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GENERAL INTRODUCTION  
 

Central European freshwater habitats, which provide breeding, roosting and molting 

habitats for different waterfowl species, are highly anthropogenically impacted 

ecosystems. Among others, human impact on freshwater habitats and its biodiversity 

include eutrophication, restructuring, environmental pollution and introduction of non-

native species (Meybeck 2003; Framing Committee of the Global Water System Project 

2004; Strayer 2010; Vörösmarty et al. 2010). Particularly species biodiversity and quality 

of freshwater habitats are threatened by environmental pollutants originating from 

industry, agriculture and hunting. Additionally, native species biodiversity, community 

structures and ecosystem functioning may be threatened by the introduction of non-native 

species (Dudgeon et al. 2006; Carpenter et al. 2011).  

Both environmental pollution and vertebrate invasion can interact with health indices 

of native populations such as parasite biodiversity, exposure to pollutants, parasite 

transmission and immunity. Environmental habitat pollution can result in acute or chronic 

intoxication of vertebrates. Such intoxication can result in a decrease of vertebrate 

immune competences, which subsequently facilitates disease outbreaks and parasite 

transmission (Franson 1986; Vallverdú-Coll et al. 2015b, a, 2016). Additionally, 

biodiversity loss may increase the transmission rate and risk of infectious diseases 

(Keesing et al. 2010). Moreover, parasite transmission originating from invasive species 

can be of high risk for the health of native species (Callaway and Ridenour 2004; Crowl 

et al. 2008; Pyšek and Richardson 2010). Thus, studying the epidemiological roles of 

native and invasive waterfowl species is needed to broaden the understanding of 

anthropogenic impact on health indices of specific species and species communities in 

freshwater habitats.  

Out of the complex interplay of anthropogenic impact on freshwater ecosystems and 

health indices of freshwater species, parasite indices and immunity of two waterfowl 

species of the family Anatidae (waterfowl: ducks, geese and swans) were investigated. 

These species were chosen as they are characteristic species of freshwater habitats. Thus, 

an interplay between anthropogenic impacted fresh water habitat conditions and health 

indices such as parasite-host interactions, prevalence and abundance of 

parasites/infectious agents, immunity and disease transmission of Anatids (Figure 1) can 

be expected.  
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Out of the family Anatidae, the mallard (Anas platyrhynchos) as the most common 

native breeding duck and the most heavily hunted game bird in Germany was selected as 

study species (Gedeon et al. 2015; Deutscher Jagdverband e.V. 2018). Mallards have 

been shown to be affected by environmental pollution, predominantly caused by lead 

leading to both acute and chronic lead intoxication (Birkhead and Perrins 1985; Guitart et 

al. 1994; Mateo et al. 1997, 1998; Kelly and Kelly 2004; Degernes et al. 2006; Mateo 

2009; Binkowski et al. 2013; Ferreyra et al. 2014, 2015). Moreover, mallards occur in all 

types of freshwater habitats including those of recreational use and are final hosts for bird 

schistosomes, whose cercaria might cause swimmer´s itch in humans (Cort 1928).  
 

Figure 1: Schematic illustration of the interplay between anthropogenic impact and health indices of 
the two study species in freshwater habitats. Approaches of the thesis are highlighted with numbers of 
the different chapters (1-4). 

 

Additionally, several species of the family Anatidae were introduced to non-native 

regions and successfully established as invasive populations (Duncan et al. 2003). Several 

health-related hypotheses have been formulated to characterize the interaction of health-

indices of non-native species with the probability to become invasive for 

anthropogenically introduced species (Blossey and Notzold 1995; Torchin et al. 2003; 

Callaway and Ridenour 2004; Lee and Klasing 2004). The Egyptian goose (Alopochen 

aegyptiacus) was chosen as second study species as one of the most successful invasive 
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goose species in Europe (Gedeon et al. 2015) to investigate potential health related 

mechanisms behind the successful invasion of this species as well as its epidemiological 

role in the infection cycles of pathogens, which could be of relevance for native species, 

livestock and humans. 

This thesis aims to highlight the impact of anthropogenic actions on health indices of 

waterfowl species from freshwater habitats. It evaluates the impact of environmental lead 

pollution and the introduction of non-native species on health indices of the study species 

in freshwater habitats. This research has the potential to broaden the general 

understanding of the complex interplay between humans and wildlife and consequently 

could be of relevance for nature conservation.  

 

Thesis outline 
 

The main body of this thesis consists of four chapters addressing different subjects related 

to health indices of both study species, which are either impacted by anthropogenic 

changes or may impact human and poultry health (Figure 1).  

To study the impact of anthropogenic changes to parasite and host community 

structures in freshwater ecosystems, two main approaches were selected. First, to 

address the long-term effect of environmental lead pollution on parasite biodiversity in 

waterfowl, the chronic effect of lead burden on intestinal helminthes species richness and 

infection intensity in mallards were investigated (chapter 1). Second, health-related 

mechanisms, which might function as underlying mechanisms in the successful invasion 

of the Egyptian goose, were studied to test and potentially improve existing hypotheses in 

the field of animal invasion using the Egyptian goose as a model species. Therefore, 

parasite prevalence and variance of immune marker of Egyptian geese from Germany 

were compared to those of native Egyptian geese from Namibia to investigate potential 

differences in the light of the successful invasion of Europe by this species (chapter 2).  

To study potential threats for native species, poultry and humans, originating 

from waterfowl, two additional approaches were selected. First, to gain knowledge on 

the prevalence and abundance of potentially zoonotic helminthic infections, neural bird 

schistosome infections in mallards, whose cercaria might cause swimmer’s itch in 

humans, were studied. Thus, prevalence and abundance of neural bird schistosomes were 

investigated to study which species of neural bird schistosomes occur at which prevalence 

in mallards from German fresh waters (chapter 3). Second, parasites and selected 
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infectious agents of Egyptian geese in Germany were investigated to gain knowledge on 

their epidemiological role in transmission cycles of diseases relevant for native species 

and poultry. Additionally, the prevalence of these selected infectious agents was 

compared to published data from native geese species, to discuss them in the frame of 

contrasting ecology of the different geese species (chapter 2 and 4). 

 

Key concepts 
 
Key concepts, which are relevant to the studies presented in chapter 1-4, will be 

introduced in the following. 

 

Life history theory and resource tradeoffs 
 
Environmental factors, available resources, predators and parasites are important factors 

determining population growth rate and success of both native and invasive populations 

(Shea and Chesson 2002). Generally, resources are limited and must be allocated between 

different life history traits or stages, such as individual growth, dispersion, reproduction 

and immunity (Sheldon and Verhulst 1996; van der Most et al. 2011). Parasites, which 

compete for resources with the host, are energetically costly as they cause tissue damage 

or deprive the host from resources and induce immune reaction. Hosts with a high 

parasite burden will shift energetic resources into immunity. Thus, parasitic infection may 

decrease energetic investment of the host into other life history traits and therefore impact 

hosts population dynamics (Schmid-Hempel 2011). 

Moreover, Atkinson, Thomas, and Hunter (2008) state that parasitism and its 

impact on the hosts should generally be considered in the context it occurs, including the 

impact of anthropogenic changes to the environment. According to the authors, wild birds 

are equipped with a suite of evolved traits, which enable them to successfully survive, 

reproduce and stay healthy under given environmental conditions. However, 

anthropogenic changes, which affect wild bird populations, may lead to an increased need 

for other trades, which might not have been developed and therefore are not available. 

Following this argumentation, Schlaepfer, Runge, and Sherman (2002) state that in 

changed habitat conditions (e.g caused by anthropogenic disturbance, altered 

environments) adaptations to the natural environment can function as “evolutionary 
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traps”, meaning that naturally evolved trades may no longer be optimal but rather 

unfavorable for the hosts.  

In summary, anthropogenic changes to the environment can be energetically 

costly for the host. Particularly, environmental pollutants can induce tissue damage and 

thus resources must be used for reparation directly. Moreover, pollutants may indirectly 

affect vertebrate hosts by altering parasite community structures and immune defenses of 

the host or directly affect parasite health (Rocke and Samuel 1991; Grasman and Scanlon 

1995; Grasman 2002; Sures 2004; Sures et al. 2017). In addition, species invasion can 

impact resource tradeoffs as it may result in relatively lower parasitic burden (Enemy 

release, see below) for the invasive species. Consequently, resources can be allocated 

from immunity into reproduction and growth. Allocating resources from immunity to 

other physiological processes, such as reproduction, has been suggested to increase 

invasion success (Lee and Klasing 2004). Thus, studying parasite-host interactions in the 

frame of environmental pollution and species invasion allows to investigate resource 

tradeoffs induced by anthropogenic changes and threats to biological systems, which have 

been shown to be high in freshwater habitats (Vörösmarty et al. 2010). 

 

Environmental lead pollution and its impact on host-parasite interactions (in birds) 
 
Environmental pollution originating from industry, agriculture and hunting build up in 

freshwater habitats (Carpenter et al. 2011). Generally, high stability and persistence of 

pollutants can lead to severe contamination of both sediment and water bodies. 

Contamination entering food chains can be of risk for livestock and human health. 

Moreover, wildlife health including the health of plants, invertebrates and vertebrates, 

habitat quality and vertebrate biodiversity are threatened by environmental pollutants 

(Acevedo-Whitehouse and Duffus 2009).  

One of the most prominent pollutants can be found among heavy metals. Especially, 

lead is a highly toxic heavy metal that is known to be toxic to living organisms including 

humans and animals, primary affecting the central nervous system, renal and hepatic 

function as well as the hematopoietic system. Lead is non-biodegradable and cannot be 

physiologically excreted from the body. In vertebrates, lead gets mainly stored in bones, 

which serve as long-time accumulation matrix (Beyer and Meador 2011; Flora et al. 

2012). 



GENERAL	INTRODUCTION	

 12 

Beside the negative impact of lead on human health also wildlife health is threatened 

by lead accumulating in the environment (Arnemo et al. 2016). Lead pollution of 

freshwater habitats originates from different anthropogenic sources such as mining, 

fishing using lead fishing weights and hunting. Lead based shot gun pellets used for 

waterfowl hunting form the main source of environmental lead pollution (Birkhead and 

Perrins 1985; Sears 1988; Scheuhammer and Norris 1995; Mateo et al. 1997, 1998; 

Meharg et al. 2002; Gómez-Ramírez et al. 2011; Newth et al. 2013; Ferreyra et al. 2014).  

Environmental lead pollution leading to intoxications may impact host-parasite 

interactions by either directly affecting the parasites or the immune system and resource 

balance of its vertebrate hosts. Depending on the lead dosage, acute (lethal) or chronic 

(sublethal) symptoms can manifest in vertebrate hosts. In vertebrates, acute intoxication 

may result in severe clinical symptoms that include central nervous, renal and hepatic 

dysfunction directly leading to death (Sears 1988; Degernes et al. 2006; Flora et al. 2012; 

Newth et al. 2013), and thus not directly affecting host-parasite interactions. In contrast, 

sublethal dosages or chronic intake lead to sublethal effects of lead (Martinez-Haro et al. 

2011; Vallverdú-Coll et al. 2016) with important fitness consequences for the vertebrate 

host. For instance decreased reproductive success and immunosuppression were found in 

vertebrates affected by chronic lead intoxication (Franson 1986; Trust et al. 1990; Rocke 

and Samuel 1991; Grasman and Scanlon 1995; Youssef et al. 1996; Singh et al. 2003; 

Eeva et al. 2005; Pikula et al. 2010; Vallverdú-Coll et al. 2015a, 2016).  

Parasites can benefit from weakened immune function leading to an increase of 

parasite load in vertebrates (Franson 1986). However, parasites might also be directly 

poisoned by lead in the intestines of the hosts. Intestinal parasites of ducks are often 

exposed to lead as oral intake of hunting pellets is the main route of lead intoxication in 

these birds (Mateo et al. 1997; Ferreyra et al. 2014). Moreover, parasite related immune 

defenses might be enhanced by lead intoxication (Degen et al. 2005; Eeva et al. 2005; 

Gao et al. 2007; Cizauskas et al. 2014; Vallverdú-Coll et al. 2015b; Bertellotti et al. 

2016). Additionally, intestinal helminths were found to accumulate lead in higher dosages 

than their vertebrate hosts. Thus, intestinal parasites may function as lead sink and reduce 

lead levels in vertebrate hosts (Sures et al. 2017).  

In summary, the impact of anthropogenic induced environmental lead pollution on 

host-parasite interactions is highly complex. Here, this topic is addressed by studying 

chronic lead intoxication in mallards and its association with intestinal helminth parasite 

species richness and infection intensity (chapter 1). 
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 Invasive vertebrate species and their health-related aspects relevant during invasion 
 

Invasive species are major threats to native species biodiversity and health (Lövei 1997; 

McGeoch et al. 2010). With increasing globalisation leading to global biodiversity loss 

and climate change resulting in habitat changes, studying the mechanisms that promote 

species invasion is important for risk assessment, conservation and public health (Pyšek 

and Richardson 2010; Chown et al. 2015). Underlying mechanisms can be 

anthropogenically induced (such as for instance: number of introduced individuals) or 

arise from the traits of the introduced species, including its physiology, behaviour or 

pathogens.  

Several health-related hypotheses have been formulated to study and understand 

species invasion and its impact on native species. The “Novel Weapon” hypothesis states 

that neozootic species bring novel pathogens to the novel range which harm native 

species (Callaway and Ridenour 2004). Beside this direct transmission of parasites from 

invasive to native species, parasites, infectious agents and host immune function of 

invaders have been considered to play important mechanistic roles during the process of 

vertebrate invasion. For instance the loss of parasites during invasion (“Enemy Release 

Hypothesis”) and the ability to shift energetic resources away from immunity into 

reproduction and growth (“Evolution of Increased Competitive Ability”) enable non-

native species to successfully invade new areas (Blossey and Notzold 1995; Torchin et al. 

2003; Lee and Klasing 2004). 

However, support for the above-mentioned hypotheses are non-consistent among 

studies of invasive vertebrates, which might be caused by the complexity of the vertebrate 

immune system as well as parasite-host interactions. Thus, studying parasites, pathogens 

and immunity of native and invasive Egyptian goose populations can provide new 

insights into the mechanisms of anthropogenic induced vertebrate invasion. In chapter 2, 

the Egyptian goose was used as a model species for vertebrate invasion and it was aimed 

to study the above mentioned major hypotheses in the field of invasion biology by 

investigating immunity and parasites of both a native and an invasive population. 

Moreover, it was aimed to combine existing hypotheses with the role of newly acquired 

parasites in the invasive range. Furthermore, in chapter 4, antibody seroprevalence 

against selected viruses and prevalence of selected bacteria in the invasive population of 



GENERAL	INTRODUCTION	

 14 

Egyptian geese were studied to evaluate the role of this species in the transmission and 

maintenance of pathogens relevant for wild birds and poultry.  

 

Avian helminth infections affecting humans– bird schistosomes as an example 
 
Zoonotic diseases originating from waterfowl can be of risk for human health. 

Predominantly viral and bacterial infectious agents have been demonstrated to be 

transmitted from waterfowl to humans sometimes inducing severe clinical symptoms 

(Peiris et al. 2007; Benskin et al. 2009). One of the most intensively studied viral disease 

of this kind is the avian influenza virus, where waterfowl species function as reservoir 

hosts. These viruses can also be transmitted to humans and can result in severe symptoms 

in patients and occasionally death (Peiris et al. 2007).  

Also avian helminth parasites can impact human health. Especially trematodes 

from the Schistosomatidae family, including bird schistosomes can cause diseases in 

humans (Kolárová et al. 2010; Soldánová et al. 2013). Human schistosomes of the genus 

Schistosoma (e.g. Schistosoma mansoni, Schistosoma haematobium) are agents of 

schistosomiasis, affecting humans in the subtropics and tropics. However, also in Europe, 

bird schistosomes of the genus Trichobilharzia, which cause trichobilharziosis in various 

bird species – especially species of the family Anatidae – with pathogenesis comparable 

to human schistosomiasis (Wojcinski et al. 1987), can affect human health. Cercaria of 

bird schistosomes may induce allergic dermatitis in humans (“swimmers itch”), which 

occurs after repeated cercaria penetration of the skin of sensitized individuals (Cort 

1928). Humans engaged in recreational water activities (e.g. swimming, etc.) are most 

likely to be exposed to these cercariae (Chamot et al. 1998). “Swimmers itch” occurs 

worldwide with the exception of Antarctica (Horák et al. 2002) and is regarded as a re-

emerging disease in Europe (Horák and Kolářová 2011; Soldánová et al. 2013).  

 Due to their aquatic habitat, waterfowl of the family Anatidae are most likely the 

main reservoir species of bird schistosomes. However, only a few studies have examined 

the prevalence of neural bird schistosomes in waterfowl from Europe (Rudolfová et al. 

2002, 2007; Jouet et al. 2008) and so far, T. regenti was the only neural bird schistosome 

species described in European birds. In chapter 3 neural bird schistosome species 

prevalence in mallards from German freshwaters was studied.  
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Study species 
 
Among vertebrates, water birds of the family Anatidae (ducks, geese and swans) are 

characteristic species of freshwater habitats, which have been shown to be affected by 

habitat pollution caused by factors such as lead intoxication (Birkhead and Perrins 1985; 

Guitart et al. 1994; Mateo et al. 1997, 1998; Kelly and Kelly 2004; Degernes et al. 2006; 

Mateo 2009; Binkowski et al. 2013; Ferreyra et al. 2014, 2015). Additionally, birds of the 

family Anatidae form one of the six major groups of invasive birds and were mainly 

introduced for hunting and exhibition purpose (Duncan et al. 2003).  

Out of the family Anatidae, the mallard (Anas platyrhynchos) as the most common 

native breeding duck species and the Egyptian goose (Alopochen aegyptiacus) as one of 

the most successful invasive goose species in Europe (Gedeon et al. 2015) were chosen as 

study species. In Germany, both species share breeding, roosting and molting habitats. 

Additionally, both can be considered as synanthropic species, which often occur in 

anthropogenic impacted habitats in Germany.  

 
Mallard (Anas platyrhynchos) 
 
The mallard is the most common breeding duck species in Europe (Gedeon et al. 2015) 

and almost all races of the domestic duck are descended from the mallard (Herre and 

Röhrs 1990). Wild mallards are highly flexible in breeding habitat choice, which includes 

almost all freshwater water habitat types in Germany including highly anthropogenic 

impacted environments. The long-term population trend of breeding mallards in Germany 

is considered to be stable although it fluctuated in recent decades (Gedeon et al. 2015). 

European mallards are partial migratory. Recoveries of ringed individuals show that the 

autumn and winter population is composed of both German breeding birds and animals 

from mainly North-east and Eastern Europe (Bairlein, Dierschke, and Dierschke 2014).  
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Figure 2: Male (back) and female (front) mallard (Picture: Susanne Auls) 

 

Mallard populations are impacted by hunting and its indirect effects of 

environmental lead pollution. The mallard is the most heavily hunted game duck in 

Germany (Deutscher Jagdverband e.V. 2018) and a general intake of lead from the 

environment in mallards leading to chronic lead intoxication is likely. Intake from the 

environment can occur via contamination of the sediments with old ammunition and other 

anthropogenic lead pollution of aquatic habitats. Furthermore, the mallard is a particularly 

suitable model species to study lead effects as the species can be immunosuppressed by 

chronic lead intake (Vallverdú-Coll et al. 2016). Moreover, mallards harbor a variety of 

parasitic helminth species belonging to all major helminth classes including bird 

schistosomes (Boch and Schneidawind 1988). 

 

Egyptian goose (Alopochen aegyptiacus) 

 
European neozootic Egyptian geese escaped from captivity in the late 19th century and 

became established as breeding population since the 1970s. Over the last decades, 

Egyptian geese in central Europe show rapid population growth (Wahl et al. 2011). In 

Germany, the population increased more than 30-fold over the last 15 years from 250-300 

breeding pairs in 1999 to at least 8,000 pairs in 2013 (Arnold et al. 2013; Gedeon et al. 

2015). Thus, among birds, the Egyptian goose is one of the most successful neozootic 

species to Europe (Bauer and Woog 2008). Moreover, in 2017 the Egyptian goose 



GENERAL	INTRODUCTION	

 17 

became listed as invasive species in Germany according to “EU Regulation No 

1143/2014 on the prevention and management of the introduction and spread of invasive 

alien species”. This EU regulation “sets out rules to prevent, minimize and mitigate the 

adverse impact on biodiversity of the introduction and spread … of invasive alien 

species” (Article 1) including the need for a scientific risk assessment (Nehring and 

Skowronek 2017). 

 

 
Figure 3: Male (right) and female (left) Egyptian goose (Picture Manuela Merling de Chapa) 

 

European Egyptian geese occur in a variety of freshwater habitats (Dietzen et al. 

2015), often come into close contact with humans and frequently use anthropogenic 

structures (e.g. buildings, bridges, roofs) for nesting. Additionally, they often share their 

habitats with mallards, which they usually dominate by aggressive behavior (personal 

observations). Especially the Rhine and Mosel area (50.4°N, 7.6°E), which was chosen 

for field work, is a favored habitat in Germany. Here, Egyptian geese often use tutored 

lawns (e.g. turfs, parks) for grazing, where they are frequently fed with bred by humans. 

Those birds have rather low fear of humans and lawns are often riddled with their feces 

(personal observations). Thus, if Egyptian geese carry zoonotic infectious agents, 

pathogen transmission to humans is quite possible. 

In their native range in Africa, Egyptian geese are hosts of parasite species from 

all major parasitic classes (trematodes, cestodes, nematodes, acanthocephalans) 

(Alexander and McLaughlin 1997). Additionally, they have been reported to carry avian 
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influenza A virus and avian avulavirus 3 (Shihmanter et al. 1998; Pfitzer et al. 2000; 

Thompson et al. 2008). Regarding avian influenza A virus, they were described as 

excellent sentinels having the highest total risk score compared to 15 other anatid species 

(regarding: range, abundance, mobility, shared roosts, mixed flocks, foraging and 

anthropogenic association) (Cumming et al. 2008; Abolnik et al. 2010). However, the 

epidemiological role of Egyptian geese in their invasive range in Europe is largely 

unknown.  

Compared to its native range, the Egyptian goose faces fewer predators in novel 

European habitats (Gyimesi and Lensink 2010). Therefore, its population size can be 

expected to continuously increase in the next decades, raising the importance of gaining 

knowledge on the underlying mechanisms of their invasion success, their health status 

and on infectious agents and relevant pathogens they may carry. 
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CHAPTER 1    Chronic lead intoxication decreases 
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Abstract 

 

Several related hypotheses have been formulated to explain and understand the success of 

invasive species. Often, immunity and parasites have been linked to invasion success. While 

most of the related hypotheses are supported by empirical studies, there are contradictory results 

for some species. In many cases, hypotheses have been tailored for certain simplified scenarios. 

Here, we propose a new hypothesis (the Immunological Plasticity Hypothesis) which can 

explain contradictory findings and help to understand the role of parasites and immunity during 

vertebrate invasion. This hypothesis states that immune plasticity enables invaders to reduce 

the overall physiological cost of immunity while maintaining the ability to efficiently defend 

against novel parasites. Comparing a broad spectrum of immune effectors and parasite 

prevalences in an invasive and a native Egyptian goose population we find support for our 

hypothesis and discuss the implications for studying immunity and parasite infection during 

invasion processes. 
 

Introduction 

 

Invasive species are major threats to global biodiversity (Lövei 1997; McGeoch et al. 2010). 

Moreover, they may affect animal and public health by playing important epidemiological roles 

in spreading and maintaining several micro- and macro-parasites (from here on termed 

‘parasites’) (Strauss, White, and Boots 2012). With increasing globalisation and biodiversity 

loss, studying the underlying mechanisms which promote species to become invasive, is 

essential for risk assessment, species conservation efforts and public health (Pyšek and 

Richardson 2010). 

Although, the introduction of exotic, neozootic species to novel habitats is common, 

only few become true invaders. After introduction, neozootic species need to become 

established and spread to successfully invade a new region (Duncan, Blackburn, and Sol 2003). 

Environmental factors, available resources and natural enemies (i.e. predators and parasites) are 

important factors determining the population growth rate and invasion success of such species 

(Shea and Chesson 2002). Resources are typically limited and must be allocated between 

different life history traits or stages, such as individual growth, dispersion, reproduction and 

immunity (Sheldon and Verhulst 1996; van der Most et al. 2011). Allocating resources from 

immunity to other physiological processes, such as reproduction, has been suggested to increase 

invasion success (Lee and Klasing 2004).  
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Allocating resources away from immunity is especially beneficial when parasite burden 

is low. According to the “Enemy Release Hypothesis” (ERH) invading hosts show reduced 

parasite burdens by escaping the parasites in their native range when these are absent in the new 

range (Torchin et al. 2003). The ERH has support from studies on vertebrates including 

different bird species (Shwartz et al. 2009; Lima et al. 2010; Marzal et al. 2011; Valente et al. 

2014; Clark et al. 2015; Ellis et al. 2017; Keogh et al. 2017; Diagne et al. 2016; Torchin et al. 

2003). Generally, both parasite species richness and prevalence have been found to be lower in 

invasive than in native populations because specialist enemies are absent in the new region and 

host switching by specialist parasites of native species is rare (Keane and Crawley 2002; 

Torchin et al. 2003).  

Based on the ERH, the “Evolution of Increased Competitive Ability Hypothesis” 

(EICA) states that invasive plants that escape from parasites can reduce the investment in 

defence mechanisms and thereby allocate more energetic resources to reproduction and 

dispersal (Blossey and Notzold 1995). Lee and Klasing (2004) refined this hypothesis (revised-

EICA) focusing on the vertebrate immune system. They suggested that successful vertebrate 

invaders are more likely to decrease investment into energetically costly immune defences and 

compensate with immunity that incurs less energetic and pathological costs. Thus, down 

regulated inflammatory responses which are costly might lead to an increase in less costly 

responses (e.g. antibody-mediated immunity) (Lee and Klasing 2004). 

In contrast to the revised-EICA, Cornet et al. (2016) suggest that newly acquired local 

parasites might induce an equivalent immune response in invasive and native populations. The 

authors show that only a subset of studies on invasive vertebrates support the revised-EICA, 

whereas others could not find evidence supporting the revised-EICA hypothesis. In a common 

garden experiment, Keogh et al. (2017) showed that invasive shore crabs (Hemigrapsus 

sanguineus) are less infected with rhizocephalan parasites than native crabs but at the same time 

more susceptible to experimental infection with these parasites. This indicates that reducing 

immune investment might increase the risk of getting infected by new parasites for invasive 

species. Also, Brown and Shine (2014) suggest that trade-offs between different immune 

effectors are more important for invasive species than the general downregulation of costly 

traits. Moreover, Møller and Cassey (2004) propose that invasive bird species with strong 

immune response towards novel parasites are potentially more likely to become successful 

invaders. Thus, several studies indicate that the revised-EICA might underestimate the impact 

of novel parasites on invasive populations.  
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The inconsistencies are addressed here by a new hypothesis that combines (1) the 

existing concepts underlying the enemy release and reduced immune investment in invasive 

populations with (2) the ability to defend against novel parasites in a new range. Our hypothesis 

posits that plasticity of immunity as opposed to generally reduced investment in immune 

function provides invading species with the necessary flexibility to colonize novel 

environments. Plasticity of immunity could enable invaders to balance reduced immune 

investment against their original parasites with increased defence against novel parasites. Thus, 

individuals which do not face novel parasites will reduce their immune investment, whereas 

individuals who face novel parasites will be able to increase the appropriate immune defense. 

Accordingly, we name this hypothesis “Immunological Plasticity Hypothesis” (IPH). 

Depending on the immune effector, its main role in defence against parasites, and the 

stage of the invasion process we propose three different scenarios (Figure 1 b-d). If the enemy 

release effect is dominant (e.g. early stages of invasion; invasion front), immune investment 

would be down-regulated as suggested by the revised-EICA hypothesis (Figure 1b). In this case, 

low parasite prevalence and reduced overall costs of immunity can be expected. After 

introduction, individuals of invasive populations would increasingly face new parasites. 

Invasive animals must provide effective defences against these novel parasites. Here, low 

prevalence for some and higher prevalence for other parasite species (more heterogeneous than 

in the early stages) on a population level are likely. Thus, some individuals must be able to 

defend against the new parasites requiring higher immune investment than native individuals 

(Møller and Cassey 2004) whereas others may still invest less in immunity compared to their 

native relatives. Plasticity of immunity would be most prominent during this time and 

accordingly we would expect an increased variance in immune measures (Figure 1c). In later 

phases, prevalence of parasites might increase further and thus, defence against new parasites 

must increase. Immune effector levels would increase due to increasing need to defend against 

new parasites (Figure 1d).  
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Figure 1: Predictive changes of the means and variances of immune effectors between native 
(a) and invasive (b-d) populations; (b) decrease in mean according to the “Enemy Release 
Hypothesis “ (ERH) and “revised- Evolution of Increased Competitive Ability Hypothesis” 
(revised-EICA), (c) increase in variance if the effect of enemy release allows decreasing 
investment into immunity but defence against new parasites must increase as new parasites 
affect the hosts, (d) the effect of increased investment to defend against new parasites is stronger 
than the enemy release effect. 
 

Based on the IPH, the prediction was that the differences in mean and variance between 

immune effectors of native and invasive Egyptian geese would depend on the specific pattern 

of loss and gain of parasites. If only parasite loss is observed, we predict a decrease in the means 

of high cost and a potential increase in low cost immune effectors as shown in Fig. 1b. If the 

invasive population is infected with new parasites, an increase of variance in immune effectors 

as in Fig 1c would be predicted. After having successfully established (later phase of invasion), 

mean values of specific immune effectors needed to defend against those new parasites can be 

expected to stay high (Fig 1d). To assess potentially congruent patterns, parasite communities 

and mean and variance of immune effectors of a native and an invasive population of the 

Egyptian goose (Alopochen aegyptiacus) were investigated. The Egyptian goose is one of the 

most successful invasive bird species in Europe, whose population continues to increase (Bauer 

and Woog 2008; Gyimesi and Lensink 2010) and which has been listed as an invasive species 

in Germany according to “EU Regulation No 1143/2014 on the prevention and management of 



CHAPTER	2	
	 	

 44 

the introduction and spread of invasive alien species” and the BfN script 47 in 2017 (Nehring 

and Skowronek 2017).  

 

Material and Methods 

 

Sampling: 

Parasite prevalence and immunity of Egyptian geese from a native population in Namibia were 

investigated and compared to those of a currently spreading invasive population of the same 

species in Germany. In both regions, geese were sampled during ringing procedures (live 

trapped) or dissected after hunting (necropsy).  

Live trapping 

Twenty-one Egyptian geese (9 male, 12 female) were live trapped in Namibia (22.35°S, 

17.05°E) (native range) in February 2016. Additionally, data from a subset of 110 adult 

Egyptian geese (65 male, 45 female) investigated by Prüter et al. (2018a) were included in this 

comparative study. German geese were sampled in the Rhine and Mosel areas (50.4°N, 7.6°E) 

(invasive range) in 2015 (n=78) and 2016 (n=32) in different months (supplementary data Table 

S1). Sex and reproductive status were recorded. Reproductive status was defined as breeding 

(e.g. guiding gosling, showing territorial behavior with a partner, having an egg-laying active 

cloaca) or non-breeding (e.g. not fulfilling criteria of breeding and/or being part of a non-

family-flock). All Namibian birds were non-breeding individuals. Blood was drawn from the 

vena metatarsalia plantaris superficialis using needles with a diameter of 0.06 mm for males 

and 0.04 mm for females. A fresh blood smear was prepared at capture and air dried. Blood 

samples kept at cool were centrifuged and sera were frozen in liquid nitrogen within eight hours 

after blood draw. Pharyngeal swabs were collected using sterile cotton swabs. Sera, blood cell 

pellets and pharyngeal swabs were kept frozen at -80°C till further analysis. Sampling in 

Germany was authorized by the Landesuntersuchungsamt Rheinland-Pfalz (G 15-20-005) and 

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV) (84-

08.04.2015.A266). Permission to collect samples in Namibia was granted to GM and HK by 

the Ministry of Environment and Tourism (MET). Permission to export sample material from 

Namibia was granted by a MET export permit (No. 107513), and samples were transported to 

Germany in compliance with the Nagoya Protocol on Access to Genetic Resources. 

Necropsy 

Additionally to live trapping, twenty-six free ranging Egyptian geese (17 male, 9 female) 

hunted during the autumn/winter season 2014/2015 and 2015/2016 in the North and West of 



CHAPTER	2	

 45 

Germany and twenty-seven Egyptian geese (11 male, 16 female), which were shot in February 

2016 during regular pest control in Central Namibia were dissected. One of twenty-seven was 

live trapped and sampled before death and is thus included in both groups (live trapped and 

necropsy). Geese from Germany were kept frozen at -20°C after hunting until further analysis. 

Namibian geese were dissected immediately post mortem. During necropsy, ectoparasites, 

intestinal helminthes and nasal leeches were collected. Additionally, pharyngeal swabs were 

taken for molecular analyses.  

 

Determination of parasites: 

Both macro-parasites (ectoparasites, nasal leeches (Euhirundidae), intestinal helminthes) and 

selected micro-parasites (blood parasites (Haematozoa), bacteria, viruses) of Egyptian geese 

from the two populations were determined. Hereafter we use the term “parasites” combining 

macro- and micro-parasites and only explicitly distinguish between the type of parasites when 

differences can be expected and/or occur.  

During necropsy, wing and breast feathers were macroscopically checked for the presence of 

ectoparasites. The upper beak was cut open and macroscopically investigated for the presence 

of nasal leeches. Intestinal helminthes were extracted from the intestine of the birds and were 

determined to the family level based on morphology. Additionally, blood smears of all live-

trapped animals were investigated for the presence of blood parasites during immunological 

cell counts (Doster and Goater 1997).  

 To compare with bacterial prevalence of adult German Egyptian geese (included in 

Prüter et al. 2018a) (red shaded in Table 2)), the Namibian birds were screened for DNA from 

Mycoplasma spp. and Riemerella (R.) anatipestifer using conventional 16S rRNA-based PCR 

assays as described by Prüter et al. (2018a). To verify the specificity of the Mycoplasma PCR 

assay, products with a clear band were further investigated by sequence analysis, again 

following the procedure described by Prüter et al. (2018a). Only samples with a clear 

sequencing result were assessed as positive.  

Serological methods were used to investigate the seroprevalence of antibodies (Ab) 

against Influenza A virus (IAV), Avian avulavirus 1 (AAvV-1) and West Nile virus (WNV). 

For the detection of Ab against IAV, a commercial competitive enzyme linked immunosorbent 

assay (ELISA) was used following the manufacturer instructions (ID.vet, Grabels, France, 

Influenza A Antibody competition, FLUACA ver 0917DE).  

A commercial competitive ELISA for detection of Ab against AAvV-1 (former Avian 

paramyxovirus 1; syn. Newcastle disease virus) was used and evaluated according to the 
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manufacturer protocol (ID.vet, Grabels, France, Newcastle Disease Competition, NDVC ver 

0913 DE). Additionally, sera were tested applying a commercial competitive ELISA for Ab 

against Flaviviridae including WNV following the manufacture protocol (ID.vet, West Nile 

Competition, WNC ver 1014-1P DE).  

Immunological assays: 

Due to the complexity of the immune system, several eco-immunological tests were used to 

quantify both the cellular and humoral parts of the acquired and innate immune responses of 

Egyptian geese (Demas et al. 2011). Most of the methods are not species specific and have been 

used in a wide variety of free-living avian species, including different waterfowl (Matson et al. 

2006; Giraudeau et al. 2010; Bourgeon et al. 2010). We quantified the levels of different 

humoral (natural antibodies, complement, lysozyme and haptoglobin) and cellular (monoctyes, 

heterophils, eosinophils and basophils) effectors of innate immunity. For adaptive immunity we 

measured the total immunoglobulin Y (IgY) concentration and the number of lymphocytes 

(Matson et al. 2006). Sample sizes (n) for each assay were dependent on the total amount of 

serum available from each individual and therefore differ between the tests (Table 1). 

 
Table 1: Total sample sizes (n), sample sizes grouped by sex (n ♂, n ♀) and year of sampling of 
blood and serum samples from Namibian (native) and German (invasive) Egyptian geese 
(Alopochen aegyptiacus) for each immunological effector grouped by the costs of immunity 
(low costs vs. high cost according to (Klasing 2004; Lee and Klasing 2004)) 

Immunological effectors Invasive 2015 
(Germany) 

Invasive 2016 
(Germany) 

Native 2016 
(Namibia) 

Low cost n   n ♂, n ♀ n   n ♂, n ♀ n   n ♂, n ♀ 

IgY 74 44♂, 30♀ 26 16♂, 10♀ 21 9♂, 12♀ 

Lysozyme 76 43♂, 33♀ 30 18♂, 12♀ 20 9♂, 11♀ 

Natural antibodies, complement 75 43♂, 32♀ 24 16♂,8♀ 21 9♂, 12♀ 

High cost n   Sex ratio   n   Sex ratio   n   Sex ratio   

Granulocytes (basophil, eosinophil,  
heterophil), Total leucocytes,  
Lymphocytes, Monocytes 77 45♂, 32♀ 31 19♂, 12♀ 21 9♂, 12♀ 

Haptoglobin 72 42♂, 30♀ 23 15♂, 8♀ 21 9♂, 12♀ 
 

Immunoglobulin Y 

Total IgY, the avian equivalent to mammalian IgG, was assessed using a sensitive ELISA with 

commercial anti-chicken antibodies (Martinez et al. 2003; Bourgeon et al. 2010). 96-well high-

binding ELISA plates (82.1581.200, Sarstedt) were coated with 100 µl of diluted serum sample 

(2 samples per bird 1:16000 diluted in carbonate–bicarbonate buffer) and incubated first for
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1 h at 37°C and then overnight at 4°C. After incubation, the plates were washed with a 200 µl 

solution of phosphate buffer saline and PBS–Tween, before 100 µl of a solution of 1% gelatine 

in PBS–Tween was added. Plates were then incubated at 37°C for 1 h, washed with PBS–Tween 

and 100 µl of polyclonal rabbit anti-chicken IgY conjugated with peroxidase (A-9046, Sigma) 

at 1:250 (v/v) was added. Following 2 h incubation at 37°C, the plates were washed again with 

PBS–Tween three times. After washing, 100 µl of revealing solution [peroxide diluted 1:1000 

in ABTS (2,20-azino-bis- (3-ethylbenzthiazoline-6-sulphonic acid))] was added, and the plates 

were incubated for 1 h at 37°C. The final absorbance was measured at 405 nm using a 

photometric microplate reader (µQuant Microplate Spectrophotometer, Biotek) and 

subsequently defined as total serum IgY levels (Bourgeon and Raclot 2006). 

Lysozyme  

To measure lysozyme concentration in serum, we used the lysoplate assay (Giraudeau et al. 

2010): 25 µl serum were inoculated in the test holes of a 1% Noble agar gel (A5431, Sigma) 

containing 50 mg/100 ml lyophilized Micrococcus lysodeikticus (M3770, Sigma), a bacteria 

which is particularly sensitive to lysozyme concentration. Crystalline hen egg white lysozyme 

(L6876, Sigma) (concentration: 1, 1.25, 2.5, 5, 6.25, 10, 12.5, 20 and 25 µg/ml) was used to 

prepare a standard curve for each plate. Plates were incubated at room temperature (25-27°C) 

for 20 h. During this period, as a result of bacterial lysis, a clear zone developed in the area of 

the gel surrounding the sample inoculation site. The diameters of the cleared zones are 

proportional to the log of the lysozyme concentration. This area was measured three times 

digitally using the software ImageJ (version 1.48, http://imagej.nih.gov/ij/) and the mean 

was converted to a semi-logarithmic plot into hen egg lysozyme equivalents (HEL equivalents, 

expressed in µg/mL) according to the standard curve (Rowe et al. 2013). 

Haemolysis–haemagglutination assay  

The levels of the natural antibodies and complement were assessed by using a haemolysis–

haemagglutination assay as described by (Matson, Ricklefs, and Klasing 2005) adjusted to the 

limited volume of serum. After pipetting 15 µl of serum into the first two columns of a U-

shaped 96-well microtitre plate, 15 µl sterile PBS were added to columns 2-12. The content of 

the second column wells was serially diluted (1:2) until the 11th column, resulting in a dilution 

series for each sample from 1/1 to 1/1024. The last column of the plate was used as negative 

controls, containing PBS only. We then added 15 µl of 1% rabbit red blood cells (supplied as 

50% whole blood, 50% Alsever’s solution, Envigo) suspension to all wells and incubated at 

37°C for 90 min. After incubation, in order to increase the visualisation of agglutination, the 

plates were tilted at a 45° angle at room temperature. Agglutination and lysis, which reflect the 
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activity of the natural antibodies and the interaction between these antibodies and complement 

(Matson, Ricklefs, and Klasing 2005; Pap et al. 2010), was recorded after 20 and 90 min, 

respectively. Haemagglutination is characterised by the appearance of clumped red blood cells, 

as a result of antibodies binding multiple antigens, while during haemolysis, the red blood cells 

are destroyed. Titres of the natural antibodies and complement were given as the log2 of the 

reciprocal of the highest dilution of serum showing positive haemagglutination or lysis, 

respectively (Matson, Ricklefs, and Klasing 2005; Pap et al. 2015). 

White blood cell counts 

To count leucocytes, blood smears were prepared, air-dried and stained using Giemsa- and 

May-Grünwald staining. Smears were examined at 1,000×magnification with oil immersion 

and the relative number of different types of leucocytes was assessed by counting 100 

leucocytes. The number of white blood cells of different types was expressed per 104 

erythrocytes (Pap et al. 2015). 

Haptoglobin 

We measured haptoglobin concentrations with a commercial kit (TP801, Tri-Delta Diagnostics, 

Inc.) following the instructions of the manufacturer. Haptoglobin concentrations (mg/ml) in 

undiluted serum samples were calculated according to the standard curve on each plate (Matson 

et al. 2006). 

 

Statistical analyses: 

Parasite prevalence 

To investigate potential differences in the prevalence of parasites between native and invasive 

Egyptian geese, we used Fisher’s exact tests.  

Immunity 

The means and variances of the different immune effectors were compared between the 

invasive and native Egyptian geese populations. To this end, we used linear mixed-effects 

models (LMMs). These models typically assume that the response variable is a function of a 

linear combination of some predictor variables, random effects, and a normally and 

independently distributed error. Importantly, the variance of this error (the so-called residual 

variance) is usually assumed to be constant. Thus, the estimated effects of the predictors only 

describe changes in the mean of the response variable, but not to the variance around that mean. 

Here, models were used in which the variance was allowed to be a linear function of some 

predictors. Thus, we were able to estimate simultaneously the effect of predictors upon the 
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variation in the mean of the response variable and also in the residual variation around that 

mean. 

Different immune effectors were used as response variables (Table 1). As predictors for the 

mean sex (male vs. female), reproductive status (breeding vs. non-breeding) and invasion status 

(native vs. invasive) were included as fixed effects and month of sampling as a random effect. 

As predictors for the variance, we included invasion status (native vs. invasive) as the single 

predictor, which allowed us to test our prediction that the variance in immune effectors is higher 

among invasive compared to native individuals. 

Some of the immune effectors were transformed (see tables supplementary data S2, S3, S4) to 

ensure normality of residuals. For haptoglobin we were not able to perform a transformation 

that ensured normality, because of the high proportion of values below the detection threshold. 

To account for this, we performed a general linear mixed model (GLMM) with a binominal 

error distribution and with a binary response variable (haptoglobin being either above or below 

the detection threshold). Thus, for haptoglobin we were only able to test for a change in mean 

but not for a change in variance. Total leucocytes were analysed followed by a separate analysis 

of differential white blood cell counts. 

The LMMs and GLMMs were implemented using the R package glmmTMB version 0.2.0 

(Brooks et al. 2017). Potential collinearity of predictors was tested by calculating variance 

inflation factors using the R package car version 2.1-6 (Fox and Weisberg 2011). All statistical 

analyses were performed using R version 3.3.2 (R Core Team 2016). 

 

Results 

 

Parasite prevalence: 

Blood parasites and all groups of macro-parasites (ectoparasites, nasal leeches, intestinal 

cestodes and trematodes), except intestinal nematodes, were found at lower prevalence in the 

invasive than in the native population of Egyptian geese. However, none of the observed trends 

reached statistical significance (Table 2). DNA of the bacterium R. anatipestifer, which has a 

prevalence of 67.0% in adult invasive Egyptian geese from Germany (Prüter et al. 2018a) was 

not detected in the pharynx of native geese from Namibia. This difference in the prevalence 

was highly significant for R. anatipestifer (Table 2). Mycoplasma DNA., which was not 

detected in the German geese (Prüter et al. 2018a), was detected in the pharynx of two 

individuals from Namibia. However, the results did not reach statistical significance (Table 2). 

Seroprevalence of selected viruses (IAV, AAvV and WNV) were all lower in geese from the 
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invasive population but this effect was only statistically significant for antibodies against IAV 

(Table 2). 

Immunity: 

Males showed significantly higher levels of total leucocytes, haptoglobin abundance and 

lymphocytes than females. Total leucocytes and lymphocytes were significantly higher in birds 

that were in breeding status than in non-breeding individuals. No statistically significant effects 

on the other immune effectors were associated with sex or reproductive status (supplementary 

data Table S2, S3 and S4). 

Differences in the mean immune function measures: 

Of the four assays measuring ‘low cost’ immune effectors, only mean haemolysis concentration 

was significantly higher in the invasive population (Figure 2). The mean of total leucocytes 

(‘high cost’ immune effector) was not significantly different between the two study populations 

(Figure 2). Detailed analyses of the mean of differential white blood cells demonstrated 

significantly higher mean levels of heterophils and lymphocytes in the invasive population, 

whereas mean eosinophil concentration was significantly lower in this group. No statistically 

significant differences in mean monocytes and mean basophil numbers between the two groups 

were observed. In contrast, haptoglobin concentration (a ‘high cost’ immune effector) was 

significantly higher in abundance in the invasive (65%) than in the native (7.3%) population 

(Figure 3). 

Differences in variance in immune function measures: 

Variance of all ‘low cost’ immune effectors was significantly higher in the invasive population 

(Figure 2). The variance of total leucocytes did not significantly differ between the two groups 

(Figure 2). The variance in the concentration of eosionophils, heterophils and monocytes was 

significantly higher in the invasive geese. Variance in basophils and lymphocyte counts did not 

significantly differ between the groups (Figure 4).  
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Table 2: Results of the parasite screening and serology of Egyptian geese from Namibia and Germany (Prüter et al. 2018a). Total sample sizes (n), 
number of infected and non-infected individuals (Ratio) and prevalences (%) of macro parasites, bacteria and seroprevalences against selected 
viruses in the native Namibian and invasive German population of Egyptian geese (Alopochen aegyptiacus); Trend: ↓ higher prevalence in the native than 
in the invasive population; ↑ higher prevalence in the invasive than in the native population; Outcome of Fisher’s exact test comparing prevalences of the two 
groups (p -value). 

  
Namibia Germany 

 
Fisher test 

Parasitology: Group n  Ratio Prevalence n Ratio Prevalence Trend p 

 
Ectoparasites 27 11/16 40.74 26 3/23 11.54 ↓ 0.08 

 
Euhirundidae 27 1/26 3.85 26 0/26 0 ↓ 1 

 
Intestinal helminthes 27 6/21 22.2 26 4/22 15.38 ↓ 0.74 

 
Cestoda 27 2/25 7.4 26 1/25 3.8 ↓ 1 

 
Nematoda 27 0/27 0 26 1/25 3.8 ↑ 1 

 
Trematoda 27 4/23 14.8 26 1/25 3.8 ↓ 0.36 

 
Heamatozoa 21 1/20 4.76 110 0/110 0 ↓ 0.17 

Bacteria: Target genes n  Ratio Prevalence n Ratio Prevalence Trend p 

 
Riemerella anatipestifer 16S rRNA gene 47 0/47 0 94 63/31 67.02 ↑ <0.001 

 
Mycoplasma spp. 16S rRNA gene 47 2/45 4.44 94 0/94 0 ↓ 0.12 

Serology: Antigen n  Ratio Prevalence n Ratio Prevalence Trend p 

 
IAV 21 9/12 42.86 105 9/96 8.57 ↓ 0.003 

 
AAvV-1 20 2/18 10 102 4/98 3.92 ↓ 0.27 

 
WNV 13 1/12 7.69 56 0/56 0 ↓ 0.2 

 
Abbreviations: IAV= Influenza A virus; AAvV-1= Avian avulavirus 1; WNV= West Nile virus 

51
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Figure 2: Differences in distributions of low cost (a-d) and high cost (e) immune measures 
between native and invasive Egyptian geese are shown; red= native; blue=invasive; P = p-
values for the effects of population (native vs. invasive) on the mean (Pmean) and variance 
(Pvariance) of the respective immune measure. 
 
 

 
Figure 3: A barplot for the differences in haptoglobin abundance between native and invasive 
Egyptian geese is shown; red=native, blue=invasive; p-value for the effects of population 
(native vs. invasive) on the mean haptoglobin from the binomial distribution model. (It was not 
possible to fit a Gaussion model for haptoglobin concentration. Thus, the assessment of the 
difference in variance was not possible). 
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Figure 4: Differences in distributions of the differential white blood cells (a-e) between native 
and invasive Egyptian geese are shown; red= native; blue=invasive; P = p-values for the effects 
of population (native vs. invasive) on the mean (Pmean) and variance (Pvariance) of the respective 
immune measure. 
 

 

Discussion 

 

Our results support the immune plasticity hypothesis (IPH). All but one of the studied parasite’s 

prevalence or seroprevalence decreased when compared to native and invasive populations of 

Egyptian geese. Only the bacterium R. anatipestifer showed a significant increase in the 

invasive population, suggesting that this population faces novel pathogens during invasion. 

Thus, we predicted an increased variance of immune effectors, especially those of relevance 

for the defence against this novel pathogen, in the invasive compared to the native population 

(Figure 1c). As expected, the variance for six out of ten immune effectors in the invasive 

population of Egyptian geese was higher than in the native population. Moreover, five out of 

eleven immune effectors had higher mean values in the invasive population when compared to 

their native conspecifics. Most of these immune effectors are considered energetically costly 

(Lee and Klasing 2004), which is inconsistent with the predictions of the revised-EICA 

hypothesis. Still, the variance results are consistent with the predictions arising from the IPH 

demonstrating that existing hypotheses insufficiently covered the complex interplay of loss and 

gain of parasites in invasive populations. 

Most studies of invasive vertebrate hosts and their pathogens focus on helminths, 

against which hosts respond with a Th2 response and eosinophils are one of the main immune 
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effectors (Al-Sabi et al. 2013; Romeo et al. 2014; Valente et al. 2014; Diagne et al. 2016). Thus, 

previous tests of the revised-EICA related predictions, which focused mainly on macro-

parasites, might be biased by the pathogens and immune effectors investigated. Here, low mean 

eosinophil granulocytes in invasive geese indicate a lower impact of macro-parasites on the 

immune system than in the native population (consistent with the ERH). However, variance of 

eosinophil granulocytes was significantly higher in the invasive than in the native population. 

The evidence suggests that Egyptian geese did not only lose parasites (ERH) but gained and 

are affected by novel ones. Thus, combining the results of mean and variance of immune marker 

has the potential to detect combined effects in immunological studies (IPH).  

The R. anatipestifer prevalence, which was significantly higher in the invasive geese in 

Germany, indicated that invasive Egyptian geese encounter different pathogens in their new 

environments (Prüter et al. 2018a). R. anatipestifer is a bacterium of relevance for domestic 

ducks and geese, leading to severe clinical symptoms (Hubálek 2004; Hinz et al. 1998). The 

lack of clinical symptoms in the invasive Egyptian geese infected with R. anatipestifer may 

indicate that they are more tolerant than expected (Raberg, Graham, and Read 2009; Cornet et 

al. 2016) or that waterfowl may carry R. anatipestifer as a commensal bacterium (Ryll et al. 

2001; Prüter et al. 2018a). Immune defences effective against micro-parasites, especially 

bacteria (heterophils, lymphocytes, haemolysis) were found to be higher on average in the 

invasive than in the native goose populations. Haptoglobin, which is an energetically costly 

acute phase protein with bacteriostatic function (Matson et al. 2006), was significantly more 

abundant in the invasive than in the native population of Egyptian geese, inconsistent with the 

EICA-related predictions. However, a significantly higher mean value of lymphocytes without 

evidence for higher variance in the invasive population indicate, that bacteria might be 

particularly important pathogens affecting this invasive population. Thus, immune defences 

against bacteria needs to be maintained in the invasive population.  This is consistent with the 

predictions arising from the IPH (Fig. 1d).  

The complexity of the immune system and the high specificity of different immune traits 

towards specific parasites may be more important than previously acknowledged (Morand et 

al. 2015). Furthermore, White and Perkins (2012) suggested that the higher the plasticity of the 

immune system of individuals of a founder population, the more likely the species becomes a 

successful invader (pre-selection). Additionally, Ghalambor et al. (2007) hypothesized that the 

period of persistence of invasive species (period after introduction and before rapid population 

growth starts) might be dependent on phenotypic plasticity. Thus, changes in immune 
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investment and immune plasticity in the different stages of invasion are likely (for the different 

phases of invasion see Duncan et al. 2003).  

The Egyptian goose (Alopochen aegyptiacus) is a successful invasive bird species 

having and continuing to spread throughout Western Europe since the mid-20th century 

(Gyimesi and Lensink 2010). The impact of newly acquired pathogens on this population is 

most likely still ongoing and potentially increasing. This might explain why plasticity in 

immunity is prominent. The higher bactericidal investment but less plasticity in bacterial related 

immunity, might indicate that population growth rates can be expected to slow in the future, as 

immune investment increases. After the invasion has progressed further or completed, the 

variance of all effectors could decrease (Figure 1d). Thus, our findings indicate that among-

individual variation in immunity is on average higher in invasive compared to native Egyptian 

geese but that these effects depend on the parasites and therfore differ among immune effectors. 

Compared to mallards (Anas platyrhynchos), a native species to Germany’s avifauna, 

which shares the same habitat with the invasive Egyptian goose population, both native and 

invasive Egyptian geese from this study reveal lower parasite prevalence and load (Prüter et al. 

2018b). Low parasite prevalence in the invasive population might indicate that the Egyptian 

goose is not a suitable host for parasites native to German waterfowl. However, this comparably 

low macro-parasite prevalence and richness in both populations might suggest that the Egyptian 

goose is highly immunocompetent and thus a prime water bird invasive species (Morand et al. 

2015). 

Contradictory effects of invasion on immune function have been also reported in 

amphibians. Immune defences are weaker in invasive cane toads (Rhinella marina) that move 

further distances indicating a trade-off between dispersal and immune investment (Brown and 

Shine 2014). Cane toads on the invasion-front were found to have higher bactericidal and 

phagocytic activity than in more established populations consistent with our observations in 

Egyptian geese (Brown et al. 2015). However, the overall immune investment in cane toads at 

the invasion front was lower compared to established populations (Llewellyn et al. 2012). In 

contrast, Cuban treefrogs (Osteopilus septentrionalis) at the invasion front were found to have 

a reduced bactericidal ability compared to frogs from more established areas (Goetz et al. 2018). 

These contradictory results from amphibians may reflect a complex mechanistic difference in 

immune investment of invading species. We suggest that studying plasticity of the immune 

system during range expansion of theses amphibians might provide further insights into the 

drivers of invasion of those species and might help to explain contradictory findings. Based on 

the IPH we expect that immune plasticity benefits individuals of invasive populations (1) in the 
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early stages of invasion by reducing investment in the immune system and (2) in later stages of 

invasion by providing effective defence against novel pathogens.  

Invasive populations can have higher or lower genetic diversity than their native 

conspecifics (Roman and Darling 2007; Edelaar et al. 2015). Plasticity in immunity might either 

compensate for potentially lower genotypic variation (phenotypic plasticity) of invasive 

populations or for higher genetic diversity. Thus, the higher plasticity in immunity in the 

invasive population of this study may be caused by high phenotypic plasticity or potentially be 

an indicator of increased genetic variation. Studies of the genotypic diversity of the immune 

system (e.g. MHC and other immune genes) (Acevedo-Whitehouse and Cunningham 2006) of 

Egyptian geese from both populations could help to clarify the underlying mechanisms of the 

higher variance in immune effectors between the two populations in this study. 

Intraspecific comparisons (‘bio geographic’ approach), (Roy and Lawson Handley 

2012; Cornet et al. 2016) are essential for studying the IPH as interspecific comparisons of 

immune function are less robust (Matson et al. 2006). Common garden experiments combined 

with immune challenge or infection experiments would help to clarify the susceptibility to 

infection during range expansion of invasive species. Moreover, we recommend reanalysing 

data from studies on the revised-EICA by applying our approach of simultaneously 

investigating changes in mean – and in the variance – of immune markers.  This approach could 

identify drivers of successful invasion and potentially predict population trends for neozootic 

species. 
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Supplementary data 
 
Table S1:  

Month of sampling Status Origin non-breeding breeding 
male female male female 

2015 
April invasive Germany 1 0 7 4 
June invasive Germany 1 1 17 12 
July invasive Germany 3 0 11 11 

October invasive Germany 2 3 2 2 
November invasive Germany 1 0 0 0 

2016 
February native Namibia 9 12 0 0 

June invasive Germany 1 0 12 9 
July invasive Germany 2 0 5 3 

 
 



Table S2: Summary output of the GLMMs to test for differences in the mean (in the conditional model) and variance (in the dispersion model) of 
the respective “low cost” immune effector compared between native and invasive Egyptian geese 

Effect on the mean 
 

Effect on the variance 
Response Predictor (fixed effects) Estimate Std. Error z p 

 
  Estimate Std. Error z p 

IgY 

Intercept 0.75001 0.02141  35.04 <2e-16 *** 
 

Intercept -3.8156   0.1412 -27.025 < 2e-16 *** 
Status 0.04835 0.04357  1.11  0.2671   

 
status -1.0285 0.3457  -2.975 0.00293 ** 

Sex -0.04258 0.02446   -1.74  0.0817 .        reproduction -0.04270 0.04169   -1.02  0.3057       
      

log(Lysozyme) 

Intercept 1.11349 0.07420  15.006 <2e-16 ***  Intercept -1.1904   0.1368  -8.70 < 2e-16 *** 
Status 0.14721  0.16312 0.903 0.367    status -1.2431 0.3462 -3.59 0.00033 *** 
Sex -0.07812  0.08457  -0.924 0.356         reproduction 0.01005 0.15863 0.063  0.949           

Haemagglutination 

Intercept 7.2142   0.1927   37.44 <2e-16 ***  Intercept 0.5771   0.1414 4.080 4.49e-05 *** 
Status -0.5815 0.4062 -1.43  0.1523    status -0.9183 0.3396 -2.704 0.00684 ** 
Sex -0.3684   0.2204  -1.67  0.0947 .     

  
 

 reproduction -0.2368 0.3857 -0.61 0.5393    
  

 
   

Haemolysis 

Intercept 6.16166  0.17711 34.79 <2e-16 ***  Intercept 0.3872  0.1415 2.736 0.00622 ** 
Status -0.72516 0.37448  -1.94 0.0528 .  status -0.7976 0.3407 -2.341 0.01922 * 
Sex -0.03806  0.20527 -0.19  0.8529    

 
 

 
 reproduction -0.42019 0.35082 -1.20 0.2310    
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Table S3: Summary output of the GLMMs to test for differences in the mean and variance of the respective “high cost” immune effector compared 
between native and invasive Egyptian geese 

Effect on the mean 
 

Effect on the variance 
Response Predictor (fixed effects) Estimate Std. Error z p 

 
  Estimate Std. Error z p 

Total leucocytes 

Intercept 85.331 5.928 14.396  <2e-16 ***  Intercept 6.19793  0.13976 44.35 <2e-16 *** 
status -9.760 12.762 -0.765 0.4444    status -0.07186 0.34425 -0.21   0.835   
sex -11.555  3.993 -2.894  0.0038 **        reproduction 16.122  7.078  2.278 0.0227 *    

      

log(haptoglobin binomial) 

Intercept 1.7129  0.4198 4.080 4.5e-05 ***   
  

 
 status -2.0296  0.8368  -2.425 0.0153 *    

  
 

 sex -0.9708 0.4681 -2.074 0.0381 *    
  

 
 reproduction 0.2173  0.7166  0.303 0.7617     
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Table S4: Summary output of the GLMMs to test for differences in the mean and variance of the differential white blood cells compared between 
native and invasive Egyptian geese 

Effect on the mean 
 

Effect on the variance 
Response Predictor (fixed effects) Estimate Std. Error z p 

 
  Estimate Std. Error z p 

basophil  
granulocytes 

Intercept 1.42532 0.10786 13.214  <2e-16 ***  Intercept -0.5348  0.1348 -3.966 7.3e-05 *** 
status 0.11548  0.24031 0.481 0.631   status -0.4880  0.3368  -1.449 0.147  
sex -0.19872  0.13009 -1.528  0.127         reproduction -0.03004 0.21373 -0.141 0.888   

 
 

      

eosinophil  
granulocytes 

Intercept 3.03294 0.24407  12.426 < 2e-16 ***  Intercept 1.1671 0.1350   8.645  < 2e-16 *** 
status 2.76064  0.52452 5.263 1.42e-07 ***  status -1.0498  0.3394 -3.093  0.00198 ** 
sex -0.08153 0.28233 -0.289 0.773    

     reproduction 0.17518 0.50016 0.350 0.726           

sqrt(heterophil  
granulocytes) 

Intercept 3.9632 0.1946  20.362 < 2e-16 *** 
 

Intercept 0.7067 0.1349 5.241 1.6e-07 *** 
status  -1.5726  0.4205 -3.740  0.000184 *** 

 
status -0.9608  0.3371 -2.850  0.00437 **  

sex -0.2066  0.2263 -0.913  0.361127    
 

 
  

 
 reproduction 0.2738  0.3974 0.689  0.490832  

 
 

  
 

   

lymphocytes 

Intercept 39.444  4.819  8.184  2.74e-16 *** 
 

Intercept 5.1786 0.1397  37.07  <2e-16 *** 
status -25.537 10.672 -2.393   0.01672 * 

 
status -0.5684  0.3575   -1.59  0.112  

sex  -8.089  2.351 -3.441  0.00058 *** 
      reproduction 11.680  4.135 2.825 0.00473 ** 
        

log(monocytes) 

Intercept 2.16666 0.20471 10.584 <2e-16 *** 
 

Intercept -0.3884 0.1391  -2.792 0.00523 ** 
status  0.68564   0.43262 1.585 0.113     

 
status -1.0521  0.3607 -2.917 0.00353 ** 

sex -0.04229 0.13565  -0.312   0.755   
 

 
  

 
 reproduction 0.12671  0.24652  0.514  0.607    
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Table S5: Methods of the parasite screening and serology of Egyptian geese from Namibia and Germany. 
Parasitology: Group Transmission mode Method Material 

 
Ectoparasites direct morphology carcasses 

 
Euhirundidae direct morphology carcasses 

 
Intestinal helminthes   morphology carcasses 

 
Cestoda vector morphology carcasses 

 
Nematoda direct morphology carcasses 

 
Trematoda vector morphology carcasses 

 
Heamatozoa vector morphology blood smear 

Bacteria: Target genes Transmission mode Method Material 

 
Riemerella anatipestifer 16S rRNA gene direct PCR pharyngeal swab 

 
Mycoplasma spp. 16S rRNA gene direct PCR pharyngeal swab 

Serology: Antigen Transmission mode Method Material 

 
IAV direct ELISA serum 

 
AAvV-1 direct ELISA serum 

 
WNV vector ELISA serum 

Abbreviations: IAV= Influenza A virus; AAvV-1= Avian avulavirus 1; WNV= West Nile virus; ELISA= Enzyme linked immunosorbent assay; PCR= Polymerase chain reaction 
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GENERAL DISCUSSION 
 

This thesis focuses on two anthropogenic impacted waterfowl species of freshwater 

habitats, the mallard, as the most common native duck species and the Egyptian goose, 

which is currently invading Europe. The anthropogenic driven changes to freshwater 

habitats/ecosystems, which were emphasized were environmental lead pollution (chapter 

1) and the introduction of the Egyptian goose to Europe (chapter 2 and 4). Additionally, 

neural bird schistosomes in mallards from German freshwaters, whose cercaria might 

cause swimmer´s itch, were investigated (chapter 3). 

 

Impact of anthropogenic changes to parasite and host community structures 
 

Using the example of intestinal helminth parasites in mallards, it could be shown that 

anthropogenic induced environmental lead pollution resulting in long term accumulation 

of lead in mallards, is related to significant loss of intestinal helminth species richness and 

infection intensity in mallards (chapter 1). Thus, studying intestinal helminths as 

sentinels for lead pollution in mallards, clearly highlights that lead intoxication not only 

directly affects waterfowl health (as it has been shown by others before) (Sears 1988; 

Degernes et al. 2006; Newth et al. 2013; Martinez-Haro, Green, and Mateo 2011; 

Vallverdú-Coll et al. 2016) but freshwater ecosystem species communities in a more 

complex manner than previously acknowledged. 

Parasite-host systems are coevolved and balanced systems in which the parasites take 

away energetic resources from the host without running the risk to kill the host. External 

influences, which throw this parasite-host system out of balance, might lead to severe 

consequences for the vertebrate host by weakening its immune system and/or affecting its 

parasite lifecycles (Schmid-Hempel 2011). Here, it is shown that environmental lead 

pollution negatively impacts biodiversity indices of intestinal helminth parasites of wild 

mallards.  

Moreover, intestinal helminth parasites may accumulate higher lead dosages than 

the vertebrate host and therefore function as lead sink (Sures et al. 2017). Hence, 

intestinal helminthes might protect their hosts from higher lead dosages. Results of 

chapter 1 indicate that also in mallards, intestinal helminths might function as lead sink. 

Still, lower infection intensities in ducks showing higher lead levels in bones indicate 
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susceptibility towards lead also in those parasite species. Consequently, intestinal 

helminthes, which accumulate lead are presumably threatened by excessive chronic lead 

intake.  

Summarizing, the results of chapter 1 underline the importance of studying 

parasite-host interactions in the frame of anthropogenic changes to the environment. 

Beside the health of vertebrate hosts, parasite biodiversity is a subject of conservation 

concern (Gómez and Nichols 2013). Vice versa, imbalanced parasite-host interactions 

might bare health risks for vertebrate hosts. Hence, it can be recommended to generally 

lower anthropogenic induced environmental pollution to preserve healthy species 

communities in German freshwater habitats. 

Moreover and beside the indirect impact of environmental lead on parasite species 

richness and infection intensity, this thesis shows that mallards from German fresh waters 

show comparably high chronic lead burden (Ferreyra et al. 2014, 2015). This finding 

indicates that lead pollution in German freshwater habitats is potentially still high 

although the use of lead based ammunition for hunting waterfowl is prohibited in most of 

the German federal states (JWMG, n.d.; BayJG 1978; LJG-NRW 1994; NJagdG 2001; 

BbgJagdDV 2004; LJG 2010). Still, due to their partly migratory behavior, lead 

intoxication in mallards could also be caused by high lead burden of freshwater habitats 

in other European countries. Nevertheless, European studies on lead burden of waterfowl 

indicate that the compliance of hunters to use lead-free ammunition only increased after 

enforcement and vigilance of rangers was intensified (Mateo et al., 2013). Since the 

regulation on the use of lead-free ammunition to hunt waterfowl is not consistent within 

Germany, a standardization of law and regular controls could help to lower lead burden in 

freshwater habitats and consequently reduce the risk of species biodiversity losses. 

By studying parasites and immunity of native and invasive Egyptian goose a new 

hypothesis (“Immunological plasticity hypothesis”) was developed, which integrates the 

role of newly acquired pathogens into existing hypotheses on species invasions. In 

support of the novel hypothesis the variance of immune marker is significantly higher in 

the invasive than in the native population of Egyptian goose. Thus, the invasive Egyptian 

goose population in Germany seems to be both able to reduce investment into immunity if 

possible (at low parasite burden) and defend against newly acquired parasites when 

necessary. This flexibility in immune investment might be the fundament of the 

successful invasion of the Egyptian goose to Europe and is potentially a general 

mechanism helping non-native species to become invasive.  
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 Potential threats for native species, poultry and humans 
 
Generally, birds can function as vectors for infectious diseases which can affect livestock 

and are potentially of zoonotic risk. For instance, cercaria of bird schistosomes, including 

T. regenti, whose final hosts are water birds, may cause cercarial dermatitis (swimmer´s 

itch) in humans, which is regarded as a re-emerging disease (Horák and Kolářová 2011; 

Soldánová et al. 2013). Particularly climate change was shown to increase the risk of re-

emerging diseases. Climate change driven changes in behavior traits of migratory birds, 

shifts in seasonal or temperature dependent processes of intermediate hosts (snails) and 

the frequency of transmission and intensity of infection, are potential risk factors 

regarding the dispersal of bird schistosomes to new regions and therefore increases the 

availability in wetland habitats (Horák and Kolárová, 2011).  

In chapter 3, a 21% prevalence of Trichobilharzia regenti, a neural bird 

schistosome, was found in native mallards from German freshwaters. This result is 

consistent with previous studies in water birds, which reported prevalences of T. regenti 

ranging from 24 to 74.5% in different definitive bird hosts (Kolářová, Skirnisson, and 

Horák 1999; Rudolfová, Sitko, and Horák 2002; Jouet et al. 2008). Moreover, 

Bilharziella polonica was detected either between the brain membranes (meninges) and 

the brain, in the spinal cord or in the intestine of 12% of the mallards, which is the first 

description of this species from the birds neural system. The presence of B. polonica in 

the birds neural system indicates that this species has a broader spectrum of target organs 

in the definitive host than previously described and that the spectrum of neural bird 

schistosome species is broader than previously acknowledged. Thus, for B. polonica, 

parasite-host interaction is of higher complexity than previously known, which should be 

further investigated for different definitive host species as well as for potential accidental 

hosts. Monitoring bird schistosomes in vertebrate hosts in the light of anthropogenic 

changes to ecosystems (such as climate change, pollution, species invasion) should be 

considered to increase knowledge on this particular parasite-host system in the view of 

the fact that swimmer´s itch is re-emerging in Europe.  

In chapter 4, it was shown that Egyptian geese are frequent carriers of Riemerella 

anatipestifer and furthermore provided serological evidence of exposure to selected viral 

pathogens of relevance for native birds and poultry. This finding indicates that invasive 

Egyptian goose are involved in native pathogen transmission cycles and therefore might 
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potentially spillover and spillback pathogens to native species and poultry. Additionally, 

in chapter 4, seroprevalence of viral pathogens were compared between Egyptian geese 

and published results from studies on other goose species (Kruckenberg et al. 2011; 

Kistler et al. 2012; Brown et al. 2010; Hlinak et al. 1998; Bradshaw and Trainer 1966; 

Bönner et al. 2003). Reported differences between different goose species are likely 

driven by season or ecological differences between the species. Thus, future research of 

pathogen transmission cycles among wild birds and their epidemiological roles should 

include both the role of native and invasive species in the maintenance and spread of 

pathogens. This will help to assess potential changes to health indices of native species 

(e.g. parasite-host interactions, parasite/pathogen abundance and disease transmission) 

caused or promoted by invasive species. 

 

Outlook 
 

Freshwater species biodiversity is threatened by human activities and anthropogenic 

impact on a global scale (Vörösmarty et al. 2010). Waterfowl health and population 

dynamics have been found to be negatively impacted by climate change, industrialization 

of agriculture, increasing recreational use of water habitats, invasion of species, 

intensification of ship traffic, aridification of wetlands and hunting (Wahl et al., 2011). 

Increasing knowledge on waterfowl health, their epidemiological roles, threats and 

parasites can help to assess those threats in terms of biodiversity loss in freshwater 

habitats. Particularly the results of chapter 1, which highlight the negative impact of lead 

pollution on parasite species richness in freshwater ecosystems, are applicable to 

implement and evaluate strategies of international wetland protection. Thus, reducing lead 

pollution in freshwater ecosystems could help to protect species biodiversity in German 

freshwater habitats.  

Invasive species can significantly harm native species and biodiversity (Lövei 

1997; McGeoch et al. 2010). Especially freshwater ecosystems are vulnerable and 

threatened by the impact of invasive species (Strayer 2010). Thus, monitoring of non-

native species and their potential to become invasive is of great importance for 

biodiversity conservation especially in freshwater ecosystems. Moreover, invasive species 

may affect animal and public health by playing important epidemiological roles in 

spreading and maintaining several micro- and macro-parasites (Strauss, White, and Boots 

2012). Thus, studying health related aspects in the frame of species invasion may help to 
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reduce negative impact of invasive species on native biodiversity. Predictions arising 

from the “Immunological Plasticity Hypothesis”, proposed in chapter 2, should be tested 

in studies on invasive vertebrates to investigate the predictive power of variability in 

immune markers for population trends of non-native species including the probability to 

become invasive. 

In Europe, based on §5 Regulation (EU) No 1143/2014, a risk assessment of 

invasive species conducted by each European Union member state is mandatory. 

According to the formulation of Article 5, this risk assessment should be based on 

available scientific knowledge. Regarding this European legislation, the results from 

chapter 4, which indicate that German Egyptian geese are involved in transmission 

cycles of infectious agents relevant for wild birds and poultry, can be a basis for the 

evaluation of its health impact on native species (Article 5 f). Moreover, the new 

hypothesis proposed in chapter 2 may help to create projections of likely future 

distributions of invasive species (§5 e) in general by studying variance of immune 

markers in the different phases of invasion. 

In conclusion, this thesis highlights the importance to encounter the complex 

interplay between health indices of waterfowl and anthropogenic impacted environmental 

factors such as pollution and species invasion to studies on habitat biodiversity and 

wildlife health. Moreover, it provides one of the very few studies on infectious agents and 

immunity of invasive birds and raises a new hypothesis in the field of vertebrate invasion, 

which will help to study health related drivers of invasion processes. 
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ÜBER DIE ROLLE VON PARASITEN UND DES IMMUNSYSTEMS 
IN ANTHROPOGEN BEEINFLUSSTEN 
WASSERVOGELPOPULATIONEN  

ZUSAMMENFASSUNG 
 

Der menschliche Einfluss auf Süßwasserökosysteme ist immens. Die vorliegende Arbeit 

befasst sich mit den Wechselwirkungen zwischen menschlichen Einflüssen auf 

Süßwasserökosysteme und Parasiten sowie die Immunsysteme der dort lebenden 

Wasservögel. Hierfür wurden Parasitenindizes und Immunparameter von Stockenten als 

die häufigste heimische Entenart und der Nilgans als eine der häufigsten invasiven 

Gänsearten in Deutschland untersucht.  

In Kapitel 1 wurde untersucht, welchen Einfluss chronische Bleibelastung bei 

Stockenten auf deren Parasitenbiodiversität hat. Dazu wurden Stockenten hinsichtlich 

chronischer Bleibelastung sowie Artenvielfalt und Infektionsintensität von 

Magendarmhelminthen untersucht. Sowohl Artenvielfalt als auch Infektionsintensität 

waren signifikant niedriger in Enten mit höherer chronischer Bleibelastung. Dieses 

Ergebnis deutet darauf hin, dass nicht nur die Ente als Wirt, sondern auch die Parasiten 

selbst durch Blei negativ beeinflusst werden. Dies zeigt, dass eine menschlich verursachte 

Bleibelastung der Umwelt, welche zu Langzeitbleibelastungen bei Wasservögeln führt, 

einen signifikanten Biodiversitätsverlust von Magendarmhelminthen zur Folge haben 

kann.  

 In Kapitel 2 wurden Parasitenprävalenzen und Immunparameter von einer 

invasiven und einer heimischen Nilganspopulation verglichen. Hierbei konnte gezeigt 

werden, dass die Varianzen der Immunparameter der invasiven Population signifikant 

höher sind als die der heimischen Population. Zudem wird eine neue Hypothese 

(„Immunological Plasticity Hypothesis“) beschrieben, die bereits bestehende Hypothesen 

zum Einfluss von Parasiten und Immunparameter auf Mechanismen der Invasionsbiologie 

verbindet und um den Einfluss neuerlich erworbener Parasiten erweitert. Diese neue 

Hypothese kann helfen, gesundheitsbezogene Antriebe von Invasionsprozessen besser zu 

verstehen.  

 In Kapitel 3 wurden Stockenten hinsichtlich des Auftretens und der Prävalenz 

neuronaler Vogelschistosomen untersucht, deren Zerkarien beim Menschen 

Badedermatitis auslösen können. Mit einer Prävalenz von 21% war Trichobilharzia 
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regenti die häufigste Vogelschistosomenart in den Stockenten. Neben T. regenti konnte 

Bilharziella polonica aus verschiedenen Bereichen des zentralen Nervensystems von 12% 

der Stockenten extrahiert werden. Diese Entdeckung ist die erste Beschreibung B. 

polonicas im Nervensystem von Vögeln und lässt die Schlussfolgerung zu, dass das 

Spektrum neuronaler Vogelschistosomen größer ist als bisher angenommen. Beide 

Ergebnisse unterstreichen die Wichtigkeit für ein Monitoring von Vogelschistosomen in 

Wirbeltierwirten. 

 In Kapitel 4 konnte gezeigt werden, dass Nilgänse in Deutschland Träger von 

Riemerella anatipestifer sind. Zusätzlich deutet das Auftreten von Antikörpern gegen 

Pathogene, die von Bedeutung für heimische Vögel und Hausgeflügel sind 

(Influenzavirus A, Aviäres Avulavirus 1, Aviadenoviren, Enten-Atadenovirus A (syn.: egg 

drop syndrome 1976 virus), auf einen Kontakt mit diesen Erregern hin. Diese Ergebnisse 

zeigen, dass invasive Nilgänse in Deutschland in Zyklen heimischer Krankheitserreger 

eingebunden sind und diese Art möglicherweise als Überträger der untersuchten Erreger 

fungieren kann. 

 Mit dieser Dissertation wird deutlich, dass das komplexe Zusammenspiel 

zwischen menschlichen Einflüssen auf die Umwelt und Gesundheitsaspekten von 

Wasservögeln in Studien zur Artenvielfalt in Süßwasserökosystemen einbezogen werden 

sollten. Zusätzlich wurde eine neue Hypothese vorgestellt, anhand derer zukünftige 

Studien die gesundheitsbezogenen Mechanismen der Invasion von Wirbeltieren besser 

beurteilen können und die helfen kann, das Feld der Invasionsbiologie generell weiter zu 

entwickeln.  

 



SUMMARY	

 96 

PARASITES AND IMMUNITY IN ANTHROPOGENICALLY 
IMPACTED WATERFOWL POPULATIONS 
 

SUMMARY 
 

This thesis aimed to investigate interactions between human driven ecosystem changes 

and waterfowl species in the frame of immunity and parasitic infections. This interplay 

was investigated studying parasite indices and immunity of the mallards and Egyptian 

geese in the context of lead pollution in mallards, helminthic parasites of zoonotic 

potential in mallards, the role of immunity and parasites in the invasion process of 

Egyptian goose and infectious agents of Egyptian goose which could be of relevance for 

native species, livestock and humans. 

In chapter 1, it was studied how lead pollution affects parasite diversity by 

investigating intestinal helminth species richness and infection intensity in mallards 

exposed to environmental lead. Parasite species richness and infection intensity was 

found to be significantly lower in birds with higher chronic lead levels suggesting both 

host and parasites respond to lead exposure. Thus, it was shown that anthropogenic 

induced environmental lead pollution resulting in long term intoxication of mallards, is 

related to significant biodiversity loss in intestinal helminth species communities of 

mallards. 

In chapter 2, parasite prevalence and immunity of an invasive and a native 

Egyptian goose populations were compared, showing that the variance of immune marker 

is significantly higher in the invasive than in the native population. Moreover, a new 

hypothesis (“Immunological Plasticity Hypothesis”) was raised in the field of vertebrate 

invasion, which aims to combine existing hypothesis with the impact of newly acquired 

pathogens on invasive species. The new hypothesis will help to study health related 

drivers of invasion processes. 

In chapter 3, prevalence of neural bird schistosomes, whose cercaria might cause 

swimmer´s itch in humans, in mallards was investigated. Showing a prevalence of 21%, 

Trichobilharzia regenti was the most prevalent neural bird schistosome. Beside T. 

regenti, Bilharziella polonica was detected either between the brain membranes 

(meninges) and the brain, in the spinal cord or in the intestine of 12% of the mallards, 

which is the first description of this species from the birds neural system. This finding 
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indicates that the spectrum of neural bird schistosome species is broader than previously 

acknowledged. Both findings highlight the importance of monitoring this parasitic group 

in vertebrate hosts.  

Chapter 4 shows that Egyptian geese are frequent carriers of Riemerella 

anatipestifer and furthermore provides serological evidence of exposure to selected viral 

pathogens of relevance for native birds and poultry. Thus, invasive Egyptian geese are 

involved in native pathogen transmission cycles and therefore might potentially spillover 

and spillback pathogens to native species and poultry.  

In conclusion, this thesis highlights the importance to encounter the complex 

interplay between health indices of waterfowl and anthropogenic impacted environmental 

factors such as pollution and species invasion to studies on species biodiversity in 

freshwater ecosystems. Moreover, it provides one of the very few studies on infectious 

agents and immunity of invasive birds and proposes a new hypothesis in the field of 

vertebrate invasion, which will help to study health related drivers of animal invasion. 
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