting n unrelated lists of n real values hasO(n2 log n2) as its
established lower bound. We can build an associated spatial sorting problem by copying
each unsorted list to a matrix row, se�ing its x coordinates. We can also de�ne that for
the i-th row, all its y coordinates will be set to i. If the matrix is then spatially sorted
using the algorithm described earlier, the lists will be ordered. �erefore,O(N logN) is
also a lower bound for spatial sorting.

�e �aw in this argument is that the grid will not necessarily come to a stable state in which the

described n lists are placed in the respective rows. �at is due to the fact that a given point set

can have multiple stable states which we will show in the following.

3.2 Combinatorial Results on Stable States of the Neighborhood Grid
3.2.1 Counting Stable States

Before we proceed to deduce a lower bound on the building time of a neighborhood grid, we �rst

give some combinatorial results on the number of stable states. Concerning these, it is combi-

natorially not important what actual x- or y-values the points have, but only how these values

compare to each other. �erefore, the setup can be simpli�ed by �xing the x and y values each

on the set [N]. All combinations are given by the following setup: w.l.o.g. let p1
i = i for i ∈ [N].

�en, P is fully determined by a permutation σ ∈ SN , where P = {(i, σ(i)) | i = 1, . . . , N}. On

these restricted point sets, we can make the following statements.

�eorem 4 (Counting stable states, U. Reitebuch and M. S.). Given some N, n ∈ N with N = n2,
there are:

1. (n2)! restricted point sets P and thereby ((n2)!)2 di�erent ways to �ll the matrix,

2. ((n2)!/(n!)n)2 ways to �ll the matrix with a stable state,

3. each placement π is stable for exactly (n2)!/(n!)n restricted point sets P ,

4. 1/(n!)2n of all �llings of the matrix are stable.

34

3 �e Neighborhood Grid

Proof. Concerning the �rst statement, when building the points pi, iterate through the x-values.

For each x-value pick one of the y-values from [N] not picked yet. �en for x = 1, there are N
choices, for x = 2, there are N − 1 choices, etc. Hence there are N ! possible point sets. Each

pi of the point set P occupies one of the N points in the matrix, therefore, there are N ! ways to

write each point set into the matrix. �erefore, there are (N !)2
possible ways to �ll the matrix.

Concerning the second statement, a matrix is in a stable state if both conditions of De�nition 3

are met. Because of the restriction on the point sets as declared above, the equality case is never

met in either condition of De�nition 3. �erefore, for each condition, it su�ces to check the x- or

y-values respectively, neglecting the other. When se�ing up the x-values for the �rst row, one can

pick n of the possible N values, which then admit to a unique order. �erefore, for the x-values

in the �rst row, there are

(
n2

n

)
possibilities. For the second row, there are

(
n2−n
n

)
possibilities,

until there is

(
n2−(n−1)n

n

)
= 1 possibility for the last row. Overall, there are

(n−1)∏
k=0

(
n2 − kn

n

)
=

n2!

(n2 − n)!n!
· (n2 − n)!

(n2 − 2n)!n!
· . . . · (2n)!

n!n!
· n!

n!
=

(n2)!

(n!)n

possibilities to put x-values into the matrix and obtain a stable state from them. Accordingly,

there are
(n2)!
(n!)n

ways to write y-values into the matrix and obtain a stable state. Hence, overall,

there are (
(n2)!

(n!)n

)2

stable states.

By a similar argument, we can compute the number of point setsP for which a given placement

π is stable. Consider a placement π that �xes the x-values in Mπ(P) such that they are stable.

When counting the number of point sets for which π is stable, we can now pair the already placed

x-values with y-values as follows: When se�ing up the y-values for the �rst column, one can pick

n of the possible N = n2
values, which then admit to a unique order in the column. �erefore,

for the y-values in the �rst column, there are

(
n2

n

)
possibilities, for the second column, there are(

n2−n
n

)
possibilities, etc. until overall, there are

(n2)!
(n!)n

possibilities to put y-values into the matrix

and obtain a stable state from them utilizing the �xed π. �at is, a placement π is always stable

for exactly
(n2)!
(n!)n

point sets.

Finally, because of the �rst two results, the fraction of stable �llings amongst all �llings of the

matrix are (
(n2)!
(n!)n

)2

((n2)!)2
=

1

(n!)2n
.

3.2.2 Lower Bound

Having the necessary results at hand, we can now prove a lower bound on the building time of the

neighborhood grid. Consider any comparison-based algorithmA that creates a stable placement

for a given point set. Each query of A can be considered as a node of a decision-tree where

the leaves correspond to placements of which some are stable for the given set. For an optimal

algorithm, this tree is balanced and has depth log((n2)!). Recall the result of �eorem 4 that any

35

I Notions of Neighborhood and corresponding Data Structures

placement π is stable for
(n2)!
(n!)n

restricted point sets. �us, when building the tree, the algorithm

A cannot stop at a subtree with more than
(n2)!
(n!)n

leaves, as one of them will surely not be stable

under the currently considered placement. �at is, the tree has to be traversed to depth at least

log((n2)!)− log

(
(n2)!

(n!)n

)
= log

(
(n2)! · (n!)n

(n2)!

)
= log((n!)n) = n · log(n!)

∈ Ω(n2 · log(n)).

�erefore, each comparison-based algorithm building a stable state needs to perform at least

Ω(n2 · log(n)) operations. �is proves the following theorem:

�eorem 5 (Time-optimality of the building algorithm, S. Das, U. Reitebuch, and M. S.). �e algo-
rithm presented in the proof of �eorem 3 is a time-optimal building algorithm for the neighborhood
grid amongst all comparison-based algorithms and takes Θ(N log(N)) time to build a grid for a
point set P of N points.

3.3 Uniqueness of Stable States
In the previous section it was shown that the algorithm outlined in �eorem 3 is a time-optimal

building algorithm for the neighborhood grid. In their article [MW15], Malheiros and Walter

give a di�erent proof for the same fact. We will present the proof here and show in the upcoming

sections why it is �awed for larger n. First, we make the following assumption.

Assumption 1. Given some n ∈ N, assume that there is a set P of points p1, . . . , pN such that
there exists a unique stable state for P .

Given that assumption, optimality of the Algorithm of �eorem 3 follows by the following

argument as given by Malheiros and Walter [MW15]:

Proof. Given ann ∈ N and the set of pointsP assumed to exist by Assumption 1. �en, the unique

stable state in particular satis�es the �rst condition of De�nition 3 for every row. �erefore, the

algorithm needs to sort every row, which takes at least Ω(n log(n)) time for each row, that is

n · Ω(n log(n)) = Ω(N log(N)) time at least in total. Hence, given Assumption 1, Ω(N log(N))
is a lower bound on the computation of a stable state.

Note that the assumption of the existence of a unique stable state is crucial in this argument.

If the assumption was proven to be wrong, the algorithm could pick any stable state to create a

sorting of the rows there, which could lead to a faster than Θ(N log(N)) algorithm because of

more searched-for elements in an equally large search space.

Concerning Assumption 1, it is not at all obvious that for a given point set, there has to be a

unique stable state. �ree point sets are given in Figure 3.5, where two have a unique stable state,

while the other one has two stable states. �e uniqueness of the stable state of the 2× 2 matrix

shown follows by this reasoning: �e element (1, 1) has to be placed in the lower le� corner,

since it has lowest x-, as well as lowest y-value compared to all other elements. �e element

(2, 4) has largest y-value, therefore it needs to be placed in the upper row. But it also has second

lowest x-value, therefore it has to be placed in the upper le� or lower right corner. Taken these

two arguments together, the element has to be placed in the upper le� corner. Finally, the shown

set is the only way to complete the matrix to a stable state.

�e examples from Figure 3.5 pose two further questions:

36

3 �e Neighborhood Grid

(2, 4) (3, 3)

(1, 1) (4, 2)

(2, 2) (4, 4)

(1, 1) (3, 3)

(3, 3) (4, 4)

(1, 1) (2, 2) (1, 1) (6, 2) (7, 3)

(2, 6) (5, 5) (8, 4)

(3, 7) (4, 8) (9, 9)

Figure 3.5: On the le� a point set with n = 2 which has a unique stable state. In the middle a point
set with n = 2 with its two possible stable states. On the right a point set with n = 3 which has a
unique stable state.

(2, 3) (4, 4)

(1, 1) (3, 2)

(3, 2) (4, 4)

(1, 1) (2, 3)

Figure 3.6: On the le� hand side a set in stable state, satisfying both x- and y-bin condition. On the
right a stable state of the same set P , showing that x- and y-bin condition do not imply uniqueness.

1. Is there a restricted point set P for every n ∈ N that has a unique stable state? �at is, does

Assumption 1 hold?

2. Can we classify all restricted point sets with unique stable states?

3.3.1 First Necessary Condition on Stable States

For a necessary condition on the uniqueness of a stable state, reconsider the algorithm outlined

in �eorem 3. Note that the n smallest x-values are placed in the �rst column, the n second-

smallest x-values are placed in the second column, etc. Finally, a stable state is obtained from this

procedure. Furthermore, the algorithm can be run the other way around, placing the n smallest

y-values in the �rst row, the n second-smallest y values in the second row, and so on to reach a

stable state. In the following, we will call these two conditions x-bin and y-bin condition.

Assume now that a stable state is given, which violates the x-, the y-, or both bin conditions.

�en, applying the algorithm from �eorem 3 with sorting according to the violated bin condi-

tion gives another stable state for the same points. �is observation establishes the following

necessary condition for the uniqueness of a stable state.

�eorem 6 (First necessary condition on stable states, U. Reitebuch and M. S.). Given a matrix
M in stable state. If the stable state is unique, then both the x- and the y-bin condition hold.

Note that �eorem 6 does not give an equivalence. Consider the point set

P = {(1, 1), (2, 3), (3, 2), (4, 4)}.

A stable state of this set satisfying both x- and y-bin condition is shown on the le� side of Fig-

ure 3.6. However, the point set admits to a second stable state, shown on the right side of Fig-

ure 3.6. �is showcases that x- and y-bin condition are only necessary, but not su�cient condi-

tions.

37

I Notions of Neighborhood and corresponding Data Structures

(n!)n ((n2)!/(n!)n)− (n!)n (n2)!− ((n2)!/(n!)n)

(n!)n stable x− y − bin stable x− bin not stable

((n2)!/(n!)n)− (n!)n stable y − bin stable not stable

(n2)!− ((n2)!/(n!)n) not stable not stable not stable

Figure 3.7: Distribution of possibly unique stable states amongst all stable states and amongst all
states. �e outer le� column show the number of states satisfying the indicated conditions on the
x-values while the top row shows the number of states satisfying the indicated condition on the
y-values.

n stable states ((n2)!
(n!)n

)2 x-y-bin stable (n!)2n

1 1 1

2 36 16

3 2,822,400 46,656

4 3,976,941,969,000,000 110,075,314,176

Table 3.1:A numerical comparison of the number of stable states ((n2)!
(n!)n

)2 and the number of x-y-bin
stable states (n!)2n.

�eorem 4 already tells us that there are (n2)!/(n!)n ways to put x-values into the matrix such

that they form a stable state. Furthermore, there are (n2)! possible ways to �ll the matrix with

x-values. How many of these satisfy the condition of �eorem 6?

�eorem 7 (Upper bound on number of unique stable states, U. Reitebuch and M. S.). �ere are
(n!)2n stable states that satisfy both the x- and the y-bin condition.

Proof. Assume the x- and y-bin condition holds, then the �rst row contains the n smallest y-

values, while the �rst column contains the n smallest x-values. Either values can be permuted

arbitrarily without destroying the stable state. �is holds for every row and every column. �ere-

fore, there are (n!)n ways to reorganize the rows and similarly (n!)n ways to reorganize the

columns and still obtain a stable state. Hence, (n!)2n
stable states satisfy both bin conditions.

�e situation established in �eorems 4 and 7 can be visualized as in Figure 3.7. A numerical

comparison of the number of stable states ((n2)!
(n!)n

)2
and the number of x-y-bin stable states (n!)2n

is given in Table 3.1.

However, we can derive even more from the algorithm of �eorem 3.

3.3.2 Second Necessary Condition on Stable States

Given the terminology and results from Section 3.3.1, we can derive an even stronger necessary

condition for unique stable states. But before stating and proving it, we state the following corol-

lary which can be directly derived from De�nition 3.

Corollary 1 (Submatrices of stable states are stable, U. Reitebuch and M. S.). Given an n × n
matrixMπ(P) in a stable state, then all `× ` submatrices ofMπ(P) with ` ∈ [n] are also in a stable
state.

Utilizing this corollary, we can now make the following stronger statement on submatrices of

matrices in a unique stable state.

38

3 �e Neighborhood Grid

Figure 3.8:All 12 unique 2×2 stable states. Light blue edges correspond to horizontal neighborhood
relation in the grid, while dark blue edges indicate a vertical neighborhood relation in the grid.

�eorem 8 (Second necessary condition on stable states, U. Reitebuch and M. S.). Given an n×n
matrix Mπ(P) in stable state. If the stable state is unique, then any ` × ` connected submatrix of
Mπ(P) with ` ∈ [n] is in a unique stable state.

Proof. Given some n× n matrix Mπ(P) in a unique stable state. Assume there exists some `× `
connected submatrix M̃ of M , ` ∈ [n], such that M̃ does not have one unique stable state, but

has a di�erent stable state M . Assume that M̃ occupies rows r, . . . , r + (` − 1) and columns

c, . . . , c+ (`− 1) in M , with r, c ∈ [n− `].
Because of the �rst necessary condition on stable states (�eorem 6), we know that the x-

values of any elements in columns 1, . . . , c−1 are smaller and the x-values of any elements in the

columns c+`, . . . , n are larger than all x-values in M̃ respectively. �is remains true independent

of any stable reordering within the submatrix, in particular for the reordering induced byM . �e

same argument holds for the y-values in rows 1, . . . , r − 1 and the y-values in rows r + `, . . . , n

when compared with the y-values of M̃ and M respectively. �erefore, replacing M̃ by M in M
gives another stable state, which violates the uniqueness of M .

3.3.3 Enumeration of all unique Stable States

�e number of unique stable states for any n ∈ N is given in Table 3.2. All unique stable states

for n = 2 and n = 3 are shown in Figures 3.8 and 3.9 respectively. Brute-Force computation

shows that none of the 37, 536 possible 4×4 point sets satisfying the second necessary condition

established in �eorem 8 is uniquely stable. �at is, Assumption 1 does not hold. Furthermore,

from n = 4 upward, there can never again be any uniquely stable point set, as if there was one,

it would have to include a unique stable 4 × 4 state by Corollary 1, which does not exist. �is

proves the argument of Malheiros and Walter [MW15] to be incorrect.

�e currently lowest number of states forN = 16 is 7 and was found by Dr. Adrian Neumann.

�e fact that for n ≥ 4 there is no point set with a unique stable state raises the following

question:

Open�estion 1. Given n ∈ N, n ≥ 4, what is a point set P with the minimum number of stable
states among any point set with n2 points?

n 1 2 3 ≥ 4
stable states 1 12 966 0

Table 3.2: Number of unique stable states for n× n matrices.

39

I
N
otions

ofN
eighborhood

and
corresponding

D
ata

Structures

Figure 3.9: All 966 unique 3× 3 stable states.

4
0

3 �e Neighborhood Grid

Figure 3.10: �e �ve possible Ferrers diagrams for the partitions of N = 4 given by λ = (4),
λ = (3, 1), λ = (2, 2), λ = (2, 1, 1) and λ = (1, 1, 1, 1).

1 2 3

4

4 1 3

2

Figure 3.11: Two Young tableaux corresponding to the partition λ = (3, 1) of N = 4. �e le�
tableau is standard, while the right one is not.

3.4 The worst Stable State
We proceed by turning the question from the last paragraph around. What is the maximal num-

ber of stable states a point set can obtain for some given n ∈ N? In order to investigate this

question, we �rst turn to a speci�c point set, for which we can count the number of stable states.

Consider the “diagonal
10

”: {(1, 1), (2, 2), . . . , (n2, n2)}. Counting the number of stable states for

the diagonal is equivalent to placing only one number in each �eld of the n × n matrix, which

then has to satisfy both conditions of De�nition 3.

In order to count the number of stable states for the diagonal, we introduce the concept of

Ferrers diagrams and Young tableaux reproduced from [Sag01].

De�nition 4. Let λ = (λ1, λ2, . . . , λ`), λ1 ≥ λ2 ≥ . . . ≥ λ` be a partition of N . �e Ferrers

diagram of λ is an array of N cells having ` le�-justi�ed rows with row i containing λi cells for
1 ≤ i ≤ `.

Consider for example N = 4. �en, N can be partitioned in �ve di�erent ways:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1,

as illustrated in Figure 3.10.

De�nition 5. Let λ = (λ1, λ2, . . . , λ`), λ1 ≥ λ2 ≥ . . . ≥ λ` be a partition of N . A Young tableau

of shape λ is an array t obtained by �lling the cells of the Ferrers diagram of λ with the numbers
1, 2, . . . , N bijectively. A tableau t is standard if the rows and columns of t are increasing sequences.

See Figure 3.11 for an illustration of this de�nition.

Clearly, the number of standard Young tableaux of shape λ = (n, . . . , n) for N = n2
is equal

to the number of stable states for the diagonal. Denote by fλ the number of standard λ-tableaux.

In order to compute it, we introduce the concept of hooks.

De�nition 6. If v = (i, j) is a node in the Ferrers diagram of λ, then it has hook

Hv = Hi,j = {(i, j′) | j′ > j} ∪ {(i′, j) | i′ ≥ i}

with corresponding hook-length

hv = hi,j = |Hi,j|.
10

We favor this name alluding to the diagonal morphism in category theory. However, it is the identity permutation

and is therefore referred to as “identity” in the corresponding publications listed on page 5.

41

I Notions of Neighborhood and corresponding Data Structures

Figure 3.12: Given the partition λ = (5, 4, 3, 3, 1) of N = 16, the dots show the hook H2,2 with a
hook length of h2,2 = 5.

See Figure 3.12 for an illustration of this de�nition. It is now easy to state the hook formula of

Frame, Robinson, and �rall, see [Sag01, p. 124].

�eorem 9 (Hook formula, [Sag01], p. 124). Let λ = (λ1, . . . , λ`), λ1 ≥ λ2 ≥ . . . ≥ λ` be a
partition of N . �en

fλ =
N !∏

(i,j)∈λ hi,j
.

In the concrete case of the diagonal, where N = n2
, λ = (n, . . . , n), we have

hi,j = n− i+ n− j + 1 = 2n− i− j + 1.

�erefore, the number of stable states of the diagonal is given by

f (n,...,n) =
N !∏n

i=1

∏n
j=1(2n− i− j + 1)

. (3.2)

�e results for n ∈ {1, 2, 3} and computational experiments lead us to state the following con-

jecture.

Conjecture 1 (Upper bound stable state, U. Reitebuch and M. Skrodzki). Given n ∈ N, the number
of stable states of any point set P on n2 points is less or equal to f (n,...,n).

�e number f (n,...,n)
also counts the number of linear extensions of the n × n la�ice and is

thereby connected to posets (partially ordered sets). �is gives another angle at Conjecture 1 as

we will elaborate in the following.

De�nition 7. Given a set A and a symmetric, anti-symmetric, and transitive relation � on the
elements of A. �en (A,�) is called a partially ordered set, short: poset.

�e speci�c entities that we want to relate to in poset theory are the linear extensions of a poset.

De�nition 8. Given a poset P = (A,�) with |A| = N . A linear extension of P is a function
f : P → [N] such that f is bijective and

x � y ⇒ f(x) ≥ f(y),

with ≥ the regular order relation on N.

Our aim is to count the number of linear extensions of a speci�c poset, the so-called n× n la�ice.

42

3 �e Neighborhood Grid

(1, 1)1

(2, 2)2 (3, 3)3

(4, 4)4

1

1

2

3

4

(1, 1)1

(2, 2)3 (3, 3)2

(4, 4)4

1

1

3

2

4

Figure 3.13: �e two possible linear extensions of the 2 × 2 la�ice corresponding to the respective
(2, 2) Young Tableaux.

De�nition 9. �e poset (Xn,�) with Xn = {(i, j) | 1 ≤ i ≤ j ≤ n} and (i, j) � (k, `) if and
only if i ≥ k and j ≥ ` is called the n× n la�ice.

�e following corollary now relates the number of linear extensions of the n × n la�ice to the

number of standard Young Tableaux of the shape (n, . . . , n).

Corollary 2. �e number of linear extensions of the n × n la�ice is exactly f (n,...,n) as given in
Equation (3.2).

Proof. Given a linear extension f of the n× n la�ice, it induces an (n, . . . , n) Young Tableau by

(Aij)i,j=1,...,n = (f(i, j))i,j=1,...,n. Furthermore, the map f 7→ (f(i, j))i,j=1,...,n is injective.

�is relationship gives another possible leverage on Conjecture 1. See Figure 3.13 for the two

possible linear extensions of the 2×2 la�ice and the two corresponding Young Tableaux of shape

(2, 2).

3.5 General Case, Parallelization, and Di�erent Sorting Algorithms
3.5.1 General Case

In Section 3.1.2, we made several restrictions. In the following, we will show that the data

structure—as well as the presented results and algorithms—do not su�er from these restrictions.

Not a square number of points A �rst assumption was that we are given exactly N = n2

points in the point setP . How can the structure handle a general number of points? Givenm ∈ N
points P = {p1, . . . , pm} with n2 ≥ m being the smallest square number larger or equal to m.

Let xmax be the largest �rst coordinate and let ymax be the largest second coordinate, i.e.

xmax := max{p1
1, . . . , p

1
m}, ymax := max{p2

1, . . . , p
2
m}.

Add n2−m auxiliary points of the form (xmax +1, ymax +1) to P . In the algorithm of �eorem 3,

these auxiliary points can be forced into the last two sequencesQn−1, Qn and thus be placed at the

topmost rows or rightmost columns of the grid where they can be neglected in any neighborhood

queries.

Larger dimension than d = 2 �e second assumption was that the points pi ∈ P are two-

dimensional. For higher dimensions, d > 2, consider a d-dimensional grid with side length n
instead of a matrix, i.e. Mπ(P) ∈ (Rd)n×...×n. Denote by

pi = (p1
i , . . . , p

d
i) ∈ P , pj = (p1

j , . . . , p
d
j) ∈ P , pi 6= pj

43

I Notions of Neighborhood and corresponding Data Structures

two points stored at cells (c1, . . . , cd), (c
′
1, . . . , c

′
d) ∈ [n]d in Mπ(P), (c1, . . . , cd) 6= (c′1, . . . , c

′
d).

�ere are now d sorting conditions, as for each ` ∈ [d] there is one condition: Either c` 6= c′` or

w.l.o.g. c` < c′` and

pi` < pj`

∨(pi` = pj` ∧ pi(`+1) < pj(`+1))

∨ . . .
∨(pi` = pj` ∧ . . . ∧ pi(d−1) = pj(d−1) ∧ pid < pjd)

∨(pi` = pj` ∧ . . . ∧ pid = pjd ∧ pi1 < pj1)

∨ . . .
∨(pi` = pj` ∧ . . . ∧ pid = pjd ∧ pi1 = pj1 ∧ . . . ∧ pi(`−2) = pj(`−2)

∧ pi(`−1) < pj(`−1)).

(3.3)

�at is, in the `th dimension of the grid, two points are compared starting from the `th coordinate.

�e comparison is performed cyclically through all coordinates. �e point pi is considered to be

smaller than the point pj in the `th coordinate if starting from `, the �rst coordinate where pi and

pj di�er is smaller in pi.

Equal points If there are points pi, pj ∈ P such that pi = pj , no total ordering can be imposed

on the points using Equation (3.3). �is tie can (in case of equality of the points) be easily broken

by declaring pi to be “smaller” than pj if and only if i < j, cf. Footnote 7, page 21.

3.5.2 Iterative Parallelized Procedure

A bene�t of the neighborhood grid data structure not discussed so far is the straight forward

parallelization of an algorithm creating a stable state. In this section, we discuss the parallelization

of a building algorithm for stable states, investigate its runtime, and elaborate on how iterative

procedures can speed up the re-building of a stable state in case of addition or deletion of points.

�e idea of iterative and parallel creation of stable states is discussed in [MW15] at great detail

and we are only going to state the basic ideas and results here. However, some questions are not

investigated in their paper, which we are going to tackle here. Parallelization of the algorithm

from �eorem 3 will be discussed in Section 3.5.3. �e general scheme for a two-dimensional grid

is quite simple and given in Algorithm 3.

Algorithm 3 Iterative Parallelized Sorting of a Neighborhood Grid

1: procedure Iterative Parallelized Sorting(Grid G)

2: while ¬sorted(G) do
3: sort all rows of G in parallel

4: sort all columns of G in parallel

5: end while
6: end procedure

�is algorithm can be completely run in parallel if
d
√
N processors are available, which should

be realistic given the possibility to use GPU shaders for this task. An immediate question follow-

ing this algorithm concerns its termination and correctness. Does it terminate and if so, is the

�nal state stable? Malheiros and Walter did not answer this question in [MW15], nor did Joselli

et al. in the original publications [Jos+09; Jos+15], where the idea of Algorithm 3 is also used. We

will prove the termination here.

44

3 �e Neighborhood Grid

Figure 3.14: Step-based odd-even sort on a two-dimensional neighborhood grid.

�eorem 10 (Convergence of Algorithm 3, U. Reitebuch and M. S.). Given any point set P ⊂ R2

with N points, placing the points in a matrix Mπ(P) as described in Section 3.1.2, and running
Algorithm 3 on the matrix, the algorithm terminates and yields a stable state ofMπ(P).

Proof. Given a matrix Mπ(P) as in (3.1), consider the following expression:

E(Mπ(P)) =
n∑

i,j=1

i · p1
π−1(i,j) + j · p2

π−1(i,j), (3.4)

for each sorting step of Algorithm 3, this expression grows strictly monotonically, but it can at

most a�ain N ! many di�erent values.

If the matrix is not in a stable state, i.e. there is a row or column violating the stable state,

sorting this row or column lets expression (3.4) grow and resolves the con�ict in the given row or

column, possibly creating a new con�ict in another row or column. �erefore, a local maximum

of this expression is equivalent to a stable state in the matrix.

Note that the energy functional (3.4) can easily be extended to higher-dimensional se�ings.

Given a corresponding version of Algorithm 3 for the higher-dimensional case, �eorem 10 holds

true for arbitrary dimensional point sets.

In their work [MW15], Malheiros and Walter investigate a slight variation of Algorithm 3.

Namely, they do not perform a full sorting of a row or column, but rather consider one step

of the odd-even sort algorithm of Habermann, see [Hab72]. Such step performs an exchange

between all those cells in odd columns and their respective right neighboring cells, if this pair

of cells violates the stable state conditions of De�nition 3. �en, all cells in even columns and

their respective right neighboring cells are compared and exchanged if necessary. �e same is

performed on all odd rows and even rows, yielding a four step mechanism, see Figure 3.14. �e

procedure can be run fully in parallel, if
d
√
N · b

d√N
2
c processors are available.

Note that the argument in the proof of �eorem 10 holds true also for this algorithm. �ere-

fore, it also terminates with a stable state. �e question remains how fast the algorithm works

asymptotically. Note that, defying intuition, elements can cycle through the matrix when using

this procedure. An example is given in Figure 3.15, where the algorithm depicted in Figure 3.14

is used. Given the possibility of cycling elements, the theoretical asymptotic bounds of the par-

allel iterative algorithm remain unclear and only experimental results are available, as presented

in [MW15].

Open �estion 2. Given the odd-even algorithm depicted in Figure 3.14, what is its parallelized
worst-case runtime aside from the upper bound of O(N !) as established in the proof of �eorem 10?

Our experiments let us to state the following conjecture:

45

I Notions of Neighborhood and corresponding Data Structures

(0, 3)

(3, 1)

(1, 0)

(2, 2)

x→
(0, 3)

(2, 2)

(1, 0)

(3, 1)

y→
(2, 2)

(0, 3)

(1, 0)

(3, 1)

x→
(1, 0)

(0, 3)

(2, 2)

(3, 1)

y→
(1, 0)

(0, 3)

(3, 1)

(2, 2)

Figure 3.15: Performing an odd-even sort alternating on all the rows and columns causes the blue
element (2, 2) to cycle through the matrix.

Conjecture 2 (Worst-case runtime of stepwise odd-even sort, U. Reitebuch and M. Skrodzki).
�e step-wise odd-even algorithm depicted in Figure 3.14 runs like Bubble-Sort in worst case time of
O(N2), a�er parallelization in O(N).

Compared to the single-core algorithm of �eorem 3, this would amount for a speed-up of only

log(n) despite the usage of O(n) processors. �us, in the following, we consider parallelization

of the algorithm from �eorem 3 and compare the neighborhood grid to an exact neighborhood

data structure.

3.5.3 Adaptive Sorting Algorithms for Fast Modifications, Comparison to k-d Trees,
and Parallelization of Theorem 3

�e most wide-spread data structure for neighborhood computation, k-d trees (see Section 2.1),

popular for its expected nearest neighbor lookup time ofO(log(n)) (see �eorem 2), su�ers from

a severe problem. Namely, if the underlying point set is slightly altered, the k-d tree might become

unbalanced. Although there are some heuristics how to modify k-d trees when adding or deleting

points, at some stage the k-d tree has to be rebuild, which is costly. �e authors of [GG99]

conclude to this end:

�e adaptive k-d tree is a rather static structure; it is obviously di�cult to keep the tree
balanced in the presence of frequent insertions and deletions.

In contrast, the neighborhood grid is built only with sorting algorithms. For these, adaptive

algorithms are available that bene�t from a sorted set into which a small number of records is

to be inserted, cf. [PM92]. �us, altering the point set underlying the neighborhood grid can

be performed faster than rebuilding a k-d tree. An exact investigation of this relation is le� for

future research.

Note that the algorithm presented in �eorem 3 needs to sort the given points. When utilizing

N/2 processors, sorting can be performed in log(N) time, see [AKS83]. �erefore, the presented

algorithm can be parallelized to run in O(log(N)). �is particular approach is of rather theo-

retical relevance, as the constants in [AKS83] are comparably large. However, other authors are

devoted on �nding more practical parallelizations, see [Ama+96]. Also, it makes for a signi�cant

speed-up compared to the algorithm depicted in Figure 3.14.

Compare this to building a k-d tree in parallel. A straight-forward parallelization would be as

follows: In each step i, we have to sort i sets of n2/2i points in the dimension with largest spread,

which takes log(n2) − i time for each of the log(n2) levels of the tree, resulting in an upper

bound for the total building time of Ω(log2(n)). However, this only holds for a straight forward

parallelization. As a k-d tree can be used for sorting by placing all points along one dimension,

by [Lei85], it has a minimum build time ofO(log(n)). To the best of our knowledge, it is unclear

whether the gap between this lower bound and the upper bound induced by the straight forward

parallelization can be closed.

46

3 �e Neighborhood Grid

�erefore, the neighborhood grid can be built slightly faster when compared with the straight

forward parallelized k-d tree, but only gives estimated answers, while the k-d tree provides exact

neighbor relations.

3.6 �ality of Neighborhood Approximation

As stated above, the neighborhood estimates given by the neighborhood grid data structure are

not necessarily precise. In this section, we will investigate the quality of the neighborhood ap-

proximation.

3.6.1 Single Point Neighbor

A �rst question to answer in this section concerns the distance of two geometrical nearest neigh-

bors from P in the stable state of Mπ(P). In the following, we will present a point set P with

points p, q ∈ P that are respective nearest neighbors to each other within P , but that lie on the

exact opposite sites of Mπ(P).

Consider the following points p = (0, 0), q = (1, 1), pi = (0, 2 + i/n), i = 1, . . . , n − 1,

qi = (1,−2− i/n), i = 1, . . . , n− 1, and ri,j = (1− 1/i, 2 + j/n), i = 2, . . . , n− 1, j = 1, . . . , n.

�is yields a point set P with n2
points for n ≥ 2, see Figure 3.16a. Given these points, the

following matrix is in a stable state:

Mπ(P) =

pn−1 r2,n . . . rn−1,n q
...

... . .
. ... q1

p1 r2,2 . . . rn−1,2

...
p r2,1 . . . rn−1,n qn−1

.

Note that the nearest neighbor to p and q in P is q and p respectively. However, in Mπ(P), these

points lie in the opposing corners of the matrix. �at is, in order to �nd the geometrically closest

neighbor to p inMπ(P), the n-ring around p has to be checked. In other words, all points have to

be checked, which takes Θ(n2) compared to the expected time of O(log(n)) as in k-d trees (see

�eorem 2).

3.6.2 All Point Nearest Neighbors

In the previous example, we saw that for a single point, its unique nearest neighbor can be ar-

bitrarily far away in the neighborhood grid. However, when considering all points, how is the

overall estimate? Here, we provide an example, where no point has its corresponding neighbor

within its one-ring in the neighborhood grid.

For n ∈ N, n mod 2 ≡ 0, consider the following points pi,j = (i, j), qi,j = (i + n, j + 0.5),

ri,j = (i+ 0.5, j + n), and si,j = (i+ n+ 0.5, j + n+ 0.5) for i, j ∈ {0, . . . , n
2
− 1}. �is yields

a point set P with n2
points, see Figure 3.16b. Given these points, the following matrix is in a

47

I Notions of Neighborhood and corresponding Data Structures

p

q

p1
p2
p3

q1q2q3

ri,j

(a) Point set P as given in Section 3.6.1.

p0,0 p1,0

p0,1 p1,1

q0,0 q1,0

q0,1 q1,1

r0,0 r1,0

r0,1 r1,1

s0,0 s1,0

s0,1 s1,1

(b) Point set P as given in Section 3.6.2 for n = 4.

Figure 3.16: Illustration of extremal examples where two geometrical nearest neighbors lie arbitrary
far from each other in the neighborhood grid and where no point of the input setP has its geometrical
nearest neighbor within its one-ring in the neighborhood grid.

stable state:

Mπ(P) =

q0,n
2
−1 s0,n

2
−1 q1,n

2
−1 s1,n

2
−1 . . . qn

2
−1,n

2
−1 sn

2
−1,n

2
−1

p0,n
2
−1 r0,n

2
−1 p1,n

2
−1 r1,n

2
−1 . . . pn

2
−1,n

2
−1 rn

2
−1,n

2
−1

...
...

...
... . .

. ...
...

q0,1 s0,1 q1,1 s1,1 . . . qn
2
−1,1 sn

2
−1,1

p0,1 r0,1 p1,1 r1,1 . . . pn
2
−1,1 rn

2
−1,1

q0,0 s0,0 q1,0 s1,0 . . . qn
2
−1,0 sn

2
−1,0

p0,0 r0,0 p1,0 r1,0 . . . pn
2
−1,0 rn

2
−1,0

.

Note that the nearest neighbor to pi,j is some pk,`, the nearest neighbor to qi,j is some qk,`, and

so on. However, none of the points has its corresponding neighbor in its one-ring. Expanding

this scheme by adding more four-point subsets, it is easily achievable to create point sets with

immediate stable states where no respective nearest neighbor is in the
n
4

ring of all points and so

on.

3.6.3 Experimental Results

We have given two constructions to create worst case behavior in the neighborhood estimates.

However, these constructions do not account for the average estimate to be expected for a random

point set. �erefore, we pose the following questions:

Open�estion 3. How good is the average neighborhood estimate of the neighborhood grid?
How does the building procedure a�ect the neighborhood quality?

Concerning both questions, we present experimental results here. We generated 70 point sets

with 1, 764 points each randomly in [0, 1]2 ⊂ R2
. �ey are randomly placed into the grid. �en,

each of the following four methods is applied in order to build a stable state on the grid:

48

3 �e Neighborhood Grid

Figure 3.17: From top to bo�om: Percentage of neighbors correctly reporting their 1st, 2nd, . . ., 8th
nearest neighbors when using (a) direct sorting following �eorem 3, (b) performing complete odd-
even-sort on all rows and columns alternating, (c) performing one step odd-even-sort on all rows and
columns alternating, (d) exchanging the pair of points which provide largest grow in Energy (3.4).
From le� to right, the boxes indicate whether every point knows its nearest, its two nearest, . . .,
its eight nearest neighbors amongst its one-ring of eight points. �e colored bars indicate to what
percentage the respective boxes are �lled. Note that the direct method of �eorem 3 runs fastest
among these methods but provides the worst results. Exchanging two points for maximum grow of
Energy (3.4) is the most time-consuming procedure but provides the best results.

(a) �e grid is sorted directly following the algorithm from �eorem 3.

(b) All rows are sorted, then all columns are sorted. �e procedure is iterated until conver-

gence.

(c) �e step-based odd-even sort as shown in Figure 3.14 is performed.

(d) We exchange those points pi, pj in the grid such that the grow in Energy 3.4 is maximal.

As the output of procedures b–d heavily depends on the initial placement of the points in the grid,

we apply the procedure on 30 di�erent random placements of each point set. Finally, we count

how many points in the grid have their nearest neighbor, their two nearest neighbors, . . ., and

their eight nearest neighbors within their one-ring. �e results are shown in Figure 3.17. Note

that the most time-consuming methods—exchanging by maximum growth of Energy (3.4)—gives

the best results while the direct sorting following �eorem 3 performs worst despite being the

fastest sorting method.

3.7 Conclusion and Future Work
In this section we have presented the neighborhood grid data structure of Joselli et al. [Jos+09;

Jos+15]. Starting from the results of Malheiros and Walter [MW15], we were able to prove asymp-

totic time-optimality of a deterministic building algorithm in �eorem 5.

�e proof required the investigation of several combinatorial questions of which some were

answered in �eorem 4 as well as Section 3.3.3. However, some combinatorial questions remain

49

I Notions of Neighborhood and corresponding Data Structures

open. Namely, it is unclear what the least number of stable states for a given grid size n is, see

Open �estion 1. For the dual question, asking for the largest number of stable states for a given

grid size n, we presented Conjecture 1.

Concerning the run time of the parallelized algorithm, the exact asymptotic time remains un-

clear, see Open �estion 2, for which we also present a conjecture, see Conjecture 2. Finally,

the quality of the neighborhoods given by the data structure was investigated experimentally.

�orough proofs for neighborhood qualities are le�—like the open questions and conjectures—as

future work.

50

II Manifold Structure for Point Set
Surfaces

4 Manifold Theory and Formulations for Point Set
Manifolds

In practical applications, digital point sets are representations of real-world objects. Although

there are acquisition techniques like MRI which provide a volumetric representation of a 3D

real-world object, all vision-based processes—like 3D (laser) scanning—only provide information

about the surface of the object. �e fundamental question we will investigate in this section

concerns the search for a convenient description of a point set surface in terms of a manifold-like

chart structure.

Given d, d′ ∈ N0, d′ ≤ d, a d′-manifoldM⊆ Rd
,M =

⋃
i Ui, Ui open, comes with mappings

ϕi : Ui → Rd′
, with i in some index set I (refer to De�nitions 10 and 11 for a precise formulation).

In a discrete se�ing acting with point sets, these Ui have to be modeled by neighborhoods as no

other structures can be imposed on a point set. A prominent �rst choice consists in modi�cations

of a k nearest neighborhood, see (1.1). �e fast generation of such neighborhoods with di�erent

data structures has been discussed in Sections 2 and 3. However, in general, a combinatorial

k nearest neighborhood is not a good notion for several aspects, such as curvature or normal

estimates. �e reason is that this type of neighborhood does not take into account the di�erent

densities that arise in a point set during acquisition (see Section 6 for a more thorough discussion).

Hence, an ε neighborhood—see (1.4)—is o�en a be�er choice and is just as e�ective, see [Skr14b].

However, it does not explain the generation of charts or transition maps between these. �e

major task in this section is therefore to �nd a meaningful description of manifold-like structures

for point sets.

On a slightly more global perspective, geometric point-clusters provide a coarse segmentation

of the geometry into parts that are formed by points which are close to each other in a given

similarity measure
1
. Again, it is an active topic in computational geometry how to analyze clus-

tering algorithms in terms of complexity and statistical properties, see [FHT01; Bis06]. �is is

in particular true because of the connections to the vast topic of big data analysis, see [Fah+14].

However, these clusters do not overlap and thus do not mimic open sets on a manifold.

Yet another approach is to not compute exact neighborhoods, but only approximate them in

favor of be�er runtime behavior. �is approach can be realized using provably e�cient data struc-

tures, as discussed on the example of the neighborhood grid in Section 3. A di�erent approach

to neighborhood approximation is taken for example by the authors of [Mul+14] who present a

fairly elaborate data structure which can answer an approximate k-�at nearest neighbor query

1
�is measure could e.g. be a bilateral measure, incorporating both normal information and euclidean distance, cf.

the procedure of Section 1.

51

II Manifold Structure for Point Set Surfaces

on n points in time O(nk/(k+1−ρ)+t) for some ρ, t > 0.

We would like to take the—from a di�erential geometric perspective—next step and de�ne a

manifold-like structure on a point set representing a d′-manifold. �us, the two main contribu-

tions of this section are:

I Establishing that d′ = 0 is an impractical choice for the manifold dimension of a point set.

I De�nition of a scheme to treat point sets as manifolds via a transition manifold.

4.1 Definition of a Smooth Manifold
In this section, we review the de�nition of a manifold. A thorough account on smooth manifolds

is [Lee12]. �e terminology set here will be used in the following sections.

De�nition 10. A topological space (M, T) of a setM and a topology T onM is called a topo-

logical d′-manifold, d′ ∈ N0, if the following requirements are met.

1. (M, T) is a Hausdor� space. �at is, for all elements pi, pj ∈ M there are open subsets
Ui, Uj ∈ T such that Ui ∩ Uj = ∅, pi ∈ Ui, and pj ∈ Uj .

2. (M, T) is second countable. �at is, there exists a countable basis for T .

3. (M, T) is locally Euclidean of dimension d′. �at is, for every element pi ∈ M, there exist
open subsets Ui ⊂M, U ′i ⊂ Rd′ with pi ∈ Ui and a homeomorphism ϕ : Ui → U ′i .

We will now further elaborate on the local descriptions of the manifold as part of Rd′
.

De�nition 11. Let (M, T) be a topological d′-manifold.

I A (coordinate) chart on (M, T) is a pair (Ui, ϕ), where Ui ∈ T and
ϕ : Ui → U ′i ⊂ Rd′ a homeomorphism with U ′i open in Rd′ .

I If (Ui, ϕi), (Uj, ϕj) are two charts with Ui ∩ Uj 6= ∅, then the map
ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) is called the transition map from ϕi to ϕj .
I A set A of charts is called an atlas of (M, T) if the domains of the charts coverM.

Finally, we want to impose the notion of smoothness on the manifold. Having atlases and tran-

sition maps at hand, we can do this with the following de�nition.

De�nition 12. Let (M, T) be a topological d′-manifold with at least two charts (Ui, ϕi), (Uj, ϕj).
�e charts are called smoothly compatible if either Ui ∩Uj = ∅ or the transition map ϕj ◦ϕ−1

i is a
di�eomorphism, i.e. both ϕj ◦ ϕ−1

i and its inverse are in C∞.
An atlas A is called smooth, if all charts in A are pairwise smoothly compatible. A smooth atlas A
onM is maximal if it is not contained in any smooth atlas with strictly more charts.
A smooth d′-manifold is a pair ((M, T),A) of a topological d′-manifold (M, T) and a maximal
smooth atlas A.

4.2 Point Sets as 0-Manifolds
A �rst intuitive approach is to consider a given point set P = {p1, . . . , pn} as zero-dimensional

manifold, i.e. choosing d′ = 0. �is is to say that the setM = P is given the topology T generated

by the open setsUi = {pi}, i ∈ [n]. Given this basis, (M, T) is Hausdor�, since pi, pj ∈M can be

separated by the open sets Ui, Uj ∈ T . Furthermore, (M, T) is second countable since the basis

{Ui | i ∈ [n]} for T is �nite. Finally, the manifold (M, T) is also locally Euclidean of dimension

52

4 Manifold �eory and Formulations for Point Set Manifolds

Ui

U ′i

ϕi

Ui Uj

U ′i U ′j

ϕi ϕj

ϕj ◦ ϕ−1
i

Figure 4.1: An illustration of a chart on the le� and a transition map on the right as given in
De�nition 11.

d′ = 0, since for each pi ∈ M , the map ϕ : Ui = {pi} → R0 = {0} is a homeomorphism. �us,

M satis�es all properties of a topological manifold.

With the construction as given above, (M, T) is even a smooth 0-manifold as speci�ed in

De�nition 12. �e only possible 0-dimensional subsets ofM to be mapped to R0 = {0} under

a homeomorphism are those consisting of a single element. �us, the Ui = {pi} as given above

are the only possible open subsets and hence the atlas A = {ϕi : Ui → R0 | i ∈ [n]} is maximal.

As Ui ∩ Uj = ∅ for all i, j ∈ [n], i 6= j, the maps ϕi are smoothly compatible.

However, regarding the point set P as a 0-manifoldM leads toM being disconnected, as the

following theorem shows.

�eorem 11 (Finite Hausdor� spaces are disconnected, Elementary Topology). Given a topolog-
ical space (M, T) that is Hausdor�, consists of �nitely many elements, and includes at least two
elements. �en each set of the form {pi}, pi ∈M is open and (M, T) is disconnected.

Proof. Let pi ∈ M be some arbitrary element. Since (M, T) is Hausdor�, for every pj ∈ M,

there exists some Uj̄ ∈ T such that pi ∈ Uj̄ and pj /∈ Uj̄ . �en the intersection

⋂
pj∈M\{pi}

Uj̄ = {pi}

is an element of T and thus open. Furthermore,

⋃
pj∈M\{pi}{pj} is open, so is {pi} and their

union givesM. Hence, (M, T) is disconnected.

�is simple theorem shows that the discussion above is somewhat independent of the topology

imposed on the point set P , since the demand of the topological space being Hausdor� already

implies P to be disconnected, when considered as a manifold.

�e disconnectedness of the 0-manifoldM disquali�es 0-manifolds as practical objects in the

context of geometry processing. �us, a di�erent formulation has to be found for �nite point sets

to represent a manifold.

53

II Manifold Structure for Point Set Surfaces

pi

M

M̃

p̃i

p̃j

pj

p′i, p
′
j in the vicinity of P

p̃i ∈ M̃ 3 p̃j

p̄i p̄j

ϕi ϕj

manifold reconstruction

ϕi ◦ ϕ−1
j , ϕj ◦ ϕ−1

i

p′i

p′j

vicinity of pi

vicinity of pjϕi

ϕj

p̄i

p̄j

Rd′

Rd′

Figure 4.2: An illustration of the procedure to obtain smooth transition maps from a point set P by
using manifold reconstruction and the charts ϕ, ψ of the reconstructed manifold M̃ .

4.3 Recovered d′-Manifolds

We have seen above that the simple approach of perceiving a point set as 0-dimensional manifold

does not lead far. �erefore, consider the following setup to remedy this problem. In order to

increase readability, in the following, we will refer to a manifold (M, T) simply byM.

Suppose there exists a smooth d′-manifoldM from which only a possibly noisy sampleP ⊂ Rd

of n points pi ∈ P is known. Consider a smooth d′-manifold M̃ as a reconstruction ofM from

P . We will discuss in Section 4.4 how this reconstruction can be obtained. �en, for points p′i, p
′
j

in the vicinity of pi, pj ∈ P respectively, we can perform the following: Project p′i, p
′
j onto M̃

and obtain p̃i, p̃j respectively. Since M̃ is a manifold, there exist open subsets Ui, Uj ⊆ M̃ with

p̃i ∈ Ui, p̃j ∈ Uj and smoothly compatible coordinate charts ϕi : Ui → Rd′
, ϕj : Uj → Rd′

with ϕi(p
′
i) = p̄i ∈ Rd′

and ϕj(p
′
j) = p̄j ∈ Rd′

. �us, by projecting a small vicinity of pi and

pj onto M̃ and utilizing the transition map induced by ϕi and ϕj , one can realize a transition

map acting outside of the reconstructed manifold M̃ on the sampled points. Note that none of

this requires the manifoldM to be known or to be embedded in Euclidean space. Also, the point

samples P do not necessarily have to be embedded in Euclidean space. �e only requirement is

that there is some similarity measure
2

on the space from which the pi are taken and that a unique

projection onto the reconstructed manifold M̃ is possible, i.e. the sample P cannot be too noisy

or too sparse. �is idea is depicted in Figure 4.2.

�e remaining question is: What is a suitable procedure to compute the reconstructed manifold

M̃? In the following section, we will describe one possibility based on the MLS framework. A

di�erent approach is given in Section 5.

2
See Footnote 1 on page 51.

54

4 Manifold �eory and Formulations for Point Set Manifolds

4.4 Manifold Reconstruction using the Moving Least Squares Approach
�e Moving Least Squares (MLS) approach goes back to 1976 when introduced by McLain [McL76]

as a tool for function approximation. Ever since, it has been improved by many researchers and

translated to the context of surface approximation. If translated straight forward, the resulting

formulation for surfaces is not a projection procedure. In order to have projection properties for

the pipeline, the key change was to not consider the least squares distances ‖p− pi‖2
from a point

p ∈ Rd
to samples pi ∈ Rd

, but rather to consider the least square distance ‖MLS(p)− pi‖2
of the

yet unknown projection MLS(p) to the samples. �ese important aspects have been introduced

by David Levin [Lev04] and were subsequently used in the context of surface computation and

rendering [Ale+03]. Only quite recently, the MLS approach was extended to smooth manifolds

embedded in Euclidean space of arbitrary co-dimension [SL16]. Furthermore, the approach can

be used for the approximation of functions over manifolds [SAL17].

4.4.1 Introduction to Moving Least Squares

For an introduction to the Moving Least Squares (MLS) approach, we refer to [Nea04]. Here, we

will present the main results of [SL16] to the degree necessary for this thesis.

Sober and Levin, [SL16], build on previous work, see [Lev98; Lev04]. Even though their results

hold for smooth manifolds of arbitrary dimensions, in the following we will state all results in

the less general se�ing of manifolds of co-dimension 1—i.e. d′ = (d− 1)—as this is su�cient for

our purpose.

Assume there exists some smooth, unknown (d − 1)-dimensional manifold M embedded

into Rd
, sampled by a set of points P = {pi ∈ Rd | i ∈ [n]}. �e aim is to �nd an implicit de-

scription of a (d−1)-dimensional manifold M̃ approximatingM using P . For any point p ∈ Rd
,

this is done via projecting p onto M̃, which is realized in two steps:

1. Find a local approximating hyperplane Hp to serve as a local coordinate system close to p.

2. Project p using a local MLS approximation ofM over the coordinate system induced byH .

�is procedure is possible since the surface can be viewed locally as a graph of a function. We

will now elaborate on these two steps.

Step One of the MLS procedure Given p ∈ Rd
and sample points pi ∈ P ⊂ Rd

, we want to

�nd a hyperplane Hp which locally best approximates the point samples from P around p. We

de�ne the hyperplane via its unit-length normal vector a ∈ Rd
and its distance s ∈ R to p. In

other words, the hyperplane Hp is de�ned by a and placed at q = p+ sa, see Figure 4.3, resulting

in

Hp = {x ∈ Rd | 〈a, x〉 = 〈a, p+ sa〉}. (4.1)

�e normal direction a as well as the value s are found by minimizing the following energy

functional

Ip(a, s) =
n∑
i=1

(〈a, pi〉 − 〈a, p+ sa〉)2 · θ(‖pi − (p+ sa)‖),

s.t. ‖a‖ = 1.

(4.2)

55

II Manifold Structure for Point Set Surfaces

Hppi1
pi2 q

pi3
pi4

p

a

s

Figure 4.3: Illustration of the local hyperplane Hp obtained by step one of the MLS procedure, see
Section 4.4.1.

Here, θ is a non-negative weight function to localize the in�uence of the pi on Hp. �us, we pick

a θ ∈ C∞ of local support of radius r > 0, namely

θ(x) =

{
e−x

2/(x−r)2
for x ∈ (−r, r),

0 otherwise

. (4.3)

In any practical application, r has to be chosen according to the density of the point sample

and the curvature of the underlying manifold. It can also be chosen di�erently for each point p.

Note that the parameters a and s both appear inside the weight function θ, therefore minimizing

expression (4.2) cannot be performed as in [Nea04] via a linear system, but is more involved.

See [SL16] for an iterative procedure to �nd a pair of minimizers (a, s).

A �rst important result, following from (4.1) and (4.2) is the following theorem.

�eorem 12 (Projection Property of MLS, [SL16]). Let p ∈ Rd lie su�ciently close toM and let
(a, s) be a pair of minimizers of (4.2). �en, for any point p̃ ∈ Rd also close enough toM with
p̃ = p+ s̃a, s̃ ∈ R we have

arg min Ip(a, s) = arg min Ip̃(a, s− s̃).

In other words, any point p̃ on the line c · (p− q) + p, c ∈ R, that is still su�ciently close toM
yields the same hyperplane Hp̃ = Hp. For a formulation of the di�erent bounds on distances and

a proof of this theorem, we refer to [Lev04].

Step Two of theMLS procedure Given p ∈ Rd
, sample points pi ∈ P ⊂ Rd

, q = p+ sa ∈ Rd

as obtained from step one described above. Denote by qi ∈ Rd−1
the orthogonal projection of pi

to Hp expressed in the local coordinate system on Hp and by

fi = 〈pi − q, a〉 ∈ R1

the height of pi over the local coordinate system de�ned by Hp, see Figure 4.4. Furthermore,

consider

∏d−1
m to be the set of all (d − 1)-variate polynomials of total degree m. We �nd a

polynomial Pp as

Pp = arg minP∈∏d−1
m

n∑
i=1

(P(qi)− fi)2 · θ(‖pi − q‖). (4.4)

In contrast to the minimization in (4.1), the weights θ(‖pi − q‖) are now �xed and not a part of the

minimization process. �erefore, Equation (4.2) can be solved directly by solving a linear system,

see [Nea04]. For an illustration, see Figure 4.4. Now, the manifoldM can be approximated at the

point p by the approximating point p′ given as

p′ = q + Pp(0) · p− q
‖p− q‖

. (4.5)

�e central theorem of the MLS approach can now be stated as follows:

56

4 Manifold �eory and Formulations for Point Set Manifolds

Hpp1

p2
q

p3
p4

p

f1
f2

f3
f4

Pp

Figure 4.4: Illustration of the local polynomial Pp obtained by Step Two of the MLS procedure, see
Section 4.4.1.

�eorem 13 (Approximation power of MLS, [SL16]). Given a smooth manifoldM, assume that
P is a suitable sample ofM in the sense that �eorem 12 requires. Denote by fq the distance of q to
the intersection point of the line p̄q withM. �e order of the approximation error is then given as
follows

|‖p′ − q‖ − fq| ∈ O(hm+1), (4.6)

with p′ the MLS projection of p given by Equation 4.5.

For detailed requirements imposed on the sample and a proof, we refer to [SL16]. In the following,

we will refer to the whole projection procedure which maps p to p′ by

MLSP,r(p) = p′, (4.7)

indicating that the sample set P and radius r was used in the procedure.

4.4.2 Moving Least Squares for Chart Construction

Given the MLS procedure as described above, the reconstruction of a manifold from a point sam-

pleP—as aimed for in Section 4.3—can be performed in the following way: Given a possibly noisy

point sample P of an unknown smooth manifoldM. Consider the MLS approximation M̃ ofM
obtained from P . �en for each point pi, pj ∈ P , during the MLS approximation we perform

two steps. As described in 4.4.1, the �rst step yields local hyperplane approximations Hpi , Hpj

for pi, pj respectively. �ese local hyperplanes will serve as two-dimensional coordinate charts

providing (d− 1)-dimensional coordinates for all points in P .

�e second step of the MLS approximation—as described in Section 4.4.1—now de�nes polyno-

mials Ppi , Ppj on the respective local hyperplanes which in turn provide a height of the points of

P over the respective hyperplanes. �erefore, the inverse maps of ϕi and ϕj—projections from

M̃ onto Hpi and Hpj respectively—simply consist of taking a (d − 1)-dimensional point from

Hpi or Hpj respectively and equipping it with the height from the corresponding polynomial.

�ereby, one obtains a point in d-dimensional space: p̃i, p̃j ∈ M̃ . �e whole process is illustrated

in the diagram of Figure 4.5, also compare with the more general Figure 4.2.

�e coordinate charts ϕi, ϕj are projections from Rd
to Hpi , Hpj , restricted to M̃ . �ey are

smooth and bijective by the assumptions of �eorem 12. Furthermore, their inverse map consists

in the application of a polynomial which is smooth by de�nition. �ereby, we have obtained

smooth coherent transition maps that mimic the behavior of smooth transition maps on a smooth

manifold.

4.5 Conclusion: Local versus Global Charts
In the chart construction procedure given in Section 4.4.2, a chart is constructed for every element

of the point set P . �at is, if the geometry has locally �at areas, the procedure will still create

57

II Manifold Structure for Point Set Surfaces

pi

M

M̃

p̃i

p′i

p′j

p̃j

pj

Hpj

Hpi

pi, pj ∈ P

p̃i ∈ M̃ 3 p̃j

p′i ∈ Hp p′j ∈ Hp

ϕi ϕj

MLS Projection

map to Hpi map to Hpj

ϕi ◦ ϕ−1
j , ϕj ◦ ϕ−1

i

Apply heights fi, fj

MLS Projection

MLS Projection
ϕi

ϕj

Figure 4.5: An illustration of the procedure to obtain smooth transition maps from a point set P by
using MLS.

charts for each sample in these areas, even though the charts in one area will all be very similar

up to the approximation order of �eorem 13. �us, this procedure takes the role of creating

charts that map a small region of the whole geometry. In this sense, these charts are very local.

Note that the charts can even be created for points outside of the original sample set P , but will

still be localized at a chosen base point.

A completely di�erent approach is taken by Li et al. [Li+11]. �e authors consider a con-

cept originally introduced by Kälberer, Nieser, and Polthier [KNP07], which was reformulated by

Bommes, Zimmer, and Kobbelt [BZK09]. �is concept is translated to the se�ing of point sets. �e

authors �rst compute a direction �eld acting on all points of the sample set P . �is direction �eld

is then guiding a meshless global parametrization. For this, the point set is cut open along a graph

such that it becomes a topological disc. On the disc, the point set is parametrized. �en, along

the cut-graph, the gradients of the parametrization are �t such that possible error are distributed

and the parametrization lines �t along the cut-graph. In order to obtain a quad-parametrization,

mixed integer optimization is used. Using this procedure, a three-dimensional point set sampling

a surface is mapped by a global chart onto a �at, two-dimensional domain. A similar approach,

avoiding the costly computation of a reliable cut-graph on a point set is presented in [Jak+15].

�is approach is now to a certain extend the contrary to the MLS approach for chart construc-

tion. While the la�er creates extremely localized charts, the approach of Li et al. constructs a

global parametrization on the topological disc obtained from the point set. In a practical appli-

cation, it is however desirable to control the level of detail of the processed geometry. �us, the

user should be able to prescribe how many charts are needed for the application at hand. �is

cannot be done by these two approaches.

58

4 Manifold �eory and Formulations for Point Set Manifolds

4 8 12 16 20 24 28

10

20

30

40

50

60

k

R d = 2
d = 3

(√
k + 1

)2

(
3
√
k + 1

)3

Figure 4.6: Expected number of k-d tree cells R to be inspected when determining k neighbors of a
point from a point set embedded in dimension d, cf. Equation 2.6.

To make the local charts e�ciently accessible, we furnish each of them with its own local data

structure, e.g. a k-d tree (see Section 2) or a neighborhood grid (see Section 3). For the example

of k-d trees, as proven in Section 2.2, the number of queries to be posed for neighborhood detec-

tion depends exponentially on the dimension of the space into which the point set is embedded.

Given points distributed e.g. on a two-dimensional surface in R3
, the height over the approximat-

ing hyperplane is negligible in contrast to the two-dimensional coordinates on the hyperplane.

�erefore, in this case the queries can be sped up by only working on the chart domains, see Fig-

ure 4.6. To fully exploit this idea of locally �at structures, in the following, we aim at a technique

that produces a variable number of locally �at coordinate charts in a point set.

59

II Manifold Structure for Point Set Surfaces

5 Variational Shape Approximation
In the preceding section, we have reasoned that adaptive �at charts for point set surfaces are to

be sought. Furthermore, in Section 1.3, we have presented a method to grow neighborhoods from

the information given by the normal �eld. In order to construct �at regions in a point set, we turn

to a similar idea. However, now, the growing process is not started from every point, but from a

number of prescribed center points. Due to the variational problem involved, the approach was

coined Variational Shape Approximation (VSA). �e main contributions of the section are:

I Translation of the VSA algorithm to the se�ing of point sets.

I Enrichment of the algorithm with split and merge procedures to become independent of

the number of prescribed centers.

I Explanation of an example showing the di�erences between the k means algorithm and

the VSA procedure both on points and meshes.

I Description of a procedure to obtain a provable manifold structure from the set of grown

�at regions for star-convex input.

5.1 Related Work
Our proposed method incorporates point set segmentation as well as a combination of surface

reconstruction and simpli�cation. Both will be addressed subsequently.

5.1.1 Segmentation

As we propose an algorithm working solely with point sets (based on the work of [CAD04] deal-

ing with meshes and the work of [LB16] for point sets) we focus on segmentation algorithms

in the same se�ing. An overview on mesh segmentation is presented by [A�+06]. �e survey

of [NL13] covers relevant developments for point set segmentation until 2013. In terms of their

categorization, our method belongs to the area of seeded region-based methods, where we start

the segmentation process by selecting seed points and let the regions grow by adding neigh-

bors if they satisfy certain conditions like normal similarity. One early work in the same �eld

is presented in [BJ88]. �ey start with a coarse segmentation to identify the seed points with

the help of curvature labeling of points and then re�ne their regions while le�ing them grow

iteratively according to a�ributes like proximity and planarity. �e survey of [NL13] observes

that the procedure of [BJ88] has di�culties with noise—as this heavily in�uences curvature—

and is time consuming. �e authors of [KS00] proposed a statistical approach with a focus on

the merge of regions. �ey rely on the mutual inlier ratio (MIR) of adjacent regions and com-

pute these using regression techniques and methods to estimate the robust scale of the Gaussian

distribution. �eir merging applies to an irregular graph pyramid storing relative information

between the regions, which is utilized for comparison and merging. �e authors of [TP05] use

�ltering to segment data obtained by laser scanning devices, to distinguish between terrain and

object points. Here, they combine the strengths of two approaches. One which applies directly

on the raw scanned data with the help of geometric a�ributes. �e other �rst segments the data

and classi�es it according to the deduced segments. �e region growing process is performed

with respect to normal similarity and distance to a growing plane. In the article of [Sor+18], the

authors also segment a 3D object into di�erent charts. However, the main focus is on topological

quantities. �e work of [WI18] also presents a shape segmentation framework for point sets. It

consists of a three-step procedure to (1) �nd a local shape description, (2) compute shape simi-

larity measures, and (3) segment the shape from these. In particular the �rst step makes heavy

60

5 Variational Shape Approximation

use of the discretized Laplace operator. �e obtained result is however a semantic segmentation

of the point set, as a human observer would segment it, see [CGF09]. �us it di�ers from our

approach as we aim for syntactically segmented point sets with as-similar-as-possible normals

in each segment.

�e works of [SWK07] and [AP10] both aim at ��ing a set of primitives to the point set: plane,

sphere, cylinder, cone, and torus. When compared to the VSA approach, these papers give similar

results when reducing the primitive set to planes. Even then, the energy functionals ��ing the

planes to the point set are di�erent. �e authors of [SWK07] consider three points p1, p2, p3 ∈ P
of their input point set P and compute a normal of the plane spanned by these points. �is

normal is then compared to the normals of p1, p2, and p3 and the plane is considered to �t if all

three normal variations stay below a user-given angle. In contrast, the authors of [AP10] place

the plane at the weighted barycenter b of the segment {pi} ⊂ P to be considered. A weighted

covariance matrix is used to determine the normal n and the ��ing error is computed as∑
i

wi |〈n, pi − b〉2|2 ,

wherewi are the weight terms, see [AP10] for details. �is neglects the normal information at the

points pi. Both works segment the point set semantically without regard for the local curvature

information. Neither elaborates the surface reconstruction aspect.

In [LB16], the authors aim for feature extraction. �eir reconstructed feature curves approxi-

mate the regions lying along them on both sides. As they set their focus on feature detection, they

introduce a k-means algorithm similar to [CAD04] and the algorithm of this section, working on

the input point set. In contrast to the presented work, they use a �xed number of proxies, in-

stead of a �xed error threshold per proxy, which leads to the requirement of a good initial seeding.

With our approach, we overcome this drawback of optimal seed positions in seeded-region based

methods. �e authors of [LB16] also give results of simpli�cations rendered as meshes without

any analysis as to what requirements are needed in order to perform the surface reconstruction.

To this end, we aim at a concise procedure to guarantee a closed manifold under consideration of

combinatorial conditions in terms of the proxy neighborhoods. Furthermore, we give an explicit

algorithm as well as its evaluation for the simpli�ed surface reconstruction.

5.1.2 Surface Reconstruction & Simplification

A thorough introduction to the topic of surface reconstruction from point sets is given in the

survey of [Ber+17]. �e se�ing of point set representation is considered in [PKG06]. �e lat-

ter present a multi-scale surface representation based on point samples. Given an unstructured

point set as input, their method �rst computes a series of point-based surface approximations

at successively higher levels of smoothness using geometric low-pass �ltering. �ese point sets

are then encoded relative to each other by expressing each level as a scalar displacement of its

predecessor. Low-pass �ltering and encoding are combined in an e�cient multilevel projection

operator using local weighted least squares ��ing similar to [SL16].

Being precise, we neither reconstruct the surface in a general sense, as we only try to gain a

coarse approximation of the surface based on the proxies instead of keeping all the details the

point set might encode. Nor do we simplify the original point set, as we do not reduce the number

of points. Simpli�cation here can be understood as a way of coarsening a mesh—obtained from

the given point set—to one with less elements while keeping the proxy information.

A brief introduction and (error) analysis of di�erent point set simpli�cation algorithms is given

by [PGK02]. �e authors summarize the types of clustering-methods and iterative methods as

61

II Manifold Structure for Point Set Surfaces

well as particle simulation. With the help of an error measurement, they explain the advantages

and disadvantages for all of the methods taken into consideration. �e extreme simpli�cation

described by [RT09] concentrates on real-time rendering using points as primitives. �ese are

realized utilizing oriented disks. Furthermore, they introduce a more complex primitive called

splat, which approximates larger and more complex surface areas compared to the disks. Here,

they also use a variant of segmentation, as they decompose the surface into quasi-�at regions by

utilizing an e�cient algebraic multi-grid algorithm. �e authors of [XM09] work with simpli�-

cation of dense point sets while keeping shape information, like features. �e reduction process

eliminates one point at a time by utilizing a k-d tree structure and local sampling density eval-

uation. Important a�ributes in real-world applications are the performance and quality of the

rendering process. �ese are addressed in [SFC10]. �ey make use of an automatic adaption of

splat sizes with respect to sampling density. �e point reduction then utilizes a bilateral �ltering

algorithm, to simplify the point set while retaining features. A classical simpli�cation algorithm

for meshes is presented in [GH97], where the authors utilize quadric error metrics. �is approach

is combined with vertex clustering in the work of [HHL15]. We will use the procedure of [GH97]

for comparison with our results.

5.2 The VSA Procedure
5.2.1 The VSA Procedure for Meshes

�e VSA procedure was introduced by [CAD04]. It acts on a surface S ⊆ R3
. �e goal is to

partition the surface intom disjoint regionsRi ⊆ S,

⋃̇
Ri = S, where each region is associated a

linear proxy Pi = (Ci, Ni) with center Ci ∈ R3
and unit-length normalNi ∈ R3

, i ∈ {1, . . . ,m}.
�e authors propose two di�erent metrics to �nd the optimal shape proxies, with the �rst metric

based on L2

L2(Ri, Pi) =

∫
x∈Ri
‖x− πi(x)‖2 dx, (5.1)

where πi(.) denotes the orthogonal projection of the argument on the plane with normal Ni

centered at Ci. �us, the integral measures the squared error between points in the region Ri

and its linear approximation given by Pi.
A second metric, denoted by L2,1

is based on the L2
measure on the normal �eld. It is given

by

L2,1(Ri, Pi) =

∫
x∈Ri
‖n(x)−Ni‖2 dx,

where n(x) denotes the normal of the surface at point x ∈ S.

In the discrete se�ing, the surface S is given by a set of (triangular) elements tj , j ∈ [T] and

the centers Ci are initially found by randomly choosing a triangle tj as center Ci. �erefore, the

second formulation can be simpli�ed to

L2,1(Ri, Pi) =
∑
tj∈Ri

‖n(tj)−Ni‖2
2 · |tj|, (5.2)

with n(tj) the normal and |tj| the area of the element tj . As the authors conclude that the L2,1

metric is more e�ective, we will reduce the following discussion to this formulation.

�e actual minimization of L2,1
with respect to the segmentation of S into the regions Ri and

with respect to the proxies Pi is then performed iteratively. For this, a variation of Lloyd’s �xed

62

5 Variational Shape Approximation

point iteration [Llo82] is used. �e �rst step is to pick a user-given number m of center elements

C1, . . . , Cm randomly from the set of triangles {tj | j ∈ [T]}. �e normals Ni are set to the nor-

mals of corresponding center triangles Ci. �e neighbors of the center triangles are collected in a

priority queueQ sorted increasingly with growing L2,1
distance between neighboring triangle tj

and center triangle Ci resulting in ‖n(tj)−Ni‖2
. �en, the following three steps are performed

iteratively until convergence
3
:

1. Flood: As long as the queue Q is not empty, pop the �rst element tj from Q. Ignore it, if it

has already been assigned to a proxy. If it is not assigned yet, assign it to the proxy Pi that

pushed it into the list and push all neighboring elements t` of tj into Q, noting that they

have been pushed by Pi. Without loss of generality, we assume S to be connected. If that

is not the case, the algorithm can simply be run on each connected component of S. For a

connected surface S, a�er the queue Q has been emptied, all elements {tj | j ∈ [T]} have

been assigned to some proxy Pi.

2. Proxy Update: �e proxy normals Ni are updated according to

Ni =

∑
tj∈Ri |tj|n(tj)∥∥∥∑tj∈Ri |tj|n(tj)

∥∥∥ ,
where |tj| denotes the area of the triangle tj .

3. Seed: For all proxies Pi, �nd some t′ ∈ Ri such that ‖n(t′)−Ni‖2 ≤ ‖n(tj)−Ni‖2
for all

tj ∈ Ri and set Ci = t′. �is ensures that the �ooding in the next iteration is started from

regions that best re�ect the current proxy normals
4
.

Finally, from the converged proxies, a simpli�ed mesh is constructed.

5.2.2 The VSA Procedure on Point Sets

We will now proceed to translate the VSA procedure to the se�ing of point sets. Compared to

the VSA on meshes, several details have to be adjusted for the method to work on point sets.

At �rst, consider the partition problem as stated in Section 5.2.1. In the context of point sets,

not elements, but the points themselves have to be assigned to the proxies. �at is, the given

point set P = {p1, . . . , pn} will be partitioned into disjoint sets

⋃̇m

i=1Ri = P . �erefore, in the

following expressions, the centers Ci denote points from the point set, while the normals Ni at

the respective center point are those obtained from the point set. �e normals of the points pj
will be denoted by nj respectively. As before, by Pi we denote the tuple Pi = (Ci, Ni) and the Ni

are assumed to have unit length.

Consider the energy as de�ned in Equation (5.2). For proxies de�ned from point sets, the area

term |tj| cannot be used. �us, we replace it by a weighting term which is to approximate the

area represented by the point. We obtain the following energy of a single proxy and the energy

formulation on the set of all proxies

L2,1(Ri, Pi) =
∑
pj∈Ri

ωj ‖nj −Ni‖2 , (5.3)

E({(Ri, Pi) | i = 1, . . . ,m}) =
m∑
i=1

L2,1(Ri, Pi). (5.4)

3
See Section 5.2.3 for some remarks on convergence properties.

4
�is choice of seeds can however be problematic. See Section 5.2.3 for an example.

63

II Manifold Structure for Point Set Surfaces

For our experiments, we simply use uniform weightsωj = 1 as these already provide good results.

An approximation of the area term could be computed by ωj = ‖pi − pj‖2
2. Furthermore, bilateral

or even binary weights can be employed.

�e initial seeding as outlined above can still be done, but instead of triangles, now points

pj ∈ P are chosen for the initial position of the center points Ci. Also, those points from P are

initially pushed to the priority queueQ that are neighbors, but not identical, to the chosen center

points Ci. For this neighborhood relation, any neighborhood concept such as k nearest (1.1) or

Euclidean neighborhoods (1.4) can be used. Again, the points pj inQ are sorted increasingly with

L2,1
distance between their own normal nj and the normal Ni of the proxy Pi that pushed them

onto the queue: ‖nj −Ni‖2
. �e following three steps remain almost unchanged:

1. Flood: As long as the queue Q is not empty, pop the �rst element p. Ignore it, if it has

already been assigned to a proxy. If it is not assigned yet, assign it to the proxy Pi that

pushed it into the list and push all neighboring elements pj of p into Q, noting that they

have been pushed by Pi. As we assume S to be connected under the chosen neighborhood

relation, a�er the queueQ has been emptied, all elements of P have been assigned to some

proxy Pi.

2. Proxy Update: �e proxy normals Ni are updated according to

Ni =

∑
pj∈Ri ωjnj∑
pj∈Ri ωj

. (5.5)

3. Seed: For all proxies Pi, �nd some p` ∈ Ri, ` ∈ [n], such that ‖n` −Ni‖2 ≤ ‖nj −Ni‖2
for

all pj ∈ Ri.

5.2.3 Convergence of the VSA Procedure

Concerning the convergence of their algorithm, the authors of [CAD04] state:

(…) Lloyd’s algorithm always converges in a �nite number of steps, since each step
reduces the energy E: the partitioning stage minimizes E for a �xed set of centers ci,
while the ��ing stage minimizes E for a �xed partition.

While this statement holds for the original algorithm of Lloyd as presented in [Llo82], it does not

hold for neither the VSA procedure on meshes nor on point sets as the following example shows.

Consider the two-dimensional setup shown in Figure 5.1a. It is given by n points connected on a

line with normal

(−1
1

)
next to a line of n points with normal

(
0
1

)
. At the right end of the second

line, there is a single point with normal

(−1
0

)
and another single point with normal N given by

the equation

N =
1

n+ 2

(
n ·
(

0

1

)
+

(
−1

0

)
+N

)
.

Now, two proxies will act on this example, with their initial seeds shown in yellow and blue in

Figure 5.1a. �ey each start on one of the two lines of n points respectively. �e result a�er a

�ood is shown in Figure 5.1b, where each line is completely covered by the proxy starting on it

and the two single points are associated to the proxy with normal

(
0
1

)
. A�er updating the proxy

normals, the yellow proxy has normal

(−1
1

)
while the blue proxy has normal N given by the

64

5 Variational Shape Approximation

n
p
o
in

ts

n points

1 point

angle 135◦

(−1
1

)
(

0
1

)

(a) Setup for growing error functional.
(b) Segmentation a�er
�rst �ood.

(c) Segmentation a�er sec-
ond �ood.

equation above. �us, the yellow proxy starts from an arbitrary point on its line while the blue

proxy starts from the rightmost point. �e error a�er this �rst �ood and proxy update is given

by

E1 = n ·
∥∥∥∥(0

1

)
−N

∥∥∥∥2

+

∥∥∥∥(−1

0

)
−N

∥∥∥∥2

.

Starting from the new seed points, a second �ood results in the situation shown in Figure 5.1c.

Here, almost all points except for the rightmost one are associated to the yellow proxy with

normal

(−1
1

)
. Its new normal a�er a proxy update is

N ′ =
1

2n+ 1

(
n ·
(
−1

1

)
+ n ·

(
0

1

)
+

(
−1

0

))
,

which amounts to an error a�er the second �ood and proxy update given by

E2 = n ·
∥∥∥∥(−1

1

)
−N ′

∥∥∥∥+ n ·
∥∥∥∥(0

1

)
−N ′

∥∥∥∥+

∥∥∥∥(−1

0

)
−N ′

∥∥∥∥ .
Choosing n = 100, we obtain E1 = 1.9802, but E2 = 39.395. Furthermore, the corresponding

error value a�er the �ood is also growing. �us, the statement of on always shrinking error a�er

each combined �ood and proxy update procedure is incorrect.

However, we can prove the following statement.

�eorem 14 (Error reduction by proxy update, M. S. and E. Zimmermann). Given a point set
P = {p1, . . . , pn} with a neighborhood structure, such that the neighborhood graph on P is con-
nected and normals n1, . . . , nn on P , then each proxy update step as de�ned above leads to proxies
(Ri, Pi) with a smaller error measure in Equation (5.4).

Proof. Consider

∇E({Ri, Pi}) = ∇

(
m∑
i=1

L2,1(Ri, Pi)

)
=

m∑
i=1

∑
pj∈Ri

∇ωj ‖nj −Ni‖2 =
m∑
i=1

∑
pj∈Ri

2ωj(nj −Ni).

Se�ing Ni =
∑
p`∈Ri

ω`n`∑
p`∈Ri

ω`
as in Equation (5.5), we obtain

∑
pj∈Ri

2ωj(nj −Ni) =
∑
pj∈Ri

2ωjnj −
∑
pj∈Ri

2ωj

(∑
p`∈Ri ω`n`∑
p`∈Ri ω`

)

=
∑
pj∈Ri

2ωjnj −

(∑
p`∈Ri 2ω`n`∑
p`∈Ri ω`

)
·
∑
pj∈Ri

ωj

=
∑
pj∈Ri

2ωjnj −
∑
p`∈Ri

2ω`n` = 0.

65

II Manifold Structure for Point Set Surfaces

�us, at the chosen updated proxy normal, the energy reaches a (local) minimum. As the energy

is convex as sum of norms, which are convex, the found minimum is indeed its global minimum

for the current choice of segmentation.

It remains to be seen in further research whether the convergence of the algorithm can be shown

theoretically or whether the algorithm can be altered in order to achieve provable convergence.

5.2.4 User controlled Level of Detail

With the algorithm, we aim at adaptability of the constructed �at pieces towards user input. �at

is, the user should be able to control the level of detail obtained from the �at regions. In addition

to the three-step procedure given in the preceding section, we will include two more steps which

work towards the goal of adaptability. For this, we introduce a user-given parameter κ ∈ R≥0

which controls the maximum deviation from its �at approximation within a proxy region Ri.

�is parameter is used in the following two steps:

(a) Split: Given a proxy Pi with its region Ri such that L2,1(Ri, Pi) > κ. We use weighted

principal component analysis by [HBC11] to compute the most spread direction of Ri. �e

set Ri is then split at the center of this direction into two new regions Ri = R1
i ∪̇R2

i . �e

new normals are chosen as N1
i =

∑
pj∈R1

i

ωjnj∑
pj∈R1

i
ωj

and as a corresponding N2
i respec-

tively. �e new centers C1
i and C2

i are then placed at those points of R1
i , R

2
i that have least

varying normals from N1
i and N2

i respectively.

Note that performing a split operation reduces Energy (5.3) and thus speeds up the conver-

gence of the algorithm.

(b) Merge: Consider a pair Pi, Pj of neighboring (see de�nition above) proxies with their re-

spective normals Ni, Nj . If the region R′ = Ri ∪ Rj with normal N ′ =
Ni+Nj

2
achieves

an Energy (5.3) strictly less than κ, the two regions are replaced by their union R′, with

normal N ′ and a chosen center C ′ ∈ R′ with its normal least deviating from N ′.
Note that we could allow only those pairs of neighboring regions to merge such that

L2,1(Ri, Pi) + L2,1(Rj, Pj) ≤ L2,1(R′, P ′).

�en, the Energy (5.4) would not increase and termination of the algorithm would be guar-

anteed. However, this would result in neighboring regions not observing the user-given κ
threshold. �erefore, we accept an increase of the global energy in favor of a be�er region

layout. In all experiments, the algorithm still converged.

Both operations alter the number m of proxies. �ereby, a signi�cant disadvantage of the algo-

rithm of [Llo82] is eliminated as the user does not have to choose m a priori. It is replaced by the

user’s choice of κ, providing a semantic guarantee on the regions being built by the algorithm.

�e user can prescribe a value of κ computed from the desired curvature within a proxy.

�e possible presence of noise in the point setP gives yet another reason to refute Energy (5.1).

For points distributed around the xy-plane, with normals (0, 0, 1)T and just slight deviation from

the plane, this energy would create larger values for a growing number of points, while the

Energy (5.4) does not su�er from this. Hence, with the chosen energy, noise on the point positions

is handled more robustly.

In the merge process outlined above, we asked for two neighboring regions. However, we have

not de�ned any relation on the regions yet. In the meshed case discussed in Section 5.2.1, two

66

5 Variational Shape Approximation

Figure 5.2:�e whole pipeline contains an initial random seed selection, an iteration over �ooding,
proxy updates, possible splits and merges of regions, and a search for new seeds. �e output is reached
a�er convergence or a�er a �xed number of iterations. A�erwards, we deduce a simpli�ed model
according to the proxies, which can also be considered as a surface reconstruction from the initial
point set.

regions are neighbors if and only if they share an edge in the mesh. In the context of point sets, we

do not have any information on connectivity. �us, we propose the following de�nition. During

the �ooding step described above, an element p is popped from the priority queue Q together

with a possible assignment to a region Ri. However, it is ignored if p has already been assigned

to a region Rj . In this case, we denote Ri and Rj to be neighbors, if i 6= j.
�is �nishes the whole VSA pipeline for point sets, including the additional two steps merge

and split. See Figure 5.2 for an illustration of the complete pipeline.

5.3 Simplified Shape Reconstruction
In the preceding Sections 5.2.2 and 5.2.4 we have described how the input point set P can be

segmented into �at proxy regions Ri. Starting from a corresponding structure on meshes, the

procedure in [CAD04] simpli�ed the underlying mesh until only one element for each proxy is

le�. In this Section, we aim at a similar result. �is is more involved however, as the input point

set in our case does not provide the connectivity given by meshes. Furthermore, neither [CAD04]

nor [LB16] provide detailed descriptions on how to perform the shape simpli�cation or recon-

struction from the identi�ed proxies. With this section, we close this gap.

While the above sections can be applied to any point set, in the following, we will assume that

the input point set P is a sample of a 2-manifoldM. For the sake of simplicity, we assume the

manifoldM to be closed and embedded in R3
, which is not necessary for the following to work.

Recall that a triangulation of the topological spaceM is a simplicial complex K , homeomorphic

toM, together with a homeomorphism h : K →M. In this case, the triangulation is sometimes

referred to as simplicial manifold. An immediate consequence to this de�nition is that the star

of each vertex of K is homeomorphic to a 2-dimensional disk. �is, in turn is equivalent to the

following two conditions:

1. Every edge of the complex K is incident to exactly two 2-simplices (as we only consider

closed manifolds).

2. �e vertex star of each vertex is unique and connected.

On these notions, we will build a shape reconstruction algorithm.

5.3.1 Implementation

From Sections 5.2.2 and 5.2.4 we have a set of proxies Pi = (Ci, Ni) with centers Ci and unit-

length normalsNi, i ∈ [m]. Intuitively, it is necessary to introduce a line where two proxiesPi and

67

II Manifold Structure for Point Set Surfaces

Pi2
Pi1

Pi4
Pi3

(a) Four Proxies identi�ed
as the sides of a pyramid.

Pi2Pi1

Pi4 Pi3

(b) Neighborhood graph
of the four proxies.

Pi2Pi1

Pi4 Pi3

(c) One possibility to split
into two triangles.

Pi2Pi1

Pi4 Pi3

(d) Illegal break into two
triangles.

Figure 5.3: (a) Around the tip of a pyramid, four proxies Pi1 , Pi2 , Pi3 , Pi4 are identi�ed. (b) �e
neighborhood graph on these four proxies has the connectivity of a tetrahedron. In order to project
it to a two-dimensional simplicial manifold, two triangles have to be deleted. (c) A covering with
two triangles that make the simplicial complex a simplicial manifold. (d) When deleting the wrong
triangles, the resulting complex K is not a closed simplicial manifold anymore.

Pj meet and a vertex where three proxies meet. However, the neighborhood relation presented

and used at the end of Section 5.2.4—which only focuses on two proxiesPi andPj being neighbors

to each others—will not lead to a satisfactory reconstruction of the shape. �is can be seen by the

following easy example. Consider a prism over a triangle, with three rectangular sides F1, F2, F3.

�en, a line will be introduced for each pair (F1, F2), (F2, F3), and (F1, F3). As the three sides

are pairwise neighbors, a vertex is to be introduced at the intersection point, but this point lies

at in�nity.

�erefore, we work with the following alternative concept. First, we start with an empty sim-

plicial complex K = ∅. Now, we iterate over all points p ∈ P of the original input point set. For

each point, note to which proxies Pi the points in its neighborhood are assigned. If the number of

proxies witnessed in the neighborhood is less than three, nothing is done. Assume that there are

points in the neighborhood of p assigned to proxies Pi1 , . . . , Pi` , then we add the set {i1, . . . , i`}
to K . A�er iterating over all p ∈ P , we clean K by removing all sets S ∈ K , where ∃S ′ ∈ K
with S ′ 6= S and S ⊆ S ′. �ereby, we only keep the largest sets in K .

Finally, consider an element S ∈ K with |S| ≥ 4. �en, at some point p ∈ P , at least four

proxies have been witnessed in the neighborhood. As long as any S with |S| ≥ 4 exists inK , the

simplicial complex is not a simplicial manifold as de�ned above. �us, for each such S, we replace

it by sets of triples. Consider for example S = {i1, i2, i3, i4} ∈ K . �en, we remove S from K ,

but replace it by {i1, i2, i4} and {i2, i3, i4}which are added toK . Here, we have to be very careful,

however. �e situation is depicted in Figure 5.3. Note that the wrong selection of triangles will

lead to a con�guration which does not provide a simplicial manifold, see Figure 5.3d.

In order to prevent illegal con�gurations of triangles, we perform the following. First, we build

the average N̄ over all normals Ni1 , Ni2 , Ni3 , Ni4 of the proxies Pi1 , Pi2 , Pi3 , Pi4 respectively to

prevent loss of information during the following projection. We further consider the barycenter

C̄ of the center points Ci1 , Ci2 , Ci3 , Ci4 . Now, we project the centers Ci1 , Ci2 , Ci3 , Ci4 onto the

hyperplane spanned by N̄ at C̄ . We sort the projections around p and thus ensure that for four

proxies, always a situation as in Figure 5.3c—as opposed to the situation of Figure 5.3d—is chosen.

Furthermore, we ensure that the line of intersection between two opposite proxy planes of Pi1
and Pi3 is closer to C̄ than the intersection of Pi2 and Pi4 . �ereby, the reconstruction will not

intersect itself. We proceed similarly with all sets of K that have higher cardinality than 3 and

thereby obtain a simplicial complex that is solely comprised of triple sets.

�e �nal reconstruction is then done in two easy steps. First, we create a vertex for each triple

68

5 Variational Shape Approximation

(Pi1 , Pi2 , Pi3) which is placed at the intersection of the three proxy planes. Second, for each

proxy Pi, we collect all newly created vertices from triples in which Pi has listed. �ese vertices

are projected onto the plane spanned by Ni at Ci and sorted around the center Ci. �en, a new

element is created from the new vertices with the obtained sorting. �e whole procedure is given

in Algorithm 4.

Algorithm 4 Simpli�ed Surface Reconstruction from Proxies {Pi}
1: procedure Reconstruction(Proxies {Pi})
2: K ← ∅
3: for all points p ∈ P do
4: if number of di�erent proxies encountered in neighborhood of p is > 2 then
5: K ← K ∪ {indices of proxies encountered}
6: end if
7: end for
8: for all S ∈ K do
9: if ∃S ′ ∈ K : S 6= S ′, S ⊆ S ′ then

10: K ← K\{S}
11: end if
12: end for
13: for all S ∈ K where |S| > 3 do
14: Delete S from K but introduce a su�cient number of non-overlapping triple sets

{i1, i2, i3} to cover S.

15: end for
16: for all (i1, i2, i3) ∈ K do
17: Create a vertex vj as intersection of Pi1 , Pi2 , Pi3 .

18: end for
19: for all proxies Pi do
20: Collect all vertices vj that come from a triple involving i
21: Project these vertices to the hyperplane spanned by Ci and Ni

22: Order the projected vertices around Ci and create an element from this order repre-

senting Pi.
23: end for
24: end procedure

Note that the reconstruction algorithm in its current form is limited to an element for proxy Pi
that is star-convex with respect to its center Ci, that is, that the line from Ci to any point in the

element of Pi is fully included in the element of Pi. A more involved and thus capable algorithm

could reconstruct the vertices as described, but then use those points ofP associated toPi and e.g.

a boundary detection on point sets, see e.g. [MPS19]. �ereby, also non-star-convex regions can

be identi�ed and represented by a single element. A corresponding algorithm is clearly available

to [LB16] as proxies in their applications obtain non-star-convex elements. However, in any case,

the construction of vertices as described above assures that the overall reconstructed surface is

a simplicial manifold. �is also holds for alternative ways of connecting the vertices to the �nal

elements.

69

II Manifold Structure for Point Set Surfaces

(a) Original mesh of the
dodecahedron.

(b) Simpli�ed mesh
by [GH97].

(c) Segmentation by the
proposed method.

(d) Output of the pro-
posed method.

Figure 5.4:�e dodecahedron model and its two simpli�cations.

model s min max mean RMS Method

Dodecahedron 2886 0.000000 0.000000 0.000000 0.000000 GH

2886 0.000000 0.077600 0.023339 0.029738 Ours

Octahedron 4640 0.000000 0.000000 0.000000 0.000000 GH

4640 0.000001 0.034809 0.009724 0.011725 Ours

Bullet 2325 0.000000 0.205391 0.030992 0.047718 GH

2325 0.000000 0.198509 0.036149 0.050088 Ours

Moai 30006 0.000001 0.759781 0.152552 0.193410 GH

30006 0.000008 0.766045 0.158608 0.221292 Ours

Table 5.1: Results of the comparisons between the algorithm of [GH97] (GH) and our proposed
method. Performed with the Metro algorithm of [CRS98]

5.4 Experimental Results

In order to evaluate the output of our algorithm, we compare it to the mesh simpli�cation by [GH97].

�e input to all experiments is a mesh, see e.g. Figure 5.4a. For our algorithm, the elements and

edges are ignored and the point set without any connectivity information is used. We obtain a

reconstructed surface, see e.g. Figure 5.4d. For this surface, we count the number of elements

and compute the number of triangles necessary (as our simpli�cation also contains n-gons with

n > 3). Finally, we apply the algorithm of [GH97] and prescribe the obtained number of triangles

as target, see e.g. Figure 5.4b.

To compare the two simpli�cations obtained by [GH97] and our proposed method, we turn to

the Metro algorithm of [CRS98] which is available as part of [Cig+08]. �e Metro algorithm is

run from the respective original mesh of the model to the di�erent simpli�cations. It computes

the Hausdor� distance of the two meshes based on a sampling approach. In Table 5.1, we give

the number of samples (s), the minimum distance (min), the maximum distance (max), the mean

distance (mean), and the root mean square distance (RMS). �e used models are the Dodeca-

hedron, Figure 5.4, the Octahedron, Figure 5.5, the Bullet model, Figure 5.6, and the Moai model,

Figure 5.7.

From the results presented in Table 5.1, it becomes clear that the proposed method performs

slightly worse than the simpli�cation of [GH97]. However, it does not have explicit connectivity

information at hand and the di�erences are comparably small. �us, the algorithm provides

reliable results for simpli�cation of point sets.

We proceed by investigating the e�ect of κ on the output of the algorithm. Di�erent values

for κ and the corresponding results on a single geometry are shown in Figure 5.8.

70

5 Variational Shape Approximation

(a) Original mesh of the
octahedron model.

(b) Simpli�ed mesh
by [GH97].

(c) Segmentation by the
proposed method.

(d) Output of the pro-
posed method.

Figure 5.5:�e bullet model and its two simpli�cations.

(a) Original mesh of the
bullet model.

(b) Simpli�ed mesh
by [GH97].

(c) Segmentation by the
proposed method.

(d) Output of the pro-
posed method.

Figure 5.6:�e bullet model and its two simpli�cations.

(a) Original mesh of the
Moai model.

(b) Simpli�ed mesh
by [GH97].

(c) Output of the pro-
posed method.

(d) Output of the pro-
posed method.

Figure 5.7:�e Moai model and its two simpli�cations.

71

II Manifold Structure for Point Set Surfaces

(a) Original point set of
the bullet model.

(b) κ = 10, 17 elements (c) κ = 20, 13 elements (d) κ = 30, 11 elements

Figure 5.8:�e e�ect of di�erent values for κ on the bullet model. Note that all results were computed
completely automatically without prescribed number of proxies or manual selected seeds.

All results presented in this section are produced from an initial random seeding, while the

results from [CAD04] and [LB16] are in part dependent on a well-chosen manual seeding. Yet,

our results are visually comparable to those presented in [CAD04] and [LB16]. �erefore, it can

be seen that our method is independent of manual initial seed placing and can provide similar

results automatically.

5.5 Conclusion
In this section, we have presented an adaption of the algorithm of [CAD04] to the se�ing of

point sets. In addition to the algorithm of [LB16], we have added two steps to the pipeline.

Namely, a merge and a split step. By these additional steps, our procedure is independent of

an a priori given number of proxy regions. Furthermore, it is independent of manually selected

seeds, as we have shown in our experiments. Additionally, we provide an example to show that

the assumption made in previous publications—the decrease of Energy (5.4) for each �ood and

update—is incorrect. �is poses the question of a full theoretical convergence and termination

analysis of the algorithm which is le� as future work.

Concerning surface reconstruction and simpli�cation, we provide a thorough theoretical un-

derstanding of the reconstruction of a simpli�ed mesh from the proxy set. Our theory is rooted

in the context of simplicial complexes and guarantees the reconstruction to be a closed combi-

natorial manifold surface. A quantitative analysis on the results of the proposed algorithm in

comparison with the simpli�cation of [GH97] shows that our algorithm performs only slightly

worse despite the lack of any connectivity information or area weighting.

However, our procedure is currently restricted to star-convex input. Consider Figure 5.9 for

an illustration of problematic cases. Namely, in the fandisk model, Figure 5.9a, two proxies are

created at the front of the model. �ese proxies are almost co-planar and have an intersection far

our of the model. �us, our surface reconstruction algorithm introduces several points not in the

vicinity of the original input. In the ear of the bunny model, Figure 5.9b, a proxy is completely

surrounded by another proxy. As we ask for at least three proxies to come together to form a

vertex, this proxy does not have enough neighboring proxies to be considered in the surface re-

construction process. �us, its points will be neglected. Finally, the Venus model, Figure 5.9c,

showcase problems with varying density. In the lower parts of the model, where sampling den-

sity is very low, several proxies are introduced on few points which does not follow the idea of

collecting large, piecewise �at regions.

Aside from these problems, three questions remain open and are le� for further research. First,

72

5 Variational Shape Approximation

(a) Segmentation of the fandisk
model obtained by the proposed
method. Note the two almost
co-planar proxies at the front
meeting far out the model (not
shown).

(b) Segmentation of the bunny
model obtained by the proposed
method. Note the proxy region
in the ear of the bunny which
is completely surrounded by an-
other proxy and thus disregarded
in our surface reconstruction as
we ask for three proxies to come
together and form a vertex.

(c) Segmentation of the Venus
model obtained by the proposed
method. Note how the low sam-
pling density in the lower parts
of the model create several prox-
ies only consisting of very few
points.

Figure 5.9: �ree models segmented with the proposed method that yield problematic areas.

it is unclear how the algorithm behaves on a noisy point sample. As this is also unclear for the

algorithms of [CAD04] and [LB16], the e�ect of noise calls for a separate investigation. Second,

our example showed that Energy (5.4) is not always shrinking with the proposed procedure.

�erefore, convergence and termination of the algorithm is not given and has to be established in

future work. A third and �nal questions concerns the weightsωj used in Equation (5.3). Currently,

as results are already good, we used equal weight ωj = 1. How exactly the choice of di�erent

weights e�ects the output of the algorithm is le� for further research.

73

III Robust and E�icient Processing of
Point Sets

6 Directional Density Measure to Intrinsically Estimate and
Counteract Non-uniformity in Point Sets

When considering point sets sampling surfaces embedded in R3
, many algorithms make addi-

tional assumptions on the sampling quality. For example, Amenta et al. assume in their power

crust algorithm, see [ACK01], that the distance of the sample to the sampled object is bounded

by the local feature size. Results that are independent of the sampling—like the k-d tree data

structure of Friedmann et al., see [FBF77], discussed in Section 2—are somewhat rare. In partic-

ular, when discretizing di�erential geometry operators like the gradient, the Laplace operator,

or the shape operator [BSW09; LP05; Tau95], implicit or explicit assumptions are made on the

uniformity of the point set.

However, many point sets that arise in applications do not satisfy the assumptions made in

theory. One can think of the manual scanning of some object by a hand-guided laser scanner.

�e operator of the scanner will recognize problematic areas—for example pits, areas of high

curvature, or other features—and scan these multiple times in order to capture them accurately

and without occlusion. Other less diverse areas are scanned fewer times. In the border regions

between these two area types, regular euclidean neighborhoods will favor those areas that have

been scanned multiple times (see Section 1 for a discussion of neighborhood concepts). �at is

because they simply have more points in the sample. Standard algorithms fail to process these

regions correctly.

In this section, we present an approach to handle non-uniform densities in point sets. Our

method works intrinsically without using additional information beside the raw point set. We

de�ne a local density measure from a point of the point set into any tangential direction. �e mea-

sure is transformed to give local weights on the neighborhood of each point. �ese are then used

e.g. in the discretizations of discrete di�erential operators as mentioned above in order to make

them robust even on non-uniform samples. Computational experiments show the e�ectiveness

of our approach on both synthetic and real world data.

�e main contributions of this section are:

I De�nition of a discrete directional density measure for point sets.

I Intrinsic computation of local density without additional information.

I De�nition of weights for discrete operators to overcome non-uniform density problems.

�e results of this section have been presented at the GMP’18 conference and published in the

corresponding proceedings, see list of publications prior to the thesis, page 5. Additional to the

results published, this section includes an evaluation of the presented weights in the context of

a blue noise sampling.

75

III Robust and E�cient Processing of Point Sets

6.1 Related Work

Several methods have been devised to handle non-uniformly sampled point sets within di�erent

application scenarios. We will give a brief overview here.

In the se�ing of surface reconstruction, the authors of [HK06] propose an unsigned distance

function which enables them to process input data consisting solely of 3D sample positions with-

out any normal information. Since the surface extraction does not depend on a change of sign of

the implicit representation, the method is immune to noisy and non-uniformly distributed sam-

ples. A di�erent approach is taken in [LPZ13]. Here, the authors add volumetric or prior infor-

mation to global implicit surface reconstruction to eliminate the ill-posedness of non-uniformly

sampled point sets. Yet another proposal is made in [Yan+17], where a local hierarchical cluster-

ing method is used to improve the consistency of the point set distribution. Within a two-step

process, the computational complexity of the point set is reduced and the remaining points are

transformed into a uniform sampling. Similarly, the authors of [Mos+17] use a combination of

octree data partitioning, local Delaunay tetrahedralization, and graph cut optimization for their

surface reconstruction approach. �ey achieve processing of point density variations of more

than four orders of magnitude.

For registration of point sets with non-uniform density, the authors of [HB14] propose to

extend registration algorithms by including topological information on the sampled surface.

�ereby, they aim at compensating e�ects that the non-uniformity has on 3D neighborhood

searches. One of the main applications of [Che+17] is also registration. �e authors use non-

uniform density in order to reduce cost in storing, processing, and visualizing a large-scale point

set. �ey consider a randomized resampling strategy to select a representative subset of points

while preserving features depending on the application.

Considering simpli�cation methods for point-sampled surfaces, in [PGK02], it is described that

non-uniform samplings call for more sophisticated approaches yielding higher computational

overhead. Furthermore, the authors state that �nding suitable global factors can be di�cult for

non-uniformly sampled point sets.

�e general problem of non-uniformity in point sets is approached in [WW11]. Finding that

analyzing methods for uniform samples cannot be easily extended to non-uniform se�ings, the

authors present an extension of Fourier analysis to measure spectral and spatial properties of

various non-uniform sample distribution. �is includes in particular adaptive, anisotropic, and

non-Euclidean domains. A di�erent approach is taken in [ÖAG10]. �e authors use spectral

analysis of manifolds to derive optimal sampling conditions for a given surface representation.

However, they also �nd that if their method is directly used on a point set with a non-uniform

distribution, limitations on convergence and stability may arise.

A di�erent approach is taken in [Cue14; Cue+15; CLT14]. �e authors investigate estimators

of normals and the Voronoi covariance measure, for which they derive several stability results.

�ese are favorably compared to the state of the art as the estimators are robust to both noise

and outliers. �is approach seems to be somewhat orthogonal to the ideas presented here. �us,

a connection of both ideas could yield a highly stable estimator.

In conclusion, the state-of-the-art methods either propose solutions tailored to a special ap-

plication, try to deal with non-uniformity by adding additional data, or do not work reliably on

non-uniform point samples at all. In the following, we present an approach that is general, does

not need further information beside the point set itself, and can handle non-uniform samples.

76

6 Directional Density Measure in Point Sets

6.2 Three Approaches to Directional Density Measures
We will now introduce three di�erent directional density measures on point sets. �e �rst is

a continuation of the work presented in [LP05] and builds on the covariance matrix. �e sec-

ond works with a unit circle on the tangent plane and the corresponding segments induced by

projections of neighboring points. Finally, the third measure utilizes smooth basis functions.

We consider a point set P = {pi ∈ R3 | i = 1, . . . , n}. Denote for each point pi ∈ P its

neighborhood by Ni ⊆ P . We will assume pi /∈ Ni. Note that the following considerations are

independent of the actual de�nition of neighborhood. �erefore, they can be applied for e.g. a

combinatorial k nearest approach as well as for Euclidean neighborhoods (see Section 1 for a

discussion of neighborhood concepts).

In general, it is desirable to have a neighborhood that is as symmetric as possible with regard to

all directions. When using combinatorial neighborhoods with k nearest neighbors, points lying

almost as close to the query point as others might be excluded simply because k neighbors have

already been found. Furthermore, to prevent numerical errors, especially when dividing by the

distance, we drop those points that lie at most εm away from the query point, where εm denotes

the machine accuracy. We de�ne the k nearest neighborhood of pi ∈ P with distance at least εm
by

Ñi = {pj ∈ P | j = 1, . . . , k, pj the k-nearest neighbors to pi with εm < ‖pi − pj‖}.
�is neighborhood is then relaxed to

Ni = Ñi ∪ {pj ∈ P | abs(‖pi − pj‖ − max
p`∈Ñi

‖pi − p`‖) ≤ εm}, (6.1)

where abs denotes the absolute value, see Equation (1.7). �at is, we include all those neigh-

bors, that did not fall into the k nearest neighborhood by a small account. �is de�nition of

neighborhood was proposed in [Jan17].

We denote by Ci ∈ R3×3
the covariance matrix of the set Ni, given by

Ci =
∑

pj∈Ni∪{pi}

(pj − p̄i)(pj − p̄i)T , p̄i =
1

|Ni|+ 1

∑
pj∈Ni∪{pi}

pj

with p̄i the barycenter. Furthermore, we identify its eigenvalues by λi,1, λi,2, λi,3 ∈ R. Note

that the covariance matrix is positive semide�nite, therefore all eigenvalues are nonnegative.

We assume λi,1 ≥ λi,2 ≥ λi,3 and call the corresponding eigenvectors vi,1, vi,2, vi,3 ∈ R3
, with

‖vi,1‖ = ‖vi,2‖ = ‖vi,3‖ = 1.

�e covariance matrix induces a tangent plane Ti at the neighborhoodNi with distance r to a

center point b and normal vector n by minimizing the least squares energy

E(n, r) =
∑

pj∈Ni∪{pi}

(〈pj − b, n〉 − r)2.

�e minimum is obtained for: b = p̄i, n the eigenvector vi,3 of Ci corresponding to the small-

est eigenvalue λi,3, and r = 0, see [Skr14b, Section 2.1.2]. As vi,1 and vi,2 are of norm 1 and

orthogonal, they form an orthonormal basis for Ti.
�e �nal goal is to de�ne weights on all neighboring samples pj ∈ Ni of a point pi ∈ P .

�ese weights can then be used in any discretization scheme, e.g. for the gradient, the Laplace

operator, or the shape operator [BSW09; LP05; Tau95]. A �rst expectation on the weights is

non-negativity. Secondly, as a test case with known ground truth for our density measures,

we consider the neighborhood Ni to be the vertices of a regular |Ni|-gon, see Figure 6.1. In

this regularly sampled case, each weight should be roughly 1. �erefore in the following, we

normalize all presented measures to �t these two expectations.

77

III Robust and E�cient Processing of Point Sets

p|Ni|
pi

p1

p2

p3
p4

Ti

Figure 6.1: Neighborhood of a point pi on Ti given as a regular |Ni|-gon.

Partition of Unity Note that given these choices, our proposed weights around one point

pi do not satisfy partition of unity. �is is, as the weights are to be used multiplicatively, see

the applications in Section 6.3. In the base-case of a regular |Ni|-gon—where uniformity of the

sampling is given and nothing is to be changed—these multiplicative weights all have to be equal

to 1. However, if partition of unity is necessary, the following normalizations (6.10), (6.12), and

(6.15) can easily be altered by removing the term |Ni| from the numerator. �e weights then

immediately yield a partition of unity around the point pi.
Based on this notation, in the following three Sections 6.2.1, 6.2.2, and 6.2.3 we will introduce

three di�erent approaches for weights to counteract non-uniformity in point sets. �ese can then

each be used e.g. in the discretizations of operators as will be shown for the Laplace operator in

Section 6.3.3.

6.2.1 Covariance Matrix Densities

In [LP05], the authors present an approach to estimate the density of a point set P in a given (tan-

gential) direction from a point pi ∈ P . �ey propose to use the eigenvalues and the eigenvectors

of the covariance matrix built on a neighborhood Ni of pi. Recall that the two eigenvectors

vi,1, vi,2 of the covariance matrix corresponding to the larger two eigenvalues λi,1, λi,2 form an

orthonormal basis of Ti. �erefore, any unit direction on Ti can be parametrized by ϕ ∈ [0, 2π)
as

eϕ = cos(ϕ)vi,1 + sin(ϕ)vi,2 ∈ Ti (6.2)

with ‖eϕ‖ = 1. �e density δ(eϕ) of P at pi in direction eϕ is approximated using the quadratic

form

δ(eϕ) = δi,1 cos2(ϕ) + δi,2 sin2(ϕ) (6.3)

and the integral form of the tangential part of the diagonalized covariance matrix(
λi,1 0
0 λi,2

)
=

1

2π

∫ 2π

0

δ(eϕ)eϕe
t
ϕ dϕ. (6.4)

In particular, we obtain δ(vi,1) = δi,1 for direction e0 = vi,1 and δ(vi,2) = δi,2 for direction

eπ/2 = vi,2. Inserting the quadratic form (6.3) into the integral (6.4) and computing the integral

component-by-component, δi,1 and δi,2 can be expressed in terms of the eigenvalues λi,1 and λi,2
by

δi,1 = 3λi,1 − λi,2, δi,2 = 3λi,2 − λi,1. (6.5)

78

6 Directional Density Measure in Point Sets

(a) Density δLP given in (6.8)
evaluated around point pi on
a uniform sampling. �e den-
sity does not re�ect the uniform
sampling but assigns di�erent
weights to the neighbors.

(b) Density δ given in (6.6) eval-
uated around point pi on a uni-
form sampling. Note how the dif-
ferent distances a�ect the density
measure.

(c) Density δ̄ given in (6.7) eval-
uated around point pi on a uni-
form sampling. Note how all
points are assigned similar val-
ues.

Figure 6.2: Density measures δLP (6.8) and δ with both regular (6.6) and normalized input (6.7) on
the same, uniformly sampled point set. Values of δLP and δ ranging from low (blue) to high (yellow).
Note how δLP and δ as in (6.6) assign varying density values although the neighborhood is very
uniformly sampled, while δ̄ as in (6.7) does assign equal density values.

�e corresponding calculations are given in Appendix D. Since the eigenvectors vi,1, vi,2 form an

orthonormal basis of the tangent space, we have 〈eϕ, vi,1〉 = cos(ϕ) and 〈eϕ, vi,2〉 = sin(ϕ). Plug-

ging these expressions and the equalities (6.5) into (6.3), we obtain the directed density measure

δ(eϕ) = (3λi,1 − λi,2)〈eϕ, vi,1〉2 + (3λi,2 − λi,1)〈eϕ, vi,2〉2.

For a point pi ∈ P , the density in direction of a neighbor pj ∈ Ni can then be computed as

δ(etan
ij) = (3λi,1 − λi,2)〈etan

ij , vi,1〉2 + (3λi,2 − λi,1)〈etan
ij , vi,2〉2, (6.6)

where etan
ij denotes the tangential part of the vector eij = pj−pi. Note that this expression is not

strictly dependent on the direction, as the scalar products obtain di�erent values with varying

length of etan
ij . �erefore, we normalize the argument and obtain

δ̄(etan
ij) = (3λi,1 − λi,2)〈etan

ij /
∥∥etan

ij

∥∥ , vi,1〉2 + (3λi,2 − λi,1)〈etan
ij /

∥∥etan
ij

∥∥ , vi,2〉2. (6.7)

In [LP05], the authors give the density measure slightly di�erently, namely as

δLP (etan
ij) =

3λi,1 − λi,2
2

〈etan
ij /

∥∥etan
ij

∥∥ , vi,1〉+
3λi,2 − λi,1

2
〈etan
ij /

∥∥etan
ij

∥∥ , vi,2〉. (6.8)

�is measure obtains both positive and negative values, which is not suitable to be used as

weights. In particular, even for quite uniformly sampled neighborhoods, the points in the neigh-

borhood are not a�ributed equal weights, see Figure 6.2a. �erefore, we assume that the authors

of [LP05] meant to give (6.7) as density measure, which results from the above computations and

which assigns equal weights to uniformly sampled neighborhoods, see Figure 6.2b for regular

and Figure 6.2c for normalized input.

Note that expression (6.7) is symmetric with respect to its argument, that is, δ̄(etan
ij) = δ̄(−etan

ij).

�erefore, a point pj ∈ Np in direction etan
ij that lies in a very sparsely sampled area might still

79

III Robust and E�cient Processing of Point Sets

pj

pi

(a) �e point pj ∈ Ni lies in a
sparsely sampled area. However,
the density measure δ̄ as given in
(6.7) still assigns a high value to
pj as there is a densely sampled
area on the other side of pi, in di-
rection −eij .

pi

pi

(b) Density δ̄ as given in (6.7)
evaluated around point pi on two
slightly varying neighborhoods.
While the upper neighborhood is
assigned expected values, the as-
signment in the lower neighbor-
hood is o� because of slight vari-
ations.

pi

(c) Density δ̄ given in (6.7) eval-
uated around point pi not be-
ing close to the barycenter of the
given neighborhood. Assigned
density values are high on the
sparse points to the ends of the
neighborhood and low in the sole
densely sampled area.

Figure 6.3: Problems of the density δ̄ given in (6.7) because of symmetry, outliers, and placement of
the neighborhood. Densities computed from δ̄ ranging from low (blue) to high (yellow).

get assigned high density weight if points on the opposite side −etan
ij of pi are sampled densely,

see Figure 6.3a. Furthermore, the density weight is sensitive to variations in the neighborhood.

Moving one neighbor pj ∈ Ni far away from pi, the direction of the �rst principal component

changes and thereby also the density measures assigned to the neighborhood. Consider the sit-

uation shown in Figure 6.3b, where two outlier drastically change the density values. Finally, if

the point pi is not located close to the barycenter ofNi, the assigned weights are not necessarily

accurate, as given in Figure 6.3c.

Adding to the shortcomings of δ̄ listed above, it could also evaluate to a negative value. Namely,

if λi,1 > 3λi,2 and etan
ij close to vi,1, i.e. 〈etan

ij , vi,1〉2 ≈ 1, we get δ̄(etan
ij) < 0. As the weights are

required to be positive, the values of δ̄ have to be shi�ed to a strictly positive interval. We set

δCov(etan
ij) := δ̄(etan

ij) + max
pj∈Ni
{−δ̄(etan

ij), 0} (6.9)

and obtain the �rst discrete density measure δCov
. Note that the adjustment of (6.9) is di�erent for

each pi ∈ P . However, as the weights are to re�ect the local density around pi and not any global

structure, these di�erences in the adjustment are not problematic, in particular a�er normalizing

in (6.10).

In order to have a measure which gives large values for sparse directions and low values for

dense directions, we re�ect the values at their arithmetic mean

mCov
i =

∑
p`∈Ni

δCov(etan
i`)/|Ni|

and normalize to obtain a value between 0 and |Ni|:

σCov(etan
ij) =

|Ni|
(
2mCov

i − δCov(etan
ij)
)∑

p`∈Ni (2mCov
i − δCov(etan

i`))
= 2−

δCov(etan
ij)

mCov
i

. (6.10)

80

6 Directional Density Measure in Point Sets

Tipj1

pj2

pj` pj4

pj3

pi

p̄j1

p̄j2

p̄j` p̄j4 p̄j3
p̄i

(a) Points pj ∈ Ni and the center
point pi are projected to the tan-
gent plane Ti.

p̃j`

p̄i

p̄j1

p̄j2

p̄j` p̄j4

p̄j3

Ti

r = 1p̃j1

p̃j2

p̃j3

p̃j4

Arc(pj1 , pj2) Arc(pj2 , pj3)

(b) Points p̄j are projected onto
the unit circle around p̄i on Ti.
For each point pj , its density is
computed as half of the sum of
the arc lengths on the circle start-
ing at its projection p̃j .

pi

(c) Note how the le�most point
in the upper region gets a di�er-
ent weight than the other points.
Values ranging from low density
(blue) to high density (yellow).

Figure 6.4: Illustration of the arc length density given in (6.11). Points pj ∈ Ni are projected to
the tangent plane Ti. �ere, they are projected to the circle of radius 1 around pi. For each point
pj , its density is computed as half of the lengths of the arcs on the circle starting at its projection
p̃j . When applied to non-uniform dense samples, the boundary points of dense regions get ranked
signi�cantly di�erent from the inner points of the region, as the arc to the neighboring sparse region
is only distributed on the end points.

In particular, if all weights are approximately equal, i.e. δCov(etan
ij) ∼ mCov

i on a regular |Ni|-gon,

we have σCov(etan
ij) ∼ 1 for all pj ∈ Ni.

6.2.2 Arc Length Density

In this section, we will derive a discrete density measure that does not su�er from the disad-

vantages of δCov
as listed above. It was proposed in [Jan17]. Given a point pi ∈ P and its

neighborhoodNi, we �rst project all neighbors pj ∈ Ni as well as pi to the tangent plane Ti and

obtain their projections p̄j, p̄i ∈ Ti. �e projected neighbors are then projected once more onto

the circle of radius r = 1 around p̄i on Ti, creating p̃j ∈ Ti with ‖p̃j − p̄i‖ = 1 for all pj ∈ Ni,
see Figures 6.4a and 6.4b.

Given an orientation of the tangent plane Ti by the normal at pi, the points p̃j can be ordered

along the unit circle around pi by their angle ϕj . If ϕj = ϕ` for two points pj , p`, we order

by their indices j, `. We set ϕ(v1) = 0. Denote the order by p̃j1 , . . . , p̃j|Ni| . For any point p̃j` ,
` ∈ {1, . . . , |Ni|}, consider the arc length on the unit circle from p̃j`−1

to p̃j` and from p̃j` to p̃j`+1
,

see Figure 6.4b.

�e main idea for the density measure is now to assume a direction etan
ij to point into a dense

area, if the arcs to the two neighbors of p̃j are short compared to the longest possible arc length

2π. �e second discrete measure is then given by the sum of half the lengths of the adjacent arcs.

For a point pj ∈ Ni with projection p̃j` we de�ne

δArc(etanij) :=
^(p̃j`−1

− p̄i, p̃j` − p̄i)
2

+
^(p̃j` − p̄i, p̃j`+1

− p̄i)
2

(6.11)

with the angle ^ between two vectors given in radians. Recall that the length a of an arc of angle

φ ∈ [0, 2π] is given by a = r · φ, but since we project to the unit circle, this reduces to a = φ.

81

III Robust and E�cient Processing of Point Sets

Furthermore, δArc
measures the reciprocal of the density, as it assign small values to dense regions

and large values to sparse regions.

Although this de�nition does not su�er from the problematic symmetry as δCov
, there is still

a slight inconvenience. Consider a densely sampled region neighboring a sparsely sampled re-

gion as shown in Figure 6.4c. �e circle arc separating the sparse point and the dense region is

solely contributing to the density measure of the border point of the dense region, assigning it a

signi�cantly higher value than the other points of the dense region.

As in Section 6.2.1, we will now normalize the measure (6.11) in order to obtain positive weights

that are about 1 on a regular |Ni|-gon. �erefore, we set

σArc(etan
ij) =

δArc(etan
ij)|Ni|∑

pk∈Ni δ
Arc(etan

ij)
. (6.12)

As in (6.10), for equal weights in our test case of the regular |Ni|-gon, we have σArc(etan
ij) ∼ 1 for

all pj ∈ Ni.

6.2.3 Smooth Basis Density

Having presented two discrete density measures δCov
and δArc

above, we will now present a

smooth density measure, based on the discrete data given. �e �rst steps are the same as in

Section 6.2.2. �at is, we consider the projection p̃j of all points pj ∈ Ni to a unit circle on Ti
around pi, see Figure 6.4. As before, each point p̃j is assigned an angle ϕj with ϕ(v1) = 0. �e

main idea is now to de�ne a basis function on each p̃j and thereby obtain a density measure at

any angle ϕ ∈ [0, 2π) by

δRBF : [0, 2π)→ R≥0, δRBF(ϕ) =
1

|Ni|
∑
pj∈Ni

ψj(ϕ). (6.13)

�e basis function ψj should be of �nite local support to only in�uence a small neighborhood

around the sample point pj . It should furthermore be smooth to obtain a smooth density measure

δRBF
. Finally, the size of the local support should be chosen such that uniformly distributed

samples pj lead to a preferably uniform density. �erefore, we propose the bump function as

local basis

ψj : [0, 2π)→ R≥0, ψj(ϕ) =

{
exp

(
1

r−2
i (ϕ−ϕj)2−1

)
ϕ ∈ (−ri, ri),

0 otherwise

(6.14)

with ri = 2π
|Ni| . Note that ψj is C∞ and of �nite local support. See Figure 6.5a for a corresponding

illustration of equation (6.13) and see Figure 6.5b for a plot of the resulting density measure on a

uniform point sample.

Once more, as in (6.10) and (6.12), we will normalize the values of δRBF
to have density weights

of approximately 1 on the regular |Ni|-gon. �erefore, we set

σRBF(etan
ij) =

δRBF(etan
ij)|Ni|∑

pk∈Ni δ
RBF(etan

ij)
. (6.15)

Concluding Overview In the Sections 6.2.1–6.2.3 we presented three di�erent directional

density measures on point sets. Namely, we built on a method by [LP05] to de�ne a measure

82

6 Directional Density Measure in Point Sets

(a) �ree basis functions (6.14) shown in blue, as
well as the corresponding density δRBF, (6.13),
shown in yellow.

(b) Several basis functions on a set of uniform
samples shown in blue. Note how the correspond-
ing density (shown in yellow) becomes almost
uniform in the center.

Figure 6.5: Plo�ing several basis functions (6.14) in blue and the corresponding densities (6.13) in
yellow.

k k = 3 k = 12 k = 60 k = 360
σCov 2 · 10−16 4 · 10−16 7 · 10−16 13 · 10−16

σArc 1 · 10−16 7 · 10−16 197 · 10−16 7736 · 10−16

σRBF 0.0 1 · 10−16 4 · 10−16,−4 · 10−16 82 · 10−16

Table 6.1: Results of density measures σCov (6.10), σArc (6.12), and σRBF (6.15) on a regular k-gon
neighborhood for varying k. �e numbers indicate the maximum deviation of the weights from 1.0.

δCov
, (6.9), based on the covariance matrix. Furthermore, we projected points to an estimated

tangent plane and distributed the arc lengths of the unit circle around the center point as density

measure δArc
, (6.11). Finally, we de�ned smooth radial basis functions for each sample pj and

summed these up to obtain a smooth density measure δRBF
, (6.15).

All three measures are to be used as weights in discretizations of di�erential geometry oper-

ators as described in the beginning of Section 6.2. �erefore, we normalized them to our test

case: the regular |Ni|-gon. We obtained three corresponding weights σCov
, (6.10), σArc

, (6.12),

and σRBF
, (6.15). In the next section, these di�erent weights will be evaluated experimentally.

6.3 Experimental Results
In this section, we summarize experimental results proving the e�ectiveness of our approach.

As a �rst preliminary test, we compute the di�erent normalized density measures σCov
(6.10),

σArc
(6.12), and σRBF

(6.15) on k nearest neighborhoods consisting of regular k-gons. �ereby,

we justify the de�nitions of the respective measures by showing that they obtain weights around

1 as desired. In Table 6.1, we presented the computed maximal deviation from weight 1 for the

three measures and di�erent k. Note that all weights lie well within a range around 1. We �nd

that the values of δArc
seem to deviate most. However, this comes with growing values of k,

where in any real application typically small values of k are used.

Following a suggestion of Sco� Schaefer, we also evaluate our weights on a blue noise sample.

83

III Robust and E�cient Processing of Point Sets

200 Blue Noise Experiments σCov σArc σRBF

Average 0.200 0.239 0.258

Minimum 0.000 0.000 0.000

Maximum 1.000 1.560 1.026

Standard Deviation 0.092 0.054 0.042

Figure 6.6: A blue noise sample on a 500×500 domain computed following [Bri07]. To the right the
results of the densitymeasures σCov (6.10), σArc (6.12), and σRBF (6.15) on 200 blue noise samples. �e
numbers indicate the respective deviation of the weights from 1.0. Average, minimum, maximum,
and standard deviation are taken over all weights σ(etan

ij) computed on all pairs of neighboring points
pi, pj in all 200 experiments.

In a �at domain, this type of noise is given by a 2D array of scalar values arranged such that the

Fourier power spectrum of any thresholded gray-level is isotropic and devoid of low frequencies,

see [GF16]. For our implementation we follow an approach by Bridson
1
, see [Bri07]. Our domain

is of size 500 × 500 with 30 tries to create a new sample from any active sample and radius 10.

A resulting sample is shown in Figure 6.6. We create 200 such samples, in each, we compute

the densities σCov
, σArc

, and σRBF
for each point lying within coordinates [100, 400]× [100, 400]

to exclude problematic areas at the boundary. �ereby, in our experiments, on average 567.185
points were considered. As we expect to achieve a density close to 1, for each point pi with

neighbors pj , we consider the deviation from 1. Results of the experiments are also given in

Figure 6.6. Note that on average, the measure σCov
has least deviation from the ideal weights, but

its maximum deviation is comparable to that of σRBF
while its standard Deviation is more than

twice as large.

6.3.1 Discrete Shape Operator

Having passed these �rst preliminary experiments, we will benchmark our weights on a dis-

cretization of the shape operator originally proposed by Taubin in [Tau95]. �e discretization

has been used on point sets with some alterations discussed in [LP05; Skr14b; Jan17]. �e main

idea is to discretize a matrix Mi at point pi ∈ P as

Mi =
1

2π

∑
pj∈Ni

ωijκije
tan
ij e

tan
ij

t
, (6.16)

where etan
ij is the same vector as in Section 6.2, ωij is a weight assigned to each point in order

to have a faithful approximation, and κij is the directional curvature for the direction etan
ij . It is

discretized as

κij =
2〈ni, eij〉
‖eij‖

,

1
�e implementation used can be found here: h�ps://stackover�ow.com/questions/32979413/in�nite-blue-noise

84

https://stackoverflow.com/questions/32979413/infinite-blue-noise

6 Directional Density Measure in Point Sets

(a) input point set
(1186 samples)

(b) max. principal
curvature with ωTau

ij

(6.17)

(c) max. principal
curvature with ωCov

ij

(6.18)

(d) max. principal
curvature with ωArc

ij

(6.18)

(e) max. princi-
pal curvature with
ωRBF
ij (6.18)

Figure 6.7: Plo�ing maximum principal curvature on a cube with di�erently sampled sides for
weights ωij as indicated ranging from the respectively lowest value (blue) to the respectively highest
value (yellow).

where ni is the normal at pi. With this setup, the principal curvatures κi,1, κi,2 at point pi ∈ P
can be computed from the eigenvalues mi,1,mi,2 of Mi by

κi,1 = 3mi,1 −mi,2, κi,2 = 3mi,2 −mi,1.

For the weights ωij , in his article [Tau95], Taubin suggests to use

ωTau

ij =
2π ‖eij‖∑
pj∈Ni ‖eij‖

, (6.17)

which we will compare to our, properly adjusted weights:

ωCov
ij =

2πσCov
ij ‖eij‖∑

pj∈Ni ‖eij‖
, ωArc

ij =
2πσArc

ij ‖eij‖∑
pj∈Ni ‖eij‖

, ωRBF
ij =

2πσRBF
ij ‖eij‖∑

pj∈Ni ‖eij‖
. (6.18)

Synthetic Models We will �rst run some tests on synthetic models before testing the weights

on real world models. A �rst test case is a cube on which two opposing sides are sampled with

only a quarter of the points compared to each of the other sides, see Figure 6.7a. On this point

set, we test the di�erent weights and plot the maximum principal curvature max(κi,1, κi,2) for

each point pi ∈ P . Images are created with k = 12 and relaxed neighborhoods as de�ned in

Equation (6.1).

Note how the weights ωTau

ij and ωCov
ij assign higher values to the edge between two equally

dense sampled sides than to the edges bridging two di�erently sampled sides of the cube. �e

assigned curvature values on the edges are more regular for weights ωArc
ij and ωRBF

ij , also the

corners are marked as points of high principal curvature.

In Section 6.2.1, we saw that the weights ωCov
ij exhibit a problematic symmetrical behavior.

�is e�ect leads to an overestimate of those edges of the cube neighboring two dense regions.

Furthermore, it prevents the weightsωCov
ij to determine the corners of the cube as points of highest

curvature.

A second test case is a Gaussian bump on an otherwise �at plane, see Figure 6.8a, on which we

test the di�erent weights and plot the maximum principal curvature max(κi,1, κi,2) for each point

pi ∈ P . Images are created with k = 12 and relaxed neighborhoods as de�ned in Equation (6.1).

Note that in this case, weights ωTau

ij , ωCov
ij , and ωRBF

ij perform very similar. However, the weights

85

III Robust and E�cient Processing of Point Sets

(a) input point set
(1186 samples)

(b) max. principal
curvature with ωTau

ij

(6.17)

(c) max. principal
curvature with ωCov

ij

(6.18)

(d) max. principal
curvature with ωArc

ij

(6.18)

(e) max. princi-
pal curvature with
ωRBF
ij (6.18)

Figure 6.8: Plo�ing maximum principal curvature on a Gaussian bump on the plane for weights
ωij as indicated ranging from the respectively lowest value (blue) to the respectively highest value
(yellow).

ωArc
ij are not able to recover the curvature of the bump. �at is, because weights for some points

on the border of the geometry become very large, as the arcs reach almost a length of π there.

�ese throw o� the curvature estimates for the whole geometry.

A third and �nal test on a synthetic model is run on an octahedron with tangential noise added

to it. �e test is run only on the so far supreme weights ωtau

ij and ωRBF
ij . Figure 6.9a shows how

despite the noise, weights ωRBF
ij emphasize the edges and corners of the octahedron be�er than

weights ωtau

ij .

CAD and Real World Models Due to the shortcomings found for ωCov
ij and ωArc

ij in the previ-

ous investigation on synthetic models, in the following, we will concentrate on weights ωTau

ij and

ωRBF
ij . We will test the two weights on several CAD and real world models. For each, we evaluate

the range of maximum principal curvatures detected and also give a visual evaluation of certain

interesting features.

In Figures 6.9 and 6.10, we visually compare the results of principal maximum curvature visu-

alization on six CAD and real world geometries. All experiments were performed with k = 12
neighbors and relaxed neighborhoods as de�ned in (6.1). Note that the curvature assignments

with weights ωRBF
ij emphasize features be�er, as highlighted in Figures 6.9b and 6.10a. Also, the

values of curvature are more regular in particular along sharp features, even if curved, as high-

lighted in Figure 6.10a. �e e�ect of noise on the curvature computation is shown in Figures 6.10b

and 6.10c. In both cases, weights ωRBF
ij are slightly more resilient in presence of noise and em-

phasize features be�er. In particular, all examples show that utilizing the additional weights, no

artifacts are introduced and no curvature estimates become �awed.

86

6 Directional Density Measure in Point Sets

(a) Maximum principal curvature on a noisy octahedron with weights ωtau
ij (6.17) on the le� and ωRBF

ij (6.18)
on the right. Note how despite the noise, weights ωRBF

ij still capture the edges of the octahedron uniformly and
the corners more precisely than weights ωtau

ij .

(b) Maximum principal curvature of the bearing model with weights ωtau
ij (6.17) on the le� and ωRBF

ij (6.18)
on the right. Note how the weights ωRBF

ij recover more points of low curvature in the area highlighted in the
lower le� and assign higher curvature to the tightly curved area highlighted in the upper right.

(c) Maximum principal curvature of the dragon model with weights ωtau
ij (6.17) on the le� and ωRBF

ij (6.18)
on the right. Note how independent of the weights, large clusters of points still get assigned high curvature
values.

Figure 6.9: Comparison of weights ωtau
ij (6.17) and ωRBF

ij (6.18). Maximum principal curvatures are
colored from the respective lowest value (blue) to the respective highest value (yellow).

87

III Robust and E�cient Processing of Point Sets

(a) Maximum principal curvature of the dragon model with weights ωtau
ij (6.17) on the le� and ωRBF

ij (6.18)
on the right. Note how the weights ωtau

ij create a jump in the curvature assignments on both straight and bend
edges. �is jump is less present when using weights ωRBF

ij .

(b) A mesh of the rocker arm model colored by maximum principal curvature with weights ωtau
ij (6.17) on the

le� and weights ωRBF
ij (6.18) on the right.

(c) Maximum principal curvature of the Venus model with weights ωtau
ij (6.17) on the le� and ωRBF

ij (6.18) on
the right.

Figure 6.10: Further comparison of weights ωtau
ij (6.17) and ωRBF

ij (6.18). Note how the results are
similar due to mostly good sampling of the models. Still, regions of curvature are covered be�er using
weights ωRBF

ij . Maximum principal curvatures are colored from the respective lowest value (blue) to
the respective highest value (yellow).

88

6 Directional Density Measure in Point Sets

Model #Points MPC ωTau

ij MPC ωRBF
ij

Bearing 3,475 59.251 62.392

Dragon 50,000 2.551 2.363

Fandisk 6,475 14.142 15.014

noisy Rocker Arm 40,177 2.493 2.402

noisy Venus 17,018 22.539 23.560

Table 6.2:Models and range of themaximum principal curvature (MPC) detected for the twoweights
ωTau
ij (6.17) and ωRBF

ij (6.18). A higher range shows be�er curvature detection.

Given that the distribution of points on the curvature range is comparable, a larger detected

range means for higher sensitivity to the curvature of the geometry. �e detected highest maxi-

mum principal curvature values for the tested models are given in Table 6.2. Note that all models

include points of maximum principal curvature max{κi,1, κi,2} = 0. �erefore, the values in

Table 6.2 give the range of maximum principal curvature for the models. �e assumption at this

point is that higher curvature range means for a more subtle detection of di�erences in curvature,

as the di�erent features detected are compared along a larger range. �at is, a higher maximum

principal curvature allows to detect more nuances in the features of the model. Note that to this

end the curvature range of ωRBF
ij is higher or comparable to that of ωTau

ij (6.17) in all �ve models.

6.3.2 Normal Estimates

We proceed with our experiments by evaluating the proposed weights in the context of normal

vector estimates. In order to have quanti�able results, we estimate the normals on a discretized

cylinder body, see Figure 6.11a, where the actual normals can be computed easily and can be used

as ground truth. As we are using the cylinder, the geometry has two boundary components. Since

we aim for computation on surfaces, we run two sets of experiments: one, where we include the

boundary and a second one, where we exclude the boundary by disregarding the lower and upper

three sampling lines, marked black in Figure 6.11a.

We start with a cylinder discretized by 20 circles of radius 1 with 100 equally distributed points

each. �e circles lie 0.1 units apart. In order to evaluate on a non-uniform geometry, we delete

points from this sampling utilizing the following scheme: For each point pi, we draw a number

ρi ∈ [0, 1] with uniform distribution. �en pi = (xi, yi, zi)
T

is removed from the sampling, if

ρi ≥ (xi + 1)/2 + 0.05. �ereby, we create a non-uniformly sampled cylinder, see Figure 6.11b,

with 1, 093 points on average.

We run the experiment as follows: �e true normal ni at a point pi = (xi, yi, zi)
T

can easily be

computed as ni = (xi, yi, 0)T . Note that this implies that the normals at the boundary are simply

the limit of the normals from the cylinder surface in those cases of Table 6.3 where normals

are included. �is normal will serve as ground truth. For comparison, we compute the normals

via principal component analysis (PCA). Here, we build the covariance matrix over a relaxed

neighborhood (k = 12) of the considered point and utilize the eigenvector corresponding to the

smallest eigenvalue as normal estimate nPCA

i , see Figure 6.11c. We compare these with the results

of a geographically weighted PCA, see [HBC11]. �e weights are given by ωCov
ij , ωArc

ij , and ωRBF
ij

respectively. �e respective normal nCov
i , nArc

i , nRBF
i is then again given as eigenvector to the

smallest eigenvalue of the resulting weighted covariance matrix.

�e experiment was run 1, 000 times. All errors are given in degree ranging from 0 to 90. �at

is, e.g. the error of the PCA normal at point pi is computed as](ni, n
PCA

i) ∈ [0, 90]. �e average

error over all points and all experiments as well as the maximum error over all points and all

89

III Robust and E�cient Processing of Point Sets

(a) Original sample of cylinder
on 2, 000 points.

(b) Cylinder a�er probabilistic
thinning, 1, 093 points on av-
erage.

(c) �inned cylinder with estimated
normals from PCA (yellow) and ground
truth normals (black).

Figure 6.11: Setup for the comparison of normal deviation.

experiments is given in Table 6.3, as well as the standard deviation of the error over all points in

all experiments. Note that all weighted normal estimates hit the maximal possible angle deviation

from the ground truth normal. �is is due to a faulty estimate of the normal in particular at the

boundary or at points close to the boundary with badly sampled neighborhoods. For example,

Figure 6.11c shows a point in the upper right that achieves maximum angle deviation. Especially

the estimates with weights ωArc
ij are frequently o� at the boundaries of the cylinder model which

also e�ects the comparably high average angle deviation. On average, the normal estimates with

weights ωRBF
ij are about 2% be�er than the standard PCA estimates, in particular when including

the problematic boundary.

](ni, n
PCA

i)](ni, n
Cov
i)](ni, n

Arc
i)](ni, n

RBF
i)

Including Boundary Avg. 1.225 1.455 4.125 1.206
Max. 71.386 90.000 90.000 90.000
S.D. 1.350 4.482 15.929 1.655

Excluding Boundary Avg. 0.031 0.033 0.079 0.031
Max. 18.777 90.000 90.000 90.000
S.D. 1.552 2.154 12.463 1.931

Table 6.3: Average and maximum angle deviation as well as standard deviation of normals on a
thinned out cylinder (Fig. 6.11b) and normal estimates with di�erent weights.

To further distinguish between the experimental values, we plot the average angle deviation

obtained from PCA, ωCov
ij , and ωRBF

ij , see Figure 6.12. Here, the experiments are sorted such

that the average angle deviation of the PCA estimate grows from le� to right. We �nd that the

normals estimated with weights ωRBF
ij are superior to those given by PCA estimate in 85.5% of

all experiments. In the remaining 14.5%, the PCA normals were best. Neither weights ωCov
ij nor

ωArc
ij achieved a lowest deviation in any of the experiments run. �e maximal improvement of

90

6 Directional Density Measure in Point Sets

0 100 200 300 400 500 600 700 800 900 1,000 1,100
1

1.2

1.4

1.6

1.8

2

Experiment Number

A
v
e
r
a
g
e

A
n

g
l
e

D
e
v
i
a
t
i
o

n

Cov
RBF
PCA

Figure 6.12: Plo�ing the average angle deviation to the ground truth normal on the cylinder model
including boundary (Fig. 6.11b) for 1, 000 experiments. �e experiments are sorted such that the error
of the PCA normal estimate grows from le� to right. Note that the normal estimates by the weights
ωRBF
ij lie below in 85.5% of all experiments.

an estimate created with ωRBF
ij over a PCA normal was 0.069, that is 5.676 percent of the error

made by PCA.

6.3.3 Laplace Operator

We �nish this section on experimental results by evaluating the proposed weights in computa-

tions of the Laplace operator. As above, in order to have quanti�able results, we compute the

Laplace operator for points sampling a �at two-dimensional square of length 1. For a uniform

sampling, the Laplace operator should be ~0 at all points except for boundary points. �erefore,

we only take points pi = (xi, yi)
T

into account where 0.2 ≤ xi, yi ≤ 0.8. All experiments are

run with relaxed neighborhoods where k = 12. �us, for all these points, ~0 is the ground truth

Laplacian.

We sample the square in three di�erent ways (see Figure 6.13). First, we impose a uniform grid

with 484 points on the square from which 144 are taken into account, see Figure 6.13a. Second,

we add 500 points pi = (xi, yi) randomly, where xi, yi ∈ [0, 1] are chosen uniformly at random,

see Figure 6.13b. Here, on average 179.9 points are taken into account. �ird and �nally, we add

500 points randomly, where xi, yi are chosen from a Gaussian distribution with mean 0.5 and

standard deviation 0.25, see Figure 6.13c. Here, on average 296.6 points are taken into account.

We run the experiment as follows: �e true Laplace operator on any inner point of the square

should be ~0, as there is no deviation of the points in height direction. All computed Laplacians

will thus be compared to the zero vector. For comparison, we compute the Laplace Operator

91

III Robust and E�cient Processing of Point Sets

(a) Regular grid sample of a
unit square with 484 points from
which 144 are taken into ac-
count.

(b) Random uniform sample of
a unit square with 500 points
from which on average 179.9 are
taken into account.

(c) Random Gaussian sample of
a unit square with 500 points
from which on average 296.6 are
taken into account.

Figure 6.13: Examples of point sets for the Laplace computations. �e black points are simply
auxiliary where the blue points are those taken into account.

utilizing the graph Laplacian, correspondingly weighted. �at is, given a point pi, we compute

4pi =
∑
j∈Ni

ωij · (pj − pi).

In case of the simple graph Laplacian we chose ωij = 1 for all i, j. Otherwise, we use ωCov
ij ,

ωArc
ij , or ωRBF

ij .

�e experiment was run 1, 000 times on uniformly and Gaussian random data respectively.

All errors are given as euclidean length of the computed vectors ‖4pi‖. As expected, running

computations on the regular grid (Figure 6.13a) yields values very close to zero independent

of the used weights. Despite from this sanity check, the average error over all points and all

experiments as well as the maximum error over all points and all experiments is given in Table 6.4.

Furthermore, the table shows the standard deviation of the error over all points in all experiments.

Note that the weights ωArc
ij are highly instable in this setup and create numbers o� the scale.

In both experimental setups, the computation of the Laplace operator is about 4% be�er with

weights ωRBF
ij when compared with the standard graph Laplacian.

‖4pi‖
∥∥4Covpi

∥∥ ∥∥4Arcpi
∥∥ ∥∥4RBFpi

∥∥
Uniform Average 0.311 0.343 1.5 · 1012 0.154

Maximum 0.845 0.960 2.0 · 1016 0.788
Standard Deviation 0.166 0.194 NaN 0.137

Gaussian Average 0.161 0.177 NaN 0.125
Maximum 0.982 1.061 1.9 · 1016 0.932
Standard Deviation 0.165 0.191 9.034 · 1013 0.136

Table 6.4: Average and maximum length of the computed Laplacian—i.e. deviation from the ground
truth ~0—as well as standard deviation.

To further distinguish between the experimental values, we plot the average length of the

Laplace operator obtained from the graph Laplacian, ωCov
ij , and ωRBF

ij , see Figure 6.14. Here, the

experiments are sorted such that the average vector length of the graph Laplacian grows from le�

92

6 Directional Density Measure in Point Sets

to right. We �nd that the Laplacians estimated with weights ωRBF
ij are superior to those given by

graph Laplacian estimate in all experiments. Despite the high numerical error of the weights ωArc
ij

as shown in Table 6.4, they perform best in 59.3% of all run Laplace computations with uniform

sampling and in case of Gaussian samples they perform best in 12.3% of all experiments. In all

other cases, the best estimate is given by weights ωRBF
ij . Tis hints at certain numerical problems

in the computation of ωArc
ij which are to be investigated in future research.

6.4 Conclusion
In this section, we presented three possible local directional density measures. We �nd that the

density measure of [LP05] su�ers from several shortcomings, therefore we introduce a di�er-

ent discrete measure and an additional smooth density measure. A�er deriving the measures

theoretically, we prove their e�ectiveness on both synthetic and real world data in the context

of maximum principal curvature computation, normal estimation, and the computation of the

Laplace operator.

As in particular normals, but also the Laplace or the shape operator, are at the heart of all

state-of-the-art applications involving point sets, the proposed weights are destined to have an

impact on all these applications. Even though the e�ect is not always large, in a setup with a very

high number of iterations, even a small improvement can make for a signi�cant amount of time

saved or accuracy gained. �erefore, the proposed weights are less of a self-contained tool, but

rather an enhancement of currently available algorithms.

Di�erent other applications—like the implementation of our weights into the contexts of point

set registration, simpli�cation, or surface reconstruction—are le� for further research.

93

III Robust and E�cient Processing of Point Sets

Uniform Sampling of Square

0 100 200 300 400 500 600 700 800 900 1,000 1,100

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Experiment Number

A
v
e
r
a
g
e

E
u

c
l
i
d

e
a
n

l
e
n

g
t
h

o
f

L
a
p

l
a
c
e

o
p

e
r
a
t
o

r Cov
RBF

graph Laplacian

Gaussian Sampling of Square

0 100 200 300 400 500 600 700 800 900 1,000 1,100
0.1

0.12

0.14

0.16

0.18

0.2

Experiment Number

A
v
e
r
a
g
e

E
u

c
l
i
d

e
a
n

l
e
n

g
t
h

o
f

L
a
p

l
a
c
e

o
p

e
r
a
t
o

r Cov
RBF

graph Laplacian

Figure 6.14: Plo�ing the average Euclidean length of the Laplace operator on di�erent samples of
the unit square for 1, 000 experiments. �e experiments are sorted such that the length of the graph
Laplacian grows from le� to right. Smaller values are be�er, as the Laplacian on the square should
be ~0. Note that the estimates with weights ωRBF

ij are always be�er than those derived by the other
two methods.

94

7 Feature Detection from Moving Least Squares

7 Feature Detection from Moving Least Squares
Many available algorithms tackling several tasks on point sets—like surface reconstruction or

denoising—depend on the detection of features present in the originally sampled geometry. If

these are not identi�ed correctly they might be smoothed and thereby lost while denoising or

they cannot be faithfully rebuilt from the point set when reconstructing the surface.

�e purpose of this section is to present a feature recognition approach that is based in the

framework of the Moving Least Squares (MLS) procedure, see Section 4.4.1. �erefore, it bene�ts

from the mathematical guarantee (�eorem 13) given by MLS. �e main contributions of this

section are:

I Presentation of di�erent approaches that use the mathematically proven functionality of

the MLS technique to detect features.

I Experimental results on the feature detection sensitivity of the presented approaches.

7.1 Related Work

Feature detection is an area of active research in the context of polygonal meshes as well as for

point sampled surfaces. A general overview of di�erent techniques and an approach to feature

detection via the Gauss Map is given in [WHH11]. However, only few of the mentioned works

are applicable in the context of point sets. We will brie�y list them in the following paragraph.

Gumhold, Wang, and MacLeod [GWM01] use a Riemannian graph on the point set to obtain

connectivity information. Utilizing this, they evaluate a correlation ellipsoid at each point. De-

pending on the shape, the point under consideration is labeled as a surface-, crease-, border-,

or corner-point. Pauly, Keiser, and Gross [PKG03] utilize a multi-scale approach to make fea-

ture detection with principal component analysis more resilient against noise. �ey compute

the eigenvectors of the covariance matrix for up to 200 neighborhood sizes and consider the

variations in the results. According to these, points are labeled as features. For feature recon-

struction, a minimum spanning graph on the identi�ed points is used. Lange and Polthier [LP05]

consider an approach of Taubin [Tau95] that has originally been introduced for meshed geome-

tries. In their paper, the authors translate this approach to point sets in the context of anisotropic

smoothing. A curvature estimate is used to distinguish features from �at regions and thus only

the la�er are smoothed. Demarsin et al. [Dem+07] �rst segment the point set into clusters with

equal normal behavior. A graph on these clusters indicates by its edges the presence of sharp fea-

tures. Once more, a minimum spanning tree is used to close and reconstruct the features. Park,

Lee, and Lee [PLL12] use the concept of tensor voting for feature detection. A�er the application

of the voting tensor, an optimal scale is selected. �ese two steps are iterated until a user-given

threshold is reached. Based on this, features are classi�ed and completed.

Several methods are available that introduce feature-awareness to the MLS framework. �e

Robust Implicit MLS (RIMLS) of Öztireli, Guennebaud, and Gross [ÖGG09] uses non-linear kernel

regression and an iterative scheme to determine the minimum of the moving least squares prob-

lem. Within these iterations, normal similarity is taken into account in order to reconstruct the

surface with respect to the features. A method for feature-aware resampling of point sets based

on MLS is presented by Huang et al., see [Hua+13]. �e authors �rst resample the point set away

from features following the work of Lipman et al., see [Lip+07]. �en, in a second step, features—

as identi�ed by their normal variation—are resampled. Given these examples, it becomes obvious

that the MLS procedure can be practically used in the context of feature processing.

Finally, in Section 8, a feature detection based on the concept of tensor voting, comparable to

95

III Robust and E�cient Processing of Point Sets

the approach of Park, Lee, and Lee [PLL12] is used to detect features before denoising the point

set.

All these approaches work well in practice, but they have no mathematical guarantees. In fact,

they are rather ad hoc constructions than theoretically based.

7.2 The Feature Detection Method

�e MLS procedure has already been presented in Section 4.4 with several results. By the re-

sults of [SL16], an application of the MLS procedure yields a smooth manifold. However, when

applied to a point set sample of a geometry with sharp features, the MLS result will still give

a smooth version of this geometry, losing the features. �erefore, several publications aim at

including the preservation of sharp features in the MLS technique. Fleishman, Cohen-Or, and

Silva [FCS05] utilize the framework of robust statistical methods. �ey consider an initial robust

estimator, combined with a forward search on the point set to locally classify piecewise smooth

surface patches. Features are then derived as intersections of these smooth parts. Öztireli, Guen-

nebaud, and Gross [ÖGG09] also use a statistical tool, namely kernel regression. �ey localize

this technique robustly to obtain a signed scalar �eld from which the surface can be derived. See

Section 1.5.2 for our version of feature-aware MLS.

Both these methods—[FCS05] and [ÖGG09]—work well in practice, but they depend on the

statistical concepts added to the MLS procedure. �erefore, they depend on the actual parameters

chosen and do not bene�t from the mathematical guarantees of MLS as given by �eorem 13. In

this section, we aim at a feature detection method that only needs the MLS procedure and its

related quantities and is thus directly motivated by the main theoretical results from [Lev04;

SL16].

We make the following central observation about �eorem 13. Its statement applies to some

smooth manifoldMwith a suitable sampling P . �us, given an arbitrary geometry that is piece-

wise comprised of smooth manifold patches but also includes sharp features, we know that �e-

orem 13 will still hold for all those areas that are locally smooth. However, from the theorem

it remains unclear how the MLS procedure will perform close to sharp features, where the �rst

derivative is discontinuous. �e proof of �eorem 13, given in [SL16], is based in large parts on

the work in [Lev98]. �ere, the author �rst established the approximation order in a compara-

bly reduced se�ing, [Lev98, �eorem 5, p. 1523]. �e proof is based on the observation that the

coe�cients of the Taylor expansion of the approximated function are bounded. �is is true for

smooth parts of the geometry, but is violated at feature points. �erefore, the MLS procedure

will not necessarily satisfy the approximation order as the Taylor expansion is not well-de�ned

in the �rst or second derivative. In the following, we will use this observation. Namely, we will

search for points in the geometry that do not behave according to �eorem 13 and label these as

features.

In the upcoming sections, we present four di�erent approaches that each identify those areas

of the geometry which do not behave according to the predicted approximation order. �e ap-

proaches presented detect features with increasing sensitivity and can be used according to the

needs of the algorithm in use. Note that everything that is marked by the following approaches is

a feature in this sense, but there are features that will not be detected, e.g. at a sharp saddle point

where the saddle is projected to itself under the MLS procedure. However, in our experiments,

all major features of the geometries were detected, see Section 7.3.

96

7 Feature Detection from Moving Least Squares

r1

r2

Figure 7.1: MLS approximation with two di�erent radii r1 < r2 at a corner. Note how the approxi-
mation with the larger radius r2 is pulled away from the corner.

7.2.1 Two Radii

When performing the MLS procedure, the non-negative weight function θ used in Equations (4.2)

and (4.4) is using the radius r of its local support. On a small patch of the geometry resembling a

smooth manifold, varying the radius will have negligible e�ects, as the local approximation will

stay close to the smooth patch. However, at a feature point, enlarging the radius and thus taking

more points away from the feature into account will draw the approximation further away from

the feature, see Figure 7.1. �erefore, at a given point pi ∈ P , we consider the value

µ2rad
r1,r2

(pi) = ‖MLSP,r1(pi)−MLSP,r2(pi)‖ , (7.1)

such that we investigate the e�ect that a change of radius has on the approximation at point

pi. Note that the two used radii r1 and r2 cannot be chosen completely arbitrarily. �ere have

to be enough points in the respective neighborhoods such that the linear system resulting from

Equation (4.4) can be solved. When implementing the quantity, the two parameters could be

chosen either globally or locally. We elaborate on our choice of r1 and r2 in Section 7.3.

7.2.2 Double Projection

�e MLS procedure is a projection as established in [Lev04] and stated in �eorem 12. �at is,

when applying the operator MLS (4.7) to a point p twice, taking into account the point set P and

a radius r, it holds that

MLSP,r(MLSP,r(p)) = MLSP,r(p). (7.2)

We denote the set of projections of all sample points by

P ′ := {MLSP,r(pi) | pi ∈ P}.

�en, we will consider a second projection of the p′i := MLSP,r(pi), not with respect to P , but

with respect to P ′. Note that because of property (7.2), if projecting a second time with respect

to P , the points would not move at all. �us, our second projection of p′i ∈ P ′ is performed with

respect to P ′ and we denote it by

p′′i = MLSP ′,r(p′i).

For all those points pi sampled from smooth manifold patches of the geometry, p′ will approxi-

mate the manifold well according to �eorem 13. �us, the distance ‖p′i − p′′i ‖ will be negligible.

However, for points close to features of the geometry, the distance will be larger than the distance

of points on smooth manifold patches and we denote it by

µdoubler (pi) = ‖MLSP,r(pi)−MLSP ′,r(p′i)‖ . (7.3)

97

III Robust and E�cient Processing of Point Sets

p2

q

p3

p

f2

f3p′
µdistr (p)

Figure 7.2: Illustrating the value µdistr (p) in the se�ing of Figure 4.4.

7.2.3 Distance of the Original to the Projection

Consider a sample point pi ∈ P—possibly a�ected by noise—that is taken from a smooth mani-

fold patch of the geometry. When using the MLS procedure, the distance of pi to its projection

MLS(pi) will be proportional to the level of noise σ and the approximation order O(hm+1), see

�eorem 13. Consider a point sampled close to a feature of the geometry. When projecting this

point, it will move not only according to the noise level and approximation order. It additionally

has to move from the feature to a smooth manifold approximating the feature. �erefore, points

close to features will have a larger distance to their projections than those points on smooth

manifold patches. We consider the value

µdistr (pi) = ‖pi −MLSP,r(pi)‖ , (7.4)

see Figure 7.2 for an illustration.

7.2.4 Value of MLS functional

Finally, we consider the value of the MLS functional Ip(a, s) as given in Equation (4.2) in order to

distinguish features from non-feature points. �e functional evaluates how well a given point p
and its neighbors pi ∈ P can be approximated by a hyperplane. By de�nition, a small neighbor-

hood of a smooth manifold resembles a �at Euclidean area. �erefore, the value of the function

Ip(a, s) will be small for those points p sampled from a smooth manifold patch of the geometry.

However, a feature cannot be approximated well by a hyperplane. �erefore, points sampled

close to features will obtain higher values in the MLS functional. We denote this last value by

µFuncr (pi) = min
n∑
j=1

(〈a, pj〉 − 〈a, pi + sa〉)2 · θ(‖pj − (pi + sa)‖)

s.t. ‖a‖ = 1.

(7.5)

7.2.5 Normalization

�e four values introduced above—µ2rad
r1,r2

, µdoubler , µdistr , and µFuncr —have very di�erent ranges. In

order to compare them and use them in our experiments, we perform the following normalization

µ̄ג(pi) =
µג(pi)−minnj=1 µג(pj)

maxnj=1 µג(pj)−minnj=1 µג(pj)
, (7.6)

where ג ∈ {2rad, double, dist, Func}. Note that the four di�erent feature measures presented

in the section are all based on intrinsic quantities of the MLS framework, linked to its central

results as given in �eorems 12 and 13.

98

7 Feature Detection from Moving Least Squares

(a) Original Cube with 2306
points.

(b) Principal curvature. (c) Two radii µ̄2rad
r1,r2 , r1 = 0.3,

r2 = 0.1.

(d) Double projection µ̄doubler . (e) Projection distance µ̄distr . (f) MLS functional µ̄Funcr .

Figure 7.3: Cube model colored according to the di�erent schemes, linearly from blue (minimum)
to yellow (maximum).

7.3 Experimental Results

We evaluate our proposed approaches on several models. Both synthetic and real-world models

as well as clean and noisy models are taken into account. Furthermore, we compare the result

of our approaches to an evaluation of principal curvature on the models. For the principal cur-

vature computation, we follow the procedure originally introduced by [Tau95] and translated

to the se�ing of point sets by [LP05]. In all our experiments, we determine the radius r as a

global parameter such that for each point pi of the geometry, there are at least 30 points pj in

its neighborhood that satisfy θ(‖pi − pj‖) > 0.1. We choose 30 points, as we are using a total

polynomial degree of m = 3 and therefore the linear system following from Equation (4.4) has

ten equations. In order to have enough points with a substantial contribution to the system, we

use three times that minimally needed number. �ereby, we ensure that the system can always

be solved uniquely. For the values µ̄2rad
r1,r2

, we use r1 = r as described above and r2 = r1/3, which

is possible, as the margin to solve the linear system was chosen large enough.

7.3.1 Synthetic Models

Noiseless Our �rst testing model is a noise-free unit-cube, sampled with 2, 306 points, see

Figure 7.3a. We pick this model as it symmetrically incorporates planar faces, edges, and corners.

�us, it provides a suitable �rst benchmark. �e radius determined according to the procedure as

explained above is r1 = 0.3, with r2 = 0.1. �e original model, as well as the features detected by

principal curvature computation and the four presented approaches is given in Figure 7.3. Note

99

III Robust and E�cient Processing of Point Sets

(a) Noisy cube with 2, 306
points.

(b) Principal curvature. (c) Two radii µ̄2rad
r1,r2 , r1 = 0.3,

r2 = 0.15.

(d) Double projection µ̄doubler . (e) Projection distance µ̄distr . (f) MLS functional µ̄Funcr .

Figure 7.4: Noisy cube model (σ = 0.1) colored according to the di�erent schemes, linearly from
blue (minimum) to yellow (maximum).

how the proposed methods detect features of the cube with varying sensitivity. Both µ̄2rad
r1,r2

and

µ̄distr highlight small neighborhoods around both corners and edges of the cube. However, they

do not distinguish signi�cantly between corners and edges. �e other two proposed methods

µ̄doubler and µ̄Funcr highlight larger areas around the features, but corners and edges are visually

easily separated. Compared to the principal curvature computation, all four methods distinguish

be�er between the edges and the �at sides of the cube.

Noisy In order to test the robustness of our proposed methods, we apply arti�cial tangential

and normal noise to the cube model of Figure 7.3. �e applied noise has a standard deviation of

σ = 0.1, with the original point set being a unit-cube. For the radii, we use slightly di�erent

values r1 = 0.3 and r2 = 0.15 compared to the clean case. �is is necessary as the linear system

resulting from Equation (4.4) cannot be solved for r2 = 0.1. �e noisy model, as well as the

versions colored by features are given in Figure 7.4. Note how in the case of principal curvature

and the quantity µ̄doubler mostly outliers a�ain the highest values, while in the colored models with

quantities µ̄distr and µ̄Funcr , the corner areas are highlighted well. Furthermore, while the principal

curvature operator detects moderate values of curvature also on the �at sides of the cube, both

µ̄2rad
r1,r2

and µ̄Funcr identify comparably large areas on the sides as �at. While µ̄doubler completely

fails in this presence of higher noise levels, the fourth approach µ̄distr is also less resilient to the

high level of noise, but produces results that are visually comparable to those obtained by the

principal curvature values.

100

7 Feature Detection from Moving Least Squares

(a) Noisy rocker arm model
with 40, 177 points.

(b) Principal curvature. (c) Two radii µ̄2rad
r1,r2 , r1 = 3.5,

r2 = 2.0.

(d) Double projection µ̄doubler . (e) Projection distance µ̄distr . (f) MLS functional µ̄Funcr .

Figure 7.5: Noisy rocker arm model (σ = 0.5) colored according to the di�erent schemes, linearly
from blue (minimum) to yellow (maximum).

7.3.2 Real World Models

Noisy CADModel In terms of real-world models, we �rst consider a noisy model of the rocker

arm, see Figure 7.5. Note that while the principal curvature values detect the whole rim of the

cylindrical hole as curved, our proposed quantities distinguish between the border of the rim and

the actual �at rim surface. �e same e�ect can be observed at the large curved part at the front

of the model. None of the used quantities is a�ected by the presence of noise.

Scanned Data Finally, we compare the proposed feature detection mechanisms and principal

curvature computation on raw scanning data of the Venus model. �e density of the point set

is ge�ing smaller towards the bo�om of the model. �is e�ects the principal curvature weights

to the extent that many curved points are detected simply because of the low density. �e four

proposed approaches are signi�cantly less a�ected by the sparse sampling. Furthermore, in par-

ticular for values µ̄2rad
r1,r2

and µ̄distr , the �at area above the neck is well distinguishable from the

curved rim of the neck, which is not the case for the other methods.

7.4 Conclusion and Future Work
In this section, we have presented four di�erent approaches how to implement feature detection

in the framework of MLS. In contrast to other algorithms, our techniques do not use additional

statistical methods, but utilize the quantities generated within the MLS procedure itself. Our ap-

proaches are therefore based on the mathematical results and guarantees of the MLS technique. In

101

III Robust and E�cient Processing of Point Sets

(a) Original Venus model with
17, 018 points.

(b) Principal curvature. (c) Two radii µ̄2rad
r1,r2 , r1 = 1.11,

r2 = 0.37.

(d) Double projection µ̄doubler . (e) Projection distance µ̄distr . (f) MLS functional µ̄Funcr .

Figure 7.6: Venus model colored according to the di�erent schemes, linearly from blue (minimum)
to yellow (maximum).

several experiments, we showed that our techniques detect features with di�erent sensitivity and

are robust to noise. It remains as future work to investigate whether the presented approaches

can be used to obtain a feature-aware version of the MLS algorithm, cf. Section 1.5.2. Further-

more, a thorough comparison of the presented quantities with state-of-the-art feature detection

techniques has to be performed, which is also le� as further research.

102

8 Constraint-Based Point Set Denoising

Vertex Normal
Filtering

Noisy
Point Set

Feature
Detection

Vertex
Update

Denoised
Point Set

iterate

Figure 8.1: �e pipeline of the proposed algorithm. Our method consists of three di�erent stages,
which are applied iteratively.

8 Constraint-Based Point Set Denoising using the Normal
Voting Tensor and Restricted�adratic Error Metrics

During the acquisition process of point sets, due to mechanical limitations and surrounding con-

ditions, noise and outliers are inevitably added to the point set. �ese artifacts have to be removed

in a post-processing step to obtain a cleaned point set, which can be used in further steps like

surface reconstruction, computer aided design (CAD), or 3D printing. �ere exists a variety of

denoising methods focused on removing outliers and noise from the input point set to create a

high �delity output. �ese methods do not only aim at removing the undesired components, but

also try to preserve sharp features of the geometry. High frequency components like corners or

edges should be preserved and not be smoothed out. �is is a challenging task as both features

and noise are high frequency components and thus ambiguous in their nature.

Most state-of-the-art denoising methods are designed to work on triangle meshes. Compared

to this setup, working on point sets and preserving sharp features is more di�cult as explicit

connectivity information is not present. Also, we assume the input to be given without any

normals. However, as point sets take up less storage space and as both surface reconstruction

and point set registration are easier on a noise-free point set, we aim for an intrinsic smoothing

method to work directly on the noisy point set input.

On a noisy point set, it is a challenging task to decouple noise components and sharp features,

which is essential for a noise-free point set reconstruction. As shown in Figure 8.1, our algorithm

consists of three di�erent stages, which are iteratively applied until a satisfactory output has

been computed. In the �rst stage, we extend the concept of face normal processing of Yadav et

al. [YRP17] to the more general setup of vertex normal processing. In terms of noise sensitivity,

vertex normals are more sensitive compared to face normals. �erefore, we modify the weighting

scheme in the neighborhood selection of the normal voting tensor (NVT) to make the algorithm

robust against di�erent levels of noise. Noise and sharp features are decoupled using a spectral

analysis of the vertex-based NVT and noise components are suppressed using binary eigenvalue
optimization (BEO). In the second stage, we introduce an anisotropic covariance matrix using the

�ltered vertex normals to detect feature points (edges and corners) robustly on the noisy input

point set. In the third and last stage, we update the vertex positions based on quadratic error

metrics. A corresponding quadratic error metric is used based on di�erent feature points. �e

proposed vertex update method helps the algorithm to preserve sharp features with minimum

shrinkage during the denoising process.

103

III Robust and E�cient Processing of Point Sets

�e main contributions of this section are:

I Translation of the algorithm from [YRP17] to the context of point sets.

I Introduction of quadratic error metrics for the vertex update stage in the smoothing pipeline.

�e results of this section have been presented at the SMI’18 conference and published in the

corresponding proceedings, see list of publications prior to the thesis, page 5. Additional to the

results published, this section includes several explanations concerning the motivation behind

choices made in the publication—like choosing the eigenvalue optimization to work with binary

values. Furthermore, the example in Figure 8.3 was added with corresponding explanations as

well as a pseudo-code version of the presented algorithm.

8.1 Related Work
8.1.1 Point-based Methods

In general, point sets appear as natural output of 3D scanning devices. �e increase in compu-

tational costs while processing polygonal meshes with growing size is partly responsible for the

recognition of points sets as primitives for surface representation, cf. [AK04]. One major draw-

back in this approach is the absence of connectivity information, which sets the task to declare

surface normals. Here, [AK04] especially proposes a de�nition utilizing surfels, which are points

equipped with normals. Usually, point sets do not carry normals, so we have to rely on methods

which determine these robustly and with high quality. �e authors Mitra and Nguyen [MNG03]

suggest a calculation of point set normals and an analysis under consideration of density, neigh-

borhood sizes, and the presence of noise.

We are interested in point set denoising coupled with feature preservation. �ere are several

works approaching these two properties directly. A �rst one was published by Fleishman et

al. [FDC03]—serving as a representative despite the fact that it deals with meshes instead of point

sets. As it does not use any speci�c mesh information, it can be transferred to the point set se�ing

easily. �ey use a bilateral �ltering of points in normal direction in local neighborhoods. Another

one is the anisotropic smoothing of point sets of [LP05] where the authors use an anisotropic

geometric curvature �ow. Besides the high dependency on suitable neighborhoods, which the

authors cannot compute directly, the proposed algorithm does not detect features explicitly, but

incorporates feature detection into an anisotropic Laplacian. �e more recent work [SSW15] is

based on the idea of sparsity methods and includes L0 minimization. Originating from image

denoising, they set up an energy—consisting of the 3D signal to be optimized—coupled with an

L0 optimization applied to a di�erential operator on the signal.

Processing of normals, point positions, and an edge-aware upsampling o�ers the opportu-

nity for an iterative application. In this se�ing, we are going to compare our algorithm with

that of [MC17], called moving robust principal component analysis (MRPCA). �e idea is—like

the previous—based on sparsity methods, which takes sparsity-algorithms and adapt them to

geometry processing problems. �ey perceive the point set as a collection of overlapping two-

dimensional subspaces and do not rely—in contrast to other procedures—on oriented normals as

input. �e method is robust against outliers and capable of denoising the point set while handling

sharp features.

Recently, Zheng et al. [Zhe+17] proposed an extension of edge-aware image processing and

mesh denoising to point sets. In their four-staged approach, feature candidates are detected by

employing a feature structure by the `1-medial skeleton, calculating and equipping these with

multiple normals, and selecting guiding normals by using k nearest neighbor patches with its

104

8 Constraint-Based Point Set Denoising

normals being most consistent. In these terms, the algorithm is even capable of handling high

intensive noise while preserving important geometric features.

8.1.2 Surface Reconstruction with Feature Preservation

One of the processes most a�ected by noise and outliers in a point set is that of surface reconstruc-

tion. A thorough introduction is given in the survey of Berger et al., see [Ber+17]. All following

techniques aim at preserving features while simultaneously performing denoising in the sur-

face reconstruction process. In the context of local smoothness priors, the moving least squares

(MLS) approach has a major impact. Developed in large parts by Levin [Lev04], MLS underwent a

lot of modi�cations. See Section 4.4.1 for an introduction to the MLS framework. Guennebaud et

al. [GG07] modi�ed the MLS idea by replacing the concept of �nding well-de�ned tangent planes

by ��ing spheres as higher order approximations to the surface. �is change makes the method

more robust—especially in sparsely sampled regions, where a well de�ned tangent plane might

not exist. �eir method is denoted as algebraic point set surfaces (APSS) and will serve as compar-

ison to our algorithm. �e method of Öztireli et al. [ÖGG09] aims at overcoming the sensitivity

of MLS to outliers and the e�ect of smoothing out small or sharp features. �ey combine MLS

with local kernel regression to create a new implicit description of the surface, making it robust

to noise, outliers, and even sparse sampling. �eir method of robust implicit moving least squares
(RIMLS) will be the third algorithm we compare to. More recently, Chen et al. [Che+13] set their

focus on a new MLS formalism using higher-order approximations—like APSS—incorporating

discrete non-oriented gradient �elds, yielding a continuous implicit representation.

Turning to hierarchical partitioning, Ohtake et al. [Oht+03] propose multi-level partitioning
of unity implicits (MPU). �eir technique consists of an octree-based top-down structure, where

points in a cell and nearby are approximated by either a bivariate quadratic polynomial or an

algebraic trivariate quadric. An adjustment parameter for the level of smoothness guarantees the

handling of noise with respect to an error residual tolerance.

Considering piecewise smooth priors and partition based methods, Fleishman et al. [FCS05]

concentrate with their robust moving least squares (RMLS) on the handling of sharp features. �ey

use the robust statistics tool of forward-search paradigm to choose small sets of points exclud-

ing outliers, continue through the point set, and evaluate observations monitored by statistical

estimates. Wang et al. [Wan+13] robustly compute a feature preserving normal �eld by mean-

shi� clustering and a least median of squares (LMS) regression scheme, providing local partitions,

to which edge-preserving smoothing is applied by ��ing multiple quadrics. Due to the locality,

feature fragmentation at sharp edges may occur.

Taking sparsity and neighboring normals into account, Avron et al. [Avr+10] use global `1

optimization on these normals, observing that di�erences between them should be sparse, yet

large values should re�ect sharp features. Similar to the approach in RIMLS, [Hua+13] suggests

the edge-aware resampling (EAR) of the point set. �is is a feature-sensitive method under the

guidance of the locally optimal projection (LOP) of Lipman et al., see [Lip+07], in a two-staged

approach, starting their robust smoothing and resampling process in regions with similar normal

distribution, while approaching the edges in terms of both smoothing and resampling in a second

step.

8.2 The Proposed Method
Let us consider a non-uniformly sampled and noisy input point set P = {pi ∈ R3 | i = 1, . . . , n}
sampling a surface M ⊂ R3

with n ∈ N denoting the number of points. We assume these

105

III Robust and E�cient Processing of Point Sets

data points to be acquired e.g. by a 3D laser scanner and not to be equipped with vertex nor-

mals. �us, a �rst normal �eld on the vertices is computed following [Hop+92], which results in

consistently
2

oriented normals. Despite the fact that there are more recent works dealing with

consistent normal �elds on point sets, we decided to use [Hop+92], as the implementation is

simple and it works well with all the models we used for our experiments. �is is mostly due

to the fact, that we process and smooth the normals further, so a consistent initial normal �eld

is su�cient for our purposes. We denote the normal at vertex pi by ni and the normal �eld by

NP = {ni ∈ R3 | pi ∈ P}. For a given vertex pi, we denote by Nε(pi) those points from P that

have distance less or equal ε to pi, see (1.4), where ε is a global parameter. We favor a geometric

neighborhood over a combinatorial k nearest neighborhood (1.1) as [YRP17] found it to be more

robust. In the following, we will indicate by a tilde∼ those elements updated in one iteration—e.g.

updated normals ñi—which will then serve as input to the next one.

8.2.1 Vertex Normal Filtering

�is is the �rst of three iteratively applied steps of the proposed method. Here, noisy vertex

normals are �ltered and denoised using a vertex-based normal voting tensor (NVT) and binary
eigenvalues optimization (BEO) similar to [YRP17]. We describe both in the following.

Vertex-basedNormal Voting Tensor (NVT) Covariance matrices compute the variance of an

entity in a well-de�ned domain. For example, consider a vertex pi and its nearest neighbors pj ∈
Nε(pi). �e covariance matrix on the edges (pj − pi) of the nearest neighbor graph computes

the variance of the vertex pi in R3
. Similarly, the covariance matrix of the vertex normals nj

corresponding to the vertices pj , in a well de�ned neighborhood computes the anisotropic nature

of a point set in that region. To analyze the anisotropic nature of a shape—in this case a point

set surface—we de�ne an object related to the covariance matrix, namely the vertex-based NVT,

which is computed using the neighboring vertex normals:

Ti =
1

|Nε,ρ(pi)|
∑

pj∈Nε,ρ(pi)

nj ⊗ nj, (8.1)

where the tensor nj ⊗nj can be represented by the outer product njn
T
j . �is NVT has been used

as vertex-based NVT in [YRP17] for mesh denoising and was introduced as element-based NVT

in [KCL09]. In the la�er, each summand nj ⊗ nj was weighted by a term depending on the area

of the planar element considered. �e authors of [YRP17] introduce a di�erent weighting scheme

that also depends on the face areas, but also on the similarity of the normals. As area weights are

not available in our mesh-free context, we weight all summands with uniform weights equal to 1
and thus normalize by the factor 1/ |Nε,ρ(pi)| to become resolution independent. However, this

is not strictly necessary as we will only work with the spectral components of Ti in the following,

which are not a�ected by the scalar factor. More elaborate weights could be investigated which

be�er re�ect the density of the point set, see Section 6. However, in all our experiments the

utilized weights work reasonably well.

In Equation (8.1), the set Nε,ρ(pi) is a binary cuto� neighborhood given by

Nε,ρ(pi) = {pj ∈ P\{pi} | wbinij = 1} ∩ Nε(pi), (8.2)

2
Consistency in this case refers to the following property of the algorithm: If the underlying surfaceM is orientable,

given a good-enough sampling, the normals will all be inward- or outward-normals a�er the application of

algorithm [Hop+92].

106

8 Constraint-Based Point Set Denoising

(a) σn = 0.25`a (b) wij as in [YRP17] (c) Bilateral [YRP18] (d) As in Eq. (8.3)

Figure 8.2: A comparison between di�erent weighting functions for neighborhood selection. (a) �e
cube model is corrupted with a Gaussian noise (σn = 0.25`a) in random directions, where `a is the
average distance between vertices of the point set. (b) �e output obtained by using the weighting
function mentioned in Yadav et al. [YRP17]. (c) �e output obtained by using the bilateral weighting
function (smooth functions) mentioned in Yadav et al. [YRP18]. (d) �e output obtained by using the
proposed weighting function of Equation (8.3). Vertices of the cube are colored from blue (low) to
yellow (high) according to the variation of vertex normals. While the method uses ε nearest neigh-
bors (1.4), the cube model is sampled nicely, so the features shown were computed with k nearest
neighbors (1.1), k = 16.

with Nε(pi) a metric neighborhood as in Equation (1.4) and binary weights

wbinij =

{
0 if 〈ni, nj〉 < ρ

1 if 〈ni, nj〉 ≥ ρ
. (8.3)

Here, ρ ∈ R>0 is given by the user and denotes a local binary neighborhood threshold, which is

used to select vertices pj ∈ Nε(pi) with similar normals to ni. �e neighborhood is not the exact

weighted neighborhood used in [YRP17] because vertex normals are more sensitive to noise than

face normals, for example at sharp features. �erefore, a harder cut-o� is necessary to maintain

geometrical features while smoothing the point set. Figure 8.2 shows a comparison between

the proposed weighting scheme (8.3), the bilateral weighting from [YRP18], and the weighting

function used in Yadav et al. [YRP17]. As it can be seen, the harder cut-o� neighborhood is more

e�ective in terms of feature preservation than Yadav et al. [YRP17] or [YRP18]. �e sharp cut-o�

can be formulated in terms of Equation (1.13) by choosing parameters a = ρ and b = ∞ for the

sigmoid. See Section 1.5.1 for a detailed discussion of the used parameters.

By construction, Ti is symmetric and positive semide�nite and can be represented in terms of

its spectral components:

Ti =
3∑
`=1

λi,` xi,` ⊗ xi,`, (8.4)

where λi,` and xi,` are the corresponding eigenvalues and eigenvectors. Let us consider the eigen-

values to be sorted in decreasing order λi,1 ≥ λi,2 ≥ λi,3 ≥ 0. �us, we can rewrite Ti as:

Ti =(λi,1 − λi,2)xi,1 ⊗ xi,1 + (λi,2 − λi,3)(xi,1 ⊗ xi,1 + xi,2 ⊗ xi,2)

+ λi,3(xi,1 ⊗ xi,1 + xi,2 ⊗ xi,2 + xi,3 ⊗ xi,3).
(8.5)

107

III Robust and E�cient Processing of Point Sets

Here, the �rst term of the right hand side is known as the stick tensor and has only one dominant

eigenvalue in the normal direction. �e second term is spanned by the two dominant eigenvec-

tors, such that the normal direction is de�ned in the direction of the least dominant eigenvector.

�is term is known as the plate tensor. �e third term is spanned by all eigenvectors and does not

have a well de�ned normal direction, cf. [MTL00]. From the above description, it is clear that the

vertex-based NVT captures the anisotropic nature of a point set and feature points can be easily

detected using the eigenvalues of Ti. �at is, if there is only one dominant eigenvalue then it is a

planar point, if two eigenvalues are dominant then it is an edge, and if all eigenvalues are equally

dominant then it is a corner.

Binary Eigenvalue Optimization (BEO) In our method, the vertex-based NVT is applied as

a denoising operator on a noisy point set. Furthermore, as we have discussed in the last section,

the vertex-based NVT is capable of detecting features on point sets as shown in Figure 8.1 (third

column). However, on a noisy point set, the behavior of the spectral components of the vertex-

based NVT will change.

Let us assume that a point set is corrupted by random noise with standard deviation σ. Due

to the presence of noise, the eigenvalues of the vertex-based NVT will change. For example, on

a planar area, one eigenvalue will remain dominant, but the other two eigenvalues will be non-

zero and proportional to σ. Similarly, on an edge of the sampled geometry, the least dominant

eigenvalue will be proportional to the applied noise, i.e. λi,3 ∝ σ. On a corner of the sampled

geometry we expect λi,1, λi,2, λi,3 � σ. To remove these noise e�ects from the vertex-based NVT,

the eigenvalues of Ti should be modi�ed accordingly. �at is, on a planar area and on an edge

the least dominant eigenvalues should be zero and at a corner all eigenvalues should be equally

dominant. In order to achieve this, we turn to binary optimization.

�e concept of binary eigenvalue optimization is applied to the eigenvalues of Ti, where each

eigenvalue will be assigned a binary value λ̃i,` ∈ {0, 1} to remove noise components e�ectively.

Similar to [YRP17], a threshold value τ ∈ R>0 is used for the BEO. �e term τ is a global pa-

rameter given by the user and should be chosen according to the noise intensity, i.e. τ ∝ σ, and

to be smaller than the dominant eigenvalues of all Ti respectively. We will denote by λ̃i,` the

modi�ed eigenvalues of the vertex-based NVT a�er BEO. �e modi�cation is based on feature

classi�cation:

I At corners of the sampled geometry, when considering the point set, the smallest eigen-

value should still be bigger than the threshold value, i.e. λi,3 ≥ τ . Hence, we set:

λ̃i,` = 1, ` ∈ {1, 2, 3} if λi,3 ≥ τ.

I At edges of the sampled geometry, in the noisy point set, the least dominant eigenvalue

should be smaller than the threshold value, i.e. λi,3 < τ and λi,2 ≥ τ . Hence, we set:

λ̃i,1 = λ̃i,2 = 1, λ̃i,3 = 0 if λi,2 ≥ τ , λi,3 < τ.

I In the last case, we check for planar areas of the geometry. Having λi,2 < τ and λi,3 < τ
shows that the only dominant eigenvalue is λi,1. Hence, we set:

λ̃i,1 = 1, λ̃i,2 = λ̃i,3 = 0 if λi,1 ≥ τ , λi,3,λi,2 < τ.

�e BEO procedure presented here will remove the noise components from the eigenvalues of

the vertex-based NVT.

108

8 Constraint-Based Point Set Denoising

Figure 8.3: Example for a geometry, where binary values of the eigenvalues λi,` are necessary to
retain the edge. See the right image, where the normal �eld is smoothed away despite the perfect
input shown in the le� image.

Note that by changing the eigenvalues of Ti, we also change its trace signi�cantly. One could

consider to not set the eigenvalues to binary values, but to distribute the non-dominant eigen-

value(s) to the dominant one(s), thus keeping the trace. However, this will not provide the de-

sired result as the following example shows: Consider a geometry with two planar face sharing

a straight edge. Assume the dihedral angle between the two faces to be less than 90◦, see Fig-

ure 8.3. �en, the normal does not change along the edge. �erefore, the eigenvector pointing

along the edge will be assigned eigenvalue 0. �e other two eigenvectors will be orthogonal to

the edge and will be derived from the normals of the two faces, depending on where exactly Ti
is computed and how many normals of which face are taken into account.

When we now apply this NVT to all normals of the geometry, they all will change. Instead

of the perfect normals from the input geometry, we get a smoother normal �eld, in particular

around the edge, see Figure 8.3. When using binary eigenvalues instead, we obtain an NVT

matrix which—when represented in the eigenbasis—is an identity matrix except for a single 1
missing, corresponding to the direction of the edge. However, all normals are orthogonal to this

direction and thus remain unchanged. In an imperfect situation—i.e. on a geometry with noise—

only the noise component parallel to the feature edge will be deleted, but that part of the normal

information which determines a�liation to a planar area is not changed. In both the planar case

and the corner case, the amplitude of the eigenvalues is irrelevant. �us, given the example above,

we are willing to change the trace of the NVT in order to retain edges.

Vertex Normal Denoising To remove noise components from the vertex normals, we project

the noisy vertex normals towards smooth normals by multiplication of the vertex-based NVT to

the corresponding vertex normal. By the preceding BEO, this multiplication procedure will sup-

press noise in weak eigendirections and will strengthen vertex normals in strong eigendirections.

Before multiplication, we have to recompute the modi�ed vertex-based NVT by using the same

eigenvectors with the eigenvalues optimized in the BEO:

T̃i =
3∑
`=1

λ̃i,` xi,` ⊗ xi,`. (8.6)

To remove noise, we multiply the corresponding vertex normal with the modi�ed tensor T̃i. �e

multiplication will lead to noise removal while retaining sharp features:

ñi = Dni + T̃ini = dni +
3∑
`=1

λ̃i,`〈xi,`, ni〉xi,`, (8.7)

109

III Robust and E�cient Processing of Point Sets

where D ∈ R>0 denotes a damping factor to control the denoising speed of the vertex normals.

We use D = 3 for all experiments. Finally, the updated normal ñi is normalized.

8.2.2 Feature Detection

�is is the second of three iteratively applied steps of the proposed method. Here, we classify

the point set into three di�erent categories: corners, edges, and planar points. �is will be done

using the spectral analysis of a weighted covariance matrix. �e idea to identify points and their

features is substantiated in the follow-up treatment of point position updates in the upcoming

third subsection where we use the notion of a quadratic error metric applied di�erently to the

occurring feature-assigned points. A weighted covariance matrix is de�ned using �ltered vertex

normals, which makes the proposed algorithm more robust against feature points misclassi�ca-

tion, which can lead to feature blurring artifacts.

To detect feature points on a point set with �ltered vertex normals, we consider the weighted

covariance matrix, [HBC11]:

Ci =
1∑

pj∈Nε(pi) w̃ij

∑
pj∈Nε(pi)

w̃ij(pj − p̄)⊗ (pj − p̄), (8.8)

where the weights w̃ij are similar to Equation (8.3), but are now utilizing the �ltered vertex nor-

mals of Section 8.2.1. �e terms p̄ and w̃ij are de�ned as:

p̄ =
1∑

j∈Nε(pi) w̃ij

∑
j∈Nε(pi)

w̃ijpj, w̃ij =

{
1 if](ñi, ñj) ≤ ρ

0 if](ñi, ñj) > ρ
, (8.9)

where the aforementioned global parameter ρ is used. Similar to the vertex-based NVT Ti, the

weighted covariance matrix Ci is also a symmetric and positive semide�nite matrix and can be

represented in terms of its spectral components:

Ci =
3∑
`=1

µi,` yi,` ⊗ yi,`, (8.10)

where µi,` and yi,` are the corresponding eigenvalues and eigenvectors. Let us again consider

the eigenvalues to be sorted in decreasing order µi,1 ≥ µi,2 ≥ µi,3 ≥ 0. In the proposed method,

they are used to classify the points as follows, utilizing the same threshold parameter τ as in

Section 8.2.1:

I On a planar area, there will be two dominant eigenvalues and their corresponding eigenvec-

tors should be spanning the tangent plane. �e least dominant eigenvalue will be smaller

than the feature threshold τ . �erefore, we classify planar points as

Pf = {pi ∈ P | µi,1, µi,2 ≥ τ, µi,3 < τ}.

I On an edge, there will be one dominant eigenvalue and the corresponding eigenvector

aligns with the edge direction. �erefore, we classify edge points as

Pe = {pi ∈ P | µi,1 ≥ τ, µi,2, µi,3 < τ}.

I Finally, on a corner, either all eigenvalues are dominant or none of them is signi�cant.

�erefore, corner points are set to

Pc = {pi ∈ P | (µi,1, µi,2, µi,3 ≥ τ) ∨ (µi,1, µi,2, µi,3 < τ)}.

110

8 Constraint-Based Point Set Denoising

Points at a corner, an edge, and planar points are represented in the following by Pc = {pc· },
Pe = {pe· }, and Pf = {pf· } respectively, such that we obtain the following disjoint union

P = Pc∪̇Pe∪̇Pf .

8.2.3 Constraint-based Vertex Position Update

In this �nal of three iteratively applied steps of the proposed method, we update the vertex po-

sitions. �is is done utilizing distance-based constraints, where the resulting updated point set

remains within a prescribed distance to the input noisy point set. To compute the optimal po-

sition of a vertex w.r.t. the smoothed vertex normal, restricted quadratic error metrics are used

in this algorithm, inspired by the work of [GH97]. �e restriction to the quadratic error metric

is introduced based on the di�erent feature points and the vertex position is updated utilizing

distance-based constraints.

We allow the user to provide a parameter ν ∈ R>0 bounding the maximum variance vi between

an initial noisy point and its corresponding iteratively updated point p̃i.

Vertex Update at Corners Let us consider a point pci ∈ Pc, labeled as corner point in Sec-

tion 8.2.2. We will �nd its updated position p̃ci by minimizing the following energy function:

min
p̃ci∈R3

∑
pj∈Nε(pi)

‖ñj · (p̃ci − pj)‖
2.

(8.11)

Each of the neighboring vertices pj is equipped with a corresponding �ltered normal direction ñj .
�us, we can associate a plane based at each neighboring vertex given by the normal direction.

In an ideal case, these planes would all meet in a point—the exact position of the vertex pi. But

as noise is present and the planes will in general not intersect in a point, we de�ne the error of

the vertex p̃ci as the sum of squared distances to these planes.

Note that we do not weight the neighbors in Equation (8.11), but take all pj ∈ Nε(pi) into

account equally. �at is because we rely on the highly unstable intersection of multiple planes

in R3
. �e more we take into account, the more likely it is for them to even out noise e�ects and

give a faithful reconstruction of the corner.

Minimizing Equation (8.11) boils down to solving a linear system and the new position can be

computed directly, which is given by the following equation:

p′ci =

(∑
pj∈Nε(pi)

ñj ⊗ ñj

)−1 ∑
pj∈Nε(pi)

(
ñj ⊗ ñjpj

)
,

where p′ci is a temporary vertex position. Before updating the position of pci to p′ci , we compute

the variation vi between p′ci and the corresponding original vertex from the noisy point set. If vi
is within the user-prescribed limit ν we move this corner point to pci , otherwise we don’t move

this point:

p̃ci =

{
p′ci if vi ≤ ν

pci if vi > ν
, (8.12)

where ν is the aforementioned user input which limits the variation between the original noisy

and updated corner points. By the above equation, corner points are moved at most ν during

their position update in the direction of a minimum distance to all neighboring planes spanned

by the respective normals.

111

III Robust and E�cient Processing of Point Sets

(a) �e plane Hi, which is de�ned by y1 for edge
vertex pei .

pei

pπj ñπj

(b)Neighbor vertices of pei and corresponding vertex
normals are projected onto the plane.

Figure 8.4: A visual representation of the vertex update scheme at edges.

Vertex Update at Edges Let us consider a point pei ∈ Pe, labeled as edge point in Section 8.2.2.

Here, the weighted covariance matrix Ci has only one dominant eigenvalue µi,1 and the corre-

sponding eigenvector yi,1 aligns with the edge direction. We de�ne a plane

Hi = {p ∈ R3 | 〈yi,1, p〉 = 〈yi,1, pei 〉}.

As shown in Figure 8.4, we project all neighborhood vertices pj ∈ Nε(pi) and their respective

vertex normals ñj to Hi, denoting the corresponding projections by pπj and ñπj (assuming that

‖yi,1‖ = 1):

pπj =pj − 〈(pj − pei), yi,1〉yi,1,
ñπj =ñj − 〈ñj, yi,1〉yi,1.

Now, we de�ne a quadratic energy function similar to Equation (8.11):

min
p̃ei

∑
j∈Nε(pi)

(
‖ñπj · (p̃ei − pπj)‖2 +

1

|Nε(pi)|
‖yi,1 · (p̃ei − pπj)‖2

)
. (8.13)

�e above energy function is de�ned on the plane Hi. In comparison to Equation (8.11), we in-

clude an additional summand. �is is necessary, because the matrix of the linear system resulting

from Equation (8.13) without the summand would not be invertible. �e reason is, that the least

dominant eigenvalue along the normal being zero would reduce the rank of the corresponding

matrix. We choose this additional summand which is directed along the edge to create an or-

thonormal basis as the plane Hi is spanned using the other two eigenvectors of the weighted

covariance matrix Ci. Including the summand, we can minimize Equation (8.13) once more by

solving a linear system which results in the equation:

p′ei =

(∑
j∈Nε(pi)

ñπj ⊗ ñπj + yi,1 ⊗ yi,1

)−1 ∑
j∈Nε(pi)

(
ñπj ⊗ ñπj pj + yi,1 ⊗ yi,1pei

)
,

112

8 Constraint-Based Point Set Denoising

where the summand y1 ⊗ y1 ensures that the matrix is invertible. �e term p′ei is a temporary

vertex position and we once more compute the variation between p′ei and the corresponding

original vertex from the noisy point set to modify the edge vertex accordingly:

p̃ei =

{
p′ei if vi ≤ ν

pei if vi > ν
. (8.14)

For each edge vertex, the above equation computes the optimal position by minimizing the dis-

tance between the lines, which are de�ned by the projected vertex normals. �is operation e�ec-

tively preserves sharp features along edges and removes noise e�ectively.

Vertex Update on Flat Regions Finally, let us consider a point pfi ∈ Pf , labeled as point

within a planar area by Section 8.2.2. In this �at region, the matrix Ci has two dominant eigen-

values. In order to remove noise in these regions, we allow to move the vertex position only in

direction of the corresponding vertex normal ñi. �ereby, we follow the approach of [Sun+07;

Zhe+17]. We use an energy function similar to that of Equation (8.11), but with the restriction to

only move in normal direction. �at is, we �nd the updated position p̃fi by minimizing

min
s∈R

∑
pj∈Nε(pi)

Wij|〈ñj, pfi + s · ñi〉 − 〈ñj, pj〉|2. (8.15)

Similar to edge and corner vertex updates, we �rst compute the variation vi and then update the

vertex position according to

p̃fi =

p
f
i + α∑

j∈Nε(pi)

Wij

∑
j∈Nε(pi)

Wij〈ñj, pj − pfi 〉ñi if vi ≤ ν

pfi if vi > ν

, (8.16)

where α is a user-controlled parameter to limit the amount of smoothing on �at regions and Wij

is a combination of a similarity and a closeness function:

Wij = exp

(
− 16|ñi − ñj|2

δ2

)
· exp

(
− 4|pj − pfi |

2

δ2

)
, (8.17)

where δ is half the diameter of the point set Nε(pi).

Even though the update scheme for �at regions as given in Equation (8.16) seems most elab-

orate, the combination with simpler schemes for both corners (8.12) and edges (8.14) is more

e�ective in practice, as shown in Figure 8.5.

8.2.4 Method Summary

In the previous Sections 8.2.1, 8.2.2, and 8.2.3, we have presented the three key steps of our

smoothing method. By iteratively applying these three steps to a noisy point set input, the pro-

posed algorithm produces a noise-free point set with proper sharp features. �e whole method

is summarized in Algorithm 5.

8.3 Experimental Results
We evaluate the capacity of our algorithm on various kinds of point set models corrupted with

synthetic noise (Figures 8.7, 8.8, 8.10, 8.12, 8.13) and real scanned data (Figure 8.14). We compared

our method with �ve state-of-the-art denoising Methods [MC17], [Zhe+17], [GG07], [ÖGG09],

and [Zhe+18]. Methods [GG07] and [ÖGG09] are implemented in MeshLab, see [Cig+08]. �e

results of the methods [MC17], [Zhe+17], and [Zhe+18] are provided by the authors.

113

III Robust and E�cient Processing of Point Sets

(a)�e point set reconstructed by
using Equation (8.16) not only for
�at regions but also for feature
points.

(b) �e result obtained by the
proposed scheme, where �at
regions follow Equation (8.16),
edges are reconstructed using
Equation (8.14) and corner
positions are updated using
Equation (8.12).

Figure 8.5: �is �gure shows the e�ect of the proposed constraint-based vertex position update
scheme. Note how the corner itself is not recovered in (a), but is recovered in (b).

Algorithm 5 Constraint-based Point Set Denoising using the Normal Voting Tensor and Re-

stricted �adratic Error Metric

1: procedureDenoise(Point SetP , number of iterations I , radius ε, normal threshold ρ, feature

threshold τ , �at region threshold α, corner threshold ν, damping factor D)

2: for I iterations do
3: for all vertex pi ∈ P do . Vertex Normal Filtering

4: Compute NVT Ti by (8.1)

5: Perform BEO on the spectral components of Ti
6: Compute altered NVT T̃i by (8.6)

7: end for
8: for all vertex pi ∈ P do . Feature Detection

9: Compute weighted covariance matrix Ci by (8.8)

10: PartitionP into three disjoint setsPf , Pe, Pc representing face-, edge-, and corner-

points by Section 8.2.2

11: end for
12: for all vertex pi ∈ Pc do . Vertex Update Corners

13: Apply constraint-based vertex update by (8.11)

14: end for
15: for all vertex pi ∈ Pe do . Vertex Update Edges

16: Apply constraint-based vertex update by (8.13)

17: end for
18: for all vertex pi ∈ Pf do . Vertex Update Faces

19: Apply constraint-based vertex update by (8.15)

20: end for
21: end for
22: end procedure

114

8 Constraint-Based Point Set Denoising

(a) σn = 0.25`a (b) ν = 2`a (c) ν = `a (d) ν = `a

Figure 8.6: E�ect of the distance-based constraint ν. Figure (a) shows a sphere, which is corrupted
by Gaussian noise in random direction with standard deviation σn = 0.25`a, where `a is the average
distance between vertices of the point set. Figure (b) represents a desirable noise-free output with
ν = 2`a. Figures (c) and (d) show that when ν = `a, the proposed method is not able to remove
all noise components. Here, Figure (d) is a triangulation of the point set shown in Figure (c) using
the Ball Pivot algorithm, [Ber+99]. �e values of Ev (8.18) are 0.984 and 0.981 for Figure (b) and (c)
respectively. Vertices are colored based on the variation of the distance of each vertex to its neighbors.

8.3.1 Parameter Tuning

We introduced several parameters: the geometric neighbor radius ε, the dihedral angle thresh-

old ρ (Equation (8.2)), the eigenvalue threshold τ (Section 8.2.1), the damping factor D (Equa-

tion (8.7)), the distance-based constraint ν (Equations (8.12), (8.14), (8.16)), the total number of

iterations I , and the vertex-based di�usion speed α (Equation (8.16)). �roughout the whole ex-

perimentation, we �x α = 0.1 and D = 3. �e radius ε of the geometric neighborhood depends

on the resolution of the input point set and it is �xed to be twice the average distance `a be-

tween the vertices of the point set. �e average distance between the vertices is computed using

k = 6 nearest neighbors of each vertex. For these experiments, we also �x the distance-based

constraint ν = 2ε (except Figure 8.6). E�ectively, there are only 3 parameters (τ, ρ, I) to tune

the results. In the quantitative comparison, see Table 8.1, the parameters are mentioned in the

following format: (τ, ρ, I). For Methods [MC17], [Zhe+17], and [Zhe+18], we mention “Default”

in the parameter column because the corresponding smooth models are provided by their au-

thors. For the method [GG07], we used the parameters (h, #{iterations}, α), and for [ÖGG09],

we used (σr, σn), both listed in Table 8.1.

�e eigenvalue threshold τ depends on the noise intensity on a point set. �e bigger the noise

intensity, the larger the value of τ should be chosen. We use τ ∈ {0.25, . . . , 0.4} for synthetic data

and τ ∈ {0.05, . . . , 0.1} for real data because in our experiments, real data point sets have smaller

noise intensity compared to synthetic data point sets. We iterate several times (I ∈ {20, . . . , 100})
for best results. �e term ρ ∈ {0.8, . . . , 0.95} is the threshold to select the neighbor components

and it is computed using the scalar product between the neighbor vertex normals. On a CAD

model, we choose a high threshold value because of sharp features and on CAGD models, we

choose a small threshold value because of smoother features compared to CAD models. �e

distance-based constraint ν is one of the most important parameter in the proposed algorithm.

�e e�ect of this parameter is shown in Figure 8.6. As it can be seen, a small value of ν leads to

less shrinkage (small Ev) but does not remove all noise components.

Note that there is a dependency amongst the di�erent thresholds. We have stated above that

τ needs to be smaller than the lowest eigenvalue of all Ti respectively. However, these depend

on both ε and ρ. �erefore, to guess a suitable τ , one needs to compute Ti by Equation (8.1) for

115

III Robust and E�cient Processing of Point Sets

(a) σn = 0.13`a (b) σn = 0.25`a (c) σn = 0.35`a (d) σn = 0.5`a

Figure 8.7: Shrinkage analysis during the denoising process. �e sphere model is corrupted with
di�erent levels of noise in random directions (top) and the denoising process is applied (bo�om).
�e measure Ev (8.18) is computed to quantify the shrinkage e�ect in the proposed method. From
Figures (a)-(d), the values ofEv are 0.984, 0.983, 0.982, and 0.9811 respectively. Vertices are colored
based on the variation of distances to their neighbors.

all i = 1, . . . , n, determining the smallest dominant eigenvalue. Only then, τ can be chosen in a

meaningful way.

8.4 �antitative Analysis

We performed several experiments regarding the quantitative analysis of the proposed algorithm.

In general, shrinkage and feature blurring are two main challenges during the denoising process.

In this section, we show the behavior of the proposed algorithm against di�erent levels of noise

in terms of shrinkage and feature preservation.

To quantify shrinkage, we performed the denoising process with a unit sphere and computed

the following error measure:

Ev =
1

n

n−1∑
i=0

‖pi‖2. (8.18)

For the original Sphere Ev = 1.0 and due to shrinkage e�ects, the value of Ev decreases. As

shown in Figure 8.7, the shrinkage e�ect increases with noise intensity but at the same time,

these changes are not large. �e value of Ev also depends on the distance-based constraint ν. As

shown in Figure 8.6, with a bigger value of ν, it is possible that Ev will be bigger but at the same

time it gives a smoother result compared to a small value of ν.

For further shrinkage analysis, we reconstructed triangulated surfaces from the denoised point

sets using the “ball pivoting” algorithm [Ber+99] (Figures 8.10–8.14). To compute the closeness

between the ground truth model and the denoised model, we use the following vertex-based error

116

8 Constraint-Based Point Set Denoising

(a) σn = 0.13`a (b) σn = 0.25`a (c) σn = 0.35`a (d) σn = 0.5`a

Figure 8.8: A visual representation of feature preservation analysis. �e cube model is corrupted
with di�erent levels of noise in random directions. To measure the feature preservation capability of
the proposed algorithm, we computed the MAD (8.20) and obtain values 2.99, 4.15, 6.4, and 6.48 for
Figures (a)–(d) respectively. Vertices are colored based on the variation of vertex normals.

measure, which is de�ned as in [Sun+07]:

Dv =

√√√√ 1

3
∑

k∈F ak

∑
i∈V

∑
j∈Fv(i)

ajdist(p̃i, T)2
(8.19)

where F and V are treated as the triangular element set and the set of vertices respectively a�er

the triangulated surface reconstruction. �e terms ak and aj are the corresponding face areas.

�e distance dist(p̃i, T) is the closest L2-distance between the newly computed vertex p̃i and the

triangle T of the reference model. Values of Dv for several models are given in Table 8.1.

To quantify feature preservation, we check the orientation error between the denoised model

and the ground truth. Mean angular deviation (MAD) is de�ned to measure the orientation error:

MAD =
1

n

n−1∑
i=0

](n̄i, ñi), (8.20)

where n̄i and ñi are vertex normals of the ground truth model and the denoised model respec-

tively. Figure 8.8 shows that the MAD is large when the noise intensity is high. So, with bigger

noise, the orientation error will be bigger compared to lower noise. As it can be seen from Fig-

ure 8.8, for σn = 0.13`a to σn = 0.35`a, the output models are noise-free with sharp features.

However, with σn = 0.5`a, we are not able to preserve all sharp features. Values of MAD for

several models are given in Table 8.1.

Figure 8.9 shows the convergence property of the proposed algorithm, where Figure 8.9a shows

the orientation error with a noisy cube model which is almost constant a�er about 100 iterations.

As it can be seen from the �gure, the proposed method has be�er convergence rate compared to

RIMLS [ÖGG09]. Our method has improved convergence rate because of the BEO (see page 108)

117

III Robust and E�cient Processing of Point Sets

(a) MAD (8.20)
(b) Ev (8.18)

Figure 8.9: A visual representation of the convergence of the proposed algorithm. �e le� image
shows the orientation error convergence on a cube model (σn = 0.13`a) while the right image demon-
strates the shrinkage measure Ev over iterations on a noisy sphere (σn = 0.25`a). In both cases, `a
denotes the average distance between vertices of the point set.

which assigns binary values to the eigenvalues of the vertex-based NVT. By assigning zero to the

least dominant eigenvalue, our algorithm removes noise components faster compared to state-of-

the-art methods. Similarly, Figure 8.9b shows the variation of Ev w.r.t. iterations. As the number

of iterations increases, the value ofEv decreases, which leads to shrinkage e�ects. In the proposed

method, the shrinkage e�ect is controlled using the distance-based constraint ν. As it can be seen

from Figure 8.9b, the value of Ev is almost constant a�er about 400 iterations because the value

of ν is set to approximately twice of the point set resolution.

Table 8.1 shows the comparison of the proposed method with �ve state-of-the-art methods.

As it can be seen, for the cube model shown in Figure 8.10, our method not only reconstructs

sharp features (low MAD) but also produces minimum shrinkage (low Dv) compared to the cur-

rent state-of-the-art methods. For the rocker arm model, the proposed method is not as good as

APSS [GG07] or RIMLS [ÖGG09] in terms of MAD and Dv. However, Figure 8.11 shows that our

method produces smoother umbilical regions with enhanced sharp features on this model. For the

fandisk model given in Figure 8.12, the proposed algorithm performs be�er compared to state-of-

the-art methods in terms of feature preservation. However, it produces more volume shrinkage

compared to APSS [GG07]. Similar to the cube model, our algorithm outperforms state-of-the-art

methods in terms of feature preservation and volume shrinkage. For a visual comparison with

state-of-the-art methods, see the original publication as given in the list of publications prior to

the thesis, page 5.

8.5 Conclusion

In this section, we presented a simple and e�ective tensor multiplication algorithm for feature-

preserving point set denoising. �e proposed method is an extension of the ENVT-based mesh

denoising [YRP17]. Similar to the concept of the ENVT, in the proposed algorithm, we used

vertex-based NVT and the spectral analysis of this tensor leads to decoupling of features from

noise. Noise components are removed by the multiplication of the vertex-based NVT to the corre-

sponding vertex normal. �e concept of BEO not only enhances sharp features but also improves

the convergence rate of the method. Local binary neighborhood selection helps to select similar

vertices in the neighborhood to compute the vertex-based NVT to avoid feature blurring during

the denoising process. A�er the vertex normal �ltering, we classify feature points into edges,

118

8 Constraint-Based Point Set Denoising

Table 8.1: �antitative Comparison
Models Methods MAD Dv × 10−3

Parameters
3

[GG07] 5.56 3.24 (2, 45, 0.5)

[ÖGG09] 4.62 5.41 (4, 0.75)

Cube [MC17] 4.60 3.37 Default

|V | = 1906 [Zhe+17] 3.48 7.51 Default

Figure 8.10 [Zhe+18] 4.47 6.46 Default

Ours 2.85 1.65 (0.3, 0.95, 150)

[GG07] 5.13 22.6 (4, 15, 0.5)

Rocker arm [ÖGG09] 5.26 21.4 (4, 1)

|V | = 24106 [MC17] 6.31 33.0 Default

Figure 8.11 [Zhe+17] 8.14 118.7 Default

[Zhe+18] 6.26 72.12 Default

Ours 7.56 43.26 (0.25, 0.9, 80)

[GG07] 3.72 1.7 (4, 15, 0)

Fandisk [ÖGG09] 6.6 1.81 (4, 0.75)

|V | = 25894 [MC17] 13.67 1.56 Default

Figure 8.12 [Zhe+17] 4.57 1.81 Default

[Zhe+18] 4.34 1.4 Default

Ours 4.4 1.39 (0.3, 0.9, 150)

[GG07] 3.35 0.27 (2, 45, 0.5)

Octahedron [ÖGG09] 4.31 0.39 (4, 0.75)

|V | = 40242 [MC17] 4.6 0.32 Default

Figure 8.13 [Zhe+17] 1.2 0.52 Default

[Zhe+18] 1.37 0.49 Default

Ours 1.11 0.19 (0.25, 0.9, 80)

119

III Robust and E�cient Processing of Point Sets

(a) Original (b) Noisy (c) APSS [GG07] (d) RIMLS [ÖGG09]

(e) MRPCA [MC17] (f) GN [Zhe+17] (g) RN [Zhe+18] (h) Ours

Figure 8.10:�e cube model with non-uniform distribution of vertices, corrupted by Gaussian noise
(σn = 0.3`a) in normal direction, where `a is the average distance between the vertices of the model.
It can be seen that the proposed method is able to preserve sharp features e�ectively compared to
state-of-the-art methods and does not create bumpy structures. Surfaces are reconstructed using the
“ball pivoting” algorithm, [Ber+99].

corners, and �at regions using an anisotropic covariance matrix. For the vertex update stage, we

introduced restricted least square error metrics, which are di�erent for di�erent kinds of features.

�e vertex position reconstruction using restricted quadratic error metrics helps the algorithm

to recreate the sharp edges and corners. �e experimental results show the e�ectiveness of the

proposed algorithm.

Our method is capable of handling noise, but yields erroneous results under high noise inten-

sities. �is is based on the fact, that noise has a great impact on the normal estimation and the

NVT construction, which we use throughout the whole process. Another issue arises when the

input point set is highly irregular. As can be seen in Figure 8.14, our method is robust up to a

moderate level of irregularity but it is possible that with extreme irregular sampling, the output

may not be satisfactory.

During the denoising process, we tuned the di�erent parameters manually to get the desired

results. We need to �nd an optimal combination of the parameters automatically. A direction

which we have in part considered in Section 1.5.1, but will continue to investigate in the future.

120

8 Constraint-Based Point Set Denoising

(a) Original (b) Noisy (c) APSS [GG07] (d) RIMLS [ÖGG09]

(e) MRPCA [MC17] (f) GN [Zhe+17] (g) RN [Zhe+18] (h) Ours

Figure 8.11: �e rocker arm model corrupted by Gaussian noise (σn = 0.3`a) in normal direction,
where `a is the average distance between the vertices of the model. �e results are produced by state-
of-the-art methods and our proposed method. �e proposed method removes noise e�ectively and
also enhances the sharp features around the cylindrical region. Surfaces are reconstructed using the
“ball pivoting” algorithm, [Ber+99].

121

III Robust and E�cient Processing of Point Sets

(a) Original (b) Noisy (c) APSS [GG07] (d) RIMLS [ÖGG09]

(e) MRPCA [MC17] (f) GN [Zhe+17] (g) RN [Zhe+18] (h) Ours

Figure 8.12: �e fandisk model corrupted by Gaussian noise (σn = 0.28`a) in normal direction,
where `a is the average distance between the vertices of the model. It can be seen that the proposed
method is able to preserve sharp features e�ectively compared to state-of-the-art methods. Surfaces
are reconstructed using the “ball pivoting” algorithm [Ber+99].

(a) Original (b) Noisy (c) APSS [GG07] (d) RIMLS [ÖGG09]

(e) MRPCA [MC17] (f) GN [Zhe+17] (g) RN [Zhe+18] (h) Ours

Figure 8.13: �e octahedron model, which is corrupted by Gaussian noise in normal direction and
results produced by the proposed method and state-of-the-art methods. Surfaces are reconstructed
using the “ball pivoting” algorithm, [Ber+99].

122

8 Constraint-Based Point Set Denoising

(a) Noisy irregular real data. (b) Our result.

Figure 8.14: Robustness against irregular data points. Figure (a) shows the noisy irregular data
points of the gargoyle model and Figure (b) shows the result obtained by the proposed method.

123

Conclusion and Further Research

�roughout the thesis, we have motivated the importance of point set processing for a multitude

of applications. Consequently, we have explored three di�erent topics revolving around both the

theory and the practical usage of point sets.

Notions of Neighborhood and corresponding Data Structures �e �rst topic concerned

notions of neighborhood and corresponding data structures. We introduced a new anisotropic

neighborhood concept which takes the local shape of the geometry into account. �at is, the

neighborhoods are built using normal information of the point set, see Section 1.3. We evaluated

our new concept both in several experiments (Section 1.4) and by including it into two di�er-

ent applications: Section 1.5.1 showed how point set denoising can bene�t from the proposed

neighborhoods, while we also used them to construct a shape-aware version of the Moving Least

Squares (MLS) procedure in Section 1.5.2. While the la�er compares well with the Robust Implicit

Moving Least Squares (RIMLS) of [ÖGG09] visually, a thorough evaluation is le� for further re-

search.

In any practical application, the fast determination of neighborhoods is important. In other

words, no neighborhood concept can be used in practice if it does not come with an algorithm for

computing it e�ciently. A prominent choice for these computations is the k-d tree data structure

of [FBF77]. Its main achievement is a proven expected runtime ofO(log(n)) for every neighbor-

hood query on n points. To make its underlying theory more accessible, the very concise original

proof has been reworked and elaborated in Section 2 of this thesis.

As a �nal aspect of the �rst chapter, we noted that the data structure of k-d trees is not de-

signed for parallel execution. As current workstations can delegate computations to the graphics

card and thus pro�t from parallelization, this is an aspect of growing importance. Hence, we in-

vestigated a corresponding data structure in Section 3, namely the neighborhood grid of [Jos+09;

Jos+15]. Despite a thorough study of [MW15], several open questions remained of which some

have been solved this thesis:

I a proof of asymptotic time-optimality of a comparison-based building algorithm (�eo-

rem 5),

I several combinatorial results on the number of possible sorted placements in the grid (Sec-

tion 3.2),

I a complete list of unique sorted placements for n ∈ [3] as well as a proof for non-existence

of unique sorted placements for n ≥ 4 (Section 3.3),

I results on the neighborhood quality obtained from the data structure (Section 3.6).

�e questions for a speci�c point set a�aining the least or largest number of stable states for

n ≥ 4 and for a complete theoretical evaluation of the neighborhood quality are le� for further

research, while we presented a conjecture (see Conjecture 1) for the upper bound of number of

stable states.

125

III Robust and E�cient Processing of Point Sets

Manifold Structure for Point Set Surfaces �e second large topic of this thesis dealt with

manifold structures for point set surfaces. When the underlying real-world geometry has the

structure of a surface manifold, it can be expected that this structure is re�ected by the point set

acquired from the geometry. However, there was no theory available to establish what is meant

by a manifold point set surface. �e thesis �rst established that regarding a point set as 0-manifold

is not a very practical choice, see Section 4.2. �erefore, we restricted to the se�ing of point sets

sampling some d′-manifold in Rd
, d > d′. For this setup, we presented a scheme by which the

point set can be treated as manifold utilizing a transition manifold, see Section 4.3. While many

algorithms could be used for the computation of the transition manifold, we exempli�ed our

theoretical scheme with the MLS procedure of [SL16].

As manifolds are a collection of charts, the fast and practical generation of charts for point

sets is the main necessary step for creating point set manifolds. While the aforementioned MLS

procedure of [SL16] creates very localized charts, the approach of [Li+11] parametrizes the point

set as a whole and thus gives one very large coordinate representation. �e thesis aimed for a

solution between these two extremes and thus turned to the Variational Shape Approximation

(VSA) of [CAD04]. We generalized the procedure to the se�ing of point sets and enriched it with

a split and merge step to become independent of the number of charts sought. Furthermore, we

gave a technique to obtain a simpli�ed surface mesh from the segmented point set. See Section 5

for a complete discussion. �e extension of our surface simpli�cation procedure to non-star-

convex surface patches is le� for further research.

Robust and E�icient Processing of Point Sets In the third and �nal chapter of the thesis,

we elaborated on the fact that algorithms have to work e�ciently and robustly on the given

input point set. While meshed geometries provide an intuitive and natural weighting by the

areas of the faces, point sets can at most work with distances between the points. �is makes in

particular the handling of non-uniform point set samples di�cult. Starting from an idea originally

presented in [LP05], we de�ned a discrete directional density measure for point sets. �is measure

can be computed completely intrinsically without information aside from the input point set.

From the measure, we deduced a set of weights for the usage e.g. in discretized di�erential-

geometry operators to make them robust against non-uniform density sampling. Aside from

these theoretical results, Section 6 includes several empirical studies to show the superiority

of the presented weights. Other applications—like the implementation of our weights into the

contexts of point set registration, simpli�cation, or surface reconstruction—are le� for further

research.

�e real-world objects represented by point sets will in practical applications not all be smooth,

but include sharp features like edges and corners. �e detection of these is important e.g. in the

context of denoising (see below). Even though there are several feature detection algorithms

available for point sets, none of them comes with any mathematical guarantee to detect a certain

range of features. We employed quantities derived from the MLS procedure of [SL16] to ben-

e�t from the corresponding theory (see �eorem 13). In Section 7, we presented the di�erent

quantities and evaluate the detection in several experiments.

Finally, during the acquisition of the point set, noise can be introduced. Removing it while

retaining the sharp features (see above) of the underlying geometry is a challenging task. In the

�nal Section 8 of the thesis, we translated an algorithm of [YRP17] to the context of point sets.

�is gave an iterative smoothing algorithm. In order to make it robust in the denoising of corners,

we introduced quadratic error metrics for the vertex update stage in the smoothing pipeline. A

thorough comparison to state-of-the-art algorithms proved the proposed method to be superior

on a wide range of examples.

126

Appendices

I

III

A Notation

A Notation
absolute value abs(x) := |x|, x ∈ R
average vertex distance `a
binary neighborhood threshold ρ ∈ R>0

BEO threshold τ ∈ R>0

covariance matrix Ci
damping factor D ∈ R>0

degree (of polynomial) m ∈ N0

density (local) δi
di�usion speed α ∈ R>0

dimension d ∈ N
lower dimension d′ ∈ N, d′ < d
disjoint union A∪̇B
distance measure d : Rd × Rd → R, (p, q) 7→ d(p, q)
eigenvalues of covariance matrix λi,`, ` = 1, . . . , d, λi,1 ≥ . . . ≥ λi,d
eigenvectors of the covariance matrix vi,`, ` ∈ [d] (corresponding to the above decreasing

sorting of the eigenvalues)

eigenvalues of NVT λi,`, ` = 1, . . . , d, λi,1 ≥ . . . ≥ λi,d
eigenvectors of NVT xi,`, ` ∈ [d] (corresponding to the above decreasing

sorting of the eigenvalues)

feature value µג
, ג ∈ {2rad, double, dist, Func}

Landau symbols upper bound O(n), upper and lower bound Θ(n),

lower bound Ω(n)
logarithm log(x), to basis 2 if not indicated otherwise

manifold (smooth), (approximated) M, M̃
norm ‖p‖ denotes the L2

norm ‖.‖2, if not indicated other-

wise

natural numbers N = {0, 1, 2, . . .}
neighborhood (combinatorial) Nk(pi)
neighborhood (metric) Nε(pi)
neighborhood (both) Nk,ε
normal at a point pi ni ∈ Rd

normal �eld on a point set P Np

number of neighbors k ∈ N
number of points n ∈ N
scalar product 〈pi, pj〉 denotes the Euclidean scalar product for points

pi, pj ∈ Rd
if not indicated otherwise

squarenumber of points N = n2

point pi = (p1
i , . . . , p

d
i)
T

point set P = {pi ∈ Rd | i = 1, . . . , n}
positive real numbers R≥0 = {x ∈ R | x ≥ 0}
radius for neighbors ε ∈ R≥0

radius for weight function θ r ∈ R≥0

range of natural numbers [n] = {1, . . . , n}, n ∈ N
transpose pT ∈ Rd×1

weight function θ : R≥0 → R≥0

IV

B Statistical Experiment Results for the
Shape-Aware Neighborhoods

In this appendix, we present the full statistical data from the experiments presented in Section 1.4.

�ese experiments consist of computing the values Edim
i (1.11) and Eλ

i (1.12) with modi�cations

discussed in Section 1.3 for each point pi of the considered point set P . �e point sets used in our

experiments are the noiseless CAD models “bearing”, Figure B.1, and “fandisk”, Figure B.2, and

the real-world models: “bunny”, Figure B.3, and “ki�en”, Figure B.4.

In Tables B.1–B.4, we give the statistics on the measuresEdim
andEλ

. Each cell contains (from

top to bo�om):

I the minimum minni=1E
dim
i ,

I the maximum maxni=1E
dim
i ,

I the average as de�ned in (1.15),

I and the standard deviation of the value Edim
i

over all points pi of the respective point set. For each model there are two tables showing in the

le� one the Edim
-values and in the right table the Eλ

-values. In each table the lowest average

and standard deviation value is marked in yellow. Note that some entries might be equal and

apply for the minimum, but this happens due to rounding processes.

Some of the cells are stating “n.a.”. �is happens when at least one point reports empty neigh-

borhoods for all k ∈ {6, . . . , 20}. �at means, we do not �nd any point with a normal similar

enough to the one of the considered point for the given parameters a and b in the sigmoid weight

detection. Hence we leave out the error calculation for both error metrics, as this would mislead

in the comparison. But nevertheless, these values indicate, that we have to increase the collection

rate or choose a smaller comparison rate and increase of the sigmoid.

V

B Statistical Experiment Results for the Shape-Aware Neighborhoods

Figure B.1: bearing model (3,475 vertices)

Edim

a
b

1 2 4 ∞
0.0 0.0177 0.0177 0.0177 0.0177

0.9857 0.9849 0.9823 1.0062

0.4876 0.4997 0.5011 0.5021

0.1957 0.2008 0.2019 0.2027

0.25 0.0177 0.0177 0.0177 0.0177

0.9501 0.976 0.9711 0.9823

0.4747 0.4941 0.4981 0.4985

0.1893 0.1985 0.1997 0.2001

0.5 0.0177 0.0177 0.0177 0.0177

0.9603 0.9445 0.9464 0.9629

0.4481 0.4581 0.4605 0.4801

0.1765 0.183 0.184 0.1937

0.75 0.0177 0.0177 0.0177 0.0177

0.9142 0.9704 0.9392 0.9392

0.4209 0.4408 0.4472 0.4514

0.1593 0.1711 0.1757 0.1777

0.9 n.a. n.a. n.a. n.a.

Eλ

a
b

1 2 4 ∞
0.0 0.1922 0.1924 0.1924 0.1924

0.9799 0.9817 0.9632 1.0165

0.6388 0.6465 0.6478 0.6498

0.0821 0.0872 0.0891 0.0933

0.25 0.1805 0.1924 0.1924 0.1924

0.9694 0.9685 0.9685 0.9685

0.6312 0.6427 0.6452 0.6456

0.0785 0.0841 0.0859 0.086

0.5 0.1381 0.1778 0.1818 0.1818

0.9619 0.9614 0.9685 0.9685

0.6152 0.6203 0.6219 0.6349

0.078 0.076 0.0755 0.0827

0.75 0.0783 0.0771 0.0771 0.0771

0.8574 0.8935 0.8824 0.9198

0.5923 0.605 0.6098 0.6128

0.0912 0.0842 0.0823 0.0809

0.9 n.a. n.a. n.a. n.a.

Table B.1: Results obtained from the bearing model with 3,475 vertices, see Figure B.1. On the le�
values for Edim (1.11) and on the right values for Eλ (1.12). Each cell showing (from top to bo�om)
the minimum, maximum, average, and standard deviation.

VI

Figure B.2: fandisk model (6,475 vertices)

Edim

a
b

1 2 4 ∞
0.0 4.0E-4 4.0E-4 4.0E-4 4.0E-4

0.9993 0.9676 0.9676 0.9676

0.3464 0.3548 0.3549 0.3549

0.2177 0.2262 0.2262 0.2262

0.25 4.0E-4 4.0E-4 4.0E-4 4.0E-4

0.9914 0.9979 0.9676 0.9676

0.338 0.3523 0.3548 0.3548

0.2135 0.2237 0.2262 0.2262

0.5 4.0E-4 4.0E-4 4.0E-4 4.0E-4

0.9984 0.9722 0.9714 0.9676

0.3263 0.3254 0.3267 0.3455

0.205 0.2138 0.2145 0.222

0.75 4.0E-4 4.0E-4 4.0E-4 4.0E-4

0.9546 0.9707 0.9705 0.964

0.3113 0.3284 0.3266 0.3248

0.1744 0.2079 0.2112 0.2131

0.9 0.0 0.0 0.0 0.0

0.7611 0.8516 0.8806 0.9021

0.2776 0.2787 0.2827 0.2869

0.138 0.1392 0.1451 0.1509

Eλ

a
b

1 2 4 ∞
0.0 0.4282 0.4282 0.4282 0.4282

0.9149 0.9236 0.9236 0.9236

0.6503 0.6527 0.6527 0.6527

0.0698 0.0747 0.0747 0.0747

0.25 0.4282 0.4282 0.4282 0.4282

0.9077 0.9236 0.9236 0.9236

0.648 0.6518 0.6527 0.6527

0.0659 0.0729 0.0747 0.0747

0.5 0.4282 0.4282 0.4282 0.4282

0.8973 0.9232 0.9236 0.9236

0.6436 0.6448 0.6451 0.6498

0.0604 0.0631 0.0634 0.0705

0.75 0.2289 0.3185 0.3259 0.3259

0.8741 0.8977 0.894 0.897

0.6334 0.6421 0.6435 0.6441

0.0489 0.0602 0.0618 0.0625

0.9 0.0 0.0 0.0 0.0

0.7468 0.7606 0.7855 0.8335

0.5875 0.5909 0.5932 0.5962

0.1021 0.0981 0.0959 0.0929

Table B.2: Results obtained from the fandisk model with 6,475 vertices, see Figure B.2. On the le�
values for Edim (1.11) and on the right values for Eλ (1.12). Each cell showing (from top to bo�om)
the minimum, maximum, average, and standard deviation.

VII

B Statistical Experiment Results for the Shape-Aware Neighborhoods

Figure B.3: bunny model (4,899 vertices)

Edim

a
b

1 2 4 ∞
0.0 0.0534 0.0534 0.0534 0.0534

0.8973 0.9025 0.9159 0.9822

0.3897 0.3919 0.3927 0.3937

0.1574 0.1585 0.1597 0.1615

0.25 0.0532 0.0534 0.0534 0.0534

0.8967 0.9004 0.9041 0.9041

0.3884 0.3905 0.3909 0.3916

0.1562 0.1566 0.1574 0.1582

0.5 0.0491 0.0534 0.0534 0.0534

0.8984 0.896 0.896 0.8978

0.387 0.3879 0.3888 0.3895

0.1556 0.1546 0.1548 0.1554

0.75 0.0474 0.0534 0.0534 0.0484

0.8416 0.9207 0.8895 0.896

0.3853 0.386 0.3867 0.3873

0.1545 0.1539 0.154 0.1545

0.9 0.0 0.0 0.0 0.0

0.8332 0.824 0.8306 0.8603

0.3863 0.3827 0.3835 0.384

0.1541 0.1529 0.1527 0.1527

Eλ

a
b

1 2 4 ∞
0.0 0.1918 0.2068 0.2068 0.2068

0.8783 0.8719 0.873 1.0053

0.6568 0.6582 0.6588 0.6595

0.0489 0.0496 0.0501 0.0524

0.25 0.1803 0.2014 0.2068 0.2068

0.8833 0.8719 0.8719 0.873

0.6554 0.6568 0.6574 0.658

0.0489 0.0492 0.0496 0.0497

0.5 0.161 0.172 0.1724 0.1923

0.8962 0.8719 0.8719 0.8719

0.6533 0.6548 0.6553 0.6558

0.0496 0.0495 0.0494 0.0492

0.75 0.104 0.1458 0.1691 0.1719

0.8515 0.8789 0.9062 0.8714

0.6469 0.6499 0.651 0.6518

0.0554 0.0526 0.0517 0.0511

0.9 0.0 0.0 0.0 0.0

0.8352 0.8314 0.8314 0.8314

0.6208 0.6293 0.6331 0.6361

0.0921 0.0842 0.0794 0.0752

Table B.3: Results obtained from the bunny model with 4,899 vertices, see Figure B.3. On the le�
values for Edim (1.11) and on the right values for Eλ (1.12). Each cell showing (from top to bo�om)
the minimum, maximum, average, and standard deviation.

VIII

Figure B.4: ki�en model (5,011 vertices)

Edim

a
b

1 2 4 ∞
0.0 0.0306 0.0312 0.0312 0.0312

0.8823 0.8976 0.9425 0.8976

0.4074 0.4083 0.4084 0.4086

0.1543 0.1548 0.1549 0.155

0.25 0.0301 0.0312 0.0312 0.0312

0.8767 0.8976 0.8976 0.8976

0.4068 0.4078 0.4081 0.4082

0.1542 0.1543 0.1546 0.1547

0.5 0.0288 0.0312 0.0312 0.0312

0.8737 0.8884 0.8976 0.8976

0.4064 0.407 0.4074 0.4076

0.1538 0.1538 0.1539 0.1542

0.75 0.0 0.0 0.0 0.0

0.892 0.9125 1.0003 0.8478

0.404 0.404 0.4046 0.4054

0.1526 0.1523 0.1528 0.1531

0.9 n.a. n.a. n.a. n.a.

Eλ

a
b

1 2 4 ∞
0.0 0.1748 0.1775 0.1775 0.1775

0.8834 0.9135 0.9135 0.9135

0.6175 0.6182 0.6183 0.6185

0.0641 0.0641 0.0641 0.0641

0.25 0.1727 0.1682 0.1755 0.1775

0.8873 0.9094 0.9135 0.9135

0.6169 0.6178 0.618 0.6181

0.0645 0.0642 0.0644 0.0644

0.5 0.1643 0.1682 0.1652 0.1652

0.9009 0.8769 0.8718 0.8718

0.6154 0.6169 0.6172 0.6175

0.0657 0.0647 0.0645 0.0644

0.75 0.0 0.0 0.0 0.0

0.8359 0.8501 0.9005 0.8867

0.6088 0.6116 0.6129 0.614

0.0745 0.0718 0.0702 0.0687

0.9 n.a. n.a. n.a. n.a.

Table B.4: Results obtained from the ki�en model with 5,011 vertices, see Figure B.4. On the le�
values for Edim (1.11) and on the right values for Eλ (1.12). Each cell showing (from top to bo�om)
the minimum, maximum, average, and standard deviation.

IX

C Beta Distribution
�e proof in the Section 2.2 makes use of the Beta Distribution which we will present here brie�y

with the facts used in the proof above. We follow the description in [Geo15, Section 2.5.3]. It

describes the waiting time for the k-th event of n events happening in (0, 1) ⊂ R, called 1, . . . , n.

Hence, the space of results as well as the sample space is Ω = (0, 1)n. For all 1 ≤ i ≤ n,

ω ∈ (ω1, . . . , ωn) ∈ Ω, let Ti(ω) = ωi be the time of event i. Assume all ωi are uniform distributed

in (0, 1).

Now order the Ti(ω) strictly, which is possible since P(
⋃
i 6=j{ωi = ωj}) = 0, i.e. no two events

happen at the same time. Call the order

T1:n < . . . < Tn:n with {T1:n, . . . , Tn:n} = {T1(ω), . . . , Tn(ω)},

then Tk:n is the time of the k-th event. Now �x k, n, and some c ∈ (0, 1). For a given order

T1:n < . . . < Tn:n, we obtain

P(Tk:n ≤ c)︸ ︷︷ ︸
�xed order

=

∫ 1

0

. . .

∫ 1

0

1{t1<...<tn}(t1, . . . , tn) · 1(0,c](tk) dtn . . . dt1.

For any other order, we can exchange the integration by Fubini, s.t. it yields the same expression

independent of any of the n! possible orders. Hence,

P(Tk:n ≤ c) = n!

∫ 1

0

. . .

∫ 1

0

1{t1<...<tn}(t1, . . . , tn) · 1(0,c](tk) dtn . . . dt1

= n! ·
∫ 1

0

1(0,c](tk)︸ ︷︷ ︸
=
∫ c
0 1

·

(∫ 1

0

. . .

∫ 1

0

1{t1<...<tk}(t1, . . . , tk) dtk−1 . . . dt1

)
︸ ︷︷ ︸∫ tk

0 ...
∫ tk
0 1{t1<...<tk}(t1,...,tk−1) dtk−1...dt1

·
(∫ 1

0

. . .

∫ 1

0

1{tk<...<tn}(tk, . . . , tn) dtk+1 . . . dtn

)
︸ ︷︷ ︸

=
∫ 1
tk
...

∫ 1
tk
1{tk+1<...<tn}(tk+1,...,tn) dtn...dtk+1

(C.1)

Using the following two identities, see [Geo15, p. 44],∫ s

0

. . .

∫ s

0

1{t1<...<tk−1}(t1, . . . , tk−1) dtk−1 . . . dt1 =
sk−1

(k − 1)!∫ s

0

. . .

∫ s

0

1{tk+1<...<tn}(tk+1, . . . , tn) dtn . . . dtk+1 =
(1− s)n−k

(n− k)!

XI

C Beta Distribution

in (C.1), we get

P(Tk:n ≤ c) =
n!

(k − 1)!(n− k)!
·
∫ c

0

sk−1(1− s)n−k ds.

In general, for a random variable X with distribution FX and density f , if FX is di�erentiable,

we have f(x) = F ′(X). Finally, it can be shown, see [Geo15, p. 45], that E(βa,b) = a
a+b

, where

for k, n ∈ N, βk,n−k+1 describes the distribution of the k-th smallest time of n random times in

[0, 1]. In particular, β1,n(s) = n(1− s)n−1
is the density of the �rst time and β1,1 = U(0,1).

XII

D Densities from Covariance Matrix
We now have a closer look on the expression of δi,1, δi,2, given by the two largest eigenvalues

λi,1, λi,2 from (6.4), cf. [Tau95]. A unit direction on Ti can be expressed in terms of the orthonor-

mal basis of the eigenvectors of the covariance matrix vi,1, vi,2. Hence,

eϕ =

(
cos(ϕ)
sin(ϕ)

)
, with eϕe

T
ϕ =

(
cos2(ϕ) cos(ϕ) sin(ϕ)

cos(ϕ) sin(ϕ) sin2(ϕ)

)
. (D.1)

for someϕ ∈ [0, 2π). We now compute the integral form of the tangential part of the diagonalized

covariance matrix by using the quadratic form (6.3) and the matrix from (D.1)(
λi,1 0
0 λi,2

)
=

1

2π

∫ 2π

0

δ(eϕ)eϕe
T
ϕ dϕ

=
1

2π

∫ 2π

0

δ(eϕ)

(
cos2(ϕ) cos(ϕ) sin(ϕ)

cos(ϕ) sin(ϕ) sin2(ϕ)

)
dϕ

=
1

2π
δi,1

∫ 2π

0

(
cos4(ϕ) cos3(ϕ) sin(ϕ)

cos3(ϕ) sin(ϕ) cos2(ϕ) sin2(ϕ)

)
dϕ

+
1

2π
δi,2

∫ 2π

0

(
cos2(ϕ) sin2(ϕ) cos(ϕ) sin3(ϕ)
cos(ϕ) sin3(ϕ) sin4(ϕ)

)
dϕ

=
1

2π
δi,1

(
3π
4

0
0 π

4

)
+

1

2π
δi,2

(
π
4

0
0 3π

4

)
=δi,1

(
3
8

0
0 1

8

)
+ δi,2

(
1
8

0
0 3

8

)
.

�is leaves us with the two equations

λi,1 =
3

8
δi,1 +

1

8
δi,2 λi,2 =

1

8
δi,1 +

3

8
δi,2,

which are rearranged to express δi,1, δi,2 in terms of the eigenvalues

δi,1 = 3λi,1 − λi,2 δi,2 = −λi,1 + 3λi,2

to �nally obtain equation (6.5).

XIII

Bibliography

[ACK01] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. “�e Power Crust”. In: Pro-
ceedings of the sixth ACM symposium on Solid modeling and applications. ACM. 2001,

pp. 249–266.

[AK04] Nina Amenta and Yong Joo Kil. “De�ning Point-set Surfaces”. In: ACM Trans. Graph.
23.3 (Aug. 2004), pp. 264–270. issn: 0730-0301.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. “Sorting in c logn parallel steps”.

In: Combinatorica 3.1 (1983), pp. 1–19.

[Ale+01] Marc Alexa et al. “Point Set Surfaces”. In: VIS’01: Proceedings of the confernce on Vi-
sualization ’01. IEEE Computer Society. 2001, pp. 21–28.

[Ale+03] Marc Alexa et al. “Computing and rendering point set surfaces”. In: IEEE Transactions
on visualization and computer graphics 9.1 (2003), pp. 3–15.

[Ale+05] Marc Alexa et al., eds. Eurographics Symposium on Point-Based Graphics (2005). 2005.

[Ama+96] Nancy M. Amato et al. “A comparison of parallel sorting algorithms on di�erent

architectures”. In: Technical Report TR98-029, Department of Computer Science, Texas
A&M University (1996).

[And+98] Arne Andersson et al. “Sorting in linear time?” In: Journal of Computer and System
Sciences 57.1 (1998), pp. 74–93.

[AP10] Marco A�ene and Giuseppe Patanè. “Hierarchical structure recovery of point-sampled

surfaces”. In:Computer Graphics Forum. Vol. 29. 6. Wiley Online Library. 2010, pp. 1905–

1920.

[A�+06] Marco A�ene et al. “Mesh Segmentation – A Comparative Study”. In: Proceedings
of the IEEE International Conference on Shape Modeling and Applications 2006. 2006,

pp. 7–18.

[Avr+10] Haim Avron et al. “L1-Sparse Reconstruction of Sharp Point Set Surfaces”. In: ACM
Trans. Graph. 29.5 (Nov. 2010), 135:1–135:12. issn: 0730-0301.

[Bel+14] Ben Bellekens et al. “A survey of rigid 3D pointcloud registration algorithms”. In:

AMBIENT 2014: the Fourth International Conference on Ambient Computing, Applica-
tions, Services and Technologies, August 24-28, 2014, Rome, Italy. 2014, pp. 8–13.

[Ben75] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative Search-

ing”. In: Communications of the ACM 18.9 (1975), pp. 509–517.

[Ber+00] Marc de Berg et al. Computational Geometry. 2nd. Springer, 2000.

[Ber+17] Ma�hew Berger et al. “A Survey of Surface Reconstruction from Point Clouds”. In:

Comput. Graph. Forum 36.1 (Jan. 2017), pp. 301–329. issn: 0167-7055.

[Ber+99] Fausto Bernardini et al. “�e ball-pivoting algorithm for surface reconstruction”. In:

IEEE transactions on visualization and computer graphics 5.4 (1999), pp. 349–359.

XV

Bibliography

[BF05] Chris Boehnen and Patrick Flynn. “Accuracy of 3D Scanning Technologies in a Face

Scanning Scenario”. In: IEEE Fi�h International Conference on 3D Digital Imaging and
Modeling. 2005, pp. 310–317.

[BH14] Joseph K Blitzstein and Jessica Hwang. Introduction to probability. Chapman and

Hall/CRC, 2014.

[Bis06] Christopher Michael Bishop. Pa�ern recognition andmachine learning. Springer, 2006.

[BJ88] Paul J. Besl and Ramesh C. Jain. “Segmentation �rough Variable-Order Surface Fit-

ting”. In: IEEE Transactions on Pa�ern Analysis and Machine Intelligence 10 (2) (1988),

pp. 167–192.

[BL06] David Belton and Derek D. Lichti. “Classi�cation and segmentation of terrestrial

laser scanner point clouds using local variance information”. In: �e International
Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences 36.5

(2006), pp. 44–49.

[BL12] Nicolas Brodu and Dimitri Lague. “3D terrestrial lidar data classi�cation of complex

natural scenes using a multi-scale dimensionality criterion: Applications in geomor-

phology”. In: ISPRS Journal of Photogrammetry and Remote Sensing 68 (2012), pp. 121–

134.

[Blu+73] Manuel Blum et al. “Time Bounds for Selection”. In: Journal of Computer and System
Sciences 7.4 (1973), pp. 448–461.

[Bot+06] Mario Botsch et al., eds. Symposium on Point-Based Graphics. 2006.

[Bot+07] Mario Botsch et al., eds. Eurographics Symposium on Point-Based Graphics. 2007.

[Bri07] Robert Bridson. “Fast Poisson disk sampling in arbitrary dimensions”. In: SIGGRAPH
sketches. 2007, p. 22.

[BSW09] Mikhail Belkin, Jian Sun, and Yusu Wang. “Constructing Laplace operator from Point

Clouds in Rd
”. In: Proceedings of the twentieth annual ACM-SIAM symposium on Dis-

crete algorithms. Society for Industrial and Applied Mathematics. 2009, pp. 1031–

1040.

[Buc+07] Ursula Buck et al. “Application of 3D documentation and geometric reconstruction

methods in tra�c accident analysis: With high resolution surface scanning, radi-

ological MSCT/MRI scanning and real data based animation”. In: Forensic science
international 170.1 (2007), pp. 20–28.

[BZK09] David Bommes, Henrik Zimmer, and Leif Kobbelt. “Mixed-Integer �adrangula-

tion”. In: ACM Transactions On Graphics (TOG). Vol. 28. 3. ACM. 2009, p. 77.

[CAD04] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. “Variational Shape Ap-

proximation”. In:ACMTransactions onGraphics (TOG). Vol. 23. 3. ACM. 2004, pp. 905–

914.

[CGF09] Xiaobai Chen, Aleksey Golovinskiy, and �omas Funkhouser. “A benchmark for 3D

mesh segmentation”. In: Acm transactions on graphics (tog). Vol. 28. 3. ACM. 2009,

73:1–73:12.

[Che+13] Jiazhou Chen et al. “Non-Oriented MLS Gradient Fields”. In: Computer Graphics Fo-
rum 32.8 (2013), pp. 98–109. issn: 1467-8659.

[Che+17] Siheng Chen et al. “Fast Resampling of 3D Point Clouds via Graphs”. In: arXiv preprint
arXiv:1702.06397 (2017).

XVI

Bibliography

[Cig+08] Paolo Cignoni et al. “MeshLab: an Open-Source Mesh Processing Tool”. In: Euro-
graphics Italian Chapter Conference. Ed. by Vi�orio Scarano, Rosario De Chiara, and

Ugo Erra. �e Eurographics Association, 2008, pp. 129–136. isbn: 978-3-905673-68-5.

[CLT14] Louis Cuel, Jacques-Olivier Lachaud, and Boris �ibert. “Voronoi-based geometry

estimator for 3D digital surfaces”. In: International Conference on Discrete Geometry
for Computer Imagery. Springer. 2014, pp. 134–149.

[CRS98] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. “Metro: measuring error on

simpli�ed surfaces”. In: Computer Graphics Forum. Vol. 17 (2). Wiley Online Library.

1998, pp. 167–174.

[Cue+15] Louis Cuel et al. “Robust Geometry Estimation using the Generalized Voronoi Co-

variance Measure”. In: SIAM Journal on Imaging Sciences 8.2 (2015), pp. 1293–1314.

[Cue14] Louis Cuel. “Inférence géométrique discrète”. �èse de doctorat dirigée par Lachaud,

Jacques-Olivier et �ibert, Boris, Mathématiques appliquées Grenoble 2014. PhD the-

sis. École doctorale mathématiques, sciences et technologies de l’information, infor-

matique (Grenoble), 2014.

[Dem+07] Kris Demarsin et al. “Detection of closed sharp edges in point clouds using normal

estimation and graph theory”. In: Computer-Aided Design 39.4 (2007), pp. 276–283.

[Dem+11] Jerome Demantké et al. “Dimensionality based scale selection in 3D lidar point clouds”.

In: �e International Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 38.Part 5 (2011), 97–102.

[Fah+14] Adil Fahad et al. “A Survey of Clustering Algorithms for Big Data: Taxonomy and

Empirical Analysis”. In: Emerging Topics in Computing, IEEE Transactions on 2.3 (2014),

pp. 267–279.

[FBF77] Jerome Harold Friedman, Jon Louis Bentley, and Raphael Ari Finkel. “An algorithm

for �nding best matches in logarithmic expected time”. In: ACM Transactions on
Mathematical So�ware (TOMS) 3.3 (1977), pp. 209–226.

[FCS05] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T Silva. “Robust Moving Least-

squares Fi�ing with Sharp Features”. In: ACM transactions on graphics (TOG) 24.3

(2005), pp. 544–552.

[FDC03] Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. “Bilateral Mesh Denoising”.

In: ACM Trans. Graph. 22.3 (July 2003), pp. 950–953. issn: 0730-0301.

[FH73] Keinosuke Fukunaga and Larry D. Hostetler. “Optimization of k nearest neighbor

density estimates”. In: IEEE Transactions on Information �eory 19.3 (1973), pp. 320–

326.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. �e elements of statistical
learning. Vol. 1. Springer series in statistics Springer, Berlin, 2001.

[FR01] Michael S Floater and Martin Reimers. “Meshless parametrization and surface re-

construction”. In: Computer Aided Geometric Design 18.2 (2001), pp. 77–92.

[Geo15] Hans-O�o Georgii. Stochastik: Einführung in dieWahrscheinlichkeitstheorie und Statis-
tik. Walter de Gruyter GmbH & Co KG, 2015.

[GF16] Iliyan Georgiev and Marcos Fajardo. “Blue-noise dithered sampling”. In: ACM SIG-
GRAPH 2016 Talks. ACM. 2016, p. 35.

XVII

Bibliography

[GG07] Gaël Guennebaud and Markus Gross. “Algebraic Point Set Surfaces”. In: ACM Trans.
Graph. 26.3 (July 2007). issn: 0730-0301.

[GG99] Volker Gaede and Oliver Günther. “Multidimensional Access Methods”. In: ACM
Computing Surveys (July 1999), pp. 170–231.

[GH97] Michael Garland and Paul S. Heckbert. “Surface Simpli�cation Using �adric Er-

ror Metrics”. In: Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. 1997, pp. 209–216.

[Gro+04] Markus Gross et al., eds. SPBG’04 Symposium on Point - Based Graphics 2004. 2004.

[GWM01] Stefan Gumhold, Xinlong Wang, and Rob MacLeod. “Feature Extraction from Point

Clouds”. In: Proceedings of 10th International Meshing Round Table. 2001, pp. 293–305.

[Hab72] A. Nico Habermann. Parallel neighbor-sort (or the glory of the induction principle).
Tech. rep. Carnegie-Mellon University, 1972.

[HB14] Dirk Holz and Sven Behnke. “Registration of Non-Uniform Density 3D Point Clouds

using Approximate Surface Reconstruction”. In: ISR/Robotik 2014; 41st International
Symposium on Robotics; Proceedings of. VDE. 2014, pp. 1–7.

[HBC11] Paul Harris, Chris Brunsdon, and Martin Charlton. “Geographically weighted prin-

cipal components analysis”. In: International Journal of Geographical Information Sci-
ence 25.10 (2011), pp. 1717–1736.

[HHL15] Zhen Hua, Zilong Huang, and Jinjiang Li. “Mesh Simpli�cation Using Vertex Clus-

tering Based on Principal Curvature”. In: International Journal of Multimedia and
Ubiquitous Engineering 10.9 (2015), pp. 99–110.

[HK06] Alexander Hornung and Leif Kobbelt. “Robust Reconstruction of Watertight 3D Mod-

els from Non-uniformly Sampled Point Clouds Without Normal Information”. In:

Symposium on geometry processing. 2006, pp. 41–50.

[Hop+92] Hugues Hoppe et al. “Surface reconstruction from unorganized points”. In: Proceed-
ings of the 19th annual conference on Computer graphics and interactive techniques.
ACM. 1992, pp. 71–78.

[Hua+13] Hui Huang et al. “Edge-Aware Point Set Resampling”. In: ACM Trans. Graph. 32.1

(Feb. 2013), 9:1–9:12. issn: 0730-0301.

[Jak+15] Wenzel Jakob et al. “Instant �eld-aligned meshes.” In: ACM Trans. Graph. 34.6 (2015),

pp. 189–1.

[Jan17] Johanna Jansen. “Anisotropic Smoothing and Feature Detection of Large Point Clouds

Using Principal Curvatures”. In Cooperation with Carmeq GmbH, Berlin, Germany.

MA thesis. Berlin, Germany: Freie Universität Berlin, 2017.

[JDZ04] �ouis R. Jones, Fredo Durand, and Ma�hias Zwicker. “Normal improvement for

point rendering”. In: IEEE Computer Graphics and Applications 24.4 (2004), pp. 53–

56.

[Joh+14] Mallory M. Johnston et al. 3D printing in Zero-G ISS technology demonstration. Tech.

rep. NASA, 2014.

[Jos+09] Mark Joselli et al. “A Neighborhood Grid Data Structure for Massive 3D Crowd Sim-

ulation on GPU”. In: 2009 VIII Brazilian Symposium on Games and Digital Entertain-
ment (SBGAMES). IEEE. 2009, pp. 121–131.

XVIII

Bibliography

[Jos+15] Mark Joselli et al. “Neighborhood grid: A novel data structure for �uids animation

with GPU computing”. In: Journal of Parallel and Distributed Computing 75 (2015),

pp. 20–28.

[KCL09] Hyun Soo Kim, Han Kyun Choi, and Kwan H Lee. “Feature detection of triangu-

lar meshes based on tensor voting theory”. In: Computer-Aided Design 41.1 (2009),

pp. 47–58.

[KNP07] Felix Kälberer, Ma�hias Nieser, and Konrad Polthier. “�adCover - Surface Parame-

terization using Branched Coverings”. In:Comput. Graph. Forum 26.3 (2007), pp. 375–

384.

[KS00] Klaus Köster and Michael Spann. “MIR: an approach to robust clustering-application

to range image segmentation”. In: IEEE Transactions on Pa�ern Analysis and Machine
Intelligence 22 (5) (2000), pp. 430–444.

[LB16] Kai Wah Lee and Pengbo Bo. “Feature curve extraction from point clouds via devel-

opable strip intersection”. In: Journal of Computational Design and Engineering 3.2

(2016), pp. 102–111.

[LCL06] Yaron Lipman, Daniel Cohen-Or, and David Levin. “Error Bounds and Optimal Neigh-

borhoods for MLS Approximation”. In: Proceedings of the fourth Eurographics sym-
posium on Geometry processing. Eurographics Association. 2006, pp. 71–80.

[Lee12] John Lee. Introduction to Smooth Manifolds. 2nd Edition. Springer, 2012.

[Lei85] Tom Leighton. “Tight bounds on the complexity of parallel sorting”. In: IEEE Trans-
actions on Computers 100.4 (1985), pp. 344–354.

[Lev+00] Marc Levoy et al. “�e Digital Michelangelo Project: 3D Scanning of Large Statues”.

In: Proceedings of the 27th annual conference on Computer graphics and interactive
techniques. 2000, pp. 131–144.

[Lev04] David Levin. “Mesh-Independent Surface Interpolation”. In: Geometric modeling for
scienti�c visualization. Springer, 2004, pp. 37–49.

[Lev98] David Levin. “�e approximation power of moving least-squares”. In: Mathematics
of Computation of the American Mathematical Society 67.224 (1998), pp. 1517–1531.

[Li+11] Er Li et al. “Meshless quadrangulation by global parameterization”. In: Computers &
Graphics 35.5 (2011), pp. 992–1000.

[Lin01] Lars Linsen. Point cloud representation. Tech. rep. Universität Karlsruhe, Faculty of

Computer Science, 2001.

[Lip+07] Yaron Lipman et al. “Parameterization-free Projection for Geometry Reconstruc-

tion”. In: ACM Trans. Graph. 26.3 (July 2007), pp. 22–27. issn: 0730-0301.

[Llo82] Stuart P. Lloyd. “Least squares quantization in PCM”. In: IEEE transactions on infor-
mation theory 28.2 (1982), pp. 129–137.

[LP01] Lars Linsen and Hartmut Prautzsch. “Local Versus Global Triangulations”. In: Pro-
ceedings of EUROGRAPHICS. Vol. 1. 2001, pp. 257–263.

[LP05] Carsten Lange and Konrad Polthier. “Anisotropic Smoothing of Point Sets”. In: Com-
puter Aided Design 22 (2005), pp. 680–692.

[LPZ13] Jian Liang, Frederick Park, and Hongkai Zhao. “Robust and E�cient Implicit Sur-

face Reconstruction for Point Clouds Based on Convexi�ed Image Segmentation”.

In: Journal of Scienti�c Computing 54.2-3 (2013), pp. 577–602.

XIX

Bibliography

[LW85] Marc Levoy and Turner Whi�ed. �e Use of Points as a Display Primitive. University

of North Carolina, Department of Computer Science, 1985.

[Mar+06] Ma�hew R Marler et al. “�e sigmoidally transformed cosine curve: a mathematical

model for circadian rhythms with symmetric non-sinusoidal shapes”. In: Statistics in
medicine 25.22 (2006), pp. 3893–3904.

[MC17] Enrico Ma�ei and Alexey Castrodad. “Point cloud denoising via moving rpca”. In:

Computer Graphics Forum. Vol. 36. 8. Wiley Online Library. 2017, pp. 123–137.

[McL76] Dermot H. McLain. “Two dimensional interpolation from random data”. In:�eCom-
puter Journal 19.2 (1976), pp. 178–181.

[MNG03] Niloy J. Mitra, An Nguyen, and Leonidas Guibas. “Estimating Surface Normals in

Noisy Point Cloud Data”. In: International Journal of Computational Geometry & Ap-
plications 14.04n05 (2003), pp. 261–276.

[Mos+17] Christian Mostegel et al. “Scalable Surface Reconstruction from Point Clouds with

Extreme Scale and Density Diversity”. In: �e IEEE Conference on Computer Vision
and Pa�ern Recognition (CVPR). July 2017, pp. 904–913.

[MPS19] Carmelo Mineo, Stephen Gareth Pierce, and Rahul Summan. “Novel algorithms for

3D surface point cloud boundary detection and edge reconstruction”. In: Journal of
Computational Design and Engineering 6.1 (2019), pp. 81–91.

[MTL00] Gérard Medioni, Chi-Keung Tang, and Mi-Suen Lee. “Tensor voting: �eory and ap-

plications”. In: Proceedings of RFIA, Paris, France 3 (2000).

[Mul+14] Wolfgang Mulzer et al. “Approximate k-�at Nearest Neighbor Search”. In: arXiv
preprint arXiv:1411.1519 (2014).

[MW15] Marcelo de Gomensoro Malheiros and Marcelo Walter. “Simple and E�cient Approx-

imate Nearest Neighbor Search using Spatial Sorting”. In: 28th SIBGRAPI Conference
on Graphics, Pa�erns and Images. IEEE. 2015, pp. 180–187.

[MWP18] Claudio Mura, Gregory Wyss, and Renato Pajarola. “Robust normal estimation in

unstructured 3D point clouds by selective normal space exploration”. In: �e Visual
Computer 34.6 (2018), pp. 961–971.

[Nea04] Andrew Nealen. An As-Short-As-Possible Introduction to the Least Squares, Weighted
Least Squares and Moving Least Squares Methods for Sca�ered Data Approximation
and Interpolation. Tech. rep. TU Darmstadt, Germany, 2004.

[NL13] Anh Nguyen and Bac Le. “3D point cloud segmentation: A survey”. In: 2013 6th IEEE
Conference on Robotics, Automation and Mechatronics (RAM). 2013, pp. 225–230.

[ÖAG10] A. Cengiz Öztireli, Marc Alexa, and Markus Gross. “Spectral Sampling of Manifolds”.

In: ACM Transactions on Graphics (TOG) 29.6 (2010), 168:1–168:8.

[ÖGG09] A Cengiz Öztireli, Gael Guennebaud, and Markus Gross. “Feature preserving point

set surfaces based on non-linear kernel regression”. In: Computer Graphics Forum.

Vol. 28. 2. Wiley Online Library. 2009, pp. 493–501.

[Oht+03] Yutaka Ohtake et al. “Multi-level Partition of Unity Implicits”. In: ACM Trans. Graph.
22.3 (July 2003), pp. 463–470. issn: 0730-0301.

[Pau+03] Mark Pauly et al. “Shape modeling with point-sampled geometry”. In: ACM Trans-
actions on Graphics 22, 3 (2003), pp. 641–650.

XX

Bibliography

[PGK02] Mark Pauly, Markus Gross, and Leif Kobbelt. “E�cient simpli�cation of point-sampled

surfaces”. In: Proceedings of the conference on Visualization’02. IEEE Computer Soci-

ety. 2002, pp. 163–170.

[PKG03] Mark Pauly, Richard Keiser, and Markus Gross. “Multi-scale Feature Extraction on

Point-Sampled Surfaces”. In: Computer graphics forum. Vol. 22. 3. Wiley Online Li-

brary. 2003, pp. 281–289.

[PKG06] Mark Pauly, Leif Kobbelt, and Markus Gross. “Point-based multiscale surface repre-

sentation”. In: ACM Transactions on Graphics (TOG) 25.2 (2006), pp. 177–193.

[PLL12] Min Ki Park, Seung Joo Lee, and Kwan H Lee. “Multi-scale tensor voting for feature

extraction from unstructured point clouds”. In:Graphical Models 74.4 (2012), pp. 197–

208.

[PM92] Ola Petersson and Alistair Mo�at. “A framework for adaptive sorting”. In: Algo-
rithm�eory — SWAT ’92. Ed. by O�o Nurmi and Esko Ukkonen. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1992, pp. 422–433. isbn: 978-3-540-47275-9.

[RT09] Dennie Reniers and Alexandru Telea. “Extreme simpli�cation and rendering of point

sets using algebraic multigrid”. In: Computing and Visualization in Science 12 (1)

(2009), pp. 9–22.

[Sag01] Bruce Eli Sagan. �e symmetric Group. Springer, 2001.

[SAL17] B. Sober, Y. Aizenbud, and D. Levin. “Approximation of Functions over Manifolds: A

Moving Least-Squares Approach”. In: ArXiv e-prints (Nov. 2017).

[SFC10] Batchimeg Sosorbaram, Tadahiro Fujimoto, and Norishige Chiba. “Simpli�cation of

Point Set Surfaces using Bilateral Filter and Multi-Sized Splats”. In: �e Journal of the
Society for Art and Science 9 (3) (2010), pp. 140–153.

[Sha48] C. E. Shannon. “A Mathematical �eory of Communication”. In:�eBell System Tech-
nical Journal 27 (1948), pp. 379–423.

[Skr14b] Martin Skrodzki. “Neighborhood Computation of Point Set Surfaces”. MA thesis.

Freie Universität Berlin, 2014.

[SL16] Barak Sober and David Levin. “Manifold Approximation by Moving Least-Squares

Projection (MMLS)”. In: ArXiv e-prints (Aug. 2016).

[Sor+18] Tommaso Sorgente et al. “Topology-driven shape charti�cation”. In: Computer Aided
Geometric Design 65 (2018), pp. 13–28.

[SSW15] Yujing Sun, Sco� Schaefer, and Wenping Wang. “Denoising Point Sets via L0 Mini-

mization”. In: Comput. Aided Geom. Des. 35 (May 2015), pp. 2–15. issn: 0167-8396.

[Sun+07] Xianfang Sun et al. “Fast and E�ective Feature-Preserving Mesh Denoising”. In: IEEE
transactions on visualization and computer graphics 13.5 (2007), pp. 925–938.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms. 4th. Addison-Wesley, 2011.

[SWK07] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. “E�cient RANSAC for point-

cloud shape detection”. In:Computer graphics forum. Vol. 26. 2. Wiley Online Library.

2007, pp. 214–226.

[Tau95] Gabriel Taubin. “Estimating the tensor of curvature of a surface from a polyhedral

approximation”. In: Computer Vision, 1995. Proceedings., Fi�h International Confer-
ence on. IEEE. 1995, pp. 902–907.

XXI

Bibliography

[TP05] Daniel Tóvári and Norbert Pfeifer. “Segmentation based robust interpolation - A

new Approach to laser data �ltering”. In: International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences. Vol. 36 (3/19). 2005, pp. 79–84.

[Wan+13] Jun Wang et al. “Feature-Preserving Surface Reconstruction From Unoriented, Noisy

Point Data”. In: Computer Graphics Forum 32.1 (2013), pp. 164–176. issn: 1467-8659.

[WHH11] Christopher Weber, Stefanie Hahmann, and Hans Hagen. “Methods for Feature De-

tection in Point Clouds”. In: OASIcs-OpenAccess Series in Informatics. Vol. 19. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik. 2011, pp. 90–99.

[WI18] Reed M. Williams and Horea T. Ilieş. “Practical shape analysis and segmentation

methods for point cloud models”. In: Computer Aided Geometric Design 67 (2018),

pp. 97–120.

[WJM14] Martin Weinmann, Boris Jutzi, and Clément Mallet. “Semantic 3D Scene Interpreta-

tion: A Framework Combining Optimal Neighborhood Size Selection with Relevant

Features”. In: ISPRS annals II-3 (2014). ISPRS Technical Commission III Symposium,

5 – 7 September 2014, Zürich, CH, pp. 181–188. issn: 2194-9050.

[WW11] Li-Yi Wei and Rui Wang. “Di�erential domain analysis for non-uniform sampling”.

In: ACM Transactions on Graphics (TOG) 30.4 (2011), 50:1–50:10.

[XM09] Guo Xianglin and Pang Mingyong. “Point sets simpli�cation using local surface anal-

ysis”. In: 2009 2nd IEEE International Conference on Broadband Network Multimedia
Technology. 2009, pp. 575–579.

[Yad+18b] Sunil Kumar Yadav et al. “Constraint-based point set denoising using normal voting

tensor and restricted quadratic error metrics”. In: Computers & Graphics 74 (2018),

pp. 234–243. issn: 0097-8493.

[Yan+17] Jiaqi Yang et al. “3D Reconstruction from Non-uniform Point Clouds via Local Hi-

erarchical Clustering”. In: Ninth International Conference on Digital Image Processing
(ICDIP 2017). Vol. 10420(38). International Society for Optics and Photonics. 2017.

[YRP17] Sunil Kumar Yadav, Ulrich Reitebuch, and Konrad Polthier. “Mesh Denoising based

on Normal Voting Tensor and Binary Optimization”. In: IEEE Transactions on Visu-
alization and Computer Graphics 99 (2017), pp. 2366–2379. issn: 1077-2626.

[YRP18] Sunil Kumar Yadav, Ulrich Reitebuch, and Konrad Polthier. “Robust and High Fi-

delity Mesh Denoising”. In: IEEE Transactions on Visualization and Computer Graph-
ics (2018). issn: 1077-2626.

[Zhe+17] Yinglong Zheng et al. “Guided point cloud denoising via sharp feature skeletons”.

In: Vis. Comput. 33.6-8 (June 2017), pp. 857–867. issn: 0178-2789.

[Zhe+18] Yinglong Zheng et al. “Rolling normal �ltering for point clouds”. In: Computer Aided
Geometric Design 62 (2018), pp. 16–28.

XXII

Selbstständigkeitserklärung
Hiermit versichere ich, dass ich alle Hilfsmi�el und Hilfen angegeben und die vorliegende Arbeit

auf dieser Grundlage selbstständig verfasst habe. Die Arbeit wurde nicht in einem früheren Pro-

motionsverfahren eingereicht.

Berlin, 2019

Martin Skrodzki

XXIII

Zusammenfassung

Zusammenfassung
Die Arbeit beschä�igt sich mit drei Bereichen, die jeweils im Umfeld der Verarbeitung von Punkt-

wolken verortet sind. Der erste Bereich betri� Konzepte von Nachbarscha�en sowie zugehörige

Datenstrukturen. In der Forschung wurde bereits mehrfach auf die Wichtigkeit von qualitativ

hochwertigen Nachbarscha�srelationen auf Punktwolken hingewiesen. Die Autoren von [LP05]

berichten beispielsweise, dass die Ergebnisse ihres anisotropen Glä�ungsverfahrens stark von

den Nachbarscha�en abhängen, die sie für die prozessierte Punktwolke berechnen. Während

bereits mehrere kombinatorisch oder metrisch basierte Konzepte für Nachbarscha�en auf Punkt-

wolken vorgestellt wurden, berücksichtigt keines dieser Konzepte die Informationen der Nor-

malen, bzw. der Krümmung. Die Doktorarbeit stellt daher ein neues Verfahren für die Bestim-

mung von Nachbarscha�en vor, die sich an der lokalen Form der Geometrie orientieren. Jegliche

Nachbarscha�skonzepte sind nur dann von praktischer Relevanz, wenn sie auch schnell in un-

terschiedlichen Anwendungen berechnet werden können. Hierfür fällt die Wahl häu�g auf die

Datenstruktur der k-d Bäume von Friedman, Bentley und Finkel, s. [FBF77]. Dies liegt vor allem

an der bewiesenen Laufzeit einer Nachbarscha�sabfrage von erwartet O(log(n)) auf n Punk-

ten. Die Doktorarbeit präsentiert eine ausführliche Ausarbeitung dieser Laufzeitberechnung.

Schließlich werden solche Datenstrukturen immer wichtiger, die von massiver Parallelisierung –

z.B. auf Gra�kkarten – pro�tieren. Eine solche stellt das Nachbarscha�sgi�er dar, das von den

Autoren von [Jos+09] eingeführt wurde. Die Doktorarbeit beantwortet mehrere o�ene Fragen

zur Kombinatorik und zur �alität der Nachbarscha�en dieser Struktur.

Der zweite große Bereich der Arbeit zielt auf Mannigfaltigkeitsstrukturen für durch Punkt-

wolken dargestellte Ober�ächen. Immer, wenn die zugrundeliegende Geometrie die Struktur

einer gla�en Mannigfaltigkeit hat, kann erwartet werden, dass diese Struktur auch durch eine

Stichprobe in Form einer Punktwolke abgebildet wird. Jedoch gibt es für Punktwolken bisher

keine Konstruktion, die diese Struktur abbildet. Eine Lösung für diese Forschungslücke wird in

der Doktorarbeit präsentiert. Außerdem ist das wichtigste Element für die Repräsentation von

Mannigfaltigkeiten ein Atlas aus Karten mit entsprechenden Kartenwechselabbildungen. Die

Doktorarbeit präsentiert einen Ansatz, bei dem Karten aus möglichst großen �achen Stücken der

Punktwolke generiert werden. Diese �achen Stücke können dann einfach in anderen Verfahren

genutzt werden.

Der abschließende dri�e Teil der Arbeit beschä�igt sich mit e�zienten und robusten Algorith-

men für die Verarbeitung von Punktwolken. Wie oben bereits vermerkt, bieten Punktwolken –

im Gegensatz zu Netzen mit ihren Flächenstücken – keine natürlichen Gewichtungen für ihre

Elemente. Hier können nur die paarweisen Distanzen zwischen Punkten genutzt werden. Dies

erschwert die Handhabung von Punktwolken mit uneinheitlicher Verteilung. Um diesem Prob-

lem entgegenzuwirken präsentiert die Arbeit neuartige Gewichte für die Verwendung in Dis-

kretisierungen – z.B. von Di�erentialoperatoren – die für eine Verarbeitung wie im Falle einer

einheitlichen Stichprobe sorgen. Abseits hiervon spielt in Anwendungen vor allem auch die

Identi�kation von Merkmalen einer Geometrie – Ecken, Kanten und Flächen – eine Rolle. Die

Arbeit präsentiert daher einen auf dem Verfahren der bewegten kleinsten �adrate basieren-

den Ansatz für die Erkennung von Geometriemerkmalen. Die Arbeit schließt mit der Vorstel-

lung eines Glä�ungsalgorithmus für Punktwolken. Dieser entfernt bei der Akquise der Punkte

fälschlicherweise erzeugtes Rauschen ohne dabei die oben angesprochenen Merkmale der Ge-

ometrie zu verwischen. Die Arbeit schlägt somit einen Bogen von der Erfassung von Punkt-

wolken über theoretische Konstruktionen hin zur praktischen Verarbeitung.

	Introduction
	Structure of the Thesis and Summary of Main Contributions
	Acknowledgment

	Notions of Neighborhood and corresponding Data Structures
	Neighborhoods in Point Sets
	Neighborhood Concepts
	Neighborhood Sizes
	Method
	Experimental Results
	Applications
	Conclusion

	k-d Trees
	The Data Structure of k-d Trees
	Neighborhood Queries in Logarithmic Time
	Conclusion and Addendum: k-d Trees in Arts

	The Neighborhood Grid
	Introduction of the Data Structure and a Polynomial Time-Optimal Building Algorithm
	Combinatorial Results on Stable States of the Neighborhood Grid
	Uniqueness of Stable States
	The worst Stable State
	General Case, Parallelization, and Different Sorting Algorithms
	Quality of Neighborhood Approximation
	Conclusion and Future Work

	Manifold Structure for Point Set Surfaces
	Manifold Theory and Formulations for Point Set Manifolds
	Definition of a Smooth Manifold
	Point Sets as 0-Manifolds
	Recovered d'-Manifolds
	Manifold Reconstruction using the Moving Least Squares Approach
	Conclusion: Local versus Global Charts

	Variational Shape Approximation
	Related Work
	The VSA Procedure
	Simplified Shape Reconstruction
	Experimental Results
	Conclusion

	Robust and Efficient Processing of Point Sets
	Directional Density Measure to Intrinsically Estimate and Counteract Non-uniformity in Point Sets
	Related Work
	Three Approaches to Directional Density Measures
	Experimental Results
	Conclusion

	Feature Detection from Moving Least Squares
	Related Work
	The Feature Detection Method
	Experimental Results
	Conclusion and Future Work

	Constraint-Based Point Set Denoising using the Normal Voting Tensor and Restricted Quadratic Error Metrics
	Related Work
	The Proposed Method
	Experimental Results
	Quantitative Analysis
	Conclusion

	Conclusion and Further Research
	Appendices
	Notation
	Statistical Experiment Results for the Shape-Aware Neighborhoods
	Beta Distribution
	Densities from Covariance Matrix
	Bibliography

