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Abstract: Wild birds play an important role as reservoir hosts and vectors for zoonotic arboviruses
and foster their spread. Usutu virus (USUV) has been circulating endemically in Germany since 2011,
while West Nile virus (WNV) was first diagnosed in several bird species and horses in 2018. In 2017
and 2018, we screened 1709 live wild and zoo birds with real-time polymerase chain reaction and
serological assays. Moreover, organ samples from bird carcasses submitted in 2017 were investigated.
Overall, 57 blood samples of the live birds (2017 and 2018), and 100 organ samples of dead birds
(2017) were positive for USUV-RNA, while no WNV-RNA-positive sample was found. Phylogenetic
analysis revealed the first detection of USUV lineage Europe 2 in Germany and the spread of USUV
lineages Europe 3 and Africa 3 towards Northern Germany. USUV antibody prevalence rates were
high in Eastern Germany in both years. On the contrary, in Northern Germany, high seroprevalence
rates were first detected in 2018, with the first emergence of USUV in this region. Interestingly, high
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WNV-specific neutralizing antibody titers were observed in resident and short-distance migratory
birds in Eastern Germany in 2018, indicating the first signs of a local WNV circulation.

Keywords: wild bird; West Nile virus; Usutu virus; Germany; monitoring

1. Introduction

Wild birds, especially migratory birds, play a key role in the transport of emerging pathogens and
their vectors via their major flyways into Central Europe [1,2]. Monitoring wild birds and arthropod
vectors (e.g., mosquitoes, ticks, etc.) is best suited to reveal the entry of new emerging (in particular
zoonotic) pathogens and is a prerequisite for the rapid implementation of public and animal health
measures. In Germany, a nationwide wild and zoo bird surveillance network has been in operation for
several years, focusing mainly on the zoonotic flaviviruses, West Nile virus (WNV) und Usutu virus
(USUV) [3–6].

WNV is a mosquito-borne arbovirus of the family Flaviviridae [7] and an important zoonotic
pathogen worldwide. WNV is a single-stranded RNA virus [8] circulating in an enzootic cycle between
ornithophilic mosquitoes as vectors and avian host species [9,10]. Infection in birds is often subclinical,
although highly susceptible species, such as birds of prey, owls, or various passerine birds (crows,
jays, house sparrows) may develop fatal disease [11]. A transmission of WNV via bridging vectors
(mosquitoes feeding on both avian and mammalian species) to a variety of other vertebrates is possible.
Although mammals such as humans and horses develop clinical signs, they are dead-end hosts, since
their viremia is insufficient to infect naïve feeding mosquitoes [12]. Among infected humans, about 20%
demonstrate a clinical disease, which manifests as a flu-like illness with fever, headache, and myalgia,
whereas only 1% suffer from neuroinvasive disease [13]. While most horses usually seroconvert
without showing any symptoms, up to 10% may develop neurological signs [14]. Clinical cases occur
mainly during the peak of mosquito activity in the summer and fall [15].

Since its first emergence in Africa, WNV has spread to almost every continent (except Antarctica)
and nowadays is one of the most geographically widespread mosquito-borne arboviruses [9]. In 1999,
WNV was introduced into the United States of America and spread throughout the whole continent
within a few years [16]. WNV has been present in Europe since the 1960s, causing sporadic outbreaks [17].
During the last two decades, there has been an increased spread of the virus within Europe. Cases
among humans and horses have occurred in several European countries, for example in Hungary,
Greece, Austria, Czech Republic, and Italy [9,18–22].

In 2018, a total of 2083 autochthonous human WNV cases were recorded in the European Union
(EU) member states and EU neighboring countries. This represents a 7.2-fold increase compared to
2017 and was linked to an unusually early start of the WNV transmission season [23–25]. A possible
explanation for the early onset and the widespread WNV epidemic in comparison to previous years
are the optimal weather conditions, with an early spring and a longer period of high temperatures
during the summer [26].

Taking into account that birds are the most susceptible hosts for WNV and USUV, monitoring of
migratory and resident birds for the occurrence of these flaviviruses has been conducted in Germany
for more than 10 years. In former monitoring studies of wild birds performed between 2007 and 2016,
neutralizing antibodies against WNV were primarily detected in (long-distance) migratory birds. On
the contrary, WNV RNA was found neither in wild birds nor in mosquitoes, although WNV vectors
such as Culex spp. are common in Germany and their susceptibility to infection with WNV has been
demonstrated [27–30].

In 2018 the first WNV autochthonous cases in Germany were detected in resident wild and aviary
birds (12 cases), including Eurasian Blackbirds (Turdus merula), Northern Goshawks (Accipiter gentilis)
and Great Grey Owls (Strix nebulosa), as well as in two horses in Eastern and Southeastern Germany.
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Chrono-phylogenetic analyses indicated a single introduction of WNV lineage 2 into Germany as early
as 2016 [31].

Usutu virus (USUV) is a mosquito-borne flavivirus, closely related to WNV. It was introduced into
Europe from Africa, and at first caused initially unrecognized deaths in birds in 1996 in Italy [32,33].
In 2001, the first large European outbreak occurred in Austria, causing a massive die-off among
Eurasian Blackbirds and other bird species [34–36]. In Germany, USUV emerged in 2011 in the
region of the Upper Rhine valley, where it had previously been detected in a mosquito one year
before. This led to a massive reduction of the local blackbird population [37,38]. During the following
years, USUV outbreaks remained geographically restricted to the Upper Rhine Valley in Southwest
Germany, apart from a few sporadic cases in Berlin and Bonn [6,39,40]. In 2016, however, case numbers
increased dramatically not only in Southwestern Germany, but also in the federal states of North
Rhine-Westphalia, Saxony, and Saxony-Anhalt (region of Leipzig and Halle) [41,42].

USUV isolates can be phylogenetically differentiated into eight different lineages: Africa 1–3
and Europe 1–5 [32]. Four of them (Europe 3, Europe 5, Africa 2, and Africa 3) are circulating in
Germany [41,42]. USUV is considered to have a very low zoonotic potential, and infections in humans
are usually asymptomatic. Nevertheless, in recent studies, a neuroinvasive disease was occasionally
detected in humans, however, mainly in immunocompromised patients [43,44]. USUV was also
detected among healthy blood donors and therefore may poses an underestimated threat for blood
recipients [44–46].

The massive spread of USUV and the first WNV detection in Germany in 2018 emphasize the
importance of country-wide monitoring studies. Our serological and molecular results in migratory
and resident birds in Germany sampled in 2017 and 2018, highlight the contribution of laboratory
monitoring in aiding risk assessment for zoonotic flaviviruses.

2. Materials and Methods

2.1. Sample Collection

Wild bird blood samples were collected through the nationwide wild bird surveillance network
for zoonotic arthropod-borne viruses, including clinics or institutes of the veterinary universities, bird
clinics, wild bird rescue stations, zoological gardens or wildlife parks, and falconries distributed all
over Germany. We were able to expand our monitoring program with new sample collectors, especially
in (new) USUV hotspot regions and by including contributors in the Eastern part of Germany. The
geographical location of the different sampling sites and the investigated wild birds grouped into bird
orders are shown in Figure 1. Major contributors are marked with big red stars. We also received wild
bird blood samples from a number of smaller bird clinics and falconries via the University of Giessen,
which are depicted as small red stars. The encircled numbers next to the sample collectors allow a
geographical allocation of the samples to the respective sample collector. For a better interpretation of
the data, we divided the sample collection sites into three geographic regions. Region A (Northern
Germany) includes the sample collectors’ 1O to 3O. From the “Wildpark Schwarze Berge” ( 3O) we
received samples exclusively in 2018, due to a massive USUV outbreak in this region in 2018. Region B
(Eastern Germany) is represented by the numbers 4O and 5O. Region C (Central and Southern Germany)
comprises the sample collectors’ 6O to 8O. Via the University of Leipzig, we predominantly received
samples from Saxony, but also sporadically from Baden-Wurttemberg, North Rhine-Westphalia, Lower
Saxony, Mecklenburg-Western Pomerania, and Saxony-Anhalt. Therefore, these samples were assigned
to the respective geographic region. Our monitoring, based on the German nationwide wild- and
zoo-bird surveillance network, was mainly restricted to live birds. Birds were categorized as resident
birds (remain all year in their German habitat), partial migratory birds (parts of the population stay in
the German habitat and parts migrate), short-distance migratory birds (usually migrating 1000–2000 km
and not passing through the Sahara desert), and long-distance migratory birds (usually migrating
3000–4000 km and/or passing the Sahara desert). In our first sample panel we also included a small
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number of liver samples from birds that either died or were euthanized at the Veterinary Clinic at the
University of Leipzig.
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Figure 1. Total number of samples (first sample panel) collected in 2017 and 2018 per sampling
site divided into the different zoological bird orders (big red stars = main sample collectors, small
red stars = minor sample collectors). The encircled numbers next to the sample collectors allow a
geographical allocation to the respective sample collector: 1O “Seehundstation Nationalpark-Haus
Norden-Norddeich”; 2O“Clinic for Small Mammals, Reptiles, and Birds of the University of Veterinary
Medicine Hannover”; 3O “Wildpark Schwarze Berge, Rosengarten”; 4O “Department of Veterinary
Medicine, Small Animal Clinic of the Freie Universität Berlin; 5O “Clinic for Birds and Reptiles (Faculty
of Veterinary Medicine) of the Leipzig University”; 6O “Clinic for Birds, Reptiles, Amphibians and Fish
of the Justus Liebig University Giessen”; 7O “Clinic for Birds, Small Mammals, Reptiles and Ornamental
Fish, Centre for Clinical Veterinary Medicine of the Ludwig Maximilians University Munich”; 8O “Birds
of Prey Rehab Center Rhineland”.

The blood samples were obtained during the routine investigation of sick and injured birds, when
blood was taken for hematological or blood chemical examination. Blood collection was facilitated
by puncturing the wing, metatarsal, or jugular veins. After blood separation, the cruor was stored at
−70 ◦C and the serum at −20 ◦C until sample processing. We recorded the weight and took radiographs
of the birds to avoid re-sampling. A double sampling of the same bird is unlikely but cannot be
excluded completely.

The second sample panel consisted exclusively of organ samples (brain, liver, spleen, or heart)
which were submitted to the Friedrich-Loeffler-Institute (FLI) national reference laboratory for WNV
by the regional veterinary laboratories of the federal states of Germany, by the German Mosquito
Control Association (KABS), the Nature and Biodiversity Conservation Union (NABU), citizens and
independent bird clinics, and zoological gardens. These samples were analyzed in close cooperation
with the Bernhard-Nocht-Institute for Tropical Medicine in Hamburg and the Institute of Virology at
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the Faculty of Veterinary Medicine in Leipzig. Not all organs could be collected from every bird, so we
focused on examining the brain, liver, and spleen.

2.2. Ethical Statement

We used blood samples from birds already at veterinary clinics or wild bird rescue centers. These
birds were previously treated and under the care of veterinarians and veterinary technicians. All blood
samples were surplus from those taken initially for diagnostics, complete blood counts, and chemistry
panels. We collected tissues only from deceased birds.

2.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Phylogenetic Analysis

Viral RNA of the avian blood and organ samples was extracted using the RNeasy Mini Kit (Qiagen,
Hilden, Germany), according to the manufacturer′s instructions. The extracted RNA was amplified
using a WNV-specific real-time polymerase chain reaction (qRT-PCR), which ensures the detection of
lineage 1 and 2 [47]. Furthermore, the samples were tested using the USUV-specific qRT-PCR described
by Jöst et al. [37]. Cycle threshold (Ct) values below 37 were regarded as positive, from 37 to 40 as
suspicious, and above 40 as negative. Samples with Ct values above 37 in the USUV qRT-PCR were
additionally analyzed using the primers and probes described by Cavrini et al. [48].

Sequencing was performed on a partial segment of the envelope USUV gene by the University of
Leipzig and the Friedrich-Loeffler-Institute (FLI), however, with a small overlapping region of only 474
nucleotides. Therefore, two phylogenetic trees were built based on alignments of 1066 nt, and 726 nt of
the envelope-coding gene regions in MrBayes 3.2.6. A Bayesian Monte Carlo Markov Chain (MCMC)
method and in parallel a maximum likelihood (ML) tree with 1000 bootstrap replicates was used
to build a consensus tree [39,49]. The detected USUV sequences were aligned to already published
sequences using the MAFFT alignment. The sequence of lineage Africa 1 was used as an outgroup
to root the trees. Only bootstrap values above 80 are shown. Sequencing was not always possible in
samples with poor quality, this was mostly associated with higher Ct values above 36 in organs.

2.4. Serological Investigations

From the 1709 wild bird blood samples we obtained 1533 sera. In the absence of a suitable
ELISA for detection of WNV and USUV antibodies in birds requiring only small sample volumes
(<50 µl), and an ELISA with a high sensitivity and specificity against the serogroup cross-reactivity
with other flaviviruses, we decided to investigate all serum samples by virus neutralization tests (VNT).
The serum samples were investigated against the WNV strain Austria (acc. no. HM015884, kindly
provided by S. Revilla-Fernandez, AGES Mödlingen, Austria) and the USUV strain Germany (acc.
no. HE599647) in VNTs to identify the cross-reacting antibody titers among the Japanese encephalitis
serogroup. The virus neutralization tests were conducted as described by Seidowski et al. [3]. The
neutralizing antibody titer (neutralization dose 50% (ND50)), of a serum sample was defined as the
maximum dilution which inhibited cytopathic effects in fifty percent of the wells and was calculated
according to the Behrens–Kaerber method. Serum samples with ND50 values above 10 were evaluated
as positive, and samples with ND50 values lower than 10 as negative. Wild birds were only regarded
positive for WNV if they had a negative (ND50 < 10) or significantly lower (two-fold lower) USUV titer.
The same criteria for interpretation of VNT results was applied for USUV serology. Not all samples
could be analyzed or evaluated, due to small sample volumes, cell toxicity, hemolysis, or due to the
inability to differentiate between the specific antibody titers.

2.5. Maps

GIS (geographic information system) analysis of the different sampling sites (Figure 1) and the
location of the USUV-positive birds used for sequencing (Figure 3) was performed by using the ArcGIS
ArcMap 10.5 software (ESRI, Redlands, CA, USA) and© GeoBasis-DE /BKG 2017. Figure 4, depicting
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the total number of birds perished from USUV infection in 2017, was produced using the R software
using the packages raster, maptools, and magrittr [50–53].

3. Results

Between 2017 and 2018, 1709 blood samples of wild birds, belonging to 19 different bird orders and
143 wild bird species (Table 1), were collected within the German nationwide wild bird surveillance
network (first sample panel). Of these samples, 1607 could be analyzed in qRT-PCR and 1533 serum
samples were investigated serologically.

Table 1. Total number of wild bird blood samples investigated between 2017 and 2018 in Germany,
divided into bird orders.

Order Year 2017 Year 2018 Total

Passeriformes 291 219 510
Accipitriformes/Falconiformes 208 236 444

Strigiformes 66 79 145
Anseriformes 26 49 75

Columbiformes 115 166 281
Apodiformes 26 8 34

Charadriiformes 25 49 74
Ciconiiformes/Pelicaniformes 13 20 33

Gruiformes 5 8 13
Piciformes 47 34 81
Suliformes 3 0 3
Galliformes 2 0 2

Podicipediformes 3 2 5
Coraciiformes 5 0 5

Procellariiformes 0 1 1
Cuculiformes 0 1 1
Psittaciformes 0 2 2

Total 835 874 1709

3.1. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Results

Of 1607 wild bird samples from the first sample panel tested for WNV and USUV all were negative
for WNV specific RNA, but 57 were USUV positive:

In 2017, 32 of 826 wild birds were USUV-RNA-positive (Table 2a). Most positive birds were
Eurasian Blackbirds from the federal states of Saxony (n = 25) and several other bird species of the
zoological order Passeriformes. One Great Spotted Woodpecker (Dendrocopos major) from Osteel
(Lower Saxony) was tested USUV-positive, representing the northernmost USUV case in our live bird
sample panel in 2017.

In 2018, USUV-specific RNA was found in 25 of 781 birds (Table 2b), mainly in Eurasian Blackbirds
from the federal States Saxony (n = 6), Lower Saxony (n = 4), and Hesse (n = 3).

Furthermore, a broad spectrum of other wild and captive passerines and birds of the orders
Strigiformes and Falconiformes from all over Germany were positive (Table 2).

The second set of samples consisted of organ samples from found dead or perished wild- and
zoo-birds submitted to the national WNV-reference laboratory at the FLI from different institutions (for
more details see Section 2.1. Sample collection). Among these investigated organ samples, altogether,
100 dead birds were tested USUV-positive in 2017, belonging to the bird orders Passeriformes and
Strigiformes (Table 3).
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Table 2. Results of quantitative real-time polymerase chain reactions (qRT-PCR) in wild and zoo bird samples of the first sample panel in 2017 and 2018. Positive
samples are highlighted in red.

Order Common Name Scientific Name Migration Pattern Housing WNV qRT-PCR no.pos. USUV qRT-PCR no.pos. Federal State

(a) qRT-PCR results in 2017

Passeriformes Eurasian Blackbird Turdus merula R, P wild 0 28 SN, ST, BE, HE
Common Starling Sturnus vulgaris R, P, S wild 0 1 HE

Carrion Crow Corvus corone S wild 0 1 NRW
Western Jackdaw Coloeus monedula R, P wild 0 1 NRW

Piciformes Great Spottet Woodpecker Dendrocopos major R, P, (S) wild 0 1 LS

in Total in 2017 0/826 32/826

(b) qRT-PCR results in 2018

Passeriformes Eurasian Blackbird Turdus merula R, P wild 0 13 SN, LS, HE
House Sparrow Passer domesticus R wild 0 1 BW

Eurasian Bullfinch Pyrrhula pyrrhula / captive 0 2 SN, SH

Domestic Canary Serinus canaria
forma domestica / captive 0 1 NRW

Grey-Headed Bullfinch Pyrrhula erythaca / captive 0 1 LS
Song Thrush Turdus philomelos R, S wild 0 2 SN

Common Starling Sturnus vulgaris R, P, S wild 0 1 SN
Strigiformes Great Grey Owl Strix nebulosa / captive 0 2 BW, HE

Little Owl Athene noctua R wild 0 1 HE
Falconiformes European Kestrel Falco tinnunculus R, P, S wild 0 1 HE

Total 0/781 25/781

R = resident species, P = partial migrant, S = short distance migrant, / = not applicable (captive birds), SN = Saxony, ST = Saxony-Anhalt, BE = Berlin, HE = Hesse, NRW = North
Rhine-Westphalia, LS = Lower Saxony, SH = Schleswig-Holstein, BW = Baden-Wurttemberg.
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Table 3. Dead birds of the second sample panel tested positive for Usutu virus (USUV) infection by qRT-PCR in 2017.

Order Common Name Scientific Name Migration Pattern Housing USUV RNA Positive Birds

Passeriformes Eurasian Blackbird Turdus merula R, P wild 94
Song Trush Turdus philomelos R, L wild 1

Golden-breasted Starling Cosmopsarus regius / captive 1
Strigiformes Great Grey Owl Strix nebulosa / captive 2

Northern Hawk-owl Surnia ulula / captive 2

in Total in 2017 100

R = resident species, P = partial migrant, S = short distance migrant, L = long distance migrant, / = not applicable (captive birds).



Viruses 2019, 11, 674 9 of 25

3.2. Phylogenetic Analysis of Usutu virus (USUV)-Positive Samples

To determine the geographic distribution of the different USUV lineages in 2017 and 2018,
RNA-positive samples of the live bird samples panel (first sample panel) and of the dead birds (second
sample panel) which were submitted to the national WNV-reference laboratory at the FLI from nearly
all federal states of Germany were sequenced (Figure 2A,B). Whereas in Southern Germany only the
lineage Europe 3 was detected, in Central and Northern Germany, additionally, the lineages Africa 2
and Africa 3 were found. In general, a massive spread of Europe 3 and Africa 3 towards the North of
Germany was seen in 2018, while lineage Africa 2 was more restricted to Eastern Germany (Saxony,
Saxony-Anhalt, Berlin). Furthermore, in 2018, the USUV lineage Europe 2 (included in Figure 2A)
was detected for the first time in Germany, in the federal state of Saxony. Detailed information about
the distribution of the different USUV lineages at district level is depicted in Figure 3. Additional
information regarding the bird species, location, and USUV lineage of the respective GenBank accession
numbers are portrayed in the Supplemental Table S2.
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Figure 2. Phylogeny of the Usutu virus (USUV) isolates in 2017 and 2018. Sequences detected in
2017 and 2018 are highlighted in red. Taxon information includes the GenBank accession numbers,
detection years, and countries of origin of the viruses. Scale bars indicate the mean number of
nucleotide substitutions per site. Some samples had identical partial sequences, but are also depicted
as they are from a different geographic region or year, respectively: (* = sequence identical to
MK956004; # = sequence identical to MK956046; ◦ = sequence identical to MK956045; ~ = sequence
identical to MK956044) (A) Phylogenetic tree of the detected USUV strains from Germany and Europe
constructed from partial envelope genome nucleotide sequences (1066 nucleotides) sequenced by the
FLI (Friedrich-Loeffler-Institute). (B) Phylogenetic tree of the detected USUV strains from Germany
and Europe constructed from partial nucleotide sequences for the envelope protein (726 nucleotides)
sequenced by the University of Leipzig.
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Figure 3. Distribution of the different USUV lineages in 2017 and 2018 (depicted on district level). For
sequencing, both the birds of our live bird sample panel and the dead birds submitted to the National
reference laboratory were used. The total number of birds sequenced per district is also embedded in
this map.

3.3. Serological Results

For the evaluation of the VNT results, the different samples were grouped according to their
geographical origin. Overall, 1533 serum samples were assayed for WNV- and USUV-neutralizing
antibodies (first sample panel).
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In 2017, 22 out of 739, and in 2018, 26 out of 794 investigated wild bird sera contained neutralizing
antibodies against WNV (Tables 4–6). WNV seropositive birds were found occasionally in all geographic
regions (Region A–Region C), displaying quite low neutralizing antibody titers generally ranging
between ND50 1:10–1:20 and sporadically up to ND50 1:80. These WNV-positive birds were mainly long-
and short-distance migratory birds. However, also in a few partial migrants, and only sporadically
even in resident bird species, WNV neutralizing antibodies were found. Noteworthy is the detection
of high antibody titers against WNV in Region B (Eastern Germany) in 2018, where also indigenous
WNV cases were found for the first time in owls, birds of prey, and horses. In this region, in 2018, three
birds of prey and one Carrion Crow (Corvus corone), showed higher neutralizing antibody titers against
WNV, in contrast to the previous year, with ND50 values between 1:160 and 1:320 (Table 5).

USUV neutralizing antibodies were found in 38 wild birds examined in 2017 and in 67 wild bird
samples in 2018. In Region A (Northern Germany) in 2017, only three wild birds showed neutralizing
antibodies against USUV with relatively low titers (ND50 values 1:10, 1:20), whereas in 2018, 29 wild
birds were seropositive with high antibody levels in this region (antibody titers ranged up to 1:2560
ND50 (Table 4). Neutralizing antibodies were found predominantly in Passeriformes, which are mainly
resident birds or partial migratory birds, and in Strigiformes which were kept in zoological gardens. In
Region B (Eastern Germany) in 2017 16, and in 2018 12, wild birds were USUV seropositive. Antibody
titers ranged from 1:10 to 1:480 ND50 (Table 5). A broad spectrum of different bird species showed
neutralizing antibodies in this region (predominantly Eurasian Blackbirds (Turdus merula)), but also
Common Wood Pigeons (Columba palumbus) and Eurasian Woodcocks (Scolopax rusticola). These birds
are primarily resident, partial or short distance migratory species. In Region C (Central and Southern
Germany) 19 wild birds had neutralizing antibodies against USUV in 2017 and 26 in 2018. Samples
were predominantly from Passeriformes and Columbiformes, but additionally a large number of
zoo birds of the orders Accipitriformes/Falconiformes, showed neutralizing antibodies against USUV
(Table 6).

In summary, predominantly resident and partial migratory birds, but also short-distance migratory
birds and numerous zoo birds showed neutralizing antibodies against USUV. In Northern Germany in
2018, the number of seropositive birds and the ND50 values increased in comparison to the previous
year, especially in areas where USUV was not detected before.
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Table 4. WNV- and USUV-positive neutralization assay results from wild bird serum samples Region A—Northern Germany.

Sample Collector Order Common Name Scientific Name Migration Pattern No. Samples Tested WNV Pos. (ND50) USUV Pos. (ND50)

(a) WNV and USUV positive neutralization assay results (positives highlighted in red and bold) from wild bird serum in 2017. Cross-reacting antibody titers are also displayed in black

1O Piciformes Great Spottet Woodpecker Dendrocopos major R, P, (S) 7 0 1 (10)

2O Accipitriformes Common Buzzard Buteo buteo R, P, S 11 1 (10) 0

2O Columbiformes Common Wood Pigeon Columba palumbus R, P, S 29 2 (10), 1 (15) 0
Feral Pigeon Columba livia f. domestica R, (P) 14 1 (10) 1 (20)

2O Charadriiformes Eurasian Woodcock Scolopax rusticola R, S 3 1 (10) 1 (20)

2O Suliformes Great Cormorant Phalacrocorax carbo R, S 1 1 (10) 0

Total 171 5 3

Seroprevalence 2.92% 1.75%

(b) WNV- and USUV-positive neutralization assay results (positives highlighted in red and bold) from wild bird serum in 2018. Cross-reacting antibody titers are also displayed in black

1O Passeriformes Eurasian Blackbird Turdus merula R, P 16 1 (10), 1 (20), 1 (60) 2 (10), 1 (15), 1 (40), 1 (60),
1 (240), 1 (320)

1O Carrion Crow Corvus corone R, P 14 1 (10) 0
1O Spotted Flycatcher Muscicapa striata L 2 1 (10) 0

1O Accipitriformes Northern Goshawk Accipiter gentilis R, P 1 0 1 (10)
1O Common Buzzard Buteo buteo R, P, S 6 0 1 (40)

1O Anseriformes Northern Mallard Duck Anas platyrhynchos R, P, S 5 1 (20) 1 (10), 1 (480)

1O Ciconiiformes/Pelicaniformes Northern Gannet Morus bassanus S, L 6 1 (10) 0

2O Passeriformes Eurasian Blackbird Turdus merula R, P 9 1 (120), 1 (240) 1 (10), 1 (240), 1 (1280)
2O Eurasian Jay Garrulus glandarius R, P 3 1 (15), 1 (40) 1 (1280)
2O Common Magpie Pica pica R 5 1 (15) 0
2O Common Starling Sturnus vulgaris R, P, S 2 1 (40) 1 (240)

2O Accipitriformes Common Buzzard Buteo buteo R, P, S 11 2 (15) 0

2O Columbiformes Common Wood Pigeon Columba palumbus R, P, S 48 1 (10), 1 (15), 1 (20),
1 (40) 1 (40), 3 (80)

2O Apodiformes Common Swift Apus apus L 1 0 1 (10)

3O Strigiformes Eurasian Eagle Owl Bubo bubo zoo bird 5 0 1 (30), 1 (20), 1 (15)
3O Snowy Owl Bubo scandiacus zoo bird 2 0 1 (640)
3O Ural Owl Strix uralensis zoo bird 2 1 (30) 1 (320)
3O Northern Long-eared Owl Asio otus zoo bird 3 1 (20) 1 (80)
3O Eurasian Tawny Owl Strix aluco zoo bird 2 1 (10), 1 (60) 1 (160), 1 (2560)

Total 304 7 29

Seroprevalence 2.30% 9.54%

R = resident species, P = partial migrant, S = short distance migrant, L = long distance migrant, (For details regarding the sample collectors see Section 2.1 and for ND50 Section 2.4).
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Table 5. WNV- and USUV-positive neutralization assay results from wild bird serum samples Region B—Eastern Germany.

Sample Collector Order Common Name Scientific Name Migration Pattern No. Samples Tested WNV Pos. (ND50) USUV Pos. (ND50)

(a) WNV- and USUV-positive neutralization assay results (positives highlighted in red and bold) from wild bird serum in 2017. Cross-reacting antibody titers are also displayed in black

4O Charadriiformes Eurasian Woodcock Scolopax rusticola R, S 7 2 (10), 1 (20) 1 (10), 1 (25), 1 (30), 1 (40)

4O Ciconiiformes/Pelicaniformes Grey Heron Ardea cinerea R, P, S 1 0 1 (10)

5O Passeriformes Eurasian Blackbird Turdus merula R, P 11 1 (10), 1 (15), 1 (20) 1 (20), 1 (40), 1 (50), 1 (80)

5O Falconiformes European Kestrel Falco tinnunculus R, P, S 5 1 (20), 1 (80) 0

5O Columbiformes Common Wood Pigeon Columba palumbus R, P, S 9 3 (10), 1 (60) 2 (20), 1 (30), 1 (80),
1 (320), 1 (480)

5O Ciconiiformes/Pelicaniformes White Stork Ciconia ciconia L 1 1 (20) 1 (40)

Total 76 2 16

Seroprevalence 2.63% 21.05%

(b) WNV- and USUV-positive neutralization assay results (positives highlighted in red and bold) from wild bird serum in 2018. Cross-reacting antibody titers are also displayed in black

4O Passeriformes Common Magpie Pica pica R 1 0 1 (10)

4O Accipitriformes Northern Goshawk Accipiter gentilis R, P 2 1 (320) 0
4O White-tailed Eagle Haliaeetus albicilla R, P 5 1 (240) 0
4O Common Buzzard Buteo buteo R, P, S 7 1 (20) 1 (10)

4O Falconiformes European Kestrel Falco tinnunculus R, P, S 1 1 (160) 1 (40)

4O Strigiformes Northern Long-eared Owl Asio otus R, P, S 2 1 (10) 1 (60)

4O Columbiformes Common Wood Pigeon Columba palumbus R, P, S 2 0 1 (10)

4O Anseriformes Northern Mallard Duck Anas platyrhynchos R, P, S 2 0 1 (10)

4O Apodiformes Common Swift Apus apus L 1 1 (10) 1 (30)

4O Charadriiformes Eurasian Woodcock Scolopax rusticola R, S 12 0 1 (10)

5O Passeriformes Eurasian Blackbird Turdus merula R, P 3 0 1 (60)
5O Carrion Crow Corvus corone P, S 5 1 (240) 1 (40)

5O Accipitriformes Common Buzzard Buteo buteo R, P, S 2 0 1 (60), 1 (10)

5O Columbiformes Common Wood Pigeon Columba palumbus R, P, S 7 1 (80), 1 (60), 1 (30) 1 (320), 1 (80), 1 (30), 1 (10)

Total 92 6 12

Seropevalence 6.52% 13.04%

R = resident species, P = partial migrant, S = short distance migrant, L = long distance migrant, (For details regarding the sample collectors see Section 2.1 and for ND50 Section 2.4).



Viruses 2019, 11, 674 15 of 25

Table 6. WNV- and USUV-positive neutralization assay results from wild bird serum samples Region C—Central and Southern Germany.

Sample Collector Order Common Name Scientific Name Migration Pattern No. Samples Tested WNV Pos. (ND50) USUV Pos. (ND50)

(a) WNV- and USUV-positive neutralization assay results (positives highlighted in red and bold) from wild bird serum in 2017. Cross-reacting antibody titers are also displayed in black

5O Passeriformes Eurasian Blackbird Turdus merula R, P 4 1 (75), 1 (190) 1 (160), 1 (3840)

6O Passeriformes Eurasian Blackbird Turdus merula R, P 23 1 (15) 0
6O Eurasian Blue Tit Cyanistes caeruleus R 2 1 (10) 0
6O Thrush Turdus sp. R, S 10 1 (10) 1 (15)
6O Common Starling Sturnus vulgaris R, P, S 5 1 (10) 0

6O Accipitriformes Long-legged Buzzard Buteo rufinus zoo bird 2 0 1 (10)
6O Common Buzzard Buteo buteo R, P, S 24 2 (10), 1 (10) 1 (60), 1 (15)
6O African Sea Eagle Haliaeetus vocifer zoo bird 3 1 (30) 0
6O Black Kite Milvus migrans L 2 1 (10) 0

6O Falconiformes European Kestrel Falco tinnunculus R, P, S 21 2 (15), 1 (30) 0

6O Columbiformes Common Wood Pigeon Columba palumbus R, P, S 16 0 2 (10), 1 (60)

6O Apodiformes Common Swift Apus apus L 10 1 (10) 1 (15)

6O Ciconiiformes/Pelicaniformes Grey Heron Ardea cinerea R, P, S 7 1 (15) 1 (40)
6O Stork sp. Circonia sp. L 1 1 (10) 0

7O Gruiformes Eurasian coot Fulica atra P, S 1 1 (15) 1 (30)

8O Accipitriformes Common Buzzard Buteo buteo R, P, S 13 1 (20), 1 (10) 2 (320), 1 (20), 1 (15), 1 (10)

8O Northern Goshawk Accipiter gentilis R, P 2 0 1 (15)

8O Strigiformes Eurasian Tawny Owl Strix aluco R 2 0 1 (80)

8O Gruiformes Eurasian Coot Fulica atra P, S 1 1 (10) 0

Total 492 15 19

Seroprevalence 3.05% 3.86%

(b) WNV- and USUV-positive neutralization assay results (positives highlighted in red and bold) from wild bird serum in 2018. Cross-reacting antibody titers are also displayed in black

6O Passeriformes Eurasian Blackbird Turdus merula R, P, S 19 2 (15), 1 (60), 1 (10) 1 (320), 1 (30), 1 (20)
6O Common Magpie Pica pica R 6 1 (15) 0
6O Carrion Crow Corvus corone P, S 9 1 (40) 0
6O European Robin Erithacus rubecula P 2 0 1 (15)

6O Accipitriformes/Falconiformes Black-chested
Buzzard-eagle Geranoaetus melanoleucus zoo bird 1 0 1 (10)

6O Griffon Vulture Gyps fulvus zoo bird 4 0 1 (15)
6O Northern Goshawk Accipiter gentilis R, P 12 0 1 (10)
6O Eastern Imperial Eagle Aquila heliaca zoo bird 1 0 1 (15)
6O Common Buzzard Buteo buteo R, P, S 25 0 1 (15), 1 (20)
6O Western Marsh Harrier Circus aeruginosus L 6 1 (40), 1 (20) 1 (10)
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Table 6. Cont.

Sample Collector Order Common Name Scientific Name Migration Pattern No. Samples Tested WNV Pos. (ND50) USUV Pos. (ND50)

6O Southern Crested
Caracara Caracara plancus zoo bird 1 (10) 0

6O Rüppell′s Vulture Gyps rueppelli zoo bird 1 1 (15) 1 (50)
6O Golden Eagle Aquila chrysaetos zoo bird 4 0 1 (60)
6O White-backed Vulture Gyps africanus zoo bird 1 1 (20) 0
6O Eurasian Hobby Falco subbuteo L 2 1 (30) 0
6O European Kestrel Falco tinnunculus R, P, S 14 1 (20) 0

6O Strigiformes Northern Long-eared Owl Asio otus R, P, S 4 0 1 (30)

6O Columbiformes Common Wood Pigeon Columba palumbus R, P, S 21 1 (40) 1 (80)
6O Feral Pigeon Columba livia f. domestica R, (P) 13 0 2 (10), 1 (15)

6O Anseriformes Mute Swan Cygnus olor R, P, S 9 1 (10) 1 (15), 1 (40)
6O Egyptian Goose Alopochen aegyptiacus R (Neozoa) 2 0 1 (10)

6O Ciconiiformes/Pelicaniformes Grey Heron Ardea cinerea R, P, S 8 0 1 (10), 1 (40)

6O Cuculiformes Common Cuckoo Cuculus canorus L 1 1 (20) 0

6O Piciformes Great Spottet Woodpecker Dendrocopos major R, P, (S) 6 1 (10) 0

7O Columbiformes Feral Pigeon Columba livia f. domestica R, (P) 16 0 1 (30)

8O Accipitriformes Common Buzzard Buteo buteo R, P, S 3 0 1 (15)

8O Falconiformes European Kestrel Falco tinnunculus R, P, S 1 0 1 (30)

Total 398 13 26

Seroprevalence 3.27% 6.53%

R = resident species, P = partial migrant, S = short distance migrant, L = long distance migrant, (For details regarding the sample collectors see Section 2.1 and for ND50 Section 2.4).
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In 14 of the 1533 serum samples, a discrimination between USUV and WNV antibodies was not
possible by VNT, as ND50 values were comparable for both viruses (maximum 1.5-fold differences).
For detail, see Table 7. The VNT results of all wild bird species between 2017 and 2018 are presented in
the Supplemental Table S1.

Table 7. No differentiation between WNV and USUV by neutralization assay possible.

Sample Collector Year Common Name Scientific Name WNV pos. (ND50) USUV pos. (ND50)

2O 2017 Common Wood Pigeon Columba palumbus 1 (10) 1 (15)

2O 2017 Common Wood Pigeon Columba palumbus 1 (10) 1 (15)

5O 2017 Eurasian Blackbird Turdus merula 1 (15) 1 (20)

5O 2017 Eurasian Blackbird Turdus merula 1 (160) 1 (240)

6O 2017 Northern Goshawk Accipiter gentilis 1 (15) 1 (10)

6O 2017 European Kestrel Falco tinnunculus 1 (15) 1 (15)

6O 2017 Snowy owl Bubo scandiacus 1 (10) 1 (10)

1O 2018 Eurasian Blackbird Turdus merula 1 (30) 1 (40)

6O 2018 Eurasian Blackbird Turdus merula 1 (30) 1 (30)

6O 2018 Eurasian Blackbird Turdus merula 1 (10) 1 (10)

6O 2018 Eurasian Blackbird Turdus merula 1 (20) 1, (15)

6O 2018 House Sparrow Passer domesticus 1 (60) 1 (80)

6O 2018 Great Grey Owl Strix nebulosa 1 (30) 1 (20)

6O 2018 Stork sp. Circonia sp. 1 (10) 1 (15)

Furthermore, due to small sample volumes, the collection and investigation of both cruor and
serum was not possible for some samples.

4. Discussion

Wild birds are vectors and reservoir hosts of endemic or re-emerging zoonotic pathogens and
play a substantial role in their local dispersal and maintenance in Central Europe. The first detection
of the WNV genome in Europe was in France in the 1960s, causing outbreaks among humans and
horses [9]. After a longer period of absence, the virus reemerged with outbreaks in Ukraine (1985),
Romania (1996), and Russia (1999) [12]. In the last two decades, several European countries reported a
series of outbreaks of WNV neuroinvasive disease in humans and horses. The virus hit Mediterranean
countries first, with a steady northward expansion. Eventually, WNV was detected in neighboring
countries to Germany like France, Austria, and in the Czech Republic [54–58]. In Poland, high WNV
seroprevalences were detected among birds and horses, also indicating WNV activity in Poland [59].
Therefore, an introduction into Germany could be expected, as WNV was already “ante portas”. [12].

WNV-specific RNA was not detected in our first sample panel of live wild- and zoo-birds collected
in 2017 and 2018, albeit the first clinical cases were detected for the first time in August–October 2018,
involving various bird species and horses, in the eastern and southeastern parts of Germany [31].
Negative WNV qRT-PCR results were also obtained in earlier wild bird monitoring studies from
samples taken in the time period 2007 to 2016, whereas neutralizing antibodies against WNV were
detected regularly in migratory birds [3–5]. It was therefore assumed that WNV was not yet circulating
in Germany until 2016. The WNV situation in Germany is still unclear given that neutralizing
antibodies are regularly found in resident non-migratory birds. However, phylogenetic analysis of the
first Germany WNV strain from 2018 revealed its descendants from a Czech strain with a putative
introduction into Germany already in 2016 [31].

The serological investigation revealed WNV neutralizing antibodies in 48 out of 1533 investigated
wild birds in 2017 and 2018, which is quite a small number. We detected antibodies in long-distance
migratory birds such as a Stork (Ciconia sp.), Common Swift (Apus apus), or Common Cuckoo
(Cuculus canorus), but also in short-distance and partial migratory birds, as described before [5]. These
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birds most probably survived WNV infections at their overwintering quarters or during migration.
However, neutralizing antibodies were also detected in birds of prey (bird orders Accipitriformes
and Falconiformes) in 2017 and 2018. Birds of prey are considered to be highly susceptible to WNV,
which might be an explanation for the detection of antibodies in these birds [60–62]. Nevertheless, the
antibody titers were generally quite low, suggesting older infections. As reported before, a considerable
number of resident birds belonging to the orders Passeriformes (Eurasian Blue Tit (Cyanistes caeruleus),
Common Magpie (Pica pica)) showed neutralizing antibodies against WNV, however, the reason
remains unclear. Until 2018, no local WNV circulation was detected in Germany, and it was therefore
assumed that the resident birds probably became infected in neighboring countries, where WNV has
been present for quite some time. Besides that, even so-called resident birds sometimes can travel
about 50–100 km [1]. In 2018, high neutralizing antibody titers (ND50 160–320) were found in one
Northern Goshawk (Accipiter gentilis), one European Kestrel (Falco tinnunculus), one White-tailed Eagle
(Haliaeetus albicilla), and one Carrion Crow (Corvus corone) in the regions of Leipzig and Berlin, possibly
indicating a recent WNV infection. This correlates with previous detections of WNV-RNA in birds in
the same region [31]. The first indications of WNV circulation in Germany can therefore also be seen in
our wild bird monitoring of live birds of 2018.

The closely related USUV has been present in Germany since 2010/2011 and has spread all
throughout Germany over the years [38,41]. As the transmission cycles of WNV and USUV are rather
similar, with wild birds as reservoirs and amplifying hosts and mosquitoes of the Culex spp. as vectors,
the question arises if a similar distribution scenario is possible for WNV in the future as well [63].

In 2017, USUV occurred for the first time in the regions of Hannover, Hamburg, and Bremen,
indicating a further spread towards the north of Germany. Of the investigated dead birds of our
second sample panel from 2017, in total, 100 birds were tested USUV-RNA-positive and negative
for WNV-RNA. Detailed information on the location of the USUV-positive samples of the dead bird
investigation are displayed in Figure 4. Among our first sample panel, altogether, 32 wild birds were
tested USUV-RNA-positive, with one positive Great Spotted Woodpecker from Osteel (Lower Saxony),
representing the northernmost USUV case in our sample panel in 2017. In both the live and the dead
bird samples (first and second sample panel), a northward movement of USUV in 2017 is portrayed.
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Pathogenesis studies with the closely related WNV showed that the viremia of an infected bird is
only detectable for a few days, whereas in the organs, the virus persists longer, especially in birds of
the order Passeriformes [64,65]. The same may apply for USUV. This might also be an explanation
for the lower number of USUV-positive birds in our first sample panel, where predominantly blood
samples of live birds were investigated, in comparison to the total number of USUV-positive dead
birds (second sample panel), consisting exclusively of organ samples from dead-found or perished
wild- and zoo-birds submitted to the national WNV reference laboratory at the FLI.

In 2018, it came to a massive USUV outbreak with thousands of dead Eurasian Blackbirds and
other passerines, as well as birds of prey and various owls in aviaries. Unfortunately, as most infections
occurred under natural conditions, exact numbers of infected birds are difficult to estimate. It is
however already clear that in 2018, the largest USUV epizootic since 2011 was observed, with all federal
states of Germany being affected [66].

The spatial expansion of USUV corresponds to high temperatures in 2018 and thereby a shorter
extrinsic incubation period, resulting in a faster transmission cycle between bird host and mosquito
vector and a high infection pressure, leading to a broad spectrum of infected bird species. This is
reflected in the distribution of the USUV-positive birds in our live bird survey (first sample panel) of
2018, with cases located all over Germany. Apart from the most susceptible bird species like Eurasian
Blackbirds and Great Grey Owls, numerous other bird species were affected, such as different bullfinch
species (Pyrrhula pyrrhula, Pyrrhula erythaca), one Domestic Canary (Serinus canaria forma domestica),
and one European Kestrel (Falco tinnunculus). In both the live and the dead bird monitoring studies,
Eurasian Blackbirds, being the most USUV-susceptible bird species, were most often infected with
USUV. This led to a massive die-off and consequently a drastic reduction of the Blackbird population. In
2011, with the first USUV infections in birds in Germany, Eurasian Blackbirds disappeared completely
in certain regions. A negative impact on the Blackbird population was demonstrated in USUV outbreak
areas in comparison to unsuitable USUV areas, while no such correlation was found for other bird
species [67,68].

Furthermore, we sequenced USUV-positive samples from our live and dead bird survey to
determine the geographic distribution of the different USUV lineages. In Germany in 2018, the
USUV lineages Africa 3 and Europe 3 spread massively and were detected in numerous federal states,
especially in the northern parts of Germany. USUV lineage Europe 3 was, until then, restricted to the
South of Germany, but has spread all over Germany since its first discovery in the Leipzig area in
2016 [42]. The same applies for lineage Africa 3, which has most likely been introduced into Germany
just recently and was first detected in Bonn in 2014 [40]. Since 2016, USUV lineage Africa 3 was also
found in the federal state of Saxony. The lineage Africa 2, however, seems to be more restricted to
Eastern Germany [39,42]. The co-circulation of different USUV lineages within one country was also
seen in other European countries like Italy, Austria, and France [69–71].

Four different USUV lineages have been found in the federal state of Saxony to date, with the
first occurrence of Europe 2 in 2018. Typically, Europe 2 was circulating in Austria, Hungary, and
Italy for years, and its introduction via infected birds into Germany is a possible scenario [46,72].
Apart from the introduction via viremic birds, the transport of infected mosquitoes by car, ship, or
plane also seems a possible option, as the first appearance of USUV in Austria was near the largest
airport nationwide [68]. As mentioned above, similar single introduction events also happened in
Bonn and Berlin with the entry of Africa 3 and Africa 2, respectively [38,39]. Finally, the reasons for the
occurrence of multiple USUV lineages around Leipzig remains unclear.

Neutralizing antibodies against USUV were detected in 105 of 1533 investigated wild bird blood
samples. Mainly affected birds were resident birds, but also some partial, and short-distance migratory
birds, which most probably became infected in Germany or close neighboring countries. Neutralizing
antibodies against USUV were detected in a broad spectrum of wild and zoo birds belonging to
several different bird orders. However, this was also seen in previous monitoring studies, suggesting a
widespread activity of USUV within Germany, affecting several bird species [5].
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By comparing Northern, Eastern, Central, and Southern Germany during 2017 and 2018, differences
regarding the number of USUV antibody positive birds can be noticed. In Northern Germany (Region
A), in 2017, USUV antibodies were detected only sporadically in three birds (seroprevalence 1.75%)
with quite low antibody titers, whereas in 2018 the number of seropositive birds increased immensely
(seroprevalence 9.54%). Around Norddeich (sample collector 1O) and the “Wildpark Schwarze Berge”
(sample collector 3O) near Hamburg, there was a massive USUV outbreak in 2018, resulting in numerous
perished birds [66]. This outbreak can also be demonstrated in our live bird monitoring (first sample
panel) with seropositive birds from a broad spectrum of different bird species. Furthermore, a large
number of birds showed high antibody titers up to 1:2560 ND50, indicating a recent infection with USUV.
Especially in the “Wildpark Schwarze Berge” (sample collector 3O), eight out of eighteen investigated
captive owls had high USUV antibody titers.

In Eastern Germany (Region B), represented by the clinics of the veterinary universities of Berlin
(sample collector 4O) and Leipzig (sample collector 5O), in both years, USUV neutralizing antibodies
were found in the sampled birds with titers ranging from 10 to 480 ND50. The seroprevalence was very
high in 2017 (21.05%) and 2018 (13.04%). In the sampled regions, USUV has already been present for
several years causing massive outbreaks, probably leading to such high prevalence rates.

In Central and Southern Germany (Region C), USUV is circulating since its first introduction
into Germany in 2010/2011. In both years investigated, the percentage of USUV antibody-positive
birds remained rather similar, in contrast to the other regions. In 2017, 3.86% and in 2018, 6.53%
of the investigated birds were USUV seropositive. The high number of infected zoo birds in 2018
was remarkable, this indicates an ongoing local circulation of USUV in this region. In conclusion,
regions where USUV was detected for the first time showed numerous and exceptionally high USUV
antibody titers.

In the previous German monitoring studies of the years 2011–2016, the percentage of USUV
antibody-positive birds were quite low, ranging between 0.89% (2011–2013) and 3.9% (in 2015) [5,6].
However, we calculated the yearly prevalence over all sampling sites and did not differentiate between
the geographic regions. Additionally, USUV was not as widespread in Germany as in 2017 and 2018.
Nevertheless, if we use the new data to calculate the seroprevalence rates for the whole country of
Germany in 2017 (5.14%) and 2018 (8.44%), the prevalence rates are still higher than those in the six
previous years.

As already discussed in the previous monitoring studies, the formation of a so-called herd
immunity, with a seroconversion of over 50% as found in Austria, has not been seen in the wild birds
in Germany between 2017 and 2018 [73]. However, in areas of extensive USUV circulation, like the
region of Leipzig, a quite high seroprevalence was detected. Bosch et al. proposed that even after the
formation of a herd immunity, due to the short lifespan of Eurasian Blackbirds, after several years, new
generations can become infected again [74].

In a few birds of this study, the differentiation between WNV and USUV seropositive samples
was not possible, as the neutralizing antibody titers against both viruses did not vary or differed only
1- to 1.5-fold (Table 7). As the ND50 values for both WNV and USUV were quite high in one Eurasian
Blackbird (ND50 WNV 1:160 and ND50 USUV 1:240) and one House Sparrow (Passer domesticus) (ND50

WNV 1:60 and ND50 USUV 1:80), a co-infection with both viruses seems possible for these birds. A
similar serological phenomenon was seen in the Zoo Halle, where one Snowy Owl (Bubo scandiacus)
also had high neutralizing antibody titers against both viruses [75]. In the same zoo, WNV-specific
RNA was detected in Germany for the first time (in 2018) in a Great Grey Owl. Nevertheless, another
Great Grey Owl kept in the same aviary was tested USUV-RNA-positive [75]. This shows that in
the same region, mosquitoes infected with either WNV or USUV are circulating, enabling a possible
co-infection in birds.

Taken together, USUV has spread massively throughout Germany during the past two years,
affecting many different bird species. Phylogenetic investigations revealed a spread, especially of the
USUV lineages Africa 3 and Europe 3 towards Northern Germany. Furthermore, the lineage Europe 2
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was detected for the first time in Germany. Neutralizing antibodies against USUV were predominantly
detected among the resident bird population, with quite high seroprevalence rates and antibody titers
in Northern Germany, where USUV emerged for the first time in 2018, but also in Eastern Germany.

Despite the first detection of WNV-RNA in several deceased birds in Eastern/Central Germany
in 2018, we were not able to detect WNV in our live bird sample panel to date. However, we have
seen the first indications that WNV is circulating in Germany. Especially in Eastern Germany, high
neutralizing antibody titers have been detected among resident and short-distance migratory birds,
indicating a recent virus contact.

5. Conclusions

It can be assumed that the extraordinarily high temperatures recorded for Germany in 2018 led to
favorable conditions for mosquito reproduction and additionally, to a faster virus replication of the
mosquito-borne flaviviruses WNV and USUV. Consequently, USUV was able to spread throughout
the country and WNV was detected for the first time in Germany. Integrated surveillance of birds
and mosquitoes and the cooperation between human and animal health are essential in detecting
whether or not WNV, similarly to USUV, will establish in Germany and spread throughout the whole
country. Therefore, the continuation of the systematic monitoring system for wild birds is important
and necessary for Germany.
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