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Abstract

Recent advancements in Cu(In,Ga)Se2 based solar cells with alkaline fluoride treatment

have suggested the role of the recombination at the absorber/buffer interface as a limiting

factor of open-circuit voltage (Voc) in high-efficiency CIGSe solar cells [1, 2]. Therefore,

this work focuses on the interface engineering at the CIGSe/ buffer of 2 µm standard ab-

sorbers. Furthermore, as the influence of recombination at the back interface becomes

noticeable with thin absorbers, the back interface Mo/CIGSe of thinner absorbers is also

optimised. Both use the concept of point junctions through a passivation layer (PaL). A

low-cost versatile technique for point contact fabrication is developed by using a nano-

lithographic technique employing a sacrificial template of low temperature synthesised,

mono-dispersed, self-assembled and size-tunable CdS nanoparticels (NP’s), and a PaL of

aluminium oxide (Al2O3), thereby achieving 60 nm point contact radius and a maximum of

89% PaL coverage on CIGSe. The impact of point contacts at the CIGSe/buffer interface

on solar cell performance is theoretically analysed using three-dimensional simulations on

the point contact radius, coverage area, defect density and interface quality. An efficient

PaL should create positive surface charge, which induces band bending at the CIGSe/PaL

and influences the contact junction properties; its beneficial effect on Voc and efficiency

reaches a maximum when the coverage area of PaL is more than 95% and the interface

charge density is greater than 1012 cm-2.

The point contact technology is experimentally validated by incorporating it into tangible

CIGSe devices, featuring CdS and Zn(O,S) buffer layers. A positive impact of +10.4% is

seen on the Voc of the point contact devices with sputtered Zn(O,S) compared to the un-

passivated reference cells. However the power conversion efficiency (PCE) didn’t follow the

same trend, which might be due to an upward bandbending created by Al2O3 at the inter-

face, impeding the current flow. Nonetheless, at the Mo/CIGSe interface of thinner CIGSe

absorbers, the technology led to a significant reduction in the surface recombination ve-

locity, due to the back surface field from the Al2O3 layer. Consequently, all cell parameters

of point contact devices showed a relative improvement to the unpassivated reference de-

vices: open-circuit voltage (Voc : +21%), short-circuit current (Jsc : +2.6%), fill-factor (FF:

+4.9%), and efficiency (η: +31%).
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Zusammenfassung

Jüngste Fortschritte bei Cu(In,Ga)Se2-basierten Solarzellen durch eine Alkalimetallfluorid-

Behandlung haben dazu geführt, dass die Ladungsträgerrekombination an der

Absorber/Puffer-Grenzfläche als limitierender Faktor für die Leerlaufspannung (Voc) in

hocheffizienten CIGSe-Solarzellen diskutiert wird [1,2]. Daher konzentriert sich diese Ar-

beit auf die Optimierung der Grenzfläche CIGSe/Puffer von Solarzellen mit 2 µm Standard-

absorbern. Außerdem wird auch der Rückkontakt Mo/CIGSe von Solarzellen mit dünneren

Absorbern optimiert. In beiden Fällen wird das Konzept der Punktkontakte durch eine

Passivierungsschicht (PaL) verwendet. Eine vielseitige, kostengünstige nanolithografische

Technik zur Herstellung von Punktkontakten wird unter Verwendung einer Opferschicht re-

alisiert, die als Schablone eingesetzt wird. Diese besteht aus bei niedrigen Temperaturen

synthetisierten, monodispersen und größenabstimmbaren CdS-Nanopartikeln (NP’s) und

einem PaL aus Aluminiumoxid (Al2O3). Damit lässt sich ein Punktkontaktradius von 60

nm und eine Oberflächenbedeckung von maximal 89% PaL auf CIGSe erreichen. Der

Einfluss von Punktkontakten an der CIGSe/Puffer-Grenzfläche auf die Leistung der So-

larzelle wird mittels dreidimensionaler Simulationen unter Berücksichtigung des Punktkon-

taktradius, der Oberflächenbedeckung, der Defektdichte und der Qualität der Grenzfläche

analysiert. Eine effiziente PaL sollte eine positive Oberflächenladung erzeugen, die am

CIGSe/PaL eine Bandverbiegung induziert und damit die Eigenschaften der Grenzfläche

beeinflusst; ihre positive Wirkung auf Voc und den Wirkungsgrad erreicht ein Maximum,

wenn die Oberflächenbedeckung der PaL mehr als 95% beträgt und die Grenzflächen-

ladungsdichte größer als 1012 cm-2 ist.

Die Punktkontakttechnologie wird mithilfe von CIGSe-Solarzellen mit CdS- und Zn(O,S)-

Pufferschichten experimentell validiert. Eine Steigerung der Voc um 10,4% gegenüber den

unpassivierten Referenzzellen wird mit der Punktkontaktsolarzelle erzielt. Allerdings wird

keine Erhöhung des gesamten Wirkungsgrads erreicht, was auf eine von Al2O3 erzeugte,

nach oben gerichtete Bandverbiegung an der Grenzfläche hindeuten könnte, die den

Stromfluss behindert. Am Mo/CIGSe-Rückkontakt von dünneren CIGSe-Absorbern führt

die Einführung der Punktkontakte jedoch zu einer signifikanten Senkung der Oberflächen-

rekombinationsgeschwindigkeit, bedingt durch das durch Ladungen in der Al2O3-Schicht

induzierte elektrische Feld. Folglich zeigten alle Zellparameter von Punktkontaktsolarzellen

eine relative Verbesserung gegenüber den unpassivierten Referenzzellen: Leerlaufspan-

nung (Voc : + 21%), Kurzschlussstrom (Jsc: + 2,6%), Füllfaktor (FF: + 4,9%) und Wirkungs-

grad (FF+ 31%).
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Symbols and Abbreviations

α Absorption coefficient Voc Open circuit voltage
λ Wavelength T Temperature
A Ideality factor η Efficiency
C Concentration µn / µp Electron/hole mobility
Ea Activation energy τn/τp Electron/hole lifetimes
Ec Conduction band minimum vth carriers thermal velocity
Ev Valence band minimum σp Hole capture cross-section
Ed Defect position σn Electron capture cross-section
EF Fermi energy ALD Atomic layer deposition
Ekin Kinetic energy BE Binding energy
Eg Band gap CBD Chemical bath deposition
Eg,i f Interface band gap CBM Conduction band maximum
∆Ec Conduction band offset CBO Conduction band offset
∆Ev Valence band offset CIGSe Cu(In,Ga)Se2
JL Photocurrent density DOS Density of states
J0 Saturation current density EQE External quantum efficiency
Jrec Total current density FEM Finite element method
k Boltzmann’s constant ILGAR Ion layer gas reaction
n/p Electron/hole density IQE Internal quantum efficiency
ni , intrinsic carrier density KCN Potassium cyanide
n1 Available electron density PaL Passivation layer
p1 Available hole density PC Point contact
NA Acceptor state density PDE Partial differential equation
ND Donor state density PDT Post-deposition treatment
Nc DOS in conduction band PERC Passivated emitter and rear cells
Nv DOS in valence band PVP Polyvinylpyrrolidone
Nd Defect density SCAPS Solar cell Capacitance Simulator
h Planck’s constant SEM Scanning electron micrograph
φ Work function TMA Trimethylaluminum
φh Hole barrier height TRPL Time resolved photoluminescence
q electron charge VBM Valence band maximum
R Recombination rate VBO Valence band offset
Rs Series resistance XRD X-ray diffraction
Rp Parallel resistance XPS X-ray photoelectron spectroscopy
Srec Surface recombination velocity χ Electron affinity

ix





1

Introduction

Even in a post-truth world, climate change is a fact that can no longer be denied. Its di-

rect relation to the extended exploitation of fossil-fuels is unequivocal. For a long time, we

ignored this fact to meet our increasing energy demand. Now, more concrete evidence con-

firms that extreme weather and climate events across the world are human-induced [3]. At

last, we are alarmed! One consequence was the Paris agreement, which set the ambitious

target of holding the average global temperature rise below 2◦C by reducing greenhouse

gas emissions to 40 gigatonnes [4]. 90% of this reduction can be achieved by a rapid and

massive implementation of renewables with high energy efficiency [5].

In the energy market, renewables are still in their adolescence. They are the fastest growing

energy source, with consumption predicted by an average of 500 TWh/year from 2015 to

2040 [6]. Economically, the use of alternative energy sources alias renewables is expensive

compared to non-renewables. But this gap is narrowing in the case of the photovoltaic (PV)

sector. In the last decade, the PV sector has seen an exponential growth, mainly due to

the decline in the solar PV module prices about 80% [7].

Albeit the solar energy shares only 1.8% of the global power generation in 2018 [8], indeed,

it alone has the potential to meet the global energy demand. Silicon has been dominat-

ing the photo-voltaic industry from the beginning. But with the introduction of the second-

generation solar cells, better known as thin-film solar cells, the prospect is getting bigger.

In 2018, thin-film solar cells hold a market share of 8% of the solar industry, and solar

cells based on copper indium gallium di-selenide absorbers
(
Cu(In,Ga)Se2 abbreviated as

CIGSe
)

are experiencing an efficiency leap with the introduction of post-deposition treat-

ment on the CIGSe surface with alkali fluorides (KF, NaF, RbF, CsF) [1, 9, 10]. In the last

six-years, a 25% surge in the efficiency has resulted in reaching lab efficiencies up to

1



2 1. Introduction

22.8%, surpassing poly-crystalline silicon [10]. These reports suggest the role of the p− n

junction interface between CIGSe and CdS as a limiting factor for the efficiency. Also, the

interface states at the CIGSe/CdS interface are of a concern for achieving a high quality

interface as they can act as the main recombination channel for electrons and holes and

reduce the open-circuit voltage (Voc) and efficiency [11]. Therefore, for a further improve-

ment of CIGSe device performance, interface engineering at the CIGSe/CdS interface is

inevitable.

In this scenario, the concept of passivated emitter and rear cells (PERC) used in silicon

solar cells at the rear contact for efficiency enhancement could be seen as a prospect for

CIGSe solar cells [12]. The recombination rate of electrons and holes at interfaces in solar

cells is determined by the total contact area. Also, the recombination rate determines the

Voc of the device because it causes the reverse bias saturation current density, J0: Voc =

AkT
q ln

(
−JL
J0 + 1

)
, (with A = ideality factor, k = Boltzmann constant, T = temperature, q =

charge of the electron, and JL = photocurrent density). At room temperature and assuming

A = 1, this means that Voc will increase by around 60 mV per decade of the ratio (JL/J0).

If the contact area that limits the Voc can be reduced by a factor of 100, this means an

increase of Voc by approximately 120 mV, provided the non-conducting area is passivated

perfectly. The aim of this work is to introduce this concept at the CIGSe/CdS interface of

2 µm standard absorbers or Mo/CIGSe interface of thinner absorbers using lithographic

techniques with the objective to see higher open circuit voltages than conventional devices

made from the same materials.

The goals of this work are achieved in three steps: (i) Developing a facile, effective and

stable technology for implementing a porous passivation layer resulting in nano-point con-

tacts at the CIGSe/buffer or Mo/CIGSe interface. (ii) Theoretical analysis of the influence

of the point contacts at CIGSe/CdS or Mo/CIGSe interface on the device performance (iii)

Implementing the point contact technology in tangible CIGSe devices, and analysing its

influence on solar cells energy conversion efficiency.

This thesis is structured in the following way:

Chapter 2 covers an introduction on the basics of the CIGSe solar cells, including material

properties, state-of-art device structure, significance of band offsets at the CIGSe/buffer
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interface and main recombination mechanisms in CIGSe devices.

Chapter 3 deals with a low-temperature synthesis of mono-dispersed and self-assembled

cadmium sulphide nanoparticles (NP’s) by a modified chemical bath deposition and using

it for point contact fabrication with a passivation layer of Al2O3.

Chapter 4 discusses theoretical simulation on the influence of point contact junctions at

the CIGSe/buffer interface on the device performance using the three-dimensional finite

element based software WIAS-TESCA and the one-dimensional SCAPS.

Chapter 5 presents the experimental results of the CIGSe solar cells energy conversion

efficiency after the implementation of point contacts at the CIGSe/buffer interface of the

standard 2 µm thick CIGSe absorbers.

Chapter 6 presents the experimental results on the influence of point contacts at the

Mo/CIGSe interface of thinner CIGSe absorbers on device performance.

Chapter 7 gives a summary of the theoretical and experimental results on the influence

of point contacts at the CIGSe/buffer and the Mo/CIGSe interface on CIGSe solar cell

performance.





2

Basics of Cu(In,Ga)Se2 solar cells

The energy crisis in the late seventies was an epiphany and changed the attitude towards

the renewable energy sources. Consequently, the birth of the second generation solar

cell took place. Currently, the second generation or the so called thin film photovoltaics

occupies a market share of 8% [13]. Some of the favourites in this group includes amor-

phous silicon (a-Si), cadmium telluride (CdTe) and chalcopyrites (Cu(In,Ga)(S,Se)2 and

related compounds). Among the thin-film solar cells, chalcopyrites solar cells based on

Cu(In,Ga)Se2 (CIGSe) have reached efficiencies up to 22.8%, surpassing even polycrys-

talline silicon [1, 10]. The surge in the efficiencies of CIGSe based devices is owed to the

post-deposition treatment (PDT) with alkali fluorides [9]. This has reported to improve the

CIGSe surface and interface quality between the CIGSe and CdS [10, 14, 15]. Inspired by

this, in this work, an innovative attempt has been made to improve the interface quality and

thereby reduce interface recombination by incorporating the concept of the point contacts

at the front (CIGSe/CdS) or back (Mo/CIGSe) interface of the Cu(In,Ga)Se2 devices. This

is the topic of discussion of this thesis, but before that a brief introduction to the CIGSe

technology — the design, device preparation, device characteristics, and an overlook on

the prominent recombination mechanisms are presented in this chapter.

2.1 Cu(In,Ga)Se2 (CIGSe)

Cu(In,Ga)Se2 is a p-type quaternary semiconductor alloyed from CuInSe2 and CuGaSe2,

which crystallizes in the tetragonal structure and is hence included in the group of chal-

copyrites [16, 17]. This I-III-VI2 (I: Cu, III: In and Ga and VI: Se) chalcopyrite resembles

the zinc-blende structure with an ordered substitution of Zn with Cu, In and Ga. The two

cations, Cu and In or Ga, are bonded tetrahedrally with four Se anions, and each Se anion

5



6 2. Basics of Cu(In,Ga)Se2 solar cells

is coordinated to two Cu and two In or Ga cations as shown in Figure 2.1. However, unlike

in the zinc-blende structure, the lattice constants, a and c, are distorted due to differences

in the bond strength between the covalent (Se–Cu) and the partially ionic bonds (Se–In,

Se–Ga) [17–19]; the unstrained crystal structure has c/a = 2, which is equal to a Ga con-

tent, x = 0.23, and a higher or lower deviation of x will decrease or increase the c/a ratio

respectively [20].

Figure 2.1: The unit cell of a Cu(In,Ga)Se2 compound with the lattice parameters a and c. Cu, In
(or Ga) and Se atoms are represented by green, purple (or blue) and yellow spheres respectively.
Taken from [21].

What makes the CIGSe more desirable from its counterparts is its high absorption coeffi-

cient (α = 105 cm-1), direct and tunable band gap (CuInSe2: 1.04 eV – CuGaSe2: 1.68 eV),

cost-effective production techniques, excellent electronic properties, and a high tolerance

towards environmental conditions, even to cosmic radiation [22, 23].

2.2 Structure of a CIGSe solar cell

A typical CIGSe solar cell is made by depositing sequentially layers of molybdenum,

CIGSe, cadmium sulphide (CdS), intrinsic zinc oxide (i-ZnO) and aluminium doped zinc ox-

ide (ZnO:Al) on a soda-lime glass substrate (Mo/Cu(In,Ga)Se2/CdS/i- ZnO/ZnO:Al). Figure

2.2 shows the stack arrangement of these layers and a corresponding SEM cross-section

of a CIGSe device. The reference CIGSe solar cells used in this thesis follows the same

configuration.
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Figure 2.2: Left: Schematic representation of the cross-section of the standard CIGSe solar cells.
Right: Scanning electron micrograph (SEM) of the cross-sectional view of a CIGSe solar cell.

In a standard CIGSe solar cell preparation, soda-lime glass of 2 mm thickness is used

as the substrate. It is subsequently sputtered with 800 nm of molybdenum (Mo), a metal

having work function (Φ = 4.3 eV) close to the CIGSe (Φ = 4.6 eV) [24, 25], to serve as the

back contact. On top of the Mo, the CIGSe absorber layer of thickness between 600 nm - 2

µm is deposited by means of a three-stage co-evaporation process using Cu, In, Ga and Se

sources. Detailed descriptions of the process can be found in literature [26–28]. Following

this, the chemical bath deposition (CBD) of the buffer layer, cadmium sulphide (CdS) (Eg

= 2.4 eV, thickness, d = 50-60 nm), is done. CdS offers a better lattice match (CIGSe: a

= 5.7 Å, CdS: a = 5.8 Å) [29–31], a favourable band-alignment between the absorber and

window layer by diffusion of Cd into the absorber, transforming CIGSe surface to an n-

type. [32–34]. Apart from the CdS, alternative buffer layers like Zn(O,S), In2S3, (Zn,Sn)Oy,

(Zn,Mg)O, and (Zn, Mg)O/Zn(O,S,OH), have also been intensively investigated [10, 35].

In a CIGSe device, the p-n junction is formed between the p-type CIGSe, and the n- type

CdS and the ZnO window layers — an intrinsic layer of 110 nm i-ZnO followed by a 250

nm highly aluminium doped ZnO (ZnO:Al). The highly resistive i-ZnO reduces the impact

of shunts on the cell performance [36]. The higher band gap (Eg = 3.3 – 3.4 eV) ZnO

window layers deposited by reactive sputtering allows most of the incoming light to reach

the CIGSe absorber. The completion of the solar cell is done by evaporating a Ni/Al grid,

which serves as the front contact.
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2.3 Band offsets at CIGSe/buffer interface

In hetero-junction devices like CIGSe, a band discontinuity occurs at the CIGSe/CdS inter-

face due to the difference in their energy band positions in reference to the vacuum level.

They could control the electron transport across the CIGSe/buffer interface and have a

direct impact on the device power conversion efficiency. A simulated band diagram of a

CIGSe solar cell is shown in Figure 2.3. Even if high defect concentrations are present at

the CIGSe/buffer interface, a favourable band alignment at the interface can reduce their

effect on the open circuit voltage [37]. In chalcopyrites, it is shown that a moderate spike

in the conduction band at the CIGSe/buffer interface, 0.0 < ∆Ec < 0.3 eV, is beneficial

for reducing the interface recombination [33, 38]. Because the spike increases the hole

barrier height (the energetic difference between the valence band maximum and the Fermi

level, φh) and hence reduces the local hole density seen by their recombination partners,

electrons from the CIGSe absorber [39]. Also, it increases the effective bandgap at the

CIGSe/buffer interface, and thus chances for a cross recombination channel (a recombi-

nation involving holes from the absorber with the electrons from the buffer via interface

defect) are the least; this will be opposite in the case of a cliff, ∆Ec < 0.

Figure 2.3: Simulated band diagram of a CIGSe solar cell, close to the region of the
CIGSe/CdS/ZnO. The semiconductor parameters are according to the default values in Table 4.1

Another important aspect to discuss in connection with the CIGSe/CdS interface is the

type inversion. This means that the conduction band of the p-type absorber is close to

the Fermi-energy, EF , at the CIGSe/buffer interface. An asymmetric doping, i.e, a highly
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doped buffer layer in comparison to CIGSe, along with donor-like states or donor states

alone at the interface could trigger the type-inversion [37]. Under these conditions, the

photo-generated minority carriers (electrons) in the p-type CIGSe will become the majority

carriers as they reaches the interface. And since their counterpart (holes) concentration is

low at a type inverted interface, the recombination is minimised.

2.4 Recombination Mechanisms in CIGSe solar cells

Recombination of charge carriers in solar cells is unavoidable and unfavourable for the

device performance. In simple terms, it can be defined as the mechanism through which

the charge carrier population decays, i.e. unification of an electron and a hole; therefore,

it has a direct influence on the electrical transport mechanisms of a device. In a solar

cell, recombination of carriers is spread throughout the device, with several recombination

channels accompanied by different recombination mechanisms.

While considering Cu(In,Ga)Se2 devices, assessing the main recombination channel is

difficult. This is due to the fact that recombination can occur in the entire structure, i.e. in

the CIGSe or CdS or ZnO or at the Mo/CIGSe, CIGSe/CdS, CdS/ZnO interfaces. Since

the CIGSe band gap (1.1 - 1.2 eV) is low as compared to the CdS (2.4 eV) or ZnO (3.3

eV) layers, most of the diode current contribution comes from the CIGSe, which means

that the CIGSe is at the greatest stake of recombination. The total current density, Jrec ,

due to recombination in a dominion of interest is given by the Eq. (2.1), where R is the

net recombination rate, and the net recombination rate for a defect related recombination

is given by the Schockley and Read and Hall (SRH) formalism is shown in Eq. (2.2) [40].

SRH, a quasi-stationary approximation of electrons in the traps, is a two step process

assisted via the trap levels giving the probability of a total of four processes — trapping of

an electron from the conduction band, emission of a hole to the valence band (capturing

of an electron from valence band by a trap), capture of a hole from the valence band, and

emission of an electron into the conduction band.

Jrec = q
∫

Rdz (2.1)
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R =
np − n2

i
τn(n + n1) + τp(p + p1)

(2.2)

τn =
1

σn Nd vth
and τp =

1

σp Nd vth
(2.3)

n1 = Nc exp
(
−Ec − Ed

kT

)
and p1 = Nv exp

(
−Ed − Ev

kT

)
(2.4)

where; n/p : electron/hole density

ni ,vth : intrinsic carrier density, carriers thermal velocity

τn/τp : minimum electron/hole lifetimes

σn/σp : capture cross-sections electron/hole

n1/p1 : available electron/hole density, depending on

the position of the defect, Ed

Nc /Nv : density of states in conduction/valence band

Ec /Ev : energetic level of conduction/valence band

Nd ,Ed : defect density, defect’s energetic level

Equations (2.2) and (2.4) highlight the fact that the defects won’t contribute to the recom-

bination process if they are located to very close to the band edges. Also, they reveal that

maximum recombination occurs when τnn = τpp; if the carrier lifetimes are equal, this

condition changes to the state when n = p.

In CIGSe, the recombination mechanisms are differentiated according to the region at

which recombination occurs: (1) at the space charge region (SCR), (2) at the quasi neutral

region (QNR), (3) at the back contact, (4) at the interfaces. The dominant recombination

channels are mathematically extracted using the Eq. (2.1) and comparing with the general

form of the voltage dependent diode current density, described in the following form:

J(V ) = J00 exp

(
−Ea

AkT

)
exp

(
qV

AkT
− 1

)
= J0 exp

(
qV

AkT
− 1

)
(2.5)

where; J0 : saturation current density

J00 : reference current density – weakly dependent

on temperature
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Table 2.1: List of recombination mechanisms in chalcopyrite solar cells and corresponding J0 and
diode quality factor. Adapted from [11, 41]

Recombination
region

Recombination
mechanism and

defect type

Activation
energy of J0

Voc (T=0 K) Ideality factor, A

Quasi-neutral
region (QNR)

Thermally
activated

Eg Eg 1

Space charge
region (SCR)

(1) Thermally
activated & single

mid-gap defect
Eg /2 Eg 2

(2) Thermally
activated &

exponential defect
distribution

Eg /A Eg 1 6 A 6 2

(3) Tunneling
enhanced 2

(
1− E2

00

3(kT )2 + T
T∗

)−1

Interface (IF)
(1) Thermally

activated, single
mid-gap defect

(a) ∆Ec 6 0 Eg,i f Eg,i f 6 Eg 1 6 A 6 2
(b) ∆Ec > 0 Eg Eg

(2) Thermally
activated, single
mid-gap defect

1
α

E00

kT coth

(
E00

kT

)

Eg : CIGSe band gap, Eg,i f : CIGSe/CdS interface band gap, ∆Ec 6 0 : cliff in the conduction band
at the CIGSe/CdS interface, ∆Ec > 0: spike in the conduction band at the CIGSe/CdS interface, A :
diode quality factor, Eoo : the energy required for the transition from a thermally activated to an tun-
nelling enhanced recombination, α : correlation factor for the band bending at the CIGSe interface,
1/T ∗ : damping of the exponential defect distribution, k : Boltzmann constant, T : temperature.

Ea : activation energy

A : ideality factor

The parameter A determines the quality of the diode and the voltage dependency of the

current density. The magnitude of each recombination mechanism operating in parallel

depends on the corresponding values of J0 and A. The values for J0 and A for the most

relevant recombination mechanisms in CIGSe solar cells are tabulated in Table 2.1, fol-

lowing the literature [11, 41]. Detailed information is well described in the solar cell books

[11, 40, 42]. The reader is encouraged to have a look at those derivations, in case of any

ambiguity. Here, the discussion is confined to interface recombination.
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Interface recombination

Interfaces and surfaces of semiconductors are prone to be highly defective as the crystal

atoms in this region are highly perturbed due to a lattice mismatch or defect segregation,

which can create a high density of defects at the interface compared to the bulk of the

absorber. At the CIGSe/CdS interface, recombination is influenced mainly by their band

alignment and also the conditions under which the absorber is grown. For example, it is

reported that interface recombination dominates in Cu-rich samples as compared to those

grown under Cu-deficient conditions [43]. Interface recombination can be lowered by a

careful designing of the CIGSe/buffer interface by bringing the Fermi-level close to the

conduction band at the interface. This can be done by an asymmetric doping of the CIGSe

absorber and the buffer layer [37]. Also, a band-gap widening at the interface or a moderate

spike at the interface can considerably reduce the interface recombination by decreasing

the hole density available for the electrons coming from the CIGSe to recombine.

In the case of ∆Ec 6 0, the interface effective band-gap is smaller than the absorber

band-gap. This would enable a cross recombination (a recombination involving holes from

the absorber with the electrons from the buffer via interface defects) path increasing the

recombination current. Under these conditions, assuming a single mid-band gap inter-

face defect with no-Fermi-level pinning involved at the interface, the saturation current

density and the diode quality factor heavily depends on the doping ratio of the CIGSe

and the buffer/window layer. The value of A lies between 1 and 2 for ND,b/w > NA,a or

ND,b/w = NA,a or ND,b/w < NA,a, where NA,a and ND,b/w denotes the doping of the ab-

sorber and buffer/window layer respectively. For a symmetric junction ND,b/w = NA,a, it

takes the maximum value of 2. And if the junctions are highly asymmetric, ND,b/w >> NA,a

or ND,b/w << NA,a, then A = 1. The saturation current density depends readily on the dis-

tance of the Fermi level from the valence band, Ep,ai f . The larger the value of the Ep,ai f ,

the smaller is the J0. Following Scheer et. al. [44], the activation energy of the saturation

current density is given by Eg,i f = Eg,a +∆Ec . Therefore, in the case of a cliff and flat band

conditions, the activation energy is less than the absorber band gap.

Voc =
Ea

q
− AkT

q
ln

(
J00
Jsc

)
(2.6)
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J0 = q NV ,a Sp exp

(
−Ep,ai f

kT

)
(2.7)

If the interface states are sufficient to induce Fermi-level pinning, the activation energy

can be smaller than the interface band gap, which is equal to the difference between the

conduction band and the Fermi-level, Φp
b, and A=1. The diode current activation energy for

a spiked interface is equal to its band gap, which means that the recombination is lower. At

the same time, the diode quality factor, A =1. The saturation current density and its impact

on the open circuit voltage is shown in Eqs., (2.6) and (2.7).

Nadenau et al. and Rau et al. showed that the tunneling enhanced recombination is also

affected by the SCR width [45, 46]. This modifies the saturation current density and Voc

equation accordingly in the following way.

J0 = J00exp

(
−Φp

b
αkT

)
exp

(
qV

AkT

)
(2.8)

A =
1

α

E00

kT
coth

(
E00

kT

)
(2.9)

where, α = δVp/(δVp + δVn) is a parameter related to the band bending at the interface.

In summary, the activation energy of the J0 is Eg,i f in the case of ∆Ec 6 0 and Eg,a in

the case of ∆Ec > 0 and Φp
b in the case of Fermi level pinning. And the tunneling at the

interface does not alter the activation energy of the saturation current density.

2.5 Current-voltage characteristics

The performance of a solar cell is determined by the electronic transport mechanisms,

which entirely depend upon the recombination process. The simplest tool to get some hints

on recombination process is by measuring the photo-current density and photo-voltage

(J−V curves). Often, the J−V curves in the dark or under illumination are described using

a simple one diode model. The one-diode-model is an extension of the diode equation with
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the saturation current density J0 and diode quality factor A1; the value of A1 is related to

the main recombination channel, and J0 describes the recombination losses. In addition to

the J0 and A1, the one-diode-model includes the ohmic losses and barriers for the current

extraction by adding the voltage dependent series resistance, Rs(V ), and the parasitic

shunt paths by the shunt resistance, Rp. It also introduces an additional current source

to take account of the photo-generated current density under illumination, JL. Figure 2.4

describes the equivalent circuit diagram of a solar cell according to the one-diode-model

that follows the Eq. (2.10).

J(V ) = J0

(
exp

(
q(V − RsJ(V ))

AkT

)
− 1

)
+

V − RsJ(V )

Rp
− JL (2.10)

where; Rs : series resistance

Rp : parallel resistance

JL : illuminated current density

Figure 2.4: Circuit diagram of a one-diode modelled photo-voltaic cell.

The first part of the Eq. (2.10) refers to the contribution from the diode current density

JDiode, the second accounts for the current flowing through the shunt, JShunt and JL stands

for photo-generated current density. Although, the one-diode model serves well for describ-

ing the behaviour of solar cells, it often fails to give a perfect fit for the the J − V curves,

especially when A1 is a function of voltage and temperature; hence, an extra diode, with an

ideality factor A2, and saturation current density, J01 is added in parallel to the first diode to

gauge recombination at low voltages.
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Figure 2.5: Dark (dashed lines) and illuminated (solid lines) J − V curves of a standard CIGSe
solar cell. The resistances Rp and Rs are measured from the dark J − V curve around the voltage
range marked with thick black lines, while the VOC , the JSC , the JMPP and the VMPP are measured
from the illuminated curve.

Device parameters

When it comes to the performance analysis of a solar cell, mainly four parameters are of

particular interest: short-circuit current density, Jsc , open-circuit voltage, Voc , fill factor, FF,

and efficiency. Figure 2.5 illustrates the dark and illuminated J − V curves of a CIGSe

solar cell with Cu/[Ga+In] = 0.92. Under illumination and zero-bias condition, J(V =0), and

assuming that JL is voltage independent, the only current flowing through the device is the

light generated current density, JL or commonly known as short-circuit current density, Jsc .

In the case of an open circuit condition, no current flows through the circuit J(Voc) = 0. At

this point, Rs= 0 and Rp →∞ and Voc can be approximated as in the following Eq. (2.11).

Voc =
AkT

q
ln

(
−JL

J0

)
(2.11)

Equation (2.11) tells that the saturation current is a decisive factor in determining the open

circuit voltage; the same holds for the ideality factor, too. The important parameter used to

classify a solar cell is its power conversion efficiency, η, which is the ratio of the generated

power,Pout , to the incident irradiated power,Pin. The generated power can be calculated by
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measuring the current at different voltages and the corresponding maximum power-points

can be found from the J−V curves: Vmpp, and Impp. The ratio of the power at the maximum

power point to the product of open-circuit voltage and short-circuit current is the fill-factor of

the device (FF = VmppImpp/Voc Isc). Then, the efficiency is calculated using the Eq. (2.12),

η =
Pout

Pin
=

Voc IscFF
Pin

. (2.12)

The short-circuit current density gives the convoluted value of the photo-current produced

by each photon over the entire spectrum. However, it will not reflect on the Jsc losses on

the spectral basis. A better understanding of the recombination losses can be gained by

measuring the wavelength dependent photo-current.

2.6 Quantum efficiency

An insight into the spectrally resolved photo-current can be gained from the external quan-

tum efficiency (EQE) measurements, which measures the photo-current density as a func-

tion of wavelength of the incident light. The EQE is also a standard measurement technique

to determine the device quality, as the measurement is the sum of several processes, from

absorption to current extraction. It can be defined as the efficiency of a device to absorb

the photons and to extract the charge carriers. In reality, short circuit current measured by

EQE is always lower than the J − V measurements due to its dependence on the light

intensity or reflection losses or lost charge carriers in the absorber and buffer or from a

non-ideal current collection. The basic equation of an EQE is expressed in the following

way,

EQE =
1

q
dJphoto(λ)

dφ(λ)
(2.13)

where dφ(λ) is the incident photon flux in the wavelength interval dλ that leads to the

short-circuit current density, dJsc . EQE can also give the information about the regions

where the losses occur in a device by making a distinction between blue response and

red response. The same equation can be related to the internal quantum efficiency (IQE),
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Figure 2.6: Simulated external quantum efficiencies of CIGSe absorbers in the order of decreasing
thickness: 2 µm, 1.5 µm, 900 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm; the arrow
shows the direction of decrease in thickness. The semiconductor parameters are according to the
default values in the Table 4.1

which is a measure of the photons entering the device, i.e neglecting the reflected photons.

In an opaque solar cell, the sum of absorption and reflection is unity. Hence, the EQE is

related to IQE in the following way,

EQE = (1− R(λ))IQE(λ) (2.14)

This completes the short review on the basic principles of the CIGSe based solar cell

devices, and the prominent recombination mechanisms; the list is not complete, but the

review is kept short, only taking the aspects needed for discussing and analyzing the solar

cells in the course of this work.

2.7 Review on point contacts at the CIGSe interfaces

Surface and interface engineering are inevitable for achieving high performance CIGSe

thin film devices [9, 47, 48]. Theoretically, interface engineering by incorporating a suitable

passivation layer at the CIGSe/CdS can significantly reduce the high surface recombination

velocity [49], but a closed layer would create problems for the carrier transport between the
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CIGSe and CdS layers. A concept that is used in the Si solar cell technology to surpass

this problem is by applying a perforated passivation layer, provided the distance between

contacts is shorter than the diffusion length. Compared to Si, the diffusion lengths in CIGSe

are in the order of nanometers (300 - 900 nm) [50, 51]; this certainly demands for the

structures to be in the nanometer scale, imposing limits on the conventional patterning

techniques.

The concept of localized contacts at the CIGSe/CdS junction was first suggested by Allsop,

et.al [49], based on 3D simulations. With a similar version, a point-junction device, Fu et. al

[48] reported a slight improvement in efficiency by adding a high density of ZnS nanodots

(≈ 10 nm), acting as the passivating islands, before the deposition of an In2S3 buffer layer

by ion layer gas assisted reaction (ILGAR). The potassium fluoride treatment showed indi-

cations that the efficiency in high efficiency solar cells is limited by interface recombination

[9, 14, 47]. Reinhard et.al [47] reported that tuning the post deposition treatment generates

localised nano-contacts on the CIGSe surface and was found to be beneficial for reducting

recombination at the front interface (CIGSe/CdS) [47].

Inspired from the concept of passivated emitter and rear locally diffused (PERL) cells,

Vermang et.al [52] introduced the concept of localized point contacts at the rear interface

(Mo/CIGSe) of ultra-thin CIGSe solar cells through a perforated aluminium oxide (Al2O3)

passivation layer. The approach has been successful in reducing the Voc loss due to the

high recombination at the rear interface when the absorber thickness is reduced. Lately,

several research groups have reported this technology to be beneficial for ultra-thin solar

cells, even employing conventional patterning techniques [53, 54].

However, the concept of localised point point contacts through a passivation layer, espe-

cially at the front interface, is not investigated in detail, and further development could bring

an efficiency enhancement in record efficiency solar cells. Therefore, a technologically fea-

sible point contact technique is needed to open the door for the further development of

CIGSe/buffer interface.

A successful application of a point contact junction device depends on whether the device

performance is limited by interface recombination or not. Hence, the selection of CIGSe

samples, and their performance with a passivation layer is to be checked before the ap-
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Figure 2.7: Left: Sketch of point contact configuration in CIGSe solar cells at the back inter-
face (Mo/CIGSe); right: point contact configuration in CIGSe solar cells at the front interface
(CIGSe/CdS)

plication of the point contacts at the CIGSe/buffer interface. Typically, in a type inverted

CIGSe/buffer interface, the recombination is negligible at the interface due to the decreased

number of available holes; hence, space charge region recombination (SCR) is found to

be the dominating loss mechanism in CIGSe devices [55–57], which is contradictory to the

findings from the alkali fluoride treatment [1, 9, 14, 47, 58–60]. Therefore, as a background

study, we selected three stoichiometrically three different CIGSe samples: a copper–rich,

[Cu/In+Ga] = 1, copper–poor gallium–rich, [Cu/In+Ga] = 0.9, and a Cu-poor, [Cu/In+Ga] =

0.92, and investigated them using temperature dependent current-voltage characterisation

along with spectral and time-resolved photoluminescence.

Figure 2.8: Arrhenius plots for calculating the activation energies of three different stoichometric
CIGSe solar cells: (a) Cu/[In+Ga] = 0.92, (b) Cu/[In+Ga] = 1 and (c) Cu/[In+Ga] = 0.9. A · lnJ0 as
a function of inverse temperature and the activation energy is determined by a linear regressional
fitting of data points.
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We chose these three stichiometrically different absorbers due to the following reasons.

The electronic properties of Cu–rich absorbers — low defect density, higher carrier mobil-

ity and no potential fluctuations — are superior to Cu-poor absorbers [61–65]. But, as a

device, its performance is inferior to the Cu–poor absorbers. This could be due to an ab-

sence of an ordered vacancy compound (ODC), which widens the surface band gap at the

CIGSe/CdS interface, or absence of a type inverted CIGSe/CdS interface [66, 67]. With

wide-band gap Ga–rich absorbers, Voc does not follows a linear relation with the band-gap

energies: saturation of Voc has been reported for higher gallium concentrations, contrary

to its expected increase. This might be due to changes at the interface with Ga-rich condi-

tions. Lany et.al., [68] using first -principle calculation, predicted that intrinsic donor defects

InCu, GaCu, VSe and their complexes with copper vacancies, VCu, could be the reason for

Voc limitation. And for Cu-poor absorbers, a KF treatment showed an improvement in the

Voc .

From the activation energies (AE) calculated, as shown in Figure 2.8, it was observed that

they are close to their corresponding band gaps expect for the Cu-rich absorber (a de-

tailed analysis is presented in Appendix C). The Cu-rich absorbers exhibited a barrier at

low temperatures, but this was less pronounced in Cu-poor absorbers; this was absent in

Cu-poor–Ga-rich absorbers. However, when thin layers of Al2O3 (5, 10, 20 nm) as passi-

vation layer are deposited onto these absorbers and spectral and time-resolved photolumi-

nescence measurements were performed, both photoluminescence intensity and charge

carrier lifetime were enhanced for Cu-poor and Cu-rich absorbers. This might be point-

ing towards a interface quality improvement. The effect of passivation was least visible in

Ga–rich absorbers and best visible in Cu-poor samples (for TRPL and PL analysis, see

supplementary information in Appendix C). Therefore, in the chapters to follow, Cu-poor

absorbers are chosen for studying the effect of point contacts at the front interface.
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Template assisted fabrication of point contacts

using self-assembled spherical CdS NP’s

In order to meet the requirements for realising point contact solar cells, at the onset of

this work, we tested techniques like self-assembling of polystyrene nanospheres at the

air-water interface, ion layer gas reaction (ILGAR) and nanolithography (refer to Appendix

B), which didn’t show any promise to proceed further: to mention some of the hurdles we

faced, the low diffusion length and rough surface of the CIGSe was one of the problems

in implementing nanolithography, the same is true with polystyrene nanospheres. These

limitations drove us to take the path of a solution based self assembly of nanoparticles; and

to attain this, we modified the chemical bath deposition (CBD) method used for depositing

cadmium sulphide (CdS) buffer layers in CIGSe solar cells, thus yielding mono-disperse

spherical CdS nanoparticles (SNP’s), which were used as a masking template for the point

contact fabrication at CIGSe/buffer and Mo/CIGSe interfaces. This is the central topic of

discussion in this chapter.

3.1 Approach for point contacts using monodisperse SNP’s

Mono-disperse semiconductor nanoparticles (NP’s) are a topic of intense research be-

cause of their versatile applications, ranging from catalysis [69, 70], quantum dot solar

cells [71, 72], photo-detectors [73] and so on [74–78]. Suitability of these NP’s for a partic-

ular application depends on a set of parameters like size, structure, morphology, crystalline

phase and defects, and this is mainly influenced by the synthesising technique. One of the

most common NP’s synthesising route is the hydrothermal method, and this is same for the

preparation of cadmium sulphide nanoparticles (CdS NP’s) too [79, 80]. CdS, a II–VI and

21
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an n-type semiconductor compound, belonging to this group, has above all its flexibility to

adapt for various applications and also serves as the best buffer layer for CIGSe solar cells.

CdS is found in nature in cubic and hexagonal structure with coordination of four cadmium

to one sulphur atom [81]. Until now, self assembled spherical CdS nanoparticles (SNP’s)

are synthesised above 120◦C [79]. In this chapter, we demonstrate a low temperature ion

to ion reaction of Cd2+ with S2- ions without the aid of any complexing agents, for a con-

trolled rapid growth of CdS nanoparticles with narrow size distribution and its subsequent

application as a template for achieving point contacts on CIGSe solar cells.

3.2 Preparation of spherical CdS nanoparticles

For the synthesis of spherical CdS nanoparticles, cadmium acetate (Cd(Ac)2)

(Cd(CH3COO)2. 2H2O) is used as the source for cadmium and the sulphur is delivered to

the reacting medium from thiourea (NH2CSNH2). One of the reasons for selecting Cd(Ac)2

as the precursor is due to its faster growth rate in reaction with thiourea as compared

to other cadmium containing compounds [82]. For the preparation of CdS NP’s, analytic

grade reagents were brought from Sigma Aldrich and used without further purification. In a

typical synthesis, 1 mmol of the cadmium acetate was mixed in 100 ml of deionised water

and stirred until it gets dissolved. Then, 10 mmol of the thiourea is added to the same and

kept at room temperature and waited for a complete dissolution of the thiourea. Following

this, the solution was transferred to an open, double walled vessel, with water circulating

through the walls at a temperature of 100◦C. The solution was allowed to react for one

hour. As the reaction proceeds with time, initialisation of ligand complexes and the particle

formation starts to show up and this is marked by a change in transparency of the solution

into a light yellowish colour. This is entirely dependent on the initial concentration of the

reactants and the temperature of the water-bath. Here, this transformation is visible after

eight minutes of reaction. However, the solution is allowed to react further, to increase the

density of the particles by simply evaporating the solution. When the desired concentration

of particles is reached, CIGSe substrates, etched with 5% solution of potassium cyanide

(KCN) to clean out any secondary phases or other contaminants [83], are successively

dipped into the colloidal solution, followed by washing with water, each time, thus cleaning

out the excess CdS SNP’s that may alter the mono-layer formation. This process is con-

tinued until the desired density of a two-dimensional layer is formed on top of the CIGSe
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substrate. The interval between coating and dipping in this case is fixed to be 30 s, but this

timing is varied for other temperature processes, due to different deposition rates of NP’s.

3.3 Structural properties of spherical CdS nanoparticles

The formation of CdS nanospheres obtained hydrothermally at 100◦C with a starting ratio

of 1:10 to (Cd(Ac)2):thiourea is presented on Figure 3.1. A closer look at the SEM im-

ages shows that the nanospheres are mono-dispersed and have a narrow size distribution

around 120 nm with an uncertainty of± 5 nm. It can be also seen that the spherical surface

is not smooth and is constituted from small nanocrystallites. The nanocrystallines formed in

this case are approximately in the range of 25-40 nm. There was no indication of a change

in the morphology of the nanospheres when the reaction time is increased, but it was cer-

tainly dependent on temperature of the water bath. Figure 3.2 shows the X-ray diffraction

Figure 3.1: SEM images of the cadmium sulphide nanoparticles on the top of CIGSe samples
synthesized with starting ratio of (Cd(Ac)2):thiourea, 1:10

pattern of CdS NP’s synthesized at 100◦C with starting ratio of (Cd(Ac)2):thiourea, 1:10.

The sharp peaks in the X-ray diffraction patterns have revealed a good crystalline quality of

the nanoparticles and the peaks are indexed to the hexagonal phase of the wurtzite CdS

structure (JCPDS card No. 75-1545) with lattice constants a = 4.137 Å and c = 6.7144

Å. Another thing to notice is that the nanospheres grew preferentially in (002) reflection

direction.
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Figure 3.2: X-ray diffraction patterns of the cadmium sulphide nanoparticles synthesized at 100◦C
with starting ratio of (Cd(Ac)2):thiourea, 1:10.

3.3.1 Formation mechanism of spherical CdS nanoparticles.

It is believed that for the ion to ion reaction of Cd2+ with S2- reaction to take place, a high

temperature hydro-thermal reaction is necessary, which is published elsewhere [79, 80].

The formation of nanospheres in this work can be attributed to the spontaneous Ostwald

ripening process [84]. In the underlying reaction, the electroneutral ligand, thiourea forms

complexes with Cd2+ cations through C S coordination bonding. It should be noted that

no coordinating reagents were present in the reaction medium, in contrast to the NH4OH, a

complexing agent used in chemical bath deposition of CdS. So, the formation of nanocrys-

tallites and its subsequent nanosphere formation points to the double agent role played by

thiourea, facilitating the formation of Cd2+ ligands by acting as the complexing agent and

also as the source of sulphur, once the double bond between C S is broken by the

attack of strong nuceophilic oxygen atoms from the water molecules. The scheme of the

reaction is described below.

Cd(L)2+n −−−−−−→ Cd2+ + nL (3.1)

SC(NH2)2 + 2OH− −−−−−−→ S2− + CN2H2 + 2H2O (3.2)
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Cd2+ + S2− −−−−−−→ CdS(s) (3.3)

Sulphide ions are released by the hydrolysis of thiourea and cadmium ions by the de-

complexation reaction, here L represents the ligand species, which in our case is OH-

or thiourea complex. Since the concentration of thiourea in the reaction medium exceeds

Cd(Ac)2, Cd atoms on the surface of CdS nanocrystallites could be coordinated with the

excess of thiourea. The constitution of nanocrystallites into nanospheres minimises the

surface energy, and arrests agglomeration of the particles. This conclusion can be ex-

Figure 3.3: A comparison of the nanospheres synthesised with and without the addition of
PVP in the solution (a) with PVP (b) without PVP; both cases have the same starting ratios:
Cd(Ac)2:thiourea (1:10).

plained further by the use of a stabilising agent for hindering the constitution process. For

this we use polyvinylpyrrolidone (PVP) and observed that thermodynamically, it promotes

a more favourable arrangement by minimizing the surface energy of nanocrystallites. Fig-

ure 3.3 shows a comparison between the sizes and morphology between a process with

Cd(Ac)2:thiourea (1:10) and that with the inclusion of PVP in the reaction medium. The

small nanocrystallities are better for the application of point contacts, but the organic layer

they have is detrimental for the performance of the solar cell.
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3.3.2 Impact of temperature and concentration on CdS SNP’s growth

Our primary aim was to synthesis CdS nanoparticles without any stabilising agents in the

sub-micrometer range, keeping the diffusion length of the CIGSe in mind. Once we reached

our first goal, we tried whether it is possible to tune the particle size smaller by simply

changing the parameters of the reaction: temperature of the water bath and precursor

concentration. By keeping the reaction temperature (100◦C) and Cd(Ac)2 concentration

constant, we varied the thiourea concentration to study its effect on the particle size and

growth rate. For this, we took two thiourea concentrations 1:5 and 1:20, on either side of

the typical process (1:10) concentration.

Figure 3.4: SEM images showing the size comparison of the cadmium sulphide nanoparticles on
the top of CIGSe samples synthesised with starting ratio of (Cd(Ac)2):thiourea, 1:10, at 80◦C (left)
and 100◦C (right).

Figure 3.4 shows the SEM images of CdS NP’s synthesized at 80◦C and 100◦C for the

same starting ratio of (Cd(Ac)2):thiourea, 1:10. The image is clearly differentiated for the

density of the nanoparticles on the CIGSe surface for an equal dipping time (30 s each)

of four times. When thiourea is increased in the reacting medium, the growth rate of the

particles is primarily affected. This is due to the fact that more sulphur is released to the

solution, but the particle size stayed the same. However, the particle size got affected as

we changed the temperature from 100◦C to 80◦C. A minimum of 45 nm particle radii is

obtained at the lowest temperature possible for the particle formation. One thing to notice

is that the reaction rate is much lower because of the lower decomposition of thiourea and

further decrease in temperature, which didn’t yield any particles at all.
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Figure 3.5: X-ray diffraction patterns of the cadmium sulphide nanoparticles synthesised at 80◦C
and 100◦C with starting ratio of Cd(Ac)2:thiourea (1:10).

The temperature also affects the crystallinity of the particles as shown in Figure 3.5. On

increasing the temperature from 80◦C to 100◦C, the sharpness of peaks spikes up, which

is a general measure of crystalline quality of the particles. This is due to the fact that at

higher temperature thiourea helps a faster growth rate of nanocrystals, making them bigger

in size by initiating the reaction earlier and allowing the particle to recrystallise.

3.3.3 Impact of substrate’s roughness on CdS SNP’s self-assembling

The roughness of the substrates is a key parameter when it comes to the self-assembling of

CdS NP’s. CIGSe is well known for its surface roughness. This can create some preferable

sites for (acting like templates for attracting particles) landing the particles — especially

at the facets or even at the grain boundaries. The difference can be easily deciphered

when a smooth surface like molybdenum is employed for the adhesion of the particles:

we witnessed a greater arrangement of the particles on a Mo substrate. The SEM images

shown in Figure 3.6 clearly show the difference between the two.
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Figure 3.6: A roughness comparison with a smooth molybdenum surface (right) against the CIGSe
surface (left), showing the dependence of roughness on arrangement of nanoparticles.

3.4 Coverage area of CdS SNP’s on CIGSe

Figure 3.7: Density of CdS NP’s on CIGSe surface as a function of dipping cycles of 30 s each;
(a) 1 dip, (b) 3 dips, and (c) 6 dips.

The nanospheres fabricated by the process of chemical bath deposition are suited for the

application of point contacts: their sizes are in the sub-micrometer range, and moreover,

their radii can be tuned. But, for point contacts what is more interesting is the distance

between the particles, or in other words, the density of the particles on the CIGSe sur-

face. The monolayer assembly on the surface follows a random ordering of the particles,

making it difficult to change the pitch between the particles. So, statistically, density is

the only parameter that can be tuned to change the distance between the particles. Also,

when a passivation layer is implemented and if it works under the concept of inversion, this

parameter gains even more significance because according to theory, as the minority carri-

ers reach the passivation layer, they become the majority carriers, extending their lifetime.
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Then, the diffusion length restricted distance between the nanoparticles can be called into

question.

Figure 3.8: Normalized XPS peak of In 3d5/2 and Cd 3d5/2 obtained from the surface of CIGSe
absorbers without CdS NP’s deposition (reference), CdS NP’s deposition for 1 cycle (each cycle is
30s each), 3 cycles and 6 cycles.

Table 3.1: Approximate percentage of area covered by CdS NP’s on CIGSe surface for different
cycles as described in Figure 3.8, calculated by taking the fitted area covered by In 3d5/2 and Cd
3d5/2 peaks.

Dipping cycles Peak area (In 3d5/2) Coverage area of CdS NP’s
(CPS · eV) (%)

0 1.13 ×105 0
1 1.05 ×105 7
3 8.44 ×104 25.4
6 5.78 ×104 49

Figure 3.7 shows the density of the CdS NP’s on the CIGSe surface as a function of the

dipping cycle of 30 s each. One way to quantify the coverage area of these CdS NP’s on

CIGSe is by using an image processing software (like ImageJ) and counting the number of

particles. Another way is to use XPS. This surface sensitive technique gives the collective

information of the elements present on the surface. Figure 3.8 shows the XPS spectra of

the In 3d5/2 and Cd 3d5/2 peaks for different densities of CdS NP’s. In an XPS spectrum

of a bare CIGSe absorber, In 3d5/2 has the highest intensity. On covering the surface with
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CdS NP’s, the intensity of In peaks gets reduced as the Cd concentration increases (refer

to Figure 3.8 (b)), and this reduction can be transferred into the coverage area by simply

calculating the new area of the In 3d5/2 peaks and calculating the difference from it from the

In reference curve, assuming that the reduction is constant for all core-level peaks. Table

3.1 displays the approximate percentage of the area covered by CdS NP’s, for different

number of dipping cycles, calculated by taking the corresponding Voigt area of the In 3d5/2

peaks.

3.5 Steps involved in point contacts fabrication

The CdS NP’s are synthesised for considering them as a sacrificial template for the fabrica-

tion of point contacts at the front interface of the CIGSe interface. Based on the synthesis,

we found that it was easy to control the deposition rate of the CdS NP’s at 100◦C with

Cd(acac)2:thiourea in the ratio 1:10. An increased concentration of thiourea beyond this

can lead to agglomeration of particles while transferring to CIGSe surfaces. Thus, we fixed

this as the standard process in all experiments to follow. Figure 3.9 illustrates the four

main steps involved in the realisation of point contacts in this work. The first two steps are

already discussed in sections 3.2 and 3.3.

1. Etching of the bare CIGSe using KCN (Figure 3.9 (a)).

2. Depositing CdS NP’s on top of CIGSe (Figure 3.9 (b)).

3. Depositing a suitable passivation layer (Figure 3.9 (c)).

4. Etching out of the CdS NP’s (Figure 3.9 (d)).

The third step is the deposition of the passivation layer. The prototype material chosen

as the passivation layer (PaL) is aluminium oxide (Al2O3). In our trial runs, we used a low

cost and fast method of depositing Al2O3 using the ILGAR technique. In this deposition

technique aluminium acetate is chosen as the precursor, which is dissolved in ethanol and

using an ultrasonicator the aerosol formed is guided through glass tubes to the substrate

heated to a temperature of 400◦C. However, the technique turned to be a failure due to

lack of directionality and coverage for very thin films, thus making it difficult to etch out CdS
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Figure 3.9: Schematic diagram showing the steps involved in the fabrication of point contacts (a)
bare absorber, (b) after deposition of CdS NP’s, (c) passivation layer (Al2O3) on top of nanospheres,
(d) after etching of CdS NP’s.

NP’s (refer to Appendix). Another drawback was heating CIGSe at 400◦C might degrade

the material quality and enhance the diffusion of cadmium. To override these shortcomings,

we chose atomic layer deposition of Al2O3.

3.5.1 ALD deposition of Al2O3 as passivation layer

Atomic layer deposition (ALD) has been considered as a promising technique for creating

high-quality uniform thin films with control over thickness and composition. In this work,

Al2O3 is deposited on top of CdS NP’s by using a TFS500 system from Beneq having

a temperature range of 25-500◦C. The typical route followed for the deposition is using

the precursors trimethylaluminium (TMA) and water vapour (H2O). The reaction chamber

is equipped with resistive metal plate heaters to heat up a loaded substrate. Trimethylalu-

minium, an aluminium precursor, was kept at a constant temperature (25◦C) using a heated

metal enclosure. The deposition temperature is maintained at 130◦C. ALD of Al2O3 was
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carried out in a hot-wall flow-type reactor from the sequential pulses of TMA(98% , Aldrich)

and H2O. The seed layer is formed by a 1 ms pulse time for TMA, 5 s purge using nitrogen,

N2 and then 750 ms pulse time for water vapour, followed again by purging with N2 for 6

s. This cycle is continued until the desired thickness is reached. The rate of growth of the

film on the CIGSe surface is 1 nm/10 cycles. The thickness measurements were done with

ellipsometry. Different thicknesses of Al2O3 were tested to find the best thickness for the

passivation layer. The thickness selected for this study are 5 nm, 10 nm and 15 nm. The

high directionality of Al2O3 helps to deposit Al2O3 only on the area unmasked by CdS NP’s,

without any pinholes formation, making it easy for the fabrication of the point contacts.

3.5.2 Etching process of the CdS NP’s

The next step involved in the process of making point contacts is etching out the CdS NP’s.

A suitable etching solvent is needed for selective etching of CdS by keeping Al2O3 intact

with CIGSe surface. In CIGSe etching chemistry, hydrochloric acid (HCl) is widely used

as an etching solvent for studying the interface between CIGSe and CdS. Taking this into

account, we found an optimum method to dissolve CdS NP’s and followed the protocol for

the rest of the experiments.

Figure 3.10: Realization of the schematic diagram shown in 3.9 (a) CIGSe bare absorber, (b)
CIGSe absorber with CdS nanoparticles and 10 nm of Al2O3 deposited on top of it, and (c) estab-
lishing perforated Al2O3 layer after etching CdS NP’s with HCl solution.

For etching, a 5% HCl solution is prepared in a beaker and placed in an ultrasonic bath at

40◦C. By raising the temperature to 40◦C, the HCl solution can diffuse through the Al2O3, in

case it covers the CdS. The samples are treated in the solution for approximately 5 minutes.
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Figure 3.11: XPS spectra corresponding to the steps involved in point contacts fabrication pre-
sented in Figure 3.9, measured using a Mg Kα X-ray source.

Then they are transferred to a solution of 0.1% HCl: this intermediate step is followed to

avoid any sudden changes to the surface while transferring from an acidic medium to

a neutral medium. This was followed by washing the samples with deionized water and

drying with a nitrogen blower. Figure 3.10 (c) shows the SEM images of the formation of

point contacts on CIGSe surface before and after etching with HCl. The white glow around

the circles is due to the edge effect. Because of the topographical change around the

nano-contact and the passivation layer, Al2O3, an enhanced emission of electrons results

in brighter regions around the circumference of the point contacts. To be clear about the

point contact formation, the samples are also investigated using XPS, and corresponding

XPS spectra are shown in Figure 3.11, which clearly shows the removal of CdS NP’s

during the etching process, and the return of core-level peaks establishes the point-contact

formation on CIGSe surface.
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3.6 Coverage area of point contacts/PaL on CIGSe

The estimation of the coverage area of point contacts or PaL using XPS and ImageJ is

discussed in the section 3.4. An approximate area of the passivation layer can also be

calculated from section 3.4 by subtracting the CdS NP’s coverage from the unity coverage

area of Al2O3, before the CdS NP’s removal. Here, we also use XPS and try to approximate

the passivated area/point contact area for different densities of point contacts on CIGSe

corresponding to a different number of cycles of CdS NP’s deposition. Figures 3.12 (a) –

(d) show the corresponding SEM images of point contacts formation for 1, 2, 4, 6 dipping

cycles. These point contacts can even handle CIGSe samples with low diffusion length,

because it can be clearly seen than the distances between the point contacts are smaller

in the case of 6 cycles of dipping in CdS NP’s solution.

Figure 3.12: SEM images of point contacts on CIGSe illustrating the variation of their density as a
function of dipping cycles; (a) 6 cycles, (b) 4 cycles, (c) 2 cycles and (d) 1 cycle.
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Figure 3.13 shows the XPS spectra of Al 2p peaks measured using a Mg Kα source in the

order of decreasing density of point contacts as shown in Figure 3.12: 6, 4, 2 and 1 cycles,

before and after the etching of CdS NP’s. The intensity of the Al 2p peaks is proportional

to the amount of Al atoms present on the CIGSe surface. Also, the thickness of Al2O3 is

10 nm, and from the Figure 3.11, it can be observed that no core-level peaks from CIGSe

were visible after the deposition of Al2O3. Thus the reduction in the Al 2p peak integral

can be analysed quantitatively and translated into point contacts/PaL area. Al 2p peaks

were fitted using Voigt peak shapes and corresponding areas are tabulated in Table 3.2. It

can be observed that the point contact/PaL area is proportional to the number of dipping

cycles in the CdS NP’s solution, and the area estimation using the ImageJ software also

correlates with the XPS calculations.

Figure 3.13: XPS spectra showing the Al 2p peaks, corresponding to the dipping cycles presented
in Figure 3.12 in the decreasing order: (a) 6 cycles, (b) 4 cycles, (c) 2 cycles and (d) 1 cycle, before
(black curve) and after (red curve) the removal of the CdS NP’s using HCl.

Table 3.2: Approximate percentage of area covered by point contacts/PaL(Al2O3) on CIGSe sur-
face for different cycles as described in Figure 3.13, calculated by taking the fitted area covered by
Al 2p peaks.

Dipping cycles Al 2p area Coverage area (ImageJ) Coverage area (XPS)
(no) before/after etching (CPS · eV) (PC/PaL)(%) (PC/PaL)(%)

1 1.08 ×105/9581 7.6/92.4 11.3/88.7
2 9076/7533 9.4/91.6 17/83
4 1.09 ×105/8186 16/84 23/77
6 1.12 ×105/6947 28/72 39.4/60.6

Furthermore, to see whether the interface quality has improved, time-resolved photolumi-

nescence (TRPL) spectra were recorded for CIGSe absorbers with point contacts as illus-

trated in Figure 3.12 and were correlated with a bare CIGSe absorber and CIGSe absorber

with Al2O3 layer on top. Figure 3.14 shows the TRPL spectra of all samples measured at
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room temperature. A bi-exponential function, I(t) = A1 · exp(−t/τ1) + A2 · exp(−t/τ2),

describing superposition of two recombination processes with lifetimes τ1 and τ2, is used

for fitting the TRPL curves. The fit values are listed in Table 3.3. Here, the parameter τ2 is

inversely proportional to the non-radiative recombination and hence to the interface quality

[85]. The values of τ2 and the average carrier lifetime in the Table 3.3 suggest that there

is a clear improvement in the carrier lifetime of the absorbers due to the Al2O3 layer and

point contacts compared to reference CIGSe bare absorbers. Moreover, there exists a de-

creasing trend in the carrier lifetime in relation to the coverage area of the Al2O3 layer or

the point contact density.

Figure 3.14: PL decay curves of the CIGSe samples with point contacts shown in Figure 3.12
(a) CIGSe bare absorber, (b) CIGSe absorber with Al2O3, (c) CIGSe/Al2O3–PC (88.7%), (d)
CIGSe/Al2O3–PC (83%), (e) CIGSe/Al2O3–PC (77%), and (f) CIGSe/Al2O3–PC (60.6%)



3.7. Summary 37

Table 3.3: Summary of the TRPL data obtained for samples shown in Figure 3.14 in the same
order; a bi-exponential curve is used to fit the TRPL decay: the black lines in Figure 3.14 represents
the corresponding fit.

Sample τ1 τ2 A1 A2 Average carrier lifetime

(ns) (ns) A1·τ2
1+A2·τ2

2

A1·τ1+A2·τ2 (ns)
CIGSe 3.07 26.7 227.9 109.24 22.12
CIGSe/Al2O3 (100%) 3.35 41.29 94.35 78.19 37.90
CIGSe/Al2O3-PC (88.7%) 3.97 42.86 116.72 64.34 37.26
CIGSe/Al2O3-PC (83%) 3.80 33.46 187.01 107.37 28.55
CIGSe/Al2O3-PC (77%) 3.03 29.82 157.40 99.18 26.10
CIGSe/Al2O3-PC (60.6%) 3.04 32.67 144.69 82.81 28.52

3.7 Summary

In this chapter, a low temperature method is designed for producing monodispersed CdS

nanospheres. The nanospheres are formed from the constitution of small nanocrystallites

by the mechanism of the Ostwald ripening process [84]. The obtained particles, using

precursors cadmium acetate and thiourea, show a hexagonal phase and have radii of

45 nm and 60 nm. The size is dependent on the temperature of the water bath, and it

decreases as the temperature goes down. The growth rate of particles was dependent on

the initial concentration of thiourea. The roughness of the CIGSe surface is another factor

which influences the ordering of CdS NP’s on the CIGSe surface. A maximum of 40%

coverage area, the parameter of interest concerning point contacts, is calculated using

XPS—realising any value beyond that may enhance agglomeration.

The size of the CdS particles is suited as a masking template for creating nano-point con-

tacts on CIGSe surface . For realizing point contacts, 5 nm, 10 nm and 15 nm of Al2O3

are deposited using atomic layer deposition. A thickness beyond 15 nm is not chosen as

it can work against the etching process of CdS NP’s and also, this could increase the

series resistance when the whole device is fabricated. Using 5% HCl solution, a suitable

etching process was devised for removing CdS NP’s and hence the point contacts are fab-

ricated. Moreover, the density of the point contacts is varied and correspondingly different

passivated coverage areas are attained, making the technology suitable for even CIGSe

samples with low diffusion length. Further, TRPL measurements on these samples showed

an increase and a dependence of coverage area on the charge carrier lifetime.
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Simulation of point contact junctions at the

CIGSe/buffer or Mo/CIGSe interface

In a hetero-junction solar cell like CIGSe, introducing point junction contact at CIGSe inter-

faces (CIGSe/buffer of 2 µm thick or Mo/CIGSe interfaces of thinner absorbers) influences

a set of parameters — starting from electronic properties of the passivation layer, interface

properties like band alignment, interface recombination, defect density, passivation layer

thickness, surface recombination velocity, coverage area of passivation, point contact junc-

tion radius— determines the conversion efficiency. Attempting to tune any one of these,

keeping the other parameters constant, perturbs the whole system, which sways the de-

vice performance positively or negatively. Controlling all these elements in an experiment

will be difficult; on the other hand, studies employing computer simulation give an extra

degree of freedom to change the parameters and to visualise their effects on the device

performance. In this chapter, we theoretically monitor the effect of the passivation layer and

point contact junctions at the CIGSe interfaces in order to understand their prospects and

limitations on the device performance.

To address this problem, we took the help of two finite element method (FEM) based

softwares: SCAPS, developed at the university of Gent [86], a one-dimensional soft-

ware exquisitely used for simulating CIGSe solar cells and the two/three-dimensional

WIAS-TESCA [87], developed at the Weierstrass-Institute für Angewandte Analysis und

Stochastik. The simulated solutions of point contact junctions are the topic of discussion of

this chapter.

39
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4.1 Simulation model and input parameters for CIGSe devices

The transport of charge carriers in a p-n junction is described by a system of drift-diffusion

equations. A real solution to these kind of partial differential equations (PDE’s) is often

unattainable by analytical methods. In these scenarios, a useful mathematical tool is the

finite element analysis. The philosophical approach of FEM is rather simple. Instead of

taking the problem as whole, FEM divides the problem into smaller fragments, and ap-

proximate equations are modelled for them and then they are assembled into a larger set

of equations that models the entire problem [88]. Finally, using calculus of variations and

by minimising the error function, an approximate solution is reached. SCAPS and WIAS-

TESCA take advantage of FEM to solve the system of drift-diffusion equations.

SCAPS is a custom based open source software used extensively in thin-film solar cells

research [86]. It is equipped with a wide range of simulation options for CIGSe solar cells.

One can include absorption profiles of the materials, spectra, contact properties, interface

recombination, series and shunt resistance that the WIAS-TESCA software is unable to

handle. However, its application is restricted to one-dimensional problems.

On the contrary, WIAS-TESCA can solve the equations with two space variables as well as

three dimensional models with the aid of a cylindrical symmetry [87]. The research code is

written in Fortan and features less options compared to SCAPS, for example, the surface

recombination is simulated using thin layers with high volumetric defects. In addition to

this, the meshing is controlled by the users which could create convergence problems

and at the same time gives the benefit of defining the area of particular interest in the

simulation for better accuracy of the solution [87]. In the simulation, as we are interested

in the developments close to the interface, meshing is made considerably denser in this

region, about 3000/10000 points.

For simulating the bulk and interface recombination, we followed the recombination model

(recombination of electrons and holes through the mechanism of trapping in the forbidden

energy gap) formulated by Shockley, W. T. Read and R. N. Hall [40] (refer to Eqs., (2.2),

(2.3) and (2.4)).
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Due to the limitation in WIAS-TESCA to add the AM 1.5 spectrum to the computation,

current density (J-V) graphs are executed with a single wavelength of 650 nm with its cor-

responding intensity, 83.1 mW/cm2. Since two applications are employed in this work, a

calibration between them was done to reduce the error in the simulation. We achieved this

target by setting the SCAPS as the baseline for the WIAS-TESCA, by matching results

with a cell without a passivation layer (PaL). Having said that, we would like to point out

some factors we didn’t take into consideration; neither reflection losses nor optical losses

by the cell with and without the PaL, assuming that the high band gap PaL will not absorb

any light. In addition, the series resistance of the PaL is also not taken into account. Now,

the question is what happens if the PaL covers grain boundaries, since there were several

reports on grain boundary assisted photo-current collection in CIGSe solar cells [89, 90].

Theoretically this is a valid question, but when realising point contacts in reality, it is impos-

sible to control whether the PaL covers it or not, because point contacts are created by a

random arrangement of particles in the sub-micrometer scale, as demonstrated in Figure

3.12.

4.2 Point contacts at CIGSe/buffer interface

Figure 4.1: Three-dimensional diagram of a point-contact CIGSe solar cell: α is the variable point-
contact radius, variable, β represents the cell radius, which is constant at 500 nm. (a) Three-
dimensional overview, (b) two-dimensional cross-section and (c) Interface charges/defects at the
CIGSe/PaL
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For simulating point contacts at the CIGSe/buffer interface, a three-dimensional cylindrical

symmetry with the rotation axis fixed at the centre of the contact junction is designed

using WIAS-TESCA. This is illustrated in Figure 4.1. The contact radius, defined as α, is

varied throughout the simulation, while the cell radius β = 500 nm is kept constant. When

α = 0, a complete coverage of the PaL is achieved, while no PaL is on the top of the

CIGSe when α = 500 nm. The typical thickness of 2 µm (average thickness of standard

absorbers made at the PVcomB) is adopted for the CIGSe absorber with a band gap

energy of 1.15 eV. The thickness of the PaL was chosen to be 15 nm, after noticing that it

is not influencing the solar cell performance: a probable reason is the negligence of series

resistance in the simulation. The CdS/Zn(O,S) buffer layer is fixed at 50 nm at the contact

junction, whereas only a thickness of 40 nm is applied on regions with PaL. Table 4.1 gives

a detailed information about the most significant parameters used in the simulation.

Now, focusing the attention to the interfaces, to have an equivalent recombination model

with a certain density of surface defects Ns, very thin surface layers, 2 nm each (for CIGSe

and PaL surface), are modelled with a high density of volumetric defects, Nd , because

of the software limitation to include any surface charges. Using this arrangement, surface

densities can be achieved using the equation: Ns [cm-2] = 2 × 10−7 × Nd [cm3]. The in-

troduction of these layers, on the bottom of the PaL and top of the CIGSe, creates three

interfaces:

• CdS/PaL interface — assumed to be free of defects.

• junction interface (CIGSe/CdS) including CIGSe surface layer

• passivated interface (CIGS/PaL) including CIGSe surface layer and passivation layer

surface layer.

While discussing surface or interface recombination, it is noteworthy to consider the

schemes of passivation: chemical and field-effect passivation. The former works under

the principle of reduction of interface or surface defects [91], while the latter works on the

reduction of either electrons or holes at the interface [92, 93]. The reduction of defects is

directly related to the surface recombination velocity, Srec ; for modelling the same, a high

density of neutral defects NN
s is placed at the mid-band gap of the CIGSe, inducing Srec

from 104 to 107 cm/s.
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Table 4.1: Simulation input parameters. d : thickness, ND/A : donor/acceptor doping, Eg : band gap,
χ : electron affinity, Nc /Nv : density of states, µ : mobility, τ : bulk lifetime, NN

s / EN
d : Neutral defects’

density and energetic level below CIGSe conduction band, ND
s / ED

d / NA
s / EA

d : same for donor and
acceptor traps. (a) CBO variation, (b) S variation, (c) defects’ energetic position and (d) defects’
density variation

Layer properties CIGSe buffer (CdS or Zn(O,S)) i-ZnO n-ZnO

d µm 2 0.05 0.05 0.2

ND/A cm−3 NA : 1016 ND : 4× 1015 ND : 1018 ND : 1.01× 1018

ε/ε0 13.6 13.6 13.6 9 9

Eg eV 1.15 2.4 3.3 3.4

χ eV 4.5 4.4/4.6 (a) 4.4 4.4

Nc cm−3 7× 1017 4× 1018 4× 1018 4× 1018

Nv cm−3 1.5× 1019 9× 1018 9× 1018 9× 1018

µn cm2V−1s−1 100 100 100 100

µp cm2V−1s−1 25 25 25 25

τn ns 50 33 10 10

τp ns 50 0.033 0.01 0.01

vth cm.s−1 107 107 107 107

Interface CIGSe/buffer CIGSe/PaL CIGSE/PaL

properties Donor Donor/Acceptor

NN
s cm−2 5× 1012/2× 1013 (b) 5× 1012/2× 1013 (b) 5× 1012/2× 1013 (b)

EN
d eV 0.55 0.55 0.55

ND
s cm−2 0 2× 1010/2× 1012/2× 1014 (d) 2× 1013

ED
d eV 0 0.08 0.13/0.33 (c)

NA
s cm−2 0 0 2× 1013

EA
d eV 0 0 0.08/0.28 (c) .

We structured the scheme of the simulation in a way to decouple the effects of chemi-

cal passivation and band bending assisted field-effect passivation. At the start, an ideal

CIGSe/CdS solar cell with α = 500 nm, i.e., without the PaL is designed; no defects are

introduced at the interface. And then, to change the quality of the interface, the lifetime of

the charge carriers and CIGSe/CdS band offsets (cliff or a spike) is altered. Following this,

a porous PaL is applied in between the absorber and the buffer, and its effect on device

performance is investigated. In addition to the electronic properties of the PaL, its geome-

try is also a parameter considered in this model. The contact area radius, α, is varied from

2 nm to 400 nm, while the distance between them is fixed constant, which is valued to be

2β = 1 µm. Thus the percentage of covered area by PaL is given by : Π = 1− α2/β2.
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To create surface charges at the passivated interface, we used either donor/acceptor pairs

or donor defects and their densities, and energetic positions are also varied in a precise

pattern. The neutral defects can’t be ionised and are independent of the trap energy level if

they are situated close to the mid-band gap. In short, our simulation model includes shallow

and deep defect charges, surface recombination inducing neutral defects over the whole

area consisting of the PaL and the contact interfaces.

4.3 Impact of passivation schemes on device performance

In the beginning, a non-passivated (α = 500 nm) standard cell with an ideal CIGSe/CdS

interface is simulated and set as the baseline. The baseline solar cell had a low density of

neutral defects over the CIGSe surface layer and an efficiency of 22.45%, which is close

to the record CIGSe solar cell [1]. Following, a surface limited solar cell is designed out

from the baseline. This is done by increasing the neutral defects over the CIGSe surface

and placing donor defects energetically close to the CIGSe mid-band gap, along with two

conduction band offsets (CBO), a cliff or spike (∆EC ± 0.1), at the CIGSe/CdS interface;

the donor trap models are equivalent to (In,Ga)Cu defects near the CIGSe surface [94].

By their combined effect, the efficiency drops to 14.52% for a cliff based device due to a

reduction in Voc (188 mV) and FF (10%).

Now, to answer the question whether a perforated PaL can recover the losses encountered,

we introduced it between the CIGSe/CdS interface, enabling the contact junction formation

through the openings. Initially, the nano-contact opening, α is selected to be 50 nm —

close to the radius of nano-openings through Al2O3 described in Figure 3.4 — leading to a

PaL coverage area of 96% on the CIGSe surface; this structure is set to address two types

of passivation schemes: chemical passivation and surface charge induced band bending.

4.3.1 Chemical passivation of the blocking layer

In chemical passivation, the density of active defects, impurities or dangling bonds on a

surface get reduced by the application of a PaL [91]; one can argue about an identical

case in CIGSe with alkali fluoride post-deposition treatment [1, 2]. A pragmatic treatment

of this type of passivation scheme is tackled in the simulation by reducing the defects at
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Figure 4.2: (a) Simulated open-circuit voltages and (b) corresponding efficiencies for point contact
solar cell under chemical passivation scheme at the CIGSe/PaL interface. α ∈ [10, 400].

the CIGSe/PaL interface and unchanging its concentration at the point contact junction, i.e.

at the CIGSe/CdS interface. To encompass different interface properties, two conduction

band-offsets at the CIGSe/CdS interface are chosen: a spike and a cliff (∆EC ± 0.1). A

realistic value of Srec — 5× 104 cm/s — is set at the CIGSe/PaL interface, reckoning that

the PaL can’t reduce the defect density at the CIGSe/PaL interface to zero. The thickness

of the PaL is chosen from the experimental values of the ALD-deposited Al2O3; hence γ

is set to be 5 nm, 10 nm, 15 nm and 20 nm. However, we didn’t observe a dependence of

solar cell performance on γ — possibly due to the drawback of WIAS-TESCA to include

series resistances of the layers. Similarly, the experimental values of the contact radii of

point contact junctions, α, — 45 nm and 60 nm — are also considered, but the simulation

is not limited to these values, instead, α is varied from a low value of 10 nm to 500 nm,

where 500 nm corresponds to an un-passivated solar cell.

The simulation mainly focuses on the interface between CIGSe/CdS and CIGSe/PaL, and

therefore, Voc and η will be the solar cell parameters of concern; while the former is directly

related to the interface quality. Figure 4.2 illustrates the simulated Voc and η of a cliff and

spike based CIGSe/buffer system with point contacts through a PaL. The performance of



46 4. Theoretical modelling of point contact junctions at the CIGSe/buffer interface

both interface limited solar cells (Srec = 2 × 105 cm/s) starts to improve as the passivated

area grows. Also, it can be noted that the rates of increase of both parameters for the

two CBO are entirely different. For ∆EC = + 0.1eV, the growth rate is slower and reaches

a maximum η of 21.8% and a Voc of 620 mV. Note that for the baseline solar cell, for

a spike, η and Voc are 22.45% and 645 meV respectively; whereas for a cliff, Voc and η

accounted to be 502 meV and 16.17%. It is obvious that the PaL tends to improve solar cell

parameters, but for ∆EC = + 0.1 eV, the CIGSe layer was not able to achieve the baseline

device performance, whereas ∆EC = - 0.1 eV surpass its corresponding baseline cell and

Voc and η climbed to 616.85 meV and 21.57% respectively.

The surge in the performance for the interface limited ∆EC = - 0.1 eV can be ascribed

to the impact of PaL, which raises the effective interface band gap and reduces band to

band gap and cross recombination channels. But for ∆EC = +0.1 eV, these loss channels

are already impeded, and the impact of PaL is ineffective compared to the cliff condition,

∆EC = - 0.1 eV. For both CBOs an ideal value of α is reached for 50 nm and the Voc

remained constant thereafter, while the efficiency began to drop. This can be attributed to

the jamming of electrons as the only current path in the absorber is limited through the

contact opening, leading to an increased series resistance at these points. At the other

extreme, when α → β, the device approached the surface limited case. When figuring

out the best configuration, it should be a balance between Π and α. An efficient point

contact structure should be of very low radius — in our case this lies between the openings

50− 100 nm corresponding to a passivated area of 98 – 94%, and 2β should be less than

the diffusion length of CIGSe.

4.3.2 Field-effect passivation of the blocking layer

Another way to achieve low Srec or higher τp/n is to reduce one type of charge carriers

close to the interface via an electric field induced by a PaL at the interface. In case of a

p-type absorber like CIGSe, since minority carriers are moving towards the front contact,

a high density of positive charge at the interface is required to generate an inversion at the

CIGSe surface. We tested some possible PaL candidates (Al2O3, ZnS, SiO2) which can

generate positive charges and Al2O3 is kept as the PaL for the rest of the studies as we

saw a strong increase in the photo-luminescence from these layers on top of CIGSe (refer
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to appendix Figure 8.5). Other possible candidates that could provide positive charges

found in the literature are HfO2 layers or stacks of SiO2/HfO2/Al2O3 [95]. In the simulation,

we replicated this scenario by placing a high density of donor charges close to the CIGSe

conduction band, equivalent to positive charges in a PaL. They will not ionize and contribute

to parasitic recombination.

The simulation is started with an α = 100 nm, corresponding to a Π = 96% and ND
s in the

range 1010 − 1014 cm2. For ND
s >1012, we observed a surge in the efficiency, surpassing

even the baseline solar cell; the efficiency climbed up to 23.2% along with an upgrade in

Voc to 665 mV.

Figure 4.3: Simulated potential (color scale) and electron current (arrows) for contact junction
radius, α = 50 nm. z = 0µm corresponds to the CIGSe front interface.

The strong rise in the η prompted us to zoom near interfaces — CIGSe/CdS and

CIGSe/PaL — of the simulated solar cell under illumination. The zoomed-in version of the

potential diagram is displayed in Figure 4.3. The potential diagram exhibits a gradient in

the electric field close to the interfaces. Compared to the CIGSe/CdS interface, the rate of

change in potential was higher at the CIGSe/PaL interface, depicted by the colour change

from blue to red. This is expected, but what was more interesting is the extension of the

field gradient into the CIGSe/CdS interface. It is guaranteed that the change in potential

in these regions will bring a change in CBO and VBO. A crude estimation of these offsets

can be calculated using Anderson’s rule [96], even though this model does not account for

interface charges.
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CBO = χCIGSe − χCdS/PaL

VBO = Eg,CdS/PaL − Eg,CIGSe

(4.1)

To see the modification of the electronic properties brought by the PaL, we checked the

band alignment and band bending near the interface. It is experimentally evident that a

spike at the CIGSe/CdS interface is favourable for CIGSe based solar cells [97, 98]. The

band diagram close to the interface at z=0 as a function of the perpendicular distance

to the interface is shown in the Figure 4.4. The bands were plotted by taking two vertical

cross sections bisecting the CIGSe/CdS interface and CIGSe/PaL interface on the potential

diagram.

Figure 4.4: Simulated band diagram for a point-contacted solar cell (∆EC = -0.1 eV). Cross-section
along the z-axis close to the interface before the application of point contacts (blue dashed lines),
after the introduction of point contact: at the contact (blue curve) and on the passivation layer (red
curve). α = 50 nm and S = Smax= 2×105 cm/s.

As anticipated, a big spike is visible at the interface on the conduction band showing the

current blocking behaviour of the PaL. Moreover, a strong inversion is generated at the

CIGSe/PaL interface. Comparing the band bending at both junctions, the inversion at the

PaL interface accounted to be 0.2 eV more than at the contact junction, drawing the con-

duction band closer to the Fermi level near the CIGSe/PaL interface, altering the charge

carrier transport and their environment.
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In this context, quantifying the position of the Fermi-level at the interface can give a better

understanding of the band bending at the interface. As discussed in the last paragraph, the

band bending at the interface and the point contact junction can be calculated by taking a

horizontal cross-section of the valence band across them, followed by taking the difference

between the valence band energetic level in the bulk (Ev ,bulk = −0.19eV ) and at the first

discontinuity at the CIGSe/PaL interface.

φPaL = Evbulk − EvPaL

φC = Evbulk − EvC

(4.2)

Note that the simulated CIGSe solar cell under discussion has a cliff type band alignment

at the CIGSe/CdS interface with α = 100 nm and Π > 96%, and an inversion is witnessed

at the contact junction influenced by the PaL. This motivated us to look further into the

effect of the band bending at the contact junction if α < 100 nm or Π > 96%.

Figure 4.5 shows the effect of the passivated area or the contact radius on the band bend-

ing at the contact junction, along with potential diagrams for α = 10 nm, 50 nm and 100 nm.

As Π began to grow (α shrinking), the transition of the band bending at the contact junc-

tion, φc , began to rise and a maximum impact is reached when limα→0 φc = φPaL, α = 10

nm. Between the two extremes of α, the value of 200 meV in band bending is calculated

from the Figure 4.5. Even if the passivated area is smaller, 250 nm < α < 400 nm, a

beneficial effect is always visible. However, a significant influence ensued when it crosses

the threshold value, α =100 nm with Π= 96%. Here, Π is greater than the experimental

Π calculated using XPS measurements in Table 3.2 (despite considering errors from the

quantitative analysis), where the openings are achieved by random arrangement of CdS

NP’s. A possible way to simulate the real case scenario is to generate random openings

using a random distribution.

As shown in Table 4.2 (the band bending values at the point junction are calculated from

Figure 4.5), an optimal configuration for a band bending assisted passivation is reached

for a cell with α = 10 nm and Π > 96%. The efficiency is increased by almost 1.69% from

the baseline cell and Voc climbs up to 677 mV. Also, a relaxation in α is observed (modest

changes in cell performance when α < 100 nm) compared to the chemical passivation.
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Figure 4.5: Simulated potential (color scale) and electron current (arrows) for contact junction
radius, α:(a) – (c) = 10, 50, 100 nm respectively. z = 0 µm corresponds to the CIGSe front interface.
(d) Distance from the valence band to the Fermi-level 2 nm below the CIGS front interface. α ∈
[10, 400]. PaL defect structure, interface recombination velocity and CBO at CIGSe/CdS interface
and CIGSe/PaL interface is same as in Figure 4.4; the semiconductor parameters are listed in the
default Table 4.1.

Yet, losses appear when Π reaches 99%. A possible explanation is the gradual increase

in series resistance seen by the charge carriers. However, the mechanism of the transport

of the carriers is entirely different from the chemical passivation. Here, the electrons are

driven to the passivated surface and the holes are repelled from the interface by the electric

field generated from interface charges. Thus, the lifetime of the charge carriers at the inter-

face and at the junction is enhanced, and the jamming of charge carriers in comparison to

the chemical passivation is considerably diminished. And on reaching a new equilibrium,

the diffusion assisted transport mechanism comes into act and the electrons are directed

to the nano-contacts.

In the previous analysis, we used a CIGSe/CdS standard solar cell with donor defects

lying close to the mid-band-gap and witnessed a recovery in η and Voc . This motivated us

to extend this approach further to CIGSe cells with different interface qualities. We handled
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Table 4.2: Band bendings calculated for the simulated cell in Figure 4.5. Π is the percentage of
passivated area, φC is the band bending at the contact center, φPaL at the passivation layer

α Π φC φPaL

(nm) (%) (eV) (eV)

10 > 99 0.82 0.85

50 99 0.81 0.85

100 96 0.68 0.85

250 75 0.61 0.85

400 36 0.60 0.85

four types of solar cells for this purpose, with different conduction band offset (±1) and Srec .

Introducing a cliff at the CIGSe/CdS interface minimises the effective band gap seen by the

numerous interface recombination sites [37]. And if a passivation layer can annihilate these

defects, this would give more options for the selection of buffer layers.

Table 4.3: Matrix showing the four types of investigated solar cells. CBO refers to conduction band
offset at CIGS/CdS. Srec refers to interface recombination velocity. S1 and S2 denotes high and low
recombination velocity, and C1 and C2 represents spike and cliff respectively.

CBO and Srec S1(5× 104cm.s−1) S2(2× 105cm.s−1)

C1(0.1 eV (spike)) [97–99] 1 0

C2(−0.1 eV (cliff)) [100, 101] 0 1

Taking this into account, we designed four baseline standard cells for the four cases as

described in Table 4.3 (1) S1 · C1 (2) S2 · C1 (3) S1 · C2 (4) S2 · C2 and followed the same

route as in the previous analysis.

Figures 4.6 (a) and (b) show the simulated Voc and corresponding η for values of α from 10

nm to 500 nm, and Figure 4.8 shows the simulated J−V curves for α = 50 nm including all

types of devices considered. We chose Voc as the parameter to be investigated because it

gives the direct information about recombination. The findings were similar to the previous

case, but we noticed a rapid recovery in the case of a cliff, S2 · C2, in comparison with

high quality surface cell, S1 · C1. In both cases the passivation had positive effects on the

solar cell. As α started to get smaller, Voc rose independently of the quality of interfaces

considered at the beginning and converged to the same limit for all the solar cells. The

same trend was followed by the efficiency. The effect of an increase in series resistance
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Figure 4.6: (a) Simulated open-circuit voltages, and (b) corresponding efficiencies for different
values of α under field effect passivation scheme: α ∈ [10, 500], S1 · C1, S2 · C1, S1 · C2 and S2 · C2

take the values as described in Table 4.3.

and FF losses was noticed below α = 10 nm. These results indicate which kind of CIGSe

interfaces will get a beneficiary effect from a point contact structure; a high defective sur-

face would be able to exploit the point contact structure, while it brings gentle effects on

high quality surfaces. Adding to this, a complete elimination of the negative influence of the

cliff at the CIGSe/CdS can challenge the role of a buffer layer; the main feature of which is

to align the band between the absorber and the window layer. However, the modelling of

Srec through a thin layer with high Nd could be the reason for these results, which doesn’t

reckon the tunnelling recombination between charge carriers coming from different layers.

Unlike in the case of the cliff and spike, when Srec is taken into consideration, the results

didn’t have substantial changes; even with an ideal PaL, Voc and η didn’t climb up to the

same level. An explanation for this behaviour can be given by the partial passivation of

defects as assumed in the model. And concerning the retrieval of the performance, a better

performance was shown with devices having low Srec , showing what kind of devices would

get benefited from point contacts configuration. Still, a slight improvement was observed

for all devices with high Srec when α > 250 nm — in these devices the efficiency is limited

by the recombination in the quasi-neutral region. Figure 4.7 (a) shows the impact of charge

density on the Voc of the four devices considered. It can be observed that all devices Voc
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Figure 4.7: (a) Simulated open-circuit voltage as a function of charge density in the passivation
layer for four types of solar cells considered in Table 4.3. (b) Minimum and maximum efficiency for
different values of α and defect structures studied as described in Table 4.1; the simulated data
follows the same set of parameters used in Figure 4.6

converged to the same point when interface charge density is close to 1014 cm−2. And the

effect of band-offsets became insignificant when it crossed 3×10 12 cm−2. The boundaries

of efficiencies of four solar cells is illustrated in Figure 4.7 (b). The shaded part shows the

range of α that can be beneficial for a point contact structure. Combining Figures 4.6, 4.7

and 4.8, we summarised the limits of efficiency that can be achieved by CIGSe devices with

a point contact structure, and this could be used as a framework for future experiments.

Until now, for all the cases considered , a strong n-type inversion at the CIGSe/PaL inter-

face is the deciding parameter attenuating the influence of interface recombination. Exper-

imentally, it can be activated by the diffusion of atomic elements into the Cu vacancies in

a Cu-poor CIGSe absorber, similar to Zn diffusion from a ZnS passivation layer [102] or

the removal of Cu from the interface and occupation of potassium with the KF treatment

[47]. Since these are found to be advantageous for CIGSe absorbers, their energetic level

should lie closer to the CIGSe conduction band. Furthermore, we examined what happens

if they turn into deep defects and modelled it by changing the defect energy level closer to

the mid band gap and plotted as a function of band bending they induced. These results

are displayed in Figures 4.9 (a) and (b).
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Figure 4.8: Simulated current-voltage curves for unpassivated (dotted lines) and passivated solar
cells (solid lines) for α = 50 nm for different type of solar cells considered in the table 4.3. The PaL
has a charge density ND

s = 2 × 1014/cm2 and rest of the semiconductor parameters follows table
4.1.

Figures 4.9 (a) and (b) show that the band bending at the passivation layer, φPaL is not

controlled by Srec and CBO, and from the Table 4.2, it can be concluded that φPaL is

independent of α. Summing up the three,

∂φPaL
∂α

= ∂φPaL
∂CBO

= ∂φPaL
∂Srec

= 0

(4.3)

Hence, φPaL is considered as the deciding parameter. It has significant influence on Voc

and η, and independent of Srec and CBO values at CIGSe/CdS, Voc(φPaL) and η(φPaL) are

monotonically increasing functions. But, a closer look will decipher the parasitic behaviour

of the defects depending upon their positions in the band gap. In these cases, they play

a double agent role: influencing band bending and enhancing recombination. Therefore,

the position of these defects and their density should be the factors to be reckoned, while

considering a point contact structure. Leaving aside these negatives, when α = 100 nm,

φPaL > 0.85 eV and for each value of Srec and CBO, a PaL significantly enhances the

device performance by at least 10%.
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Figure 4.9: Impact of band bending at the passivation layer, φPaL on the Voc and efficiency of
solar cells studied (the values of S1,S2,C1, and C2 are tabulated in Table 4.3) for α =50 nm. Semi-
conductor parameters follows the default values in Table 4.1. Horizontal dotted lines represent the
unpassivated device performance in each category mentioned in Table 4.3.

Summarising the results from the simulation, a point contact structure through a pasivation

layer is beneficial when it meets the following conditions:

• ΦPaL > 0.85eV , i.e. sufficient band bending is generated by the PaL

• 99% > Π > 95%, i.e. more than 95% of the interface is passivated. In our case, this

corresponds to α ≤ 50nm

The first factor depends on the defect structure at the interface or in other words the inter-

face charges. The density of these interface charges should be sufficient to induce a favor-

able band bending. This also includes donor defects introduced to the absorber through

diffusion; however, a distinction between the two is not executed in the simulations. In the

field-effect passivation, the main parameter that describes the influence of the PaL is the

band bending it induces at both interfaces. For a good inversion at the CIGSe/CdS in-

terface, in addition to the interface charges, the passivation area should lie between 95

– 99%. Also, another important thing we noticed is that the relaxation of requirements in

case of the field-effect passivation as compared to the chemical passivation. In the lower
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regime of the contact junction openings, the efficiency almost stayed constant. Field-effect

passivation could also relax the diffusion length parameter. A perfect example for this is

the passivated emitted rear CIGSe ultra-thin solar cells, where even with the pitch width of

2 µm [103] and 10 µm [54], an improvement is reported; the same can be applied to the

front-end passivation, thus challenging the diffusion length requirement.

The PaL is more beneficial to a poor interface quality absorber (a cliff at CIGS/CdS and

a high Srec). An optimum buffer layer, in addition to an appropriate band line-up, should

also generate shallow defects at the interface carrying the required positive charge. The

standard CdS buffer layer might do so via ionised Cd within the Cu-free surface recon-

struction of CIGSe [104]. As our model includes charged defects only at the PaL but not

at the contact interface, it may be argued that the benefit of the PaL layer is exaggerated.

However, additional calculations (not shown here) suggest that a cell with full area contact

even with charged defects will still be worse than the point contact cell, in particular with

the cliff-type band alignment. If nothing else, using two different materials (contact, PaL) to

fulfil one requirement (band line-up, positive charge) each should provide more flexibility in

designing the best possible interface.

The results highlight the fact that the most efficient passivation layer works through the

field-induced passivation. Instead of looking at the defect density or the defect energetic

level, the surface charge density at CIGS/PaL should be investigated for improving effi-

ciency. Correlating experimental results from chapter 3 — refer to Figures 3.4, 3.12 and

Table 3.2) — and simulation results, it can be seen that the contact radius condition is sat-

isfied, while the coverage area is marginally less; yet, PaL and point contact is a promising

aspect to implement in tangible CIGSe devices. The results also give insights on the fac-

tors that should be addressed while creating an innovative point contact technology on the

CIGSe surface.

4.4 Point contacts at the Mo/CIGSe interface

An incomplete absorption and back contact recombination are the main limiting factors in

achieving high efficiency ultra-thin CIGSe solar cells. With the aid of 2D simulations Nerat

[105] showed that localized point contacts at the back interface have the potential to boost
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Figure 4.10: Simulated absorption plot as a function of CIGSe absorber thickness.

the performance of absorbers by 15% compared to the standard CIGSe solar cell with

whole back contacts. In this simulation work, we tried to get a qualitative understanding of

the optical and electrical influence of the point contacts at the back interface of thinner ab-

sorbers using SCAPS. Since the recombination velocity at the back contact influences the

diode current and photo-current, we varied the back contact recombination velocity over a

wide range from 103 cm/s to 107 cm/s, equalling the electron thermal velocity. Also, SCAPS

gives the option to study the effect of reflection at the back interface; the lowest reflection

at the Mo back contact is chosen to be 20%, as reported in the literature [106]. The semi-

conductor parameters used in this simulation follow the values in the Table 4.1, to which

variation of absorber thickness and reflection at the back contact are to be considered.

Figure 4.10 demonstrates the influence of absorption as a function of CIGSe absorber

thickness. Optical losses in thinner CIGSe occur mainly in the infra-red region and are

expected due to the material reduction. The significant drop in the absorption starts at 1

µm, which is also the limiting absorber thickness. Also, it should be noted that the para-

sitic absorption at the back contact is increasing with decreasing absorber thickness and

converges to the absorption value for a 100 nm CIGSe layer, which is evidently due to

poor Mo reflectivity. Figure 4.11 covers the electrical influence for a range of interface re-

combination velocities and reflection at the back contact in relation to absorber thickness.

The enhancement in the rear contact recombination, at the CIGSe/Mo interface, occurs

when the absorber thickness is comparable to the diffusion length of the carriers. It can be

seen that the Voc is negligibly affected by the change in reflection at the back contact, but
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Figure 4.11: Simulated Voc and Jsc values for CIGSe solar cells as a function of absorber thick-
ness. The interface recombination velocity at the back contact is varied from 103– 107 cm/s and
reflection from 20 – 80%.

heavily depends on the interface recombination velocity. It reduces steeply for recombina-

tion velocities greater than 105 cm/s. In the case of Jsc , reflection influences its trend over

the whole range of thickness and also for all recombination velocities; it exhibits a similar

behaviour and converges to a lowest value of Jsc . With an increase in the reflection at the

back contact, these convergence points are shifted to higher Jsc values. In summary, the

simulation shows that reducing the back interface defect concentration can lead to an in-

crease in Voc . On the contrary, an increase in Jsc is related with an increase in rear optical

reflection.

4.5 Summary

For correlating experimental results and to find optimum cases, a three-dimensional sim-

ulation investigation was done on a wide range of solar cells with nano point contacts

through a PaL at the CIGSe/buffer or Mo/CIGSe interface. A distinction between the chem-
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ical and the field-effect passivation was addressed, along with different band alignments at

the CIGSe/buffer interface, foreseeing the effect of other buffer layer applications.

Both the chemical and the field effect passivation showed a positive influence on CIGSe

device performance. However, the latter induces band bending at the CIGSe/PaL interface

and influences the band bending across the contact layer, altering its electronic proper-

ties. The maximum effect is achieved for a density of interface charges greater than 1012

cm−2 and a contact radius under 100 nm (coverage area = 95%). Passivation through

band bending gives more flexibility on the contact radius and diffusion length compared to

the chemical passivation and performed better than the baseline solar cells. On extend-

ing this approach to cells with favourable and unfavourable conduction band offsets (a cliff

or a spike) at the CIGSe/CdS interface, a strong rise in the cell parameters is observed

in case of the cliff in contrast to the spike, pointing towards which kind of cells could get

more beneficial effect from defect passivation. The recovery in the cliff based interface also

questions the role of buffer layers and offers more freedom in its selection. The CdS layer

or other potential buffers can be constrained only to the contact openings as there is no

need for CdS on top of the passivation layer. This will certainly reduce the absorption and

enhances the fill factor and current density. Incorporating the point contacts at the back in-

terface can lead to an increase in the Voc if the PaL decreases the interface defect density,

and even a Jsc enhancement is possible if PaL provides an effective reflection compared to

Mo. To conclude, the simulation defines the box in which point contacts parameters should

lie to have a beneficial effect on CIGSe device performance, and gives significant input for

designing point contacts through an efficient passivation layer.
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Incorporation of point contacts at the CIGSe/buffer

interface

This chapter expands the work of the theoretical modelling of the point contacts at the

CIGSe/buffer interface in section 4.2 by combining it with experimental investigations to

compare their predicted effect on the device performance. The theoretical model predicts

that the point contacts at the CIGSe/buffer interface can bring a positive influence on effi-

ciency compared to the unpassivated reference CIGSe solar cells, provided that the inter-

face charges are greater than 1012cm−2, and the contact radius should be less than 100

nm (refer to Table 4.2). The point contacts fabricated using CdS NP’s, synthesised by the

solution based approach, have radii of 45 nm and 60 nm (see Figure 3.4), which meets

the above requirement. A successful application of the point contacts through a suitable

passivation layer can passivate the defects chemically or electrically at the interface, and

then, the impact will be visible in the Voc of the devices according to the Eq. (2.11).

To separate the effect of passivation and point contacts on efficiency, five different config-

urations of CIGSe solar cells with point contacts and their corresponding reference cells

were considered in this work. The photo-voltaic properties of reference cells were com-

pared with a numerical model to explain the device performance. Then, the point contacts

were applied at the CIGSe/buffer interface and conversion efficiency compared with the ref-

erence cells. Since the focus is on the effect of point contacts, no post deposition treatment

using potassium fluoride was done on any samples prepared.

61
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5.1 Modelling of CIGSe reference solar cells

In order to qualitatively understand the behaviour of the reference CIGSe solar cells without

any point contacts, numerical simulations are done with SCAPS, keeping the interface as

the region of focus. The recombination rate due to a defect at the interface is determined

by the interface band gap and its energetic position, Et , to the CBM and VBM. And in a

hetero-interface, the interface band gap is determined by the electron affinity and the CBM

and VBM of both materials. For realising an effective band gap, Eg,IF , at the CIGSe/buffer

interface (refer to Figure 5.1), the buffer layer should have a higher band gap and low

electron negativity compared to the CIGSe. CdS and Zn(O,S) have higher band gaps of

2.4 eV and 3.3 - 3.6 eV [107] compared to the high efficiency CIGSe device (1.15 - 1.2

eV). Experimentally, different values of conduction band offsets, ∆E IF
c , at the CIGSe/buffer

interface are reported with CdS [108] and Zn(O,S) [109–111], ranging from a cliff to spike.

Figure 5.1 encompasses the simulated band diagrams for three cases. For a cliff case

at the CIGSe/buffer interface, the inversion is reduced, the electron quasi-Fermi-level is

receded from the CBM, the Eg,IF is lowered and the band to band and the defect assisted

recombination are enhanced (refer to Figure 5.1 (c)). In contrast, as shown in Figure 5.2

(a) – (d), ∆E IF
c between 0.0 - 0.3 eV is advantageous for CIGSe solar cells. In this range,

∆E IF
c impedes the effect of interface recombination velocity and Voc starts to converge to

a higher value due to the a higher concentration of electrons at the interface at all voltage

biases; however, all other device parameters start to decline drastically for ∆E IF
c > 0.3

eV, irrespective of the recombination velocity. A further increase in the ∆E IF
c will result

in an electron barrier at the interface, affecting the electron extraction and injection. This

condition is shown for ∆E IF
c ≥ 0.4 eV in Figure 5.2 (e); this is similar to the case when the

passivation layer completely covers the CIGSe surface.

An electron barrier can also be induced by the acceptor states at the interface, if a suffi-

cient density of acceptor states (simulated value corresponds to NA,IF > 2 × 1011 cm-2 is

present as shown in Figure 5.3. The acceptor defects placed at an energetic position of 0.6

eV from the VBM reduce the inversion, the space charge area, and the potential drop in

the absorber. This leads to an upward rise of the CBM, creating an electron barrier above

the energetic position of the acceptor defect, increasing the distance between the electron

quasi-Fermi level and the CBM. The result is reduced extraction efficiency, increased bulk

and interface recombination. The same phenomenon is applicable for the acceptor states
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Figure 5.1: Simulated energy band diagrams for different band alignments for reference CIGSe
solar cells close to the CIGSe/CdS interface: (a) spike (∆Ec = 0.1 eV), (b) flat band (∆Ec = 0 eV)
and (c) a cliff (∆Ec = -0.1 eV).

in the buffer layer. But compared to the N IF
A , the Voc starts to increase for higher acceptor

defect concentrations. This is due to a relatively high hole density compared to the elec-

tron density near the interface as shown in Figure 5.3 (e), and as a consequence, Voc is

unaffected. Also, it is apparent from the Figure 5.3 (e) that the minimum in the Voc in Fig-

ure 5.3 (c) corresponds to the stage where electron and hole densities are equal. On the

other hand, donor defects close to the conduction band can reverse the accumulation to an

inversion, if a sufficient amount of donor defects is present at the CIGSe/buffer interface.

This is shown in Figure 5.3 (f).
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Figure 5.2: (a) – (d): simulated device parameters as a function of conduction band offsets, ∆Ec ,
at CIGSe/buffer interface for different interface recombination velocities and (e) their corresponding
J–V curves.
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Figure 5.3: (a) and (b): simulated values of Voc as a function of acceptor defect density, NA, at the
CIGSe/buffer interface and corresponding J–V curves, (c) and (d): Voc as a function of NA in the
buffer and corresponding J–V curves, (e) carrier density as a function of NA in the buffer and (f) J–
V curves of CIGSe devices with NA at the CIGSe/ buffer interface and in the buffer (solid lines), and
after the introduction of donor states close to the CBM at the interface (solid lines with open circular
dots).
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Figure 5.4: Bottom to top: schematic diagram showing the fabrication of the four different types
of solar cells and reference solar cells used in this thesis: (a) Reference solar cells with standard
fabrication procedure as discussed in section 2.2, (b) CIGSe solar cells with a passivation layer
(Al2O3) and buffer layers (either CdS or Zn(O,S)) on top, (c) CIGSe solar cells with CdS nanopar-
ticles acting as the point contacts and the buffer layer (no etching out of CdS NP’s) with a layer of
Al2O3, (d) CIGSe solar cells with point contacts and CdS as the buffer layer and (d) CIGSe solar
cells with point contacts and Zn(O,S) buffer layer.
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5.2 Point contacts at the CIGSe/buffer interface

Figure 5.4 illustrates the schematic diagram of the five different configurations of CIGSe

solar cells including the reference CIGSe cells used in this work. The buffer layers, CdS

and Zn(O,S), were deposited by chemical bath deposition, and atomic layer deposition

and reactive sputtering respectively. Reference CIGSe solar cells with CdS or Zn(O,S) as

the buffer layers: the configuration is Mo/CIGSe/CdS or Zn(O,S)/ZnO/ZnO:Al (Figure 5.4

(a)). CIGSe cells with a layer of Al2O3 covering the CIGSe surface: the configuration is

Mo/CIGSe/Al2O3/ZnO/ZnO:Al (Figure 5.4 (b)). CIGSe solar cells establishing point con-

tacts by CdS NP’s and Al2O3 (no CdS buffer layer): the configuration is Mo/CIGSe/CdS

NP’s/Al2O3/ ZnO/ZnO:Al (Figure 5.4 (c)). CIGSe solar cells with point contacts and CdS

as the buffer layer: the configuration is Mo/CIGSe/PC-Al2O3/CdS/ZnO/ZnO:Al (Figure 5.4

(d)). CIGSe solar cells with point contacts and Zn(O,S) as the buffer layer: the configuration

is Mo/CIGSe/PC-Al2O3/Zn(O,S)/ZnO/ZnO:Al (Figure 5.4 (e)).

5.2.1 Reference CIGSe devices with CdS and Zn(O,S) buffer layers

In order to study the effect of point contacts and passivation layer on CIGSe solar cell

performance, 2 µm reference CIGSe solar cells are fabricated with CBD CdS and atomic

layer and reactively sputtered deposited Zn(O,S), and their performance was analyzed.

Depositing Zn(O,S) using ALD and RF sputtering will certainly change the interface quality

(see Table 5.1). Hence, the theoretical prediction in the section 4.3.2 (refer Figure 4.6)

that the quality of the interface will have an impact on the effect on the performance of

the point contacts can be easily examined. For the solar cell fabrication, Cu-poor samples

grown with a bulk composition of [Cu]/[[Ga] + [In]] = 0.92 were used: this corresponds to

the composition for high-efficiency devices in our lab [112].
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Figure 5.5: Light and dark measured J − V curves of the best reference Cu(In,Ga)Se2 solar cells
with CBD CdS (black), r.f.-sputtered Zn(O,S) (blue) and ALD Zn(O,S) (orange) buffer layers.

Table 5.1: Average of the extracted J − V parameters of reference CIGSe (4-13) solar cells

Sample Jsc Voc FF η Rs Rp

(mA/cm2) (mV) (%) (%) (Ωcm2) (Ωcm2)

CIGSe/CdS 32.1 ± 0.1 658 ± 0.2 63.3 ± 0.2 13.4 ± 0.1 0.5 ± 0.01 318 ± 150
CIGSe/ALD-Zn(O,S) 30.4 ± 0.1 421 ± 13 31.2 ± 0.4 4 ± 0.2 0.7 ± 0.1 22.3 ± 1.2
CIGSe/sputtered-Zn(O,S) 32.9 ± 0.2 537 ± 3 61.5 ± 0.1 10.9 ± 0.1 0.38 ± 0.01 364 ± 64

Figure 5.5 represents the current density–voltage graphs of the Cu(In,Ga)Se2 solar cells,

with CBD CdS, sputtered Zn(O,S) and ALD Zn(O,S) as the buffer layers, measured in dark

and illumination (AM 1.5 spectrum); these cells don’t have any passivation layer and will

serve as the reference solar cells for the work presented in this chapter. Table 5.1 compares

the corresponding cell parameters extracted from the J − V curves; all solar cells have a

total area of 1 cm2.

Assuming that no Fermi-level pinning is occurring at the interface, Voc is the parameter

mostly affected by recombination losses at the interface. Therefore, the significant differ-

ence in the Voc (refer to Table 5.1) of the devices can be attributed to the different interface

formation of each buffer layer with the CIGSe; in that case, the CdS buffer layer provides

the best interface quality. The layer by layer assembly of ALD Zn(O,S) is expected to pro-

vide a better interface quality with CIGSe than the sputtered Zn(O,S), however, here the
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sputtered layers led to better devices. This might be because of the non-optimised deposi-

tion of ALD Zn(O,S) compared to the sputtered Zn(O,S) in our lab. The barrier in the ALD

Zn(O,S) graphs might be due to an increased density of acceptor traps at the CIGSe/ALD-

Zn(O,S) interface, which also explains the reduction in the Voc and Jsc . Consequently the

fill factors and the efficiencies of these devices are rather low compared to the devices with

CdS and sputtered-Zn(O,S) devices. By comparing these results with those in the section

4.3.2 (see Figure 4.6), these three reference cells could represent CIGSe/buffer interfaces

with three different interface qualities (refer to Figure 4.6). The device performances are

well below the record efficiency CIGSe solar cells; simulations in Chapter 4 (see Figure

4.6) demonstrate that the effect of point contacts is more pronounced in interface limited

solar cells. Therefore, these solar cells are suitable for validating the theoretical predictions

of the influence of the point contact at the CIGSe/buffer interface.

Figure 5.6: Dark and illuminated J–V curves of the reference cells (solid lines) taken from Figure
5.5 with corresponding simulated fits (dotted lines); (a) CIGSe/CdS solar cell, (b) CIGSe/sputtered
Zn(O,S) and (c) CIGSe/ALD–Zn(O,S)

When comparing the numerical simulations of the experimental and fitted dark and light

J–V curves of the reference solar cells (refer to Figures 5.5 and 5.6), with the illuminated

J–V curves of ALD Zn(O,S), the latter is characterised by the ’S’ shape anomaly, which is

a clear signature of an electron barrier in the conduction band at the CIGSe/ALD–Zn(O,S)
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interface. According to the simulations, refer to Figures 5.2 (e) and 5.3 (b) and (d), an elec-

tron barrier could result either from a high spike in the conduction band at the interface or

from acceptor states at the CIGSe/buffer interface. Since the barrier is determined by the

difference in electron affinity, χ, and ∆χ between CIGSe and Zn(O,S) was experimentally

recorded to be 0.2 eV [109], acceptor states must be responsible for the ’S’ shape be-

haviour. This is also evident from their higher J01 (which is a measure of bulk and interface

recombination) values of ALD Zn(O,S), extracted from the two-diode model, compared to

CdS and sputtered Zn(O,S): CdS (8.17 × 10−8 mA/cm2), sputtered Zn(O,S) (4.2 × 10−4

mA/cm2), ALD Zn(O,S) (7.2 × 10−3 mA/cm2). The acceptor defects could also be the rea-

son for the reduction in Voc in sputtered Zn(O,S), but indeed the concentration of these

defects is much smaller compared to ALD Zn(O,S) (refer to Figures 5.2 (b) and (d)). Com-

paring the experimental value of Voc at the CIGSe/CdS interface to the simulated values

in Figure 5.2 (a), it can be estimated that the interface recombination velocity lies between

105 and 107 cm/s, which could be a reason for the low efficiency.

5.2.2 CIGSe device performance with a layer of Al2O3

Figure 5.7: Dark and illuminated J–V curves of the solar cells with the passivation layer, Al2O3,
covering the CIGSe absorber surface. The cell configuration is Mo/CIGSe/Al2O3/i-ZnO/ZnO:Al
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In order to check the effectiveness Al2O3 as a insulating passivation layer, a layer of Al2O3

is deposited on top CIGSe absorber and the solar cell performance is analysed. The cor-

responding CIGSe solar cell configuration is Mo/CIGSe/Al2O3/i-ZnO/ZnO:Al as shown in

Figure 5.4(b).

Table 5.2: Extracted diode parameters from the dark and light J − V measurements from Figure:
5.7

Sample Jsc Voc FF η Rs Rp
(mA/cm2) (mV) (%) (%) (Ωcm2) (kΩcm2)

CIGSe/Al2O3 0 ≈ 0 0 0 257 ± 87 1.6 ± 0.5

Figure 5.7 shows the J-V curves of the solar cell with Al2O3 covering the CIGSe surface,

without any buffer layers. It can be seen that both light and dark J–V curves don’t show

any diode like characteristics and are non-linear at higher voltage biases, which could be

from a superposition of an ohmic contact and a Schoktty barrier. The light and dark curves

nearly overlap, indicating that the Al2O3 layer is creating a huge electron barrier at the

CIGSe/Al2O3 interface and hence it is not photo-conductive. This is expected from the ∆χ

(> 0.4 eV) and ∆Eg (≈ 5 eV) of CIGSe and Al2O3 at the interface. The same behaviour

is observed for all the devices with a complete layer of Al2O3 on CIGSe from all set of

experiments with point contacts at the front interface, and hence will not be discussed

separately in the following experimental sections.

5.2.3 CIGSe device performance with CdS NP’s acting as the buffer layer and PC’s

The configuration for this experiment follows the device structure as shown in the Figure

5.4 (c) — CIGSe/CdS- NP’s/Al2O3/i-ZnO/ZnO:Al. In this experiment, the suitability of a

configuration with CdS NP’s acting as the buffer layer has been examined; if the CdS NP’s

could replace the state of art CdS buffer layer, then, an extra step — etching the CdS

NP’s — for making point contacts can be eliminated because the point contacts were al-

ready established with the deposition of a thin layer of Al2O3 (see Figure 5.4 (c)). CIGSe

absorbers with a bulk composition of [Cu]/[[Ga] + [In]] = 0.92 were used in this experi-

ment. The nanoparticles were deposited using the chemical bath deposition as described

in section 3.5, and then, a thin film of Al2O3 of about 10 nm thickness is deposited using

ALD. This will cover the space between the CdS particles and also above them. After this
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process, the CdS NP’s were not etched away. Since the ratio of nanoparticle size to the

thickness of the Al2O3 is very large, CdS will not get completely covered by Al2O3 dur-

ing the ALD deposition process, and the uncovered part will act as a contact with i-ZnO,

enabling the current flow.

Figure 5.8: Light and dark measured J–V curves of the Cu(In,Ga)Se2 solar cells with CdS NP’s
acting as the buffer layer and establishing point contacts at the CIGSe/CdS interface.

Table 5.3: Average of diode parameters of four CIGSe solar cells from the dark and light J − V
measurements with CdS NP’s as the buffer layer

Sample Jsc Voc FF η Rs Rp
(mA/cm2) (mV) (%) (%) (Ωcm2) (Ωcm2)

CIGSe/CdS NP’s 4 ± 1.4 418 ± 32 27.8 ± 1 0.4 ± 1 2.7 ± 0.1 292 ± 95

Figure 5.8 shows the J–V curves of the devices with point contacts established using CdS

NP’s under dark and on illumination. On comparing with the reference CIGSe/CdS cell (re-

fer Table 5.1), the point contact cell has brought overall a negative impact on the electrical

characteristics of the solar cell, affecting the open-circuit voltage the least. The devices

exhibit poor fill-factor (27.8 ± 1), very low Jsc (4 ± 1.4 mA/cm2) and as a consequence

low efficiency (η = 0.4 ± 0.1). Also, the cells exhibit a faint ’S’ shape behaviour and a

less prominent cross-over of the dark and light J–V curves. The cross-over arises from an

electron barrier in the conduction band, which could be due to the combined effect of the

barrier created by the high-band gap Al2O3 and the acceptor states at the interface, as

shown in Figures 5.2 (a), (e) and 5.3 b. Comparing Figures 5.3 (b) and 5.8, the ’S’ shape
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behaviour can be shifted depending upon the acceptor density at the interface which leads

to a significant decrease in Jsc . The barrier effect is similar to the increase in the series

resistance, Rs and this is evident from the increase in the Rs ( 2.7 ± 0.1 Ωcm2), and the

action of defects and increased recombination at the interface lead to a decrease in the

shunt resistance, Rp to 292 ± 95 Ω cm2. However, the possibility of shunts due to a direct

contact between CdS NP’s and ZnO:Al can’t be ruled out as the size ratio of the i-ZnO

thickness to the CdS NP’s is small [113].

5.2.4 CIGSe device performance with CdS buffer layer and point contacts

In this experiment, standard CdS deposited by CBD is used as the buffer layer. The de-

vice has a stack structure of Mo/CIGSe/PC-Al2O3/CdS/ZnO/ZnO:Al as shown in Figure

5.4 (d). CIGSe samples with a bulk composition of [Cu]/[[Ga] + [In]] = 0.94 were used in

this experiment. The preparation process is outlined in section 2.2. Contrary to the stan-

dard configuration, CIGSe/CdS/i-ZnO/ZnO:Al, the point contacts are applied at the CIGSe

surface as described in the section 3.5.

Figure 5.9: Dark and light measured current–voltage characteristics of CIGSe solar cells with CdS
buffer layers, with and without point contacts. Here CIGSe/CdS corresponds to reference solar cells,
CIGSe/Al2O3/CdS to CIGSe absorbers with a layer of Al2O3 and CdS over it, and CIGSe/Al2O3–
PC/CdS to CIGSe solar cell with point contacts. The cell configurations corresponds to Figure 5.4
(a) for CIGSe/CdS light and dark and Figure 5.4 (d) for CIGSe/Al2O3–PC/CdS dark and light
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Table 5.4: Extracted diode parameters from the light J − V measurements from Figure 5.9

Sample Jsc Voc FF η Rs Rp

(mA/cm2) (mV) (%) (%) (Ωcm2) (kΩcm2)

CIGSe/CdS 32.1 ± 0.1 658 ± 0.2 63.3 ± 0.2 13.4 ± 0.1 0.5 ± 0.01 0.318 ± 0.15
CIGSe/Al2O3/CdS 31.5 ± 0.3 641 ± 1.1 60.8 ± 0.5 12.3 ± 0.0 0.52 ± 0.01 0.390 ± 0.14
CIGSe/Al2O3-PC/CdS 31.2 ± 0.5 589 ± 15 59.3 ± 5.5 10.9 ± 1.4 0.47 ± 0.01 0.347 ± 0.15

Figure 5.9 shows the dark and light J − V characteristics of the reference and point con-

tacted solar cells, and table 5.4 summarises their performance. Interestingly, the graphs

and the cell parameters seem to show that a closed Al2O3 layer is conducting current,

which is contrary to the non-diode characteristics seen on the Figure 5.7. In the back con-

tact configuration, there have been reports that even after the deposition of a closed thin

layer of Al2O3 (4 nm) layer, current is flowing through the device, but the presence of a

strong kink (or S shape) is observed on those devices, from an electron barrier [114]. The

electron barrier is similar to the effect of a series resistance, Rs, and Rs in all the three con-

figurations in the Figure 5.9 have equivalent values (0.47 – 0.52 ± 0.02 Ωcm2). Here no

such barrier is observed, pointing to the fact that some alteration at the interface might have

happened; this could be from any process starting from the deposition of CdS, because the

point contact formation was evident from the XPS spectra and SEM images (refer to Fig-

ures 3.11 and 3.10). Whatever change had happened at the interface, it doesn’t affect the

solar cell performance in a positive way; the current density remains almost constant, open

circuit voltage and fill factor decreases; hence, efficiency dropped compared to reference

solar cells in Table 5.1.

Notably, the current density, from the J − V graphs, in the case of cells with Al2O3 lay-

ers is getting low in the third quadrant. A possible explanation is the voltage dependence

of photo-current and collection function. This means that the electron diffusion length be-

comes smaller and the interface recombination velocity is larger [11]; the effect of acceptor

defect density on both, on reducing the space charge region extension into CIGSe can

be seen in Figures 5.3 (b) and (d), and this affects the photo-current under forward bias

in the fourth quadrant and therefore FF decreases. This argument is further validated by

the higher leakage current in CIGSe/Al2O3/CdS (see Figure 5.9) compared to the refer-

ence and point-contact devices. In summary, the different behaviours of the J − V curves

hint towards different types of interface formation of CIGSe with Al2O3. This certainly puts
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forwards two important questions: (1) Have the point contacts formed at the CIGSe/Al2O3–

P.C/CdS interface? and (2) Will Al2O3 offer a better passivation than CdS on the CIGSe

surface?.

To answer the first question, a simple experiment mimicking the experimental conditions

of the CBD deposition of the CdS buffer layer is performed. Because if the interface has

changed, it is most likely from the basic ammonium solution, NH4OH, used in the CBD

solution, which acts a complexing agent for the CBD reaction and a cleansing agent for the

CIGSe surface oxides [115]. Under room temperature conditions and for a shorter etching

time, the rate of removal of Al2O3 is very small in NH4OH solution [116], but the standard

CdS CBD process at 60◦C might have changed the reaction kinetics.

Figure 5.10: XPS survey spectra of a Cu(In,Ga)Se2 sample, measured with Mg Kα X-ray source
(hν=1253.6 eV), before and after dipping the CIGSe samples in CBD solution containing NH4OH;
the resurgence of core peaks can be clearly seen.

A CIGSe absorber with a thin closed layer of Al2O3 (10 nm) is taken and dipped in a solution

with the same concentration and amount of NH4OH as used in the CBD solution, keeping

the same deposition time and temperature and without using the precursors, Cd(acac)2

and thiourea. Then, the sample is examined under XPS to see the differences before and

after the CBD reaction. The XPS spectra of the absorber with a thin closed layer of Al2O3

before and after the CBD treatment is depicted in Figure 5.10. Note that any signal from
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Cd was absent in the spectrum because Cd(acac)2 and thiourea were not mixed in the

solution. The XPS spectra have revealed that during the chemical bath deposition, the thin

layer of Al2O3 got severely etched — a significant reduction in the O1s peak and almost

complete removal of Al 2s and Al 2p peaks is observed, leading to the reappearance of the

elemental core peaks in CIGSe. The attack of OH- ions from the NH4OH etch the Al2O3

layer and produce Al(OH)3. Therefore, the presence of NH4OH in CBD solution changes a

passivated CIGSe/CdS interface with Al2O3 to an unpassivated CIGSe/CdS interface: this

explains the conducting behaviour in the fully passivated CIGSe surface. However, etching

will not bring back the original interface character of an unpassivated CIGSe/CdS interface

because there is still Al present on the surface, and this could be correlated to the negative

influence on the cell properties of a fully passivated and partially passivated point contacts

devices.

5.2.5 CIGSe device performance with Zn(O,S) buffer layer and point contacts

Since NH4OH in the CBD solution for depositing CdS buffer layer is not suitable for the

Al2O3 layer, in this section, dry deposition methods like sputtering and atomic layer depo-

sition are considered for the buffer layer deposition. Zn(O, S) is the buffer layer chosen for

this experiment because it is the most promising buffer layer after CdS and has reached

efficiencies up to 20% [117]. The devices have the following stack structure: Mo/CIGSe/PC-

Al2O3/Zn(O, S)/ZnO/ZnO:Al, as shown in Figure 5.4 (d). Like in the previous experiments,

the thickness of the Al2O3 was maintained at 10 nm. Using Zn(O, S) as the buffer layer

also gives the opportunity to validate the theoretical outcome from the chapter 4 (refer Fig-

ure 4.6) that the point contacts are more effective when there is a cliff at the interface —

under oxygen rich conditions during the deposition of Zn(O, S), a cliff can be formed at

the CIGSe/Zn(O, S) interface, otherwise a spike is formed [109–111]. The influence of the

distance between the point contacts was also studied and moreover depositing the Zn(O,

S) using ALD and reactive sputtering will certainly change the interface quality and hence

its effect on point contacts is examined.
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Figure 5.11: Dark and light measured J–V graphs of the best Cu(In,Ga)Se2 solar cells with ALD
Zn(O, S) buffer layer with and without point contacts. Here CIGSe/ALD Zn(O,S) (see Figure 5.4
(a)) stands for reference CIGSe solar cells with Zn(O,S) buffer layers and CIGSe/Al2O3–PC/ALD
Zn(O,S) (see Figure 5.4 (e)) corresponds to CIGSe absorbers with point contacts and Zn(O,S)
buffer layers.

Table 5.5: Average of the extracted J − V parameters of Cu(In,Ga)Se2 solar cells (13) with ALD
Zn(O,S) buffer layer and point contacts.

Sample Jsc Voc FF η Rs Rp

(mA/cm2) (mV) (%) (%) (Ωcm2) (Ωcm2)

CIGSe/ALD Zn(O,S) 30.4 ± 0.1 421 ± 13 31.2 ± 0.4 4 ± 0.2 0.7 ± 0.1 22.3 ± 1.2
CIGSe/Al2O3–PC/ALD Zn(O,S) 30 ± 1.5 403 ± 4.8 43 ± 1.1 5.3 ± 0.4 0.9 ± 0.1 239 ± 50

ALD-Zn(O,S): Figure 5.11 shows the J–V curves of the solar cells with point contacts and

ALD Zn(O,S) as the buffer layer in dark and illumination. On comparing with the reference

Zn(O,S) cell without an Al2O3 passivation layer, there exists a visible change in the J–V

curves in the fourth quadrant — the ’S’ shape character is removed by the application of

the point contacts with the passivation layer. This is quite surprising as a barrier can be

only nullified by the influence of donor charges (refer to Figure 5.3 (f)) at the interface or by

a reduction of acceptor defects. By analysing the dark J–V curves the leakage current, J01

was found to be one order lower as compared to reference cells — 7.28 × 10-3 mA/cm2
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for reference and 6.54× 10-4 mA/cm2 for point contact devices. Another expected change

is in the series resistance of the devices; it has increased from 0.656 Ωcm2 to 2.07 Ωcm2;

however this didn’t affect the current collection in the devices. The effect of removal of the

’S’ shape anomaly can be seen in the increased value of the FF, and thus efficiency is

increased by 1.3%. Yet, it is not clear whether the interface quality is improved, as we can

see that the Voc is affected on the contrary (refer to Table 5.5).

Sputtered Zn(O,S): The interface quality also depends on the method with which the buffer

layers are deposited. Reactive sputtering of Zn(O,S) buffer layer could bring a different in-

terface quality compared to ALD. Since ALD is considered to create layer by layer assembly

of the depositing material on the substrate, the substrate surface is expected to have a re-

duced number of defects, whereas sputtering brings the opposite effect. And hence the

theoretical prediction in the Figure 4.6 that a interface limited device will get a more ben-

eficial effect from point contact solar cell than a high efficiency solar cell can be validated.

Figure 5.12 represents the J − V graphs of sputtered Zn(O,S) on top of point contacts,

Figure 5.12: Current voltage characteristics of reference CIGSe solar cell (CIGSe/sp:Zn(O,S)) and
point contact CIGSe solar cell (CIGSe/Al2O3–PC/sp:Zn(O,S)) with sputtered Zn(O, S) as the buffer
layer, measured under dark and light conditions.

and their corresponding data are tabulated in Table 5.6. At a first glance, a reduction in the

shunt resistance is observed in samples with point contacts at low voltage biases [V<≈ 0.5

V]. However, in contrast to ALD Zn(O,S), a clear enhancement in Voc (56 mV) is observed,

pointing towards an improvement in interface quality. This must be due to the protection
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given by the Al2O3 layer to the CIGSe surface from the defects formation while sputtering.

But a drastic reduction in efficiency is observed from 10.9% to 3.7%, mainly arising from

the decrease in current density and shunt resistance.

Table 5.6: CIGSe solar cell parameters extracted from the dark and light measurements from
Figure 5.12

Sample Jsc Voc FF η Rs Rp

(mA/cm2) (mV) (%) (%) (Ωcm2) (Ωcm2)

CIGSe/sp:Zn(O,S) 32.9 ± 0.2 537 ± 3 61.5 ± 0.1 10.9 ± 0.1 0.38 ± 0.01 364 ± 64
CIGSe/Al2O3-PC/sp:Zn(O,S) 17.1± 2.5 593 ± 3 35.5 ± 1.1 3.7 ± 0.6 0.47 ± 0.2 54 ± 6

The devices with point contacts show a shift in the photo-current decay in the fourth quad-

rant; also, the injection current is shifted to higher voltages. This means that the photo-

current and hence the collection function are voltage dependent. Moreover, the dark and

illuminated J–V curves cross each other at higher injection, which is an indication of an

electron barrier in the conduction band. According to the simulations results presented in

Figures 5.2 and 5.3, these barriers could arise from two possibilities; because of the strong

∆χ (0.6 eV) between CIGSe and Al2O3 or due to an increased number of acceptor states

shifting the photo-current decay by raising the photo-barrier at the point contacts. It is ex-

plained in the Chapter 4 (refer to Table 4.2) that the donor charges from the passivation

layer can influence the band bending at the CIGSe/point contact interface. This is valid for

the acceptor too; here instead of a band bending leading to an inversion, these charges re-

duce inversion and create an accumulation of electrons at the interface. This will invert the

quasi-electron Fermi-level at the interface and the electrons will flow back to the absorber,

where they will recombine.
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Figure 5.13: (a) Logarithmic plot of dark J-V characteristics of CIGSe reference
(CIGSe/sp:Zn(O,S)) and point contacts solar cells (CIGSe/Al2O3–PC/sp:Zn(O,S)) with sputtered
Zn(O,S) buffer layer for different surface area coverage; here 2 dips and 6 dips stands for the num-
ber of cycles the CIGSe absorbers are dipped in CdS NP’s solution for point contacts fabrication,
which corresponds to a high and low coverage area of passivation layer of 83% and 61% respec-
tively.

Table 5.7: Fit parameters, according to the two-diode model, of the dark J−V curves of front point
contact CIGSe solar cell with sputtered Zn(O,S) as the buffer layer extracted from Figure 5.13. The
percentage values in the brackets represents coverage area of the passivation layer.

Sample A1 J01 A2 J02 Rs Rp
(mA/cm2) (mA/cm2) (Ωcm2) (kΩcm2)

CIGSe/sp:Zn(O,S) (0%) 1.98 5.17 × 10−4 14.66 6.66 × 10−2 0.503 1.043
CIGSe/Al2O3-PC/sp:Zn(O,S) (83%) 1.51 3.23 × 10−7 9.04 4.43 × 10−2 1.857 4.265
CIGSe/Al2O3-PC/sp:Zn(O,S) (61%) 1.64 2.68 × 10−6 7.04 1.5 × 10−2 0.928 5.070

The increase in the Voc can also be related to the increase in the acceptor states. In Figures

5.2 (d) and (f), we discussed this phenomenon. This means that under illumination, a high

recombination zone is created for the photo-generated minority carriers, because the the

concentration of holes exceeds that of the electrons, and they will be the majority carriers

at the interface too. As shown in simulations, the recombination has a maximum when n=p,

but if one of the carrier concentrations dominates the other, recombination is reduced; this

is clearly shown in Figures 5.2 (d) and (e). This is also clear from the analysis of the

dark J–V curves of the reference and point contact solar cells using a two-diode model;

as displayed in Table 5.7, the saturation current density, J01 is reduced by three decades,

the main diode quality factor, A1 also got improved compared to the reference device.
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Consequently, Voc is enhanced. This also depends on the percentage of area passivated;

for a lower coverage of Al2O3 on the CIGSe surface, the Voc is clearly mitigated (see Table

5.6). Also, in this case the potential barrier created by the acceptor density flattens the

’S’ shape characteristic and shifts it to the third quadrant. The increase in Voc is further

Figure 5.14: Integrated photoluminescence intensities of the samples from 5.7; inset shows the
photoluminescence intensity versus energy; 2 dips corresponds to approx. 83% and 6 dips to 61%
coverage area of PaL.

correlated with the photoluminescence intensity, as both are proportional to an increase in

charge carrier density; hence the photoluminescence yield is a direct measure of interface

quality. So to clear out the ambiguity, photoluminescence measurements were done on all

samples. The results are in agreement with above discussion because an enhancement in

photoluminescence is observed for devices having an Al2O3 passivation layer or Al2O3 with

point contacts compared to the reference CIGSe devices as shown in Figure 5.14. From

Figures 5.3 (c)–(e), it was evident that the acceptor states at the interface or in the buffer

can raise the hole concentration at the interface and affect the Voc . Considering this, the

increase in photoluminescence and the corresponding Voc , it can be seen that the charge

carrier generation is proportional to the Al2O3 coverage (see Figure 5.14): the higher the

Al2O3 coverage, the better is the Voc . This is one of the reasons why a high coverage area

of point contacts under-perform in terms of Voc to a low coverage area of point contacts.
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Remarkably, the shunt resistances calculated in the dark J − V for the point contact solar

cells in Table 5.7 are in contrast with the light J − V measurements presented in Table

5.6. This also indicates the presence of illumination dependent shunt paths responsible

for a drastic reduction in the Jsc . The reflection losses from the Al2O3 layer are also taken

into account for the current loss analysis, with the aid of simulations based on the transfer

matrix-method. In these simulations CIGSe surfaces and interfaces are considered to be

flat. From the simulations, it is found that the new stack structure, Al2O3 between CIGSe

and buffer layer, slightly increases the amount of reflection. An equivalent reduction of

current density of 1 mA/cm2 is calculated from the absorption profile. Therefore, it can be

deduced that reflective losses are not the primary reasons for Jsc losses.

5.3 Summary

CIGSe solar cells with point contacts at the front interface
(
at the CIGSe/buffer

)
were

made. Point contacts made through a Al2O3 passivation layer are intolerant towards the

chemical bath deposition of CdS buffer layer, because of the NH4OH present in the CBD

solution can etch out the Al2O3 layer. Also, the point contacts are applied along with

Zn(O,S) as the buffer layer (deposited using ALD and sputtering). An improvement in power

conversion efficiency is witnessed for ALD Zn(O,S), however, the Voc didn’t show any im-

provement, which can be attributed to an unoptimised ALD Zn(O,S) buffer layer deposition.

With a sputtered Zn(O,S) buffer layer, it is found that the point contacts can increase the

Voc , mainly due to an upward band bending rather than a needed enhanced inversion

at the interface, and also give rise to light-induced voltage dependent shunt paths, which

drastically reduces the overall cell performance.
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Incorporation of point contacts at the Mo/CIGSe

interface of thin CIGSe devices

Scaling down 2-3 µm thick CIGSe absorber to a few hundreds of nanometers can help to

overcome the problems of material cost — mainly high due to indium and gallium scarcity

— and gives the flexibility in the fabrication process, which indeed reduces the manufac-

turing cost by material reduction and higher throughput [118–120]. So far, this approach

hasn’t been able to produce high efficiency ultra-thin CIGSe solar cells, because their effi-

ciency is limited by incomplete absorption and back contact recombination [99, 121, 122].

The enhancement in the rear contact recombination, at the CIGSe/Mo interface, occurs

when the absorber thickness is comparable to the diffusion length of the carriers. This

problem is mainly encountered by grading the Ga/[Ga+In] ratio, which creates a potential

barrier for minority carriers diffusion; an alternate technique that could address this problem

is a point contact structure through a passivation layer at the rear interface, Mo/CIGSe. The

passivation layer creates a back surface field which repels electrons approaching the back

contact — a concept that was found to be effective in ultra-thin CIGSe solar cells [52]. Also,

simulations in section 4.4 show that a maximum of 50 mV in Voc can be achieved if the

interface recombination is reduced from 106 cm/s to 103 cm/s. In this chapter, we applied

an industry viable low cost self-assembled point contact technology method using CdS

NP’s (refer to section 3.5) at the back interface, and investigate its influence on the solar

cell performance.

83
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Figure 6.1: From bottom to top: steps involved in making point contacts at the Mo/CIGSe
interface: (a) CIGSe reference sample with standard deposition procedure, (b) Sample with
molybdenum along with point contacts fabrication.
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6.1 Point contacts at the Mo/CIGSe interface

Figure 6.2: SEM images showing different stages of making point contacts (a) Reference sample
with molybdenum, (b) CdS NP’s on top of molybdenum and (c) point contacts formed after the
deposition of Al2O3 followed by etching out the CdS NP’s.

Figure 6.1 describes the steps involved in the fabrication of a rear passivated ultra-thin

solar cell with localized point contacts; the unpassivated reference solar cells are made

avoiding the steps 3, 4 and 5 in the sequence. After the deposition of CdS NP’s, Al2O3 is

deposited using ALD for around 100 cycles which leads to approximately 10 nm thickness

as estimated by ellipsometry measurements; a higher thickness is not preferred because

it impedes the etching process of CdS NP’s and also can blister during the three-stage

co-evaporation of CIGSe. The CIGSe layer deposited on the top of the Mo/point contact

structure fills the nanoholes and enables good electrical contact with the Mo. Figure 6.2

shows the SEM images of different stages in making point contacts at the back interface

of CIGSe solar cells; the CdS NP’s assembling capability on a relatively smooth surface

like molybdenum is better compared to the rough CIGSe. The formation of point contacts

is further validated with XPS measurements, which are not shown here.
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6.1.1 Thinner CIGSe device performance with point contacts at Mo/CIGSe interface

Figure 6.3: (a): current-voltage characteristics of 900 nm thick CIGSe layer solar cells: unpassi-
vated reference cells (black) and reference with Al2O3 back interface passivated cells with (red) and
without (blue) point contacts measured under dark and light conditions, and (b) corresponding EQE
spectra; here PC refers to point contacts.

Table 6.1: 900 nm thin-film CIGSe solar cell parameters, with and without rear passivation, ob-
tained from the J − V curves shown in Figure 6.3; PC refers to point contacts.

Sample Jsc Voc FF η Rs Rp
(mA/cm2) (mV) (%) (%) (Ωcm2) (Ωcm2)

Mo/CIGSe 30 ± 0.1 575 ± 5 66.3 ± 1.6 11.4 ± 0.3 0.62 ± 0.2 477 ± 69
Mo/Al2O3/CIGSe 0 0 0 0 141 ± 33 856 ± 50
Mo/Al2O3-PC/CIGSe 29.6 ± 1.4 615 ± 5 71.7 ± 0.7 13 ± 0.1 0.65 ± 0.03 814 ± 49

In this experiment, a CIGSe absorber layer of 900 nm (estimated using confocal mi-

croscopy) is deposited on top of the Mo with back point contacts. Before the deposition

of the Mo onto the glass substrate, a diffusion barrier of SiOxNy is coated on the glass

substrates. Since Na is reported to influence the growth kinetics, passivation of the grain

boundaries, net carrier concentration, and minority-carrier traps [123], Na is incorporated

into the CIGSe by a NaF treatment after the three-stage co-evaporation process of the

absorber.

The J − V plots of the champion devices from the unpassivated and localized rear passi-

vated point contact (LRPC) structures, produced in the same deposition batch, are shown

in Figure 6.3 (a). Table 6.1 summarizes the averaged data extracted from J−V plots, of 12

such cells. As expected, a current blocking behaviour, due to the increased series resis-

tance (refer Table 6.1)), can be observed on the samples with a closed layer of Al2O3. The
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overall shape of the unpassivated and rear passivated point contact structures are alike;

the Jsc values of the both devices are comparable; however, the Voc of the passivated point

contact structure is enhanced ≈ 39 mV, and the fill factor is increased from 66.3 to 71.7 —

could be due to an increase in the shunt resistance and Voc . This led to an overall increase

in efficiency from 11.4 to 13%. It is noteworthy that the shunt resistance, Rp, is improved

from 439 to 805 Ω cm2; nevertheless this didn’t contribute to an increase in Jsc .

To see the range in which the spectral response has negatively affected the Jsc values,

EQE measurements of the devices were done as shown in Figure 6.3 (b). Overall, there is

a slight decrease in the EQE over the entire spectra. This is quite strange for the CIGSe

absorbers fabricated in the same PVD process; yet, there might be two possibilities: it could

be from a difference in the charge carrier concentration or Ga/[III] profile: Ga/[III] profiles

can influence the absorption coefficient [120]. Therefore, both were examined to see their

influence on the Jsc . The C – V graphs in Figure 6.4 show only a negligible deviation

in the capacitance at higher voltage biases, and this doesn’t translate into a significant

difference in the charge carrier density in the CIGSe bulk, which was calculated (using

Ncv ,dSCR = −C3/(ε · ε · A2 · dC/dV )) to be 2.49 e+15 cm-3 for the reference and 2.17 e+15

cm-3 for the point contact devices. The Ga/[III] depth profiles measured using GDOES

is shown in Figure 6.5 (b). Again the curves show similar trends; however, a close look

shows a slight difference in the minimum band gap at the notch point. Considering this and

correlating with the absorption coefficient dependence on Ga/[III] profiles [120], a slight

difference is possible for the Jsc values. Also, note the decrease in the spectral response

above 700 nm observed for 900 nm thin film solar cells compared to the standard 2µm thin

film devices, and this can be ascribed to the incomplete reflection and parasitic absorption

of the molybdenum layer; a calculation of Jsc values from the EQE curves suggests that a

5 mA/cm2 deficit is accounted for the 900 nm-thin film CIGSe devices.
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Figure 6.4: Capacitance–voltage curves of reference CIGSe and back point contact CIGSe solar
cell recorded at 1 KHz and 293K.

Figure 6.5: (a) Dark J-V characteristics of 900 nm thin CIGSe solar cell with and without point
contacts at the Mo/CIGSe interface (b) Glow Discharge Optical Emission Spectroscopy (GDOES)
measurements of the corresponding samples.

Table 6.2: Fit parameters according to the two diode model of the dark JV curves of the rear locally
passivated solar cells and its corresponding reference CIGSe solar cells with thickness of 900 nm,
as shown in the Figure 6.5 (a).

Sample A1 J01 A2 J02 Rs Rp
(mA/cm2) (mA/cm2) (Ωcm2) (kΩcm2)

Mo/CIGSe 1.50 3.7 × 10−6 3.29 1.2 × 10−3 0.760 0.62
Mo/Al2O3-PC/CIGSe 1.41 4.9 × 10−7 2.67 3.3 × 10−4 0.762 1.2
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Referring to the simulations in the Figure 4.11, it can be approximated that the interface

recombination velocity gets decreased to the range between 103– 104 cm/s from a value

close to 107 cm/s. Further, to corroborate whether the increase in Voc is due to the reduction

in the back interface recombination, J − V measurements are conducted in the dark and

a two-diode model is used to fit the data as shown in Figure 6.5 (a); the fit parameters are

given in the Table 6.2. In order to avoid the ambiguity in gallium grading, the Ga/[Ga+In]

ratio is also plotted as a function of depth in Figure 6.5 (b). An identical gallium grading

is noted for both. Therefore, this parameter need not be considered in the recombination

analysis and hence limits the discussion only to the dark J − V curves. From the Table

6.2, it can be noted that the diode quality factor is improved (1.50 to 1.41 for back point

contact devices) and the saturation current density, J01, decreased by a decade. Also, the

shunt resistance almost doubled with point contact devices. By expressing Voc of the main

diode as Voc ≈ (AkT/q) · ln
(
Jsc/J01

)
and solving it for the best cells (Reference Voc = 585,

point contact device Voc = 629 mV) in each category, a factor of 1.06 rise should be seen

in the Voc of the rear point contact solar cells, which amounts to 33 mV, which fits to the

experimentally measured Voc of reference and point contact device. Therefore, this gives

a clear confirmation that the back interface recombination is reduced by the application of

the back point contacts.

Table 6.3: 900 nm thin CIGSe solar cell parameters with and without point contacts at the
Mo/CIGSe interface, for different surface area coverage of Al2O3 PCHπ,Hα (π ≈ 40%, α = 60 nm),
PCHπ,Lα (π ≈ 40%, α = 45 nm), PCLπ,Hα (π ≈ 17%, α = 60 nm) – π denotes area and α denotes
point contact opening radius. Here Mo/CIGSe stands for the reference CIGSe solar cells.

Sample Jsc Voc FF η Rs Rp
(mA/cm2) (mV) (%) (%) (Ωcm2) (Ωcm2)

Mo/CIGSe 30 ± 0.1 575 ± 5 66.3 ± 1.6 11.4 ± 0.3 0.62 ± 0.2 477 ± 69
Mo/Al2O3-PCHπ,Hα/CIGSe 29.6 ± 1.4 615 ± 5 71.7 ± 0.7 13 ± 0.1 0.65 ± 0.03 814 ± 49
Mo/Al2O3-PCHπ,Lα/CIGSe 29.4 ± 0.2 595 ± 4 70.6 ± 0.1 12.3± 0.1 0.56 ± 0.04 661.8 ± 50
Mo/Al2O3-PCLπ,Hα/CIGSe 29.8 ± 0.7 592 ± 1 70.2 ± 0.7 12.8± 0.2 0.52 ± 0.02 544 ± 42

Influence of surface area coverage: The influence of the surface area coverage, i.e.

the distance between the particles is a particular parameter of interest, along with radii of

the nano-contact openings (two radii were considered: 60 nm and 45 nm). The particles

distances were tuned by varying the dipping cycles during the deposition process of CdS

NP’s. Thus, three categories were created: (1) a high coverage area, Hπ, π ≈ 40%, and

large radius, Hα, α = 60nm, (2) High coverage area, Hπ, π ≈ 40%, and small radius, Lα, α =
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45nm, (3) low coverage area, Lπ, π ≈ 17% and large radius Lα, α = 60nm. Here higher π

corresponds to six times dipping and low π denotes two times dipping in CdS NP’s solution.

Table 6.3 shows the tabulated values of the Figure of Merit of solar cells from these three

classes. The coverage area π and α had hardly any effect on the solar cell parameters; this

is contrary to the belief that the distances between the point contacts should be smaller

than the diffusion length. These results points to the fact that in addition to the passivation

effect provided by the Al2O3, it creates a back surface field, from its negative charges,

repelling the electrons approaching the back contact. Thus the hole diffusion length is

increased; similar results were reported lately by Casper et al, where they showed a pitch

distance of 10 µm didn’t affect the diffusion of majority carriers[54].

Influence of Sodium: Sodium is vital for the grain growth in CIGSe and was found to have

a direct impact on Voc [124]. It is either diffused from the glass substrate or incorporated

into CIGSe by a post deposition treatment. And employing point contact structures could

have a negative effect on the the diffusion of sodium from the glass substrate. To study this

effect in rear point contact structures, two kinds of substrates were used: substrates with

and without a diffusion barrier of SiNOx . Only the glass substrate with a diffusion barrier

was given a NaF post deposition treatment. The CIGSe absorbers were produced in the

same batch and the thickness was reduced compared to the last experiment (absorber

thickness = 900 nm) and estimated to be 650 nm from confocal microscopy measurements.

Figure 6.6: (a) J − V curves of a 650 nm thin CIGSe solar cells with and without a SiOxNy barrier
and point contacts (b) EQE spectra of ultra-thin CIGSe solar cells with a barrier and with (red)
and without (black) LRPC’s. The dotted lines represent EQE spectrum from a 900 nm thick CIGSe
absorber.
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Table 6.4: 650 nm thin CIGSe solar cell parameters with and without point contacts at the
Mo/CIGSe interface, with and without a barrier against Na diffusion: PCHπ,Hα (π ≈ 40%, α =
60nm) – π denotes the coverage area and α denotes the point contact opening radius. Here
SiOxNy /Mo/CIGSe and Mo/CIGSe are the reference CIGSe solar cells with and without a barrier
of SiOxNy between soda-lime glass and molybdenum.

Sample Jsc Voc FF η Rs Rp
(mA/cm2) (mV) (%) (%) (Ωcm2) (Ωcm2)

SiOxNy /Mo/CIGSe 26.9 ± 0.3 496 ± 11 63.2 ± 0.6 8.4 ± 0.1 0.48 ± 0.03 189 ± 21
SiOxNy /Mo/Al2O3-PC/CIGSe 27.6 ± 0.1 601 ± 5 66.3 ± 0.5 11 ± 0.1 0.87 ± 0.15 326 ± 27
Mo/CIGSe 27 ± 0.3 480 ± 9 60.1 ± 1.4 7.8 ± 0.3 0.67 ± 0.01 230 ± 18
Mo/Al2O3-PC/CIGSe 26.1 ± 0.3 445 ± 36 38.8 ± 1.4 5 ± 0.6 2.7 ± 0.2 250 ± 65

Figure 6.6 shows the J − V performances of ultra-thin solar cells with point contacts at

the back interface, and with and without a sodium barrier. The reference cells from both

batches, without Al2O3 passivation, have comparable cell characteristics. But, the two had

entirely different characteristics when point contacts are applied. Mainly the barrier in the

fourth quadrant, showing the lack of Na, is observed for the cells without a barrier and

no post deposition NaF treatment [125]. Consequently, the Voc is reduced. At the same

time, with the barrier case and post NaF treated samples, a surge in Voc (∆ = 0.1 V) is

witnessed. Table 6.4 gives an overview of the solar cell parameters. Point contacts at the

back interface show a positive effect on the Jsc of the cells possibly due to the decrease in

the current leakage at the back interface because of the Al2O3 layer. This can be seen in

the increase in the shunt resistance values (251.2 to 308.3Ωcm2). Advantageous effects of

point contacts are observed in FF (63.2 to 66.3). Overall, the efficiency jumped from 8.4 to

11%. Comparing the two substrates, it is clear that the Al2O3 layer can impede the diffusion

of sodium from the glass substrate and it should be supplied to the absorber before or after

the co-evaporation process.

Table 6.5: Fit parameters according to the two diode model of the dark J – V curves of the rear
locally passivated solar cells and its corresponding reference, as depicted in the Figure 6.5.

Sample A1 J01 A2 J02 Rs Rp
(mA/cm2) (mA/cm2) (Ωcm2) (kΩcm2)

SiOxNy /Mo/CIGSe 1.48 2.5 × 10−5 6.0 6.2 × 10−3 0.473 1.1
SiOxNy /Mo/Al2O3-PC/CIGSe 1.42 1.4 × 10−6 7.5 2.8 × 10−2 0.642 0.75

The increase in Voc is a direct indication of the interface improvement. But the overall bet-

terment of the cell is also due to the reduction in the parasitic absorption at the back contact
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Figure 6.7: Glow Discharge Optical Emission Spectroscopy (GDOES) profile of a 650 nm CIGSe
solar cells without a SiNOx barrier and with (red) and without (black) LRPC’s.

and an efficient coupling of light into the CIGSe absorber. This can be confirmed from an

enhanced light absorption in the point contact solar cells from the EQE measurements

(Figure 6.6). To analyze the rise in Voc , GDOES measurements were done (see Figure

6.7). Notably, a visible change in the Ga grading was found for the point contact devices

from the reference solar cells. So, a part of Voc improvement can be conferred to the dif-

ference in the Ga grading. Analyzing the dark J-V graphs lead to a prediction of increase

in Voc about 80 mV, due to a decade decrease in J0 and improvement of the diode quality

factor, A1 (see Table 6.5).

In summary, point contacts at the back contact are advantageous to reduce the back inter-

face recombination in ultra-thin CIGSe solar cells. Yet, a deficiency in Jsc about 5-7 mA/cm2

is existing in comparison to the high-efficiency standard CIGSe devices. This could be

overcome with the usage of a thicker Al2O3 layer and a modified point contact technology

fabrication process or the usage of a high reflecting surface (Ag or Cu or Au) coated on top

of the Al2O3 layer or highly efficient scattering structures at the back interface.

6.2 Summary

Thinner CIGSe solar cells with point contacts at the back interface
(
between Mo/CIGSe

)
were fabricated. The point contact configuration is found to be advantageous for the over-

all performance of the two thinner absorbers, 650 nm and 900 nm, considered in this
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work. Simulation and experimental results show a correlation in the improvement of the

Mo/CIGSe interface quality, marked by a significant Voc gain of 0.1 V. Furthermore, Al2O3

could also act as a better reflector than Mo, and reduces the parasitic absorption at the

back contact. Coverage area and opening radius were found to have a negligible impact

on the solar cell performance due to the longer lifetime of the holes, which can be ascribed

to the back surface field from Al2O3. Since the Al2O3 passivation layer can impede the

diffusion of sodium from the glass substrate, Na should be supplied after the point contact

formation or following the co-evaporation process of CIGSe absorbers.
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Conclusion

The fact that high-efficiency CIGSe solar cells were achieved by an alkali fluoride post-

deposition treatment, and the drop in efficiency when reducing the thickness of CIGSe

devices led to the following questions. Is the Voc limited by the CIGSe/CdS interface re-

combination in high-efficiency CIGSe solar cells and can therefore be boosted by inter-

face engineering? How can the Voc deficit caused by the back-contact recombination at

Mo/CIGSe in thinner CIGSe absorbers be increased?

The goal of this work was to tackle these questions by using the concept of point con-

tacts through a passivation layer (PaL), proceeding by the following steps: (i) performing

simulations to predict the effect of point contacts on the efficiency and Voc in CIGSe de-

vices, (ii) considering theoretical results, choosing and depositing PaL using ALD, ILGAR

or sputtering at the front or back interface of CIGSe absorbers, (iii) developing a suitable

technique for patterning the PaL and (iv) application of point contacts into tangible devices

and comparing them with standard devices.

To see the impact of the point contacts at CIGSe interfaces on device performance, 1D

and 3D simulations were done with a large spectrum of CIGSe solar cells. The simulations

were focused on point contact sizes, PaL properties and band alignment at the interface.

Simulations predicted that an optimum device performance could be achieved if a PaL sup-

plies a positive interface charge density greater than 1012 cm-2 for inducing a favourable

band bending, leading to an n-type inversion at CIGSe/PaL and CIGSe/buffer interfaces.

Also, the radius of the nano-contact openings should lie below 100 nm, which is equiva-

lent to a coverage area of 96%. Independent of the interface quality of the CIGSe/buffer

interface, a positive impact on cell performance was observed with the application of point

contacts. The cliff like conduction band offset (CBO) at the CIGSe/buffer interface showed

95
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a better improvement in conversion efficiency compared to a spiked CBO, and this offers

more freedom in the choice of alternative buffer layers to CdS.

Considering the theoretical results, we tried to pattern a PaL using conventional litho-

graphic techniques. The main hurdles we faced with patterning a PaL were the rough

surface of the CIGSe and its low diffusion length. This forced us to develop a nanolithog-

raphy technique using spherical monodispersed CdS nanoparticles (SNP’s) for creating

point contacts through PaL. The CdS SNP’s were synthesised at the lowest temperature

(80◦C) reported to date. They were constituted of nano-crystallites (diameter ≈ 25-40 nm)

with a hexagonal phase. Based on the concentration of the precursors and temperature of

the reactants, it was possible to synthesis SNP’s of radius 45 nm and 60 nm. These CdS

SNP’s acted as a sacrificial template for making point contacts. After assembling them onto

the CIGSe surface by a dip-coating technique, a very thin layer of Al2O3 was deposited as

the PaL. Al2O3 was chosen as the PaL based on the photoluminescence studies in this

work that showed a strong increase in PL intensity after deposition of the PaL, and its

defects passivation capability as reported in the literature. The point contacts were then

obtained by removing the CdS SNP’s using an HCl solution. This technique allowed us to

create point contacts coverage on CIGSe between 11-40% as estimated by XPS. How-

ever, a higher coverage area of CdS SNP’s on CIGSe was limited because of nanoparticle

agglomeration. Moreover, the coverage of point contacts on CIGSe was uncontrollable due

to the self-assembling property of CdS SNP’s.

We found that the coverage area of PaL required for an optimum CIGSe device perfor-

mance predicted by the theory (>96%) is higher than the experimentally (89%) obtained

coverage area. However, from simulations, it is understood that a positive influence on effi-

ciency and Voc could be also seen with a coverage area of 89%. Therefore, we applied the

point contact technology on CIGSe with CdS and Zn(O, S) buffer layers. The CdS buffer

layer was found to be incompatible with a point contact application through Al2O3 PaL,

because the NH4OH present in the CBD solution also etched out the Al2O3, and hence

the point contacts. Hence, we used dry deposition methods like sputtering and ALD for

depositing buffer layers. ALD Zn(O,S) buffer layer with point contacts showed an improve-

ment in efficiency, without a major change in Voc . This could be due to an unoptimised

ALD Zn(O,S) buffer layer deposition. The application of point contacts with a sputtered

Zn(O, S) buffer layer improved the Voc pointing to a reduced interface recombination. But
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this didn’t translate into an improvement of the device performance, most likely because

Al2O3 was providing acceptor charges at the interface, contrary to the theoretical finding.

Consequently, a spike was created at the CIGSe/Zn(O, S) interface and the effective band

gap at the interface increased, enhancing the Voc and impeding the current flow. This fur-

ther correlated with photoluminescence measurements, where the Voc was found to be

proportional to the coverage area of Al2O3.

Point contacts were also applied to raise the Voc in thinner CIGSe absorbers at the back

interface, Mo/CIGSe. They were found to be advantageous for the overall performance of

thin CIGSe absorbers. The interface quality was improved along with the optical properties

of the stack configuration. The impact of the coverage area and the point contact radius on

the efficiency was found to be insignificant: this is probably due to the back-surface field

from Al2O3 which increases the lifetime of the holes. We also observed that the PaL blocks

the diffusion of sodium from the soda-lime glass, which could affect the CIGSe material

quality. Therefore, Na should be supplied after the point contact formation or as a CIGSe

post-deposition treatment.

To conclude, this work gives an outlook on the prospect of point contacts at CIGSe inter-

faces, with backing from theoretical and experimental results, for achieving high-efficiency

solar cells using an industrially viable point contact fabrication technique. Some clear im-

provements of cell parameters were found due to the application of point contacts.

However, the point contact technique was incompatible with the CdS buffer layer. There-

fore, in future experiments, we suggest the usage of either a chemical vapour deposition

of CdS or an efficient PaL, which is tolerant towards CBD deposition of CdS. Secondly,

the impact of point contacts on record efficiency CIGSe solar cells is unknown, as the

efficiencies of the solar cells used in this work were well below record efficiency CIGSe

devices. Introduction of new PaLs [126, 127], with positive charges having a higher en-

ergetic level relative to the bands, will enhance the efficiency and give more flexibility on

buffer layers. One could also try to manipulate the energetic levels of defects in Al2O3 by

deposition methods like sputtering or controlling the deposition and annealing tempera-

ture. Also, modifications in the deposition technique of CdS SNP’s on CIGSe surface are

needed for achieving a higher coverage area of PaL as predicted by the simulations; eg:

by using an electric field. An alternative way to attain the coverage area criteria is to cre-
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ate point contacts by anodising PaL. Application of point contacts along with optimisation

of the ALD and sputtering deposition of Zn(O,S) buffer layers could be another option for

future experiments. Point contacts can also be used to increase the Jsc in CIGSe devices

by limiting the buffer layer only to the point contact sites, thereby reducing the buffer layer

thickness. Finally, at the back interface, it would be advantageous for the Jsc if a PaL of

high reflectivity or a PaL followed by a reflective coating is applied.

To summarise, we have shown the improvement in certain CIGSs-based devices by us-

ing point contacts and we are optimistic that point contacts in CIGS solar cells have the

capability to also raise the efficiency of the record efficiency CIGSe devices, if a PaL sat-

isfies the theoretical conditions presented in this work. Also, the efficiency of thin CIGSe

devices can be enhanced with an optical optimisation at the back contact along with point

contacts, leading to efficient, yet thinner devices using less scarce elements like indium

and requiring less time for production.
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Appendices

8.1 Material and device characterisation techniques

8.1.1 Scanning Electron Microscope (SEM)

Scanning Electron Microscope (SEM) is used to examine specimen surfaces on a micro-

scopic and nanoscopic scale by irradiating with a highly energetic electron beam. This

will give rise to different electron-matter interactions and outcomes, as summarized in Fig.

8.1. These outcomes or the generated signals can be utilized to yield information about

the morphology, topography and elemental analysis of the specimen. The signals are gen-

erated from an interaction volume, which takes a shape of a tear drop to a semi-circle,

depending on the incident energy beam, atomic number and density of the atoms present

in the specimen.

Figure 8.1: Schematic diagram illustrating the electron-matter interactions during SEM imaging.
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Most of the incident energy is dispersed as heat; the rest of it is elastically and inelastically

scattered. The inelastically scattered secondary electrons, emitted from the valence band

of the atoms from the specimen, have low energy (50 eV or less). Therefore, only electrons

from the surface are able to escape out of the specimen and can deliver the information

about the topography of the specimen. To the contrary, the back scattered or reflected elec-

trons have energy ranging from 50 eV to the incident electron energy and carry information

from relatively deep in the specimen compared to secondary electrons; this also depends

on the atomic number of the constituent atoms present in the specimen. Hence, they are

used to investigate specimen’s composition.

In this work, to study the surface morphology and determine the size of the CdS nanopar-

ticles deposited on CIGSe or molybdenum surfaces, and to check the point contacts for-

mation, a scanning electron microscope (SEM) (Leo 1530) operated at an accelerating

voltage between 3 and 10 kV is employed.

8.1.2 X-ray Diffraction (XRD)

X-ray diffraction (XRD) is a standard analytical technique for determining the structure

of crystalline materials based on their diffraction pattern. XRD occurs when X-rays, of

wavelength, λ, comparable to the lattice parameters of a crystal, interact with periodically

arranged atoms in a crystal structure. The reflected rays from each plane, from intervals of

2d · cosΘ, will produce a constructive interference or a diffraction peak. This condition was

formulated by Bragg in 1912 [128]: here Θ is the angle of incidence of the X-rays, d is the

shortest distance between successive lattice planes, and n is the order of the diffraction

peak.

n λ = 2d sinΘ (8.1)

Each diffraction peak corresponds to a unique phase, and its shape, position and intensity

can give information about the structure of the material. To find the XRD pattern of a family

of planes with spacing dh,k ,l (where hkl are the Miller indices of a plane), Θ is varied for a

range of angles to satisfy Bragg’s angle, Θh,k ,l .
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Figure 8.2: Schematic illustration of Bragg’s condition for constructive interference from a set of
lattice planes.

In this work, X-ray diffraction is used to identify the phase and crystallinity of the CdS NP’s

nanoparticles. A Bruker D8 diffractometer in grazing incidence mode is used to perform

XRD measurements. The Cu-Kα X-rays, having a characteristic wavelength of λ = 1.5406

Å, are generated at a Cu anode for an acceleration voltage of 40 kV and filament current

of 30 mA. In the grazing incidence mode, the detector angle is varied from 10-80◦, keeping

the X-ray source fixed.

8.1.3 X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS), also known as Electron Spectroscopy for Chem-

ical Analysis (ESCA), is an analytic technique used to examine the surface chemical com-

position of samples. The basis of XPS is the photoelectric effect. A schematic illustration

of different photo-ionisation processes that occur during an XPS measurement is shown in

Fig.8.3. Since XPS can reveal information about the elemental composition at the surfaces,

in this work, it is mainly used as a tool to determine point contacts formation and surface

area coverage of the passivation layer, Al2O3. A brief overview of the XPS technique will

be presented in this section; further, in-depth information can be found in [129].

In an XPS measurement, the distinguishable parameter is the electron binding energy,

BE — the amount of energy that is required to pull out an electron from a core atomic

orbital. Each BE is associated with a core atomic orbital, which is specific to an element

and depends on the chemical environment of the probed atom. For measuring the BE, a
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Figure 8.3: Schematic illustration of different XPS processes: (a) incident x-ray of an energy, hν,
creating a photoelectron, (b) a photon of an energy, hν′, is emitted by the relaxation of an outer
electron into the hole, (c) Auger electron emission initiated by the secondary x-ray of energy hν′,
created in the process (b).

known energy source of X-ray photons is used to excite electrons: commonly, Mg Kα (hν =

1253.6 eV) and Al Kα (hν = 1486.6 eV) are employed in lab based experiments. Therefore,

the emitted photoelectrons will have kinetic energies, Ekin, in the range of ≈ 0 - 1250 eV

or 0 - 1480 eV, which are counted with an electron spectrometer. The BE of an electon

from an atomic orbital is calculated using the Eq. 8.2, where φB, is the work function of the

spectrometer.

Ekin = Ehν − EB − φB (8.2)

The intensity of each isolated peak in XPS is proportional to the amount of atoms present

on the sample near-surface region. Quantitatively an XPS measurement is analysed by

subtracting the background using an appropriate function (in most cases a Shirley back-

ground [130]), followed by fitting the curve using a Voigt profile, which is a convolution of

Gaussian and Lorentzian distribution. Care has to be taken in such an analysis, because

the error can become quite large (≈ 52%) [131] as other factors also contribute to the inten-

sity of an XPS peak. A widely accepted method to minimise these errors is by comparing

peaks having similar kinetic energies as they mainly depend on it. The intensity of an XPS

peak is generally described as follows [132]:
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I = C · n · I0 ·
∂σ

∂Ω
(hν) · T (Ekin) · λ(Ekin) (8.3)

where C is the concentration of an element in the sample, n refers to the number of XPS

scans, I0 is the intensity of the X-ray beam, ∂σ/∂Ω refers to the cross-section for the partial

subshell photoionization, which describes the probability of absorption of a photon by an

electron in a certain shell of an atom. T (Ekin) is the transmission function of the spectrome-

ter, which defines a spectrometer sensitivity to photoelectrons of different kinetic energies.

And λ(Ekin) stands for the mean free path of a free electron.

The XPS measurements in this work were performed using a Mg Kα (1253.6 eV) labora-

tory radiation source at the CISSY station (CIS + Synchrotron). To minimise the samples

surface contamination, the measurements were performed at a base pressure of 5×10−9

mbar. The angle between the X-ray beam and the spectrometer axis is aligned at 54.7◦

[133] — the magic angle at which the angular asymmetry parameter is a constant. The

CISSY’s spectrometer has a T (Ekin) = 840.2335 ·(Ekin)
−0.9748 [134]. The photoelectrons

are detected using a hemispherical CLAM 4 electron analyser from Thermo VG Scientific.

8.1.4 Glow Discharge-Optical Emission Spectroscopy

The working principle of GDOES is based on sputtering a sample surface layer by layer

using a plasma, and identifying the removed atoms by their characteristic optical emission,

resulting from their excitation within the sputtering plasma. Therefore, an experimental

setup of a GDOES is separated into two compartments: a glow discharge source for sput-

tering and an optical detector. The sample under characterization also acts as cathode.

A high DC voltage, supplied between the anode and cathode, results in accelerating the

ions in the Ar plasma, leading to sputtering of material from the sample surface. Then,

the atoms that are removed migrate into the plasma, where they ionize, excite and emit

characteristic optical emission, which is focused onto a concave grating and detected us-

ing a CCD array. An accurate analysis of the chemical composition of the sample from the

intensity of emitted light depends on a suitable calibration of measurement [135].

In this work GDOES is used for determining the Ga-depth profile within the CIGSe layer.
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The measurement is performed with a Spectruma GDA 650 spectrometer using a pulsed

RF Argon plasma. The anode has a diameter of 2.5 mm. The process pressure of dis-

charge gas pressure was at 3.5 hPa and the applied voltage at 500 V.

8.1.5 J–V measurements

The J–V measurements presented in this work were performed at 25 ◦C by a four-probe

point measurement system (Keithley source measurement unit—max. 3 A and 105 V). The

AAA Wacom dual source solar simulator delivers the AM 1.5 spectrum with an illumination

intensity of 100 mW/cm2 (spectral match of ±10%). The uncertainity in the homogeneity

of illumination area is limited to ±2%.

8.1.6 External Quantum Efficiency (EQE)

The EQE measurements were performed at room temperature, using a halogen lamp as

light source. A Czerny Turner monochromator was used to narrow the wavelength band-

width to 10 nm. The lock in technique (SR830) was used to record the Jsc amplified by a

Stanford Research 560 amplifier. The EQE measurements were calibrated using a Si and

GaAs solar cell.

8.1.7 Time-resolved photoluminescence (TRPL)

Time-resolved photoluminescence spectroscopy (TRPL) is an extension of photolumines-

cence spectroscopy. In addition to the spectral information, TRPL gives the information on

the temporal evolution of the emission from a sample. A short light pulse is used to excite

the sample, and the emission is recorded as a function of time using a fast detector. In this

work, TRPL is employed to understand the interface quality after the point contacts fabrica-

tion based on the measured emission time, as it is a direct measure of the material quality.

TRPL measurements in this work were performed using a custom made setup which uses

a 660 nm pulsed laser source and time-correlated single photon counting with a InGaAs

photomultiplier. The instrument has a time resolution less than 250 ps, and an excitation

spot size of ≈ 40 µm in diameter was used for measurements.
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8.2 Nanolithography using polystyrene nanoparticles

Figure 8.4: SEM images showing the different stages of point contacts fabrication using
nanosphere-lithography. Polystyrene nanoparticles (PS NP’s) of radius 900 nm are arranged in
a closed array onto a CIGSe substrate [136]. Then, 10 nm of Al2O3 was deposited using thermal
evaporation, followed by removing the PS NP’s in an ultrasonic bath. (a) and (b) Array of PS NP’s
on CIGSe for different magnifications. (c) and (d) Point contacts formation after the removal of PS
NP’s.
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8.3 Supplementary Information

8.3.1 Photoluminescence

Figure 8.5: Photoluminescence spectra before (reference CIGSe–black) and after the deposition
of Al2O3 on three different stoichiometric CIGSe substrates: (a) Cu/[In+Ga]=0.92, (b) Cu/[In+Ga]=
1 and (c) Cu/[In+Ga]=0.9.
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8.3.2 Time-resolved photoluminescence

Figure 8.6: Comparison of PL spectra before (reference CIGSe–black) and after the deposition of
thin layers of Al2O3 of thickness 5, 10 and 20 nm on three different stoichiometric CIGSe substrates:
(a) Cu/[In+Ga]=0.92, (b) Cu/[In+Ga]= 1 and (c) Cu/[In+Ga]=0.9.

Table 8.1: Summary of the TRPL data obtained for samples shown in figure 8.6 in the same order;
a bi-exponential curve is used to fit the TRPL decay.

Sample τ1 τ2 A1 A2 Average carrier lifetime

(ns) (ns) A1·τ2
1+A2·τ2

2

A1·τ1+A2·τ2 (ns)
CIGSe (CGI=0.92) 2.37 11.92 6308.91 10715.92 10.9
CIGSe/Al2O3 (CGI=0.92) 21.86 112.05 1898.3 2815 101.56
CIGSe (CGI=1) 1.96 6.72 5458.5 17545.2 6.33
CIGSe/Al2O3 (CGI=1) 5.29 22.6 7961.94 13099.06 20.43
CIGSe (CGI=0.9) 3.08 0.35 76.5 5695.8 0.64
CIGSe/Al2O3(CGI=0.9) 1.23 2.67 11950 6775.11 2.03
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8.3.3 J-V-T analysis

Figure 8.7: J-V curves measured
for CIGSe solar cells having dif-
ferent stoichiometric ratios in dark,
recorded at temperatures ranging
from 300K to 120K (∆T=10 K):(a)
Cu/[In+Ga]=0.92, (b) Cu/[In+Ga]=
1 and (c)Cu/[In+Ga]=0.9.
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Figure 8.8: J-V curves mea-
sured for CIGSe solar cells hav-
ing different stoichiometric ra-
tios under AM 1.5 spectrum,
recorded at temperatures ranging
from 300K to 120K (∆T=10 K):(a)
Cu/[In+Ga]=0.92, (b) Cu/[In+Ga]=
1 and (c)Cu/[In+Ga]=0.9.
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Figure 8.9: Jsc−Voc as a function of intensity for temperatures ranging from 300 K to 110 K (∆T=10
K). The red line represents the linear fitting of Jsc − Voc values; (a) Cu-poor (Cu/[In+Ga]=0.92)
absorber, (b) Cu-poor–Ga-rich absorber (Cu/[In+Ga]=0.9. The Cu-rich absorber is not shown here
as it is measured for only two intensities.

Figure 8.10: Ideality factor of CIGSe solar cells having different stoichiometric ratios (Cu/[In+Ga]=
1, Cu/[In+Ga]=0.92, and Cu/[In+Ga]=0.9), as a function of temperature ranging from 320 to 110K
(∆T=10 K), calculated from Jsc - Voc plots.
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Figure 8.11: Voc as a func-
tion of temperature at differ-
ent intensities. Black lines show
the linear extrapolation of the
data points to 0 K to estimate
the activation energy, AE: (a)
Cu/[In+Ga]=0.92, (b) Cu/[In+Ga]=
1 and (c)Cu/[In+Ga]=0.9.
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