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ABSTRACT

The experimental progress in cold atomic gases and mesoscopic sys-
tems has allowed unprecedented access to low dimensional corre-
lated quantum systems far from equilibrium. This has revealed a
variety of novel phenomena such as many-body localization, time
crystals and dynamical phase transitions.

The theoretical description of such systems has remained a chal-
lenge: The numerically exact solution of generic, correlated quantum
systems requires computational effort that scales exponentially in the
number of fermions, rendering larger systems and therefore collec-
tive behavior inaccessible. This necessitates approximations. In low
dimensions, infrared divergences prohibit the use of a purely per-
turbative approach. Renormalization group based techniques, where
energy scales are treated successively remedy some of these short-
comings. We therefore propose the use of the functional renormal-
ization group to access correlation functions far from equilibrium in
large, interacting systems. Such techniques were previously success-
fully applied in the investigation of quantum impurity problems and
quenches in tight-binding chains and are widely used in the study of
equilibrium phase diagrams.

After a presentation of the Keldysh formalism, that constitutes a
natural language out of equilibrium, we present perturbation the-
ory and the functional renormalization group approach in a dia-
grammatic language. We then develop, optimize and apply flexible
fRG techniques to four different problems in one-dimensional tight-
binding chains with short-ranged two-particle interaction.

First, we discuss the emergence of anomalous transport in the pres-
ence of a quasiperiodic potential by analyzing linear response and
a far-from-equilibrium quench protocol. We then develop a variant
of the fRG to access pure excited eigenstates. We use this algorithm
to investigate many-body states in large tight-binding chains and
show that generic excitations appear thermal while some states show
unique spectral properties. To study the influence of inelastic scatter-
ing on the transport properties in such a chain we then go beyond
an effective single-particle picture; to that end, we present an algo-
rithm, that includes scattering in long chains. Finally, we discuss in-
finite chains coupled to a substrate while driven out of equilibrium
by an electric field. Exploiting the inherent symmetries, we develop
efficient algorithms and apply them to a simple tight-binding chain
with nearest-neighbor interaction to explore the interplay of sponta-
neous symmetry breaking and driving. We demonstrate, that order-
ing is suppressed and provide results that indicate unconventional
transport in the driven system.
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KURZFASSUNG

Durch die Erforschung kalter Atomgase und mesoskopischer Sys-
teme wurden niedrigdimensionale, korrelierte Quantensysteme ent-
fernt von thermischen Gleichgewicht erstmals experimentell zugang-
lich. Dies fiihrte zur Entdeckung einer Vielzahl neuer, physikalischer
Phinomene wie der Vielteilchenlokalisierung, Zeitkristalle und dy-
namischer Phasentibergénge. Die theoretische Beschreibung solcher
Systeme stellt jedoch weiterhin eine Herausforderung dar, da exak-
tes Losen generischer, korrelierter Quantensysteme einen exponenti-
ell von der Systemgrofie abhdngigen, numerischen Aufwand erfor-
dert. Die Anwendung rein pertubativer Methoden ist wegen Diver-
genzen im Infrarotbereich problematisch. Auf der Renormierungs-
gruppenidee basierende Methoden losen jedoch einige dieser Pro-
bleme. Daher konzentrieren wir uns auf die funktionale Renormie-
rungsgruppe (fRG) um Korrelationsfunktionen grofier, wechselwir-
kender Systeme weit entfernt vom Gleichgewicht zu betrachten. Ahn-
liche Methoden wurden bereits erfolgreich zur Untersuchung von
Quantenpunkten sowie Tight-Binding-Modellen verwendet und fin-
den breite Anwendung bei der Untersuchung von Phasendiagram-
men.

Eingangs stellen wir den Keldysh-Formalismus dar, der eine nattir-
liche Sprache zur Beschreibung von Systemen auflerhalb des Gleich-
gewicht ist. Dann werden zentrale Konzepte der Stérungstheorie und
der fRG in diagrammatischer Sprache préasentiert. Schliefslich befas-
sen wir uns mit der Entwicklung und Anwendung fRG-basierter Me-
thoden zur Behandlung verschiedener, eindimensionaler, wechselwir-
kender Tight-Binding-Modelle.

Als erste Anwendung diskutieren wir das Auftreten anormalen
Transports in quasiperiodischen Potenzialen, die wir mithilfe linea-
rer Antwortfunktionen und einem Quenchprotokoll untersuchen. Es
folgt die Entwicklung einer fRG-Variante, die einen direkten Zugang
zu angeregten Eigenzustdnden ermoglicht. Anschliefiend wird diese
auf lange, wechselwirkende Ketten angewendet und wir demonstrie-
ren, dass generische Zustinde thermische Charakteristiken aufwei-
sen, wiahrend andere auffillige spektrale Signaturen zeigen. Um den
Einfluss unelastischer Streuung auf den Transport zu untersuchen,
préasentieren wir ein vereinfachtes fRG-Verfahren zweiter Ordnung.
SchliefSlich diskutieren wir unendliche Ketten auf einem Substrat, die
von einem elektrischen Feld aus dem Gleichgewicht gebracht werden.
Unter Ausnutzung ihrer Symmetrien entwickeln wir eine effiziente
Methode und untersuchen in einem einfachen Modell das Wechsel-
spiel zwischen spontaner Symmetriebrechung und dem elektrischen
Feld. Wir zeigen, dass hierbei Ordnung unterdriickt wird und finden
Indizien fiir unkonventionellen Transport.
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INTRODUCTION

1.1 MOTIVATION

In the last decades, great experimental progress has been made in the
preparation and control of correlated low-dimensional quantum sys-
tems out of equilibrium. Two noteworthy techniques are cold atomic
gases and mesoscopic systems.

Cold atomic gases have allowed for a wide variety of non-
equilibrium experiments with unprecedented control and remarkable
coherence [BDZo08; Sch+15b; GB17; LGS15]. To effectively simulate
low-dimensional Hamiltonian dynamics, atoms are trapped in inter-
fering, coherent laser beams. Two-particle interaction between these
atoms can be tuned from the non-interacting to the strongly cor-
related regime via Feshbach resonances [Chi+10]. Through sudden
changes in the trapping potential various quench protocols can be re-
alized. The high level of control and coherence allows to access the
physics of an isolated system on long time-scales. This allows for the
investigation of transient dynamics as well as the decay to a quasi-
stationary state on intermediate time-scales, before residual coupling
thermalize the system.

Another field, that has seen large progress is the fabrication of
mesoscopic systems. A variety of geometries can be realized and
phase coherence throughout the system allows direct access to many
quantum-mechanical phenomena [LAGo4]. By gates attached to the
system, the stationary state far from equilibrium can be explored.

More and more, we come to understand, that systems far from
equilibrium are not just a mere extension of equilibrium and linear-
response physics but feature their own set of exciting phenomena like
transient superconductivity [Mit+16; Ken+17], time crystals [Wil12;
Zha+17; Cho+17], prethermalization [Gri+12; Ney+17], many-body
localization [Sch+15b; Cho+16; SPL10] and dynamical phase transi-
tions [Hey18].

Beyond a fundamental interest, these experimental advances are
responsible for a newly invigorated desire to better understand such
systems. However, on the theoretical side, there are two distinct chal-
lenges:

The first one is the crucial role of correlations in low dimensions. In
three dimensional systems, much of the phenomenology can be un-
derstood on a single-particle level. Fermi-liquid theory [Giao3] shows
that in 3D metals two-particle interactions lead to the emergence of
quasiparticles with a renormalized dispersion. Close to the Fermi-
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edge these quasiparticles are long lived. In contrast, in lower dimen-
sions scattering of quasiparticles is enhanced and the system is not
well described by a renormalization of the non-interacting theory. In
one dimension for instance, collective modes form the fundamental
excitation and lead to the emergence of power-law behavior in trans-
port properties at low energies.

The second challenge is the treatment of transport. A large number
of theoretical methods was developed based on the peculiar proper-
ties of ground states. Among other features, ground-states display
comparably low entanglement and are therefore more readily repre-
sented as matrix product states. Many of the formerly very success-
ful numerical tools like the density matrix renormalization group or
quantum Monte Carlo can only be extended beyond equilibrium at
exponential computational cost.

To set the stage for this work, we will briefly introduce the mod-
els considered and the ideas behind some of the widely employed
methods to treat such systems.

1.2 MODELS

At the heart of condensed matter physics lies the problem of electrons
propagating in a periodic potential formed by regularly arranged
ions. While Bloch’s theorem tells us, that the eigenstates of such a
problem are delocalized, it is convenient to express the Hamiltonian
in localized basis states (called the Wannier basis), that reflect the origi-
nal localized eigenstates of the individual electron-core pairs [Ash76].
Throughout, we will denote the second-quantization annihilation
(creation) operators of a Wannier state localized at site i by cg). In
this basis, spatially separated Wannier states are only weakly cou-
pled; therefore often it is sufficient to consider a free Hamiltonian of
the form

Ho—Ztl;C c; +hec, (1.2.1)

where (-, ) denotes nearest neighbors. For simplicity, we will restrict
ourselves to spinless fermions with time-reversal symmetry and only
consider a single band. As this rules out local interactions, the most
short-ranged and therefore parametrically largest interaction is a
density-density interaction,

Hint = E Ui Jclclcjc) (1.2.2)

When such a system is initially prepared in a non-trivial superpo-
sition of its eigenstates, the system evolves unitarily, displays non-
trivial transient dynamics and in some cases reaches a stationary state.



1.3 AVAILABLE THEORETICAL TOOLS

Alternatively, a time-dependent Hamiltonian can be considered, in-
ducing excitations. By construction, such processes involve a large
number of eigenstates, making the problem inherently more complex
than computing ground-state properties only. Even from an uncor-
related initial state, a two-particle interaction generates non-trivial
many-body correlations.

All models discussed throughout will be closely related to this gen-
eral form. Various extensions are possible and allows for the investi-
gation of more complex problems in the future.

1.3 AVAILABLE THEORETICAL TOOLS

While of large interest, strongly correlated systems, especially in one
and two dimension, remain a challenge for many of the established
theoretical methods. To set the stage, we will briefly sketch the idea
behind some of the most prevalent methods.

ANALYTIC SOLUTION Cases, where a many-body problem can be
fully solved analytically are few and far between [MA16]. Noteworthy
examples are integrable systems [Fra1y], where an extensive number
of conserved local integrals of motion fully characterize the Hamilto-
nian. Integrable systems can be solved using the Bethe ansatz [LM16],
allowing exact access to some properties. While tremendously simpli-
fying the problem, these integrals of motion typically only exist in
fine-tuned models. Furthermore, they restrict the dynamics and re-
sults obtained in such models do not represent the phenomenology
of more generic quantum systems.

EXACT DIAGONALIZATION [Exact diagonalization is the prototyp-
ical example of an exact numerical method. Once the Hamiltonian
is diagonalized in the many-body basis, all properties, in and out of
equilibrium can be accessed. Generally, this is however exponentially
hard in the system size. Obtaining the full many-body spectrum is
only realistic for O (20) fermionic sites (for an example relevant to
this work, see [LLA15]).

To obtain quench dynamics algorithms like the Lanczos algo-
rithm for a unitary time-evolution exist [PL86]. While making time-
evolution feasible for larger systems, they do not remedy the problem
fully and are usually limited to short times and typically not exceed-
ing O (30) site systems [SK18; Lie+18].

DENSITY MATRIX RENORMALIZATION GROUP Introduced by S.
White in [Whigz], the density matrix renormalization group (DMRG) pro-
duces an approximate solution to a many-body problem in the basis
of matrix product states (MPS). While any state in a finite chain can be
expressed as an MPS the required matrices are in general exponen-

3
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tially large; DMRG provides a systematic approximation using matri-
ces of lower dimension. For weakly entangled systems, convergence
to numerically exact solutions can be achieved with much smaller
computational effort. This allows DMRG to outperform exact diago-
nalization in a variety of problems, such as ground-state properties
of gapped systems in one dimension. When entanglement is exten-
sive, as is generically the case beyond equilibrium, DMRG becomes
exponentially expensive and therefore impractical.

As an exact method, DMRG will provide a reference point for the
approximate methods discussed throughout. For this reason, we will
present the idea behind this method as well as its strengths and weak-
nesses in some more detail later on.

PERTURBATION THEORY For many cases, an approximate, per-
turbative approach is the only viable option to sufficiently simplify
the problem and make a solution feasible. Solving first-order per-
turbation theory self-consistently results in the so called mean field
approximation [Bruog], that for its simplicity is commonly used to pro-
vide a first, simplified understanding. We will discuss these meth-
ods in more detail later. Especially in low-dimensional systems, how-
ever, perturbation theory is known to introduce infrared divergen-
cies. These require a resummation to obtain physical results. Such
resummations are typically performed by a renormalization group
(RG) [Alt10], where energy scales are taken into account successively.

FUNCTIONAL RENORMALIZATION GROUP  One such RG scheme,
that goes beyond perturbation theory is the functional renormaliza-
tion group [Met+12], that we will discuss in detail. Just like pertur-
bation theory, it is numerically efficient and can access large systems
at the cost of being approximate. Throughout this thesis, we will de-
velop and employ variants of this method to obtain results beyond
those accessible by exact methods.

1.4 OBJECTIVE OF THIS THESIS

The field outlined above is far too vast and the theoretical challenges
too demanding to address all issues. In this thesis, we want to con-
tribute to the field of far-from-equilibrium systems in two ways: We
aim to present novel, efficient methods that can be applied to a range
of questions in this area. We focus on exploring larger systems at the
cost of treating the two-particle interaction approximately. Further-
more, we aim to construct the methods in a flexible way that makes
them a useful tool for future work.

We then employ these methods to explore some questions at the
frontier of condensed matter physics. Each of the chapters discussing
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applications feature their own introduction to the relevant physical
phenomena.

1.5 OUTLINE

This thesis consists of two main parts.

In the first part, we present the formalism, that serves as the
methodological foundation of this work. While most (but not all) of
the formalism presented has made its way into textbooks and select
lectures, we believe it is valuable to present a complete and coherent
version of all the necessary concepts needed to follow the course of
this work. To that end, we will first introduce the natural language
of non-equilibrium transport - the Keldysh formalism (Chapter 2).
We pay special attention to the concept of reservoirs as well as tight-
binding chains, as they are essential to the models discussed later on.
We then discuss the diagrammatic approach to perturbation theory
(Chapter 3) and use this to present the functional renormalization
group formalism, that is the method predominantly used throughout
this work (Chapter 4).

In the second part of this thesis we apply the general formalism to a
variety of physical scenarios from the realm of transport in correlated
quantum systems.

As a first example, we discuss dynamics in the presence of a
quasiperiodic potential (Chapter 5) and examine the emergence of
anomalous transport. We find a smooth transition from ballistic trans-
port in the non-interacting regime, to superdiffusion to subdiffusion.
The observation of superdiffusive transport is novel within the field of
many-body localization. As quasiperiodic disorder does not feature
rare region, we demonstrate that the Griffiths picture for subdiffusive
transport is incomplete.

We then turn to individual excited eigenstates (Chapter 6) and de-
velop a scheme to access their approximate single-particle correla-
tions. We show, that in generic eigenstates the excitation-energy can
provide a cutoff to low-energy properties and itself lead to the emer-
gence of Luttinger liquid power laws. In contrast, we identify a class
of non-generic excitations, that show spectral properties, that vastly
differ from a thermal expectation. As an outlook, we present a po-
tential route to go beyond an effective single-particle picture and an
algorithm, that allows for quantum quenches from an excited eigen-
state.

Next, we study the effect of inelastic scattering on transport in fi-
nite chains (Chapter 7). We devise an efficient, highly parallelized
scheme to include such scattering processes. We reach system-sizes
of O (N =50) sites and analyze the cutoff dependence of the results
in the ground-state and in the driven system. We find a strong de-
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pendence of physical observables on the cutoff and demonstrate, that
this dependence is non-perturbative.

Finally, we investigate transport in infinite systems driven by an
electric field (Chapter 8). We demonstrate, how to employ the inher-
ent symmetries of such a system to devise a second-order fRG approx-
imation and analyze the interplay of a driving in an open system with
spontaneous symmetry breaking. In our approximation, the ordering
is strongly suppressed in an open system. However, in proximity to
the phase transition we observe a strong susceptibility towards order
and a resistivity, that is highly sensitive to symmetry breaking. In the
low-coupling limit at strong electric fields, we find that interactions
delocalize the system and lead to unconventional transport.

In the last chapter, we briefly summarize our findings and discuss
potential avenues for future work.



KELDYSH GREEN’'S FUNCTION FORMALISM

2.1 MOTIVATION

As mentioned above, the Keldysh formalism is the natural language
for correlation functions out of equilibrium. Introductions to this lan-
guage can be found in various books and review articles (see e.g.
[Ramoy; SBD16; HJo8; Cho+85; KLog; SBD16]).

Before we will introduce the Keldysh formalism [Kel+65] for
Green’s functions, it is worthwhile to motivate, why we need such
a formalism in the first place. A many-body quantum system is
typically described by its Hamiltonian H, containing information
about all possible configurations as well as transitions between
them. For the scope of this motivation, we restrict ourselves to
time-independent Hamiltonians. To describe the actual configura-
tion within a system, we employ the density operator p such that the
expectation value of any observable A can be computed as

(A)o =Tr (pA). (2.1.1)

P

The time-evolution of the system is governed by the Heisenberg equa-
tion of motion; the density operator evolves as

Lo =i, p1) (2.1.2)

which is formally solved by introducing a time-evolution operator
such that

U.(t,t/) — efi(tft/)H
= p(t) = U(t, to) p(to) Ulto, ). (2.1.3)
he

As the trace is a cyclic operator, this can also be understood as

(A) Tr (U(t, to)poU(to, t)A)
Tr (poU(to, t)AU(L, to))
Tr (poAn(t))

(An(t)),,

p(t)

(2.1.4)

which is the Heisenberg picture of quantum mechanics, where the
operator evolves while the state is considered to be constant.

An(t) = Ulty, t)AU(L, to) (2.1.5)
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When a system is perturbed at one time and we are interested in
the system’s response at a later time, one has to compute expectation
values of the form

(An(t)BR(t),
= Tr(poU(to, t)A U(t, to)U(to, t') BU(t, to)). (2.1.6)

=Uu(t,t’)

Because of their physical interpretation, they are also called response
functions. The simplest example of the appearance of such terms is
the Kubo formula [Kubs7], where we consider a system in some equi-
librium configuration po of the Hamiltonian H and at time tp add a
perturbation H’ to the system. For small perturbations one finds

t

Ay = (A, —ij dt’ ([Aye (1), Hiy (1))

to

00" (2.1.7)
Similarly, higher order expansions of out-of-equilibrium expectation
values can (under some conditions, see Chapter 3) be expressed in
terms of such response functions. Hence, these are the objects of great-
est interest throughout this thesis, as they are essential to characterize
a system. However, at the same time, they are numerically expensive
to compute. Evaluating the time-evolution operator involves diago-
nalizing the many-body Hamiltonian, which is exponentially hard in
the number of particles. To obtain results using perturbative methods
is hindered by the fact, that three time-evolution operators appear,
which due to their non-trivial commutation relations can not easily
be treated.
In thermal equilibrium, where

= Tfeﬁ = %e*BH (2.1.8)
expressions like Equation 2.1.6 can be simplified by instead analyz-
ing imaginary-time response functions as introduced by Matsub-
ara [Mats5]. Introducing the imaginary-time ordering operator

p

A(it)B(it)) t>t'

EB(it")A(it) t/ >t (21.9)

TIA(it)B(it') = {
with & = F1 for fermions (bosons), we realize, that we can express
imaginary-time ordered correlation functions

(TiAn(it)Bu(it)) ) = %Tr [TrU(iB, 0)A(it)B(it")] (2.1.10)

using a single imaginary-time evolution operator. Due to the defini-
tion of the imaginary-time ordering, the operators can be rearranged
freely, greatly simplifying a perturbative expansion. One can show,
that all physical correlation functions can be recovered using suitable
analytical continuation.



2.2 THE KELDYSH CONTOUR

-
Y — -
T[+
+
1 < -
t tto

Figure 2.1: Representation of the contour that forms the basis of the contour-
ordering operator. At the bottom, we see the time-line; the branch
of the contour labeled — is the forward branch and is parallel to
the time-axis while the branch labeled + is the backward branch
and is anti-parallel to the time-axis.

2.2 THE KELDYSH CONTOUR

We now elaborate how to treat a (at this point) general density op-
erator. In analogy to the Matsubara formalism, we strive to combine
the various time-evolution operators into a single one by defining a
suitable ordering operator. We do this by introducing an additional
contour index associated with atimet € R — t° € v ~ Z, x R, indicat-
ing a direction. This can be understood as splitting the time axis into
two distinct branches; the forward- and backward- branch, labeled with
a — and + respectively. We can imagine the branches to loop around
at a time tmax larger than all times we are interested in. This creates
a contour (see Figure 2.1) and a natural contour ordering operator T,
defined by:

A(t1)B(t2) ifj1 >j2
; ; TA(t1)B(t2) ifj1 =j2=—
TLA Al B )2y — ~ o,
AT = s B(ta) ity — g2 =+ (221
EB(t2)A(t1) ifj1 <jo,

using the ordinary (anti-)time-ordering operator T (7) where we un-
derstand — < + and & = + for bosonic and fermionic operators re-
spectively. We also define the time-ordering T to order equal-time cre-
ators left of annihilators and keep them otherwise unshuffeled. There-
fore, time-ordering acts trivially on normal-ordered operators, such
as the Hamiltonians we will discuss. This definition effectively orders
the operators along the contour. A time-dependent operator O(t) in
Heisenberg picture can thus be expressed as

Onx(t) = [‘j’e—iﬁo dtH(t):| O(t) |:‘.Te_i‘rt0 dtH(t):|
=Ty woﬁ_) (2.2.2)
Uy

where the time-variable t € R in O(t) is used to evaluate the explicit
time-dependence. When extended to t~ € v, the operator’s position

9
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with respect to the contour ordering of O(t™) is defined. In contrast,
Om (t) indicates Heisenberg time-evolution with respect to the Hamil-
tonian H. Note that this result does not depend on the precise choice
of the endpoint of the contour (as long as tmax > t) and the branch-
index chosen for O(t®). When treating two operators simultaneously

O}, (t1)0%(t2) = {j-eiftﬁ’ dtH(t)} 0'(t)) [U’eiftg dtH(t]:|
y {ﬁe—iﬁg dtH(t)} 02(ty) [(Ie—iﬁé dth]
= TVUYO1 (tf)oz(tg)/ (2.2.3)

the choice of the contour indices on the operators ensures the correct
ordering, independent of t; . By definition, a contour ordered prod-
uct of operators does not depend on the contour index at the largest
time:

TyO(t7") - Oftgme) - - Ot
=T,0(t]") - Otper™) -+ - O(t)  if tmax > ti Vi # max
(2.2.4)

Note, however, that not all n-operator expressions can be expressed
so concisely using a two-branch contour ordering. If we consider t; <
t,t3

O}(t1)O%(t2)03,(t3) # Ty U, O' (1702 (t52)03 (133 Vo, 3 € {£}.

To correctly order this expression, a more involved contour is needed
[Ramo7]. The scope of this thesis, though, we will restrict ourselves
to operators, that can be expressed in terms of ordering along the
two-branch Keldysh contour.

The possibility to collect the time-evolution operators in a single
object and shift the commutation relations into the definition of the
ordering operator is going to be essential in Chapter 3, where we use
the same idea in the interaction picture to introduce a perturbative
method to efficiently compute these objects.

2.3 DEFINITION OF THE KELDYSH GREEN’S FUNCTION

As any observable can be decomposed into a linear combination of
products of creation and annihilation operators, expectation values
of such products are of paramount interest. For this reason we define
the N-particle Green’s function of an interacting system as

/ !
o1...0n[07]...0Y

SNt LNt t)

. .y
1. indif iy

ro! o) (2.3.1)
= (N (Tyeq, (177) e (00l (1) el (157)

Ny
N 4
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where the creation and annihilation operators are understood to be
evolved in the Heisenberg picture; as they are not explicitly time-
dependent, omitting the subscript H is unlikely to result in confusion.
To simplify this cumbersome notation, we often times understand
indices as vectors and even go as far as to introduce multi-indices
1 = (i,0,t), containing (in this case) the single-particle index, the
contour index o as well as the time.

cr\cr

GOl ONIOT N Lty = Golar

q1--qnla]...ql (t|t ) G”]/. (2.3.2)

We usually understand multi-indices to contain all indices, that are
not specified otherwise. From their definition, some symmetry prop-
erties are immediately apparent: for any permutation P of single par-
ticle indices we find

Gpol 7 (PH) = EP G212 (tlt') = GI 1P (tIPt) (2:3:3)

and under complex conjugation

Golo ) = (=DNG T () (23.4)

In the single-particle case, this reduces to four Green’s functions

q\q g () = qlq ((tIt") (2:3.5)
= 0(t" —t+07)G g (tlt") +8(t —t'—07)G g (tIt")

Gcnlq+ (tlt') = Ggq/(tt) = —€1<cq,(t’)cq(t)>po (2.3.6)

G:‘lq (tt') = 67 (H1t) = i<cq(t)02’(t/)>po 237)

G e () = G (HIt") (2.3.8)
=0(t—t'+07)Gg ./ (tt') +0(t' —t—07)G 7 (tlt")

referred to as chronological, lesser, greater and anti-chronological. The
infinitesimal shifts indicated by 0" in G® and G¢ define the equal-
time, equal branch behavior (compare Equation 2.2.1 and the com-
ment thereafter).

At equal times

<(tlt) =il + G~ (t[t). (2.3.9)

which allows us to write

(GC Gf) (t,t) = ( 6" G<> (t,1). (2.3.10)
G~ G° —i+G< G

In accordance with Equation 2.2.4, we note for t # t/

, o|—o’ 1 /
Golo' ey = § & 777 () >t (2.3.11)
Gol t)t)) t' <t

11
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From this, it immediately apparent that these four Green’s functions
are not linearly independent for t # t’:

0 ift£t/

GE(tt) + GE(tlt") = G=(tt) + G (tt") +<{ (2.3.12)
il ift=t'
To make use of this, we introduce a basis transformation in the con-

tour indices o, o’ € {1,2}:

G"“"‘/(t|t’) = Z Da‘UGdld/(tlt’)D;,]la, (2.3.13)
o,0’'e{+}
with
I)—Al—m—dc) D_'—Alfm+da) (2.3.14)
v;; y ;i y)- .3.14
The resulting Green’s functions’
P adv
Gy = (¢ O (tlt") (2.3.15)
Gret GK+GP oo
x| X

are known as the patch, advanced, retarded and Keldysh Green’s func-
tion. There are other ways to treat the transformation at equal times
but we follow the convention of [Jak15]. Due to these names, we will
refer to this basis as the RKA or Keldysh basis and use « instead of o to
denote its components. The resulting relations between this Keldysh
basis and the original contour basis written out explicitly read:

(2.3.16)

GK + Gadv _ @Gret

(2.3.17)

GS = GK + GadV + Gret + GP

( )
(65— G+ 4 )
( )

| |
== N =N =

G¢ :E (GK . Gadv . Gret) + GP

Using this definition and Equation 2.3.4 one finds

Gm%utq::(Gmquw)T, GK(tit) = — (GX(t'1D) . (23.18)

1 Note that the choice of D in not unique and different conventions exist. We chose
the same convention as originally introduced by Keldysh [Kel+65]



2.4 GREEN’S FUNCTIONS IN A STATIONARY STATE

Due to Equation 2.3.12, G is only non-zero for equal times:

0 ift#t/
[G°—G=—G™+G ] (t,t') =< i (2.3.19)

GP(tit)) =
) ift=t’.

N —

Furthermore, as the name suggest, the support of the retarded (ad-
vanced) Green’s function is restricted to t > t’ (t < t’)

G™(tlt") =

(t —t") [G~(tlt") — G=(tlt")] (2.3.20)
GadV(tlt/) —0(t' —t

0
0( ) [G=(tlt") — G~ (tlt")], (2.3.21)
which is known as causality, as it relates to the fact, that a perturba-
tion can not cause a disturbance of the system before it occurs (com-
pare Equation 2.1.7). At equal times we understand 0(0) = % (com-
pare Equation 2.3.10):

Gret(t, t) = —= GV(t, 1) = . (2.3.22)
2 2
The Keldysh Green’s function, on the other hand, has support for all
t,t’ € R. Using Equation 2.3.9, we note the useful identity

GK o/ (t[t) = —i+2G=(t]t) = —i [1 ~2{cl,(t)e (t)>po] . (2.3.23)

2.4 GREEN’'S FUNCTIONS IN A STATIONARY STATE

Depending on the scenario under consideration as well as the initial
preparation, the system may reach a stationary state, where all lo-
cal observables appear time-translation invariant. In these cases, the
single-particle Green’s functions only depend on the time-difference

G(tt') = G(t—1') (2.4.1)

and it is natural to transform to the Fourier basis:?

G(w) = J dtel®t=0"ItlG(¢)
s dw (2.4.2)

—iwt
2T[e G(w),

G(t) = J

—0o0
where 07" indicates a small convergence factor, that has to be sent to
zero (from above) at the very end. It can be understood as an artificial
decay introduced to limit the coherence time. In the presence of phys-
ical decay processes we will see that this precaution is unnecessary,
in their absence however, this ensures convergence.

In general, i.e. without time-translation invariance, G depends on two frequencies.
In the stationary state G(wlw’) = 215 (w — w’)G(w).

13
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For a function f(t) with f(t) — 0 for t — co we note

Flw):= ro dte'® 0" Itg(1)f(t), w € C (2.4.3)

is analytic for Im(w) > 0 while it may display poles or branch-cuts
in the lower half-plane. Therefore, G™(w) (G (w)) is analytic in
the upper (lower) half-plane; this observations is known as part of
the theorem of analyticity [JPS1ob]. As it stems from the support of
the retarded and advanced Green’s function it is directly related to
causality.

For higher order Green’s functions time translational invariance
similarly implies

G(w1,...,wN|w1/,...,wN/)
(2.4.4)
~O(wy -t wN— Wy — - — WY,

which indicates energy conservation. This allows us to reduce the
number of frequencies, as we have already seen for the single-particle
Green’s function; for the two-particle Green’s function we will use the
definition [BHD14]

IMT=wj + w2 =wqi+ wys
A=wi —w; =wy— wy (2.4.5)

X:wzl—(m = W2 —Wir.

2.5 THE FREE GREEN’S FUNCTIONS

As the simplest example, we are now going to discuss the special case
of a purely quadratic Hamiltonian:

Hit)= )  h(t)nmchen (2.5.1)
n,meN

Here, h(t) € CN*N is the single-particle matrix representation of the
Hamiltonian H(t) with h(t) = h(t) for all t € R . In the same way
we can give a single-particle representation for the time-evolution op-
erator:

u(t, t’) = TerHudth®) > v (2.5.2)
’ rj'efij:, dth(t) ¢ < ¢/ o
u(tt') = (ult’, 1)’ (2.5.3)

With these, calculating the free Green’s functions is straightforward.

2.5.1 ... in time-space

Using the equation of motion for the creation and annihilation opera-
tors

dec] (t) = +ic] (t)hy (1)

0tci (t) = —ihy; (t)cj (1) (2.5.4)
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one easily proves

dvggq (b t)) = +igg(t t)hi g (t')

. (2:5.5)
Ot ggjq(tt') = —ihgi(t )g, (4 t').
Using the initial conditions
< _ _its = — [t
g~ (to, to) = —i&m, Mnm = <cmcn> (2.5.6)
Po
one therefore identifies
g™ (tlt") = —i&u(t, to)Au(to, ). (2.5.7)
Analogously, the greater component is obtained
g~ (tlt") = —i u(t, to) M+ EAJu(to,t’). (2.5.8)

The (anti-)chronological Green’s functions follow from Equa-
tions 2.3.5, 2.3.8, 2.5.7 and 2.5.8. To obtain the free Green’s functions
in the Keldysh basis, we employ Equation 2.3.20

g (tit") = —i0(t —t )u(t,t’) (2.5.9)
V() = 10t —t ult,t) = g™ (t/|t)] (2.5.10)
gf(tlt’) = —ig™ (tlto) (1 4 2&7) g (to|t”). (2.5.11)

Note that in the RKA basis and with a quadratic Hamiltonian, the
state of the system (as contained in pp) only enters in the Keldysh
Green’s function while the retarded and advanced Green'’s functions
only depend on the Hamiltonian and are independent of the prepa-
ration of the system.

Inherited from the properties of the time-evolution operator, the
free Green’s function obeys a group-property

fort; <t<ts:
‘J‘e(ﬁif dt?(t)) _ ‘J'e(ﬁf dth(t))‘Te(f:l dtf(t))
= —ig™(ti, tr) = g™ (i, g™ (T, ty). (2.5.12)

2.5.2 ... in frequency-space

For a time-independent quadratic Hamiltonian, the retarded and ad-
vanced Green’s functions only depend on the time difference and are
easily Fourier transformed using the regularized Fourier transform
introduced in Section 2.4

w)—; (2.5.13)
g T w-h+i0" 213

9" (w) = [grEt(w)]T- (2.5.14)

ret(

15
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The artificial decay introduced into the Fourier transform acts like an
infinitesimal broadening, shifting the poles of the retarded Green’s
function into the lower complex half-plane, which preserves the theo-
rem of analyticity (compare Section 2.4). Using the Sokhotski-Plemelj
theorem in the eigenbasis (hvi = €;Vv;), this can be decomposed to

1 .
gret/adV(w) = ; [ﬂ’w v Fimd(w — €;) viviT, (2.5.15)
where P indicates the principal value.
If, in addition to a constant Hamiltonian, we also assume that the
system is prepared in a configuration with [fi,h] = 0 we find (com-
pare Equation 2.5.11):

[, h] =0
= gN(t) = (1+280) (g (t1t) — g () (2.5.16)
= g¥(w) = (1+280) (g(w) — 9" (w)).
Note that due to Equation 2.5.15, gX only carries weight at the
eigenenergies. We call a system in such a state in (potentially non-

thermal) equilibrium; one particular equilibrium configuration is a sys-
tem in a thermal state defined by

Tre—BHcl ¢, 1

A = e — 2.5.1
fin,m Tro BH =N PR ¢ (2.5.17)

with the inverse temperature 3. To distinguish these, we refer to the
latter as thermal equilibrium.

2.5.3 Fluctuation-dissipation theorem for finite free systems

In a system in an equilibrium configuration, where [fi, h] = 0, there is
a common eigenbasis, where both, fi an h are diagonal. Using Equa-
tion 2.5.13, this also implies that g™ and g*v are diagonal. In that
basis Equation 2.5.16 simplifies to

oF o (@) = (14 281 (gk (@) = gk () S (2.5.18)

In most cases, one is interested in states, where iy is already
uniquely defined by a scalar function R — [0,1] : w — n(w) such
that

ik = fi(ex), (2.5.19)

where ey denotes the k-th eigenenergy of the system. This is, for
example, true for thermal states or if no eigenenergy is degenerate.
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fi(w) only carries physical meaning at eigenengies, where it defines
the occupation of the corresponding eigenstate(s) at that energy.
Using this distribution function n(w) we write

oF 1o (@) = (1+ 28 (w)) (g% (w) — g% (w) ) Siper. (25.20)

and in the original basis

6 (w) = (1+2&n(w)) (g"(w) — g (w)). (2.5.21)

This is known as the fluctuation-dissipation theorem. This name stems
from an understanding we alluded to in Section 2.5, where we noted
that g contains information about the statistics of the system, in-
cluding the fluctuations, while g™* contains the spectral information,
which also encodes dissipation.

In the contour basis, this relation reads

9= (@) = &0 (g™ (w) — g** (w))
g~ (w) = (1+&n) <9ret(w) - Qadv(w)) (2.5.22)

] (w).

=g~ (w) = WE?

Note that for fully occupied (empty) fermionic states g~ (g(~)) van-
ishes in the corresponding eigenspace. In the specific case of thermal
equilibrium, where

_ 1 _

A=~ 9 (W) =te Phg7(w), (2.5.23)
which we will use in Section 3.3.5 to prove the fluctuation-dissipation
theorem for thermal states in interacting systems.

2.5.4 Integrating out degrees of freedom

Finite systems follow a unitary time-evolution and especially for qua-
dratic systems this leads to recurrence. Both, numerically and phys-
ically, this is not desirable as in most systems scattering leads to a
decay of these coherent oscillations. On the other hand, infinite sys-
tems are, at least without translational symmetry, difficult to treat
numerically. Luckily, in many cases valuable information about the
state of the system can be extracted by only computing local Green’s
functions of a quadratic Hamiltonian in a small region of the system.
In this section we will describe the established method to obtain such
local Green’s functions in pedagogical fashion without relying on the
path-integral formalism or the language of perturbation theory.3

3 We will comment on the latter in Chapter 3.
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\T_T/v

Figure 2.2: Pictorial representation of the Hamiltonian in Equation 2.5.24, if
a system is decomposed in two parts h*® and a coupling T.

Consider a non-interacting Hamiltonian that consists of two sepa-
rate parts of sizes Ny, k = 2,8 and a quadratic coupling (see Fig-

ure 2.2):
_ A f Bt
H = Z hn,mcncm + Z hﬂ,mcn+Ng[cm+Ngl
n,meNg n,meNgy
+ Z Tn,mCILCerNQ[ +h.c.
nENy
meNg (2.5.24)

(R T
=C ¢
TT h®
th c CNQ[XNQl’ h% c CN%XN%, T c CNQ{XN%,

where we use the short-hand k = {1, ..., k} for k € IN. Employing the
same block-matrix notation for the Green’s function yields

glw) = ( 9 99(,%) , (2.5.25)

gsa 9%

where we use the short-hand gg o = gg. We aim to obtain gg without
explicitly computing any of the other blocks and most importantly
(under some conditions) without any operations that scale with N,
as we will later consider Ng > 1.

2.5.4.1 ... 1N frequency-space

As the retarded and advanced Green'’s functions of a free system are
independent of the initial configuration we can immediately work in
the frequency-basis. The coupling between parts of the system can be
characterized in terms of the hybridization function*

1
Fa(w) = 5T (gfgdec(w)—ggpec(w)) TH ¢ ¢NaxNa (5.5.6)

1

T woRS 110 (2527

t
g%,dec(w)

4 Conventions for the prefactor differ.
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where the subscript dec indicates, that the Green’s functions are to
be obtained in the decoupled (i.e. T = 0) system. This hybridization
function encodes information about the available states in system 8B
as well as their coupling to system 2. It does, however, not contain
any information about the occupation of these states. By decompos-
ing this into the eigenbasis of the Hamiltonian of subsystem 85 (com-
pare Equation 2.5.15)

—nZé w—ep)T (\)%;)TTJr
P (2.5.28)

_nZzs w—ep)TP(TP)!

and employing P = P2, P = P! we find that I'y(w) is positive semi-
definite for all w. Furthermore, we note that I'(w) is hermitian. For
a given, general Hamiltonian it may be difficult to compute I" ex-
plicitly, however, in most relevant cases the matrix T is sparse, and
features symmetries which allows for an iterative computation of the
hybridization (for an example see Section 2.8). Furthermore, it might
be sufficient to define I', without specifying the microscopic Hamilto-
nian.

Using the identity
A B)
(C D) (2.5.29)
B <A—‘ LA TB(D—CA~B)"'CA™' —A—‘B(D—CA—1B)—‘>
—(D—CA'B)"'CA! (D—CA~'B)"!
_( (A—BD'C)"! ~(A—BD'C)"'BD! )
—D 'C(A—BD'C)”!" D '+D 'C(A—BD 'C)"'BD!

which holds for all matrices where the needed inverses are defined,
we easily verify

[ Wt T
ret _ _ :
gnm(w) =|w (TT h%> +10

-1

Vn,mGM

n,m
- _ -1

= [(w—h*+i0") =T (w—h% +107) ‘TT} (2.5.30)
- n,m

—1

- (gr;[fdec(w)) — TG gec () TT + io+]

n,m

with g gec denoting the retarded Green’s function of system 1 is the
absence of the coupling T. The second term of Equation 2.5.30 can
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be understood as a self-energy, a concept the we will elaborate on
in Chapter 3:

Tt w) = Tgfgdec(w)TJr (2.5.31)
- ;de/T ((E(i"’cjl) —il(w) (2.5.32)
_ —1
= gy (w) = [(grﬁfdec(w)) ]—Zret(w)+io+] (2.5.33)

As I'(w) is hermitian and positive semi-definite we note for the spec-
trum of L™ that

Im [o(Z™(w))] <0, (2.5.34)

where the equality only holds if some parts of the system effectively
decouple at a given energy. This is in accordance with the theorem of
analyticity (see Section 2.4). For a finite system B the spectrum will
be real for almost all frequencies.

If the entire system is prepared in an equilibrium configuration
described by single-particle correlations i, we have discussed in Sec-
tion 2.5.3, that knowledge of g™(w) is sufficient to compute the
Keldysh component:

go(w) = (1+2&R) [g%et(w) —gaM(w)]. (2.5.35)

This is, however, not usually the scenario we want to consider; there
are situations, where the system as a whole is not in equilibrium and
thus considerations of Section 2.5.3 do not apply. For those cases, we
have to consider the time-dependent problem.

2.5.4.2 ... in time-space

In this section, we restrict ourselves to the case of a constant Hamil-
tonian; the more general case of a time-dependent Hamiltonian will
also be considered in Chapter 3, where we introduce a more conve-
nient formalism to discuss these problems. For real time space, we

use:
M = ( B)
C D
(2.5.36)

|
= exp [M]; , :J drexp M1l ; Bexp[D(1 —1)]
0

for any matrices A,B,C,D and where the subscripts denote block-
indices.
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PROOF: To prove this, we note that

vk e N3m e N° 5 (M¥),, = (M™); ; My ,M5, T (25.37)

Hence
1
M k
(e )1,22 Z E(M )1,2
keNp
1 e
= Z Z E(Mnh,] BDk n—1
kENnNnek—1
=) X (MM, B
meN, neNy TL—i—m—i—] (2.5.38)
=y Y J dtt*(1—-1)™(M"),, BD™
nim! ,
meNy neNy
1
—J dtexp A B Bexp[D(1 — )]
0 C D .
O
In terms of retarded Green'’s functions this reads
o
gos (tt") :J dt g (tIT) TG gee (TIt). (2.5.39)

Similarly one proves

1 T1
A B = exp(A) ~|—J dry J dto exp A B To
C D 11 0 0 C D 11

xBexp[D(t1 —To)]Cexp[A(1—11)]  (2.5.40)
Translated to Green’s functions, this can be understood as

exp

gglzt(th ) = gg?tdec(t‘t,)

> > ; ; (2.5.41)
H] | de g ToR (i) T gl (o).

—00 —00

In the case of a time-translation invariant Hamiltonian all the appear-
ing Green’s functions are time-translation invariant. This allows for a
straightforward Fourier transform of these results

ret ret ret

Qm%(w) =gy (W )ng dec( w)

r r by r (2542)
grgft(w)_ggftdec( ) gQ?t( )ngt,dec( )TTQQ?tdec(w)

which reduces to the same result we obtained in Equation 2.5.30.
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To obtain the Keldysh component of the Green’s function we em-
ploy Equation 2.5.39 and write:

g8 (tt")
— i | et tha ) (1 + 2&1 adv_t t/
i [ (tfto) (1+ 260) " (tolt")]
=—i Y g (tlto) (1 +2&1)k 193 (tolt")
k,1e{A, B}
=— lgrgft(ﬂto) (14 2&7)g g (tolt')

~if dr Ia () T gt os qec (Tlto) (14 2E7) g5 o 95 (tolt) (2.5.43)
Jto

i e g (o) (1 + 287) g 03 (tolt T8 (/1)
Jto

—i J dtdt’ gt (t) Tg5 gec (Tlto) (14 2E1)
JJtg

9 e (tol ) T g&™ (T'[t).

As the decoupled retarded and advanced Greens are block-diagonal
we can identify the evolution of the single-particle correlations in the
closed system

91><(,Y,dec(t|t/) *lg&etx dec ( + 2‘t-'n)X Y gi(dyf dec v X/ Ye {Ql/ SB}

(2.5.44)
Therefore, the Keldysh Green’s function within system 2 can be ex-
pressed as
g (tlt')

—gg‘ftmto)géﬁ dec(tolto) g3 (tolt))
T e g (1) TS o dec(Tlto) g3 (tolt”)
"o (2.5.45)

+ | dT'gR (o) g8 g dec(tolt ) TTgdM (T'[t)
to

+ J drdt’ ret(tlT)Tg% dee (TN TT g3V (T/|t)).
JJto

To study the stationary state that is reached after a long evolution,
we send tg — —oo. For a large system B, gi*(tltg) will typically
decay>: expressed in the eigenbasis {ey, vk} of the time-independent
Hamiltonian

—ih(t— —i — *
(et = D e v v (25.46)
g k

5 If gi' does not decay we can not expect a stationary state to exist.
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T
A
-4
L~
Figure 2.3: Pictorial representation of the Hamiltonian in Equation 2.5.24 for

a small h* and large h. If the system h acts as a reservoir, we
depict it as an open, colored ellipse to indicate it’s size.

will dephase as long as the single-particle indices overlap with many
eigenstates of different single-particle energies.® Under these condi-
tions, the first term can be neglected. We will call such a subsystem
B reservoir. The second and third term vanish if we assume that the
initial configuration has no single-particle correlations between the
two systems (as in the decoupled systems these correlations will re-
main zero). This leaves us with the fourth term. If system B is ini-
tially prepared in an equilibrium configuration defined by a distribu-
tion function n(w) (see Equation 2.5.19) each of the Green’s functions
becomes time-translation invariant (note, that the retarded and ad-
vanced Green'’s function of a free, time-independent Hamiltonian are
always time-translation invariant) and we obtain

ret

95 (W) = g5 (W) TGH gec(@) T g5 (w) (2.5.47)
= (14 260(@)) g5 ()T (05! gec (@) — 93% gecl@0))) TTGH (w)
= g5 (w) (—2i) (1 + 2&n(w)) e (w) g5 (w)

K (w)

in frequency space. Note that the stationary state in subsystem 2
is characterized by the initial configuration of subsystem 9B and is
independent of the initial configuration in subsystem 2.

2.5.4.3 Systems consisting of multiple subsystems

The results from the previous section can easily be generalized to any
finite number of reservoirs coupled to the system (see Figure 2.4):

R T - ... TN,
T Rh' 0 . 0
H=cl : 0o . : c. (2.5.48)
TTL 0 e 0 thes

res

For finite systems, this is only true until the revival time of the system is reached.
Making the system larger will increase the revival time, hence we are usually inter-
ested in the well defined order of limits, where the system-size is sent to infinity
before the limit ty — —oo.

23



24 KELDYSH GREEN’S FUNCTION FORMALISM

Figure 2.4: Pictorial representation of the Hamiltonian in Equation 2.5.48 if
subsystems 1,..., Nres act as reservoirs.

We use this opportunity to summarize out findings. The correspond-
ing retarded self-energy acting on system 0 reads:

It (t]t) = Z Tegret (t|O)T

T, dec
TE€Nres

_Z J [L( w)] —ilr(w)
gyt(tit’) gffaec(tlt)

+J dt1J dty g (tltr) ZE" (t11t2) g gec (talt)

—00 —00

When Fourier transformed, these read

ret ret
z z TTL gr dec
TE N eg

g (w) = {(gffaec)_] —sz(w)]] .

Under the same assumptions we needed to arrive at Equation 2.5.47,
we find:

IHt) = > Trglec(tit)T!
TE€Nres

gS(tlt") :” drdt/ g5t (tlt) Z5 (tlt')g aclV(T’It’)
to

(2.5.49)

= > Trg8gec()T] (2.5.50)

TENes

= ) (=2i)(1+2&n, (W) (w)

TENres
g6 (w) =" (@) I§ (w)gd™ (w).
Note that not all reservoirs are assumed to be prepared in the same
equilibrium configuration.
Instead of discussing the details of microscopic reservoirs attached

to some system of interest, we will typically only specify the micro-
scopic Hamiltonian within the system H%*. We will characterize the
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reservoirs solely by their hybridization function and their initial dis-
tribution function.

2.5.5 FDT for local Green’s function in a free system coupled to reservoirs

As we have seen in Section 2.5.3, a non-interacting system in an equi-
librium configuration features a special symmetry described by the
fluctuation-dissipation theorem. Here, we will discuss how this con-
cept can be generalized to an out-of-equilibrium situation, where a
small system is coupled to a number of reservoirs, each of which
is considered to be initially prepared according to some distribution
function n"(w). As discussed in Section 2.5.4, the free Green’s func-
tions restricted to the subsystem of interest in the stationary state
read:

1
®) = TR - T (w)

w) = g™ (w)f

ret (

g9

gadV(

g"(w) = —2ig™(w) Z [+ 2&n" ()] M () g* (w)

T

with

le:gg(w) _ Z]de/? |:|"T(w/)/:| _lrr(w)

Tt w—w
T

and positive semi-definite, hermitian hybridization functions I'" (w).
If all reservoirs are initially governed by the same single-particle
correlations n™ = n (see Equation 2.5.6) we find:

gN(w) = —2[1 +2&n(w)] g"H(w) ¥ MM (w)g (w)
! (2.5.51)
=il +2en(w)] [g" (@) - g (w)]

where in the second line we used I'" = (FT)T. This is a generalization
of the fluctuation-dissipation theorem discussed in Section 2.5.3, as
it applies to subsystems, that were not initially prepared in an equi-
librium configuration but instead evolved into one.” As we discussed
in Section 2.5.4, this only holds, if the reservoirs are much larger than
the subsystem explicitly considered and excitations can dissipate into
the reservoirs. By comparing to the result in Equation 2.5.35, we note
that in such systems details of the original preparation of the (small)
subsystem under consideration will not influence the value of local
(single-particle) observables after a long time.

There is no need to specify the initial configuration of the small system under con-
sideration. Furthermore, the stationary state will feature single-particle correlations
between all parts of the system which are not present initially.
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We will later see (compare Section 3.3.5), that this relation can be
extended further to include interacting Hamiltonians and how an ap-
proximation to the full Green’s function can preserve this important
symmetry.

2.6 EFFECTIVE DISTRIBUTION FUNCTION

In Sections 2.5.3 and 2.5.5, we have seen how the fluctuation-dissipation
theorem comes about in equilibrium and even locally in the steady
state as long as the excitation above the equilibrium configuration
can dissipate. We also know, that such a simple relation can not hold
out of equilibrium.8 However, we still strive for an generalization of
this concept that allows us to interpret close-to-equilibrium physics
or just formally simplify calculations.

The starting point of this endeavor is local Green’s function within
some subsystem in presence of some self-energy.

1
ret _
Cw) = w — hsys — ret((p)

GadV(w) — Gret(w)T
GK(w) = —iG™ (w) X (w) GV (w).

A similar form to the FDT can be achieved by introducing N(w) €
CN*N guch, that [Jakog; SBD16; Kam11]

M w) = [hY+2"(w)] [1+2EN(w)]
—[1+2EN(w)] [R + 2% (w)
1 « 1
W — hsys — yret( () w)w—hsys—zad"(w)
=—i[G™ () [T+ 26N (w)] - [1 + 2&EN(w)] 6 (w)]
(2.6.1)

= GNw) =—i

The first line of Eq. 2.6.1 is a Sylvester equation. It has a unique solu-
tion if and only if Z™(w) and 72dV(») have no common eigenvalues.
This is, for example, the case if Im 0zrt(,) < 0 Vw. As we have dis-
cussed previously (see Equation 2.5.34) this is ensured if all parts of
the system are coupled to at least one reservoir.

In the previous section, we have seen that in equilibrium for a free
system N(w) = n(w)1. Out of equilibrium, N(w) is a hermitian ma-
trix, that can be loosely interpreted as an effective distribution func-
tion.

As a word of warning, let us stress again, that, if N is not diagonal,
the physical interpretation is difficult and N is a mostly formal object.

This is, because the space of single-particle Green’s functions that can be represented
in presence of the FDT can be fully exhausted with equilibrium configurations
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Furthermore, knowledge of the local Green’s functions is not suffi-
cient to obtain local elements of the effective distribution function of
the entire system out of equilibrium.

To compute the effective distribution function, we use the CTRSYL
routine from LAPACK [And+9g]. The necessary Shur decomposition is
computed with the Eigen library [G]+10].

2.7 OBSERVABLES

As we discussed in Section 2.3, all single-particle observables can be
extracted from the Keldysh Green’s functions. Here, we are going to
discuss some of important examples.

2.7.1  Spectral function

As we have seen in Equation 2.5.15, the imaginary part of the re-
tarded Green’s function in a non-interacting system contains informa-
tion about the spectrum; as a generalization, we define the spectral
function as

. _ L ret _ (adv
Ailw) = 5= [G (w)—G (UU)Li (2.7.1)
—1
=— Im [GI%(w)] . (2.7.2)
The prefactor is chosen such, that
de A(w) = lim i(G™(t, to) — G2V (t,t0)) =1 (2.7.3)
t—1to

Note that while lim_¢, Gret/adv({]t,) are not individually well de-
fined, the limit of the difference is.

The spectral function is of particular interest, as it can be probed us-
ing angle-resolved photoemission spectroscopy (ARPES, for a review
see [Yan+18]).

2.7.2 Occupation

The occupation of a state (or site in the spatial basis) at time t can be
computed using

ni(t) = (el(te;(v) (2.7.4)
which, expressed in terms of real-time Green’s functions reads:
. & .
ni(t) = G (t) = 5 (IGE (1) —1). (27:5)

In a stationary state this becomes

n; = % (iJ'oo Gl-fli(w)d—w — 1> . (2.7.6)

—00
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If the stationary state is defined by a scalar distribution function
(see Section 2.5.5 as well as Section 3.3.5), this simplifies to

ni=5 (1] 01+ 2n()) (5wl - 618 (@) 52 1)

—s ’ ’ 271

:% (JOO (14+2En(w))A;(w)dw — 1> . (2.7.7)

—00

:JOO n(w)A;(w)dw.

—00

where we used the spectral functions defined above.

2.7.3 Particle current

In contrast to the occupation, the correct operator to obtain the par-
ticle current is dependent on the model. The usual definition of a
current is obtained when separating a closed system into two parts,
let us call them left and right (abbreviated L and R). The current from
left to right is then defined as the change in particles in the right
subsystem:

I(t) = dn;t(t) = —thiLt(t) (2.7.8)

=i ([H,ngl). (2.7.9)

Note that the first line is not well defined for infinite systems while
the second line is. For a model with a single-particle Hamiltonian
h and a density-density interaction only operators that connect the
two subsystems contribute to the commutator; a density-density term
(such as a density-density interaction) commutes with a number op-
erator.

(=1 3 {[hoseles +nyacfepcle])

i€el, jeR
=2 Y Im (hm (clwe;v) )
i€L, jeR Po
=2 ) Im(i8hy;Gj(t) (2.7.10)

i€L, jeR

=2 Z Im( 1] 1GI< (tlt)))

i€l, jeR
&
= 3 Tr (hL/RGIéL(ﬂt) — hR,LGER(ﬂt))

and accordingly in the stationary state

d
I = J ﬁETr (hLRGRL(w) — hg L GER(w)) (2.7.11)
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To understand this result better, it is instructive to investigate a sce-
nario, where subsystem L acts as a reservoirs prepared in an equilib-
rium configuration initially and then analyzing the stationary state
that is reached after a long evolution. We use the equations (deriva-
tion is analogous to Equation 2.5.45)?

GRL(w) = GE(W)hR LG} gec () + GR (w)hg 1 G, ()

(2.7.12)
Grr(w) = Gl (W)L RGE (W) + Gf gec ()M RGEY (w).
Identifying hg 1. (Giefi — Gi‘i}’ec) hyr = —2il" and using the FDT for
system L we find [MW92]

R (2.7.13)
= % de TrT'(w) { [1 +2nL(w)} [G{ff(w) _ GidV(w)} _ Gﬁ(w)}.

Usually, the support of I' will only contain a few sites, this it is suf-
ficient to know Gg in that region, even if subsystem R will generally
be infinite.

As we discussed in Section 2.6, GX can be expressed in terms of an
effective distribution operator in many cases, resulting in [Jakog]

ILr= ;deTrF(w){fot(w) [nM(w) —N(w)] ( |
2.7.14
— [n*(w) = N(w)] Gﬁd"(w)}

Hence, as one would expect, the current relates to the number of
available states (encoded in G™') and transport occurs, if states are
occupied in system L while empty in system R or vice versa.

Note that if either system L or R are finite, the steady-state current
has to vanish to obey particle number conservation. As the arguments
above only hold for an infinite system L (as only infinite systems
can act as a reservoir) we shall demonstrate this only in the case,
where system R is finite: In that case, N(w) in the steady state will
equilibrate, resulting in a vanishing current.

An especially simple form can be achieved in a non-interacting
system coupled to a set of reservoirs characterized by I'" (w), n"(w),
T =1,..., Ny In this case the Green’s functions can be expressed as

9K _ _igret Z |:1 —I—ZE,TLT,((,U):| rr’gadv
T

9ret o gadv — gret |:<9aclv>1 _ (gret)—1:| gadv — _Zigret Z rr’gadv'
T.l

(2.7.15)

9 At this point, it is clear that this holds true for quadratic Hamiltonians; later on this
can be easily generalized to interacting Hamiltonians, as long as the interaction is
restricted to system R.

29



KELDYSH GREEN’S FUNCTION FORMALISM

The current out of reservoir r (compare Equation 2.7.13) can therefore
be expressed as (compare [B86; Lans7])

=) L
=3 2 [do [w @) - (@) T M (@lg™ @) g (w)
' (2.7.16)

where the individual contributions I, ,, can be interpreted as the cur-
rent from reservoir T to r’/, and the trace acts as the transmission
coefficient.

2.8 EXAMPLE: QUADRATIC TIGHT-BINDING CHAINS

One-dimensional tight-binding models are the primary class of mod-
els discussed in this thesis. Because of their importance throughout,
we will now study the non-interacting case for translation-invariant
chains analytically and introduce numerical methods for general 1D
chains with nearest-neighbor hopping.

2.8.1 Translationally invariant tight-binding chains

SEMI-INFINITE CHAINS AS RESERVOIRS Let us consider the case
of a tight-binding chain of N sites

H=t Z chnH +h.c.. (2.8.1)
neN-—-I1

It is easy to verify [BP87], that the basis transformation

2 T
P . P
c; = N+T E sin(qu(i+1))dy, q1= N7—|—1(l+” (2.8.2)

leN

diagonalizes the Hamiltonian

H= Z Zcos(ql)did (2.8.3)
leN

and thus allows us to obtain all Green’s functions we desire.

It is, however, instructive, to obtain the two important Green’s func-
tions of this system using the results of Section 2.5.4 and the symme-
try of the system.

We subdivide this system into two pieces, consisting of the first
element and the remaining rest of the infinite chain. Then Equa-
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tion 2.5.30 allows us to write the Green'’s function on the first site as

Ng =1, Nog =N —1

N—1
h* =0, h® = ) t(exer, +errier), T=tere]
k=1 (2.8.4)
-1
= g (@) = |0 —tg gec(w)t]
N—o0 —1
= Jw — g (w)t]

where we used that for N — oo the decoupled rest of the chain is,
itself, a semi-infinite tight-binding chain. Solving this equation yields

gt (w) = 1 (w—\/W) (2.8.5)

212
with g™'(w) — 0 for w — oo fixes the sign of the square root. The
spectral function is therefore given by

: 1 757 i
Arp(w) = —Im (97 (w)] = {thn\ﬂgiw lf&llw| <. = (2.8.6)
otherwise.

If we were to couple a system to a semi-infinite tight-binding chain
by allowing hopping to the first site of said chain (hence T € RN) the
characterizing hybridization and corresponding self-energy are given

by
Mw —TTT\/4t2 w20(4t? — w? (2.8.7)
Fret () =TT (w—\/w —4t2) (2.8.8)

2t2
(W) = =2i(1 4+ 2&En(w))T(w). (2.8.9)

THE WIDE-BAND LIMIT FOR RESERVOIRS As we have seen in Sec-
tions 2.5.4 and 2.8 the effect of a semi-infinite tight-binding chain
coupled to the system only by its first site can be absorbed in a self-
energy correction of the form given in Equations 2.8.7, 2.8.8 and 2.8.9.
Such a reservoir, however, has multiple disadvantages: as it only has
a finite bandwidth, it will generally not thermalize the system. Fur-
thermore, the edges of the band will introduce artifacts that might be
undesirable. Lastly, for the low energy theory, the form of the band is
irrelevant and thus one usually considers a simplified model.

If the hopping t within the reservoir is much larger than all rele-
vant energy scales in the system of interest, we can consider the limit
t/w — oo resulting in

T
= - (2.8.10)
.|.
et w) = —i? = —il’ (2.8.11)

T¥(w) = —=2i(1 + 2&n(w))T. (2.8.12)
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with a frequency independent hybridization function T'. Note, how-
ever, that for the Green’s functions in the reservoir themselves this
limit is not well defined, as the spectral function goes to zero (point-
wise) and the real-time retarded Green’s function becomes time local.

LOCAL GREEN’S FUNCTIONS IN THE BULK The local Green’s
function in the bulk can be obtained similar to the case of a semi-
infinite chain. Imagining an infinite chain and interpreting a single
site labeled 0 as system 2 while the remaining system can be under-

stood as two semi-infinite chains:
-1

g%t (w) = [w g (W)t —tg™ (@)t (2.8.13)
—1
= [w —2tgi somi(W)t] (2.8.14)
1
— \/ﬁ (2.8.15)

with the spectral function

1 1
T VA —w?
We will later generalize this procedure to obtain interacting Green’s
functions in infinite systems (see Chapter 8 and Appendix D).

Alw) (2.8.16)

2.8.2  Computational techniques for general, quadratic tight-binding mod-
els

MODELS In this section, we want to consider how to efficiently com-
pute Green’s functions and observables for general quadratic tight-
binding models with nearest neighbor hopping but without transla-
tional symmetry. To that end, consider the class of Hamiltonians

H= Z c—:ncilcn + Z tnchnH +t:CL+1 Cn
neN neN—1 (2.8.17)

=che.

These are represented by a tridiagonal matrix h. To efficiently com-
pute Green’s functions for these models, we will introduce some spe-
cial algorithms, that rely on the structure of h.

RETARDED GREEN’S FUNCTION IN TIME-DOMAIN To obtain the
retarded Green’s function in real time, we have to evaluate the time-
ordered matrix exponential (assuming t > t'):

igret(t’t/) _ ‘J'eﬁ’ dth(7) (2.8.18)

This can be simplified by discretizing the time integration, allowing
us to explicitly use the time-ordering to arrive at
AR FR(t=A) A h(t=A)ih(t-24) Ah(t’+A)+h(t/)

jgret(t,t/) :AILH(}+e 2 e 2 ...e 2
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(2.8.19)

where the details of the discretization is irrelevant for a Riemann
integrable function h(t). The problem, how to evaluate a matrix expo-
nential for tridiagonal matrices remains, as it will generally be dense
and computing dense-dense products is costly. To compute this more
efficiently, one can make use of a Trotter decomposition [KMV14;
KKK18]. For a tridiagonal matrix M we define the block diagonal
matrices M and M® as

*
Mii = a; Miip1 =bi =M 1,

a; *
71 MY = (MY ) = {

MB =M -M~A

such that M = M? 4+ MB. The Baker-Campbell-Hausdorff formula
then yields

b; ieven

MA =
0 1iodd

Hence, the error is controlled by the size of |M/N||, where || - || de-
notes a matrix norm. Each individual matrix exponential is a tridiag-
onal matrix and can be consecutively multiplied.

As the exponential function is easily evaluated for this kind of block
diagonal matrices, the above provides a computationally efficient way
to calculate the retarded Green’s function. For long time evolution,
the computationally most demanding part is the remaining sparse-
dense-product, as a product of many tridiagonal matrices has to be
considered dense.

KELDYSH GREEN’'S FUNCTION IN TIME-DOMAIN As we dis-
cussed, for short time intervals g™!(t,t’) is well approximated by
a sparse matrix but becomes dense for longer intervals. While re-
tarded Green'’s functions for large time differences can be efficiently
computed by successively multiplying the sparse matrices, comput-
ing the Keldysh component

g (t,t') = —ig™(t, to) (1 +2ER) g™ (to, t') (2.8.21)

involves a dense-dense matrix product, even if the initial matrix 7
is sparse. Instead, we can successively obtain the real-time Keldysh

Green’s function on a given time-grid using
gN(t,t') = —ig™ (t, to) (1 +2&1) g™ (to, t') (2823)

2.8.22

=gt t—80)g [t — 8y, t' = 8 ) g™Vt — 8y, ).

If 8, (/) are sufficiently small, this computation can be performed using
only sparse-dense products.

33
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RETARDED GREEN’S FUNCTION IN THE STEADY STATE To obtain
the retarded Green’s function, we have to invert the matrix h. As the
inverse of a tridiagonal matrix is generally dense, computing the in-
verse is at least of complexity O (Nz). In fact, as one can easily check,
the full inverse can be obtained in O (N?) operations, as solving the
linear system hx =y for a given y € CN is in O (N).

For many circumstances, however, it is sufficient to obtain a small
number of the entries of the retarded Green’s function. And, as it
turns out, there is a specialized algorithm to obtain these. While a
algorithm to achieve this for Green’s functions was previously intro-
duced [And+o4], the algorithm discussed in [Usmg4] is simple and
sufficient for the course of this work. We define

On =€nbn 1 —Itn 1*0n 2, 06 7=0,00=1n=1,...,N

On = €enbnit —ltni1lPbivz2,  dni1 =1, dni2, n=N—1,...,0.

All of these can be computed in O (N) operations. Then the elements
of the inverse matrix can be expressed as':

(=) titipr - to10i1dj /ON 1<
(A_1)i,j = 0i_1¢ii1/0n i=j (2.8.23)

(FDYIEE gt 101 i1 /0n 1>
This allows us to compute any diagonal band (A~ )i L for fixed k
and all i in O (N) operations. This allows us, for example, to obtain
the local density of states on all sites in O (N) operations.

SPECIFIC EIGENVALUES The properties of Green’s functions at the
Fermi-surface in the ground-state are of special importance; to iden-
tify the chemical potential at a given number of particles is, however,
computationally demanding (generally O (N3)). To that end, we will
discuss how to computationally obtain the n-th individual eigenvalue-
eigenvector pair of a tridiagonal matrix.

This can be done efficiently using the algorithm presented in Ref.
[DPo4], which is more suited for computation of individual eigenvec-
tors than more traditional approaches. An implementation of this al-
gorithm has since been included in LAPACK [And+99] under the name
dstemr/dstegr.

Note that there are also fast algorithms to obtain the full spectrum
of a tridiagonal matrix in O(NInN) operations, [CR13]. Computing
all eigenvectors takes at least O (Nz) operations, as they form a dense
matrix.

10 To avoid over- or underflows, either a bignum type has to be used or the expressions

have to be rewritten appropriately beforehand.
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3.1 THE INTERACTION PICTURE

To exactly compute the Keldysh Green’s functions including interac-
tions is extremely difficult, if not downright impossible for a given,
generic Hamiltonian. Therefore, we need to approximate these ob-
jects in a controlled manor. A logical first step is the use of perturba-
tion theory with respect to the part of the Hamiltonian that we can
not treat exactly. This chapter presents the established method to do
this with a focus on diagrammatic techniques [Ramoy; Jak1s; Kel+65;
NOS88].

We can, and want to treat some parts of the Hamiltonian exactly.
To separate these from the difficult to treat parts we introduce the
interaction picture. Given a decomposition of the Hamiltonian H(t) =
Ho(t) +V(t) and t > t/, we define

U(t, 1) = Je i fvdTH(T)

Uo(t,t) = Je—ilidtHo(T)
n . (3.1.1)
u(t,t') = Up(to, YU(L, ') Ug(t/, to) = Te i dmVie(0)

= An(t) = ufto, t)Ap, (thu(t, to)
To prove the equation marked by (x), one verifies that U(t,t') =
U (t, to)Te v dTVio (FIU(to, t/) fulfills the Heisenberg equation for
the time evolution operator %U(t,t’ ) = —iHU(t,t’). With that, we
can rewrite the Heisenberg evolution of some operator A(t) at t > to

as

oot Lt
Anlt) = Fetlio Vio (T)dTAHO (t)Te tig Vig (T)dr (3.1.2)

_ ‘Yefi‘fy VHO(T)dTAHO (t:t) (313)
where the choice of the contour index of the time of A is arbitrary.

For a n-particle Green’s function in Keldysh space (compare Equa-
tion 2.3.1), this means

Gl (HL) =)™ (Tyey, (477) e, (6], (0570 el (1) )>po

e <Tye*ifv Vot )l () )>po .
(3.1.4)

Assuming the evolution of operators with respect to Hy is easily com-
puted, this is a natural starting point for an expansion in orders of
V.
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3.2 DIAGRAMMATIC PERTURBATION THEORY FOR THE GREEN’S
FUNCTION

To simplify the notation, we include the fermionic degrees of freedom,
the contour indices as well as the time in a super-index 1 = (i1, 07, t1)
(compare Section 2.3). The n-particle Green’s function then reads:

G1,...,n\1’,...,n’

=(—i)" <‘ch1 cncL, e c¥,>
Po

which is represented by a double line in diagrammatic language, as
shown on the right for the four-particle Green’s function. In the in-
teraction picture with some decomposition H(t) = Ho(t) + V(t), this
reads (compare Equation 3.1.4)

Gy, 1.
:(—i)“<7ye*1vaHo(T)ch? “Ch coT ?T> ,
Po

where c® represents the operator evolved with respect to the Hamil-
tonian Hp. Correspondingly, the single-particle Green’s function is
represented by an individual double line.

G”1/:—i<7yC]C11_,> —————
i (el o )
Expanding in orders of V yields
G(1,...,n1,...,n)

1
=Y S| drye] d 2.
(—i) i L T L Tk (3.2.1)

(Ty (=i (11)) -+ (=iVigg(mi)) € -+ ehepl - )

To simplify this expression it is convenient to expand V in terms of
creation and annihilation operators. For the scope of this work we
only consider problems, where V(t) is either quadratic or quartic.’
For the quartic case we find

| drvHo(»c)—j €Y T Y v O S () (1) (1)
Y to

o=+ i,j,k,1
0t .00
Z v1,2,‘12c],c2Tc2c (3.2.2)
1'2/12

with

V112 = 8t tar, tr, 12) (=01/) 86,1,050,00,00 Vi, iy i 1 (B17), (3:23)

1 A generalization to other types of interaction terms is straightforward.
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where 8(a,b,c) (84,) is understood as a natural extension of the
delta distribution (function). While the indices of v are numbers
(v(t) € CNXNXNXN) 5 features four multi-indices. The summation
over the multi-indices 1/,2/,1,2 is understood as a sum over the
contour- and single-particle indices as well as integrals over the time.
Without loss of generality we also require

Vi1 = &V 2 = &V = Vr2,1- (3-2.4)

If this property is not already fulfilled by the v given, we chose the
fully antisymmetric superposition for v.
For quadratic perturbations we similarly introduce

Vi =8ty —t1)(=011)80,,,09 Vi, 11y (3-2:5)

such that for a quadratic permutation V/(t)

J dt Vi, (1) :J dt Y —o ) vy (e (t)e] ()
4 o o=+ ij
= Z \_)1/|]C(])TC(1). (326)
17,2,1,2

3.2.1  Wick’s theorem

In order to apply Wick’s theorem, it is required that the initial density
has the shape

K

e
Po = T % K= E ki,jczcj (3.2.7)
Lj

for some quadratic operator K. Hence, throughout, we restrict all ini-
tial states to have this form. This implies

1
A — (et -
Mn,m <cmcn>po R (3.2.8)
Furthermore, it is only applicable if the operator (in our case Hyp) gov-
erning the time-evolution is also quadratic. Wick’s theorem [Wic50]

then states for time-ordered expectation values

[ [ 1
(Ty€1€2C3€4 -+ Cn1Cn),, = C1€28384 - Cn1Cn
— —
4+ C1C2C3C4 Cn_1Cn
1
+C1€2C3C4 ---Cn—1Cn (3.2.9)
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where ¢ can denote either a creation or annihilation operator that is
evolved with respect to a quadratic Hamiltonian and we sum over all
possible pairings. The objects on the right are defined using

—
C1Cy = <(‘TY6]62>p0 . (3.2.10)

Furthermore, for every crossing in the lines representing a two-point
correlation function we have to add a factor & to respect the commu-
tation relations. For example

— |
€1C2C3C4 = & <‘Ty(~11 éZ)po <‘Ty(~13(~:4>po . (3.2.11)

3.2.2  Decomposition in terms of single-particle Green’s functions

In the case that V(t) represents a two-particle interaction
1
V(t) = 1 Z Vi,j,k,ICIC;rchk, (3.2.12)
i,k

Equation 3.2.1 can be expressed in terms of single-particle Green’s
functions as

G(1,...,n|1,...,n) (3.2.13)
2 iv iv
:(_I)TL ' <_> L (_) i2k+nE,P g...g
2 wl-3 i) 2 9.9
k=0 pairings P 2k times
k times

where we omitted the single-particle indices, contour indices, time
dependence as well as contractions over these to improve readability.



3.2 DIAGRAMMATIC PERTURBATION THEORY FOR THE GREEN’S FUNCTION

As an example, let us discuss the first order contribution to the single-
particle Green’s function:

11 _ 0t 01 .0.0.0.0
G”-l/ 29”1/—17* Z \)2/3/‘23 <CZTC3TC2C3C1C1T> +O(V2)
114 ,55; bo

i _
=011 — 2 Z V2/3/|23{

23723

reralEE reralEEm

T At T T oAt T
€5,€3/€,C3CCq, +C5,C3/C,C3CCqy

]Wf:hﬁ T 1]

I I T AT T
+€5,€3,€65C3C1Cq, +C5,€3,C5C3CCq,
T AT T T AT T
+C2/C3/CZC3C]C1/+C2/C3/C2C3C1C]/

b0 ()
= g1/ —Air Z Vz/3f|z3{

2/3/23
—9212:9313'9111" + 9212/ 9113/ 931"
+9312:92(3:91117 — 9312/ 9113/ 921"
—9112/9213'9311" + 9112/9313/ 921"
} +0 (V)
(3.2.14)
To visualize the structure of this equation diagrammatically, we in-

troduce a symbol to represent the bare interaction (compare Equa-
tion 3.2.3)

17 1
Vi, =
20 2

For the first order term, the diagrams read (we will simplify this and
discuss the correct prefactors later):

Q): N (3.2.15)
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Due to the antisymmetry of ¥ (compare Equation 3.2.4) and the fact
that pair exchanges change the sign of a permutation we can fix the
order of the attachment points on the vertex, canceling the factors
1/4 in Equation 3.2.13. Hence, we only consider two diagrams to be
different, if the structure of the resulting directed graph (where lines
are edges and interactions are vertices) is different. However, when
two lines connect the same vertices in the same direction the permu-
tations of the two yield the same pair contractions, which is only to
be counted once. To correct for this, we multiply each diagram with
27T where neq is the number of pairs of equivalent lines. Note that
diagrams, where external indices are connected to different vertices (in
contrast to different positions on the same vertex) are still considered
to be different diagrams. For that reason, the order of the external
indices (if not trivial as in the case of the single-particle Green’s func-
tion) is considered part of the diagram. As an example, consider

2’ 2 1 2
1 1 2’ 1
These are identified and only counted as one diagrams. On the other

hand
2 2’ 1 2’
.
1’ 1 1’ 2

are considered different. For the case of the single-particle Green’s
function this reduces the number of first-order diagrams from six to
just two.

Q (3.2.16)

As we see in Equation 3.2.15, diagrams 3,5, 6 and 7 can be combined,
canceling the 1/4 while diagram 2 is only combined with diagram 4,
as two Green'’s functions connect the same two vertices in the same
direction.

Similarly, fully exchanging the indices of one vertex with those of
another yields the same result, giving an additional k!, canceling the
1/k! present in Equation 3.2.13. If a given diagram is symmetric under
exchange of vertices (similar to case of a pair of equivalent Green’s
functions discussed prior), we prevent double counting by introduc-
ing a symmetry factor S, that counts the number of permutations of
the vertices that leaves the diagram unchanged.

Lastly, we note that the correct sign can always be determined by
computing &P ™, where P denotes the permutation of the outgoing
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2’ 2
£ o
o) efije et
2’ 1 1’ Q 1

_ TG 2
(@) Tslei ]—’ 1, ‘ 1

b) neq =0,
P =1, ( )Seiz (@ Neg =1,
Moop = 1 E,P :/1 S=0,
_/ E'P _*]/
Moop =2 Moop = 2

Figure 3.1: Some of the diagrams contributing to the two-particle Green’s
function. Diagrams (a) and (b) are connected while diagram (c) is
not (compare Section 3.2.4).

indices with respect to the incoming ones and nyp, is the number of
closed loops in a diagram; this is due to the fact that exchanging two
indices either changes the number of loops by 1 or changes the sign
of the permutation of ingoing vs. outgoing indices.

The value of a diagram is then determined as follows:

Algorithm 3.1: Evaluating diagrams for Green’s functions

Given a diagram contributing to the expansion of the full
Green’s function, let (compare Figure 3.1)

® Tleq be the number of equivalent lines, connecting the same
two vertices in the same direction

¢ S be the number of ways the vertices can be relabeled with-
out changing the diagram

¢ P be the perturbation of outgoing indices compared to in-
going indices

® Myeep be the number of loops in the diagram.

Than the diagram is evaluated as

s (IT%) (ITo).

where multi-indices are assigned to the vertices and Green’s
functions and all but the external indices are summed over.

To obtain the full n-particle Green’s function we have to sum over all
topologically different diagrams.
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3.2.3  Vacuum diagrams

When considering all contributions to the expansion of the Green’s
function, many of them contain subdiagrams, that are not connected
to any of the external indices, i.e. the diagram factorizes. For an exam-
ple, see Equation 3.2.16. These subdiagrams do not modify the result:
the sum of all such diagrams corresponds to the expansion of the
0-point Green’s functions with

Moy =1 (3.2.17)

The expansion of the n-point Green’s function can thus be under-
stood as being multiplied with an arbitrary number 0-point Green’s
function, contributing vacuum diagrams but not modifying the result.
Therefore, we only sum over diagrams that do not contain a subdia-
gram, that is disconnected from all external fields.

3.2.4 Connected Green's functions and vertex functions

If a diagram contributing to the n-particle Green’s function cannot be
decomposed into a product of subdiagrams it is considered connected
(see Figure 3.1). It is straightforward, that the full n-particle Green’s
function can be recovered using products of connected Green’s func-
tions.

The contributions to the connected n-particle vertex function are
obtained by considering a diagram contributing to the connected
n-particle Green’s function and removing all single-particle Green’s
functions, that contain an external index. It is furthermore convention,
to multiply diagrams contributing to the n-particle vertex function by

i'"™, modifying the prefactor in Algorithm 3.1 to

_— aPJrnloop

i nes (Hi\‘)) (H g) . (3.2.18)

This convention ensures, that the n-particle vertex function can be
used in the perturbative expansion of the Green’s function in place of
the bare n-particle interaction without modifying Algorithm 3.1.

The sum of all those diagrams is called the n-particle vertex func-
tion. Note that in many cases, we will still connect arrows to the
end-points of vertex functions to differentiate ingoing from outgoing
indices.

3.2.5 One-particle irreducible vertex functions

A diagram contributing to the connected n-particle vertex function is
called one-particle irreducible, if the diagram remains connected when
any one of the constituting Green’s functions is removed. Examples
and counter examples are shown in Figure 3.2. The sum of all these
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(d)

Figure 3.2: Example of contributions to the two- ((a)-(c)) and three-particle
vertex functions. As (a) and (c) are one-particle irreducible, they
also contribute to the irreducible vertex function while (b) and
(d) are one-particle reducible.

diagrams is called the one-particle irreducible n-particle vertex func-
tion. Diagrammatically, we represent these by

@, @, @, ... (3.2.19)

The one-particle irreducible one-particle vertex function is called the
self-energy ¥ and therefore diagrammatically represented by

@ _ @ (3.2.20)

3.2.6 Basis transformation

As we discussed in Section 2.3, it is often convenient to change from
the contour basis to the RKA-basis. Transforming all bare Green’s
functions in a given diagram and associating the corresponding trans-
formation matrices with the vertex functions instead gives us the
transformation formulas

/ / —
yoiloe — E DyrjorX® 'UDGR(X (3.2.21)
o’/,o
(X]/OCZ/‘(X](XZ - Z 0'1/02/|0'102 —1 —1
Y2 - DO‘1"‘71'D°‘2’|‘72'Y2 DU]IMDGZ\CXZ

047,0,1,01,02

and so on for the vertex functions as well as the two-particle bare
interaction. The transformation of the bare interaction results in

\_}oc1/oc2/|oc1 o)
1727112

_ 5(‘t] //t2’1t1ItZ)%viV,iz/,h,iz (t] /) for O({ + O(é + o1 + o odd
0 otherwise.

(3.2.22)
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Similarly, a quadratic perturbation to the Hamiltonian in the Keldysh-
basis is represented by

i . . , /
Prq1 = {6(‘(1 t1,)v1],|11 (t1/) for oy + o1 odd (3.2.23)

0 otherwise,

hence it only has a retarded and advanced component.

3.2.7 The Dyson equation

By definition, the full one-particle vertex functions can be reproduced
by adding an arbitrary number of free single-particle Green’s func-
tions in between irreducible vertex functions. Adding the outer legs
we amputated, one retrieves the full one-particle Green’s function:

=<=:—<—+~<—@—«+~<—@—<—@—«+... (3.2.24)
——+ (D)~ (3.2.25)
=t A_@# (3.2.26)

Equation 3.2.25 is also known as the Dyson equation. In terms of
Green’s functions it reads

Gy =910+ 91122222617 (3.2.27)

Formally solving this for G or X using a matrix notation in the space
of super-indices yields
1 1

G=—r——&S=g

T —1 -GN (3.2.28)

Using Equation 2.5.29 and Equation 2.3.15, we find [Jak15]

B — (@ret =1 GK Gadv —1 Gret —1
G ' = (G™) . _(1 ) (G™) , (3.2.29)
(G*) 0
which implies the form
ZK Zret
y= (ZadV O > ’ (3230)

for the self-energy in the Keldysh basis. The fact, that there are only
three non-zero components in the Keldysh basis can be understood
as an inherited theorem of causality.

Note that in contrast to the Green’s functions, the self-energy only has three compo-
nents, even at equal times
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The resulting equations for the individual components read [KKK18]:

Gret(t,tl)

= g™(t,t') +J dtydta g™ (t, t1) I (ty, 2) G (t2, ')
to

GX(t,t)

_ {gretzretGK+gretzKGadv+ gKZadvGadv} (t,t/)

(3-2:'29) {Gret |:(gret)1 gK <gadv>71 +ZK:| Gadv} (t t/)

= —iG™(t, to) (14 2&R) G2V (to, 1)

(3.2.31)

+ J dtydta G™H(t, t1)Z8(ty, 12) G2V (1, 1),
to

In the steady state the Dyson equation reads

Gret(w) — gret(w) + gret(w)zret(w)Gret(w)
GK((U) — Gret(w) [gret(w)f1 gK(w)gadV(w)f1
+25(wW)] G* Y (w)
— Gret(w)zK(w)GadV(w),

where in the second line of the last equation decay processes are as-
sumed to lead to a fading memory of the initial density po in Equa-
tion 3.2.31 (compare Section 2.4). The Dyson equation for the retarded
Green’s function can be formally solved as
1

(gret)—1 — yret(w) +1i0
- 1 (3.233)
T W—h—2*(w) +i0 3233

Gret(w) —

(32.32)

As we will discuss in Section 3.4.1, a first order perturbation theory
expansion (and as we will later see, a first-order fRG truncation) yield
self-energies which are time-local and have a vanishing Keldysh com-
ponent:

K t') =0, I, t) = Z(1)8(t—t),

which renders it particularly simple to evaluate Eq. (3.2.31)[KKK18]:

G™(t,t') = —i0 (t—t') Fe—it[irati[RO(t)+Z (t1)]

2.
GK(t,t/) = —iG™(t, to) (1 4+ 2&R) G2V (¢, t'). G234)

Hence, h® + ™t takes the role of an effective Hamiltonian.
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3.2.8 The tree expansion

Higher order vertex functions are of importance, as any connected
Green’s function can be build up from one-particle irreducible vertex
functions using the tree expansion [KSFo1; KBS10].

This expansion forms a tree, as loops are forbidden: if a set of ver-
tices was connected by a loop of Green’s functions, they together form
a single-particle irreducible unit and are already included in some
other diagram. Furthermore, note that in the tree expansion of the
connected n-particle Green’s function only 2,3, ..., n-particle vertex
functions appear.

The Dyson equation (see Section 3.2.7) can be understood as a one-
particle tree expansion.

As anon-trivial example, let us give the expansion of the connected
three-particle Green’s function:

= 3¢

where refrained from explicitly writing down the different ways to ar-
range two v, vertices. Note that for a more general Hamiltonian (that
has three-point terms) also three-point vertex functions are generated
and lead to a more complex tree expansion (see e.g. [KBS10]).

+perm. (3.2.35)

3.2.9 Quadratic perturbations

When assuming a quadratic perturbation V(t), v only has a single
in- and outgoing index. The resulting perturbative series is signif-
icantly simpler as no higher order irreducible vertex functions are
generated. As an example, let us consider two subsystems coupled
by a one-particle term T, that is considered as a perturbation to the
Hamiltonian. Without any additional changes to the formalism, the
self-energy, as the only one-particle irreducible diagram, is just the
vertex representing T. This only contributes a retarded self-energy
and in the stationary state the retarded component of the Green’s
functions is
1
@ = S THo T 10 (32.36)
1

= ; T (3-2.37)
w — ho — +10
0 hy T 0

which is both correct and trivial. This formalism was, however, based
on the assumption, that the unperturbed Green’s functions are easy

ret(

g
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to calculate. This might not necessarily be true for a large reservoir;
let us thus modify the formalism to consider diagrams irreducible
when removing lines within system 0.3 The only resulting irreducible

diagrams is
@ = @_@ (3.2.38)

Note that due to Equation 3.2.23, the coupling is either retarded or
advanced, but does not contribute a Keldysh component. For a po-
tentially time-dependent coupling T(t) we therefore find

I [t) =T () g™ (/| TT(t)

2.
TR =T () g (0T 239
and for time-independent couplings in the stationary state
Zret(w) — Tgret(w)TT
(3-2.40)

Mw)= Tgf(w)TT,

which is exactly what we already found in Section 2.5.4. Note that the
Green’s functions in Equations 3.2.39 and 3.2.40 are the ones in the
disconnected reservoir.

3.2.10 Reservoirs and two-particle interactions

For the case of systems with both, reservoirs and two-particle interac-
tions, we restrict ourselves to non-interacting reservoirs (i.e. the sup-
port of the interaction is restricted to the system without the reser-
Voirs).

A B
H= Z hn,mcitcm—k Z hn/mcL+chm+NQ[

n,mGM n,meNy
.i.

+ Z Tn,mcncher—kh.c.

nENy (3.2.41)

mMENg
+ 7T

Vk,l,m,anCLCnCm
kL mmneNgy

When performing the perturbative expansion in the two-particle in-
teraction we realize that: (a) the vertex functions are only non-zero
within system A and (b) within a diagram, we only need Green’s func-
tions in the absence of the two-particle interaction with both indices
within system 2( to compute the vertex functions. As we discussed, it
is possible to obtain these non-interacting Green’s functions by inte-
grating out the reservoirs. Subsequently, we can treat the interaction
in the diagrammatic formalism discussed in this chapter.

3 This formulation of perturbation theory can be formally justified by considering h;
part of the perturbation and an adequate resummation.
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3.3 SYMMETRIES IN THE LIGHT OF PERTURBATION THEORY

A detailed discussion of symmetries of the Green’s and vertex func-
tions can be found in [JPS10b]. Here, we present some of these sym-
metries and argue, under what condition they are preserved within
perturbation theory. Based on this, we will argue in Chapter 4 how to
preserve them in an fRG approximation.

3.3.1 Particle exchange

Just like the Green’s functions, vertex functions are (anti-)symmetric
under the exchange of particle. For any permutation we find

P i i ! 'P
Yoo (PUIY) = EPy) T (1) =v{ o (LIP). (3-3.1)
This property is conserved in any diagrammatic approximation that
includes all diagrams related via exchange of external indices.

3.3.2  Complex conjugation

As we have discussed, Greens function are connected under complex
conjugation. Furthermore, the time-local two-particle interactions
considered here fulfill

o @) =90 =9 () = =5 I ) (632)

i i i/ ifi/
where the second equality used the antisymmetry of the interaction
and the third employed Equation 3.2.3. Therefore, the complex conju-
gate of an individual diagram can be obtained by reverting all lines
and inverting all contour indices. Counting the number of signs ap-
pearing through conjugation of free Green’s functions, bare vertices
and the prefactor of the diagram# results in

Yo" = =y (tht) (3-33)
and when transformed into the RKA-basis
VIR () = (—1)1 Doy M g, (3-3.4)

From this derivation, it is obvious that this symmetry is conserved for
all diagrammatic approximations that are invariant under inverting
all lines.

3.3.3 The stationary state

For a time-independent Hamiltonian and when a stationary state is
reached both, the bare Green’s and vertex functions are local in fre-
quency space (compare Section 2.4). Similarly, a time-independent

4 Note that we defined an additional factor of i' =™ to be part of the n-particle vertex

function in the factor obtained from Algorithm 3.1
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two-particle interaction preserves energy. With these two ingredients,
it is straightforward to show that for every diagram contributing to
any N-particle vertex function energy is conserved.

Yiww)~s (Y o= o). (3.35)

This reduces the number of independent frequencies.

3.3.4 Causality and perturbation theory

The causality relation, that we already discussed in Equation 2.3.20
also has immediate impact on the vertex functions [JPS10b].> To exem-
plify this, consider a diagram contributing to some n-particle vertex
function. We will now prove, that the time associated with an external
index with RKA-index 2 can not be the strictly largest time.

Starting at any of the external indices with RKA-index 2 (let us label
it x), we realize, that due to Equation 3.2.22, at least one of the adja-
cent Green’s functions has to feature a 1-index. If the second vertex
this Green’s function is connected to (y) is connected to an external in-
dex, we have shown that ty < ty as g'*(tlt)) =0 = g°*"(t'|t) Vt > t'.
If the vertex is internal, the corresponding time is integrated over and
the patch Green’s function (that is only non-zero on a set of size zero),
does not contribute; therefore the second index of the Green’s func-
tion is a 2 and still t, < ty. If this internal vertex is unvisited thus
far (hence we only know of a single index 2 connected to it), we can
repeat the procedure, as another 1 has to be connected to it. If, on
the other hand, this vertex has been visited, all vertices visited in be-
tween are restricted to have to same time index (we are building up a
sequence of increasing times and found a loop) and therefore are only
non-zero on a zero-set of the integration manifold. If no vertices were
visited in between (i.e. the line discussed is simple loop), we employ
the fact that g™®t(t|t) + g2V (t[t) = 0, hence the last unknown index is
a 1 and we can proceed. This proves, that the time t associated with
an index 2 can not be the strictly largest external time argument.

From this, it finally follows, that

2222t .t (3.3.6)

is only non-zero on a set of measure zero. Note that, while in accor-
dance with Equation 3.2.30 the above statement is not sufficient to
prove Equation 3.2.30.

3.3.5 Perturbation theory and the fluctuation-dissipation theorem

We will now demonstrate, how the fluctuation-dissipation theorem
in a thermal state is preserved within diagrammatic approximations.

The proof included in [JPS10b] is slightly different, due to the omission of the patch
Green'’s function.
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Understanding the preconditions to preserve this symmetry will
guide our approximation in the later chapters (compare Chapter 8).
The proof presented here is an adapted and simplified version of the
one provided in [JPS1ob] that works on a diagrammatic level.

Using the definitions

molt =y -y

k=1,...n k=1,...n

T (3:37)
3-3.7
A"'" (wlw’) Z Wy — Z Wi
o-k +Tl Uk:+

we have shown (compare Sections 2.5.3 and 2.5.5), that the free, single-

particle, reservoir dressed Green’s functions in thermal equilibrium
fulfill

olo’

’ _ AO‘|0‘I ! olo’ G/‘G
o2l | = e BAT (wlw) gm

(wlw g0 (wlw”). (3:38)

For a symmetric H (note that g(w|w’) ~ §(w — w’) in equilibrium and
compare Equations 2.5.13 and 2.5.21)°

olo’

617 (wlw) = e~ BAT (wlw gme gorle

(wlw?) Iqriq(@'lw). (3:39)

Furthermore, for a time reversal invariant bare interaction (as dis-
cussed throughout this work) it is easy to verify that

VYo (w|w) = e AT (@0 gmT TG (lw). (33.10)
Let us now consider a diagrammatic approximation to a vertex func-
tion that satisfies

YpPx/x = E'PYX'|X =Yx/|Px (3.3.11)

for all permutation P. Now let D be an individual, arbitrary diagram
contributing to the vertex function under consideration. By using
Egs. 3.3.9 and 3.3.10 we revert the direction of each bare vertex and
Green’s function, subsequently changing the ingoing indices of the
vertex function with its outgoing indices. In this process we acquire
prefactors according to Egs. 3.3.9 and 3.3.10 as well as potentially a
permutation of the external indices. Not all diagrams map to them-
selves (topologically) when changing the direction of all lines (com-
pare Figure 3.3). To preserve the fluctuation-dissipation theorem, we
therefore have to require, that a diagrammatic approximation as a
whole must map to itself when reverting all bare Green’s and vertex
functions. Using

11 112 A201 1 112 2|1
AV = AV12 A2 m! T =m!2 4 m?

It is also possible to discuss the general case of a complex (bare) Hamiltonian. De-
tails can be found in Ref. [Jakog; JPS10ob]. Throughout, we restrict ourselves to real
Hamiltonians, where the proof of the FDT is simpler.
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Figure 3.3: An example of a diagram, that does not map to itself when re-
verted. A diagrammatic approximations that includes this dia-
gram also has to include the reverted one to potentially fulfill
the FDT. Any finite-order perturbative expansion is invariant un-
der the inversion of all lines.

we find:

Dl — e—BA‘/“Em1I‘1DP1|P"1/

where D is the reversed of D. Due to condition 3.3.11, however, we are
guaranteed that either D itself is invariant under the permutation of
the indices and reversion or that a second diagram exists, that ensures
this symmetry (note that £ = &P"). Hence, we have finally proven,
that

o'|o

Nw) = e B
Yqriqlwlw) =e

o'lo (! o'lo ’
ATl gm0 (wlw). (33.12)
Using this property and the expansion of the self-energy dressed
propagator in terms of the self-energy one finally also finds:
olo’ N —BAT (w|w’) gmole’ ~o'lo,
Ggq(wlw’) =e ™ G yq(ww)
for symmetric Hamiltonians and diagrammatic approximations pre-
serving Eq. 3.3.11 and mapping to themselves when reverted. For
single-particle Green’s functions in the RKA basis, this reads:

GX(w) = (14 2En(w) (6™ (w) — 6™ (w)). (3-3.13)

With this, we have also shown that Eq. 3.3.13 holds in all orders of
perturbation theory. The analog expression holds for the self-energy.
While not as clear with respect to arbitrary diagrammatic approxima-
tions, the proof provided in [JPS10b] does not rely on a symmetric H
and has guided the simplified arguments provided here.

Note that the proof presented here, in contrast to the statements
about Green’s functions in quadratic Hamiltonians made in Sec-
tions 2.5.3 and 2.5.5, is restricted to the case of a thermal equilibrium.

3.4 LOWEST ORDER PERTURBATIVE EXPANSIONS

As a reference, we will now explicitly discuss the lowest order pertur-
bative expansions.

51



52 PERTURBATION THEORY IN KELDYSH FORMALISM

6'1|52
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Figure 3.4: Demonstration of the procedure used to prove the fluctuation-
dissipation theorem for diagrammatic approximations. Note that
this diagram alone will not satisfy Equation 3.3.12, as it does
not fulfill Equation 3.3.11. The approximation D /3772 + D2/121,
however, does.

3.4.1 First order

When reducing the results of the previous section to plain first order
we are left with the diagram

@ — (3.4.1)

With nyoop = 1, we evaluate this to
Ly = —1V112/11292)2- (3-4-2)

Employing Equations 3.2.22 and 2.3.22, we find

I ([t) =0
i
ZfLe/Ti(t/H) =— ivi/j/m‘ (t)s(t' —1) (Zgﬂj,(ﬂt) + gﬁj,(ﬂt))
—i/  x (3-4-3)
=visj735 (1)8(t" —t) > <1+ gﬂj,(t,t)> )

=(ep@rrefv)

When interpreted as an effective contribution to the Hamiltonian this
can be understood as the density of the free fermions acting on the
system, modifying the time-evolution.
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Assuming a time-independent interaction, the self-energy is easily
Fourier transformed

—i /. dQ
I (w) = Va2 <1+J271912<2'(Q)> : (3-4.4)

Note that the self-energy is time-local and thus frequency indepen-
dent when Fourier transformed.

3.4.2  Mean field theory

The above approximation is obviously not self-consistent as the den-
sity of fermions contributing effective potentials are computed in the
absence of the interaction. This can be resolved by instead using the
full Green’s function on the rhs. The set of equations that needs to be
solved can thus diagrammatically be represented as

O . -

or written out explicitly:

L (0) = v (i+ 65,61,
where GX is obtained using the Dyson equation (see Equation 3.2.31).
This set of equations has to be solved self-consistently.

While being self-consistent and containing contributions of arbitrar-
ily high order, all processes included are local in time. MFT is known
to underestimate the influence of fluctuations and over-estimate long-
range order; as an example, consider the 1D Ising model [Isi25],
where mean-field theory produces a finite-temperature phase transi-
tion, although thermal fluctuations destroy the ordered phase at any
finite T.

3.4.3 Second order

To obtain second order perturbation theory we write all single-
particle irreducible diagrams:

()
(2
© Y4 -G8 o
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Thus the full second order perturbation theory for the self-energy
reads”:

Yy =—1V112/1292)2

—V1/21112V374113493(2/ 923944/ (3.4.6)
1_ _
+ Evl 121134V374711293|3'92]2/ 944/

While we do not explicitly aim to solve second-order perturbation the-
ory within this work, we use it as a reference point and demonstrate,
how fRG relates to this approximation.

7 Note that the third contributing diagram has a symmetry factor of 2



FUNCTIONAL RENORMALIZATION GROUP

4.1 INTRODUCTION

The functional renormalization is an implementation of the Wilsonian
renormalization group idea in terms of Green’s- and vertex functions
in that it treats energy scales successively. As we will see, it also has
a close relation to the perturbation theory discussed in Chapter 3.

Exact flow equations for the generating functional for Green’s and
vertex functions have already been published early on in the develop-
ment the RG techniques [WH73; Pol84]. The method was then further
developed in the early 1990s [Wet93; Morg4; KSK92] and has since
evolved into a versatile tool that is applied in fields as varied as quan-
tum gravity [Reug8], high energy physics [BJWq9] as well, as is our
main focus, lattice models in the context of condensed matter physics.

Even within the realm of lattice models, the equilibrium formu-
lation of the fRG was used to investigate a wide variety of prob-
lems, ranging from quantum impurity problems [KEMo6; Kar+o8],
over chains [Med+o2a; Med+o02b; Ens+o5; And+o4; Jak+o7] to spon-
taneous symmetry breaking in the Hubbard model [HSo1] and spin
systems [RTT11]. For a more complete overview of its applications,
see [Met+12].

It was extended beyond equilibrium and employed to discuss sta-
tionary states [GPMoy], transient time evolution [Ken+12] and peri-
odic driving [EMK16b].

At this point, there is number overview articles [SHo1; BTWoz;
Polos; Met+12] as well as books [KBS10] giving a detailed introduc-
tion into this method. For this reason, we will refrain from presenting
a full, path-integral based derivation of the functional renormaliza-
tion group but instead present a derivation of the defining equations
based on the diagrammatic expansion discussed in Chapter 3 [Jakoo;
JMSo7].

We will then discuss under what conditions the truncated fRG flow
equations preserves the fluctuation-dissipation theorem and causality
(Sections 4.3.1 and 4.3.2). Thereafter, we present two specific examples
of implementations of the fRG using a reservoir cutoff in time- and
frequency-space (Sections 4.4.1 and 4.4.2). Lastly, we discuss how to
simplify fRG and reuse functions already present in a typical fRG
implementation to obtain perturbative results (Section 4.5).
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4.2 THE FRG FLOW EQUATIONS
4.2.1  Scale dependence of Green’s and vertex functions

To analyze the energy-scale dependence of the vertex functions, we
introduce a cutoff parameter A into the free propagator:

g1 — 9 (4.2.1)
such that there is a Agp, With
Aina —
g”f1l1_9”1/ (4.2.2)

and the cutoff dependence is in some sense well behaved. The deriva-
tive of the free propagator is called the single-scale propagator® and
visualized by a slashed line

ag{\ ,
[1
Sﬁ] ) = a/\ = /l . (423)

By virtue of the perturbative expansion, this induces a scale depen-
dence in all diagrams and thus all vertex functions and the full, inter-
acting Green'’s function

A
Yi.n..mn Y]’...n’H...n

(4.2.4)
Gimf.m — Gq\’...n’ﬂ...n

To analyze the scale dependence of the Green'’s function, and finally
calculate the full Green’s function in the physical limit (A = Agpa),
consider the expansion of the vertex functions in terms of diagrams

oy odr

- = - 2.

AT 2 A (4-2.5)
diagrams d

Each diagram represents a linear combination of products of (now

scale-dependent) bare Green’s functions as well as bare vertex func-

tions. Hence, the derivative is to be performed using the product rule.

Consider this diagram contributing to the two-particle vertex:

() G () @
aA + + 4:26)

There are different ways to handle equivalent lines, as introduced
in Chapter 3: the last diagram should appear twice due to the deriva-
tive of the two equivalent lines. We decide to only write down one of

If the A dependence characterizes a low-energy cutoff the single-scale propagator
will be (more or less) sharply peaked at a given energy.
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these; the missing factor of two cancels with the factor 27 ™ of Algo-
rithm Algorithm 3.1 (we do not consider dashed and undashed lines
to be equivalent anymore). This represents the simple realization that
for two equivalent lines including the symmetry factor:
s A A S . A aN B
a/\iw 12/13495]3/94]4/V374/12 = V112134853944 V3a712- (4.2.7)
When considering the derivative of the sum of all contributing dia-

grams one can identify one-particle irreducible vertex functions. For
the diagram above we find:

(4.2.8)

where the resummed diagrams are understood as a set of the con-
stituents. Similarly, we can see that self-energy insertions can arise

(2)
S
€ @ (4.2.9)

on either side of the single-scale propagator or within the free Green’s
function. One can easily convince oneself that not only are all di-
agrams contained in one of these resummed diagrams but also all
necessary diagrams for the resummation appear exactly once.
Summing up all self-energy contribution turns all bare Green’s
functions into full ones and replaces the single-scale propagator with

e+ A : e+ —( : )74_+74—@-¢@—e+...

Note that in this construction

IN=— # =H=. (4.2.11)
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Instead

= (1 + #@) — (1 +@=-e> (4.2.12)
— (—+ =D —) (=) F ) (D))

== [a,\ (—) ' | =<

={G[ang7"] G}
Inspecting Equation 4.2.10, we can also interpret S as being the A
derivative of G, but only acting on the bare Green’s function (where

we introduced the cutoff), while not acting on the self-energy. We
formally denote this by

S =0xG1 (4.2.13)

which we call the derivative with respect to the explicit A dependence.
Note that due to the definition of the single-scale propagator the bare
and full patch-component (compare Equation 2.3.15) vanish:

st (tit) = 0= ST, (tlt)) v, t. (4.2.14)

i/

To exemplify the procedure, let us consider the one-particle vertex
(i.e. the self-energy, see Equation 3.4.5):

(4.2.15)
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where we used the expansion of the two-particle vertex:

7

2 2
: ()
2 2 2’ 2 .
IORD-G =R
1’ 1 1’ 1 1’ 1 1 1 (4216)
2’ 2
+ T
1’ 1
Similarly, one shows
2/ 2 2’ 2

1 1’ 1

1 1 1
2
(2] L)
—
1

This procedure results in an infinite hierarchy of differential equa-
tions. Each differential equation has the form

I
iy
S

X
iy
(4.2.17)

IV =7 (v4...,. vy, G,9)
=50, ...y, g,s)

making each of the equations an ordinary first order differential equa-
tion. Conventional derivations based on the path-integral formalism
can be found in the literature (e.g. [KBS10]).

(4.2.18)

4.2.2 Initial conditions

For a well behaved cutoff introduced in the free Green’s function the
above (infinite) set of differential equations defines how the vertex
functions in the presence of two different values of the cutoff are
related. For this to be of any use, we need at least one value of A =
Aini where the vertex functions are known.
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We will usually chose Ajni = co and introduce the cutoff A in the
bare Green’s function in a way that they become simple enough to
evaluate all vertex functions at A = Ajy; analytically. The details of
the cutoff introduced will differ but generally, it is desirable that

g (Ht”) = 0 Vt, t' > to

2.1
gret,/\im(ﬂt/) =0Vt t' >ty t At (4219)
while maintaining
gret i (t[t) + gV i (¢t) = 0. (4.2.20)

With this, the initial condition for the self-energy becomes (note that
the patch Green’s function contributes finite weight at equal times,
compare Equations 2.3.15 and 3.4.3)*

AR () =0

i
N 1 (4.2.21)
Z?,It'fm‘(ﬂt’) = Vi (D)8t — t)5 Vt, t’ > to.
This corresponds to the self-energy of half-filled, uncorrelated sites as
emerges in an infinite temperature state or when strongly coupled to
partially filled reservoirs. For the higher vertex functions (for times

larger than to) we find

2, Ami -
Yi'22 = V122

(4.2.22)
YA =0 vk > 2.

Generally the initial conditions depend on the details of the cutoff
scheme.

While in principle, the set of differential equations in combination
with the initial conditions is sufficient to solve the entire problem, in
practice we have to truncate the hierarchy defined in Equation 4.2.18.

4.2.3 Truncation

Thus far, we have just rewritten the full problem in terms of differ-
ential equation without any approximation; the solution of this for-
mulation is, however, as hard as the original problem. To be able to
approximately solve this infinite hierarchy of differential equations
presented above we note that all diagrams contributing to the rhs of
the flow equation of the n-particle vertex function are at least of order
n in the bare interaction. For small interactions a reasonable trunca-
tion is therefore to approximate all right-hand sides of the differential
equations by 0 beyond a given truncation order. More involved trun-
cation schemes exist [Kato4], but are not considered throughout this
work.

The equal time Keldysh component will in general not vanish and depend on the
cutoff used. Later, we will discuss concrete examples.
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So far we have not specified how to introduce the cutoff parameter
A and expect the solution of the exact flow equations to be indepen-
dent of this choice; after truncating the flow equations, however, the
results will generally depend on it. To obtain an RG scheme in the
traditional sense, it is essential to choose the A dependence such that
it properly regularizes divergences; in our case, that means that the A
should act as in infrared cutoff. If done properly, the fRG equations
act as an RG scheme and the resummation regularizes divergencies.

4.2.4 Why fRG is not a diagrammatic approximation

As we have derived the flow equations using diagrammatic tech-
niques one might be tempted to classify the (truncated) fRG as a
diagrammatic approximations. This line of thought is erroneous: we
have seen in the example discussed in Equation 4.2.8, a single dia-
gram can be associated with different vertex functions and thus asso-
ciated with different orders of the flow equation; a simple truncation
disregarding the flow of the three-particle vertex will partially disre-
gard the diagram presented in Equation 4.2.8.

One can easily see that in a first order truncation scheme only the
first order diagram is fully contained in fRG while an infinite number
of additional diagrams is partially resummed.

In addition to the perturbation theory diagrams a second order
truncation contains ladder diagrams for the vertex function while
most other higher order diagrams are only partially included.

4.2.5 Flow equations in the stationary state

In the stationary state it is straightforward to Fourier transform the
flow equations and immediately obtain the stationary state vertex
functions. As we will discuss approximations to the stationary state
explicitly in Chapters 7 and 8, we deem it beneficial to explicitly
state the stationary state flow equation. The self-energy flows as (com-
pare Equation 2.4.5)

—i

ALy (w) =5

JdQszwzm =0+w,X=0Q—-w,A=0)S5;,/(Q)
(4.2.23)

while for the (truncated) flow of the two-particle vertex function we
write

a/\YVZ/HZ(n/X/A) = Z a/\Y%Z/HZ(W, X,A) (4224)
xe{p,dx}
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with the individual channels:

p _ i—
a/\Y] ,2/“2(“, X, A) —ﬂ J dw

X—A X—A I
Y172/134 T, w + 3 , W — 5 33‘3/ sz

IT X+A X+ A
G4‘4/ z + w ')/3/4/“2 ﬂ, ) + w, 7 — W

(4.2.25)

T2 2

X X X X
|:S3|3/ <CU— 2> G4‘4/ <w+ 2) + 63‘3/ (CU- 2) S4|4/ <w+ 2>:|

m—A m—A
Yaopa | W+ —— X0 ———

i Mm+A Mm+A

2 2
(4.2.26)

i M— X m—X
aAY?/Z’Ilsz X, A) “on J dwyi3i14 <w + Ty W 2,A>

A A A A
|:S33/ <(,U— 2) G4|4/ (w+2> +G3‘3/ ((U— 2) 54‘4/ <w+ 2>:|

Mm+X m+X
Yoz~ tw 5w A

(4.2.27)

The three terms on the rhs of the second flow-equations represent the
three types of diagrams shown in Equation 4.2.9.

4.2.6  Cutoff in the for of a self-energy

Some cutoff schemes can be more intuitively understood as a self-
energy via the Dyson equation

G" = G+ Gz, 6"

= SN =036 =G (0,ZL,) G™ + GZL S (4.2.28)
=GN (AZy) G™.
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Such an interpretation of the cutoff can be useful in real-time as well
as in frequency space. In the stationary state the Dyson equation can
be solved especially easily and yields

1
Gret,/\(w) —
Gret(w)— T — szlttr/\(w)
— t]A (4.2.29)
gret(w)fl _ Zzit’ (LU) _ Zret,/\(w)

GE M w) = M w) | T (w) + 25 (w) | G (w)

with corresponding single-scale propagator.

4.3 SYMMETRIES WITHIN FRG
4.3.1  Fluctuation dissipation theorem

As we discussed in Section 3.3.5, the fluctuation-dissipation theorem
is conserved when making a diagrammatic approximation, as long
as the diagrammatic approximation conserves antisymmetry with
respect to particle exchange and maps to itself when inverted. The
proof we presented was based on properties of diagrams as well as
the fluctuation-dissipation theorem of the bare propagator and vertex
function. Hence, it is straightforward to generalize it for approxima-
tions to the fRG flow-equations. This is possible, if

(a) the truncation and all further approximations includes all dia-
grams such that the antisymmetry with respect to particle exchange
is conserved and the rhs of the flow equations maps to itself when
inverted and

(b) the bare single scale propagator and bare Green’s functions ful-
fill the fluctuation-dissipation theorem in presence of the cutoff A.

Following the same steps as outlined in Section 3.3.5 one then
shows that all vertex functions fulfill Equation 3.3.12.

4.3.2  Causality

Similar to the fluctuation-dissipation theorem, the proof of the causal-
ity relation (compare Section 3.3.4) is reduced to individual diagrams
and based on properties of the bare vertex function as well the bare
propagators.

This prove can be directly generalized to the flow-equations of fRG
by realizing that any vertex function in the truncated fRG equations
can be understood as a linear combination (i.e. integral) of diagrams
containing bare interactions, non-interacting Green’s functions and
single-scale propagators at various values of the cutoff. As the theo-
rem of causality is linear, it remains true as long as the bare Green’s
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function and single-scale propagator fulfill causality in presence of
the cutoff.

Note that even if the cutoff breaks causality, the exact solution
will recover this symmetry at the end of the flow if solved exactly;
when the hierarchy of equations is truncated, however, we can expect
causality only if the cutoff does not explicitly break it.

4.4 EXAMPLES: FIRST ORDER FRG SCHEMES

As examples, we will now discuss three implementations of the first-
order fRG equations designed for time-dependent problems, station-
ary states and equilibrium scenarios.

4.4.1  Reservoir cutoff in real time

In this scheme, first implemented in [Ken+12], all single-particle
states of the system are initially coupled infinitely strongly to a
wide-band reservoir which suppresses all dynamics and immedi-
ately forces the system into a thermal state regardless of the in-
teraction; by lowering the hybridization strength A, one eventually
retrieves the original problem. The description presented here is
based on [KKK18]. 3
The causality relation in this scheme is preserved as the system
in presence of the cutoff is still a physical system (that naturally
preserves causality) and the fRG equations do not violate causality
(see Section 4.3.2). We can therefore directly work in the RKA basis.
If we conveniently choose the reservoir’s temperature to be infinite,
its effects can be understood in terms of the following self-energy
(compare Eq. (4.4.7)):
L (t,t) =0

(4.4.1)
A (4, 1) = —id(t — t') AL 4

The Green’s functions of the time-dependent, noninteracting system
read (compare Eq. (3.2.34))

gret,/\(t’t/) _ e—(t—t’)/\gret,/\zo(t,t/) (442)
g M) = —ig™ A (L to) (1+280) g (to, ).

Note that the cutoff is introduced such that Equations 4.2.19 and 4.2.2
are fulfilled with Ajn; = co and Agpa = 0.

Authored by C. Klockner, D. M. Kennes and C. Karrasch, published in the journal
Physical Review B by the American Physical Society [KKK18]. Copyright remains with
the APS.
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The fRG flow equations truncated to leading order are given by
(note that S¥ = 0, compare Equation 4.2.14) [Ken+12]:

AN

a/\ZI{?jt (t,t/) t t Zslk t t vlkl)l( )

e (44:3)
_ _l Y ret,\ adv,A .
= —25(t—t) kZl (s + )w (t, )i s (t)

with the single-scale propagator (see Equation 4.2.28)
St (t,t)
= th Aty G™ M (t, 19) [aAzzfn"(n,tz)] G™ M (ty,t)
SEA (1)
= [anat{e™ A ) [oamit e )] 64y Y
G ) [OATi (4, 12)] G (1, 1)

+GRM G 0) AT 12)] G M (2t

where G/ refers to the full Green’s function obtained via Equa-
tion 3.2.31. For the specific cutoff used here (see Equation 4.4.1) the
above equation takes the form

SretA (g, t) = —iJ dty G™V N (t,t1) G (g, 1)
(4-4.5)
- Sret,/\(t/ t) = 0.

The equal-time single-scale propagator vanished due to the causality
relation Equation 2.3.20. Thus, in this scheme, the Keldysh self-energy
does not flow:

NI, ) =0

The initial conditions correspond to the self-energy contribution
of the thermalized system at infinite temperature (compare Equa-
tion 4.2.20):

ZK'A:OO (t, t/)

Zret A=00 (t t

N\—o

t t Zvlkb[

Hence, the Keldysh self-energy remains zero throughout the flow and
the retarded self-energy is time-local. This type of self-energy has
been discussed in Eq. (3.2.34) and Eq. (2.5.12).
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Due to the time-local structure of the self-energy, the group prop-
erty presented in Eq. (2.5.12) holds and the single-scale propagator of
Eq. (4.4.5) can be simplified further:

Sret,/\(t, t/) — —(t . t/)Gret’A(t, t/)
S ) = 0 |GV (1,0)(1+ 280G (0, 1)
= S™A(t,0)(1+ 2E) GV (0, 1)
+ G (¢, 0)(1+261)S* (0, )
= —(t+t1G* (1, 1),

resulting in the final form of the flow equation:

AL M (¢, 1) = itd(t —t) Zle (t, t)vi i (t).

4.4.2  Reservoir cutoff scheme for stationary states

As an example of an fRG-formulation to obtain correlations in the
stationary state, we discuss a reservoir cutoff scheme in first order
truncation. [JPStoa; GPMo7; J]MSo7y; Kar+10]

Similar to Section 4.4.1 we employ an auxiliary reservoir cutoff
scheme which is implemented by introducing a wide-band bath that
couples to every single-particle degree of freedom of the system with
a strength A. [Jakog] Such a reservoir (which itself is initially pre-
pared in equilibrium) can be taken into account using a self-energy
of the form (compare Section 2.5.4)

M w) = —iAl
i () = [1 = 2ne(@)] [ 255 (@) - 2 (w) (4-4.7)

—2iAl

where ney(w) is the auxiliary reservoir’s distribution function and
the second equation is enforced by the fluctuation-dissipation theo-
rem (note, that the reservoir self-energy only depends on the dynam-
ics of the disconnected, i.e. equilibrium, reservoir). In contrast to Sec-
tion 4.4.1 we allow for a general distribution function and in absence
of physical reservoirs the auxiliary ones define the statistics of the
system.
The reservoir-dressed Green’s function is given by

1
gret( )—l+i/\1_zret,A(w)
GK,/\(w):Gret,/\( ) ZKA( )JrZK’A((,U) Gadv,/\(w)

cut

Gret,/\(w) —
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and Equation 4.2.28 yields

Sret,/\(w) _ a*AGret,/\(w) _ _iGret,/\(w)Gret,/\(w)
SKA (W) = 04, G (w)
_ Sret,/\(w) [):K’A(w) _i_ZK,/\(w)} Gadv,/\(w)

cut

cut

+ Gret,/\(w) [ZK,/\(w) + ZK,/\(w)} SadV’A(w)

+ Gret,/\(w) [aAZK,/\(w)} Gadv,/\(w)

cut

Finally, the flow equations read
ret, A i KA
a/\zi/ej = _E Zvilk,jlljdw [S ((U)] Lk (448)
k1
i
a/\}:l-l(j/\ = _E Zvilk,jll J dw [Sret,/\(w) + SadV’A(w)}
K1

i Z
=- ikl
4m b
o1

de 100G (@) — 100 6™ ()]

Lk

Lk
=0

Therefore, as we have seen in the time-dependent case, we do not
obtain a finite Keldysh self-energy in the first-order truncation. Fur-
thermore, the retarded self-energy is frequency independent and
thus constitutes a correction to the non-interacting Hamiltonian (com-
pare Equation 3.2.34).

4.4.3 Matsubara fRG

While not the focus of this work, we will also discuss equilibrium
properties of some of the systems considered and use the equilib-
rium formalism as a point of reference. To this end, we will briefly
introduce the Matsubara fRG formalism but will refrain from the de-
tails. Furthermore, we will restrict ourselves to the T = 0 case, where
a pure state is obtained and only discuss the first order truncation.

The simplest way to introduce an infrared regularization in Mat-
subara frequency space at T = 0 (i.e., in the ground state) is a sharp
cutoff [And+o4]

g°1" iw) = g*1(iw)0(|w| — A)

SN (1w) = — [6(w — A) + 8(w + A)] G {w)
1

(geq,/\(w))*] _Zeq,/\'

(4-4.9)

G (iw) =
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Using Morris lemma [Morg4; And+o4] results in the following flow
equation for the self-energy at T = 0:

1 1
ALY = DD Vikit ( /\> ; (4-4.10)
v AT WA lw—ho—2ean

where A is integrated from Ajni = 00 to Agina; = 0. If one removes the
feedback of the self-energy on the right-hand side of this equation,
one obtains standard first order Matsubara perturbation theory. As it
is sometimes desirable to compare to perturbation theory results, we
will now discuss how to remove higher order resummations from an
fRG algorithm.

4.5 HOW REDUCE FRG TO PERTURBATION THEORY

As we already discussed in Section 4.2.4, fRG is not a diagrammatic
approximation. Beyond the perturbation theory diagrams only few
additional diagrams are fully included while an infinite series of
higher, non-diagrammatic contributions are resummed. It is now rea-
sonable to ask (while not trivial to answer) whether perturbation the-
ory results can be extracted from an algorithm that is set up to com-
pute a truncated fRG flow. To that end, let us inspect the diagram-
matic form of the flow equation of the self-energy:

o O

<+ =—+0(U), @:w(uz)

we can reproduce perturbation theory from fRG by (i) truncating the
flow by setting vy, = v and (ii) setting £ = 0 on the rhs of the flow
equation:

aA@: @ - - :a/\ (4.5.1)

Hence solving this flow equation will result in first-order perturba-
tion theory.

In a typical implementation of a first order f{RG algorithm, pertur-
bation theory results can be achieved even more directly by replacing
S — G and evaluating the rhs only at the final value of the cutoff
parameter without solving the flow equation.



4.5 HOW REDUCE FRG TO PERTURBATION THEORY

Algorithm 4.1: 1 order perturbation theory from fRG

Given an fRG implementation that provides:
G (ZN), SAMEN), s (v, G, SN
then 1% order PT can be obtained as:
ST 3 Z(y=vG=g,S=¢g)

where g = G/ \inal (£ = 0).

Following the same steps to second order does not yield the de-
sired result, as discussed in [Kario]. While truncating beyond the
two-particle vertex, replacing the two-particle vertex with the bare in-
teraction and removing the self-energy feedback for in the flow equa-
tion of the two-particle vertex yields the perturbative results:

2’ 2 2’ 2
SRS
- H o
1/ 1 1/ 1 1, 1
2’ 2
+ 8w o+
1’ 1 1 1

2’ 2
()
~on &
1 1 1 1 v !
2’ 2
e |- (8)
1’ 1

the same can not be said for any such algorithm for the self-energy
(compare Equation 3.4.5):

)
()
(D) a | G Y 6]

(4-5-3)

(4.5-2)
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When compared to Equation 4.2.15, we realize that self-energy inser-
tions are missing in the single-scale propagator.

This is due to the (in this scheme neglected) O (U) contributions of
S. Instead, we should replace

+ =+ (D + Ao (),

@=.+@+®+@+o (u3)

- @
- T8

while being careful to only keep the higher orders when needed.
While it is straightforward to prove that one can indeed reproduce
perturbation theory with these replacements, it is inconvenient for an
actual implementation to have to use two different approximations
to the full single-scale propagator and extracting perturbation theory
results without writing code specifically for this purpose will rarely
be possible with this procedure.

If the implementation, however, includes functions to evaluate the
channel-decomposed two-particle vertex we can instead use these to
obtain the perturbation theory self-energy:

(4-5.5)

Algorithm 4.2: 2" order perturbation theory from fRG

Given an fRG implementation that provides:
G(X), S(X), 0AX(V,G,S), 0AY*(V,G,S), a«=x,p,d
then 2" order PT can be obtained as:
I AL |y =v+veer +Vopr G =9,S=9¢
Yarr = 0AY*(¥¥ =0,G=9,S=g)
where g = G"\inal (£ = 0).
Note that to second order y? and y* contribute equally (up to a factor)

to the self-energy and we thus only use one of them. The validity of
this algorithm is easily seen within the diagrammatic representation.



TRANSPORT IN A QUASIPERIODIC POTENTIAL

5.1 INTRODUCTION

This chapter is based on the paper Transport in quasiperiodic interacting
systems: From superdiffusion to subdiffusion, authored by Y. Bar Lev’,
D. M. Kennes’, C. Klockner’, D. R. Reichmann and C. Karrasch, pub-
lished in the journal Europhysics Letters by the Institute of Physics Pub-
lishing [Lev+17]. Copyright remains with the IOP. The DMRG data
presented and discussed in Sections 5.4 and 5.5 as well as Figure 5.7
was provided by D. M. Kennes and C. Karrasch.

It is devoted to the study of transport in quasiperiodic potentials.
Interacting quasiperiodic (QP) systems are believed to exhibit many
body localization (MBL) like in systems with quenched disorder
while being easier to experimentally realize. Hence, they form the ba-
sis for several recent experimental studies on MBL [Sch+15a; Lue+17].
Unfortunately, very little is known about transport in such systems
in the interacting case. Here, we fill this vital gap.

As a point of reference, we will begin by recapitulating conven-
tional ballistic and diffusive transport as well as the effect of disorder
in one-dimensional systems. We then introduce the model and the
notion of a quasiperiodic potential and employ a finite-temperature
version [KBM12; Bar13; KK16b] of the time-dependent matrix renor-
malization group (tDMRG)* [Whig2; Sch11] to demonstrate uncon-
ventional transport in this system on short to intermediate time-scales
and obtain the AC-conductivity. We than use the functional renormal-
ization group (fRG) [Salgg; Met+12] introduced in Chapter 4 to access
larger times and system sizes and provide a naive single-particle pic-
ture of the relevant physics.

5.1.1 Normal transport

In semi-classical approximations, systems generally feature one of
only two types of transport:

Ballistic transport is present, when no scattering occurs and there-
fore the conductance is independent of the length of the system. This
implies an infinite DC-conductivity. Ballistic transport is a hallmark of
integrable systems (such as free fermions), where an extensive num-
ber of conserved quantities prevents scattering.

1 Y. Bar Lev, D. M. Kennes, C. Klockner contributed equally.
2 The tDMRG results presented in this chapter were obtained and provided by D. M.
Kennes and C. Karrasch.
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If, on the other hand, particles scatter incoherently, transport is dif-
fusive and conductance decreases with the system size as G ~ 7. For
example, adding a two-particle interaction to a quadratic Hamilto-
nian will generically break integrability and induce scattering result-
ing in diffusive transport. For a diffusive system in the quasi-classical
approximation, the conductivity at small frequencies takes the Drude
form [RS86; Ramog; Ash76]

1
N]+in

o(w)

(5.1.1)

with the scattering time 1. In the limit T — oo, we recover ballistic
transport.

When a system features non-vanishing transport, that is neither
ballistic nor diffusive it is referred to as anomalous.

5.1.2  Anderson localization

If the system is coherent, random scattering can (and in 1D gener-
ically will) lead to interference effects that entirely forbid trans-
port [KMo3]. This effect is referred to as Anderson localization [Ands8].
As a simple example, consider a semi-infinite 1D tight binding chain
with on-site potentials €; chosen from a random distribution

o0
H= ZQCiCﬁ‘CICiH —i—cL]ci. (5.1.2)
i=0

Solving the eigenvalue equation for a general single-particle state
lb) =2 ; ocic;r Ivac) leads to the equation [KM9g3]

aip1) _ (BE—er 1 o) L TT 1T X1
= = = i l4— .
i 1 0 Xi—1 (0.%4)
~—_———

T;
(5.1.3)

The theorem of Fiirstenberg then guarantees the existence of a

Y(E) = ili_)rgolog(HTi -Til) >0 (5.1.4)
which shows

(=)

Hence, all single-particle eigenstates are exponentially localized, i.e.

< e*V(E)l

‘ for i — oo. (5.1.5)

3j5,v 3 o~ e Y-l for [i—j| = oo. (5.1.6)

and no transport is possible. This type of localization is generic in
disordered, one-dimensional quadratic systems.
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To measure localization on a single-particle level, one commonly
uses the inverse participation ratio. Using the example of the state ¢
introduced above, one defines

IPR($) == ) oyl (5.1.7)

As the majority of the weight of a localized state is restricted to a
finite region, its inverse participation ratio is independent of system
size while the weight of an extended state is distributed over the hole
system, resulting in IPR ~ ;.

5.1.3 Many-body localized phase

As this picture is based on a single-particle framework and requires
coherence to fully localize the spectrum, it was long assumed that the
system would delocalize upon introducing a two-particle interaction.
This believe was challenged by a seminal work [BAAo6] describing lo-
calization in weakly interacting fermion systems. Using perturbative
methods, the authors argued, that localization can persist, even at fi-
nite temperature in the presence of interactions. This sparked a large
amount of scientific interest (for reviews, see [AV15; NH15]), produc-
ing many analytical and numerical works as well as experimental
evidence in cold atomic gases.

The many-body localized phase is, just like its non-interacting
counterpart, characterized by an absence of DC transport and ther-
malization [NH15]. However, the interaction allows entanglement to
spread logarithmically [Chi+o6; ZPPo8; BPM12; HNO14] and there-
fore some propagation of information. This leads to dephasing with-
out inducing dissipation or thermalization. As it retains some infor-
mation of the local details of its initial state at long time-scales it
is considered to be non-ergodic. This also implies that many-body lo-
calized systems violate the eigenstate thermalization hypothesis [Deu18],
which states that all local observables of individual eigenstates are
defined by the energy density and appear thermal.

5.1.4 The ergodic side of the many-body localization transition

On the delocalized side of the phase transition, transport is possi-
ble and equilibration occurs. All microscopic information about the
initial configuration of the system is lost over time and thus the sys-
tem is considered to be ergodic. However, even deep in the metal-
lic phase self-consistent Born approximation indicates abnormally
slow relaxation rates [LR14] in disordered systems. Further inves-
tigation [Aga+15; LCR15; Aga+15; LL17; Aga+17] has shown, that
surprisingly transport is subdiffusive in a parameter regime close to
the many-body localized phase (i.e. characterized by slower propa-
gation than diffusive transport). Far from the MBL phase transport
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Figure 5.1: Left panel: A schematic phase diagram (U, A) of the system (c.f.
Fig. 19 in Ref. [Ber+17]) based on exact diagonalization for
N = 16 sites. The white circles represent the points studied using
the tDMRG (see Figure 5.2) . Right panel: The average gap ratio
1 in the middle of the spectrum for various strengths of the QP
potential, U = 1, and different system sizes (lighter shades rep-
resent larger system sizes). The dashed black line corresponds
to the Wigner-Dyson limit (expected for an ergodic system) and
the solid black line to the Poisson limit (expected in the local-
ized case) [OHo7; Ata+13]. This figure was previously published
in [Lev+17].

is diffusive. This suppression of transport close to the phase transi-
tion is proposed to be explained by the presence of rare-region ef-
fects [Aga+15; Gop+15; Gop+16; Aga+17], where anomalously high
disorder in some region induces (quasi) localization, significantly
hampering transport (for a review, see [Aga+17]). These rare regions
lead to a broad distribution of various dynamical observables and
dominate the average, long range transport. This can result in cor-
rections of the low-frequency exponent of dynamical quantities and
produce sub-diffusive transport. This phenomenological picture has
been named Griffiths picture and was first described in Ref. [Gri6g].

5.2 MODEL HAMILTONIAN

The model we employ throughout this chapter is based on a 1D tight-
binding chain with quasiperiodic disorder

HO = Z Acos(2mBn + 2ntd)cl ., + Z chnH +h.c. (5.2.1)
neN neN-—-I1

This Hamiltonian is known as the Aubry-Andre (AA) model. It has
been studied extensively as it arises as an effective model for two-
dimensional electrons in the presence of an electric field and exhibits
rich spectral properties such as the Hofstadter butterfly [Hof76]. This
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model features an Anderson localization transition for irrational? (3
at a critical potential strength A, = 2. Using the inverse golden ratio

1
p= \62 =9 !, (5.2.2)

for the incommensurate potential leads to short localization lengths
and thus a sharp phase transition and is therefore commonly cho-
sen [Modog]. For A < A. = 2, all single-particle eigenstates are delo-
calized while for stronger disorder all individual states localize expo-
nentially (compare Section 5.1.2). Hence, in this model independent
of the preparation of the system, DC-transport is either ballistic for
A < 2 and absent for A > 2.
When a two-particle interaction is added

. 1 1
HM = Z u <chn - 2> (CLJr1 Chyl — 2> (5.2.3)
1

neN—
H=H® 4 H* (5.2.4)

the critical disorder strength to localize the spectrum increases with
the interaction but a many-body localized phase persists at large dis-
order and all energies. At A = 0 the system is integrable and trans-
port is ballistic for U < 2 [Pro11; IN17] and diffusive for U > 2 [ZPg6;
SB11; Zni11]. For finite U and A the system is not integrable and the
phase diagram is separated into an ergodic and a many-body local-
ized phase. A high-temperature phase diagram can be obtained using
the statistics of the level-spacing [OHoy; Ata+13] as is shown in Fig-
ure 5.1.

This interacting variant of the AA model owes its importance to
cold atomic gasses [Sch+15a], where a quasiperiodic potential can
be generated by superimposing an additional, incommensurate dis-
order lattice using lasers with a detuned wavelength. At the same
time, the two-particle interaction can be tuned using Feshbach res-
onance. For a review of these experimental methods see [Lew+o7].
Experiments (see for example [Sch+15a]) show, that in atomic gases
realizing this interacting version of the AA model, localization per-
sists on long time-scales.

While the many-body localized phase has been studied intensively,
the transport properties in this model are largely unknown. To char-
acterize the transport in the delocalized phase we employ two com-
plementary methods: first we utilize the numerically exact tDMRG
(Section 5.4), which is limited by the growth of entanglement. We
then supplement this with the time-dependent variant of the fRG in-
troduced in Chapter 4, which allows us to access significantly larger

For rational values of 3 one obtains a crystal; Bloch’s theorem forbids localization in
that case. Strictly speaking, not all irrational numbers result in an insulating phase;
irrational numbers that are exceptionally well approximated by a fraction do not
necessarily result in a phase transition. [Jitgg; Aul+o4; Modog]
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system sizes and longer times (Section 5.6) at the cost of being ap-
proximate.

5.3 DMRG AS A REFERENCE POINT

Introduced by S. White in [Whigz2], the density matrix renormalization
group (DMRG) evolved into a valuable tool for a variety of problems.
For a review of this numerical technique, see Ref. [Sch11].

In a modern formulation of the DMRG, a general many-body spin-
state in a N-site lattice

W)= >  Acy.onl01,...,0N) (53.1)
01,..,0NE{T L}

is expressed as a matrix product state (MPS)

V) = Z A;ﬁ ~--A§N |01,...,0N) (5.3-2)
o1,...,0NE{0,1}

with AY* € C2“'*2" for k < N/2 and ALk € C2V T2 Gtherwise.
The largest matrix dimension that appears in this expression is 2N/?
and therefore exponentially large in the system size.

Similarly, operators can be decomposed into matrix product op-
erators. Using a singular-value decomposition the dimension of the
matrices A can be reduced by retaining their largest eigenvalues up
to a finite bond dimension.

This approximation can be shown to be optimal in the 2-norm
compared to all possible MPS of the same bond dimension [Schi1].
Its quality is directly related to the decay of eigenvalues in the A-
matrices. These eigenvalues of the matrix Ay are in turn linked to the
bipartite entanglement entropy

S = —Tr[px log il (5.3:3)

with the reduced density-matrix py for sites 1,..., k.

For short-ranged, gapped Hamiltonian, the bipartite entanglement
of the ground-state has been shown to scale as an area law [ECP10].
This refers to the area of the boundary between the two subsystems.
Therefore, ground-states of gapped, 1D systems are well described by
matrix-product states of finite dimension and DMRG is well suited
to access their properties. For gapless systems, that are of the main
focus of this work, one finds a logarithmic correction to the area-
law in the ground-state. Excited states on the other hand typically
feature volume-law entanglement, and therefore pose a challenge.
Many-body localized systems form a peculiar exception to this rule,
as even excited states feature entanglement that only logarithmically
increases with the system size [KK16a].

Using these approximate forms of states imaginary and real time-
evolution can be computed. In a time-dependent formulation a matrix
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product state of low dimension is typically used as initial preparation.
The dynamics induced by the Hamiltonian, however, yield a mix-
ing with excited states, that successively increase the entanglement
and eventually make the treatment in the DMRG framework expo-
nentially difficult. This typically restricts the time-scales accessible to
this method.

5.4 MEAN SQUARE DISPLACEMENT USING TDMRG

A first indication of anomalous (i.e. neither ballistic nor diffusive)
transport is provided using tDMRG?. Here, we study the quantum
version of the mean square displacement
1N
2 L2
x- (t) = . ”Z1 (i—j)"Cy; (1), (5.4.1)
i,j=

where C;; denotes the density-density correlation function:

Cij(t)=2"NTr <ﬁf (t) — ;) (ﬁf — ;) . (5.4.2)

When evaluated in equilibrium, the MSD is directly related to the
current-current correlation function [LL17]

e W= (J(1)](0)) (5-4.3)

and therefore also to the frequency resolved conductivity (com-
pare Section 5.5)

o) =17 [ it g U0

w 0 N—o0

. (5-4-4)
~w? J dte!tx?(t).

The MSD typically scales as a power-law with time, x* ~ t*, where
o is the dynamical exponent and is related to the exponent of the
conductivity as o(w) ~ |w|'~* (compare Equation 5.1.1). For systems
with ballistic transport, « = 2, and for diffusive systems « = 1. Sys-
tems with no transport or transport with a MSD growing more slowly
than any power law will have « = 0.

As we discussed above, for quenched disorder transport is generi-
cally subdiffusive, resulting in dynamical exponent & < 1, phenomeno-
logically explained by rare regions. We will use the MSD to investi-
gate transport in the presence of a quasiperiodic potential.

5.4.1 Superdiffusive regime
To obtain numerical results we average over all eigenstates, effectively

setting the temperature to infinity. To reduce the effects of the bound-
aries we use systems of sizes N = 100 — 200.

77



78

TRANSPORT IN A QUASIPERIODIC POTENTIAL

. / 10 /]
10! /R
: /y a‘g“%é;; 3 510
C VA é 4: Eo.o . E
- ) S | 1 I U |
100 b 4 1 ]
r 1 F 4 100
107! 4 [ i
- 1=0.25 - 1=20 1
E A1=05 - 1=25 U=0.1 J
o A=1.0 - 1=3.0 A - U=05
- U=10 — A2=1.75 - A=15 - U=10
1 1 1 IIIIII 1 1 1L 1111 1 1 1 IIIIII 1 1 111111 10_1
100 10! 102 10° 10! 102
t t

Figure 5.2: Mean-square displacement as a function of time on a log-log
scale, for various amplitudes of the QP potential obtained us-
ing tDMRG?. The left panel shows the horizontal cut through the
phase-diagram at Figure 5.1, and the right panel shows the verti-
cal cut. Darker colors represent larger parameters, and the width
of the lines represent the statistical error bars. Blue dashed lines
show the quality of the power-law fits, and the insets present
the corresponding dynamical exponents. The system size used is
N = 100. The results indicate a smooth transition from superdif-
fusive to subdiffusive transport. This figure was previously pub-
lished in [Lev+17].

We start by analyzing the vicinity of the integrable limits U = 0
and A = 0. For U < 2 conserved quantities lead to ballistic trans-
port [Pro11; IN17] (compare Section 5.1.1) while for U > 2 transport
is found to be diffusive [ZP96; SB11; Zni11]. Neither in the vicinity
of U = 0 nor close to A = 0 we observe diffusive behavior but un-
cover an extended superdiffusive regime where the MSD grows as a
power law in time, x? ~ t%, with an exponent 1 < o < 2. This is
illustrated in the left (right) panels of Figure 5.2 for the horizontal
(vertical) cuts through the phase diagram (see Figure 5.1). The occur-
rence of superdiffusive transport in the presence of interactions and
disorder is in striking contrast to the behavior of clean systems where
integrability breaking normally leads to diffusion (for spin systems,
see Refs. [JHR06; Zotoyg; Ste+14; KKHM15], compare Section 5.1.1).
However, a simple estimate of the mean free time of scattering from
the external potential gives a time-scale of T ~ 1/A?, which is about
T ~ 16 for the smallest A we study and is comparable to our maximal
simulation times. Therefore while we convincingly observe superdif-
fusion over one decade in time, we cannot rule out the scenario where
it is merely a transient phenomenon. Simulating longer times is ex-
ponentially hard within tDMRG since the accessible time scales are
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Figure 5.3: Mean-square displacement (left) and entanglement entropy
(right) on a log-log scale as a function of time for the CDW as the
initial state, obtained with tDMRG?. Parameters used: N = 100,
interaction strength U =2 and A = 1.6, 2.4 and , 3.2 (darker col-
ors designate higher values). Dashed lines represent linear fits
used to extract the dynamical exponents. Diffusion corresponds
to, « = 3 = 1. This figure was previously published in [Lev+17].

bounded by the growth of entanglement entropy. Therefore to sub-
stantiate our observation of superdiffusion, we will later on comple-
ment the tDMRG simulation by a different approach which can reach
much longer times at the price of being approximate (see Section 5.6).
Since transport in the system is characterized by power laws it is nat-
ural to use a renormalization-group based method for this purpose.

5.4.2  Subdiffusive regime

From the inset of Figure 5.2, which shows the extracted dynamical
exponent, it is clear that there is actually no finite regime of parame-
ters for which the system is diffusive. This is in stark contrast to the
case of quenched disorder (compare Section 5.1.4). Similar behavior
was observed in an experimental and numerical study [Lue+17]. To
verify that the observed behavior occurs also for pure initial states,
we calculated the MSD and the entanglement entropy (EE) (see Equa-
tion 5.3.3) starting form a charge density wave (CDW), i.e. even (odd)
sites initially prepared full (empty) (see Figure 5.3). We note that
for the system we study the CDW is a state with relatively high en-
ergy density for interactions U < 2, lying close to the center of the
many-body band, and has been successfully utilized to analyze MBL
in cold atoms experiments [Sch+15a; Lue+17]. However unlike the
experiments, we do not allow volatility in the initial state, namely we
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Figure 5.4: The time dependent current-current correlation function® for (a)
fixed A = 1.5, (b) fixed U = 1.0 and (c) U = 0, A = 1.5. In the
non-interacting case, the correlations persist indefinitely, indicat-
ing ballistic transport while the decay due to scattering is well
captured in all other cases.

have exactly one particle sitting on every other lattice site. Similarly to
the infinite temperature initial state, for the CDW both the MSD and
the EE show power law growth with time with dynamical exponents
which depend on the amplitude of the QP potential (EE was also
studied in Ref. [NER16]). We note that while for the CDW the growth
of the MSD appears to be subdiffusive for the simulated times the
extraction of the exponent is extremely unreliable due to presence
of oscillations in the data, which do not disappear with better averaging.
This precludes from making meaningful comparison between the dy-
namical exponent of the EE () with the dynamical exponent of the
MSD («) . For a comparison of such exponents in disordered systems
see [LL17].

5.5 CURRENT-CURRENT CORRELATION AND FULL AC-CONDUCTIVITY
USING TDMRG

While x? and the current-current correlation function (J(t)J(0)) are
closely related, the latter yields a different perspective on the problem,
which we will now discuss. To this end, Figure 5.4 shows (J(t)]J(0)) in
the infinite temperature limit. If transport is ballistic, a system driven
out of equilibrium displays a persistent current. Therefore, in the in-
tegrable limit the current-current correlation function is expected to
oscillate around a finite value (compare Figure 5.4 (c)). If scattering
is present in a system the current decays. The data obtained with
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Figure 5.5: The AC-conductivity o(w) can be obtained as a Fourier trans-
form of the current-current correlation function using tDMRG.
Subfigure (a) shows o(w) at constant potential-strength varying
the interaction U and demonstrates, that the DC-conductivity
0(0) is diminished by the interaction. Similarly, subfigure (b)
shows, how at constant U increasing the QP potential results
in a gap in the conductivity, when the system transitions to an
insulating phase. The DC-conductivity decreases exponentially
as a function of the potential strength (see inset (c)).

tDMRG? indicates that transports at U > 0, A > 0 is not ballistic and
the decay is well captured in the times accessible with tDMRG for the
parameters shown.

Therefore we can employ a Fourier transform of the current-current
correlation function, and use tDMRG to provide the entire, frequency
dependent AC-conductivity (compare Equation 5.4.4), presented
in Figure 5.5. As tDMRG is limited to finite times, the results are
averaged over intervals of width Aw = 0.1.

For weak interaction, the conductivity shows a sharp peak at w =0,
reflecting the ballistic nature of the free system. The frequency depen-
dence reveals the presence of distinct single-particle bands.

The DC conductivity o(0) decreases monotonously in the metal-
lic phase upon increasing the two-particle interaction (see Figure 5.5
(@)). When approaching the localized phase, the DC conductivity de-
creases exponentially and a gap in o(w) appears (see Figure 5.5 (b)
and (¢)).

56 SUPERDIFFUSIVE REGIME USING FRG

To establish superdiffusive transport unambiguously, it is necessary
to exceed the typical scattering times in the system, which poses a
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problem to tDMRG when transport is close to ballistic. In order to ac-
cess longer time scales and larger system sizes we use the functional
renormalization group [Salgg; Met+12] implemented on the real-time
Keldysh contour [JMSoy; Ken+12; KM13] that we discussed in Sec-
tion 4.4.1. As we truncated the flow equations to leading order, the
framework is approximate with respect to the interaction strength.
Due to its RG nature, the fRG can capture power laws, and the corre-
sponding exponents can be computed up to the linear order in the in-
teraction strength, U (all higher-order contributions are uncontrolled).
The computational effort of the fRG calculation is not sensitive to the
build up of entanglement in the system, which is especially advan-
tageous when transport is almost ballistic. When the Trotter decom-
position (discussed in Section 2.8) is used the computational effort
scales linearly with time and quadratic in the system size if sparse
matrices are used whenever appropriate. Using these simplifications
one can access times of t ~ 1000 for systems of up to N ~ 1000 sites.
However, since the MSD is a two-body correlation function, it cannot
be computed reliably using a first-order fRG scheme.

5.6.1  Choice of the setup and observable

To circumvent this issue we aim to investigate transport via a quench
protocol which can be simulated both by the fRG and the tDMRG.
One potential choice is the CDW we already discussed in Section 5.4.2.
The imbalance

1(1) = 55 Y (1) (561)

is a natural measure of the relaxation of the system and can be used
to characterize transport. However, as the QP potential is strongly
correlated on long length-scales, it is numerically difficult to reliably
extract the exponents (compare Figure 5.6 and Section 5.4.2).
Instead, we turn to another highly excited state: a domain wall with

n

ini _ {] L<N/2 (5.6.2)

h 0 i>Ny/2.

Domain wall dynamics provide a natural sensor for MBL physics
[HHMP16] that can be realized straightforwardly in cold-atom ex-
periments [Cho+16]. As this initial configuration itself breaks transla-
tional symmetry, it is expected to self-average when suitable observ-
ables are analyzed. In the localized phase, the melting of the domain
wall is suppressed, while in the ergodic phase it is characterized by a
power law growth of various transport quantities.

A variety of quadratic observables could be used as a indicator
for transport. Among those are the number of transported particles,
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Figure 5.6: Left panel: Evolution of the local occupation n; of individual sites
(i = 100,200,300) in a free Aubry-Andre chain of N = 400
sites at a disorder strength A = 1T when initially prepared in a
Néel state. At this QP potential strength, the system is metal-
lic and all single-particle eigenstates are extended; this results
in a strong correlation of the dynamics, even for far apart sites.
Right panel: The black line shows the corresponding imbalance
Meven — Modd| and its expected decay (dashed red line). We also
show the evolution of the number of transported particles AN
(see Equation 5.6.3) when starting from a domain-wall configura-
tion (see Equation 5.6.2 (orange line). We find that a domain-wall
preparation produces more accurate estimates of the transport
exponents.

the variance of the distribution as well as the mean position of the
transported particles, which we respectively define as

AN= Y ny

i>N/2
2 s 2.
VAR _z.Z (i—N/2)%*n; (56.3)
i>N/2
n= Z iny
i>N/2

The number of transported particles as well as their mean position
is expected to asymptotically scale as AN ~ t*/2, with the same
exponent «, as the MSD while the variance scales as VAR ~ t* (if
calculated for the same initial conditions). The agreement between
the exponents extracted from these observables is however not trivial
within the fRG approximation.

5.6.2  Comparison to DMRG

The evolution of this initial preparation as obtained using tDMRG*
is shown in the right panel of Figure 5.7, while Figure 5.8 shows
time slices of the corresponding fRG calculation. In the absence of in-
teractions, AN grows linearly with time indicating ballistic transport
for A < 2. Finite U > 0 leads to slower transport. As these figures
demonstrate, the speed of the melting of the domain-wall strongly
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Figure 5.7: Mass transport for a domain wall initial condition. The right
side shows the mass difference as obtained with tDMRG?,
In; (t) —ny (0)], as a function of time for two values of the interac-
tion U = 0 and 0.5, and demonstrates that transport, which is bal-
listic at U = 0, becomes successively suppressed when switching
on interactions. The left side compares tDMRG?* (colored lines)
and fRG (black lines) results for the total mass transferred to the
left side as a function of time, for fixed A = 1.5 and varying LUl
The width of the colored lines represent the statistical error. This
figure was previously published in [Lev+17].

depends on the strength of the QP potential and interaction. Thus
the system-size has to be chosen correspondingly. Both methods are
in qualitative agreement; to verify this quantitatively the left panel of
Figure 5.7 compares AN and demonstrates good agreement between
fRG and the numerically exact reference provided by the tDMRG? on
intermediate time scales.

5.6.3 Transport close to integrability using fRG

The fRG can now be used to push the calculation to significantly
larger times. Since fRG is exact in the limit of U = 0 and to first order
in the interactions, we focus on the vicinity of U = 0, A = 2, where
first order interaction effects are most pronounced.

A superdiffusive power law with T < « < 2 can be identified un-
ambiguously for all observables given in Equation 5.6.3 as long as
the interaction is small (see Figure 5.9). To verify that the extracted
dynamical exponents do not drift with time we also compute the log-
derivative of the measures defined in Equation 5.6.3 (dlogO/dlogt)
and observe that it saturates to a plateau (see right panel of Fig-
ure 5.9), which indicates that the calculated dynamical exponents are
asymptotic within the fRG scheme.
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Figure 5.8: Time evolution of a system initially prepared in a domain-wall
configuration (see Equation 5.6.2) in the presence of different
strengths of the quasiperiodic potential and two-particle interac-
tion as obtained with fRG. The different colors signify different
times. We find that interaction significantly hinders the melting
of the domain wall in presence of the potential. Note that the re-
sults for large times in the absence of the potential (A = 0) show
severe finite-size effects; these are shown to demonstrate, that
the accessible time-scales with at a given system size strongly
depends on the other model parameters.

It is important to check that the extracted dynamical exponent o
scales linearly with U, which is consistent with the assumptions of
fRG (see inset of Figure 5.9). We also observe, that systems becomes
increasingly sensitive to the interaction close to the critical poten-
tial strength A, = 2. Note that the exponents extracted for different
observables are in good qualitative agreement; for the example of
A = 1.5, this is demonstrated in the inset of Figure 5.9.

Since in this setup we use small interactions it is important to work
with times longer then the mean-free time of scattering between two
particles, Tee ~ 1/ UZ, otherwise a transient ballistic transport would
be observed. Not only the transport we observe is always sub-ballistic,
but in our simulations we reach times significantly longer than longer
then the scattering mean-free time.

In the vicinity of U = 0, the dynamical exponents agree qualita-
tively with those governing the growth of the MSD (see Figure 5.2).
A strict quantitative comparison is however not possible since we did
not find a parameter set for which the exponents can be determined
reliably in both setups. E.g., at A = 1.5, U = 0.1 (see Figure 5.2), the
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Figure 5.9: Left panel: Log-log plot of the observables AN, VAR, i as a func-
tion of time for interactions U = 0,0.015,...,0.06. Inset: Solid
symbols shows the dynamical exponent as computed from fRG
for AN various interaction strengths. The disorder strengths used
are (dark to light colors of the inset) A = 1,1.25,1.5,1.75. Ad-
ditionally, the open squares (circles) show the exponents for fi
(VAR) at A = 1.5. Right panel: Log-derivative of the AN, VAR and
71 (see Equation 5.6.3) as function of time, A = 1.5.

domain-wall exponent is no longer in the purely linear regime, and
the higher-order corrections cannot be computed reliably by the fRG.
More importantly, there is no general reason to expect that the ex-
ponents governing the spreading of the domain wall and the MSD,
computed for an infinite temperature initial condition, should coin-
cide: the former is a far out-of-equilibrium initial condition while the
latter describes linear response. The difference between both setups
becomes particularly apparent at larger U ~ 0.5 where we can no
longer unambiguously identify power laws in the evolution of the
domain wall but observe a strong suppression of transport (see Fig-
ures 5.7 and 5.8). Since this effect appears to be a specific hallmark
of the (domain wall) initial conditions and does not directly coalesce
with the focus of this work, we leave the exploration of this interest-
ing regime to future work.

To investigate the strong suppression of transport and the emer-
gence of superdiffusive transport within fRG further, we present a
simplistic single-particle treatment.

5.6.4 Simplistic explanation using equilibrium fRG

Some simple-minded insights can be obtained within an effective
single-particle treatment of the problem. To this end, we employ the



56 SUPERDIFFUSIVE REGIME USING FRG

[ ] ( ITTTYIYY )
ST B iiiaiiinnnnesenann &l
0.100/6** 85 ° pt St el g
0.010 L o . l' 26
' ° el. ° o
2 000 'a ° 2.2
10—4 "ﬁ 1.4
e 10
10- 'i
0.6
1076 e el 0.2
10 100 1000 10* 10° 10 10 100 1000 10* 105 10
N N

Figure 5.10: Results of the equilibrium fRG calculation. Main panels: The
system-size dependence of the inverse participation ratio of the
effective single-particle states for U = 0.5 and A = 1.9. While the
system-size is increased up to N = 220 ~ 10°, only a fixed num-
ber of 400 randomly selected single-particle states are shown.
Inset: Average inverse participation ratio of all states as a func-
tion of the disorder strength for two values of U = 0, 0.5 and
a system size of N = 10* using N = 103 randomly sampled
states.

equilibrium version of the fRG presented in Section 4.4.3 to obtain
the effective Hamiltonian in the ground-state.

Using the inverse participation ratio ) ; i)+ (compare Sec-
tion 5.1.2), we characterize the extent of the individual effective
single-particle eigenstates . If the inverse participation ratio of a
quadratic system decays to zero (becomes constant) with the system
size, the associated effective levels \ are metallic (localized). Results
for the AA model are presented in Figure 5.10 for U =0 and U = 0.5
as a function of the system size and color-coded with respect to their
single-particle energy. To reach large system sizes, we only show a
randomly selected sample obtained using the algorithms discussed
in Section 2.8.2.

Where for the free system all states are delocalized at a disorder A =
1.9 < A, some of the effective single-particle states in the interacting
system display a finite inverse participation ratio in the limit N —
oo. This shows that in this approximation scheme, an energy band
within the spectrum is localized by interactions. This directly affects
the average inverse participation ratio % > i IPR(¥;) shown in the
inset of Figure 5.10.

While we emphatically note that this procedure is not a controlled
approximation and that its predictions should be taken with a grain
of salt, it could be the basis for a more thorough analytical investiga-
tion into why the domain wall dynamics look almost frozen in Fig-
ure 5.7 for U ~ 0.5.

87



88

TRANSPORT IN A QUASIPERIODIC POTENTIAL

5.7 CONCLUSION

In this chapter we have demonstrated that a simple but generic one di-
mensional interacting system with a quasiperiodic potential exhibits
an unexpectedly rich dynamical behavior, exhibiting a crossover from
superdiffusive to subdiffusive transport. Close to an integrable point,
transport is traditionally expected to appear superdiffusive on inter-
mediate time scales while asymptotically exhibiting diffusion. In strik-
ing contrast, we provide evidence, that in quasiperiodic potential su-
perdiffusion survives to substantial integrability breaking (i.e. finite
interaction and QP potential) and appears stable for long times. We
find evidence of this superdiffusive transport using tDMRG at infinite
temperature as well as in a quench scenario employing fRG. Within
the effective single-particle picture provided by fRG we demonstrate,
how interactions can significantly reduce transport close to the phase
transition without inducing diffusion.

We have also presented numerical evidence for subdiffusive trans-
port and sublinear spreading of entanglement entropy. This indicates
that the prevailing explanation for subdiffusion in MBL systems,
namely the Griffiths picture [Aga+15; Gop+15; Gop+16; Aga+17], is
incomplete. The Griffiths picture relies on the presence of uncorre-
lated quenched disorder in the system, which is crucial for generating
a sufficient density of rare blocking inclusions. If subdiffusion was
purely explained by rare region, transport for systems with uncorre-
lated disorder in dimensions greater than one, those with strongly
correlated disorder, or for the quasiperiodic case studied here, were
expected to be diffusive. While our numerical results are valid only
for relatively short time scales, there is no a priori reason why sub-
diffusive behavior should manifest within the Griffiths picture on any
time scale in the quasiperiodic case studied here. Our results are in
line with an experimental study [Lue+17]. There it was argued that
while rare regions cannot be a result of the quasiperiodic potential,
they may follow from rare spatial regions in the initial state [Lue+17].
We stress that the infinite temperature state, which we use as the
initial state here, is clearly translationally invariant, but still exhibits
subdiffusion. Moreover we have verified that subdiffusion is robust
also when a pure initial state without any special spatial structure is
taken (here we considered the experimentally relevant CDW).
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6.1 INTRODUCTION

This chapter is based on the paper Exploring excited eigenstates of many-
body systems using the functional renormalization group, authored by C.
Klockner, D. M. Kennes and C. Karrasch, published in the journal
Physical Review B by the American Physical Society [KKK18]. Copy-
right remains with the APS.

The complexity of diagonalizing the Hamiltonian or solving the
time-dependent Schrodinger equation of generic interacting quan-
tum problems grows exponentially with the number of particles in-
volved. Over the last decades, a plethora of techniques were devel-
oped to study the physics of many-body systems which are in ther-
mal equilibrium (most importantly in the ground state) as well as the
out-of-equilibrium dynamics induced by pre-defined initial states. In
contrast, far less attention was devoted to devising methods which
can access pure excited eigenstates at arbitrary energies. This is, be-
cause up to very recently these questions were of minor relevance
as pure excited eigenstates are difficult to realize in quantum many-
body systems. However, the newly-emerging field of many-body lo-
calization [GMPos5; BAA06], has changed this viewpoint drastically.
This phenomenon, which cannot be analyzed using thermal ensem-
bles as it defies our understanding of statistical mechanism as well
as the eigenstate thermalization hypothesis [Deug1; NH15] renders
the characterization and description of individual excited eigenstates
imperative. Before many-body localized systems were discovered it
was believed that generic interactions wipe out the localization be-
havior induced by disorder in non-interacting systems [And58] on
the level of the eigenstates. To scrutinize this behavior one needs
to go beyond the ground state as the prediction of many-body lo-
calization entails that the eigenstates of the entire spectrum can lo-
calize. Such a localization gives rise to interesting consequences for,
e.g., the transport properties. Another fascinating question concerns
the existence and characterization of a mobility edge separating local-
ized and delocalized eigenstates in the spectrum. While in the non-
interacting case such an edge does not appear for one-dimensional
systems, first numerical results indicate that it will show up in inter-
acting one-dimensional systems [LLA15]. To characterize this edge
access to single eigenstates is essential. Yet, a ‘golden standard” ap-
proach to access single excited states has to be discovered. Exact di-
agonalization is restricted to small systems. Proposals how to obtain
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a matrix product state representation of excited states are limited to
one dimension and work only if the area law holds (i.e., in localized
phases, compare Section 5.3) [KPS16; KK16b; Fri+15; LS16; YPC17].
This means that within this low-entanglement methods the crossover
to the delocalization transition is difficult to approach. Analytical ap-
proaches [Mou+17] such as the Bethe ansatz can only be used for
integrable models. Hence, it is desirable to develop additional pure
state techniques which feature their own, unique set of strengths and
shortcomings.

In this chapter, we introduce several, functional renormalization
group (fRG) based algorithms to compute correlation functions in
pure excited states of fermionic many-body systems.

While being approximate in the interaction, the fRG can be utilized
to access large systems and is not a low-entanglement framework.
Thus, an approximate, fRG-based description of correlation functions
in pure excited states would complement more accurate predictions
obtained, e.g., via exact diagonalization. It is the goal of this work to
develop and test such a x-fRG” approach.

One way to obtain a pure eigenstate of a generic Hamiltonian is to
analytically determine an excited state of a noninteracting system and
to then switch on interactions adiabatically. We illustrate how to sim-
plify the real-time Keldysh fRG of Ref. [Ken+12], that we presented
in Section 4.4.1, under the assumption of adiabaticity in order to effi-
ciently implement this protocol (this method will be called x-fRG-t-T').
Thereafter, a new RG cutoff scheme is devised which is specifically
tailored to the adiabatic nature of the problem (x-fRG-t-p).

After developing the different x-fRG schemes and deriving the cor-
responding flow equations (Section 6.2), we carry out several algorith-
mic tests and document the limitations and promises of our approach
(Section 6.3). Thereafter, two ‘toy applications” from the world of one-
dimensional Luttinger liquid physics are presented: the survival of
power laws in lowly-excited states as well as the spectral function
of high-energy block excitations which feature multiple Fermi edges
(Section 6.4).

As an outlook and a potential route to go beyond linear order in the
two-particle interactions, we briefly discuss how to obtain an eigen-
state directly (i.e., without resorting to the time evolution protocol)
via a coupling to a non-thermal bath (x-fRG-w) in Section 6.5. Fur-
thermore, in Section 6.6 we also discuss a way to investigate quenches
from an excited eigenstate, that in the future could be used to directly
investigate transport properties of excited eigenstates.
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6.1.1 Model

The fRG methods presented in this section can be applied to general
fermionic, particle-number conserving Hamiltonians with single- and
two-particle contributions:

H=Ho+H™

0_ 0t it _ 1 Lt
H —Zhiljcic]. H" = 1 Z Vij,k,1€{C{C Cy.
ij 1,j,k1

To obtain an especially efficient algorithm, however, it is essential
to restrict the Hamiltonian. To that end, we discuss how to implement
the method efficiently for large, one-dimensional tight-binding chains
with N sites with a nearest-neighbor interaction.

6.2 EXCITED STATE FRG

For these models, we now introduce two ways to obtain correlation
functions in excited eigenstates of an interacting Hamiltonian using
the fRG, which we label x-fRG.

Both approaches are based on an adiabatic time-evolution: The sys-
tem is first prepared in an excited eigenstate of the noninteracting
system and the interaction is then adiabatically turned on. This pro-
cess is approximated using the functional renormalization group in
real-time Keldysh space.

A third method employs the stationary-state Keldysh fRG of Sec-
tion 4.4.2 and will be presented as an outlook Section 6.5.

6.2.1  x-fRG-t-T: Adiabatic time-evolution in Keldysh space with a reser-
voir cutoff

6.2.1.1  Time-space formulation

The goal is to use the time-dependent fRG described in Section 4.4.1
to approximate the evolution of an excited eigenstate of the noninter-
acting system when interactions are switched on adiabatically. The
initial time is set to t = tp. As we discussed in Section 4.4.1, we
employ an auxiliary reservoir cutoff, where the auxiliary reservoir
temperature is infinite and truncate the fRG flow equations after the
single-particle vertex. Since the self-energy in that fRG scheme is time-
local,

h(t) := hO + (1), h(t) e CN*N

takes the place of an effective single-particle Hamiltonian (com-
pare Equation 3.2.34). As all self-energies discussed in this chapter
are of this type, we use G to represent the Green’s function of the
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effectively free system, that might potentially include a time-local,
purely retarded self-energy; beyond this first-order approximation
it is a priori unclear whether a similarly designed algorithm would
yield the desired results. We suppress the A-dependence to keep the
expressions more readable and introduce the notation

h(t) [Wi(t)) = ei(t) [Wi(t))
h(t) e CN*N, Wi (t)) e CN

o (6.2.1)
€i(t) < €;(t) Vi<j

lei(t) —ej(t)] > A Vi #£i5,t,

where €;(t) and [V (t)) denote the instantaneous single-particle eigen-
values and eigenstates of the matrix h(t). A is an arbitrary, non-zero
gap that ensures the absence of level crossings. Without symmetries,
crossings are avoided and such a A is expected to exist. The adiabatic
theorem [BF28] then states that if

Ih(t)]| < A% Vt

.. (6.2.2)
= |[(W; (1) ult, to) [Wilto)) —8ij] <1 Vi, j

where u denotes the single-particle time-evolution operator. For a
pure many-body eigenstate of the noninteracting, initial Hamiltonian
the matrix of single-particle correlations (compare Equation 2.5.6) is
characterized by a sequence of occupations n; of the single-particle
eigenstates [V (to)) of hO:

Ato) = ) ni[Wilto)) (Yilto)l, ni€{0,1}
i (6.2.3)
ni; (to) = <C]TC;L> .

If the rate of change of the effective Hamiltonian h(t) is slow enough
(compare Equation 6.2.2), the time evolution of this matrix is given

by
Al =) nil¥i(t)) (Wi(t)] (6.2.4)

with the same sequence of n;.

As these results are restricted to finite systems they can not directly
be applied in presence of an auxiliary reservoir. However, the infinite
temperature in the auxiliary reservoirs used in the cutoff presented
in Section 4.4.1 allows to formally rewrite the Keldysh Green’s func-
tion (see Equation 3.2.34) as

GRA (¢, 1)
= —iG™" " (t, o) [1 — 27i(to)] GV (to, 1)
= —je 2N (t—to) {1 —2GIM (t, o) (t0) G (o, 1)

= —ie 2N 12N (1)],

} (6.2.5)
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where we introduced

e,/\(tfto)Gret,/\(t,t/) — Gret’/\(t,t/).

dec

By virtue of this definition i”*(t) is the matrix of single-particle cor-
relations of a closed system that evolves according to the effective
single-particle Hamiltonian h(t) (see Equations 3.2.34, 4.4.1 and 4.4.2).
Thus, A" (t) can be obtained using Equation 6.2.4 and only implicitly
depends on A (the instantaneous eigenstates will change with the
flow, as a self-energy is generated). Under these circumstances, the
flow Equation 4.4.6 can be rewritten conveniently by the following
change of variables:

£=e M) 5 9 f(A) = (048)0F(A())
OA = —2(t—1t0)&0¢.
The final differential equations read:

Algorithm 6.1: x-fRG-t-I"

. i -

0: T () = —58(t—t) 3 [GYH(t )] visalt)
k1

GRE(t, 1) = —i [1—2A%(1)]

A8 = Y n[wh <\y?(t)‘

(hO + L7t (1)) “Pf(t)> = e(t)

(6.2.6)

with &ini = 1, &final = 0. Note that this flow equation is simpler than
the original, time-dependent formalism (see Equation 4.4.6), since it
is to be evaluated only at a single fixed time and interaction.

The essential step in this algorithm is obtaining “Pf(t)> <‘{’f(t)‘ at
a given self-energy. The act of diagonalizing a given effective Hamil-
tonian is already of complexity O (N3). Even if we restrict ourselves
to tridiagonal matrices, where some more efficient algorithms exist,
we have to perform a sum over all eigenstates and obtain all diagonal
and first off-diagonal components of GX, requiring at least O (N?) op-
erations. To understand how to obtain this result more efficiently, we
first discuss, how this is possible in thermal equilibrium.

6.2.1.2  Single-particle correlations in thermal equilibrium

We now elaborate how to obtain equal-time correlations of effectively
noninteracting systems in thermal equilibrium efficiently using an an-
alytic continuation; after we discussed how this is achieved, we apply
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the same techniques for excited eigenstates. In the context of the Mat-
subara Green’s function, the resulting formulas may appear trivial
but we use the same line of arguments to derive efficient formulas to
obtain correlation functions in excited eigenstates where the complex-
ity class achieved for the final algorithm may appear surprising.

The conventional method to compute correlations would be, using
the same notation as in Algorithm 6.1

h{¥;) = ei [¥y) (6.2.7)
- <ch1> - an(ei) <k“1’f(t)> <‘1’f(t)’1>, (6.2.8)

where ng denotes the Fermi-distribution function and |i) denotes the
ith unit vector. After the single-particle Hamiltonian is diagonalized,
it still takes N operations to obtain an individual component of the
single-particle correlation function. Expressed in terms of Green’s
functions (using the Fourier transform of the fluctuation-dissipation
theorem, Equation 2.5.51), the analogous expression reads

GX(t, 1) = 2]771 J dw [1—2n(w)] |G™(w) — G*V(w)] . (6.2.9)

The time label t in equilibrium is arbitrary; we keep it to differentiate
between time- and frequency-space. For a closed system G™'(w)—
G2 (w) consists of N d-peaks; if these are broadened, O (N) evalua-
tions are needed to approximate the integral. To improve on this, we
recast this expression as a contour integral,

1
GR(t, 1) =5-2 Jim J L dz[1—2np(2)] G*9(z), (6.2.10)
i oo ’Yi’

where we employed the equilibrium Green’s function:

1
z—ho0

= G™(w) = G(w+107), G¥(w)=G*(w—1i0").

G*(z) =

The contours V:Rt’i, i = 1,...,4 are schematically shown in Fig-
ure 6.1. The integrand of Equation 6.2.10 has poles in the complex
plane which are located at the eigenenergies of the Hamiltonian
as well as at iw, + p with the fermionic Matsubara frequencies
iw, € i% (Z+ %) ; the latter originate from the Fermi distribu-
tion. The integrand is analytic within the closed contours formed by
Yi’] +- 4 vi’4 and at any finite chemical potential (and indepen-
dently of the width enclosed by y*3)

1 lim J " dz[1 —2ng(z)] G¥(z)
Y¥

B 1 . eq
— LY im Li"‘ dz[1 — 2np(2)] G99(2),
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Im(w)

Figure 6.1: Schematic depiction of the integrations discussed in Equa-
tion 6.2.10. The red crosses represent poles associated with
eigenenergies while the red circles signify divergences in the dis-
tribution function. The contours yi’] along the real axis are used
to evaluate Equation 6.2.10 while the contours yi’g’ enclosing the
imaginary axis are used to evaluate Equation 6.2.11. This figure
was previously published in [KKK18].

as G*4(z) — 1/(z—u) +0(1/(z—w)?) for |z| — co. Hence, the Keldysh

Green’s function is given by the contribution of the contour segment
R,3 1

y
GK(tt) =— % lim J dz[1 — 2np(2)) G99(2),
27 R—00 V:Rt'3
2 N (6.2.11)
2 eq s
== ]\}gnoo n;N G (iwn + 1)

and in the limitof T — 0

. A
GK(t,t) = = lim J dwG(iw + )
TA=Z A (6.2.12)

= % J dweIwI0” G*(iw + ).

As the wick rotated equilibrium Green’s function is not sharply
peaked, the number of evaluations of the integrand in Equation 6.2.12
is not expected to scale with the number of states in the system which
already is an improvement compared to Equation 6.2.10.

As we discussed in Section 7.5, for tight-binding models of linear
dimension N, the diagonal and first off-diagonal components of this
expression can be evaluated in O(N) operations [And+o4; Usmo4]

The contribution by the contour element needed to close YR vanishes for R —
oco. It can always be chosen such, that the distance between the contour and the
singularities remains finite.
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(compare Section 2.8.2). This will be important for later applications
where we want to study Luttinger liquid power-laws for N > 1.

6.2.1.3 Generalization to excited eigenstates

Equation 6.2.9, as the starting point of the previous section, is
based on the fluctuation-dissipation theorem. As we discussed
in Section 2.5.3, in an (non-thermal) equilibrium configuration (i.e.
[h, i] = 0) and without degeneracies for an (effectively) free Hamil-
tonian h there exists a (generally not unique) functions n(w) such
that

G¥(w) = 1 — 2n(w)] [Gfef(w) — G (w)

Next, we generalize Equation 6.2.12. From now on, we focus on the
most relevant case which is a state characterized by the distribution
function

N

1-2n(w) = ONe — 01 + Z oisign(w — wy),

2 (6.2.13)

i=1

0'16{i1}, i=1...Ny

where successive 0; need to have opposite sign and the w; are in
increasing order

0y = —0i+1, Wiy1 > Wy

in order to obtain a physical density. For example, a block excitation
(as will be considered in Section 6.4.4) can be encoded as

(e (11_111)11 wi = (_110/1)1

T w<—-1Voi<w<1 (6.2.14)
=n(w) =
0 otherwise.

Thus, this object is analogous to the n; of the previous section
(see Equation 6.2.3) and describes the sequence of occupied and
unoccupied single-particle eigenstates. Note that the first summand
of Equation 6.2.13 only contributes for an even number of steps, in
which case limy_ oo n(w) = limy__o n(w). Furthermore, the w;
are assumed not to be part of the spectrum. As we discussed in Sec-
tion 2.5.3, n(w) only carries physical meaning on the eigenenergies,
thus given a sequence of ni, n(w) is not unique; due to Liouville’s
theorem, however, it is not possible to chose a entire function with
n(ei) = n; that does not diverge for [w| — 00.?

Generalizing Equation 6.2.13 to other distribution functions is
straightforward.

More formally: for any entire n(w) that is not constant, there is a ¢ € R such that
limg_y e ‘n (IR| e”")| — 00
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As Equation 6.2.13 can be understood as a superposition of Fermi
distributions the considerations that led to Equation 6.2.10 apply for
each summand:

K .01 — 0Ny, i _lwlot .
G (t/t)zlz—i-;(?jnjdwe |w] G*(iw + wj). (6.2.15)

6.2.1.4 Frequency-space formulation

It is now clear that Equation 6.2.6 can be evaluated without the need
to fully diagonalize h(t). Using Equation 6.2.15 immediately yields

Algorithm 6.2: x-fRG-t-I" in frequency space

i ~
0Ty () = —58(t—t') 3 [GYH(t 1)y vinesal(t)
k,1
Gt t) =i(ny +nn—1)
0} —Jwlo* !
—|d

T AT

(6.2.16)

where we have introduced

0 =N{ —MNji1
ei(t) +eiqr(t)

@i(t) = 5

in analogy to Equation 6.2.13. The €;(t) in this expression are the
eigenvalues of the effective single-particle Hamiltonian h(t) = h® +
rrebé(t). As we discussed in Section 2.8, the necessary elements of
the inverse of a tridiagonal matrix as well as specific eigenvalues
(i.e. the nth smallest) can be obtained in O (N) operations. Hence,
Equation 6.2.6 can be evaluated in O(N) operations3 for tight-binding
models (which we will discuss in Section 6.3-Section 6.4) using Equa-
tion 6.2.16.

However, the functional form of Equation 6.2.16 also hints towards
a problem: in every step the Green’s function is integrated over all
imaginary frequencies. This is structurally different from the ground-
state flow equation (compare Equation 4.4.9) and will be investigated
more closely in Section 6.3.3.

The algorithm presented in this section can also be applied to the
ground-state but will not necessarily give the same results due to

In this, we assume that the sum in Equation 6.2.16 only runs over a finite number of
changes in n; that does not scale with N.
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the truncation of the flow equations and difference in cutoff. Hence,
comparing the results for the ground-state provides a nontrivial check
that will be discussed in Section 6.3.3.

6.2.2 x-fRG-t-p1,2: Adiabatic time-evolution in Keldysh space with an
initial-configuration cutoff

We now introduce a second approach which is also based on an adi-
abatic time-evolution. We still use Keldysh space fRG but develop a
specialized cutoff for the case that the initial state is an excited eigen-
state.

The cutoff in the free Green’s functions is introduced by choosing
an initial density matrix that depends on A. The causality relation
is conserved by construction and one can work in the Keldysh basis.
Thus, the cutoff can be introduced on the level of the initial Keldysh
Green’s function (compare Equation 6.2.15):

GE (to, to) = g8 (to, to) = —i(1 — 2A7)
Izi(TH + NN 7])

;= —A 00

104
" | o+
I

AN

while the time evolution is still given by Equation 3.2.34. This def-
inition of 1 differs from that employed in Section 6.2.1 and can be
understood as a generalization of the sharp cutoff in the Matsub-
ara fRG (compare Section 4.4.3). A similar idea has been employed
in Ref. [[MSoy] for steady states of open systems. By construction,
[ho,ﬁ/\] = 0, and thus the time-evolved Keldysh Green’s func-
tion GX(t,t) can be computed purely from h® + (t) (compare Sec-
tion 6.2.1). The free retarded and advanced Green’s functions do not
acquire a cutoff in this scheme. The initial condition at A = oo is
simply the T = oo state (at 1 = foo or half filling, depending on
nj +nyn — 1) while for A = 0 one retrieves the physical density. The
time-evolved single-scale propagator in the instantaneous eigenbasis
together with Equation 4.4.3 constitute the flow equations:

_|w|0+ ]
iw + @i(tg) —hO

dwe
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Algorithm 6.3: x-fRG-t-p

SEA(L, 1) = 0% GR (¢, 1)

10'1 1
— —Z > Z Wic(1) (i (V)] 7= @;(0) — ek (0)

i w=xA
T#Ni

Sret,/\ (t, t) =0

a/\ijt'A(t,t') = —*5 t—t') Z S (¢, 1)] lkvi/krifl(t)’
1

(6.2.17)

As in the previous scheme, the vanishing retarded component of
the single-scale propagator leads to a vanishing flow of the Keldysh
self-energy. To calculate the Keldysh component of the single-scale
propagator, in general one has to diagonalize the effective Hamilto-
nian at time t to obtain the instantaneous eigenstates, which is costly
for large systems. A physical approximation can be made by replac-
ing

1 1
iw + @i (0) — ex(0) w4+ @i(t) — ex(t)

This approximation ensures that the correct number of levels is above
and below @;(t) and only deviates from an exact treatment of Equa-
tion 6.2.17 in higher orders of the interaction since @;(to) — @i(t) €
O(v), ex(to) —ex(t) € O(v). Using this approximation, SKA takes the
more convenient form

SKA (4, 1) & Z Z lequ (iw 4+ @i (t)).

w==+A
nl?'énH—]

The resulting flow equation reads:

Algorithm 6.4: x-fRG-t-p,

AL (1) Z Z D GVt

w=+A
AN (6.2.18)

1
_ hO _ ):ret,/\(t):| Lk

Lw + @y(t)

which for tight-binding chains can be evaluated in O(N) operations.
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63 COMPARISON OF THE DIFFERENT SCHEMES

In this section, we perform various tests to explore the range of valid-
ity of the different x-fRG schemes. Due to the first order truncation,
results are only guaranteed to agree to linear order in the interaction
strength. All higher orders are uncontrolled and may differ.

6.3.1 Tight-binding Hamiltonian

For the rest of this chapter, we focus on a tight-binding model:

th — Hhop + Hint + th
N-—1

HhoP — Z cici“ +h.c.
i=1

N1
int __ T t
H™ =U Z CiCiCit1Ci
i=1

N—1

th——E(cTc +che ) —u E cle

=766 TONEN iCi
i=2

where the single-particle index enumerates the Wannier basis states.
Here, HP! is introduced to enforce particle-hole symmetry. We use
the hopping amplitude between adjacent sites as the energy-scale.

In the thermodynamic limit, the model described by Equation 6.3.1
is gapless for U < 2 and thus its low-energy physics is governed by
the Luttinger liquid fixed point [Giao3]. The Luttinger parameter is
known from Bethe ansatz calculations [Sir12] and at half filling reads

1 u 5
e .y =1 ﬁ—i—O(U ). (6.3.2)
For other fillings, the expressions take more involved forms, but for
the scope of this chapter only the first order expansion is needed at
quarter- and three-quarter filling:

K (6.3.3)

N
A
N

6.3.2  Comparison of the excited state schemes

Here, we compare the results of the x-fRG-t-I" with those obtained
from explicit time evolution using the t-fRG of Section 4.4.1 as well as
the different x-fRG schemes among one another. The x-fRG schemes
do not make use of an explicit time-evolution but are instead based
on Equation 6.2.4. Hence, if a gap A as introduced in Equation 6.2.1
exists the x-fRG schemes describe the adiabatic limit of a correspond-
ing scheme with an explicit time-evolution where |[h(t)|| < A?; if



63 COMPARISON OF THE DIFFERENT SCHEMES

10—1 L
_ u n . )
2 1072} o . & (1) .
o n
I; . e o ° o
) 107 e % 40 80
< u - |
<
| -4 - "
t: 10 0l ”’ — ° [ ] ]
g 5 (@m /” E ? ® [ J
% 1 -5 5| ,,/ = =
Ii 0 105‘ s p\f(ﬂ ° °
0.01 0.1 0.5
10—6 1 1 1 1 1
20 50 100 500 1000
tfinal

Figure 6.2: Main plot: Relative difference in fi (containing the occupations
and all other single-particle correlations, compare Equation 6.2.3)
as predicted by the t-fRG of Section 4.4.1 and the x-fRG-t-I" of
Section 6.2.1 using the Frobenius norm. For this comparison, a
noninteracting tight-binding chain of N = 80 sites was prepared
in three different many-body eigenstates of the non-interacting
system (visualized in the top right inset). Subsequently, the inter-
action was smoothly increased to its final value of Ug,, = 0.5
at the final time tgn,. This calculation was repeated for vari-
ous speeds within the t-fRG and compared with the x-fRG-t-T,
which is by construction in the adiabatic limit. Top right inset:
The sequences of n; that define the initial states (sorted by en-
ergy, see Section 6.2.1). Bottom left inset: Deviations as obtained
with x-fRG-t-p; (dashed line) and the x-fRG-t-T" (solid line) rel-
ative to the x-fRG-t-p; result as function of the final interaction
strength Ugp,. For this comparison the middle state (red squares

in the main plot) was used. This figure was previously published
in [KKK18].

higher-order terms are taken into account more care has to be taken.
As the x-fRG-t-T" and the t-fRG are based on the same regularization
scheme they are expected to yield identical results in this limit while
the other schemes are expected to differ in quadratic order in the
interaction.

To test this, we prepare the system in eigenstates of the noninter-
acting system with N = 80 sites (the three choices used are illustrated
in the upper right inset of Figure 6.2). The interaction is ramped up
smoothly from U = 0 to Ugp, = 0.5 in an increasingly long time span
of length tgina:

u(t) sin? ( t 7'[>
=si = .
ufinal tﬁnal 2

The relative difference of the matrix i containing all single-particle
correlations (compare Equation 6.2.3) in the final state is shown in Fig-

101



102

EXCITED EIGENSTATES USING FRG

ure 6.2. The difference between the results decreases with increas-
ing tfna With no qualitative difference between the initial states cho-
sen. This explicitly shows that in this case the adiabatic limit can be
reached. The saturation at large tgn, can be explained by numerical
inaccuracies in the integration and time evolution.

The bottom left inset of Figure 6.2 shows the average difference i
obtained by the x-fRG-t-TI', x-fRG-t-p; and x-fRG-t-p, methods. The
pairwise difference is quadratic in the interaction, as expected. Even
though the x-fRG-t-p, and x-fRG-t-p; do also differ in quadratic or-
der, their deviation is small compared to the difference between the
x-fRG-t-p1 2 and the x-fRG-t-T". For this reason, we will not discuss
the x-fRG-t-p; method in the rest of this chapter and instead focus
on the computationally cheaper x-fRG-t-p;.

6.3.3 Comparison with ground-state fRG

Another important test for the different x-fRG-techniques is to com-
pare them to the ground-state fRG of Section 4.4.3. As different cut-
offs are used and the hierarchy of flow equations is truncated, only
agreement to first order is guaranteed.

To study this in detail, we compute the spectral function

Ai(w) = —:—TIm [G““(w)]

i

To obtain an approximation of the continuous spectral function of
an infinite system, the single-particle levels are broadened by weakly
coupling the system to a reservoir. This is equivalent to adding a
small imaginary part of the order of the level-spacing to the frequency.

Luttinger liquid theory predicts that for frequencies around the
Fermi edge, a power-law suppression occurs in the ground-state at
the boundary of our tight-binding chain:

Ar(w) ~ wk T (6.3.4)

The exponent has a nontrivial linear contribution in the interaction,
rendering this spectral function an ideal testbed for the different x-
fRG methods.

For definiteness, we will now discuss the half and quarter filled
ground-state. In the half-filled case the approximate x-fRG-t-p;
scheme (see Section 6.2.2) yields the same flow equations as the
Matsubara fRG: in the ground-state, there is only one jump in the
sequence of occupations of eigenstates (at N/2). Due to particle-hole
symmetry* €; = en_i and thus @y ,,(t) = 0. Therefore, Equa-
tion 6.2.18 is identical to Equation 4.4.10. In the quarter-filled case,

4 For simplicity, we assume N € 2Z.
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Figure 6.3: Spectral function at the edge of a tight-binding chain in the
ground-state as computed with the ground-state fRG and the
excited-state fRG methods (used for the ground-state). The sys-
tem was chosen particle-hole symmetric with N = 10° sites and
U = 0.25 at half and quarter filling (left and right plot, respec-
tively). The insets show the spectral functions while the main
plots display the logarithmic derivatives. The horizontal, dashed
line shows the Bethe-ansatz expectation for the exponent. This
figure was previously published in [KKK18].

however, Matsubara fRG and x-fRG-t-p> deviate. In contrast, the x-
fRG-t-T" leads to different flow equations in both, the half and the
quarter-filled ground-state.

The spectral function A and its logarithmic derivative are shown
in Figure 6.3. The logarithmic derivative illustrates that the x-fRG-t-
p2 and the Matsubara fRG (i.e. ground state) indeed yield a power-
law suppression. In contrast, the T = oo reservoir cutoff used in the
x-fRG-t-T" fails at this task. This is plausible since the infinite temper-
ature reservoir does not provide a proper low-energy cutoff in the
adiabatic limit; all energy scales enter in every step of the calculation
(see Equation 6.2.16).

Simple and self-consistent perturbation theory is known to fail to
reproduce power-law behavior in most cases.

6.4 APPLICATIONS
6.4.1 Generic excitations

In Sections 6.4.2 and 6.4.3 we study the survival of Luttinger liquid
physics in lowly excited states above the ground-state. To this end, we
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choose the initial occupations n; € {0, 1} of single-particle eigenstates
with respect to the probability distribution

1
14 el(i-N/2)B

pimi=0)=1T—-pi(ny=1),

pi(ni=1)

where (3 acts as an effective inverse temperature of the initial state in
units of the level spacing. A should, however, not be understood as
a temperature of the interacting state but instead just as a measure of
the number of excitations in the system. This scheme is used as a con-
venient way to obtain excited states in a given energy window. The
energy of the final state is however not fixed. To make sure the results
are independent of the precise way the initial states are generated we
also investigate the distributions

1 i—=N/2 <1/B
palni=1=< 1 —1/B< i—-N/2 <1/B
0 1/B< i—N/2
1 i—N/2 <1/B
pani=1)=¢1_BUE=N2 15 i N2 <1/f
0 1/B< i—N/2

pr(ni=0)=1—prny=1) k=23

The energy of the final state can be obtained computationally cheaply
by calculating

E=Tr[a(h°+I)]

where the 71 is only needed on its diagonal and first off-diagonal.
Usually, we will be interested in the excitation-energy density defined
as (E—Egs)/N.

6.4.2 Friedel oscillations

We first investigate the Friedel oscillations that emerge around bound-
aries. A finite tight-binding chain will display oscillations in the den-
sity profile (i.e., the occupation numbers) at the ends (or near any
other impurity) at zero temperature and if particle-hole symmetry is
broken. We restrict ourselves to the case of a clean, half filled, finite
chain and set HP! = 0 (see Equation 6.3.1) to break particle-hole sym-
metry explicitly. Luttinger liquid physics predicts that

SO

This power law can be obtained via a ground-state fRG calculation,
and the linear correction to the non-interacting exponent can be com-
puted from a leading-order scheme. [And+o04]
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Figure 6.4: Density profile near the boundary of a tight-binding chain (in-
teraction U = 0.5) prepared in pure eigenstates with different
energies above the ground-state. The initial states in the left and
right panel were drawn with the probability distributions p; and
P2, respectively. The data was obtained via the x-fRG-t-p,. The
Friedel oscillations are cut off on a length-scale related to the
energy-density. The system sizes vary between N = 1.2-10% and
N = 0.7-10°; for clarity, the curves are only shown up to the
cutoff. This figure was previously published in [KKK18].

We now employ our x-fRG framework to explore the effects of fi-
nite excitation energies and try to draw analogies with the thermal
case: At finite temperatures, the algebraic decay is cut off on a length-
scale proportional to 1/T. We investigate whether Friedel oscillations
persist in excited eigenstates and if their energy provides a cutoff in
a similar fashion as temperature does in the thermal case. Since for
small T and a linearized dispersion at the Fermi-edge the energy of a
thermal state Et scales as

Er—Egs ~ T2,

we expect the Friedel oscillations to be cut off on a scale proportional
to 1/\/E—EG5.

As the x-fRG algorithms scale linear in the number of changes in
the sequence n; (compareEquations 6.2.16 and 6.2.18), the computa-
tional cost can be kept low by fixing the number of single-particle
excitations (by choosing a constant 3) while varying the system size.
This way, the algorithm scales linearly in the square root of the in-
verse energy density in the initial state.
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Figure 6.5: Length scale on which the Friedel oscillations are cut off as
function of the excitation energy. The interaction varies between
U = 0.125 and U = 0.5, and the size varies from N = 10% up to
N = 1.6 - 10°. The behavior is consistent between the probability
distributions p1 7 3. The dashed red line is a power-law fit with
an exponent o« ~ 0.512. This figure was previously published
in [KKK18].

The resulting occupation numbers are presented in Figure 6.4 for
various states at different excitation-energy densities relative to the
ground-state. One can see that even at finite energy density a power-
law decay is visible close to the boundary. This decay is cut off at an
energy dependent length-scale. To objectively measure the deviations
from the ground-state Friedel oscillations, we define a cutoff scale

ng® —ng
i >«
IniGS — 0.5

T I
10(_m1n{1

such that i} gives the first site where the relative error compared to
the Friedel oscillations of the ground-state exceeds «. This scale is
plotted in Figure 6.5 as a function of the excitation energy density
for various eigenstates and systems of different lengths. The line is a
power-law fit resulting in

. E _EGS —0.512
10.] ~ T s

which is reasonably close to the thermal expectation of —1/2. This
result does not depend on the chosen B, the cutoff or the distribu-
tion used to generate the initial state. We thus conclude that Friedel
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Figure 6.6: Local spectral function on the first site of a chain in an excited
eigenstate. The circles show systems of lengths varying form
N = 4-10% to N = 5-10* using the probability distribution
p1 (filled circles) and p, (empty circles) with f = 0.05 at the in-
dicated interaction strengths. To obtain the data represented by
the red crosses a fixed system size N = 5000 was used varying f
from 0.025 to 0.3 in the distribution p; with a fixed y = 0.0025.
The results obtained at fixed system size and y are compatible
with those obtained from simultaneously varying the size and
Lorentzian broadening justifying this procedure. This figure was
previously published in [KKK18].

oscillations survive to finite energy-densities and that the excitation
energy density simply provides an infrared cutoff.

Due to the shortcomings of x-fRG-t-T" discussed in Section 6.3 we
solely employ the x-fRG-t-p, from now on.

6.4.3 Spectral function at w =0

Another characteristic of Luttinger liquids is the finite-temperature
behavior of the local spectral function introduced in Equation 6.3.4 at
w = 0. In a thermal state

Ar(w=0)~Tx T,

In analogy to the previous section we thus investigate whether in an
generic, excited many-body eigenstate

=1
Ar(w =0) z <\/ E—Ees _NEGS> .

As discussed before, it is computational advantageous to keep f3
constant while varying the system-size. To compensate for finite-size
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effects a small imaginary part y is added to the frequency when eval-
uating the spectral function, effectively widening the sharp single-
particle levels to Lorentzian peaks. We chose y = 1/ (NPB). To ensure
that v is big enough to remove finite-size effects while being small
enough not to influence the observed behavior Figure 6.6 also shows
the results obtained at a fixed size N = 5000 and fixed smearing
vy = 2.5-1073 by varying B of the distribution p;. As the data ob-
tained in either way is compatible, the scaling observed can be at-
tributed to the excitation energy. Data was obtained for states gener-
ated with the distribution p; and p,. While the data shows different
prefactors, the exponents are similar. For clarity, the analysis of the
exponent will thus be restricted to the distribution p;. The exponent
is extracted with a power-law of the form

Ar(iv) ~ (x/Ej\f‘Gﬂ

and compared to the thermal expectation from Bethe-ansatz calcula-
tions (see Figure 6.6).

The results indicate that generic excitations can not only provide a
cutoff but can also be the origin of Luttinger liquid-like power-laws.

6.4.4 Block excitations

So far, we have analyzed generic excitations which leave the general
shape of the function n(w) unchanged and just alter it around the
Fermi-edge where the (free) dispersion is nearly linear. As all ob-
servables in a Luttinger liquid are governed by the Hamiltonian at
low energies, it is not surprising that the results are similar to those
of thermal states. There is, however, a different set of excited states
which are highly non-generic and different from thermal states, and
thus we have no intuition for their physics. As an example, we con-
sider a state where a whole block of fermions is excited to a higher
energy region. In the simplest, most symmetric case this is modeled

by

1 i< IN
1 < 1
no—) 0 aN< i< 5N 6.41)
1 IN< i< 32N
0 3N< i< N

which in contrast to the ground-state has three sharp, distinct edges
in the distribution function. To investigate the physics in this state,
we again study the spectral function at the boundary (compare Sec-
tion 6.3.3, we employ the same Lorentzian broadening). Results are
shown in Figure 6.7, where one can identify several points of non-
analytic behavior. The logarithmic derivatives around these points
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Figure 6.7: Spectral function of a tight-binding chain at the boundary. The
interactions are U = 0,0.2,0.4 (dark to light colors) and the initial
sequence of occupied eigenstates of the noninteracting system is
shown in the inset, representing a block excitation defined by
Equation 6.4.1 in a system of N = 10 sites. The results shown as
solid lines were obtained using the x-fRG-t-p,. The dashed, red
line represents results obtained using the x-fRG-w presented in
Section 6.5. This figure was previously published in [KKK18].

0.5
04+
o= | (/K= ~|w-wq | (/o
0.3 )
3 \ |
Q
0.2f
( |
0.1} !
3
1 N/2 N
0.0 . . .
-2 -1 0 1 2
w w

Figure 6.8: Spectral function of a tight-binding chain at the boundary (com-
pare Figure 6.7). The interactions are U = 0, 0.2, 0.4 and the initial
sequence of occupied eigenstates of the noninteracting system is
shown in the insets. Left panel: Quarter filled ground-state with
N = 10°. The three-quarter filled ground-state gives the mirrored
result. Right panel: Inverted ground-state using N = 4 - 103 sites.
This figure was previously published in [KKK18].
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€(k)

Figure 6.9: Illustration of umklapp processes contributing a second cusp in
the local density of states for all filling fractions other than the
half filled case (compare left panel of Figure 6.8). This figure was
previously published in [KKK18].

are plotted in Figure 6.10 and indicate the existence of power-laws.
The spectral function around the center divergence seems to scale as

_u
Ar(w) ~ =

while the outer cusps are described by

uv2z
Aq(w) ~ ‘w — wé’3

The rest of this section is devoted to understanding this result in
terms of known Luttinger liquid physics.

To this end, the left panel of Figure 6.8 shows the spectral function
in the quarter filled ground-state as obtained with the x-fRG-t-p;; the
three-quarter filled case is the same but mirrored. Both show two
cusps, one at the Fermi energy and a second one at the energy as-
sociated with 7t — kf. The first cusp is the one well studied in the
literature while the second cusp is the result of umklapp scatter-
ing [Ando6]: the long-ranged potential, acquired by the Friedel os-
cillations, allows for processes with wave vector 2k, which is either
close to the Fermi surface or an umklapp term higher up in the spec-
trum (compare Figure 6.9). Each of these is described by a power-law
Aj(w) ~w— wOI1 /X=T X has to be calculated using the dispersion at
the corresponding position in the spectrum (i.e., at quarter and three-
quarter filling), and to first order the exponent is given by U/ /2
(compare Equation 6.3.3).

Next, we discuss the inverted half filled ground-state (right panel
of Figure 6.8) which can still be obtained from the ground-state algo-
rithm by using a infinitesimal negative temperature, or equivalently
by analyzing the ground-state of —H. As the sign of the hopping is ar-
bitrary, we are thus just inspecting the ground-state of a tight-binding
chain with attractive interactions; to leading order, the corresponding
exponent is just —U /7.
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Figure 6.10: Logarithmic derivatives of the power-laws in the spectral func-
tion at the boundary in a block-excited state of a tight-binding
chain (compare Figure 6.7). The top panel shows the deriva-
tive around w = 0 while the bottom panel shows the two sides
around the outer cusp. The interactions depicted are (from dark
to light colors) U = 0.1,0.2,0.3,0.4. The horizontal lines in the
respective panels show —U /7t and v/2U/7. The dashed, red line
represents results obtained using the x-fRG-w presented in Sec-
tion 6.5. This figure was previously published in [KKK18].

We now observe that Figure 6.7 can be interpreted as a superpo-
sition of the effects associated with the different jumps in the distri-
bution function: The first and third discontinuity are located at the
Fermi energy of a quarter- and three-quarter filled system, respec-
tively. Their contributions coincide and (in the present approximation
scheme) the exponents just add up to

2<K1}‘—1> :u;fero(ul):z(KEq).

The divergence in the center is described purely by the inverted
ground-state.

Hence, the phenomenology of the very highly excited, non-generic
case of a block-excitation can (at least to leading order) be interpreted
in terms of ground-state Luttinger liquid physics.
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65 TOWARDS SECOND ORDER: STEADY-STATE KELDYSH FRG
WITH A NON-THERMAL RESERVOIR CUTOFF

We now devise a third way of obtaining an effective noninteracting
description of an excited eigenstate for an interacting model which
is not based on an adiabatic time-evolution but instead employs the
steady-state Keldysh formalism of Section 4.4.2. This could be of cen-
tral importance in going beyond linear order in interactions: the x-
fRG-t-T', p discussed before are based on a picture of discrete, sepa-
rated levels. In second order these levels will be broadened resulting
in a finite lifetime of quasiparticles. Hence, a picture of adiabatic time-
evolution becomes questionable. While a generalization to second or-
der of the algorithm presented here is still non-trivial it could be a
promising starting point. Whether a second-order treatment would re-
sult in relevant entanglement to the auxiliary bath at arbitrarily weak
couplings remains to be investigated.

The system is assumed to be in the steady-state induced by a wide-
band reservoir. As in Section 4.4.2, the hybridization to this reservoir
is used as the cutoff, but the reservoir is now no longer in thermal
equilibrium but instead chosen to be in a non-thermal, pure state
described by the distribution function (compare Section 6.2.1.3)

Nw
ON, — 01 .
B + E oisign(w — wy), (6.5.1)

i=1

1—2n(w) =

At the beginning of the flow where the coupling A to the reservoir is
strong, all levels are infinitely broadened and thus empty, half-filled
or full (according to the first term of Equation 6.5.1) and uncorrelated
(i.e., described by a T = oo state, independently of the precise state
of the reservoir). For small couplings (i.e., at the end of the flow), the
energy-scales of the physical Hamiltonian dominate and the distri-
bution function governing the steady state becomes equal to the one
of the reservoir. Hence, one recovers the physical system featuring a
non-thermal distribution function.

As no physical reservoirs are considered and all auxiliary reser-
voirs are governed by the same statistics, the system is in an (non-
thermal) equilibrium configuration throughout the flow and the fRG
preserves the fluctuation-dissipation theorem (see Section 4.3.1). This
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allows us to simplify the flow Equation 4.4.8 of the retarded self-
energy:

i
ATy = g D Vikjl J da [S* ()],
k1

FDT 1
= _M Zvilk,jllJ’dw (1 —ZTL((,U))
k1

[aj\Gret’A((D) - aj\Gadv,/\(w)]

e Y it | dew (1= 2n(w)

k1

100, G™" (@) +100 6™ (w)|

Lk

Lk

651 1 tA dv,A
= kZl Vik,j10% [Gre (wi) + G (wi)] Lk
L1

where we employ the specific distribution function in the last line and
partially integrate. The final flow equations therefore read:

Algorithm 6.5: x-fRG-w

ret,\
ALY

— _2]? Z Z OiVn k,m,l {Grem(wi) + GadV’A(wi)}

- Lk
k1 i

1 Z 1
= 5 Uivn,k,m,l . 0 ret A\ 7
27 T wo=ZA iw+wi—h—1% Lk

which is remarkably similar to the one found in the schemes dis-
cussed previously (see Equation 6.2.18) and even coincides, if the rel-
evant parts of the spectrum are invariant when lowering the cutoff. In
general, however, the effective single-particle spectrum will change
during the flow. By definition of the cutoff scheme, at no point the
particle number is fixed, only the occupation in energy space. The
actual number of particles in the final system cannot be fixed before-
hand. To obtain a state with a desired sequence of occupations n;
of the effective single-particle levels the frequencies w; have to be
iteratively adjusted.

For the case of a block excitation this optimization procedure is
straightforward and the results of such a calculation are shown as
dashed lines in Figure 6.7. For this problem, the x-fRG-w produces
power-laws; to obtain more generic states using this method is, how-
ever, connected to a significant overhead.

113



114

STEADY-STATE KELDYSH FRG WITH A NON-THERMAL RESERVOIR CUTOFF

6.6 QUENCHES FROM EXCITED EIGENSTATES

We are now going to discuss, how to combine the x-fRG with a
quench. While in principle all the algorithms presented in this chap-
ter can conceivably be extended by a subsequent quench, the time-
dependent fRG equation following the quench can not easily be
solved for all proposed schemes.

The x-fRG-t-p7 presented in Algorithm 6.3 is a natural choice for
an extension to a quench scenario. It was successfully used to obtain
excited eigenstates and (in contrast to the x-fRG-t-p; and x-fRG-w)
is defined in time-space. Furthermore, the cutoff used can be argued
to provide a low-energy cutoff (even after the quench): a quench pro-
tocol is generically not expected to significantly reduce the (effective)
temperature of the system, so even after the quench, low frequencies
are suppressed. As this argument is not rigorous, validity has to be
checked on a case-by-case basis.

For this algorithm, we assume that the system is prepared in some
eigenstate of the non-interacting Hamiltonian at time t = 0. The inter-
action is then adiabatically increased up to time t = to. From then on,
an arbitrary quench protocol can be applied. The resulting algorithm
reads:

Algorithm 6.6: Quench from excited eigengestate

S (to, to) = 85 G (to, to)

103 1
——% ; Z 7|ll)k(t0)><1|)k(t0)| 0+ ®1(0) — ex (0)

w=*A
N AN

SEA (4, 1) = G™(t,t0) SN (to, to) GV (to, t) Vt > to
SretA (L, 1) = 0 Vit

i

S8(t=t) 3 [S*ME )]y virea(t)

k,l

AT Mt t) =

(6.6.1)

Note that this also proposes a new variant of the time-dependent {fRG,
where the cutoff is purely encoded in the initial configuration.

6.7 SUMMARY AND OUTLOOK

In this chapter, we have shown how correlation functions in pure
excited states of many-body systems can be obtained within the realm
of the functional renormalization group; the key idea is to start out
with a Slater determinant and to slowly switch on interactions. To this
end, we simplified existing real-time Keldysh fRG flow equations for
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the special case of adiabaticity (x-fRG-t-I') and also devised a novel
cutoff scheme which is specifically tailored to this problem (x-fRG-t-
p). Due to the approximate nature of the method, the x-fRG results do
not necessarily agree with those of standard equilibrium fRG when
targeting the ground state, which thus provides a nontrivial testing
ground. Importantly, only the x-fRG-t-p manages to reproduce the
power-law suppression of the spectral function at the boundary of a
Luttinger liquid; the x-fRG-t-T fails at this task.

We subsequently employed the x-fRG to study two toy problems.
First, we demonstrated that Luttinger liquid power law behavior sur-
vives in lowly-excited pure states whose excitation energy density
serves as an infrared cutoff. Second, we determined the spectral func-
tion of highly-excited, nongeneric block excitations featuring multiple
Fermi edges and illustrated that the system is effectively governed by
a superposition of several Luttinger liquids.

The key drawback of the x-fRG is its approximate character. Even
though the underlying RG idea entails an infinite resummation of
Feynman diagrams, all results presented in this paper are only guar-
anteed to be correct up to leading order in the interaction. The
strengths of the x-fRG are that it is not bound by the growth of entan-
glement and that large systems of up to 10° sites (in one dimension)
can be treated easily.

Future directions include an extension of the x-fRG flow equations
to second order. The x-fRG-w could provide a good starting point
for a second-order treatment as it is less dependent on an effective
single-particle picture. This cutoff procedure can be readily applied
in second-order opening up the interesting question of whether the
final state remains pure up to the truncation order.

Furthermore, we proposed a method, that can be used to investi-
gate quenches, where the initial state is a pure, excited eigenstate of
an interacting Hamiltonian. This method can be used to investigate
transport properties of individual eigenstates, which might be essen-
tial to characterize mobility edges.

The methodology developed in this paper is directly applicable
to questions arising in the field of many-body localization [GMPos;
BAAo06]. Using this one can obtain access to the entire spectrum of an
interacting disorder system. In future work we hope to contribute to
the debate about the existence of a mobility edge separating localized
and delocalized eigenstates.

Going beyond this, an application to many-body localized systems
is enticing. Because of the small overlap of far apart localized states,
explicit adiabatic time-evolution is expected to be exponentially hard.
Due to the smooth distribution function used in the flow-equations
of the x-fRG-t-p it might be a promising method to circumvent this
problem and explore the many-body spectrum of interacting, local-
ized systems.
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7.1 INTRODUCTION

A system that is driven out of equilibrium by some form of local
quench-protocol will display many interesting, non-equilibrium phe-
nomena (for a review, see [Mit18]). However, it is generally believed,
that after some transient period, a generic, infinite (or in practice
large) system equilibrates; not only is time-translational invariance
recovered but also all local observables are well described by a ther-
mal distribution [D'A+16; Sregg; Neuz29; Gol+10].

A simple way to prevent thermalization is continuous driving of
the system. When periodically driving a system, however, energy
is not conserved and thus in an ergodic system the unique station-
ary state is an infinite temperature state [HKK97; LDM14a; DR14].
Whether or not this holds true for a given model is not always easy
to determine. Well known exceptions are integrable systems (such
as all non-interacting models) [LDM14b] as well as many-body local-
ized systems [Pon+15], which display emergent integrability [RMS15;
Imb16b; Imb16a; IRS17].

To circumvent heating, it is necessary to consider an infinite (i.e.
open) system, where an infinite amount of energy can dissipate.
While open systems are attractive from a theoretical perspective, as
they prevent recurrence, allow for non-trivial stationary states with-
out time-dependent driving and more closely resemble a realistic sys-
tem (as all systems are to some extent coupled to the environment)
they also present a hurdle to many methods. It is a priori unclear, how
long transient dynamics persist and when a stationary state will be
reached. Additionally, effects like prethermalization [BBWo4] make
the use of time-evolution based methods questionable. As we already
discussed, it is essential to consider infinite systems, and perturbative
approaches with respect to the environment might not be able to cap-
ture the correct long time behavior. Due to these difficulties, methods
are usually restricted to small interacting regions, weak coupling to
reservoirs or translationally invariant systems.

In this chapter, we present a method that is designed to compute
single-particle correlation functions in the stationary state of open
systems that feature two-particle interactions. To drive the system
out of equilibrium, we consider a scenario, where the non-interacting
reservoirs are initially prepared in different equilibrium configura-
tions. The method presented is based on the functional renormal-
ization group and thus perturbative in the interaction strength. In
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contrast to previous approaches to this problem [Jak+o7], we incor-
porate second-order contributions and can therefore describe heating
effects. As we mentioned above, these are essential to the physics
in the stationary state. Due to the computational cost, these inelastic
processes have only been considered in relatively small quantum-dot
structures [JPS10a; RIM14]. The equilibrium treatment of such terms
was discussed in [SK17; BHD14].

First, we will formally define the models that are accessible (Sec-
tion 7.2) to the method we propose. We describe the method in detail
(Section 7.3) and put emphasis on an efficient, highly parallelized im-
plementation. The single-impurity Anderson model provides a non-
trivial check of out implementation (Section 7.4). In the second half of
this chapter, we focus on one-dimensional tight-binding chains cou-
pled to reservoirs (Section 7.5), which we study in equilibrium (Sec-
tion 7.5.3) and at a finite bias voltage (Section 7.5.4). Throughout, we
critically evaluate the results.

7.2 CLASS OF MODELS DISCUSSED

In this chapter, we consider time-independent, fermionic models with
a finite number N € IN of interacting degrees of freedom:

Hys = Y hnmchem+ % D> vamchehcxer
n,meN n,m,k,leN

These are assumed to be coupled to a finite number N, of infinite,
non-interacting wide-band reservoirs with a quadratic coupling (com-
pare Equation 2.8.12). The reservoirs are assumed to be initially pre-
pared in thermal equilibrium at T = 0 or T = oo at arbitrary chemical
potential. Hence, their contribution to the self-energy in the Keldysh
basis has a particularly simple frequency dependence:

Zig;(w) — Z _lr‘n Zfes(w) = Z—legn(w— Hn)rn/ (7'2'1)

NENes NENes

Th=0

where I, € CN*N are positive, hermitian matrices characterizing the
coupling to the individual reservoirs and Ty, pn € R for n € Ny de-
fine the statistics of each reservoir. Note that the Keldysh self-energy
vanishes for all infinite-temperature reservoirs (see Equation 2.8.12).
As discussed previously, we do not allow for a direct coupling be-
tween the reservoirs. Every part of the system is assumed to have
a decay channel into at least one of the reservoirs to obtain a well-
defined steady state.

For a numerically efficient implementation of the algorithms pre-
sented here, it is crucial to also presuppose that v is sparse. Generally,
we will assume that supp(v) € O (N). An example, and the focus of
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this chapter, is a nearest-neighbor interaction. Importantly, we impose
no restrictions on h.

Furthermore, we focus on the parameter regime, where all entries
of the bare two-particle interaction are small compared to the relevant
single-particle energy scales such that the validity of perturbative ar-
guments is warranted.

7.3 SECOND ORDER FRG FORMULATION

While these systems can be easily treated in a first order approxima-
tion (we will discuss this on one example in Section 7.5.2), such an ap-
proximation only produces frequency-independent corrections to the
spectrum. Contributions to the Keldysh component of the self-energy
is, however, expected to be essential to describe heating. Especially
in systems coupled only weakly to the environment such effects may
fundamentally change the phenomenology.

To amend this, we aim to include all second order contributions to
the self-energy to obtain corrections to the prediction of the first-order
fRG.

7.3.1  Choice of the cutoff

When choosing the cutoff, we have two main goals: (i) we want to
preserve as many symmetries as possible while (ii) aiming for a nu-
merically efficient algorithm. As we will see, not both of these goals
can be achieved simultaneously, hence the approach presented is a
compromise and a different choice might yield different, and poten-
tially better, results.

The cutoffs presented thus far have fallen in one of three categories.
They either add inelastic terms, effectively smearing the spectrum
(see Section 4.4.1 and Algorithm 6.2), they modify the distribution
function of the system (see Section 6.2.2) or both (see Section 6.5
and Section 4.4.2). The system we want to study is only weakly cou-
pled to reservoirs, resulting in a sharply peaked density of states. This
poses a significant problem numerically. We thus aim to introduce ad-
ditional scattering to aid an efficient implementation. At the end of
the flow, physical decay processes are expected to be generated to
guarantee sufficient smoothing, allowing for efficient numerical in-
tegration. To preserve the fluctuation-dissipation theorem in equilib-
rium we refrain from modifying the distribution function through the
cutoff (compare Section 4.3.1).

For these reasons, we decide to use a reservoir cutoff scheme. In
equilibrium, the initial distribution function of the auxiliary reser-
voirs can be chosen identical to the physical one, conserving the
fluctuation-dissipation theorem (see Section 4.3.1). We will also an-
alyze, how choosing different temperature in the auxiliary reservoirs
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affects the equilibrium results (see Section 7.5.3). This cutoff further-
more has the advantage, that the Green’s functions at finite flow pa-
rameter have the same form as physical Green’s functions, allowing
us to simplify the flow equations significantly. Moreover, due to the
physical choice of the cutoff, causality is automatically conserved.

7.3.2  Vertex feedback

Our main interest in this section is to analyze the effect of inelastic
processes on the system and how it modifies the first order behavior.
Therefore, we aim to extend the first order functional renormalization
group in the simplest way possible, that still includes all second or-
der contributions in a perturbative sense. As a reminder, the flow of
the vertex functions truncated after the second order reads (see Sec-
tion 4.2.5):

OAZq(w)
—i (7.3.1)
=5 JdQsz'nzm =0+ w,X=0-w,A=0)5;,/(Q)
i
OAY1212(IT, X, A) = 271de
Y112/1345313:G41arY314112
(7-3-2)

+Y114732 [333/G4|4/ + G33/544/]Y3f2/14
—Y1/3/14 {333/G4|4' + G33/544/]Y4'2'32

where we left out the frequency arguments to improve readability.
The multi-indices 1/,2,... contain the single-particle indices as well
as the Keldysh indices. If we consider a frequency discretization with
N points, the resulting two-particle vertex has

lyl € O (NNg) (7.3-3)

non-vanishing entries. Computing the rhs of an individual element is
associated with a cost of O (N*Ng ) resulting in an complexity class
of

full 2 Order fRG € O (N3Ng,)) (7.3.4)

to compute the flow of the two-particle vertex (the flow of the self-
energy is computationally significantly cheaper). Computing this,
without any additional approximations is impossible, even for small
systems.

In this argument, we assume the grid is chose fine enough to approximate the inte-
gration.
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As a first step to reduce this complexity, we remove the feedback
of the two-particle vertex in the second order flow equations, i.e. re-
placing v with v on the ths. Asy = v+ O (U?), this only generates an
error of O (U3).

i
a/\y1,2/|12 T[ X, A Jd(,l)

2
Gajar <2 )‘73'4'12
53‘3/ (w — ) G4|4/

X X X
w—|—2> +G3|3/ < 2) S4|4/ <w—|—2)]
—V1131114V4721132

[ A A A A
_83‘3/ (w— 2) G4|4/ <w+ 2> + Gg|3/ ((l)— 2> 84‘4/ (w+ 2):|
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This approximation is additively separable into three independent
flow-equations. y = v +y4(A) +yP(IT) +y*(X). We will call this the
channel decomposition. The flow-equation of the self-energy can be
decomposed correspondingly:

NEyp(w)= Y ALy (w
ae{p,xd}

—i
a/\zﬁ)/“ ((U) :E JdQY$/2/|]2(Q + w)82|2/(Q) (7 3 6)
_27TJ\dQY)-?/Z/“z(Q—(U)Szu/(Q)

—i
6/\2?,“ (w) :Z'[ (Y?/Z’I]Z(O) +\_)]/2/|12> JdQSzul(Q)

In addition to reducing the frequency dependence from 3D to 1D it
also reduces the spatial dimension of these tensors as

Y1212 (M) =0 V1,212 5V i je e =0V V4 ojiy1, =0

Yir212(X) =0 V17,2°,1,2 5V, e)ei, =0V Vai,ji; e =0

0 V17,2',1,2 5V, ejie =0V Vai, ei, =0.

(7:3.7)

d
Yina(A) =

For a nearest-neighbor interaction, this simplifies to
VopnaM=0 W1 =2/ £TV2 —1]#]1
Yi2112(X) =0 VI =2[>1V 2" =1 >1 (7.3.8)
¥§/2/12(8) =0 VT =1 >1V]2' =2/ > 1,

where we understand | e | to mean the distance in the spatial, single-
particle indices.
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Finally, we remove the self-energy feedback back to the two-particle
vertex by replacing G — g and S — s. Yet again, this approximation is
controlled in the interaction and only introduces errors of O (U?) and
is only used for the flow of the two-particle vertex; the self-energy is
not approximated further. Numerically, this might appear to make
the problem more complicated, as without feeding back the inelas-
tic contributions of the self-energy, the Green’s functions might be
sharply peaked, making the evaluation of the integrals more difficult.
However, this allows us to analytically integrate the flow equations.
To that end, we use 0Ag3(3/9aja’ = $3(3/9aja’ + 93/3/5aj4’- The resulting
form of the two-particle vertex

i I T
Vﬁ)/z'nzm) :@ J dwvi2/3493)3/ <2 - w> ga|4’ <2 + w) V3147112
X i _ X X\ _
Yinm2(X) = I J dwvy74/32933/ (w - 2> J4i4/ <w + 2) V312114

—i A A
Yi22(4) = J dwvy3/14933/ (w - 2) a4’ (w + 2> V4127132
(7.3.9)

This corresponds to the perturbation theory result for the two-particle
vertex (compare Section 4.5) in the presence of a finite flow parameter
A. The cutoff enters in the bare Green’s functions. The computational
cost of obtaining all these contributions to the two-particle vertex is
of complexity

0 (N*Ng) O(Ng) . (7.3.10)

—_—

#components integration
This does not include the cost of computing the Green’s functions
which should be done beforehand (and thus contributes additively).
Computing all components of the Green’s functions is expected to
scale like O (N3 NQ). While these equations can be solved numeri-
cally, we found it to be more efficient to obtain and evaluate a semi-
analytical solution.

7.3.3 Analytically computing the perturbative two-particle vertex

To obtain analytic expressions of the perturbative two-particle vertex
at finite values of A, we make use of the restrictive choice of reservoirs
in Equation 7.2.1. As the cutoff employed (see Section 7.3.1) can be
simply understood as an additional reservoir, we will not consider
the cutoff parameter separately but treat is as yet another physical
reservoir. To improve readability we use the short hand notation

h=h-—il (7.3.11)
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for the effective (retarded) Hamiltonian, where in the spirit of this
section " =Y | Ty + A . As h is not hermitian, it has separate left and
right eigensystems:

hiq) = Aqlq)
(@h=(qlAq.

The positivity of I" ensures that Im(Ayq) < 0 Vq. We can rewrite the
non-interacting retarded and advanced Green’s functions as:

ret _ | _ 1 Al —- 1
g (W)= —— = % o, 9 al= % w0 =g Q1 (7:313)

1 1 1
adv _ _ A — T
g (W)= =5 = Eq w N ) (gl = Eq -y Q(73.14)

(7.3.12)

where we also introduced the matrix Q4 = [q) (gl. Next, we simplify
the Keldysh Green’s function:
g*(w) = g™ (W)= (w) g™ (w)
Zfes(w) =21 Z Msgn(w — py). (7.3.15)
T=0

This self-energy includes the contributions of both, the physical as
well as the auxiliary reservoirs which might be of different tempera-
ture. For every reservoir of zero temperature we introduce a distribu-
tion operator 1, (compare Section 2.6):
—2il, = _nnhT +hnn
=1—-2N(w) = Z Mnsgn(w — py). (7.3.16)

n
Th=0

resulting in:
g (w) = g"(w) 2N (w) g* (w)

= ) sgn(w—pn) [g"(@)nn —nngadv(w)] . (7317
Thz0
This can also be understood as a partial fraction decomposition. 1y is

defined as a Sylvester equation and the solution of this class of matrix
equations has been discussed in Section 2.6.
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Using this decomposition, we can write down concise, complex val-
ued integrals to express the two-particle vertex functions. For exam-

ple
de gﬁr(iw)gﬁj/(w-l-ﬂ) (7.3.18)

deZ (Qq )i Y Y senlw—un)

q2 nENres

1 1
- A — i
X[w+{1—Am(an“hl <u+()—x%(ﬁ“Q%)ml
== E E (Qq1 ®qunn)i,i/,j’j/f1 (:I:}\q1/}\q2_Q/ p—n)

41,92 NE Nyes

—(QayemmQly),, , T1EAG AL, — Q)

where we used

[ 1 1
fola,b) = | dw
J w—aw-—>b
[ 1
fi(a, b, ) = | dw
w—a

[ 1
fa2(a,b,u,u') = | dw
J w—aw-—>b

—pssn(w—u) (7.3-19)

sgn(w — p)sgn(w — p').

With these, all required frequency integrals can be computed sepa-
rately from the fermionic indices. A detailed account how to express
all other cases in terms of fj,3 as well as analytic expressions for
these integrals can be found in Appendix A.

The complexity of evaluating the two-particle vertices using these
formulas are drastically different and in some cases favorable

O(N*Ng) O(N?) . (7.3.20)
—_—— ~——

#components internal summation

The main advantage is the reduction from O (N%) to O (Ngq) by
avoiding the numerical calculation of the integrals; this is achieved
at the cost of an additional internal summation over N entries. Note
that to obtain this complexity class, it is essential to compute and
store all Qq, Mk, QqMi, Nk Qq beforehand. Furthermore, for an efficient
algorithm it is important to note that the arguments of f7 ; 3 are inde-
pendent of the indices i,1/,j,j’ in Equation 7.3.18. As the evaluation
of the functions f; 3 is much more time-consuming than accessing
the elements of the n and Q matrices, it is important for an efficient
implementation to only evaluate f once and than iterate over the nec-
essary values of 1,1,j,j’.
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7.3.4 Size of the effective two-particle vertex

For alocal interaction, the two-particle vertex functions in the channel
decomposition are sparse, as noted in Equation 7.3.8. If

{n},|6 € CN} wherei€e N, (7.3.21)

enumerates the sites that a given site i interacts with and CN denotes
the maximal number of such sites for any 1, the vertex functions can
be expressed as

poylor _ _p
Y]/“ T ’Y]/ nlo_’ [1 TI;I,. (7322)
1/ 1

and analogously for y*9. These can efficiently be stored in 1D-arrays
of size

YP: 16-N% CN? (7.3.23)
v< 16 - N%(CN +1)? (7.3.24)
4 16 - N?(CN +1)? (7.3.25)

which amounts to O (10MB) of memory per frequency for a O (50)
site system with a nearest-neighbor interaction in a 1D chain (note
that y9 is only needed at A = 0).

7.3.5 Frequency integrations

DISCRETIZATION OF THE SELF-ENERGY After implementing the
analytical formulas for the two-particle vertex we are left with
the challenge to evaluate the remaining first order flow equations
(see Equation 7.3.6). At the beginning of the flow, the single-scale
propagator as well as the two-particle vertex decay on a scale given
by the coupling to the auxiliary reservoir. Hence it is necessary,
to evaluate them for large frequencies. On the other hand, at the
end of the flow, the physical bandwidth limits the support of the
integrations and thus the Green’s function is only needed for fre-
quencies on the scale of the bandwidth. To avoid having to adapt
the grid during the solution of the flow equations, we note that
Lijplw)=Zyp(w’) € 0 (Uz) as the first order self-energy is fre-
quency independent. At large frequencies we can, therefore, always
approximate the self-energy with the value at the largest frequency
in our grid and only acquire errors in O (U*) when evaluating the
flow-equations.”

We explicitly tested convergence with respect to the spacing in the
frequency grid as well as the maximal frequencies. In Chapter 8, we

Note that to evaluate observables in the physical limit, i.e. the end of the flow, the
self-energy is required on all frequencies within the support of the Green’s functions.
For that reason, the grid has to be chosen wide in comparison to the bandwidth of
the physical system.
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will discuss an entirely different approach to deal with this problem
with it’s own advantages and disadvantages.

INDEFINITE INTEGRALS  Following this strategy, we chose a fixed
grid of frequencies on which to evaluate the self-energy. Outside this
grid, the self-energy is approximated to be constant. This approxi-
mation allows us to numerically evaluate all the integrals. Infinite
integrals are evaluated using

1

Joo dwf(w):JA dwf(w)+J_A1 dn <‘> (7.3.26)

—00 —A x n n

% was employed. To solve these integrals,

we employ the runge_kutta_cash_karp54 implementation provided
by boost[Boo1s]. Integrals, that contain a Keldysh Green’s function
will also display discontinuities at every chemical potential of any of
the reservoirs. As their position is known, it is most efficient to de-
compose all integrals such that none of them contain a discontinuity.

where the substitution n =

LOOKUP TABLES FOR VERTEX FUNCTIONS The flow equations for
the self-energy, just like those for the two-particle vertex functions,
involve convolutions (compare Equation 7.3.6). To evaluate the flow
equations on the entire grid (of O (Nq) frequencies) requires evalu-
ating the integrand O (N%) times in total. As the evaluation of the
vertex functions is numerically expensive (see Section 7.3.3), it is fa-
vorable to compute a lookup table of the vertex function beforehand.
To this end, we (ab)use an integration routine to sample the vertex
function,? where we made sure that the grid produced is fine enough
to not influence the results. We then proceed to approximate the ver-
tex function at intermediate points using a spline interpolation.* An
alternative way of efficiently obtaining the convolutions needed in
the flow equations will be discussed in Chapter 8.

Note that the number of points needed to approximate the vertex
functions does not necessarily (and specifically in the system we in-
tend to apply the algorithm to) scale with the system size. For a long
chain coupled to leads with a constant coupling strength the (bare)
Green'’s functions obtain O (N) peaks of width O (I'/N). Hence it re-
quires O (N) points to approximate or integrate the Green’s functions.
The vertex functions, however, feature O (N?) peaks of comparable
width, making it smooth for N — oo. This is explicitly shown in Fig-
ure 7.1.

Y(w
1+ w]

mentation [Boo15] of the runge_kutta_cash_karp54 integrator with e, = 10~¢ and
—5
€rel = 10 .

To this end, we integrate fiooo dw

using Equation 7.3.26 and the boost imple-

4 We wuse the cubic spline implementation provided by the GSL

(gsl_interp_cspline)[Galog].
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Figure 7.1: Left panel: The local density of states of a non-interacting chain of
length (bottom to top) N =4, 8, ...,24 with to two reservoirs cou-
pled to the ends of the chain with I' = 0.2 (compare Section 7.5).
It shows N peaks of width ~ T/N. Neither a uniform, nor a

pointwise convergence is found for N — oco. Right panel: The
( P)%ilg (w) component of the perturbative two-particle vertex.

In contrast to the LDOS, it features O (N?) peaks, leading to a
convergence to a smooth function.

7.3.6  Parallelization

There are two reasons, why we might want to parallelize this algo-
rithm. First, the computational effort required to obtain numerical
results for large systems (O (50)) sites is significant and wall-time per-
formance can be enhanced greatly using parallelization. The second
reason is, that the tabulated version of the vertex function for large
systems takes up large amounts of memory. Therefore, in practice, a
single machine is unable to store the representation of all components
of the vertex functions at the same time in memory. We thus aim to
distribute this task over many machines. When distributing the work-
load, it is essential to minimize the necessary communication between
the machines as the bandwidth between them is limited.

To this end, we chose two numbers p1, p2 that divide N. The num-
ber of machines used is then p; - p2. Machine (1,j) €{0,...,p1 — 1} x
{0,...,p2 — 1} is then tasked to calculate all £y 1141 for®

N N N
i— <k<(i+1)—, — <l<(+1)—. 3.2
- ( )p1 Jp2 (5 )p2 (7.3.27)

It needs access to all vertex functions 1/1’,’;?“ , with the indices 17,1

restricted to the same region. For yP*, this already restricts 2/, 2 while
(the computationally cheaper) vd is required for O (N) values of 2/,2

Note that for convenience, we number the machines starting a 0 while the self-energy
indices start at 1.
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on every machine. To obtain these elements of the two-particle vertex,
on each machine needs to evaluate the analytical expressions for the
two-Green’s-function integrals only a small number of times.

As an example, consider a 1D chain with nearest neighbor interac-
tion and even number N € 2Z of sites. We discuss 2 x 2 machines
attempting to calculate 9o XP. The (0,0) machine has to obtain (com-
pare Equations 7.3.6 and 7.3.7)

L N . . N
V?/Z/nz for iy, iy € 5t € 5 +1 (7.3.28)

and thus requires the almost all two-Green’s-function integrals with
(compare Equation 7.3.9, in our implementation we only compute the
necessary elements)

I I
deggy (2—w> 94147 <2+w>

N (7:3-29)
with i3/,13,147,14 € = +1, [iz3 — 14| = TAliz —ig] = 1.

2

This exemplifies that in the case of a 1D chain and nearest-neighbor
interaction, we achieve a speedup of approximately

P1p2
(14+28L) (1+282)°

(7.3-30)

After each machine obtained its portion of the rhs of the flow equa-
tions, all contributions are sent to machine (0,0), which then in turn
sends back the full rhs to all other machines. Note that the amount of
data sent is significantly smaller than the space needed to store v, as
there are less components and the frequency-grid will generally be
more coarse than the one needed to store the representations of the
(perturbative) two-particle vertex. A visualization of the parallelized
version of the algorithm discussed here is shown in Figure 7.2.

7.3.7  Perturbation theory

To obtain perturbation theory results to compare to, we have to re-
move all higher order terms generated by the flow of the self-energy.
How to do this was discussed in Section 4.5. As the integrals for the
solution of the flow of the self-energy become sharply peaked, we
implemented the analytic expressions for the three-Green’s-function
integrals. How to obtain these is sketched in Appendix B.

7-4 COMPARISON WITH SIAM

The single impurity Anderson model describes a single magnetic im-
purity on a metallic reservoir [And61], as can be obtained in meso-
scopic systems. At low temperatures it shows strongly correlated
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[Inltlallze A=ANAni, £

{compute 7\q, Qm, QH,HQJ

Y

e 2

{Igg € (0,0)+e] [fgg € (O,])—Fe}

S yPd € (0,0)| = yP e (0,1)

Jgge (1,0)+e| [[gge (1,1)+
—>yP'Xde(1,0) —>yP'Xd€(1,1)

. J

A 4

4 7\

[decrease A, update Z] [6/\2 € (0,0) ] [a/\Z e (0,1) ]

[a/\ZEU,O)] [a/\ZG(],U]

Figure 7.2: Diagram representing the algorithm used. Orange blocks repre-
sent computation done on all machines while the blue blocks
show where individual machines perform separate operations.
The black arrows represent the program flow, the blue arrows
symbolize data transfer. Each machine is tasked to compute
a block (i,j) of the self-energy (compare Section 7.3.6). This
requires the evaluation of the corresponding elements of the
two-particle vertex function and therefore the analytic expres-
sion for the two-Green’s-function integrals (indicated by [ gg).
The indices required by each machine relate to the block of
the self-energy that is to be obtained (compare Equations 7.3.28
and 7.3.29). (i,j) + € indicates, that the indices extend beyond the
block and thus some are computed on more than one machine
(reducing efficiency). While the lookup tables for y are large, they
are not sent between machines; only the (significantly smaller)
self-energy is transferred. All machines need knowledge of the
self-energy to compute the single-scale propagators in the next
iteration. The loop in this diagram is stopped, when A = 0.
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oo«

Figure 7.3: Pictorial representation of the single-impurity Anderson model
in a fermionic representation. It features two interacting, but oth-
erwise decoupled sites, each of which is connected to a fermionic
reservoir.

Kondo physics [SW66] that has been studied extensively in the litera-
ture. For simplicity, we only consider the case of vanishing magnetic
field.

In the language of spinless fermions it can be understood as a spe-
cific example of the models discussed in this chapter: the system is
described by two interacting sites

1 1
Hgys = U <CJ]rC] — 2) (cgcz — 2) ,

each coupled to structureless reservoirs with strength TI'. Figure 7.3
shows a graphical representation of this Hamiltonian. The second
order perturbation theory self-energy is given by [HHZ84]

1
Q—wi;—wy+ w;s
[flwq)f(w2)f(—w3) + f(—wq)f(—w2)f(w3)]  (7.4.1)

£(Q) = Uzde1dwzdwap(w1)P(wz)p(w3)

where

plw) = :—TIm ( ] ) , f(w) =0(—w).

w —il

This can directly be compared with the fRG results found with the
algorithm described in Section 7.3. As fRG contains higher order con-
tributions the resulting self-energy is only expected to agree in lead-
ing order (i.e. U%). The comparison obtained is shown in Figure 7.4.

In this model, perturbation theory results can be retrieved by re-
moving the self-energy feedback.® Without this feedback, agreement
between perturbation theory and our implementation is confirmed
explicitly (see right panel of Figure 7.4).

7.5 APPLICATION TO 1D CHAINS

While the Tomonaga-Luttinger model is motivated as providing the
correct close-to-equilibrium phenomenology of a 1D metal, it also

In this model, GX(t, t) vanishes and with it the first order corrections as well as the
contributions from the y9-channel (compare Section 4.5). Hence perturbation theory
results can be retrieved by removing the self-energy feedback into the flow equations.
The vertex is not fed back at this point, anyways.
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Figure 7.4: Left panel: Real part of the frequency dependent self-energy in
the SIAM without magnetic field as computed by second-order
perturbation theory (solid black line) and the fRG algorithm dis-
cussed in Sec Section 7.3 (dashed red line). Right panel: When re-
moving the self-energy feedback, the fRG algorithm reproduces
the perturbation theory result. This is a non-trivial check of the
algorithms used to compute XP*(w).

predicts power-law scaling for out-of-equilibrium observables. Taking
into account non-linear contributions due to the band-curvature (i.e.
non-linear Luttinger liquids) leads to some qualitative changes while
some features may survive beyond equilibrium[IGog; ISG12]. To in-
vestigate the non-equilibrium behavior in a microscopic model, how-
ever, is numerically difficult. Therefore, it is generally hard to asses
which, if any, of the non-equilibrium properties of the Tomonaga-
Luttinger model persist in a model with finite band-curvature.

7.5.1 Studied system

Let us consider a one-dimensional chain of sites attached to leads
only at the two ends. For the time being, we will restrict ourselves to
the simplest case described by the Hamiltonian:

HSYs — th + Hint

N
HP = Z tche, 1 +he
n=1

N—1
inter 1 1
H™er = E <C11:LCT1_2> (CIL-F]CTL—F] _2>
n=1

where N denotes the number of sites in the interacting chain, U de-
notes the strength of the nearest neighbor interaction. Two wide-band
reservoirs (called left and right) are coupled to the ends of the chain
(compare Sections 2.5.4 and 2.8)

L =Tey e?, R =Ten eTN (7.5.1)
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t t t r

[ Jesescmicionex 1§
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Figure 7.5: Pictorial representation of the system considered in Section 7.5.
The dashed lines represent a nearest-neighbor interaction, the
solid lines indicate quadratic couplings; the couplings labeled t
represent a nearest neighbor hopping, those labeled I" indicate a
hybridization with wide-band reservoirs (compare Section 2.5.4).

and initially prepared in thermal equilibrium characterized by tem-
peratures Ty = 0 and chemical potentials j1«, « = L,R. Throughout,
we use the hopping amplitude as the unit of energy and therefore set
t = 1. A pictorial representation of the system described above can
be found in Figure 7.5.

7.5.2  Previous work and first order physics

This model was already studied in [JMSo7] and more extensively
in [Jakog]. As the approach used was guided by this previous work it
is instructive to include the central ideas brought forward by [JMSo7].
Furthermore these known results can be understood in the light
of Chapter 6, adding a new perspective.

7.5.2.1  Cutoff used

In [JMSo7], a first order fRG approach was used based on flow-
parameter dependent distribution functions in the reservoirs, similar
to what we discussed in Section 6.2.2. The distribution function at
temperature T is given by

elme T—o —1 ein‘*’
1—2n(Q) = _ZTme o —aTn T[deiw_fH "
=tanh [(Q — n)/2T] T30 sgn(Q —p) (7.5.2)

This is smoothed out by limiting the contributing Matsubara frequen-
cies:

eimeJr
n*(Q) me loml =N —a7
To0 —1 J eiu.)()Jr
% K3 dw.i. . .
TR\-AA] W= Q4 (7:5.3)

= arccot [(QQ — u)/Al
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When computing the resulting single-scale propagator we will also
require

1
IAnMQ) = —TY §A — (75
= 0An"(Q) Z —lom) o ——m 754)
W T—=0 1 1
7 T ; FA—Q+ (7:5:5)

where the T — 0 limit, while mathematically ambiguous, is to be
understood in the context of Equation 7.5.3.

In the case of two reservoirs at zero temperature this results in a
simple pole-structure of dAn”*. The single scale propagators using
this cutoff are easily determined to be”

Sret(w) =0
SK(w) = =21 ) (—20An{ (w))G™ (W)™ (w) G (w).

T

7.5.2.2  Weak coupling limit

In the weak coupling limit we use Equation 7.3.16 and find
| —2if+hf —h|| =0 forT — 0, (7.5.6)

hence nx ~ 1+ O (T'); the distribution operator N(w) becomes diago-
nal and thus commutes with G™t,

ll—ZnT ][Gfet W) — GadV(w)}JFO(r)

(7:5.7)
[ Za/\n ][Gfet( )= 6™ (w)] +0 ).

Therefore, to leading order in the coupling, the system behaves ex-
actly like a system, where both reservoirs attached are governed by
the distribution function 1 — ) n.(w). Similar states were already dis-
cussed in Chapter 6 and while not being thermal could still be con-
sidered to be in equilibrium; this state does not carry a current.

Taking advantage of the structure of this setup and the correspond-
ing steady state the first order flow equation can be simplified, re-
moving the need to compute any integrals. In the end, one obtains
a superposition of equilibrium flow equations at multiple chemical
potentials. The resulting flow equations are very similar to those ob-
tained in Section 6.5, with the only difference being (a) the steps in
the distribution function being smaller and (b) the presence of the
physical reservoir at the end, giving a constant contribution to the
retarded self-energy.

7 Note that the cutoff preserves causality. We thus restrict our discussion to the
Keldysh basis.
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7.5.2.3 First-order results and open questions

Using this approach, [[MSoy] finds Luttinger liquid like behavior in
observables like the local density of states or the conductance. The
exponents of the power law behavior is found to be dependent on the
ratio of the coupling strengths to the reservoirs.®

However, as we already argued above, this approach is perturbative
in the coupling and is based on the (effective) absence of currents. In
addition to these essential non-equilibrium features, it also entirely
lacks inelastic terms to study the influence of scattering on the results.

7.5.3 Results in equilibrium

We will now employ our approach, that goes beyond the weak cou-
pling limit and includes inelastic scattering, to investigate this prob-
lem. The equilibrium situation, where both reservoirs are prepared in
the up g = 0 ground-state, provides a natural starting point to eval-
uate our specific implementation as well as the performance of the
algorithm as a whole. In contrast to the non-equilibrium scenario, the
phenomenology in equilibrium is well understood.

FLUCTUATION DISSIPATION THEOREM When no bias voltage is
applied, the steady state of the system is fully thermal and expected
to fulfill the fluctuation-dissipation theorem. To verify this, we ana-
lyzed this case without explicit use of known equilibrium features of
the system. For this reason, and as in equilibrium scattering is sup-
pressed, this case is numerically more challenging for the algorithm
presented and we are restricted to relatively small system sizes.

As we have discussed in Section 4.3.1, a T = 0 reservoir cutoff
preserves the fluctuation-dissipation theorem. With a T = oo cutoff,
the FDT only holds without truncation. To investigate the severity
of this cutoff (or truncation) dependence, we simulate small systems
using both of these cutoffs. To that end, Figure 7.6 shows the (1,1)-
component of the effective distribution function. As expected, up to
numerical errors the T = 0 cutoff reproduces the correct distribution
while the T = oo cutoff induces artificial heating, even at the end of
the flow.

The dependence of the heating on the coupling to the physical
reservoirs is analyzed in Figure 7.7. A strong coupling to the cold
reservoirs keeps the contacts between the system and the reservoir
cold. With diminishing coupling an infinite temperature reservoir cut-
off artificially heats the system. Furthermore, when spatially resolv-
ing the size of the step at the chemical potential, we find that the
cooling effect of the physical reservoir is local (compare right panel
of Figure 7.7), leading to deteriorating results for larger systems.

8 In our simplified presentation both couplings are identical.
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Figure 7.6: Equilibrium simulation of a finite chains coupled to two reser-

voirs at the ends with I' = 0.1 (in units of the hopping) with
varying two-particle interaction. Left panel: 1 — 2n®f(w) (com-
pare Section 2.6) for a system with N = 12 sites. Due to
the fluctuation-dissipation theorem, the exact dependence 1 —
(W) = sgn(w) is known. The upper panel shows an infinite
temperature cutoff while the lower panel shows the results for a
zero-temperature reservoir cutoff. As discussed in Section 4.3.1,
the zero-temperature reservoirs cutoff is expected to reproduce
the correct distribution function where the infinite might (and is
found to) fail at this. Right panel: Im(Zﬁ“}{’ (w)) as a measure of
the inelastic processes at a given energy w. The upper panel is
obtained using a T = oo reservoir cutoff, while the lower panels
show a T = 0 reservoir cutoff. The left panels show results for
a chain of length N = 12 and the top-right panel shows results
for a N = 24-site chain. In equilibrium, scattering at the Fermi
surface is suppressed [Giao3; Samg8]; while the T = 0 cutoff re-
produces this correctly, the infinite temperature cutoff introduces
unphysical scattering.
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Figure 7.7: Analysis of the dependence of the effective distribution (com-
pare Section 2.6) function on the coupling to the physical reser-
voirs using a T = oo reservoir cutoff scheme. The interaction is
set to U = 1 and the system consists of N = 12 sites. As the
physical reservoirs are at T = 0, the exact result is 1 — 2ngg(w) =
sgn(w). We observe, that the physical reservoirs efficiently cool
the system to T = 0 temperature only at strong coupling and
close to the boundary. In the middle of the chain, the cutoff
scheme yields artificial heating in form of a decreased discon-
tinuity at the Fermi surface. Note that the distribution obtained
is not thermal.

SCATTERING INDUCED BY HOT RESERVOIRS This can be associ-
ated with additional inelastic processes at the Fermi-edge: Using the
T = 0 cutoff no scattering at the Fermi surface is generated [Giaos;
Samg8]. In our approach, this is indicated by Im(}:'f\,]) = 0. In con-
trast, the T = oo cutoff artificially enhances such processes. This is
shown in the right panel of Figure 7.6. This problem exacerbates for
larger system as the physical coupling per degree of freedom in the
chain decreases.

DENSITY OF STATES As both, the effective distribution functions
as well as Im(£24V), are rather unphysical, let us also inspect the local
density of states (Figure 7.8). While we cannot reproduce Luttinger
liquid physics for a N = 12 site system, we can clearly see that the
T = oo cutoff already for such a small system yields a smooth DOS,
both at the end as well as in the bulk of the chain. This indicates
correlation lengths (even at the Fermi-surface) that are comparable
to (or smaller than) the system size. Using the T = 0 cutoff the DOS
remains sharply peaked.

7.5.4 Results at finite bias

Now, we apply finite a bias voltage V = up, — ugr = 2 while keeping
the system half filled. This drives the system out of equilibrium; as we
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Figure 7.8: The local density of states on the first (left panel) and middle
(right panel) site of a N = 12 site system coupled to T = 0 reser-
voirs with ' = 0.1 at U = 1 in equilibrium. The black line shows
the results of a T = 0 cutoff, the others depict results fora T = oo
reservoir cutoff. In a Luttinger liquid, the local density of states is
expected to vanish at the Fermi surface. In contrast, we find that
the T = oo cutoff introduces inelastic scattering (compare Fig-
ure 7.6) resulting in a correlation length comparable to the sys-
tem size and thus in a smooth LDOS. We can not expect larger
system sizes to improve this result.

will see, the state obtained is drastically different from equilibrium as
well as the states discussed in Section 7.5.2 and [JMSo7]. The induced
inelastic scattering allows us to access chains of up to N = 60 sites.
Out of equilibrium, it is however a priori not clear how to choose the
statistics in the auxiliary reservoirs.

CUTOFF DEPENDENCE OF PHYSICAL OBSERVABLES We employ
perturbation theory as well as three different {RG cutoff schemes and
obtain the effective distribution function, local density of states, local
occupation and current within our system with N = 24 sites (see Fig-
ure 7.9). We find that all observables show a strong cutoff dependence:
All methods show strong deviations from the distribution function
obtained in a first-order treatment (compare Equation 7.5.7) but the
quantitative changes differ between cutoffs. The local density of states
on the first site is especially interesting for T =0, pu = 0 as it appears
to show a cusp at w = 0, indicating unphysical Luttinger-liquid prop-
erties induced by the cutoff. Most strikingly, the local occupations
in the T = oo cutoff show a gradient with only minor corrections
due to Friedel oscillations while in the other schemes Friedel oscil-
lations dominate. As expected, the current in perturbation theory is
conserved while the fRG schemes violate particle-number conserva-
tion; especially the T = oo cutoff indicates a strong suppression of the
current in the middle of the chain.
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Figure 7.9: Comparison of different cutoff schemes of a N = 24 site chain
with leads attached to the end with hybridization I' = 0.2 held at
T = 0 with p g = £1. This drives the system out of equilibrium
and a steady-state current flows from left to right. Left panel: 1,1-
entry of the effective distribution function (compare Section 2.6).
For small couplings and interactions, this function is expected to
be piecewise constant with two steps of height 1/2 at the reser-
voirs chemical potential. Center panel: local density of states on
the left-most side with an artificial broadening Ismear = 0.2 to ob-
tain smooth curves. Right panel: The occupation of the individual
sites (solid) and the current through each link (dashed).

INELASTIC SCATTERING AND SCALING It is, as it was in equilib-
rium, insightful to analyze the imaginary part of the diagonal of the
retarded self-energy (See Figure 7.10). Comparinga T =0, T = oo
cutoff and perturbation theory, we find, that the T = 0 cutoff consis-
tently under- and the T = oo consistently overestimates the amount of
inelastic processes compared to perturbation theory. As perturbation
theory is in no way inherently better than fRG, this is not necessarily
problematic. However, we also observe, that the difference between
perturbation theory and the fRG schemes systematically increases
when increasing the system size. Hence, even for small interactions, a
large system will display physics that strongly depends on the cutoff
used. In that sense, the system does not behave perturbatively. Note
that this strong cutoff dependence not only occurs in the bulk, far
from the cold physical reservoirs but also right at the boundary of
the interacting system.

7.6 CONCLUSION

We have shown that it is possible to set up a numerically feasible
fRG formulation describing the steady state of extended, fermionic
systems out of equilibrium. To that end, we argued that a reservoir
cutoff scheme is physical, easy to implement, numerically efficient
and has proven to provide good results in other physical systems.
The cutoff scheme presented encompasses a whole class of cutoffs, as
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Figure 7.10: Im(Zﬁ"ﬁl{’ (w))/U? of a chain coupled to wide band reservoirs at
the ends (I' = 0.1) using a reservoir cutoff with auxiliary tem-
perature T = 0 (T = oo) in the top (bottom) panels. The imag-
inary part of the self-energy is used as a measure of inelastic
processes in the system. The system-sizes from left to right are
N = 6,12,24,48. The green line shows the perturbation theory
result. The other colors show fRG results using the same colors
as in Figure 7.6 to encode U = 0.1,0.25,0.5, 1. With increasing
system size the dependence of the results on the cutoff becomes
more pronounced. The dashed gray line shows the results for
a calculation with N = 60 sites at U = 1 performed on 100
machines.

the statistics of the auxiliary reservoirs can be varied. It is rare that
in a RG procedure cutoff independence can be explicitly analyzed or
demonstrated.

On the example of a one-dimensional tight-binding model with
nearest neighbor interaction weakly coupled to reservoirs, we demon-
strate that system-sizes of O (60) sites are accessible with this method.
However, analyzing the results of this chapter, we conclude that
adding decay channels for the fermions into the reservoirs and intro-
ducing decoherence during the flow is detrimental in the case of long,
closed chains. We find a strong dependence of physical observables
on the cutoff used and can associate this dependence with scattering
introduced throughout the chain. Analyzing the inelastic processes,
we argued that this effect is not perturbative and will strongly impact
observables in long chains, even at low interaction. For this reason,
the method discussed is not suitable to treat long chains that are only
weakly coupled to reservoirs at the ends. A different cutoff or a more
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thorough treatment of the higher order vertices might yield better
results in the future.

For systems where inelastic processes limit the coherence length
the method presented is, however, still expected to provide insights
on how small interaction modifies the behavior through heating.



SYSTEMS IN AN ELECTRIC FIELD

8.1 INTRODUCTION

In the previous chapter, we have discussed how to set up an fRG
scheme for large but finite fermionic systems in one dimension. This
method is well suited to investigate boundary effects and more gen-
erally spatially non-uniform problems. To access bulk properties of
a system this way, however, is computationally costly. Furthermore,
we found that using a reservoir cutoff scheme on a closed or almost
closed, coherent system is questionable.

For these reasons, we now shift our interest to infinite, translation-
ally invariant systems coupled to an environment like a substrate
that allows for particle exchange. To drive the system out of equi-
librium, we consider a longitudinal electric field applied to the one-
dimensional chain and reservoirs. The reservoirs are considered to be
initially prepared in equilibrium with respect to their local chemical
potential and induce a current in the system. Systems like these are
experimentally relevant but pose a great challenge to most current
theoretical methods. Numerically exact methods like DMRG or exact
diagonalization are in practice incapable to access the stationary state
of these systems. Therefore approximate methods are commonly em-
ployed. An approximate method used with growing popularity to
tackle the questions that emerge at the interface of open, correlated
systems and continuous driving is the dynamical mean-field theory
(introduced in [FTZo6]), that assumes all correlations to be purely
local and is exact in the limit of infinite coordination number.

Going beyond the assumption of a purely local self-energy, we
developed an fRG based method to analyze the stationary state of
this class of systems (Section 8.2 to Section 8.4.5) that systematically
takes into account finite range correlations and discuss its efficient
implementation. We go beyond a perturbative treatment of the two-
particle vertex, as we aim to apply this method in the presence of
ordering tendencies. At the core of this development is an algorithm
to obtain local correlation functions in such correlated, infinite sys-
tems, that was inspired by procedures used in DMFT for a local self-
energy [Aok+14]. Due to its RG foundation it is ideally suited for low
dimensional applications and fRG has previously had great success
in investigating phase transitions [Met+12].

We then focus on a simple tight-binding chain with nearest neigh-
bor interaction (see Section 8.5). While only one representative model
of the class of models that could be studied with the method pre-
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sented here, it is well suited to study emergent phenomena in inter-
acting systems out of equilibrium: Many aspects of this model, includ-
ing a metal-insulator transition as well as Wannier-Stark localization,
are well understood in limiting cases. After discussing the model in
these cases, we employ our fRG algorithm to investigate the interplay
of the driving, ordering and localization.

While we already present a variety of results, this chapter also re-
flects ongoing research, including open questions that we wish to
answer in future work.

8.1.1 Electric fields in a lattice

The non-relativistic Hamiltonian for a single, spinless fermion in an
electromagnetic field characterized by

B=VxA E:—Vcb—a—A (8.1.1)
ot
is given by
_ ] 2
H= g (p—qA) 4+ qo. (8.1.2)

As we will be interested in the case of a constant electric field in the
absence of a magnetic field, there are two natural ways to gauge the
potential; either ¢ = 0, A = —tE or ¢ = xEey, A = 0. In a lattice
model, the first choice translates to

0 thopefiEat
ha(t) = thopeiEat 0 thopeiiEat , (8.1.3)
thopeiEat 0

with the lattice spacing a. This representation is known as the Peierls
substitution [Pei33]. While it does not break spatial translational sym-
metry, it introduces an artificial time dependence. The choice of ¢ =
xEex, A =0 on the other hand yields

—Ea thop
he = thop O thop (8.1.4)
thop Ea

which conserves time-translational invariance while breaking spa-
tial translational invariance. On the level of physical observables,
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Figure 8.1: Illustration of the class of models discussed. The central prop-
erty is the translational symmetry associated with a shift in en-
ergy. The Hamiltonian in each unit cell, as well as the couplings
of each cell to the reservoirs and their respective distribution
function are identical up to this shift. Note that we allow for
couplings not only between nearest neighbor unit cells; we do
however restrict the coupling to a finite range.

both, temporal and spatial translational invariance are recovered.
The equivalence of these models is easily seen considering the action

Skt =Wl (10¢1—H)y W (8.1.5)

under the gauge transformation ¥y = elfakt\y, 1 To describe the
steady state, it is more convenient for us to choose a gauge, where
A = 0 and discuss a time-invariant Hamiltonian.

8.2 CLASS OF MODELS DISCUSSED

In this section, we will outline the class of models that can be treated
within the method developed. As a starting point, we consider a
general fermionic Hamiltonian of a countably infinite system with
quadratic terms, a two-particle interaction

Hgys = Z hi,jczcj —1—% Z Vn,m,k,lCILCInCle (8.2.1)
i,jez nmk,leZ
and coupling to reservoirs characterized by hybridization functions
' (w), k € Z as discussed in Section 2.5.4. The initial state is assumed
to be a product state of equilibrium configurations in each of the
reservoirs with a quadratic initial state in the system itself.

Note that a density-density interaction is invariant under this gauge transformation
and thus identical in both gauges.
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We restrict ourselves to Hamiltonians, which have a discrete trans-
lational shift symmetry (compare Equation 8.1.4). With a given L € IN
defining a unit cell, we demand?

hn—H_,m—H_ = hn,m +LE

(8.2.2)
Vn+Lm+Lk+L1+L = Vn,mk,1 vn,m,k,l e Z.

Similarly, we require that the reservoirs are characterized by corre-
sponding hybridization and initial distribution functions

Tty (@) =T (W —LE) 629)
n**Hw) = n*(w — LE) Vn,m ¢ Z.

Furthermore, we assume that all terms in the Hamiltonian are strictly
local, i.e. there exists an M € IN such that

hnm=0¥Yn—m|>M
M m=0Vn—m/>M (8.2.4)
Vn,m,k1 = 0 Vdist(n, m, k, 1) > M.

While this restricts the method presented in this chapter to one-
dimensional interacting regions we do not impose any constraints
on the size of the unit cell; this would allow us to consider stripes,
cylinders or other more complex structures in the future. Note that
for a given model the value of M is not unique and it can always be

increased. We will later use M to approximate the vertex functions
and therefore consider M to be variable.

83 IMPLIED SYMMETRIES

The symmetry of the Hamiltonian discussed above has direct impli-
cations on all Green’s and vertex functions. It is obvious from the
steady-state form (see Equations 2.5.13 and 2.5.47) that free Green’s
function obeys the symmetry

911/ ((,U|(UI) =014+L1174+L ((U +LE|(,U/ —|—LE) .

Considering any diagram contributing to n-particle vertex function
one easily verifies, that this, together with Equation 8.2.2 results in

Yin(wilwt) =vipgr(wy + LElwq +LE). (8.3.1)

For the self-energy and two-particle vertex functions this symmetry
reads:

Lij(w) =Eyqpg(w+LE)
Y1228 TLX) =viqr 2 s 240 (A, TT+ 2LE, X)

We incorporate the lattice spacing a into the electric field; hence from here on E
denotes the electric field in units of the lattice spacing.
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where we used energy conservation to reduce the number of frequen-
cies (compare Section 2.4).
Similarly, this implies

G”1/ (wlw’) = G1+LH’+L ((U +LE|(U/ +LE) (832)

for the full Green’s function.

8.4 METHOD

To treat this problem systematically we employ the fRG in a second
order truncation, similar to our approach in the previous chapter. As
the systems considered here feature physical reservoirs, these present
a natural choice of the cutoff parameter; in contrast to the prior chap-
ters the results at any value of the cutoff can be considered physical
at that particular coupling.

However, as we want to analyze ordering tendencies, we include
the flow of the two-particle vertex. To make the solution of the full
flow equations of Section 4.2.5 numerically feasible we have to em-
ploy a series of approximations.

8.4.1 Channel decomposition

Thus far, the separation into the y*, « € {p,d,x} withy =v+ ) _ v*
made in Section 4.2.5 was just a formal rewriting. We can, however,
restrict the feedback of the two-particle vertex of each of the channels
to itself, i.e.

T/P =V + yP

p _ i
a/\Y] /2/“2(“/ X/ A) _E J dw

X—A X—A I
P
Y] 127|134 (”/ w + T/ w — 2> S3|3’ <2 - (,U)
I _p X+ A X+A 3
G4|4/ <2+(U> '}/3,4,“2 (ﬂ, 3 + w, 3 —w> +O(U )
(8.4.1)

while only introducing errors of higher orders in the interaction. Anal-
ogous approximations are made for the other two channels. A similar
approximation was successfully used in Ref. [Mar+18].

As the initial conditions of the two-particle vertex are frequency
independent and due to the structure of the individual flow equations
only one frequency dependence per channel is generated and one
simplifies without further approximation

p — AP —. AP
’Y]/z/nz(ﬂ/X/A) _YVZ’HZ(H’O’O) _'Y]/z/‘]z(”)
'Y)](/z/l]z(ﬂ, X, A) :'Y)](/z/‘]z(o, X,O) = Y)](/Z’HZ(X) (842)
Y9212 X A) = ¥51212(0,0,8) = 512112 (8).
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With this, the flow equations reduce to

i
a/\'yl]alz/‘]z(n) :Z_[ J dw

_ IT T .
Vi 2134 () S35 (2 - w) Gajar (2 - w) Y8 42 (M)

i
a X/ / X —_— d
AY7 2|12( ) ZT[J w

N X X
7]/4/‘32 (X) |:Sg|3/ <w — 2> G4‘4/ (LU + 2)
X X
+ G3j3/ (w - 2) Sajar (w + 2)}%’2"‘4 (X)

—i A A
a/\']/?/z/“Z(A) :ﬂ J dw'}_/?/s/uél (A) |:S33/ <(U — 2) G4|4/ <(,U + 2>

A AN
+ Gg|3/ <(U2> 54‘4/ <w+2>}v2/2/|32 (A)
(8.4.3)
With a similar argument, we also find that the spatial extent of these
constituents of the two-particle vertex is restricted in the same way as

discussed in the previous chapter (see Equation 7.3.7). Consider for
example the p-channel: for the initial condition we immediately find

for 1/,2/ such that Vim12 = 0 VLZ

= WA =o. o+
Since
Y2 () = 0V1,2 = 0AY5 5, 1, (1) = 0 V1,2 (8.4.5)
these components are not generated during the flow and
for 17,2’ such that vy/p/12 =0 V1,2
= V55, =0V1,2,A. (846)
Similarly
for 1,2 such that vy5/1, =0 V1/,2’
(8.4.7)

AN
= Y (M =0Vv1",2" A

Analogous arguments can be made for the other channels and we
finally arrive at

‘Yﬁ)lzlnz(”) 0 V]/zzlr]//z Bvi,]lizll. ) :O\/Vo o |ijiy =0
Yi212(X) =0 V17,212 5V ejei, =0V Vi i e =0
0 ¥11,2,1,2 2% ,ajiy 0 =0V Ve, et, =0.

(8.4.8)

d
Yioma(A) =



8.4 METHOD

where we use a simplified notation. Furthermore, this allows us to
decompose the flow-equation for the self-energy (compare Equa-
tion 4.2.23) into three separate parts

ALy (w) = Z AL (w)
ae{pxd}
—i
ATy (w) zzﬂjdﬁyf,z,“z(ﬂ + w)S22/(Q)
g (8-4.9)
aAZ$/‘1 ((U) :E Jde>1<’2'|12(Q - w)52|2’(Q)

—i
ALY (w) ZEV?/z/nz(O) JdQSm,(Q),

where the bare interaction is combined with the d-channel. Note that
the restriction on the support of the individual y* in turn restricts
the summations and/or support of the *.

8.4.2  Flow equations as convolutions

These flow equations can all be rewritten in terms of convolutions,
where we define the convolution of two functions as

(f+ g)(y) = def(x)g(y —x) (8.4.10)

and use the shorthand

f(x) = f(—x). (8.4.11)
We then find
i
a/\z-}-‘;/“ ((U) :ESZ\Z’ *YI]D/Z/|]2
X —ig X
OALT i (—w) =5 -52120 % Y1121 (8.4.12)

—i
a/\Z?/“ (w) :Ey?/z/‘]z(o) JdQSZZ’(Q)

i Lo —_
OAY 121, (TT) :ﬂﬁ/z/m () (Gajar * S3137) (T4, (M

a/\Y)](IZ/HZ(X)

i [ < ~ _
= 5 V114132 (X) | Gajar # S3137 + Sajar x G313 | (X)¥31214 (X)

a/\Y?/z/Hz(A)
i
~ )

(11/3/\14 (A) G4\4’ * §3|3’ + S4|4’ * G3|3’ (A)T/?uzqu (A)

(8.4.13)

This shows, that an efficient implementation of the flow-equations
has to be based on an efficient implementation of convolutions.
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8.4.3 Discretization of the frequencies and efficient convolutions

As this approximation scheme is much more sophisticated than in-
cluding the two-particle vertex perturbatively, there is no hope to
solve any of the needed integrals analytically. Instead, we aim for
an efficient numerical convolution.

In contrast to our approach in the previous chapter, we will use
the discretization of the frequencies not only to approximate the self-
energy but instead only evaluate the Green’s functions on the chosen
grid. Therefore, the grid chosen must always be wide enough to cap-
ture the decay of the Green’s functions in the presence of the cutoff
parameter and we furthermore assume the grid to be fine enough to
justify a linear interpolation of the Green’s function in between two
points. This is hindered by the fact that the Keldysh component will
generally not be continuous but instead feature jumps at the chemical
potential of each reservoir.

To produce accurate results, it is necessary to resolve both these fea-
tures. We found it difficult to reach convergence with an equidistant
grid. Hence, we decided to employ a composite of an equidistant grid
in combination with additional points around the chemical potentials
of the reservoirs.

This presents us with a mathematical challenge: while it is straight-
forward, how to efficiently compute convolutions on an equidistant
grid using fast Fourier transforms (FFT), an arbitrary, non-equidistant
grid will generally rule out the use of an FFT. To that end, we de-
veloped a specialized algorithm to perform such convolutions in
O (N log(Ny)) operations with N, being the number of points in
the equidistant grid and the number of additional points considered
to be constant and small. The algorithm and its derivation are out-
lined in Appendix C.

To efficiently approximate the Green’s functions throughout the
whole flow we adapt the grid. Whenever the grid is updated the val-
ues of the vertex functions on the new grid are obtained using linear
interpolation.

8.4.4 Support of the vertex functions

While the channel decomposition already imposes restrictions on the
support of the vertex functions, the number of non-zero elements
that is not connected by symmetry (compare Equation 8.3.1) is still
infinite. We therefore have to make additional, physically motivated
approximations to efficiently produce numerical results. A natural
starting point for this is the typical correlation length in the system
at different energy scales. In the beginning of the flow the cutoff will
restricts correlations. At smaller energy scales the electric field is ex-
pected limit the correlation length by localization (see Section 8.5.1)
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or the generation of inelastic processes that provide a finite lifetime
and thus correlation length.Therefore, it is natural to assume

Ly =0Vdist(1']1) = M, (8.4.14)

which leaves us with L - (2M — 1) independent spatial elements. This
approximation can be considered non-consequential if convergence
in M is reached. Similarly, we restrict the range of the two-particle
vertex

’]/1/2/“2 :OVdiSt(]/,2/,1,2) > M, (8415)

which automatically implies Equation 8.4.14.

To simplify the computations of the rhs of the second-order flow
equations we (for now, compare Section 8.7) impose a more restrictive
approximation

0 10yl o

Yi iyt (Wrwalwiws) =0. (8.4.16)

iy it =
on the feedback of the two-particle vertex into the second-order flow
equations (i.e. on the rhs of Equation 8.4.13). For the example of the
p-channel this approximation yields

P oy ooy o
AV (M

5 2 D Waia (M) (Gajar+S3y30) (M40, (M.

34 3,4/
vi1 riyrliziig #0 Vi3/,i4,\i] i #0

(8.4.17)

In a perturbative regime, this approximation is justified as it omits
only terms of O (U?); in the context of a CDW phase transition (as we
will consider later) this approximation is motivated by the fact, that
the CDW is driven by nearest-neighbor density-density type interac-
tions (compare Section 8.5.1), which are included and flow within this
scheme. Note that we only restrict the feedback with respect to the
spatial indices and allow for the full frequency dependence as well as
all combinations of Keldysh indices.

While there are numerous conceivable ways to reduce the num-
ber of independent flow equations and the complexity of each one,
great care has to be taken to conserve the symmetries of the vertex
functions. Omitting some of the symmetry connected elements while
retaining others will explicitly break the symmetry.3 In particular, the
approximations made here preserve (compare Section 3.3)

Z]/“ (w’,w) = [Z”]/(w,w')]*

Yizmz2 =—Y2r2(wa, wilwy, ws)
| | ' ’ (8.4.18)
=—Yi1221 (W17, Warlwz, wr)
'l %k
Y1z =(=1)1 T2 [y o000/

As an example, consider two-particle vertex with the spatial indices v¢1)72 and
Yo—1]01, Which are connected by symmetry.
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with the RKA-indices «. As we discussed, this implies the conserva-
tion of the fluctuation-dissipation theorem in equilibrium (see Sec-
tions 3.3.5 and 4.3.1). We explicitly verified this numerically.

8.4.5 Green's functions and single-scale propagators

While we restrict the support of the self-energy, it is essential to com-
pute the full Green’s functions and single-scale propagators of the
infinite system. To solve the approximate flow equations it is, how-
ever, sufficient to obtain G;|;, with the spatial components i,1y, €
{—M +2,...,L+ M —1}. This can be achieved with techniques simi-
lar to those presented in Section 2.5.4 employing the symmetries of
the Green’s function. Using S = 07 G also leads to corresponding
formulas for the single-scale propagators.

As the resulting procedure to obtain the Green’s functions is rather
lengthy, we refer the interested reader to Appendix D, where we give
a detailed derivation; here, we will only note that the resulting formu-
las are of complexity O (N (2M +L)3) and provide the full Green’s
functions and single-scale propagators without further approxima-
tions.

8.4.6 Summary of the approximations made

For easier reference, let us briefly summarize the approximations
made.

1. We truncate the flow-equations by neglecting the flow of the
three-particle vertex, introducing errors that are of O (U3).

2. We perform a channel decomposition, which restricts the feed-
back of the vertex functions; each of the three channels p, x, d is
only fed back into itself, introducing errors that are of O (U?)
(compare Equation 8.4.1).

3. We restrict the support of all vertex functions such that the spa-
tial distance between single-particle indices is limited by M. If
convergence in M is reached this becomes exact (compare Equa-
tions 8.4.14 and 8.4.15).

4. We restrict the spatial support of the feedback of the two-
particle vertex function into itself to the support of the bare
two-particle interaction, introducing errors that are of O (U?)
(compare Equation 8.4.17).

We emphasize, that no additional approximations to the frequency
dependence are performed and due to the construction of our corre-
lation functions, our results do not suffer any finite-size effects.
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Figure 8.2: Visualization of the model Hamiltonian with hopping amplitude
t used as energy scale throughout, interaction U and coupling to
an environment I

85 A SIMPLE CHAIN IN AN ELECTRIC FIELD

To describe an interacting, one-dimensional metal in an electric field
coupled to a fermionic environment, we analyze the model Hamilto-
nian:

H= > HZ +Hine + Hihy + Hibyp
nez

& =nEclc, + chnH +h.c

1 1
Hif, =u (chn — 2> <CL+1Cn+1 — 2)

How = Z (ex +nE) fil,kfn,k

k
Heoup = Z tkcitfn,k +h.c..
k

Throughout, the coupling between neighboring sites is used as unit
of energy. We assume the environment acts as a particle reservoir
and is initially prepared in thermal equilibrium at the local chemical
potential p,, = nE. In this work, we only consider the T = 0 case.
Furthermore, the bandwidth of these reservoirs is assumed to be large
compared to all other energy scales. Hence, it is fully characterized
by a in a constant hybridization I" (see Section 2.8). The model used
is visualized in Figure 8.2.

A non-interacting version of this model was already dis-
cussed in [Han13]. Related models have also been studied using
DMFT [TOAo08; TOA09; Ama+12; Freo8].

8.5.1  Phenomenology

While being the simplest member within the class of models intro-
duced in Section 8.2, this model hosts a variety of physical phenom-
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Figure 8.3: Propagation of particle density in a chain penetrated by a longi-
tudinal electric field. The on-site potential increases to the right.
The initial state is chosen as cos($) |0) + sin(¢) |1) with (from left
to right) ¢ = 0, &7, where [i) are Wannier states localized at site
i. The dashed right lines indicate the reflection points B/E.

ena. A brief introduction of these will set the stage for the discussion
of the results we find when applying the method described above.

8.5.1.1  Wannier Stark localization and Bloch oscillations (U = 0, E >
0, '=0)

In the 1930s, Zener predicted a breakdown of DC conductivity [Zen34]
in pristine crystals by providing evidence, that the propagation of a
wave packet is exponentially suppressed. This can be easily under-
stood when analyzing the eigenstates of fermions in the presence of
an electric field, as done by Wannier [Wan6o].

To gain an intuition for this localization, we imagine a chain with
a small electric field (compared to the bandwidth). Local properties,
such as the local density of states, are only weakly affected by the elec-
tric field and a localized wave packet will initially propagate follow-
ing the dynamics of a bare chain. When the wavepacket has, however,
traversed far enough the local density of states is shifted significantly
and no more states are available; the wavepacket is reflected.

Therefore, the state prepared initially can never propagate further
than B/E, where B denotes the bandwidth of the system. This is exem-
plified in Figure 8.3. There we also see, how the initial state influences
the initial movement: if the fermion is prepared on an individual site
(and thus is a superposition of all eigenstates of a chain without elec-
tric field), it evolves in both directions equally. When lowering the en-
ergy of the initial state by using a symmetric superposition (|0) + 1)
with [0, T) being the localized Wannier states on site 0 and 1 respec-
tively), it initially propagates to the lower potential while a higher
energy state (|0) —|1)) propagates to higher energies (against the elec-
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tric field).* None of these configurations feature long range transport.
The oscillations that emerge are known as Bloch oscillations.

So, if even a small electric field localizes all eigenstates, why is DC
transport even possible and why are Bloch oscillations not ubiqui-
tous? To form coherent oscillations, the mean free path in the system
has to be large compared to the electric field (in appropriate units). In
a realistic crystal at finite temperature, phonon scattering will destroy
coherence all together [MBg3]. For this reason it took around 60 years
until Zener’s prediction was experimentally verified [Was+93].

Note that no finite electric field in a pristine, non-interacting, long
chain can be considered to be a small perturbation in the sense of
linear response, as it induces an infinite number of coherent scatter-
ing processes. The finite linear response conductivity obtained using
the Kubo formula has to be understood as the limit, where the elec-
tric field times the system size EL (i.e. the largest potential) is small
compared to the bandwidth.

In the system we consider, the inelastic processes are provided by
the reservoirs; if the typical distance traveled by a fermion before scat-
tering in a reservoir is small compared to the ratio of bandwidth to
electric field, Bloch oscillations are suppressed. In the opposite limit,
transport halts if no other scattering processes are present. How these
transport properties occur will be discussed next.

8.5.1.2  Wannier Stark localization in open systems (U =0, E >0, I' > 0)

When the system is attached to reservoirs, they induce incoherent
scattering, resulting in a finite coherence length 1. ~ . When the
coherence length is short compared to B/E the local potentials in the
decoupled system can be neglected, in the other limit localization
dominates. To characterize transport, we analyze the contributions to
the current (compare Equation 2.7.16)

L = chw [nr(w) —nr/(w)} r? ‘gret,(wﬂz

o (8.5.1)
that can be interpreted as the current from reservoir v’ into reservoir
1. For small electric fields we can distinguish three regimes:

I > B In this case, the dominant transport channel is from one
reservoir to its nearest neighbor. As I' dominates the Hamiltonian of
the closed system we find>

B EB?
Gl;‘e,;tq_] ((U = 0) ~ r7 = I~ ﬁ (852)

4 Without electric field, the initial states chosen evolve symmetrically.
5 An analysis of the longer-range terms reveals, that their contribution is sub-leading.



154

SYSTEMS IN AN ELECTRIC FIELD

E/B < v £ B In this limit, the Hamiltonian of the closed system
provides the relevant scale for the transport and the decay of the
retarded Green’s function can be shown to scale as

1
Girsalw =0) ~ = exp(—aAl/B) (8:5.3)

and thus the current through the chain is computed as

EAZF2 EB
I: 7~ ~ — 5.
E r E exp(—2aAT/B) P (8.5.4)
r<0,vr'>20

E/B > T' In this limit, a particle, that has entered the system is
expected to scatter from the electric field many times before leaving
the system again. The average distance of the particle traveled before
leaving the system will generally depend on its energy but is inde-
pendent of I and expected to scale as B/E. As the chance of a particle
entering the system in the first place is scales as I" the overall current
is expected to scale as

rs
[~ —. 8.5.
T (8.5.5)

A more rigorous discussion of the limits E,I' < B can be found
in [Han13].

8.5.1.3 Charge Density Wave transition

In a closed, translationally invariant system (I' = E = 0) with
a density-density interaction strong enough to dominate the non-
interacting part of the Hamiltonian, we approximate

Ha ) Uy (8.5.6)
(Lj)
which in the absence of frustration and at half filling has a two-fold
degenerate ground state with a staggered occupation. Once transla-
tion symmetry is broken, the formed charge-density wave is immov-
able and incapable of hosting transport.

We already discussed, that a tight-binding chain with small near-
est neighbor interaction forms a Luttinger liquid and is thus gapless,
featuring transport. Therefore, we expect a interaction driven metal-
insulator transition. The simplest way to obtain a phase diagram is
mean-field theory, which we will discuss next.

8.5.1.4 Mean field theory transition

To investigate the phase-diagram in the closed system (I' = E = 0),
we add a symmetry-breaking to a simple tight binding chain

H= Z sc C: —I—CTcl+1 +CL1 (o (8.5.7)
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and investigate how this symmetry breaking would be generated by
a nearest-neighbor interaction in self-consistent Hartree-Fock (com-
pare Section 3.4.2). The retarded Green’s function in momentum
space reads

ret

gk\k/(w) =
W ( —s Zcos(k)> Lo
2 cos(k) s

Tt
6k,k// k=—=... z, (858)

1A

where the matrix structure denotes the two sites in the unit cell. As
shown in Figure 8.4, the staggered potential opens a gap at k = 7 and
is accompanied by corresponding van-Hove singularities at w = =s.
Due to the fact, that the Bloch-Hamiltonian is diagonal for k = &
(which is the only momentum with states at energy w = =+s) the local
density of states on the odd (even sites) feature only one divergence at
w = —s (w = s) while the other one is suppressed. As this divergence
drives the mean-field phase transition, we inspect the vicinity of k =
% more closely and write for the first site in the unit cell

(gft(w))m ~ [w_ (2 (n—s . (g_k)> +1i0

7K s
w—s
—s2 —4k? + w? + Owi

—1

1,1 (8.5.9)

with k = k— Z. The change in occupation on the odd sites in the
ground-state can therefore be obtained as the difference of the occu-
pation at staggered potential s and 0

0
s
6n~Jkooodem (wz i —sz—iO>

~Jdks ~ —slog(s) for s < 1

VAk2 + 52

When the staggered potential is induced by a nearest-neighbor inter-
action the self-consistency equation reads:

(8.5.10)

s = Udn ~ —Uslog(s)
e _l (8.5.11)

which indicates a continuous phase transition of infinite order with a
critical interaction strength U. = 0. While this simplified calculation
demonstrates how MFT produces a phase transition, the results pre-
sented in Figure 8.7 are obtained solving the full mean field equations
(see Section 3.4.2).

The phenomenology of this phase transition (in the thermal, closed
case) is understood beyond MFT and is characterized by a Berezinskii-
Kosterlitz-Thouless transition that occurs at U, = 2 in 1D.
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Figure 8.4: Left panel: Band structure of the Hamiltonian presented in Equa-
tion 8.5.7 for s = 0,0.5,1 (dark to light colors). Right panel: The
corresponding local density of states on the odd sites, featuring
Van-Hove singularities at the edges of the bands. The LDOS of
the even sites is inverted. Each site features only one of the peaks
at w = £s due to the form of the eigenvectors at k = £7/2.

8.5.1.5 The Berezinskii-Kosterlitz-Thouless transition

First discussed by Berezinskii [Bery1; Bery2], later developed further
by Kosterlitz and Thouless [KT73; Kos74], the BKT transition de-
scribes a phase transition between a quasi-ordered and a disordered
phase, originally in the classical XY-model in two dimensions. The
low-temperature phase is reported to feature slowly decaying corre-
lations ((S(x) - S(0)) ~ x~*T) [FS81] which corresponds to quasi-order.
Beyond a critical temperature the order is destroyed and correlations
decay exponentially. This destruction comes about in the form of un-
binding of vortex anti-vortex pairs, which beyond a critical tempera-
ture proliferate.

The low-temperature, quasi ordered phase is not in violation of the
Mermin-Wagner theorem because long-range correlations do indeed
decay at long distances (at finite temperature), restoring the continu-
ous rotational symmetry of the XY-model.

The transition is of infinite order with correlation diverging expo-
nentially

& ~exp (\/_I%) (8.5.12)
making this an essential phase transition.

A tight-binding chain with nearest neighbor interaction is a lattice
regularization of the sine-Gordon model [PP9g] and features a BKT
transition at the critical interaction strength U, = 2 [Giao6; Caz+11].

This phase-transition has previously been studied with an equilib-
rium second-order fRG approximation [Mar+18].
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8.6 INTERPLAY OF INTERACTION, DRIVING AND HYBRIDIZA-
TION

While the behavior in the cases U = 0 and E = 0, ' = 0 are well
understood, the interplay of the effects that dominate these regimes
are widely unexplored. For the most part, we will focus on inves-
tigating the stability of the CDW phase against hybridization and
driving. Therefore, we will first demonstrate, that we can converge
the algorithm presented in the relevant parameters for the observable
of interest (see Section 8.6.1). We than present our findings in equi-
librium (Section 8.6.2), where we can also employ DMRG to provide
a qualitative comparison. We then discuss the case of finite driving
(Sections 8.6.3, 8.6.4 and 8.6.5).

Beyond discussing the vicinity of the phase transition, Section 8.6.6
discusses transport properties when Wannier-Stark localization be-
comes relevant.

Lastly, we present a generalization of the algorithm introduced
above, that might yield more accurate results in the future (see Sec-
tion 8.7).

8.6.1 Convergence of the algorithm

The algorithm presented is controlled by various numerical and phys-
ical parameters. It is therefore essential to demonstrate convergence.
As the core of our discussion will revolve around the CDW phase
transition, we use the susceptibility towards this phase as the rel-
evant observable of interest. Similar to our mean-field analysis we
therefore introduce a term that breaks the translational symmetry of
the system Hg' = s(—1 Jhclien (a technique proposed in the context of
the fRG by [Sal+o4]) and observe the CDW response in form of the
order-parameter and susceptibility

OP = Nodd — Neven

B 2 (8.6.1)
x = lim OP/s.
s—0

In the disordered phase, this susceptibility is expected to converge in
the limit of small symmetry breaking terms. In the ordered phase it
diverges for s — 0 while the order parameter becomes independent
of S.6

Figure 8.5 demonstrates that we can reach convergence in M — oo,
s — 0, and in the frequency discretization for this observable. All
computation show results for the open system I' > 0; while the left

Note that it is also common to define the susceptibility in the ordered phase as the
deviation of the order-parameter from its s — 0 value. This would yield a well-
defined susceptibility in the ordered phase.
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Figure 8.5: Convergence in the parameters of the algorithm. Left panel: To
investigate the convergence in M we set U = 4.5, use Ny, =
2200 and E = 0, 0.175 as indicated while varying M = 2,4,6
(solid blue, dashed orange and dotted green line respectively).
Middle panel: Fixed E = 0, U = 4.5, M = 4 while varying S =
25-1073, 1.25-1073, 6.25-1074, 3.125-10~*, 10~%. Apparently
OP/s converges to a finite susceptibility. Right panel: Comparison
of theresultsat E =0, U =3 M =4 with N, ~ 2200, 6600 (solid
and dashed lines respectively).

panel shows convergence in M with and without electric field, the
other two panels demonstrate convergence in the equilibrium case.

If not stated otherwise, the results presented from here on are con-
verged in s — 0 and the discretization and use M = 4.

8.6.2  Equilibrium susceptibility with fRG and DMRG

Let us first discuss the equilibrium case of the open system, where
E =0, ' > 0. Numerically, this limit is at least as difficult for the
algorithm presented, as the different energies decouple and the cor-
relation functions have to be obtained self-consistently (compare Ap-
pendix D). We refrain from explicitly using the equilibrium proper-
ties of the Green'’s functions and thus the recovery of the fluctuation-
dissipation theorem provides a non-trivial check of our approxima-
tions. The I dependence of the susceptibility is shown in the left panel
of Figure 8.6 for different strengths of the interaction. We find that the
susceptibility converges in the limit s — 0 for any I' > 0, indicating
the destruction of the CDW at any finite coupling. In the limit I' — 0
the susceptibility appears to diverge for large interactions while con-
verging for smaller ones. This is compatible with a finite-interaction
phase transition in the decoupled system.
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Figure 8.6: Left panel: Equilibrium (E = 0) results for the susceptibility in
the limit s — O for interactions U = 0,0.5,...,4.5. The suscepti-
bility remains finite for all interactions shown. Small interaction
appear to converge, indicating a disordered phase while large in-
teractions seem to diverge in the limit I' — 0, indicating a phase
transition to an ordered phase. Right panel: Equilibrium DMRG7
results for the model defined in Equation 8.6.2 at s/ts = 0.1
(solid) and s/t = 0.02 (dashed). The blue and orange line in the
left and right panel indicate corresponding interaction strengths
and show qualitative agreement.

In the equilibrium limit we can also use DMRG7 (compare Sec-
tion 5.3) to qualitatively benchmark our algorithm. As even in equi-
librium, the reservoirs, that make the full system effectively 2D, pose
a problem to DMRG, we have to settle for a qualitative agreement
of two similar models. Hence, in DMRG we analyze two coupled
1D chains (labeled suggestively S and R) where the interaction is re-
stricted to one of the chains:

Hpmre = Z tscglncsln it tRCIT{,nCR,n 41 the.
n

+ Z tCC;nCR,n +h.c.. (8.6.2)

n
1 1
+ Z u <Cg,ncs,n - 2) (C;n+1 CS,TL—H - 2)
n

The R-subsystem acts as reservoir to the other half of the system. If
ts < tg the reservoir’s bandwidth is large compared to the one of
the S-subsystem. The results of this calculation using ts/tg = 0.5 are
shown in the right panel of Figure 8.6 and are in qualitative agree-
ment to the fRG results. Consistent with our fRG results, DMRG
shows a strong susceptibility but no clear sign of a finite-I" phase-
transition. Quantitative agreement is, however, not expected as the

7 DMRG data was provided by C. Karrasch.
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Figure 8.7: The colors show the susceptibility x (U, T',E) as obtained with
fRG. We find that the system is in a metallic phase at all finite
couplings, while the strong susceptibility indicates a phase tran-
sition in the limit E — 0, I' — 0 at a finite U, > 0. The red sphere
indicates the analytically known phase transition of the decou-
pled system to a CDW for U > 2,T' = 0, E = 0. The dashed or-
ange lines show the phase transition obtained by MFT for E = 0
and ' =0.1.

two models vastly differ in addition to the approximate nature of
fRG.

8.6.3  Susceptibility out of equilibrium

Out of equilibrium, the susceptibility becomes a function of the inter-
action U, coupling to the environment I and electric field E and is
shown in Figure 8.7. The parameter space is visualized by providing
slices at constant U = 4.5, E = 0 as well as I' = 0.1. The latter is
shown semi transparently to allow view on the position of the phase
transition in the closed system (I' = 0) that is known to take place
at U. = 2 (marked by a red sphere). As we already found in equi-
librium, the susceptibility remains finite for all accessible parameters
and convergence in M — oo and s — 0 can be reached. The addition
of an electric field only diminishes the susceptibility and thus our
data indicates a CDW only for U > 2, I' =0, E = 0. This is contrasted
by the orange dashed lines that indicates the extent of the ordered

In our formalism, the model described by Hpyrg features a single reservoir with
T=1
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Figure 8.8: Analysis of CDW susceptibility to a symmetry-breaking with var-
ious electric fields as obtained with fRG at U = 4. Main panel: Any
finite electric field destroys the ordering tendency of the system
when lowering the coupling to the environment. Left inset: The
cutoff provided to the susceptibility as a function of the electric
field. A power-law fit (dashed line) indicates behavior consistent
with ~ VE. Right inset: Similarly, the coupling to the environ-
ment also produces a cutoff to the divergence of x(E) in the limit
E—0.

phase as obtained by MFT, predicting order at large couplings and
at any interaction for I' — 0. Even at finite driving, MFT predicts the
existence of an ordered phase.

We will now analyze the effect of the electric field more quantita-
tively.

8.6.4 Electric field as a cutoff

To quantify the influence of the electric field, Figure 8.8 shows the
CDW susceptibility at constant interactions U = 4 as a function of
the hybridization I'. In closed system, this interaction leads to spon-
taneous symmetry breaking. U = 4 is not small compared to any
other scale and especially in the neighborhood of a phase transition
the quality of the approximation strictly relies on the quality of the
resummation.

We find that any electric field cuts off the ordering tendency of the
system in the limit I' — 0. The cutoff of x(I') appears to scale as V'E.
Vice versa, the hybridization I' can be understood to provide a cutoff
to x(E). Therefore, at finite electric field, even in the limit I' — 0, no
order emerges within our approximation scheme.
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8.6.5 Transport close to the phase-transition

To understand the interplay between order and the current induced
by an electric field, Figure 8.9 analyzes the conductivity o = % at
U = 1 (where the closed system is disordered) and U = 4 (where
a CDW is expected). We limit our discussion to small electric fields
(E < T), where the system is delocalized and the current is described
by an Ohmic law (see inset of Figure 8.9). As we discussed in the
non-interacting case (see Section 8.5.1) transport at I' > 1 is governed
by short-range processes resulting in a I ~ I'2 scaling. When the
free coherence length starts to span multiple site (i.e. I' < 1) the long
range contributions to the current change the behavior to I ~T~'. In
this regime, we find that close to the CDW phase (i.e. for U > 2) the
current is strongly suppressed when the translational symmetry is
broken by s > 0. This observation is formalized in terms of a current
susceptibility X = lims_,o 0/s indicating a complete halt of transport
forT' = 0, U> U, E — 0. This can be interpreted as a strong addi-
tional resistance due to the proximity to a quantum phase transition.
Consistent with our prior observations, this susceptibility is cut off
by a finite electric field as the field prevents the formation of a CDW.

8.6.6 Results for T < E

When the coupling to the reservoirs becomes small compared to the
electric field Wannier Stark localization becomes relevant. In a clas-
sical picture, a fermion is reflected many times by the electric field
before it tunnels into one of the reservoirs; the typical distance trav-
eled becomes independent of I' and is given by the Wannier-Stark
localization length, as we discussed in Section 8.5.1.

For simplicity we will only discuss the system far from the phase-
transition by only considering relatively large electric fields. In this
regime, the susceptibility remains small and we can set s = 0. Fur-
thermore, large electric fields ensure short correlation lengths and
therefore allow for easier convergence in M.

Without interaction (U = 0) we correctly recover the linear relation
I ~T/E for I' — O (see left panel of Figure 8.10). When the interac-
tion is finite we find a finite current in the limit ' — 0, indicating
that fermions are no longer confined by the Wannier-Stark localiza-
tion. While we find a finite current for almost all interaction strengths
(compare right panel of Figure 8.10), we observe that the direction of
the current depends on the relative strength of the electric field and
the interaction: when the scattering is dominated by the interaction
(i.e. U2 >> E) the residual current at I' — 0 follows the electric field; if
a fermion is expected to scatter from the electric field many times be-
fore interaction (U? < E) we find a current in the opposite direction.
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Figure 8.9: Upper panel: The conductivity ¢ = I/E of the system at E = 10~3
at U =1and U = 4. For large I' > 1 the transport is dominated
by short ranged processes leading to o ~ 1/T% . For smaller I' < 1
the leading contribution to the particle transport is provided by
long-range processes. These power-laws (compare Section 8.5.1)
are indicated by the red dashed lines. We find, that for U > U,
a small breaking of translational symmetry can diminish the cur-
rent significantly in the limit ' — 0. To this end, the orange
dashed and green dotted lines show the current with s = 1074
and s = 2-10~% respectively for both interactions. Lower panel:
To quantify this, we analyze the susceptibility of the current
to symmetry-breaking lims_,o 0/s at E = 0.0125. Inset: Without
symmetry-breaking, the current appears to follow an Ohmic re-
lation for E — 0. This is demonstrated for I' = 0.3 (orange) and
I' =1 (blue) as well as U = 1 (solid) and U = 4 (dashed). The
interaction dependent resistance is dominated by linear contribu-
tions.
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Figure 8.10: Left panel: The current as a function of the hybridization to the
reservoirs at E = 0.4 and interactions U = 0,1, 3. Localization
prevents transport for I' — 0 without interaction and the current
decreases linearly with I" (compare Equation 8.5.4). U = 1,3
display residual current in that limit. Note that the direction of
this current depends on U. Right panel: The current we find in
the limit I' — 0 depending on the interaction at different field
strengths. For interactions small compared to the field we find
a negative current. Inset: A double logarithmic presentation of
the small-U behavior. The current increases ~ U? (indicated by
the dashed line).

An analysis of the interaction dependence shows, that the effect
is of order O (U?) and therefore consistent with our approximation
scheme (compare inset of the right panel of Figure 8.10). As the effect
is limited to the parameter region where the electric field dominates
the two particle interaction one finds a positive current in the limit
E — 0 at any finite U (compare right panel of Figure 8.10). Hence
this effect is beyond linear response and a true non-equilibrium phe-
nomenon.

A simple analysis of the self-energy provides a thermodynamic in-
terpretation: when the system is close to equilibrium the ratio of the
components of the self-energy

Im (Z{%(w))
Im (Zf{(w))
can be used as a proxy of the distribution function (see Section 3.3.5).9
Our finding as presented in Figure 8.11 indicate, that the system ex-
periences occupation inversion (i.e. a negative effective temperature)

when the distribution within the bandwidth is considered. This gener-
ically results in transport in the opposite direction as in the thermal

~(1=2n(w)) (8.6.3)

We use this quantity to estimate the effective temperature as computing the effective
distribution operator is numerically costly. If the self-energy was generated by a
reservoir, this procedure would yield its distribution.
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Figure 8.11: The ratio of the Keldysh- and retarded component of the self-
energy can be used as an estimate of 2(1 —2n(w)). At low inter-
actions we find a negative slope within the (local) bandwidth of
the system, indicating an occupation inversion. Higher interac-
tions show finite effective temperatures.

case (compare Section 8.5.1). As a simple example, consider two cou-
pled reservoirs and employ Equation 8.5.1.

While negative temperature states have been produced by
quenches in cold atomic gases [Bra+13], they emerge naturally as a
stationary state in our approximation.

While these results are interesting they have to be considered with
utmost caution. We observe the negative current only in the case,
where the system is almost closed. Therefore, the dominant scatter-
ing terms in the weak-coupling limit are vastly different from those
considered throughout the solution of the flow equations and it is
therefore possible, that the self-energy computed with the truncated
flow equations does not reflect the correct behavior. In Chapter 7,
we already saw, that in this limit, the influence of the cutoff might
spoil the results in a non-perturbative fashion. On the other hand, RG
techniques are designed to resum such contributions and the scheme
employed here goes beyond the perturbative treatment of the two-
particle vertex discussed in Chapter 7.

87 OUTLOOK - EXTENDING THE FEEDBACK OF THE TWO-PARTICLE
VERTEX

In Section 8.4.4, we spatially restricted the feedback for the two-
particle vertex in to the second-order flow equation to the support
of the bare interaction (see Equation 8.4.16 and approximation (4)
in Section 8.4.6). While this approximation is justified perturbatively
and it is possible, that the results regarding phase transitions depend
on this restriction. To investigate this dependence, we generalized
the implementation and abandon the simplification to the feedback
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Figure 8.12: The order parameter % Meven — Nogdl in equilibrium (E = 0) as
a function of coupling to the reservoirs with an initial symme-
try breaking of s = 0.008,0.004,0.002 (dotted, dashed and solid
respectively) using M = 2 with the feedback of the two-particle
vertex truncated to the finite range M = 2. The color encode
U =1,...,4. We find, that in contrast to the algorithm previ-
ously discussed, the order parameter does not scale linear with
s but instead order spontaneous symmetry breaking sets in at
finite coupling for larger U.

made in Equation 8.4.16. Approximations (1)-(3) summarized in Sec-
tion 8.4.6 remain unchanged.

In this more general scheme the evaluation of all rhs of the second-
order flow-equations takes O (M3) operations, increasing the numer-
ical cost significantly. Note that even for M = 2, this includes the
feedback of more terms into the second-order flow-equation than the
approximation scheme defined by Section 8.4.6, as e.g. v1,1)2,2 does
generally not vanish, even though the bare two-particle vertex has no
such contribution.

In contrast to our previous calculations, we find indications of spon-
taneous symmetry breaking in equilibrium (E = 0) at finite I' (com-
pare Figure 8.12). The order parameter does not scale as OP ~ s for
s — 0 (at constant I') but instead finite, s-independent order emerges
at strong interactions.

As these results are preliminary and a careful analysis of the M-
dependence is required, it is difficult to evaluate the implications of
this finding at this moment and this is left as future work.
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8.8 CONCLUSION

We have introduced a flexible method to study one-dimensional sys-
tems that are coupled to reservoirs (such as a substrate) and pene-
trated by an electric field. This method is right at the interface of non-
equilibrium physics and emergent phenomena that are of paramount
importance to condensed matter physics. In the process we demon-
strated, how to iteratively obtain correlation functions in presence of
a known, frequency dependent self-energy in such infinite systems.

As an example, we applied this method to an interacting tight-
binding chain to investigate the interplay of the electric field with the
(equilibrium) BKT transition. While we find some evidence, that any
electric field destroys the ordered phase, we also observe that a more
sophisticated scheme might yield different results. In the proximity
of the phase transition, transport is highly sensitive to any breaking
of translational invariance, which we interpret as a large, additional
resistivity.

Furthermore, we observe that small interactions in the limit of
small couplings to the environment delocalize the system, even at
large fields, and allow for residual transport. Furthermore, we find a
parameter regime where the electric field could induce occupation in-
version. This leads to anomalous transport against the applied electric
field. To decide, whether this is a genuine phenomenon or an indica-
tion of a localized-to-delocalized transition requires further analysis,
and ideally a complementary numerical method is required.

While this work leaves open questions it can be seen as a starting
point to investigate questions that are inaccessible to other methods.
Furthermore, the algorithm to obtain local correlation functions of
systems in an electric field can likely be transferred to other methods
or physical scenarios; future work could include the extension of a
similar technique to address periodically driven systems.

167






CONCLUSION

9.1 SUMMARY

Before we close, we will briefly summarize the methods developed in
this thesis as well as the physical results obtained within each chapter.

9.1.1  Methodological foundation

In Chapters 2, 3 and 4 we presented a pedagogical introduction to
the non-equilibrium Green’s function formalism, perturbation theory
and the functional renormalization group. Due to their importance
for later chapters we discuss in detail how to obtain local correlation
functions in larger systems. Moreover, we discuss under what con-
ditions equilibrium reservoirs thermalize subsystems and how the
fluctuation-dissipation theorem emerges in equilibrium. We further-
more put emphasis on the conservation of symmetries within dia-
grammatic approximations and the fRG.

As tight-binding chains take a central roll throughout this thesis,
we also discuss efficient numeric algorithms to obtain their local cor-
relation functions. This methodological introduction forms the basis
for the developments presented in the following chapters.

9.1.2 Transport in a quasiperiodic potential

We have demonstrated, that transport in a quasiperiodic potential
displays a much richer phenomenology than previously expected. In
contrast to the case of quenched disorder, we demonstrate that break-
ing integrability does not immediately induce diffusion but instead
yields superdiffusive transport on long time-scales. When increasing
the two-particle interaction, we do not observe a finite region of dif-
fusion but instead find a smooth transition from ballistic (at U=0), to
superdiffusive, to subdiffusive transport. In quenched disorder sub-
diffusive transport is commonly explained by regions of unusually
strong disorder. Our work, however, provides evidence that subd-
iffusive transport also appears in a quasiperiodic potential, where
such regions are absent. We demonstrate this in linear response us-
ing DMRG as well as in the relaxation of a domain wall using fRG,
indicating that the Griffiths picture is incomplete.
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9.1.3 Excited eigenstates using fRG

We developed a set of novel techniques to obtain approximate single-
particle correlation functions of arbitrary excited eigenstates in inter-
acting systems. On the example of simple tight-binding chains, we
demonstrated that an efficient implementation can be achieved. The
complexity of three of the algorithms proposed scale linearly in the
system size. This allows us to access long chains of up to O (10°)
sites.

First, we employ the analytically known ground-state properties of
this system to evaluate the quality of these approximations. We then
provide evidence, that the excitation energy of a generic pure state
above the ground state can serve as an infrared cutoff to low-energy
properties and itself results in the emergence of power law behavior.
In contrast, we demonstrate that individual, highly excited states can
result in characteristic features in the spectral function that greatly
differ from a thermal expectation.

As an outlook, we presented a potential rout to go beyond the
first-order approximation and introduce an algorithm to simulate
quenches from an excited eigenstate.

9.1.4 Steady state of large, open systems

One of the crucial ingredients to transport in the presence of interac-
tion is inelastic scattering, which is not included in an effective single-
particle picture produced by a first order truncation within fRG. To
overcome this limitation, we developed an algorithm that includes
two-particle scattering on the level of perturbation theory for large
systems of interacting particles. In the process, we also discuss how
such an algorithm can be parallelized on a large number of indepen-
dent CPUs without shared memory for a sparse two-particle interac-
tion.

We then study transport in long chains with leads attached to the
ends. We demonstrate, that we recover the fluctuation-dissipation the-
orem in equilibrium when the cutoff is chosen accordingly.

To drive the system out of equilibrium we apply a bias in form
of different chemical potentials in the reservoirs. We argue that the
appropriate choice of cutoff is a priori not clear and compare results
for different possibilities. We find that physical observables out of
equilibrium depend strongly on this choice. We associate this with
artificial scattering introduced by the cutoff and demonstrate, that
this affects the physical system non-perturbatively.
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9.1.5 Systems in an electric field

We demonstrated, how to effectively employ the symmetries of a
translationally invariant system in an electric field. This allows us to
systematically investigate infinite systems in the presence of spatially
extended correlations within a second-order fRG approximation.

We then apply this method to a tight-binding model with nearest
neighbor interaction. In the absence of an environment and electric
field the system is known to undergo a transition to a charge-density
wave at large interaction.

In equilibrium, we provide evidence that our fRG approximation
reproduces this transition in the closed limit but any finite coupling
to the environment destroys the order. Out of equilibrium, we demon-
strate that any electric field provides a cutoff to the ordering tenden-
cies and therefore prevents ordering even in the weak coupling limit.

We then discuss the large electric fields at low coupling to the
reservoirs, where Wannier-Stark localization becomes relevant. In
that limit, we find that interactions delocalize the system and allow
for transport. Furthermore, we identify a weakly interacting regime
where the driving induces a state with current opposite to the electric
field and the system appears to feature a negative effective tempera-
ture.

As an outlook, we presented an improved version of the approxi-
mation discussed before and provide preliminary evidence for sym-
metry breaking in the open system.

9.2 OUTLOOK

The schemes developed in this work are designed to be flexible and
we believe that they will be useful to answer interesting questions
beyond what we discussed in this work. The approximate nature of
the methods used is bound to leave open questions for future in-
vestigation, some of which should be explored with complementary
methods. Next, we identify some avenues to apply and extend this
work beyond the problems discussed:

MOBILITY EDGES IN MANY-BODY LOCALIZED SYSTEMS The
method we introduced in Chapter 6 can be applied to investigate mo-
bility edges in many-body localized systems [LLA15; Li+15; Wei+19].
Especially the possibility of quenches from an excited eigenstate is
promising, as it allows for direct access to transport properties.

However, many of the algorithms introduced in that chapter rely
on an effective single-particle picture. In contrast, most of the phe-
nomenology of many-body localized systems lies beyond a first-order
treatment; therefore, taking into account higher-order contributions is
imperative for a better understanding of this phase.
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While in Chapter 6 we already provide an idea how to go beyond
first order the details of such a method is left for future work.

PERIODIC DRIVING In the presence of periodic driving, the Floquet
theorem, as the time-space analog of the Bloch theorem, leads to a
decomposition into time-periodic Floquet modes [Shi6s; GHg8].

Y(t) =e ety (t), dalt+T) =dalt)

B . - (9.2.1)
H(t) = H(t) —i0¢ = H(t)pul(t) = eada(t).

As Floquet modes at different energy are not independent
H(t)(boc(t)emﬂt = H(t)(btx,n =(ex +1nQ)dxn (9-2.2)

we consequently restrict € to its unit cell and introduce the Floquet
index n. The Floquet Hamiltonian in this basis reads

Hn,n/ = *ﬂQén,n/ +Hnn (923)

where H,, denotes the Fourier components of the time-dependent
Hamiltonian.

Driven systems are of great theoretical interest because of their
uses in quantum control [Pre+08; GJo3; Lig+o7] and the promise of
novel phases of matter [Rec+13; Zha+17]. First-order fRG approxima-
tions have been successfully used to describe such systems in their
synchronized state in presence of two-particle interactions [EMK16b;
EMK16a; Ken18].

At finite driving, the Floquet Hamiltonian H has the same struc-
ture as the problem discussed in Chapter 8. We therefore believe the
methods discussed in that chapter can also be employed to discuss
finite, interacting systems in the presence of periodic driving in a
second-order truncation scheme.

TWO-DIMENSIONAL MODELS In one dimension, methods like
DMRG have lead to great theoretical progress. While some exten-
sions of the DMRG idea exist to describe ground states of two-
dimensional systems [Jor+08] any calculation at finite energy density
quickly becomes impractical [Gol+16; CDC19]. In higher dimensions,
correlations become less significant and satisfactory results can be
obtained with the dynamical mean-field theory [Kot+06; Geo+96].
Correlated systems out of equilibrium in two dimensions, however
have remained inaccessible to most methods.

While this work focuses on one-dimensional lattices, the functional
renormalization group has no inherent dependence on the dimension-
ality and was successfully used to investigate competing instabilities
in two dimensions [Met+12]. Some of the concepts discussed through-
out this thesis can be readily transferred to two-dimensional models.
The technique presented in Chapter 7 can be applied to finite patches
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in an almost arbitrary spatial arrangement. As we have demonstrated
in Chapter 8, symmetries of a system in an electric field allow for an
effective dimensional reduction of the problem, making it a promis-
ing candidate to study effects of driving in an infinite cylinder .
Furthermore, we hope that some of the simplifications achieved
in this work can be transferred to a real-time version of a second-
order fRG. This would allow us to directly investigate quenches in the
presence of spontaneous symmetry breaking [Sad+06] or the effects
of many-body localization on transport in two dimensions [Cho+16].
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TWO GREEN'’S FUNCTION INTEGRALS

In Chapter 7, we discuss how to include the flow of the two-particle
vertex on a perturbative level. To obtain an efficient algorithm, we rely
on analytic expressions for all two-Green’s-function integrals (see Sec-
tion 7.3.3). In this appendix, we are going to discuss in more detail
how to obtain these.

A.1 PRIMITIVE INTEGRALS

Using Equations 7.3.13 and 7.3.17, the fermionic degrees of free-
dom can be largely decoupled from the frequency. As an exam-
ple, Equation 7.3.18 shows how to decompose the retarded-Keldysh
two-Green’s function integral. The remaining frequency integrals are
all of one of three types.

[ 1
fo(a,b) = | dw

J

w—aw-—>b
[ 1
fi(a,b,u) = | dw

J

w_aw_bsgn(w—u) (A.1.1)
[ 1
fa(a,b,uu') = | dw

J

sgn(w — p)sgn(w — p')

w—aw-—>b

An efficient notation of the results can be achieved using the indefi-
nite integral

1 1

b) =
n(w, a,b) dew_aw_b

(A.1.2)

1

a—w

:{alb(ln(w—a)—ln(w—b)) for a £ b

fora="»
with the limiting behavior

T‘(OOI a/b) = O/

- — m A1
0 fora=bn.
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Here, we decide to place the branch cut (as is conventional) along the
negative real axis. Finally, the three integrals needed read:

f0(alb) = n(00/ Cl,b) _n(_oo/ Cl,b)
0 sgn(Im a) = sgn(Imb)

=4 2ni-y  Ima>0,Imb<0
w1y Ima<0, Imb>0 (A1.4)
f] (Cl,b, H') = n(OO, (l,b) —Tl(H/ Cl,b) - [T](H/ Cl,b) —n(—OO/ Cl,b)]
= —21(y, a,b) — [sgn(Im a) — sgn(Im b)] alfb
fZ(a/b/ W, l’l,)
fola,b =’
ola,b) H=p (A1.5)

=4 -2, ab)+2n(ab)  p<p
i
a—b

+ [sgn(Im a) — sgn(Im b)]
where for convenience we set 0/0 = 0.
A.2 TWO-GREEN’S-FUNCTION INTEGRALS

Now a full table of the two-Green’s function integrals can be pro-
vided:



| R A K

R 0 iQ‘h ®Q22f0(i7\qw)\zz_o-) iQm ®qunkf1(i7\q1/}\qz Q, Hk)

FQq, ®NkQl, f1(£Aq, Al o — Q)
( )
(

A O :l:qu (ngZ‘nkf1 +A q]’qu -O-er
FQh, ®m QI f1 (AL AL, — O, )
K qumk]®quﬂsz2(i7\qu7\qz Q, wi,, K,

)
:FQq11'1k1 ®nk2Qq2f2(i7\q1/ Q/ Hk”sz)
:Fnquq] ®quﬂk2f2( q11}\q2 Q/ Hk”sz)

( )

11, Qly @7, QU F2 (AL, AL, — Q, iy, i,

Table A.1: [ dwg™"(+w)g®(w + Q). For readability, we omit the summations as well as the external indices. They are to be placed in analogy
to Equation 7.3.18. The missing entries of the Table can be obtained by considering [ dwgrow(iw)g“l(w +Q) = fdwg“’l(iw)gmw(w F Q).
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THREE GREEN'’S FUNCTION INTEGRALS

B.1 DECOUPLING FREQUENCY DEPENDENCE

Similar to the case of two Green’s functions we use Equations 7.3.13
and 7.3.17 to decouple the frequency dependence from the fermionic
degrees of freedom. To this end, let us inspect the self-energy contri-
bution in the x/p channel:

1
i)+ I (0) =g 5 D ViazaVaa

JdQdeG3|3/(w)G44/ (w+Q) Gz|2/(Q + @)

T342\3’4’2’

(B.1.1)

From here, we proceed similar to the case of two Green’s functions.
Thus, we only give a rudimentary sketch of how to obtain these. Es-
sentially, we have to integrate the results from Appendix A one more
time. To that end, we will continue to employ the definition of  from
that section.

B.2 ADDITIONALLY NEEDED PRIMITIVE INTEGRAL

Just using the tabulated version of this integral is however misleading.
The following expression is a correct indefinite integral:

1 1
w—bw-—c

1 x—b X—cC
:b_C%Mx—M[m<a_b>—m<a_?ﬂ (B.2.1)
a—>b a—c

For a,b,c € C this primitive integral is, however, not continuous.
Hence, the fundamental theorem of calculus does not apply (com-
pare Figure B.1):

go(w, a,b,c) :J dwlin(w —a)

w2 1 1

go(wz,a,b,¢c) —golwy,a,b,c) # J dwIn(w —a)

Wi

w—bw-—c
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Im(z)

Re(z)

Figure B.1: Left panel: This panel shows the imaginary part of the logarithm
in the complex plane. It has a branching point at z = 0 and the
usual convention is to position the branch cut along the negative
real axis. Middle panel: When linearly transforming z the branch-
ing point can be shifted and rotated. This can lead to a discontin-
uous function on the real axis even though the branching point
has a finite imaginary part. Right panel: The difference between
the function shown in the center panel to the one shown here is
piecewise constant. This constant, however, moves the branch cut
parallel to the real axis making the function continuous there.

This can be fixed by adding piecewise constant functions to get a
continuous primitive integral. We fix the free constant remaining by
defining

lim ¢(Q,a,b,c)=0
Q——o0
Q 1 1
=g(Q,a,b,c) :J dwIn(w —a)
oo w—bw-—c

Let us fix the two summands of Equation B.2.1 individually. For the
product of two logarithms with a,b,c € C we find

ln(x—g a) In(x +c)

~ 2miln(xo + ¢)sgn(Im(a))8(x — x0)8(— Re( J;"O )
with xop = —Im(ab*)/Im(bx) is continuous on the real axis. The sec-

ond summand of this expression is piecewise constant and makes the
whole function continuous (if not differentiable). Similarly

a-+Xxp

Lis <"J}; a) +8(x—x0)8(Re( )—1)sgn(Im(a))27riln<xO;_ “)
is continuous and only differs from the dilogarithm by a piecewise
constant function. Putting these together we end up with a unique,
continuous definition of a function g that differs from go only by a
piecewise constant function.



B.2 ADDITIONALLY NEEDED PRIMITIVE INTEGRAL

B.2.1 Decomposed three-Green's function integrals

With the shorthand
S(a,b) =sgn(Ima) —sgn(Imb)

we set out to obtain the three types of integrals appearing when eval-
uating Equation B.1.1.

NO SIGNS

o o 1 1 1
dx’ d
J XJ Xx—axj:x’—bx’—c

—00 —00

=+ 17Ts(a/b)n(_001 +a + blc)

ONE SIGNS A single sign can always be transformed to appear in
the x” component.

o0 o0 1 1 1
/ 1!
J_Oo dx J_oo dxx—axj:x’—bx’—csgn(X w)

=FinS(a,b) [2n(n’, FaLb,c) —n(—oc0, Fatb,c)]

TWO SIGNs  Two signs can be shifted such that they are in x and x’
respectively.

J dx’J dx ] ! ] sgn(x — wsgn(x’ —p')

oo e X—axxx'—bx'—c
==+ [-inS(a,b) —2In(p— a)] [n(—oo, Fa£b,c) —2n(n/, Fa+b,c)]
2[g(co,—p+b,—a+b,+c) + g(—oo,—pnu+b,—a+b, +c)
—2g(p,—p+b,—a+b,+c)]

THREE SIGNS

[>° ° 1 1 1
/
dXJ dxx—axj:x’—bx’—c

sgn(x — w)sgn(x’ — n')sgn(x £x" — i)

el

= N dx’[-n(—o0, a, Fx' +b)] v ngn(x’ —u)

+]  dx[=2sgn(u— (<)) Mk @, Fx'+ b)) ——sgn(x’ — 1)

+ dx’[+2sgn(p—ft(x")) ((f(x), @, Fx' +b))] - ngn(x’ —u’)
=T +T+ T3

The first term is already known:

o 1
T :J dx’[—n(—o0, a, Fx' +b)] Xlicsgn(x’— w)

=FinS(a,b) [2n(n/, Fa+b,c) —n(—oo, Fa+b,c)]
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For the second term

TZZJ dx' [~ 2sgn(— KX )M (1 @, Fx + b)) —sgn(x’ — 1)

/
o x'—c

= ZJ_Ode a:l:x’—b[ln(u a) ln(u:tx b)]

v ngn(x’ —u)sgn(p+x"—f)

we concentrate on the + case, the — case follows analogously.

0 1
T, :—ZJ dx’

o a+x'—b [In(p—a) —In(p+x'—b)]

v ngn(x’ —u)sgn(p+x"— )

=—2In(p—a) [—n(—oo,b—a,C)
—2sgn(fi—p—p) {n(E—pwb—a,c)—nn,b—aqac)}
+2[9(001b_H/b—arc)_g(_oozb_urb—afc)

—2sgn(fi—p—p){g(i—pb—pb—ac)
g, b—ub—ac)}]

and finally the third part analogously

T

=j ax! [+2sgn(— fx) (), @, '+ )] sgnlx’ )

/
o —C

=—2In(p—b) [—n(—oo,a—b,—c)

—2sgn(p+p' — @) {n(p— R, a—b,—c) —n(—p’,a—b,—c)}
+2[9(Oola_ L_L,(l—b,—C) —9(—001(1— FL/a_b/_C)
—2sgn(p—p+p){g(p—fa—pa—b,—c)

- 9(_H// a— I‘_'L/ a— b/ _C)}’
Using these integrals, a table analogous to Table A.1 can be compiled.
As we already found there, special care has to be take if any of the
a,b,c,up’, i coincide. When implemented, these can be used to ob-

tain the second-order perturbation theory self-energy numerically ef-
ficiently.



HOW TO CONVOLVE

C.1 DEFINITION

We define the convolution of the functions f,g € CR as

o0

(fro)y) = | dxtxgly—x) (1)
To naively evaluate this using some discretization is expected to scale
as O (N?) where N is the number of points in the grid. In certain
cases, this can be done more efficiently, as we will discuss in this
appendix.

C.2 EQUIDISTANT GRIDS

For equidistant grids, we can rewrite the convolution in terms of dis-
crete Fourier transforms, which will allow us to perform significantly
faster computations.

c.2.1 Discretization

We employ an equidistant grid with N € 2IN + 1 points to obtain an
approximation of f and g in the form of piecewise constant functions
(compare left panel of Figure C.1):

0 < —%w
fx)=4fi (i-1)w < (i+Hw (C.2.1)
0

w

N|Z
/N IN
X xR R

with a vector (fi);__~-1 n.1 the convolution reduces to a convolu-
' = N1 N
tion of vectors:

o0

(Fr)(iw) = | dxflxlgly —x) =w Y figiw
o k

with the summation bounded appropriately. The summation runs
over O (N) elements, so to obtain the convolution on the entire
orginial grid (with O (N) points) takes O (N?) operations. This can
be improved by the use of a Fourier transform.



186

HOW TO CONVOLVE

f(x)

Figure C.1: Pictorial representation of the three different discretizations dis-
cussed in this appendix. From left to right we show a piecewise
constant approximation on an equidistant grid (discussed in Sec-
tion C.2), a piecewise linear approximation on an arbitrary grid
(see Section C.3) and a piecewise constant approximation with
piecewise linear refinements (see Section C.4).

c.2.2  Fourier transform

Using the discrete Fourier transform®

- ] . 2n
fr = — Z ellkwﬁ
VN &

1 , (C.2.2)
f1 = — e*”kWan
PR
one rewrites the discrete convolution as
_W ik 2T = —i( 7']]{2*’"—
szjgnfj TN > Ze TN e TR N gy
) ki,k2 j (C > 3)
=w Z eiinklekagk.
k

which is the back-transform of the product of fi Jx.

By employing the fast Fourier transform (FFT) the discrete Fourier
transform can be computed in O (Nlog(N)) operations,> allowing
us to obtain all components of the convolution on the same grid in
O (Nlog(N)) operations.

While this algorithm is very efficient, it is specifically designed for
equidistant grids. For our application, however, where vastly differ-
ent energy scales are to be considered, one is forced to use an overly
dense grid, which diminishes the advantage of this method.

Note that the library used (FFTW [Frigg]) omits the prefactor

2 In our implementation of the algorithm we employ the FFTW library [Frigg], which

provides a FFT implementation for discrete Fourier transforms. To obtain optimal
performance, it is beneficial to chose a grid size with small prime factors; as our grid
contains an odd number of points we chose a power of 3.
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C.3 ARBITRARY GRIDS

The alternative is an entirely arbitrary grid. As the computations are
not much harder, we will assume that the functions convolved are ap-
proximated piecewise linearly. On a given grid defined by {x1,...,xn}
with x1 < -+ < xn we assume (compare center panel of Figure C.1)

0 x < X1
h(x)=qdax+b % < x < %49 (C3.1)
0 N <X

for h = f,g and with aixiy1 +bi = ai+1xi+1 + bip1 Vi. Then the
convolution of the two functions can be written as

(f*gnxn:=jm dxf(x)glxi —x)

—00

N
=2 ZJdX (afx—bf) (ad,(xi —x) = b},).

k=1 k’

(C3.2)

As the grid is not equidistant, it can happen, that g(y —x) is not
linear within an interval of linear f(x). In that case, that segment has
to be subdivided into smaller intervals until both functions are linear.
This is represented by a sum over k’, where we refrain from giving
the bounds explicitly; in practice they are easily obtained in log(N)
operations. Using the indefinite integral

> 1 1
J dx (ax—b)(a’x—b’) = gaa’xg’ +3 (ab’+ba’)x* +bb'x +c
(C3.3)

the convolution can easily be evaluated.

Note that for an efficient algorithm it is of crucial importance, that
the grid of x; is sorted and appropriate algorithms to identify the
correct k' are used. Doing this will yield an algorithm of O (NZlog N).

While this algorithm allows for grids that take the vastly different
energy scales of the problem into account, it is (compared with the
case of equidistant grids) slow and is the bottleneck of such an imple-
mentation.

C.4 MIXED GRIDS

Assume functions f, g are known on a grid G containing O(N)
equidistant points but also O(k) additional points at arbitrary posi-
tion.

G:{_N;‘m“”N;"w}uah“qm} (€41
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Figure C.2: Pictorial representation of the decomposition proposed in Equa-
tion C.4.2. We obtain a approximation on a refined equidistant
grid as a decomposition into a piecewise constant function f¢
and a series of piecewise linear functions (here only f1) with
support only within one segment of the equidistant grid. We
have the freedom to chose [ dxf;(x) = 0.

We then define a approximate for of f by decomposing it into a series
of functions

f(x) = folx) + ) fil(x) (C.4.2)

with particular properties: fo(x) is the piecewise constant approxima-
tion of f on the equidistant subgrid that we discussed in Section C.2.
Next, we group together all points outside the equidistant that share
the same nearest member of the equidistant grid. The number of these
groups is called N and we note Nf < k. For each of these groups, we
define a piecewise constant function f, i € Nf such that

1. f; is linear on all segments of GU (Z + 3)w

2. AN e {-N,—-N+1,...,N} > fi(x) =0V[x—nw| > %
3. [dxfi(x) =0Vi>0

4. fo(x) + ZI\; fi(x) — f(x) is constant on all points within each
interval of width w centered around a point of the equidistant

grid.

The piecewise constant difference is acquired due to requirement (3)
and can be absorbed into the piecewise constant function fo(x). The
function including these constants will be referred to as fo(x). Such a
decomposition is illustrated in Figure C.2.



C.4 MIXED GRIDS

Using the linearity of the operation, a convolution of two functions
approximated in such a way can always be decomposed as:

(f*g)(y) = (fo*go)(y) + D _(fi*go)(y)

+3 (foxg)y) + Y (Ffixg)y)
j i

We now evaluate this decomposition on the grid and have to distin-
guish between two cases:

FOR ALL Y IN THE EQUIDISTANT GRID the first term can be com-
puted as outlined in Sec. C.2 in O (Nlog(N)). Due to out choice
Jdxfi(x) = 0 = [dxgi(x), the support of these functions and the
fact, that fo and go are piecewise constant the second and third term
vanish. The last term can be explicitly computed in O (k?log(N)) op-
erations, as fi and g; only contain a finite number of points.

FOR EACH Yy OUTSIDE THE EQUIDISTANT GRID the first term can
be explicitly computed in O (N) operations. The second and third
term in this case also result in finite contributions and contribute
O (klog(N)) operations. Most addends of the last term vanish and
its contribution to the complexity is sub-leading.

As there are k points outside the equidistant grid and we assume
k > N, evaluating the convolution on all the additional points is of
complexity O (kN).
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GREEN’S FUNCTIONS IN AN ELECTRIC FIELD

In this appendix, we discuss how to obtain the necessary local corre-
lation functions to solve the flow equations discussed in Chapter 8.

As we restricted the number of independent components of the
vertex functions in Chapter 8, we only need to obtain a finite number
of (frequency dependent) components of the Green’s functions and
single-scale propagators to compute the rhs of the flow equations.

How to compute these is, however, not clear. In this appendix, we
will introduce algorithms to compute all G;;, Si; for i,j € N with a
given N € IN in the presence of a given self-energy with

Ty =0 V1I—=1|>M
(D.o.1)
Lip(w) =Ly 141 (w+LE)
and
hy/p =0 V1I—=1]1>M
(D.o.2)

hipr =hygpr —LE

as needed for the approximated flow equations discussed in Chap-
ter 8.

D.1 SOME NOTATION

Omitting the frequency dependence of the self-energy” for an easier
notation, H + Z™* can be decomposed as

oo o
b olms| o o
HeZ® =] 0 To | S [Tsr ©
0 0 |Tks
o oo X

with finite matrices Tee, S € CN*N and N > M. Note that in general
Tis # TgL. For simplicity we assume L|N.

As we have to distinguish various Green’s functions, we will intro-
duce some notation. To indicate a block of the full Green’s function
we employ a vertical bar:

Glgg(w) = Gg(w) = (Gifj(w))i,jes (D.1.1)

1 Note that the self-energy is w-local due to energy conservation, which is essential
for our procedure.
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L S

o Q
)

Figure D.1: Pictorial representation of the separation of the system in its
three parts. Once the Green'’s functions for all individual parts
are known, the Green'’s function on subsystem S of the coupled
system can be computed.

Instead of considering the infinite matrices in the case of subsystem
L and R we only consider the N x N matrices closest to the system S.
The symmetry of the system is therefore expressed as

G|, (W —=NE) = G| (w) = G| gp (w + NE) (D.1.2)

As we will follow the steps employed in Section 2.8.1, we will con-
sider the effects of the couplings consecutively, making a notation for
the Green’s functions in their absence necessary. To that end G, —o
denotes the Green’s function obtained in a system where Ts; =0 =
Trs (similarly for the right subsystem). Therefore, we also note the
symmetry

GTSI_:O‘]_]_((“U_NE) = GTSR:O‘SS((U)- (D.1.3)

To denote the absence of both couplings, we write

Go(w) = GTSL:O:TSR((U). (D14)
D.2 RETARDED GREEN’S FUNCTION

First, we will demonstrate, how to obtain Gret|S s To this end, we
proceed in complete analogy to Section 2.8.1. We therefore discuss the
cases of the decouples S-part of the system and the two semi-infinite
chains separately and then discuss how to combine these to obtain the
Green’s function of the full system. The decoupled (Tes = 0) GF'|
is easily obtained

1

G ret — .
'lss w—S+1i0

(D.2.1)



D3 KELDYSH GREEN’S FUNCTION

With that we find for the semi-infinite chain (Tsg = 0):
1

- —
G{)et|gg (w)*TSLGI(‘)et’LL((U)T]_S
1 (D.2.2)

t
GrTESRZO ‘SS (w)

- 1
Gl{)et|55 (w)_TSLGrre;R:o‘SS(w"FNE)TLS

and similarly for Ts; = 0. In the second step, we used the inherent
symmetry of the system.

Without an electric field, this equation is local in the frequencies
and has to be solved self-consistently. At finite electric field, however,
this equation couples Green’s functions at different energies. If the
discretization of the frequencies is fine enough to interpolate Green’s
functions at intermediate frequencies, this can be used to solve the
equation iteratively: the starting point is formed by the boundary con-
dition lim, s+, G(w) = 0, from there we proceed using the above
equation to obtain the Green’s function at smaller frequencies.

Once we know the exact Green’s functions of the three parts that
constitute the whole system (compare Figure D.1) we can immedi-
ately write down the solution for the infinite system:

1

G™ss (W) =—=—
GEllss (W) = Tst GFYrr (w)Trs — Tsr G rr (W) Trs

=[G¥sd (w) — TsL G _olss(w + NE)Trs
-1
—TsrGE, _olss(w —NE)Trs

(D.2.3)

D.3 KELDYSH GREEN’'S FUNCTION

For the Keldysh component we proceed similarly. In the semi-infinite
chain (Tsg = 0) we use the Dyson equation (compare Equation 2.5.39,
corresponding diagrams can be found in Figure D.2):

Glsp—olss(w)
= Y G o (w)ZN] ,GI
o, Be(L,S}
=Gy olss (W) ZXss () G|y, _olss (w) (D.3.1)
+G™rgp—0lss (W) Z¥s () GHMILL () TLs G*Vlrgp—olss (w)
+G olss (@) Tst GFlrr (w)Z¥ s (w)GLY _olss (w)

+G$;R:0|55(w TSLG'IKSR:O|SS(('U +NE)Trs Gadv|T5R:0|SS(w)~

}Bs(w)

(
(
)
)

2 If the electric field is smaller than the spacing of the frequency grid, a self-consistency
loop is still required.
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R R R R A K
- Tst , (roa - K
S L S L L \_ /L L

R (TR 5O A
F s TS

Figure D.2: Diagrammatic representation of Equation D.3.1 for the semi-
infinite chain with Tsg = 0. Single lines represent the decoupled
correlators with (Tgp = 0) while the full lines include this cou-
pling. The letters above the line indicate the RKA-basis while the
ones below indicate the domain of both single-particle indices of
the Green’s function.

where in the last line we employed
GE I (W) 2 (w)GFW L (@) = Gl —olss(w +NE).  (D3.2)

Similar to our findings for the retarded component, this forms a self-
consistency equation in the absence of an electric field (E = 0). A
finite field couples frequencies of distance E, allowing us to iteratively
solve the equation on a fine enough grid using the initial condition
GX(w) = 0 for w — +oo.

Combining the results for the two semi-infinite chains we finally
find for the Keldysh component of the entire chain:

GNlss(w)
™| () [z‘ﬂss(w)

+ 295 ()G (W) Trs + Z¥sr (W) GAY[rr (W) Trs
+ T GRYLL (W) ZX s (w) + TsrGEIrr (W) ZX rs (W)

+ TsLGY,, —olss(w —EN)Ts + Tsr G, _olss(w + EN)Trs
]Gadv|ss(w)-
(D.3.3)

which can be computed immediately once the problems for the semi-
infinite chains is solved.

Using these iterations we can obtain all Green’s functions necessary
to compute the flow equations efficiently in an infinite system.



D4 SINGLE-SCALE PROPAGATORS

A similar algorithm could also allow for an efficient computation
of correlation functions in a Floquet system.

D.4 SINGLE-SCALE PROPAGATORS

To obtain the single scale propagators, it is easiest to use the notion
S(w) =0, G(w). (D.4.1)

Where 07, indicates the derivative with respect to the A-dependence
that is directly induced by the cutoff (in contrast to the implicit de-
pendence acquired through the flow equations). For simplicity, we
assume that the cutoff is described in terms of a self-energy and there-
fore included in T,ZX (see Section 4.2.6). The self-energy will there-
fore generally include an explicit and an implicit cutoff dependence.

To compute the single-scale propagators, we make use of the fact
that in the cutoff we employ

AZn, =0Va#b, neret, adv, K}

SO

f\TS“:aj\Tag :0 O(ZL,R

D.g.2
IS, =0 IKs =0 «=L,R. (D42)

This restriction reduces the number of terms but a generalization to
a more involved cutoff scheme is straightforward.

D.4.1 Retarded single-scale propagator

Using this and Equation D.2.2 we find in the semi-infinite chain:

S olss () = (A G, o) |

1
= GII?;R:O SS (w){aj\ |:G1(Set SS(w)} (D43)

—TsL ST, —olss (w +EN)TLS} Glie—olss (W)

—1
where the value of 97, [Gf)et s (w)} depends on the specific cutoff
used. Yet again, this provides either a self-consistency equation (at

E = 0) or can be evaluated iteratively (for E # 0).
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After the retarded single-scale propagator for semi-infinite systems
is computed the single-scale propagator of an infinite chain can be
obtained as

Sret‘ss(w) —_ Gret‘ss (w){aj\ |:GBEt Ss(w)i|*1

— Ts1. ST, —olss(w +EN)TLs

— TsrSTs —olss(w —EN)Tgs

} G ol ().

(D.4.4)

D.4.2 Keldysh single-scale propagator

Similarly one uses Equation D.3.3 to obtain the Keldysh component
of the single-scale propagator:

S¥ss(w)
=S"ss(w) [ : } G |5 (w) + G™ss(w) { : } 555 (w)

+ G™Iss (w) (AR ZXss(w) + ZX st (w)SEV L (w)Tis
+ ZXsr(w)SAY [RR (W) Trs + TsL S (w)Z¥ s (w)

+ TsrSERR (W) I [rs () + TsL ST, —olss (w + EN)TLs
+ TsrST,, —olss(w — EN)Trs) G*[ss (w).

The brackets [} denote the corresponding brackets from Equa-

tion D.3.3. Depending on the cutoff X might include an explicit A
dependence. One example is the T = 0 reservoir cutoff.

While these equations are cumbersome, they allow us to numeri-
cally efficiently obtain the full Green’s function and single-scale prop-
agators of an infinite system and are crucial to the algorithm presented
in Chapter 8.
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