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Nomenclature

(p, ∗) subspace or trapspace (Definition 1.27)
[n] The set {1, . . . , n} (Section 1.1)
Gasync(f

Σ) skeleton of Σ. (Definition 4.9)
Gasync(f) = (Vasync(f), Easync(f)) asynchronous state transition graph (Def-

inition 1.23)
Auto(f, I) Automaton accepting projected paths
B(n,m) the set of Boolean functions from {0, 1}n to {0, 1}m. (Section 1.1.2)
M B(Σ) Boolean Monotonic Model Pool (Definition 4.7)
condf The conditions for transitions corresponding to the Boolean function

f (Definition 3.2)
deg+(v) outdegree of the node v. (Definition 1.3)
deg−(v) indegree of the node v. (Definition 1.3)
ẋ derivative of x (Section 1.1.3)
GB

QSTG(Σ) =
(
V B
QSTG(Σ), EB

QSTG(Σ)
)
Boolean QDE Graph (Definition 4.8)

IGglobal(f) global interaction graph of f (Definition 1.28)
IGf (x) local interaction graph of f (Definition 1.28)
indA indicator function of the set A (Definition 5.1)
↔ logical equivalence (Definition 1.12)
M (Σ, X) continuous monotonic model pool (Definition 4.3)
F2 the Galois field of two elements (Section 1.1.2)
N natural numbers not including zero (Section 1.1)
P(A) the powerset of A (Definition 1.1)
GQSTG(Σ) = (VQSTG(Σ), EQSTG(Σ)) directed state-transition graph of the

continuous monotonic model pool (Definition 4.5)
| A | cardinality of the set A (Definition 1.1)
∇f gradient of f (Section 1.1.3)
¬ logical negation (Definition 1.12)
⊕ xor (Definition 1.12)
∂jf partial derivative (Section 1.1.3)
projI projection on set of components I ⊆ [n] (Definition 1.26)
diff(E) All components that change on some edge in E. (Definition 1.2)
diff(e) The index of the component which changes on the edge e. (Definition

1.2)
→ logical implication (Definition 1.12)
Σ Sign matrix (Definition 4.7)
sign(x) sign of x (Definition 4.2)
comm(a, b) The indices of the components which are equal. (Definition 1.2)
Ess(ϕ) Essential components of ϕ (Definition 5.2)
id identity function id : {0, 1}n → {0, 1}n (Proposition 3.1)
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pred(v) predecessors of the node v. (Definition 1.3)
StrongBasin(A) Strong basin of attraction of an attractor A (Definition 1.10)
succ(v) sucessors of the node v. (Definition 1.3)
WeakBasin(A) Weak basin of attraction of an attractor A (Definition 1.10)
S̃M (Σ) solution set (Definition 4.4)
∨ logical or (Definition 1.12)
I(B) vanishing ideal of the set B (Section 5.1.4)
V(I) vanishing set of an ideal I (Section 5.1.4)
∧ logical and (Definition 1.12)
diff(a, b) The indices of the components which are different. (Definition 1.2)
a⊕−1 b = a↔ b. (Definition 1.15)
a⊕0 b = 0. (Definition 1.15)
a⊕1 b = a⊕ b. (Definition 1.15)
C(X,Y ) Space of continuous functions from X to Y (Section 1.1.3)
Ck(X,Y ) Space of functions f : X → Y which have continuous derivatives

f (1), . . . , f (k). (Section 1.1.3)
E(G) set of edges of the graph G (Section 1.1.1)
eA The transition e inverted on the set A (Definition 1.25)
fΣ (asynchronous) update function of the skeleton of Σ. (Definition 4.9)
G
/
∼ quotient graph derived with the equivalence relation ∼ (Definition

3.3)
G
/
ϕ quotient graph induced by the function ϕ (Definition 3.4)

G≺(I) reduced Gröbner basis of an ideal I with respect to ≺ (Definition
5.5)

in≺(I) initial ideal (Definition 5.5)
in≺(p) initial monomial of a polynomial p (Definition 5.5)
Jf Jacobian matrix of f (Section 1.1.3)
LT (p) leading term of a polynomial p (Section 5.1.4)
SM (Σ,X) solution set (Definition 4.3)
v ; w there is a directed path from v to w (Definition 1.5)
V (G) set of nodes of the graph G (Section 1.1.1)
vA The node v inverted on the set A (Definition 1.24)



CHAPTER 0

Introduction

This thesis is concerned with different classes of models of gene regulatory
networks. In this thesis we will learn more about the relations between
these modeling frameworks and how models can be analyzed. Since the
focus lies on the mathematical analysis of these models, only a rudimentary
biological understanding is necessary. Nevertheless, we will begin with a very
brief biological background that serves as a motivation for the mathematical
concepts introduced later.

0.1. Positioning and motivation

What is a gene regulatory network? A gene (or genetic) regulatory
network (GRN) is a network whose components represent molecular regula-
tors in the cell governing gene expression levels of Messenger RNA (mRNA)
and protein concentrations. The connections in a GRN represent the in-
teractions of these molecular regulators. The molecular regulators can be
proteins, RNA, DNA, or complexes of these. In other words, a gene regula-
tory network describes the interactions between genes and their products.

What role do GRNs play in organisms? Within single cells, regula-
tory networks constitute a way to process information. They can be thought
of as “computational devices of living cells” Barkai and Leibler [1997]. For
example, a yeast cell in a sugar solution will turn on genes that make en-
zymes for converting the sugar into alcohol, which are otherwise not pro-
duced Lee et al. [2002]. This effect is called enzymatic adaption Jacob and
Monod [1961]. In other words, regulatory networks can react to the external
environment of a cell.

Such a functionality is often realized by proteins acting as transcription
factors binding to the regulatory sites of other genes De Jong [2004]. In a
GRN, some of these transcription factors function for the cell as sensors of
stimuli such as temperature, osmotic pressure, biological signaling molecules
from other cells, nutrients, or harmful chemicals. The effect of their binding
can be either activating or inhibiting. A representation of such a network is
depicted in Figure 0.1.1.

Since transcription factors are encoded by genes themselves, which are
possibly affected by other transcription factors (and so on) the picture be-
comes in general a much more complicated than the one depicted in Fig-
ure 0.1.1.

1



2 0. INTRODUCTION

Stimulus 1 Stimulus 2 . . . Stimulus n

t1 t2 . . . tm

Gene 1 Gene 2 . . . Gene k

Figure 0.1.1. Environmental stimuli (first layer) are encoded
by the transcription rates of transcription factors (second layer),
which influence the transcription rate of genes (third layer) (see
also [Alon, 2007, p.7]).

The role of GRNs is not restricted to cellular information processing.
GRNs are also closely related to epigenetics. All cells in an organism con-
tain the same genetic material1, but their metabolism can differ considerably.
Differences in the “programs” of gene expression that can be found in dif-
ferent cell types in multi-cellular organisms almost always occur without
differences in the DNA sequence Reik [2007]. By definition, cell differentia-
tion is therefore an example of epigenetics, which studies heritable changes in
the phenotype that do not involve alterations in the DNA sequence Dupont
et al. [2009]. Such heritable changes in the phenotype are based on GRNs,
but act on a much slower time-scale.

How can we understand GRN function? In order to understand
the functionality of GRNs, suitable mathematical formalisms are necessary
for understanding the complex interactions among the components of GRNs.
Such formalisms make it possible to simulate GRNs and analyze the funda-
mental properties of these systems. The study of the topics introduced above
has been classified under the rubric Systems biology Ideker et al. [2001].

In general, the goal of Systems biology is the elucidation of the emer-
gence of complex behaviors in biological systems from relatively simple con-
stituents and the interactions among them. Examples of such biological
systems include metabolic networks, cell signaling networks, population dy-
namics, among many others. The focus of this work will lie on models of
GRNs. However, this does not imply that the underlying mathematical
methods used here are necessarily restricted to these biological systems.

In such a holistic approach, the entities of the biological system must
be abstracted in a suitable way. In the context of GRNs, this could mean
for example that we do not distinguish between the many ways genes are
regulated by transcription factors, but rather, that we simply consider their
capacity for activating or inhibiting the activity of their own or other genes.

1This does not hold in general; there are some exceptions neglected in this introduction (see
e.g. Chai and Gleeson [2018]).
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In this way, molecular interactions are abstracted in a mathematical for-
malism. With such an abstraction, the aim is both to understand the essen-
tial mechanisms characterizing the system, and ultimately to build realistic
computer models of the system.

What are the challenges in modeling GRNs? In the concrete
cases, it is not always clear how far we can go with these abstractions. This
is reflected by the presence of several modeling approaches that are often
used in concert.

In principle, it is possible to build quantitative models, i.e. models giv-
ing precise numerical predictions of GRN behavior, with a set of differential
equations. If the number of molecules involved in the modeled network is
small, randomness can be taken into account additionally using stochastic
models. Such models can represent very detailed descriptions of the mod-
eled regulatory networks. Indeed, such models have been successfully ap-
plied to small regulatory networks (see e.g. Barkai and Leibler [1997], Tyson
[1991], Tindall et al. [2012], De Jong [2004]). However, from a practical per-
spective this approach is usually hampered by the many unknown kinetic
parameters and mechanistic details of the majority of modeled biological
systems. Furthermore, it is not always necessary to have quantitative in-
formation about reaction mechanisms and kinetic constants to understand
GRN function [Szallasi et al., 2006, p. 125]. Therefore, qualitative models
are considered. Qualitative models of GRNs are designed to capture the
properties of the modeled GRN that are invariant over a range of different
reaction mechanisms and values of kinetic constants [Szallasi et al., 2006, p.
125]. Therefore, these models can be applied to GRNs about whose details
less is known. Additionally, they can provide information regarding which
properties of a system are important or essential, and which are not.

0.2. Contributions of this thesis

This thesis is concerned with qualitative models of gene regulatory net-
works. More specifically, we will consider and compare the following types
of models:

(1) interaction graphs
(2) Boolean networks
(3) models based on differential equations
(4) discrete abstractions of differential equations

An interaction graph of a GRN is a structural description of the GRN de-
scribing the possible interactions among the components of the network. In
contrast to other kinds of models considered here, interaction graphs con-
tain no explicit notion of time. There are several ways to refine these models
to dynamic models, i.e. models incorporating a notion of time. So called
Boolean networks assume that genes can have only two states, “active” and
“inactive”. Thus, Boolean networks can describe one or more possible se-
quences of activation and inactivation of the components of the GRN over
time. Another possibility is to build a parametrized model of differential
equations. Since the biochemical reaction mechanisms in the GRN are nor-
mally not known in detail, some assumptions or simplifications are usually
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made. In this thesis we consider differential equations based on Hill kinet-
ics. Such models are widely used Goutelle et al. [2008], Santillán [2008],
Griffith [1968a,b], Deuflhard and Röblitz [2015], Aldridge et al. [2006], Lewis
[2003], Özbudak and Lewis [2008], Lange et al. [2018], Krumsiek et al. [2010],
Wittmann et al. [2009]. Another alternative not treated here is piecewise lin-
ear differential equations Edwards et al. [2001], Glass and Kauffman [1973],
Gouzé and Sari [2002], Mestl et al. [1995]. The last class of models we con-
sider is that of models based on discrete abstractions of differential equations.
They build on the reasoning of models consisting of differential equations.
These models partition the phase space into regions and describe restric-
tions on the transitions between these regions. They are constructed in such
a way, that possible transitions between the regions can be computed in
the absence of precise numerical information on the parameters and exact
kinetics. Therefore, they are treated as independent modeling framework
here.

The goal of this thesis is to compare these four different modeling
formalisms from a theoretical point of view. This comparison is important
for two reasons.

(1) It constitutes an approach to validate the predictions of different
types of models in a general way. The assumption is that the prop-
erties present across different modeling formalisms are likely to be
robust predictions even if our models lack the full detail of the mod-
eled object.

(2) Information from different models is synergistic; results from sim-
ple models can be transferred to more complex models, helping to
simplify or supplement their analysis. Since the feasibility and com-
putational cost of the analysis in different model classes can vary
greatly, this can potentially be very advantageous, even allowing the
analysis of certain classes of models which otherwise would not be
feasible.

There are already several works comparing different qualitative modeling
approaches. The relation between interaction graph and the corresponding
Boolean networks and models based on differential equations is an exten-
sively studied field. Much of the research has focused on linking the presence
of structural properties – such as positive or negative cycles in the interac-
tion graph – to dynamical properties (e.g. number of fixed points, attractors)
Thomas and Kaufman [2001a], Remy et al. [2008], Soulé [2003], Richard and
Comet [2010], Thomas [1981], Snoussi [1998], Kaufman et al. [2007], Thomas
and Kaufman [2001b], Tonello et al. [2019]. For models based on differential
equations another approach exists. Discrete abstractions of differential equa-
tions constitute an alternative approach to linking structure and dynamics.
These models are constructed directly from interaction graphs and therefore
inherently constitute a relation between these modeling frameworks. We will
make three contributions in the effort to relate different modeling frameworks
in this thesis:

(1) The idea of abstracting the dynamics of individual models to re-
late structure and dynamics constitutes one of the main approaches
in this thesis. We will apply this approach to Boolean models.
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This will allow us to compare groups of models in different model-
ing frameworks (Boolean networks and differential equations) hav-
ing the same structure. These ideas have been partially published
Schwieger and Siebert [2017], but the results here will be presented
in a more systematic way and include several new results.

(2) We will show that certain state transition graphs of discrete ab-
stractions of differential equations can be considered asynchronous
Boolean networks. This work is published in Schwieger and Siebert
[2018].

(3) The other approach taken in this thesis concerns individual Boolean
models and parametrized families of ODEs. To construct ODE mod-
els systematically from Boolean models, several automatic conver-
sion algorithms have been proposed Wittmann et al. [2009], Krum-
siek et al. [2010]. We will consider several closely related algorithms
and prove that certain invariant sets are preserved during the con-
version. These results are published in Schwieger et al. [2018].

Despite the rather theoretical question this thesis tries to answer there are
surprisingly many potential applications of the results here such as

• network reduction of ODE models with Hill kinetics in Chapter 2,
• network inference and analysis of Boolean model pools in Chapter 4.

The final chapter will therefore be dedicated to several ideas for applications
with respect to experiment design. These ideas can be used in other contexts
as well. They should serve as a primer for future research.

0.3. Structure of this thesis

In Chapter 1 we introduce two modeling frameworks: dynamic models
based on systems of ordinary differential equations (ODEs) and Boolean
models. After a brief introduction and motivation of the construction of
such ODE models, we turn our attention in Chapter 2 to the comparison
of these two classes of models. Namely, we focus on a specific assignment
of ODE models to Boolean networks introduced in Krumsiek et al. [2010].
We show that we can shift a part of the analysis of the ODE model to the
corresponding Boolean network by considering so-called trap spaces – parts
of the state space where the values of certain components do not change. The
resulting family of ODE-systems can vary along a large number of parameters
and can already be considered a qualitative model. Therefore, it serves as
an indicator as to which properties of Boolean models might be expected
to be relatively robust predictions. The results of this chapter are mainly
published in Schwieger et al. [2018]. For Chapter 2, little knowledge of
Boolean networks is necessary.

Therefore, before continuing with the comparison of continuous and
Boolean models, in Chapter 3 we give an overview of the mathematical
tools we use in the investigation of Boolean models. The most important
constructions introduced in Chapter 3 are two types of quotient graphs: those
relying on the update of the Boolean network and those constructed using
projection maps. They will be used frequently in the subsequent chapters.
Intuitively, they can be understood as a way of abstracting the behavior of
a Boolean model, allowing the joint analysis of sets of Boolean models. The
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tools presented in this chapter are introduced for application in this the-
sis, but they also represent a succinct overview of methods useful in other
contexts.

In Chapter 4 we investigate different aspects of abstractions of mod-
els. We start by introducing discrete abstractions of differential equations
using methods from qualitative reasoning Kuipers [1984], Eisenack [2006].
Historically, these ideas go back to work by Kuipers in artificial intelligence
Kuipers [1984]. By partitioning phase space into a finite number of regions, a
transition graph describing possible behaviors of the system is constructed.
In Chapter 4 we will only consider a very elementary way of partitioning
the phase space based on the signs of derivatives. We will compare this
method of abstracting continuous models to one of the abstraction methods
for Boolean networks introduced in Chapter 3. This leads us to the first
main result of Chapter 4: Abstraction methods in Boolean networks and
continuous models lead to very similar state transition graphs.

When considering discrete abstractions of differential equations, the re-
sulting state transition graph can be constructed by purely logical rules. In
particular, no explicit knowledge about the corresponding differential equa-
tions is necessary. Therefore, they can be treated as an independent modeling
formalism (see e.g. [Szallasi et al., 2006, p. 125]). However, by construction,
their relation to models based on differential equations and the underlying
interaction graphs is well understood. In Section 4.2 we mirror this ap-
proach to obtain the analogous result for Boolean networks. Afterwards, we
show that, under the assumptions made in this thesis, we can unify both
approaches and consider them mathematically as a specific class of Boolean
networks – which we call skeletons of such transition graphs. This result
concludes our comparison of different modeling frameworks. The results of
Chapter 4 have been partially published in Schwieger and Siebert [2018,
2017].

The last chapter – Chapter 5 – can serve as an outlook for future
work. In this chapter, we discuss several methods of comparison of different
Boolean networks. We do this in order to develop applications of the results
in Chapter 4. However, as in Chapter 3, due to the generality of these
results, they may well be of interest in very different contexts. In the context
of this thesis, we use the methods of comparing different Boolean networks
combined with the results in Chapter 4 to develop criteria for distinguishing
different interaction graphs. These criteria are based on states, transitions or
sequences of states. We give different formulations of these problems using
quantified Boolean formulas, finite automata and algebraic geometry.



CHAPTER 1

Boolean models and ODE-models of gene
regulatory networks

Contents

1.1. General notations 8
1.1.1. Graph theory 8
1.1.2. Boolean expressions 10
1.1.3. Notation used in the context of Ordinary differential equations

and dynamical systems 11
1.2. ODE models of regulatory networks 13
1.2.1. Mass action kinetics 13
1.2.2. Hill kinetics 14
1.3. Boolean networks 16
1.3.1. Synchronous Boolean network 17
1.3.2. Asynchronous Boolean network 18
1.3.3. Dynamics of Boolean networks 19
1.3.4. Structure of Boolean networks 20

In this chapter we will introduce very briefly the basic mathematical
background and standard notation used throughout this thesis. It should
be understood as a motivation and a collection of essential definitions and
notations used in this thesis. For the reader unfamiliar with this topics or in-
terested in a more in-depth introduction we will give references to more com-
prehensive introductions. We will introduce two types of modeling frame-
works: Boolean models and ODE models. We start by reviewing some basic
definitions from mainly logic and graph theory in Section 1.1. The defini-
tions from logic will be used in the context of Boolean models introduced in
Section 1.3. Graph theory will appear in the context of the analysis of the
structure and dynamics of Boolean models. In this context also notions such
as steady states, trap sets and attractors are introduced, which will be used
throughout this thesis in the context of Boolean networks. Graph theory will
also appear in the context of ordinary differential equations in Section 4.1 as
a tool to investigate abstractions of model pools.

Afterwards, in Section 1.2 we will introduce continuous models of GRNs
based on ordinary differential equations. To give a taste of how these models
are derived and constructed we explain briefly the mass action law and the
Hill kinetics. The latter one will be extensively used in Chapter 2.

In Section 1.3 we introduce Boolean models of GRNs. We will consider
two types of Boolean networks: synchronous Boolean networks and asyn-
chronous Boolean networks. For both types of Boolean networks we will
explain what we mean by its dynamics and structure. For this purpose the

7



8 1. BOOLEAN MODELS AND ODE-MODELS OF GENE REGULATORY NETWORKS

interaction graph and the state transition graph of a Boolean network is
introduced.

1.1. General notations

We start by introducing the following conventions for sets:

Definition 1.1. For a set A we denote with |A| its cardinality and with
P(A) the powerset of A, i.e. the set of all subsets of A.

We use the symbol N to denote the natural numbers not including zero.
For the set given by the natural numbers until n ∈ N, i.e. {1, . . . , n} we
write [n].

Next, we introduce some notation mainly used for Boolean vectors, but
also sign vectors in Section 4.1. Since we will consider later graphs whose
nodes are Boolean vectors, this will come handy to the describe the edges of
such graphs.

Definition 1.2. For two elements in a Cartesian product of n sets, i.e.
v, w ∈

∏n
i=1Ai with Ai any set, we define

diff(v, w) :=
{
i ∈ [n]|vi 6= wi

}
,

comm(v, w) := [n]\diff(v, w).

For a tuple e = (v, w) we also write diff(e) instead of diff(v, w). And for a
set of tuples E we write diff(E) for the union

⋃
e∈E diff(e).

In other words the set diff(v, w) describes the set of indices where v and w
differ from each other. The set comm(v, w) is the set of indices, where v and
w do not differ. Typically in the above definition we will choose Ai = {0, 1},
i ∈ [n] such that

∏n
i=1Ai = {0, 1}n. Sometimes, we will replace however the

set {0, 1} with {−1, 1}. Therefore, we gave a more general definition.

1.1.1. Graph theory. We are going to consider models of regulatory
networks which can be described as directed graphs or at least some proper-
ties of these models can be described as directed graphs. Therefore, we need
some basic definitions of graph theory.

A directed graph G is an ordered pair of disjoint sets (V,E) such that
the elements in E are identified with elements in V ×V . The set V is called
the set of nodes and E is called the set of edges. If G is a graph then V (G)
is the set of nodes of G and E(G) is the set of edges. Let G = (V,E) be any
directed graph. For (v, w) ∈ E we also write v → w if it is from the context
clear which graph is meant. Edges of the form (v, v) in G are called loops.
For two graphs G′ = (V ′, E′) and G = (V,E) we say G′ is a subgraph of G
if V ′ ⊆ V and E′ ⊆ E. Especially, therefore every graph is a subgraph of
itself. We introduce the following symbols:

Definition 1.3. The set of predecessors pred(v) and the set of successors
succ(v) of a node v ∈ V are defined as

pred(v) :=
{
w ∈ V |(w, v) ∈ E

}
,

succ(v) :=
{
w ∈ V |(v, w) ∈ E

}
.

With deg+(v) we denote its outdegree, the number of its successors, and with
deg−(v) its indegree, the number of its predecessors.
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Next, we introduce notations related to the reachability of nodes.

Definition 1.4 ([Bollobás, 2013, p.4]). A (directed) path is a directed
graph P = (V (P ), E(P )) of the form V (P ) = {x1, . . . xl+1} with xi → xi+1,
i ∈ [l] and no other edges. The length of the path is l – i.e. the number of
edges.

In the above definitions paths of length zero are not excluded. Therefore,
a single node is by definition always a directed path.

Definition 1.5. We write v ; w for v, w ∈ V iff there is a directed path
from v to w in G. We also say in this case w is reachable from v. We call
the graph (V,;) the transitive closure of G.

Again, the above definition implies that every node is reachable from
itself.

Definition 1.6 ([Bollobás, 2013, p.5]). A walk in a directed graph G =
(V,E) is a finite sequence of nodes in G – let say (xi)i∈[l+1] such that xi →
xi+1 for i ∈ [l]. We call l the length of the walk. A walk whose edges are
distinct is called trail. A circuit is a trail (xi)i∈[l] such that its first and last
node coincide, i.e. x1 = xl. A walk W = (xi)i∈[l+1] with l ≥ 3, x1 = xl+1,
and the nodes xi, i ∈ [l] are distinct from each other is called cycle.

We also introduce some not so common notions which will be used mainly
in the context of Boolean networks (introduced in Section 1.3) and their state
transition graphs.

Often we are interested in regions of these graphs from which no walk
are leading out. Such regions are called trap sets.

Definition 1.7 ([Klarner, 2015, p. 78]). For a directed graph G = (V,E)
we call T ⊆ V a trap set if there are no edges from T to V \T in G – i.e.[
T × V \T

]⋂
E = ∅.

The complements of trap sets are called no-return sets. These sets are
characterized by the fact that no path that left it can enter it again.

Definition 1.8. For a directed graph G = (V,E) we call T ⊆ V a no-
return set if there are no edges from V \T to T in V – i.e.

[
V \T ×T

]⋂
E = ∅

or differently expressed a set whose complement is a trap set.

Often several trap sets are nested. In this case, of special interest are
inclusion-wise minimal trap sets. These sets are called attractors. In many
models of regulatory networks these regions are of special interest since they
capture a possible long-term behavior of the modeled system.

Definition 1.9 (Klarner and Siebert [2015]). For a directed graph G =
(V,E) we call a subset of V attractor if it is an inclusion-wise minimal trap
set. An attractor consisting only of one node is called steady node (or in the
context of Boolean networks steady state)

When talking about attractors (or more general trap sets) its often useful
to know from which nodes the attractor is reachable. For this purpose the
notions weak and strong basin of attraction are introduced. The weak basin
of attraction is the set of nodes from which at least one path leads to the
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attractor. For nodes in the strong basin all sufficiently long paths starting in
these nodes lead eventually into the corresponding attractor. We formalize
this in the following definition.

Definition 1.10 (Klarner et al. [2018]). For a trap set of a directed
graph G = (V,E) we call its weak basin of attraction the set of nodes from
which exists a directed path to the trap set. The strong basin of attraction
consists of all nodes such that from all nodes reachable from it there is a
path to the trap set. More formally: For a trap set T ⊆ V we define:

WeakBasin(T ) = {x ∈ V |∃t ∈ T : x ; t},
StrongBasin(T ) = {x ∈ V |∀y ∈ V : (x ; y)⇒ (∃t ∈ T : y ; t)}.

We also remind the reader to the definition of a graph homomorphism:

Definition 1.11 (see e.g. [Hahn and Tardif, 1997, Definition 2.1]). A
graph homomorphism f from a directed graph G = (V (G), E(G)) to a graph
H = (V (H), E(H)) is a function from V (G) to V (H) such that (v, w) ∈
E(G) ⇒ (f(v), f(w)) ∈ E(G) holds. If a graph homomorphism f from G
to H is a bijection whose inverse function f−1 is a graph homomorphism as
well, then f is a graph isomorphism.

1.1.2. Boolean expressions. To describe the edges in the transitions
graphs introduced in the context of Boolean networks and qualitative dif-
ferential equations in Section 4.1 we use Boolean expressions. A Boolean
expression is composed of Boolean operators.

Definition 1.12. We use the following Boolean operations: ∧ for the
Boolean and, ∨ for the Boolean or, ¬ for the negation,→ for an implication,
↔ for Boolean equivalence and ⊕ for xor.

A Boolean expressions is then defined as follows:

Definition 1.13 ([Crama and Hammer, 2011, p. 10]). Given a finite
collection of Boolean variables {x1, . . . , xn}, a Boolean expression (or Boolean
formula) in the variables x1, . . . , xn is defined recursively as:
(1) The constants 0, 1 and the variables x1, . . . , xn are Boolean expressions
in x1, . . . , xn.
(2) If α and β are Boolean expressions in x1, . . . , xn, then α ∨ β, α ∧ β and
¬α are Boolean expressions in x1, . . . , xn.
(3) Every Boolean expression is formed by finitely many applications of the
rules (1) and (2).

We use capital
∧

if we consider the conjunction of a set of Boolean
expressions. For example

∧
i∈[n] ai = a1 ∧ · · · ∧ an, a ∈ {0, 1}n. We use the

convention that the conjunction of the empty set is always true. For example∧
i∈∅ ai = 1 for all a ∈ {0, 1}n. Similar we proceed for

∨
. But here we use

the convention that the disjunction over an empty set of indices is always
false. I.e. for example

∨
i∈∅ ai = 0.

Since the above Boolean operations can be expressed in the field F2

(the Galois field of two elements) the set {0, 1}n forms a vector space. We
extend all Boolean operations introduced above to vectors over {0, 1}n in a
component-wise way. For vectors

(
s1 . . . sn

)
∈ {0, 1}n we also just write
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s1 . . . sn. For example instead of
(
0 1 0

)
we just write 010. We can define

also a metric on the set of Boolean vectors {0, 1}n:

Definition 1.14. The Hamming distance of two vectors v, w ∈ {0, 1}n
is defined as the cardinality of the set diff(v, w).

We also introduce here the following notation, which will be used mainly
in Chapter 4.

Definition 1.15. For a, b ∈ {0, 1} we define a⊕1 b := a⊕ b, a⊕0 b = 0
and a⊕−1 b := a↔ b.

We use notations like α(x1, . . . , xn) to denote Boolean expressions in
the variables x1, . . . , xn. Since every Boolean expression induces a Boolean
function {0, 1}n → {0, 1} we identify the Boolean expression α with the
functions it induces and do not distinguish between these objects when not
otherwise stated. For example we write f(x1, x2) = x1 ∧ x2 for the function

f : {0, 1}2 → {0, 1}, (x1, x2) 7→

{
1 if x1 ∧ x2,

0 otherwise.
We denote with B(n,m) the

set of Boolean functions from {0, 1}n to {0, 1}m, n,m ∈ N.

Definition 1.16. A literal is a Boolean expression of the form x or ¬x
for a Boolean variable x. A term T is a Boolean expression in x1, . . . , xn of
the form

T =
∧
i∈A

xi ∧
∧
j∈B
¬xj , A,B ⊆ [n], A

⋂
B = ∅.

A clause C is a Boolean expression in x1, . . . , xn of the form

C =
∨
i∈A

xi ∨
∨
j∈B
¬xj , A,B ⊆ [n], A

⋂
B = ∅.

Let us also recall the definitions of disjunctive and conjunctive normal
forms:

Definition 1.17 ([Crama and Hammer, 2011, Def. 1.10]). A disjunctive
normal form (DNF) is an expression of the form

∨m
k=1 Tk, where Tk, k ∈ [m]

are terms. A conjunctive normal form (CNF) is an expression of the form∧m
k=1Ck where Ck, k ∈ [m] are clauses.

1.1.3. Notation used in the context of Ordinary differential
equations and dynamical systems. With C(X,Y ) we denote the space
of continuous functions from X to Y . More general, with Ck(X,Y ) we de-
note the space of functions f : X → Y which have continuous derivatives
f (1), . . . , f (k). We use a dot to denote for a function x : R → Rn its deriv-
ative, i.e. ẋ. For a function f : Rn → R, x 7→ f(x) we denote with ∂jf the
partial derivative of f with respect to xj . With ∇f =

(
∂1f . . . ∂nf

)
we

denote the gradient of f . Finally, for a function f : Rn → Rm we define Jf
to be the Jacobian matrix of f .

We will use also a few notions from dynamical systems in this thesis.

Definition 1.18 ([Teschl, 2012, p. 187]). A dynamical system is a tuple
(G,M, T ), where (G,+) is a semigroup with identity element e acting on a
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set M and T is a map

T : U ⊂ (G×M)→M,

(g, x) 7→ Tg(x),

such that

Tg ◦ Th = Tg+h, T0 = I,

where I is the identity. The map T is called the evolution function of the
dynamical system. The set M is called state space (or phase space). If we
consider T for a fixed x ∈M , we call the induced map, the flow through x.

Definition 1.19. We define the orbit (or trajectory) through x ∈ M as
the set

γ(x) := {Tg(x)|g ∈ I(x)} ⊆M

with I(x) := {g ∈ G|(g, x) ∈ U}. A point whose orbit consists of a single
point, we call fixed point.

Definition 1.20. For a dynamical system (G,M, T ) a set A ⊆ M is
called an invariant set if

∀x ∈ A∀g ∈ G : Tg(x) ∈ A

is satisfied.

In this thesis we consider real dynamical systems, where the semigroup in
Definition 1.18 is given by the positive real numbers, i.e. (G,+) = (R≥0,+),
and discrete dynamical systems, where (G,+) = (Z≥0,+). Real dynamical
systems can arise from an ODE-system of the form

ẋ = f(x),

x(0) = x0,

where f ∈ Ck(M,Rn), k ≥ 1, and M ⊆ Rn is open. Indeed, there is a
unique maximal integral curve φx at every point x ∈ Rn, defined on some
neighborhood Ix of x. This allows to define the flow of the above differential
equation to be the map

T : U →M,

(t, x) 7→ φx(t),

where U =
⋃
x∈M Ix × {x} ⊆ R × M and x is fixed. A fixed point x of

T is called stable if for any neighborhood V (x) ⊆ Ix there exists a second
neighborhood V ′(x) ⊆ V (x) such that any solution starting in V ′(x) remains
in V (x) for t ≥ 0. A fixed point x is called asymptotically stable if it is stable
and if there is a neighborhood V (x) such that

∀y ∈ V (x) : lim
t→∞
|Tt(y)− x| = 0

holds. For details we refer to [Teschl, 2012, p. 192].
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1.2. ODE models of regulatory networks

Continuous dynamic modeling is widely used to model regulatory net-
works Aldridge et al. [2006], Karlebach and Shamir [2008]. Here we will
solely focus on continuous models built with ODEs. The unknown variables
in these ODEs represent production and consumption rates of individual
biomolecular species. We give a very brief introduction to the construction
of these models and introduce as well the Hill kinetics, which will be used
later. For a more detailed treaty we refer to Klipp et al. [2008], Deuflhard
and Röblitz [2015].

ODE models of regulatory networks are based on the law of mass action
kinetics.

1.2.1. Mass action kinetics. The law of mass action kinetics states
that rates of reactions are proportional to the concentrations of the reactants
to the power of the molecularity [Klipp et al., 2008, p. 141]. For example,
if we consider a reversible reaction in which the molecules A and B react to
C, e.g.

A + B
k+−−⇀↽−−
k−

2 C,

then the so-called reaction rate1 v is given by v(A,B,C) := k+A · B −
k−C

2, k+, k− ∈ R>0, where we identified the names of the molecules A, B
and C with its concentrations. The constants k+, k− are the respective
proportionality factors. The corresponding ODE-system has the form:

Ȧ = −v(A,B,C),

Ḃ = −v(A,B,C),

Ċ = 2 · v(A,B,C).

In general, for a reaction of the form
n∑
i=1

αiAi
k+−−⇀↽−−
k−

m∑
i=1

βiBi, αi, βi ∈ N>0

we obtain the reaction rate

v = k+

n∏
i=1

Aαii − k−
m∏
i=1

Bβi
i .

In most models of regulatory networks enzymatic reactions need to be taken
into account. The simplest case is a one-substrate reaction without backward
reaction without effectors:

(1.2.1) E + S
k1−−⇀↽−−
k−1

ES
k2−−→ E + P,

where the letter E stands for a free enzyme, S for a substrate, ES for an
enzyme-substrate complex. The reversible reaction on the left describes the
formation of the enzyme-substrate complex ES. The irreversible part on the
right describes the release of the product P from the enzyme E. To simplify
such systems it is often assumed that the first reversible reaction in (1.2.1)
is in a so-called quasi-steady state. The argument is that the reaction rates

1Change of concentration per time
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k1 and k−1 are much bigger than k2 and therefore there is always enough
time to maintain the equilibrium for the first reaction (see Segel [1988] for
details).

Enzymes enable reactions to occur on lower temperatures in the cell.
Since their production rate can be up- or down-regulated and since their
functionality can be altered by the binding of ligands, they are the central
building blocks of regulatory networks.

1.2.2. Hill kinetics. When knowledge about the chemical reactions of
enzymes is only qualitative, often so-called Hill functions are assumed. They
are frequently found within models of gene expression since the late sixties
Griffith [1968a,b]. They were introduced in 1910 by A. Hill Hill [1910]. The
motivation for their usage was the binding of ligands2 to a protein. Often
a protein has several identical binding sites. For example hemoglobin has
four binding sites for oxygen [Klipp et al., 2008, p. 154]. In many instances
interactions between these binding sites occur. To illustrate this we consider
the case of two binding sites (see Santillán [2008] for the general case):

Assume two ligands S bind cooperatively a receptor E. The word cooper-
atively means that the binding of the first ligand to an available site increases
the chances that another ligand binds to a second empty nearby site. For
our example we assume that the receptors E have two identical binding sites
for the ligand S. The reaction for the binding of the first ligand has the form

E + S
2k+−−−⇀↽−−
k−

ES.

We inserted a factor 2 into the forward reaction rate to take into account
that there are two binding sites for the molecule S. The concentrations at
the equilibrium points are related by

E · S =
K

2
· ES ,

with K = k−
k+

. The constant K is called the dissociation constant . Because
of the assumed cooperative binding sites for the reaction of the second ligand
either k+ or k− decreases after the binding of the first ligand. In both cases
the corresponding dissociation constant diminishes:

ES + S
2·K
kc−−⇀↽−− E2S,

with kc > 1 describing the degree of cooperativity. The concentrations at
equilibrium are related now by

ES · S =
2K

kc
· E2S .

Assuming a constant number of receptors, i.e. E + ES + E2S = Etot, it is
possible to obtain from the above equations the following formulas for the

2Any molecules that bind to protein is called ligand [Klipp et al., 2008, p. 154].
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fractions of receptors which have ligands bound to their site3.
E

Etot
=

1

1 + 2 · SK + kc · ( SK )2
,

E2S

Etot
=

kc ·
(
S
K

)2
1 + 2 S

K + kc(
S
K )2

.(1.2.2)

With the substitution x :=
√
kc · SK we obtain

E

Etot
=

1

1 + 2 · 1√
kc
· x+ x2

,

E2S

Etot
=

x2

1 + 2 · 1√
kc
· x+ x2

.

For the limit case of very high cooperativity and assuming that the value of
x is independent of kc – i.e. non-diverging x (see [Santillán, 2008, Section
4]) – we obtain:

lim
kc→∞

E

Etot
=

1

1 + x2
,

lim
kc→∞

E2S

Etot
=

x2

1 + x2
.

This arguments can be generalized to a receptor E with n binding sites. In
the limit case of high cooperativity we obtain:

lim
kc→∞

E

Etot
=

1

1 + xn
,

lim
kc→∞

EnS
Etot

=
xn

1 + xn
.

These equations are called Hill equation or Hill functions. In practice often
it is unknown how many binding sites a protein possesses and if the binding
of ligands is cooperative. Practice has shown however, that the Hill equation

3For example the derivation of (1.2.2) is as follows using the above identities:

ES · S =
2K

kc
· E2S

⇔(Etot − E2S − E) · S =
2K

kc
· E2S

⇔Etot · S − E · S =
(
S +

2K

kc

)
· E2S

⇔Etot · S −
K

2
· ES =

(
S +

2K

kc

)
· E2S

⇔Etot · S −
1

S
·
K

2
· S · ES =

(
S +

2K

kc

)
· E2S

⇔Etot · S −
1

S
·
K

2
·

2K

kc
· E2S =

(
S +

2K

kc

)
· E2S

⇔Etot · S =
(
S +

2K

kc
+

1

S
·
K2

kc

)
· E2S

⇔
E2S

Etot
=

S(
S + 2K

kc
+ 1
S
· K2

kc

) =
S2(

S2 + S · 2K
kc

+ K2

kc

) =

kc
K2 S

2( kc
K2 S

2 + 2 S
K

+ 1
)
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describes the empirical data with good precision in many instances [Alon,
2007, p. 13].

In summary, ODE models of regulatory networks are based on mass
action kinetics. Consequently, for the construction of ODE models many
proportionality factors need to be estimated. Furthermore, many reactions
are catalyzed by enzymes. Their functionality can be changed by ligands
in many instances. When knowledge is not detailed enough, Hill kinetics
can be used to model such effects. Nevertheless, this requires for exam-
ple knowledge about the number of bindings sites for the ligands involved.
Consequently, the use of ODE models requires sufficient knowledge about
mechanistic details and kinetic parameters of the underlying systems.

1.3. Boolean networks

Boolean networks (BNs) constitute a family of models of regulatory net-
works, which can be used if only little data is available or systems become
relatively large and a simulation with ODE systems would be too costly.
Nevertheless, they lead in many instances to useful predictions Wang et al.
[2012].

Historically, the use of Boolean models in systems biology goes back to
Stuart Kauffman (1939-), René Thomas (1928 - 2017) and Motoyosi Sugita
(1905-1990) who started to use Boolean algebra in the 1960s and the 1970s
to describe gene regulatory networks Abou-Jaoudé et al. [2016].

Stimulated by François Jacob and Jacques Monod who studied bacterial
gene regulation Jacob and Monod [1961], several researchers proposed to
model regulatory circuits with Boolean algebra. Mitoyosi Sugita was the
first among them proposing in 1963 an explicit modeling of bacterial genetic
circuits with symbolic logic Abou-Jaoudé et al. [2016], Sugita [1963].

A few years later in 1969 Stuart Kauffman investigated the origin of life
and used random Boolean networks to investigate how generic gene regula-
tory networks organize themselves Kauffman [1969]. He showed that sparse
random Boolean networks exhibit very similar properties than regulatory
networks of existing organisms. He proposed that cell types correspond to
dynamical attractors in BNs and that cell differentiation can be related to
the transition to these attractors.

In the same time René Thomas started to use Boolean algebra to model
more specific biological regulatory circuits Thomas [1973], Thomas et al.
[1976], Thomas [1978].

From a practical point of view BNs have the advantage, that they can be
relatively effectively analyzed with methods from model checking and other
formal methods Baier and Katoen [2008], Klarner [2015], Monteiro et al.
[2014], Batt et al. [2005]. Several Software-tools have been developed for
this purpose Klarner et al. [2016], Gonzalez et al. [2006], Videla et al. [2017],
Streck [2015]. These methods allow to investigate some properties of models
with several hundreds of components Saez-Rodriguez et al. [2007], Samaga
et al. [2009], Schlatter et al. [2011, 2009], Abou-Jaoudé et al. [2016].

Formally a BN consists of a set of Boolean variables and a set of logical
formulas describing the behavior of the system. In this type of model com-
ponents of the regulatory network are represented by Boolean variables, i.e.
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Figure 1.3.1. Boolean network with two components {1, 2}. The
nodes of the directed graph representing the behavior of the
Boolean network are called states and the edges between the states
are called transitions.

they can take either the value zero or one Hopfensitz et al. [2013], De Jong
[2004]. The state of a regulatory network with n ∈ N components is mod-
eled in this formalism as a Boolean vector in {0, 1}n storing the values of
the Boolean variables of the BN. The (possible) behavior of a regulatory
network corresponds to trajectories, i.e. sequences of transitions between
these states. It can be represented by a directed graph over the set of nodes
{0, 1}n. Additionally, we require that these transitions can be described by
logical expressions. For linking the directed graph representing the dynamics
of the Boolean network with the logical rules how the components interact,
several mathematical formalisms are in use. We define a general Boolean
network here as follows:

Definition 1.21. We call a map from the set of Boolean functions
B(n, n) to the set of directed graphs over {0, 1}n update-rule. For f ∈
B(n, n) we denote the associated graph under this mapping with Gu-rule(f) =(
Vu-rule(f), Eu-rule(f)

)
, Vu-rule(f) = {0, 1}n. For any f ∈ B(n, n) we call the

tuple (f,Gu-rule(f)) a u-type Boolean network (u-BN). We call the graph
Gu-rule(f) state transition graph (STG). The function f we call update func-
tion. We refer to the set [n] as the components of the Boolean network. The
nodes of this graph are called states and its edges transitions.

The update-rule Gu-rule(·) in Definition 1.21 assigns to every Boolean
function f : {0, 1}n → {0, 1}n a directed graph. Sometimes we talk about
the dynamics or behavior of a Boolean network. In this case we refer to the
structure of its state transition graph.

In the above definition we did not specify the update-rule further. This
we will do now. In applications there are mainly two update-rules considered:
the synchronous and the asynchronous update.4 Here we focus mainly on
the latter one.

1.3.1. Synchronous Boolean network. A synchronous Boolean net-
work is a Boolean network whose STG consists only of states with outdegree
one. The successor of a state is given by the image of the Boolean function
inducing the BN. The formal definition is as follows:

4These update-rules can also be generalized to probabilistic Boolean networks (PBNs) Liang
and Han [2012], Shmulevich et al. [2002]. However, these types of Boolean networks are not
considered in this work.
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Definition 1.22. A synchronous Boolean network is a tuple
(
f,Gsync(f)

)
,

where f ∈ B(n, n) is a Boolean function andGsync(·) is an update-rule assign-
ing to any f ∈ B(n, n) the directed graph Gsync(f) =

(
Vsync(f), Esync(f)

)
defined by

Vsync(f) := {0, 1}n

and

Esync(f) :=
{

(s, t) ∈ Vsync(f)× Vsync(f)
∣∣t = f(s) and s 6= t

}
.

We call the graph Gsync(f) the synchronous state transition graph of f .

We remark that we demand in the above definition that a transition can
only exist between two distinct states. Also it is easy to see that the mapping
Gsync(·) is injective.

1.3.2. Asynchronous Boolean network. In the state transition graph
of a synchronous Boolean network states are updated simultaneously. In an
asynchronous Boolean network this is not the case. The state transition
graph of an asynchronous Boolean network (ASTG) will capture possible
behaviors of a modeled regulatory network. The asynchronous update is
believed to be more suitable for models for GRNs (see e.g. Harvey and
Bossomaier [1997], Luo and Wang [2013]). In an ASTG a state can have
possibly many different successor states. Walks in this graph correspond to
possible behaviors of the system. The ASTG is induced by a logical func-
tion f : {0, 1}n → {0, 1}n. To do so we compare each state s ∈ {0, 1}n
with its image under f – i.e. f(s). Then for each component for which the
image f(s) differs from the state s, we add a transition. For example imag-
ine a three dimensional system where the state 000 is mapped by f to 110.
Then the corresponding ASTG would contain the transitions 000→ 100 and
000 → 010 but not the transition 000 → 110. The idea behind this formal-
ism is, that it is very unlikely, that in a continuous time systems all updates
would take place in the same time. We give now a formal definition:

Definition 1.23. An asynchronous Boolean network is a is a tuple(
f,Gasync(f)

)
, where f ∈ B(n, n) is a Boolean function and Gasync(·) is

an update-rule Gasync(·) =
(
Vasync(·), Easync(·)

)
defined by

Vasync(f) := {0, 1}n

and

Easync(f) :=
{

(s, t) ∈ Vasync(f)× Vasync(f)
∣∣({i} = diff(s, t)

and fi(s) = ti
)}
,

We call Gasync(f) the asynchronous state transition graph (ASTG) of f .

Note that we allow in the above definition no loops, but only transitions,
where one component changes. Again it is easy to see that the mapping
Gasync(·) is injective.

To simplify our notation we introduce similar to Remy et al. [2008] some
notation to express that a Boolean vector is partially negated on a set A ⊆
[n].
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Definition 1.24. Let A ⊆ [n] and v ∈ {0, 1}n. Define vA ∈ {0, 1}n
component wise like this:

vAi =

{
vi if i 6∈ A
¬vi if i ∈ A

.

We extend this definition to transitions.

Definition 1.25. For any e = (v, v{i}) ∈ {0, 1}n × {0, 1}n, i ∈ [n] and
A ⊆ [n]\{i} we write eA for (vA, vA∪{i}).

We can summarize the above as follows:

Lemma 1.1. A graph G = ({0, 1}n, E) is an ASTG (i.e. can be repre-
sented by a Boolean function f : {0, 1}n → {0, 1}n in the sense of Defini-
tion 1.23) if and only if every transition (v, w) ∈ E consists of states with
Hamming distance one (see Definition 1.14) from each other.

Proof. For each state v ∈ {0, 1}n in G we can define a function f(v)

component-wise by fi(v) =

{
¬vi (v, v{i}) ∈ E
vi (v, v{i}) 6∈ E

. �

1.3.3. Dynamics of Boolean networks. Throughout this thesis we
use the letter f to denote a Boolean function {0, 1}n → {0, 1}n, n ∈ N.

To describe the dynamics of a Boolean network we will make often use
of the notions introduced in Section 1.1.1. For example a steady state (see
Definition 1.9) of a Boolean network is characterized by the states x ∈ {0, 1}n
satisfying f(x) = x. The notion of a steady state can be generalized to that
of a trap space. A trap space is a trap set where some of the components
remain fixed, while other are still allowed to change their value. For the
formal definition we also introduce projections on the set {0, 1}n, which will
be used in Chapter 2 and investigated further in Section 3.2.1.

We introduce the following notation for projections:

Definition 1.26. For any ∅ 6= I ⊆ [n] we define the map projI :

{0, 1}n → {0, 1}|I|, x 7→ (xi)i∈I and call it projection.

Then we define trap spaces as certain preimages of such projections:

Definition 1.27. A subset S of the state space {0, 1}n is called a sub-
space of {0, 1}n (or more precisely an I−subspace) if there exists a non-empty
set I ⊆ [n] and a state p ∈ {0, 1}|I| such that it holds S = (projI)−1(p).
Sometimes, we also write (p, ∗) for the subspace (projI)−1(p), when it is
clear from the context which components are meant.
An I−subspace which is a trap set (see Definition 1.7) we call I−trap space
(or simply trap space).

Trap spaces are useful in the analysis of BNs since they can be com-
puted relatively efficiently in contrast to the more general trap sets Klarner
et al. [2015]. To get familiar with the notions introduced in Section 1.1.1 we
consider a small example for an ASTG.

Example 1.1. Consider the function f : (x1, x2, x3, x4) 7→ (x1∨¬x2,¬x1∨
(x3 ∧ x4),¬x2, x1). Its ASTG is depicted in Figure 1.3.2. We see that
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Figure 1.3.2. Gasync(f) from Example 1.1.

0100 is a steady state (and therefore also an attractor) and for example
T =

{
1001, 1011, 1111, 1101

}
is a trap space where the first and last compo-

nent is fixed.

1.3.4. Structure of Boolean networks. Next, we describe how we
can obtain a structural description of our Boolean network. Such a struc-
tural description captures the effect of the components of the regulatory
network on each other and can be represented as a graph with the nodes
representing components of the network and directed edges representing in-
fluences/interactions. Formally it will be another directed graph assigned to
a Boolean function f ∈ B(n, n). To define what we mean with “influence”
we use the notation in Definition 1.24 to define the discrete derivative of a
Boolean function f : {0, 1}n → {0, 1}n in a point v ∈ {0, 1}n

(1.3.1) ∂jfi(v) :=
fi(v

{j})− fi(v)

v
{j}
j − vj

.

Furthermore, we denote with ∇fi the vector
(
∂1fi , . . . , ∂nfi

)t.
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Using the discrete derivative we construct a so-called interaction graph
corresponding to the function f consisting of n nodes and signed edges be-
tween them. This graph can be seen as a discrete version of the Jacobian
matrix. We furthermore distinguish between a local version of this graph
representing the influence of the components on each other in neighborhood
of a specific state and a global version capturing all possible influences.

Definition 1.28. The local interaction graph IGf (x) := (V,E), x ∈
{0, 1}n of a Boolean function f : {0, 1}n → {0, 1}n consists of n nodes
V := [n] consisting of the components of the BN, and a signed edge-set
E
(
IGf (x)

)
⊆ V × V × {−1, 1}, which is defined by

(i, j, ε) ∈ E
(
IGf (x)

)
:⇔ (∂ifj)(x) = ε.

We denote with IGglobal(f) – the global interaction graph – the union of all
local interaction graphs. I.e.

IGglobal(f) :=
⋃

x∈{0,1}n
IGf (x).

We remark that in the local version of the interaction graph there can
be maximally one edge between two components. However, in the global
version it can happen that two edges with opposite sign exist between two
components. This means that a component can act activating and inhibiting
on another component depending on the values of the other components of
the network. However, for the majority of BNs modelings GRNs the global
interaction graph has not more than one edge between different components.
We will therefore often make this assumption. Edges in the interaction graph
with positive label we also call activating edges, while edges with negative
label are also called inhibitory edges.

We conclude this section with a small example.

Example 1.2. We continue Example 1.1. In Figure 1.3.3 its global
interaction graph is depicted. To check for example whether there is an edge
with negative label from the second to the third component consider the
state 0000 and the discrete derivative ∂2f3, i.e.

∂2f3(0000) =
f3(0100)− f3(0000)

1− 0
=

0− 1

1− 0
= −1.
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x1

x2 x3

x4

Figure 1.3.3. IGglobal(f) from Example 1.2. Red edges denote
edges with negative label. Black edges denote edges with positive
label.
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In this chapter we focus on two hybrid approaches transforming Boolean
networks into ODE systems. The value of such hybrid approaches crucially
depends on our ability to transfer knowledge from the Boolean model to
the continuous model. Results available so far are limited. They concern
mainly static properties such as steady states Wittmann et al. [2009], Veliz-
Cuba et al. [2012] and trap spaces Schwieger et al. [2018]. The algorithm
considered here stems from Wittmann et al. [2009]. Already in Wittmann
et al. [2009] and later more generalized in Veliz-Cuba et al. [2012] it was
proven that information about the location and number of steady states can
be deduced from the Boolean model. Less is known about other dynamical
features such as oscillations. However, there are some results for slightly dif-
ferent hybrid approaches using piecewise-linear differential equations about
oscillatory behavior, for example in Snoussi [1989], Veliz-Cuba et al. [2014b].

The focus of this chapter lies on the presentation of results in Schwieger
et al. [2018] concerning trap spaces (see Definition 1.27). Trap spaces are
a characteristic feature of dynamical systems that generalize the concept of
steady states - namely subspaces of the state space where only some of the
components remain fixed. Trap spaces have been frequently studied in the
past Zañudo and Albert [2015, 2013], Remy and Ruet [2008], Siebert [2009]
in the context of Boolean networks. The goal of this chapter is to show that
these trap spaces of a Boolean dynamical system correspond to invariant
sets of the continuous dynamical system, whereby the size of these sets can
be controlled by the Hill exponents. Trap spaces in a Boolean network can

23
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be computed efficiently (see Klarner et al. [2015]). This hints to possible
model reductions whereby only a specific subnetwork of the original Boolean
network needs to be translated into an ODE model.

Chapter 2 is organized as follows. In Section 2.1 we briefly review the
transformation algorithm from Wittmann et al. [2009], which assigns to a
Boolean function a parametrized family of ODE systems. In Section 2.2 it
is shown that trap spaces of a Boolean network cannot directly be linked to
trap spaces in the ODE model in the general case. This motivates the rest
of the chapter. We start by considering the case of normalized Hill functions
in Section 2.4.1. In Section 2.4.2, it is shown that, even if the Hill functions
are not normalized, a correspondence to invariant sets is possible. The size
of these sets can be controlled by the parameters of the Hill functions, as we
will demonstrate in Section 2.4.3.

2.1. The transformation algorithm explained

Different methods have been proposed to transfer either Boolean net-
works to ODE models in an automated framework (see, e.g., Wittmann
et al. [2009], Krumsiek et al. [2010]) or vice versa (see, e.g., Stötzel et al.
[2015], Glass and Kauffman [1973]). The most common way of modeling is to
first construct a Boolean network and to derive an ODE system in the second
step. In this chapter we concentrate on the algorithm presented in Wittmann
et al. [2009]. This algorithm aims at preserving the network topology and
the type of influence (activating or inhibiting) during the conversion process
by using multivariate polynomial interpolation and Hill functions.

Consider an arbitrary Boolean function f : {0, 1}n → {0, 1}n, n ∈ N.
The function f could induce a state transition graph via an asynchronous
or a synchronous update-rule. But in this chapter it is enough to consider
only the synchronous update. Since we will investigate trap spaces and
steady states, which stay the same in both kinds of BNs, we can solely focus
on synchronous BNs. Hence, we consider a synchronous Boolean network
(see Definition 1.22), which we express in this chapter in the following way:

xt+1 = f(xt), t ∈ N,(2.1.1)

x0 := x0 ∈ {0, 1}n.

The Boolean function f is in two steps converted into a family of ODE
systems:

2.1.1. Multivariate polynomial interpolation. First, a multivari-
ate polynomial interpolation of f is constructed to obtain a continuous con-
tinuation of f .

Definition 2.1. Let f : {0, 1}n → {0, 1}n be a Boolean function. Its
multivariate polynomial interpolation is a function I(f) : [0, 1]n → [0, 1]n

with I(f)i := I(fi) : [0, 1]n → [0, 1] that assigns polynomials to the Boolean
functions fi given explicitly by

(2.1.2) I(fi)(x1, . . . , xn) =
∑

x∈{0,1}n
fi(x)

n∏
j=1

(
xjxj + (1− xj)(1− xj)

)
.
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x1 x2 x3 f1(x) f2(x) f3(x)

0 0 0 1 0 1
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 0

Table 2.1.1. Example 2.1.

As shown in [Wittmann et al., 2009, p.16-17] the multivariate polynomial
interpolation I(fi) is the unique polynomial of minimal degree1 that coincides
with fi on the vertices x ∈ {0, 1}n of the hypercube.

We illustrate this process with a small example which will be used again
later on:

Example 2.1. Consider the Boolean function f : {0, 1}3 → {0, 1}3
defined in Table 2.1.1. Using (2.1.2) we obtain the polynomial map I(f):

I(f) =

(1− x1)(1− x2)(1− x3) + x1(1− x2)x3 + x1x2x3 + x1x2(1− x3) + x1(1− x2)(1− x3)
x1(1− x2)x3 + x1x2x3 + (1− x1)(1− x2)x3 + (1− x1)x2x3

(1− x1)(1− x2)(1− x3) + x1(1− x2)x3 + x1(1− x2)(1− x3) + (1− x1)(1− x2)x3


=

(1− x1)(1− (x2 + x3 − x2x3)) + x1

x3

1− x2


2.1.2. Concatenation with Hill functions. We could use already the

function I(f) to generate an ODE-system. However, experiments suggest
that in many GRNs the components obey a switch-like behavior Krumsiek
et al. [2010]. In Section 1.2.2 we gave a motivation for the use of these
functions. Therefore, in a next step, the function I(f) is concatenated with
Hill functions. The exact shape of these Hill functions can be controlled by
specific parameters. This allows to use the parameters of the Hill functions
to induce a behavior of the resulting continuous function similar to step
functions.

Definition 2.2. A multivariate Hill function is defined by

H
~k,~θ : [0, 1]n → [0, 1]n,

H
~k,~θ(x) =

(
hk1,θ1(x1), . . . , hkn,θn(xn)

)
with univariate Hill functions

hk,θ : [0, 1]→ [0, 1],

hk,θ(x) =
xk

xk + θk
, k ∈ R>0, θ ∈ (0, 1).

The parameter k is called Hill coefficient and θ is called threshold (see
also Section 1.2.2). In Figure 2.1.1 the graphs of several Hill functions with

1The degree of a polynomial P (X1, . . . , Xn) =
∑

(m1,...,mn)∈Nn am1,...,mnX
m1
1 · · · · · Xmn

n

is defined as deg(P ) = max(m1,...,mn)∈Nn,am1,...,mn
6=0

∑n
i=1mi.
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Figure 2.1.1. Different Hill functions for θ = 0.4.

different Hill coefficients are depicted. A larger Hill coefficient leads to a
steeper Hill function. By construction it holds hk,θ(0) = 0 and hk,θ(1) < 1
for any θ ∈ (0, 1), k ∈ R>0.

Now the continuous variables in the function I(f) are replaced by Hill
functions2 with distinct Hill coefficients and thresholds for each variable and
each component they influence. In this way we obtain a continuous function
f : [0, 1]n → [0, 1]n with the Hill coefficients and thresholds as parameters.3

The function f should be understood as a continuous continuation of f on
[0, 1]n. This means that f agrees with f on {0, 1}n or, vaguely speaking,
takes at least similar values on {0, 1}n.

Finally, in a last step life-times and degradation terms are added:

ẋ = D · (f(x)− x),(2.1.3)
x(0) = x0 ∈ [0, 1]n,

where D is a strictly positive diagonal matrix, D = diag(d1, . . . , dn) with
di > 0 for i ∈ [n]4. A solution x : R≥0 → [0, 1]n of (2.1.3) could for
example represent the course of mRNA or protein concentrations over time.
Throughout this chapter, the line over variables and functions is used only
in the continuous setting.

Let us now consider a few examples to get familiar with this conversion
algorithm. We will use these examples also to get a first feeling for the
resemblance of ODE models and Boolean models of the same regulatory
network.

2Sometimes it is an advantage to consider normalized Hill functions hk,θ(x)

hk,θ(1)
instead of Hill

functions in the above procedure. We refer for details to Wittmann et al. [2009] and the next
section.

3 I.e. f1 := I(f1) ◦H~k1, ~θ1 , . . . , fn := I(fn) ◦H ~kn, ~θn and ~ki ∈ Rn>0,
~θi ∈ (0, 1)n, i ∈ [n].

4We could also consider the ODE system ẋ = diag(~α)f
~k

(x) − diag(~β)x. However, after a
normalization step we arrive at a system of the form (2.1.4) (see Wittmann et al. [2009]).
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Example 2.2. Consider the Boolean function f(x) =

(
x1 ∨ ¬x2

¬x1 ∨ x2

)
. Us-

ing the above procedure we obtain the continuous function f given by

f1(x1, x2) =
[
hk11,θ11(x1) + (1− hk12,θ12(x2))− hk11,θ11(x1) · (1− hk12,θ12(x2))

]
,

f2(x1, x2) =
[
(1− hk21,θ21(x1)) + hk22,θ22(x2)− (1− hk21,θ21(x1)) · hk22,θ22(x2)

]
.

This leads us to the family of ODE-system

ẋ1 = d1 · (f1(x1, x2)− x1),

ẋ2 = d2 · (f2(x1, x2)− x2).

Choosing different values for Θ =

(
θ11 θ12

θ21 θ22

)
, k =

(
k11 k12

k21 k22

)
and d =(

d1

d2

)
we obtain specific ODE systems. Let us take a look at a few different

trajectories obtained by using random parametrizations5 starting in the point
(0, 0) (see Figure 2.1.2). The Boolean function f has three steady states,
namely 10, 01, 11. As we will see later (Theorem 2.1) these steady states are
preserved under the conversion into an ODE-system if the Hill coefficients
are chosen sufficiently large. Taking a look at the three different trajectories
depicted in Figure 2.1.2, we see that indeed there are parametrizations for
which the trajectory starting in (0, 0) converges to each of the three fixed
points.

In the first case6, depicted in Figure 2.1.2a the trajectory converges to-
wards a fixed point close to (1, 1). In Figure 2.1.2b we see a trajectory
converging towards a fixed point close to (1, 0).7 Finally, in Figure 2.1.2c
we see a trajectory converging in a fixed point close to (0, 1).8 In all three
cases we see that the trajectory is almost linear as long as the concentrations
are below the thresholds. Then approaching the thresholds the trajectories
rapidly change their direction.

The fact that the trajectories starting in the zero point converge in our
numerical analysis always towards one of the three fixed points allows us
to compare the trajectories of the ODE-system with the trajectories in the
graph Gasync(f) and Gsync(f). In the case of a synchronous update only
the state 11 is reachable from 00. However, the comparison with the ODE-
system suggests that we should be cautious with this conclusion. Often it
is argued that the asynchronous update, leads to more realistic conclusions.

5Thresholds were chosen uniformly from the interval [0.4, 0.6], Hill coefficients from the in-
terval [3, 6] and lifetimes from [1, 5].

6with parameters rounded to the second digit Θ =

(
0.4 0.44
0.58 0.50

)
and k =

(
3.59 5.96
5.46 4.06

)
and d =

(
3.57

4.59

)
7with parameters rounded to the second digit Θ =

(
0.50 0.54
0.41 0.42

)
and k =

(
5.69 5.0
3.18 4.34

)
and d =

(
3.31
1.95

)
8with parameters rounded to the second digit Θ =

(
0.58 0.56

0.47 0.41

)
and k =

(
5.56 5.75
4.79 4.06

)
and d =

(
2.8
4.0

)
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(d) Gasync(f).

Figure 2.1.2. Illustration of Example 2.2: on the horizontal axis
is the concentration of x1 depicted and on the vertical axis the
concentration of x2. We see trajectories starting in (0, 0) of the
ODE-system for different parametrizations and the ASTG of the
Boolean function f in Example 2.2.

The graph Gasync(f), depicted in Figure 2.1.2d, shows, that from the state
00 we can reach the steady states 10 and 01, but not the steady state 11.
However, Figure 2.1.2a shows us, that the case where both components of the
Boolean network are updated simultaneously cannot be neglected always.
Consequently, we should be very cautious about conclusions drawn from
reachability properties of the Gasync(f) as well.

Let us look at another example:

Example 2.3. Consider the Boolean function

f(x) =

(
¬x2

x1 ∨ x2

)
.

In Figure 2.1.3c we see the ASTG of f . The ASTG is characterized by a long
trajectory starting in the state 00 and ending in the state 01. Let us look
at different parametrizations of the resulting ODE system. In Figure 2.1.3a
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Figure 2.1.3. Illustration of Example 2.3: on the horizontal axis
is the concentration of x1 depicted and on the vertical axis the
concentration of x2. We see trajectories starting in (0, 0) of the
ODE-system for different parametrizations and the ASTG of the
Boolean function f in Example 2.3.

we see a trajectory9 qualitatively resembling the discrete trajectory10 and
ending in a fixed point which can be considered a continuous homologue of
the discrete steady state 01.

In Figure 2.1.3b we see a trajectory11 spiraling inward towards a fixed
point. This is a behavior not predicted in the Boolean model, since firstly the
fixed point in the middle has no discrete counterpart. Secondly in Gasync(f)
we do not find a transition 01→ 00 which could explain the spiraling effect.

The above examples show that in principle the obtained ODE-system
can behave very differently from the Boolean network it was stemming from.

9with parameters rounded to the second digit Θ =

(
0 0.47

0.5 0.51

)
and k =

(
0 3.2

8.7 8.27

)
and

d =

(
2.44
2.13

)
10i.e. the walk in the state transition graph of the Boolean network
11with parameters rounded to the second digit Θ =

(
0 0.47

0.5 0.7

)
and k =

(
0 3.12

8.66 8.26

)
and d =

(
2.44

2.14

)
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More extended studies on example systems show that many dynamical fea-
tures, in general, are not necessarily preserved in Hill-type continuous models
(see e.g. Saadatpour and Albert [2016], Chaves and Preto [2013], Ackermann
et al. [2012], Gehrmann and Drossel [2010]). We will focus now on a few as-
pects of the dynamics where similarities can be proven in a systematic way.

2.1.3. Simplifying assumptions made in this chapter. In this chap-
ter we will mostly consider a specific case of the above methodology. We will
attribute to each variable in I(f) a fixed Hill function independently in which
component function the variable appears. This allows us to associate to f

a family of two-parametric continuous functions (f
~k,~θ

)~k∈Rn>0,
~θ∈(0,1)n

, where

f
~k,~θ

: [0, 1]n → [0, 1]n. The construction of f
~k,~θ will be explained in a mo-

ment. This leads to a time-discrete but state-continuous dynamical system
of the form:

xt+1 = f
~k,~θ

(xt), t ∈ N,
x0 := x0 ∈ [0, 1]n.

Then, as in the general case, we construct for any ~k ∈ Rn>0 and ~θ ∈ (0, 1)n

in a second step an ODE system of the form:

ẋ = D · (f
~k,~θ

(x)− x),(2.1.4)
x(0) = x0 ∈ [0, 1]n,

where D is as before a strictly positive diagonal matrix, D = diag(d1, . . . , dn)
with di > 0 for i ∈ [n]12.

Now we turn our attention to the construction of the functions f
~k,~θ. Ac-

cording to Wittmann et al. [2009], we will analyze here two ways to construct

the family f
~k,~θ, ~k ∈ Rn>0,

~θ ∈ (0, 1)n, one based on Hill cubes and the other
one based on normalized Hill cubes. The basic procedure in both approaches
is the same.

However, in Wittmann et al. [2009] the Hill-coefficients ~k and the thresh-
olds ~θ are allowed to differ in each of the components of the functions and
variables. Here, in contrast we will assume that they can only differ between

different variables. This allows us to represent f
~k,~θ as a concatenation of two

functions.

Definition 2.3. A Hill cube is defined as ([Wittmann et al., 2009, p.
5]):

f
~k,~θ

: [0, 1]n → [0, 1]n,

f
~k,~θ

: = I(f) ◦H~k,~θ.

12We could also consider the ODE system ẋ = diag(~α)f
~k

(x) − diag(~β)x. However, after a
normalization step we arrive at a system of the form (2.1.4) (see Wittmann et al. [2009]).
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A normalized Hill cube is defined as ([Wittmann et al., 2009, p. 5]):

f
~k,~θ
normalized : [0, 1]n → [0, 1]n,

f
~k,~θ
normalized : = I(f) ◦ H

~k,~θ

H~k,~θ(~1)
,

where the division H
~k,~θ

H~k,~θ(~1)
is meant component wise.

Normalized Hill cubes have the advantage that the continuous function

f
~k,~θ
normalized obtained by the conversion takes the same values as f on the

vertices of the hypercube {0, 1}n. However, this perfect agreement is not
a plausible biological assumption, since biological interactions such as en-
zyme kinetics are known to only asymptotically approach a saturation level
[Wittmann et al., 2009, p. 15].

2.2. Preservation of steady states and trap spaces

The normalization of the Hill cubes implies that f
~k,~θ coincides with f on

the vertices of the hypercube [0, 1]n. If the Hill cubes are not normalized, the

function f
~k,~θ will differ slightly from f on {0, 1}n. This raises the question

which dynamical properties are preserved during the conversion from the
state and time discrete model to the continuous model. Here we will consider
steady states and trap spaces.

2.2.1. Preservation of steady states. A fixed point x ∈ [0, 1]n of the
ODE system is defined as the zero locus of (2.1.4),

~0 = f
~k,~θ

(x)− x.

In the context of (asynchronous or synchronous) Boolean networks such
fixed points are called steady states.13 For sufficiently large ~k we can find
a continuous equivalent of a steady state xsteady ∈ {0, 1}n of the Boolean
function f in a neighborhood U(xsteady) of xsteady. This result was derived
in Wittmann et al. [2009] and generalized in Veliz-Cuba et al. [2012].

Theorem 2.1 (Wittmann et al. [2009]). Assume xsteady ∈ {0, 1}n is a
steady state of f ∈ B(n, n). Consider the ODE model (2.1.4). If mini∈[n] ki is
sufficiently large, then there is a neighborhood U(xsteady) ⊆ [0, 1]n of xsteady
such that the ODE model (2.1.4) has a steady state x~ksteady ∈ U(xsteady).
Moreover, for any sequence (~kj)j∈N ⊂ Rn>0 that converges component-wise
to infinity, it holds

lim
j→∞

x
~kj

steady = xsteady.

13Note that for synchronous and asynchronous BNs this agrees with Definition 1.9, since the
states of the STG induced by the update function f ∈ B(n, n) of the BN that have no outgoing
transitions are precisely the states for which f(x) = x holds.
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2.2.2. Preservation of trap spaces. Trap spaces represent a general-
ization of steady states or fixed points in that only a few components remain
unchanged, whereas in steady states all components remain fixed. To sim-
plify matters we will restrict ourselves to the case where the first m ≤ n
components stay fixed (see also Definition 1.27). However, the results re-
main of course true in the general case because we can always permute the
components of f in such a way that we arrive at this special case.

Definition 2.4. Consider a dynamical system (G,Xn, φ) with time do-
main G = N or G = R≥0, n ∈ N, a non-empty set X, and evolution φ given
by

φ : G×Xn → Xn,

(t, x) 7→ φt(x).

We define the set

(p, ∗)X = {x ∈ Xn
∣∣xi = pi for i ≤ m}

with p ∈ Xm, m ∈ [n]. We call a set of the form (p, ∗)X a trap space of the
dynamical system if it is invariant with respect to the evolution, i.e.

φt(x) ∈ (p, ∗)X ∀x ∈ (p, ∗)X , t ∈ G.
If the meaning of X is clear from the context, we write (p, ∗) instead of
(p, ∗)X .

If we choose in the above definitionm = n then we arrive at the definition
of a fixed point. Therefore, every fixed point is as well a trap space. On the
other hand we excluded the trivial case where no component is fixed from
the definition.

Remark 2.1. Note that Definition 2.4 agrees with Definition 1.27 for
synchronous BNs. However, in the context of this chapter the formulation in
Definition 2.4 allows for a more convenient comparison between the different
dynamical systems considered here.

As told before the normalization of the Hill cubes implies that f
~k,~θ co-

incides with f on the vertices of the hypercube [0, 1]n. If the Hill cubes

are not normalized, the function f
~k,~θ will differ slightly from f on {0, 1}n.

Nevertheless, as we saw before in Theorem 2.1 the steady states are still

preserved for suitable parametrizations. This motivates the question if f
~k,~θ

and f
~k,~θ
normalized inherit the trap spaces of f as well? A natural idea would be

to generalize Theorem 2.1 by assigning to each trap space of f a trap space

of f
~k,~θ. However, as the following example shows, this does not always work.

Example 2.4. Consider again the Boolean function f : {0, 1}3 → {0, 1}3
from Example 2.1. We can write I(f) in the form

I(f)(x) =


1− (1− x1) · (x2 + x3 − x2x3)︸ ︷︷ ︸

=:C(x2,x3)

x3

1− x2

 .
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From the definition of f (see Table 2.1.1 it is clear that (1, ∗) ⊆ {0, 1}3 is a
trap space of f . We want to know if there is a p1 ∈ [0, 1] such that (p1, ∗) ⊆
[0, 1]3 is a trap space of f

~k,~θ. For simplicity, we assume ~k =
(
k k k

)T
for some k ∈ R>0, ~θ =

(
θ θ θ

)T , θ ∈ (0, 1), and consequently write

f
k,θ

= f
~k,~θ. This means, we need to find x1 ∈ [0, 1] such that

∀x2, x3 ∈ [0, 1] : 0 = f
k
1(x1, x2, x3)− x1

holds. We have

f
k
1(x1, x2, x3)− x1 = I(f1) ◦Hk,θ(x1, x2, x3)− x1.

In order to find a trap space of fk,θ, we can instead look at the function
g : [0, 1]3 → [0, 1]

g(x1, y1, y2) := I(f1)(hk,θ(x1), y1, y2)− x1,

since the input variables of the Hill functions are allowed to vary freely.
Consequently, for a fixed x1 ∈ [0, 1], we can interpret the function g(x1, ·, ·)
as a polynomial g(x1, Y1, Y2) in R[Y1, Y2]. Since the set K := hk,θ([0, 1]) ×
hk,θ([0, 1]) has a nonempty interior, we have the following equivalence:

∃x1 ∈ [0, 1] : 0 = g(x1, Y1, Y2) ∈ R[Y1, Y2]

⇔ ∃x1 ∈ [0, 1]∀(y1, y2) ∈ K : 0 = g(x1, y1, y2)

⇔ ∃x1 ∈ [0, 1]∀x2, x3 ∈ [0, 1] : 0 = f
k
1(x1, x2, x3)− x1

Hence, for (x1, ∗) being a trap space, the polynomial system of equations
needs to be fulfilled:

0 = g(x1, Y1, Y2)

⇔ 0 = 1− (1− xk1
θk + xk1

) · C(Y1, Y2)− x1(2.2.1)

Since the polynomial C(Y1, Y2) is not the zero polynomial and it has no
constant monomials, we obtain the system of equations

1− xk1
θk + xk1

= 0,

1− x1 = 0,

which has no solution for k > 0, θ ∈ (0, 1). This means there is no k ∈ R>0

such that fk,θ has a trap space of the form (x1, ∗), x1 ∈ [0, 1].

This example shows that we cannot link the trap spaces of a Boolean
system directly to the trap spaces of the ODE system if we use Hill functions.
That means, we cannot generalize Theorem 2.1 directly. One reason why

these difficulties arise at all lies in the fact that the functions f
~k,~θ do not agree

perfectly with their Boolean counterparts on {0, 1}n. Instead of associating

the trap spaces of f to trap spaces of f
~k,~θ or f

~k,~θ
normalized, we can associate

them to certain invariant sets of these functions, whose size can be controlled
by the Hill coefficients ~k. In contrast to trap spaces the previously fixed
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Figure 2.2.1. Illustration of the set K(p, ε).

components are allowed to change to a certain degree over time in these
invariant sets. We will now state what we mean with this precisely.

Definition 2.5. Let proj[m] : [0, 1]n → [0, 1]m be the projection on the
first m ≤ n components. For any ε > 0 and (p, ∗) ⊆ [0, 1]n, p ∈ [0, 1]m we
define (see Figure 2.2.1)

K(p, ε) :=
{
x ∈ [0, 1]n

∣∣‖proj[m](x)− p‖∞ ≤ ε
}
.

Then it it is possible to obtain the following result if we use the con-
struction explained in Section 2.1.3.

Proposition 2.1 (Schwieger et al. [2018]). Let (p, ∗), p ∈ {0, 1}m be a
trap space of f ∈ B(n, n). Then

∀ε ∈ (0, θmin)∃ ~k0 ∈ Nn∀~k ≥ ~k0∀x0 ∈ K(p, ε) : ∀t ∈ [0,∞) : x(t) ∈ K(p, ε),

where x(t) is the solution of (2.1.4) with initial condition x(0) = x0 and
θmin := mini∈[m]{θi, 1− θi}.

The above proposition tells us that we can guarantee invariance for an
arbitrary thin “tube” around the fixed components of the Boolean trap space
if we choose the Hill coefficients sufficiently large. We will talk more in detail
about this result in Section 2.4. Indeed it is even possible to give approx-
imations on the size of ~k0 in Proposition 2.1 based on the Hill coefficients
and the sparsity of the interaction graph of the BN.

Proposition 2.2. Let us denote with d := maxx∈{0,1}n,i∈[n] indegIGf (x)(i)

the maximal indegree of IGf (x) over all x ∈ {0, 1}n of a Boolean function
f ∈ B(n, n). Assume (p, ∗) ⊆ {0, 1}n, p ∈ {0, 1}m, m ≤ n, is a trap space of
f . For

ki ≥


ln ε−ln(d−ε)

ln ε−ln θi
, if pi = 0

ln
(
d−ε
ε

)
ln
(

1
θi
− 1
θi
ε
) , if pi = 1

with i ∈ [n], the set K
(
p, ε
)
is an invariant set of the ODE system (2.1.4)

provided ε ∈ (0, θmin).
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We refer to Section 2.4.3 for details. Before we do that we show some
applications of the above results.

2.3. Application: a small example

We want to illustrate how the theoretical results on trap spaces can be
used to ease the analysis of ODE systems.

For this purpose, we consider an example from Klarner et al. [2015],
namely a Boolean dynamical system with update function

(2.3.1) f : (x1, x2, x3, x4) 7→ (x1 ∨ x2, x1 ∧ x4,¬x1 ∧ x4,¬x3).

The state transition graph Gsync(f) is depicted in Figure 2.3.1. As it can be
seen in the figure, (1, 1, 0, 1), (1, ∗, 0, 1), (1, ∗, 0, ∗), (1, ∗, ∗, ∗) and (0, 0, ∗, ∗)
are trap spaces of the Boolean dynamical system given by f . Hence, the state
of the first component plays a decisive role in the behavior of the system.
Once the first component is activated, it will never be deactivated afterwards.
According to the results presented in this chapter, this behavior should be
similar in the corresponding ODE system as long as we choose sufficiently
large Hill coefficients ~k.

Example 2.5. Consider the trap space (0, 0, ∗, ∗), where the maximal
indegree of the local interaction graph is 2. Let ~θ = (0.5, 0.5, 0.5, 0.5)T ,
D = diag(1, 1, 1, 1), and ε = 0.4. We would like to find values for ~k such
that K

(
p, ε
)
is an invariant set. In Figure 2.3.2 the conditions from Propo-

sition 2.2 are depicted for the parameters θ = 0.5 and maximal indegree
d = 2. Since all fixed components in our trap space are zero, we only need
to consider the curve corresponding to the first condition in Proposition 2.2.
We can learn from this that we need to choose ki ≥ 6.213 to guarantee in-
variance for ε = 0.4. More precisely, the first condition in Proposition 2.2
becomes:

ki ≥
ln ε− ln(d− ε)

ln ε− ln θi
≥ ln 0.4− ln(2− 0.4)

ln 0.4− ln 0.5
≈ 6.213.

Indeed, if we choose an initial state x0 = (0.4, 0.4, 0.1, 0.1)T , and Hill coeffi-
cients ki ≥ 6.213, then the first two components tend to zero. Exactly this
behavior can be observed in Figure 2.3.3a. Let us see what happens if we
change the value of the first component slightly, such that the initial state is
no longer in an invariant set corresponding to the trap space (0, 0, ∗, ∗) but
in one associated to p = (1, ∗). For this purpose we could again consider
Figure 2.3.2. Now we need to look at the curve corresponding to the second
condition in Proposition 2.2, since all fixed components in the trap space p
are 1. We can see that if we choose for example ε = 0.35 the Hill exponent
k = 6.213 is sufficiently large to guarantee that K

(
p, ε
)
is an invariant set of

the corresponding ODE-system. More precisely, due to the inequality

6.213 ≥
ln
(
d−ε
ε

)
ln
(

1
θi
− 1

θi
ε
) =

ln
(

2−0.35
0.35

)
ln
(

1
0.5 −

1
0.5 · 0.35

) ,
we know that the trajectory of the solution is guaranteed to stay inK

(
p, 0.35

)
.

Indeed, if we choose for example the initial value x0 = (0.65, 0.4, 0.1, 0.1)T ,
we observe in Figure 2.3.3b that the trajectory of the solution remains in
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Figure 2.3.1. The graph Gsync(f) with f defined in (2.3.1) (Ex-
ample from Klarner et al. [2015]) containing the trap spaces 00∗∗,
1∗∗∗ and 1∗0∗ (which also contains 1∗01 and 1101 as trap spaces).

the set K
(
p, ε
)
. Finally, let us consider a case, where we need to use both

conditions from Proposition 2.2. I.e. for p = (1, ∗, 0, ∗) to guarantee that
K
(
p, ε
)
is an invariant set, we need to consider the maximum of both curves

in Figure 2.3.2. Again we observe that for ε = 0.35 the Hill exponents can
remain at 6.213 to guarantee invariance.

For more numerical experiments we refer to the supplementary of Schwieger
et al. [2018], where some experiments on a T-cell activation model were con-
ducted. More numerical experiments concerning the conservation of trap
spaces using normalized Hill cubes can be found in Zañudo and Albert [2015],
too.

2.4. Correspondence of trap spaces in detail

We will give now proofs of Proposition 2.1 and Proposition 2.2. To do
so we first consider the construction with normalized Hill functions. This
is more easy since the continuous counterpart f of the Boolean function f
agrees in this case with f on the vertices of the hypercube {0, 1}n.

2.4.1. Correspondence of trap spaces for normalized Hill func-
tions. We will show now that if we use normalized Hill functions, the trap
spaces remain the same during the conversion from the Boolean model (2.1.1)
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Figure 2.3.2. Plot of the conditions from Proposition 2.2. The
curve denoted by 0-bound represents the condition in the first case
in the proposition, while the second curve represents the condition
in the second case. For an invariant set K

(
p, ε
)
, corresponding

to a trap space (p, ∗), we can read off the minimal Hill exponent
necessary for invariance from these curves.

to the ODE system

ẋ = D ·
(
f
~k,~θ
normalized(x)− x

)
,(2.4.1)

x(0) = x0.

The map H
~k,~θ

H~k,~θ(~1)
is a bijection from [0, 1]n to [0, 1]n for ~k ∈ Rn>0 and ~θ ∈

(0, 1)n and its restriction to {0, 1}n is the identity map. It is also easy to
show that I(f) is inheriting the trap spaces of f . We obtain:

Proposition 2.3 ([Schwieger et al., 2018, Proposition 11]). Let (p, ∗)
be any trap space of f ∈ B(n, n), then (p, ∗) with p = p ∈ {0, 1}m, m ∈ [n]
is a trap space of I(f).

The idea of the proof of Proposition 2.3 is to show that if p = 0 holds
then the corresponding components of the polynomial I(fi), i ∈ [m] are
divisible by the monomials xi. The general case can then easily be derived
of this special case by variable transformation. For the details we refer to
[Schwieger et al., 2018, Proposition 11].

This proposition shows that we can assign to each trap space of f a trap

space of I(f). This result then transfers to f
~k,~θ
normalized.

Corollary 2.1. If (p, ∗), p ∈ {0, 1}m is a trap space of f ∈ B(n, n), then
for any ~k ∈ Rn>0 and ~θ ∈ (0, 1)n, (p, ∗) is a trap space of the flow map defined
by a solution of the ODE system of the form (2.4.1).

Proof. Let x : R≥0 → [0, 1]n be any solution of the above ODE system.
Assume x(t) ∈ (p, ∗), t ∈ R≥0. Since (p, ∗) is a trap space of f , according

to Proposition 2.3 (p, ∗) is a trap space of I(f). The function f
~k,~θ
normalized
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(a) A trajectory in the invariant set corresponding to (0, 0, ∗, ∗).

(b) A trajectory in the invariant set corresponding to (1, ∗, ∗, ∗).

Figure 2.3.3. Illustration of Example 2.5.

is defined as the concatenation of normalized Hill cubes and I(f). Conse-

quently, (p, ∗) is a trap space of f
~k,~θ
normalized. Therefore, for any i ∈ [m] and

x(t) ∈ (p, ∗) the equality ẋi(t) = di ·
[
(f
~k,~θ
normalized)i(x(t))−pi

]
= 0 holds, and

(p, ∗) is an invariant set of any flow defined by the above ODE system. �

The above results say us nothing about the stability of the trap spaces
in the ODE systems. If we want to know whether we will observe these
trap spaces it is crucial to know what happens if the fixed components of
these trap spaces are perturbed slightly. Therefore, we consider now an
association to invariant sets that is possible even if we do not use normalized
Hill functions.

2.4.2. Associating invariant sets to trap spaces. We want to show
that K(p, ε) is an invariant set of the ODE system (2.1.4) constructed with

either f
~k,~θ or f

~k,~θ
normalized provided the Hill coefficients ~k are large enough.

The proof is carried out in two steps. First, we show that K(p, ε) is an
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invariant set of the time-discrete dynamical systems

xt+1 = f
~k,~θ

(xt),(2.4.2)

xt+1 = f
~k,~θ
normalized(xt).

Afterwards, we show the invariance for the corresponding ODE systems.
2.4.2.1. Invariance in the time-discrete dynamical system. Now we show

that if (p, ∗) is a trap space of f
~k,~θ or f

~k,~θ
normalized, then for sufficiently large

Hill coefficients ~k the set K(p, ε) is an invariant set of f
~k,~θ or f

~k,~θ
normalized as

well.

Proposition 2.4. Let f ∈ B(n, n), L be the Lipschitz constant of I(f)
with respect to ‖ · ‖∞ and (p, ∗) be a trap space of I(f). Then for any

0 < γ, ε < mini∈[m]{θi, 1− θi} and sufficiently large ~k0, the function f
~k,~θ or,

respectively, f
~k,~θ
normalized satisfies

∀~k ≥ ~k0 : f
~k,~θ

(K(p, ε)) ⊆ K(p, γ),

∀~k ≥ ~k0 : f
~k,~θ
normalized(K(p, ε)) ⊆ K(p, γ).(2.4.3)

The relation ~k ≥ ~k0 is meant component-wise here. This means, on
the one hand, if ~k grows, there is an increasingly thin tube K(p, γ) around
the trap spaces which is not left by the trajectories of the dynamical systems
(2.4.2). On the other hand, there is an increasingly wide tube K(p, ε), whose
boundaries approach the thresholds of the Hill cubes, and every trajectory
starting in K(p, ε) is drawn into K(p, γ).

For the proof of Proposition 2.4 we exploit that f
~k,~θ as well as f

~k,~θ
normalized

is a concatenation of the Hill functions and a multivariate polynomial in-
terpolation. First, we prove that K(p, ε) can be arbitrarily contracted by
the Hill functions provided we choose the parameters ~k large enough and
K(p, ε) does not overlap with any of the thresholds of the Hill functions.
Afterwards, we continue showing that the multivariate interpolation I(f)
stretches the set K(p, ε) maximally with a constant that is bounded by the
Lipschitz constant of I(f).

Having the Hill functions in mind, we can show that for sufficiently large
Hill coefficients the set K(p, ε) can be arbitrarily contracted:

Lemma 2.1 ([Schwieger et al., 2018, Corollary 16]). For m ≤ n and
~θ ∈ (0, 1)n, the following statement holds:

∀p ∈ {0, 1}m, ε < θmin, γ ∈ (0, 1]∃~k0 ∈ Rn>0∀~k ≥ ~k0 : H
~k,~θ
(
K(p, ε)

)
⊆ K(p, γ)

with θmin := mini∈[m]{θi, 1−θi}. This remains true for normalized Hill cubes
H
~k,~θ

H~k,~θ(~1)
.

The proof of Lemma 2.1 is based on the observation that the Hill func-
tions hk,θ converge for increasing Hill coefficient k on the intervals [0, a] ⊂
[0, θ) uniformly towards zero and on the intervals [b, 1] ⊂ (θ, 1] towards one.
Therefore, the Hill coefficients can always be chosen large enough such that
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K(p, ε) is contracted to K(p, γ) by the mapping H~k,~θ. For details we refer
to Schwieger et al. [2018].

We proceed with the multivariate interpolation of f .

Lemma 2.2 ([Schwieger et al., 2018, Lemma 17]). Let I : [0, 1]n →
[0, 1]n be a Lipschitz continuous function with respect to ‖·‖∞ with Lipschitz
constant L. Furthermore, let (p, ∗) be a trap space of I. Then

∀ε ∈ (0, 1) : I(K(p, ε)) ⊆ K(p, Lε)

holds.

Combining the two results Lemma 2.1 and Lemma 2.2 we can now prove
Proposition 2.4 from the beginning of this section.

Proof. (Proof of Proposition 2.4) According to Lemma 2.1, if we choose
γ′ ≤ γ

L such that γ′ ∈ (0, ε], we have for sufficiently large ~k:

f
~k,~θ

(K(p, ε)) = I(f) ◦H~k,~θ(K(p, ε))

⊆ I(f)(K(p, γ′))

According to Lemma 2.2, we have

I(f)(K(p, γ′)) ⊆ K(p, Lγ′) ⊆ K(p, γ).

The statement f
~k,~θ
normalized(K(p, ε)) ⊆ K(p, γ) follows analogously. �

2.4.2.2. Invariance in the ODE system. We show in this section the in-
variance of the set K(p, ε) for a trap space (p, ∗) of the ODE system (2.1.4).
The proof is carried out by exploiting the results on the time-discrete but
state-continuous dynamical system of the previous section and combining
them with a result by Nagumo on invariant sets Nagumo [1942].

A subset K of a finite dimensional vector space X is invariant (see Def-
inition 1.20) under a dynamical system induced by the ODE

ẋ = F (x),(2.4.4)
x(0) = x0,

if for any initial state x0 ∈ K all solutions to the differential equation (2.4.4)
remain in K.

Definition 2.6 ([Aubin, 1991, Horváth et al., 2014, p. 25]). Let X be
a normed space, ∅ 6= K ⊆ X, x ∈ X. The tangent cone (Figure 2.4.1) to K
at x is the set

TK(x) := {v ∈ X
∣∣ lim inf

h→0+

infz∈K ‖(x+ hv)− z‖
h

= 0}.

We use the following Theorem from Nagumo [1942]:

Theorem 2.2 (Horváth et al. [2014], Nagumo [1942]). Let K ⊂ Rn be
closed and convex, F : Rn → Rn continuous and assume (2.4.4) admits a
globally unique solution for every x0 ∈ K. Then K is an invariant set of this
system if and only if

(2.4.5) ∀x ∈ ∂K : F (x) ∈ TK(x).
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x

K

TK(x)

Figure 2.4.1. Illustration of the tangent cone TK(x) of K.

Now we are ready to prove Proposition 2.1 – the correspondence of trap
spaces and invariant sets. That is:

Proposition 2.5. Let (p, ∗), p ∈ {0, 1}m be a trap space of f ∈ B(n, n).
Then

∀ε ∈ (0, θmin)∃ ~k0 ∈ Nn∀~k ≥ ~k0∀x0 ∈ K(p, ε) : ∀t ∈ [0,∞) : x(t) ∈ K(p, ε),

where x(t) is the solution of (2.1.4) and with θmin := mini∈[m]{θi, 1− θi}.

Proof. We want to show that the ODE system (2.1.4) with K(p, ε)
satisfies the conditions of Theorem 2.2. Here, our function F in Theorem 2.2
has the form:

F
~k,~θ(x) := D · (f

~k,~θ
(x)− x)

We need to show that (2.4.5) withK := K(p, ε) is satisfied. Let ξ ∈ ∂K(p, ε).
(2.4.5) holds especially true if ξ + hF (ξ) ∈ K is satisfied for small enough
h > 0. Therefore, it would suffice to show

ξ + h
[
D · (f

~k,~θ
(ξ)− ξ)

]
= (1− hD)ξ + hD · f

~k,~θ
(ξ) ∈ K(p, ε).

Indeed, this is true for sufficiently small h > 0 (to guarantee (1 − hdi) > 0
for i ∈ [m]) due to the following inequality for i ∈ [m] and sufficiently large
~k:

‖(1− hdi)ξi + hdif
~k,~θ
i (ξ)− pi‖ = ‖(1− hdi)(ξi − pi) + hdi(f

~k,~θ
i (ξ)− pi)‖

≤ (1− hdi) · ‖ξi − pi‖︸ ︷︷ ︸
≤ε

+hdi · ‖f
~k,~θ
i (ξ)− pi‖︸ ︷︷ ︸
≤ε

≤ ε(2.4.6)

⇒ ξ + hD · (f
~k,~θ

(ξ)− ξ) ∈ K(p, ε),

where the inequality ‖f
~k,~θ
i (ξ) − pi‖ ≤ ε follows from Proposition 2.4. The

uniqueness of the solution of the ODE system (2.1.4) follows from the Lips-

chitz continuity of f
~k,~θ (see, e.g., [Sastry, 2013, p. 88]). �

Again, the same argumentation is valid if we replace f
~k,~θ by f

~k,~θ
normalized.
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2.4.3. Computing explicit values for the Hill coefficients to guar-
antee invariance. Finally, we are interested in finding some explicit bound-
aries for the values ~k and to find out how they are related to the network
structure. Namely, assume we would like to find Hill coefficients ~k such that

K(p, ε) is mapped to K(p, γ) by f
~k,~θ for given ε, γ > 0 in such a way that

K(p, ε) is an invariant set of the corresponding ODE system.
We can approximate the Lipschitz constants of I(f) explicitly. First,

notice that if we want to find the Lipschitz constant L of I(f) : [0, 1]n →
[0, 1]n, i.e.

(2.4.7) ∀x, y ∈ [0, 1]n : ‖I(f)(x)− I(f)(y)‖∞ ≤ L · ‖x− y‖∞,

we can do this by finding the Lipschitz constants of the components of I(f) =
(I(f1), . . . , I(fn)) and then taking the maximal Lipschitz constant for I(f).
For the Lipschitz constants of the components I(fi) we find an upper bound
with the following theorem:

Theorem 2.3 ([Paulavičius and Žilinskas, 2006, Theorem 1]). Assume
f : [0, 1]n → [0, 1] is a Lipschitz continuous function. Then

(2.4.8) |f(x)− f(y)| ≤ Lp · ‖x− y‖q
and

Lp = sup{‖∇f(x)‖p : x ∈ [0, 1]n}
with 1

p + 1
q = 1, 1 ≤ p, q ≤ ∞.

Applying the theorem to the case q =∞ we need to find supx∈[0,1]n ‖∇I(fi)‖1
for all i ∈ [n].

After having estimated the Lipschitz constant L of I(f), we can proceed
as follows to obtain values for ~k that guarantee that K(p, ε) is mapped to
K(p, γ) for a trap space (p, ∗) of f . For fixed ~θ we need to find ki such that

hki,θi(ε) ≤
ε

L
if pi = 0,

hki,θi(1− ε) ≥ 1− ε

L
if pi = 1(2.4.9)

holds to guarantee H~k,~θ
(
K(p, ε)

)
⊆ K(p, εL). Then Lemma 2.2 implies

f
~k,~θ

(K(p, ε)) ⊆ I(f)
(
K(p,

ε

L
)
)
⊆ K(p, ε).

While (2.4.9) is independent of the structure of the bioregulatory system, the
size of the Lipschitz constant of I(f) is not. Therefore, it is of interest to find
out in what respect it depends on the structure of the discrete interaction
graph.

In Schwieger et al. [2018] the following result was obtained.

Proposition 2.6 ([Schwieger et al., 2018, Corollary 31]). Let IGf (x) be
the local interaction graph of f : {0, 1}n → {0, 1}n. Then maxx∈{0,1}n ‖∇fi(x)‖1
is the maximal indegree of i ∈ V = [n] over all local interaction graphs, i.e.,

max
x∈{0,1}n

indegIGf (x)(i) = max
x∈{0,1}n

‖∇fi(x)‖1.
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Furthermore, the Lipschitz constant L of I(f) can be approximated by the
maximum degree over all local interaction graphs of f ,14 i.e.,

(2.4.10) max
x∈{0,1}n,i∈[n]

indegIGf (x)(i) ≥ L,

where L is the Lipschitz constant of I(f).

Consider an arbitrary Boolean function f : {0, 1}n → {0, 1}n with in-
teraction graph IGf (x), x ∈ {0, 1}n and a trap space (p, ∗) ⊆ {0, 1}n,
p ∈ {0, 1}m, m ≤ n. We give now the condition already mentioned (Propo-
sition 2.2) on the parameters ~θ and ~k of the ODE system (2.1.4) which
guarantees that K(p, ε) is an invariant set of (2.1.4).

Proposition 2.7. Let us denote with d := maxx∈{0,1}n,i∈[n] indegIGf (x)(i)

the maximal indegree of IGf (x) over all x ∈ {0, 1}n of a Boolean function
f : {0, 1}n → {0, 1}n. Assume (p, ∗) ⊆ {0, 1}n, p ∈ {0, 1}m, m ≤ n, is a trap
space of f . For

ki ≥


ln ε−ln(d−ε)

ln ε−ln θi
, if pi = 0

ln
(
d−ε
ε

)
ln
(

1
θi
− 1
θi
ε
) , if pi = 1

with i ∈ [n], the set K
(
p, ε
)
is an invariant set of the ODE system (2.1.4)

provided ε ∈ (0, θmin).

Proof. Due to Proposition 2.6, the Lipschitz constant L of I with re-
spect to ‖ · ‖∞ can be approximated by d. Therefore, it remains to prove

H
~k,~θ
(
K(p, ε)

)
⊆ K(p,

ε

d
).

We need to check for each component of H~k,~θ the condition{
hki,θi(ε) ≤ ε

d , if pi = 0

hki,θi(1− ε) ≥ 1− ε
d , if pi = 1

.

For i ∈ [m] we obtain for pi = 0 the condition

hki,θi(ε) ≤
ε

d

⇔ εki

εki + θkii
≤ ε

d

⇔ ki · ln
ε

θi︸︷︷︸
<0

≤ ln
ε

d− ε

⇔ ki ≥
ln ε

d−ε
ln ε

θi

=
ln ε− ln(d− ε)

ln ε− ln θi

14This implies that maxx∈{0,1}n ‖∇fi(x)‖1 is bounded by the maximal indegree of the global
interaction graph as well.
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and for pi = 1 the condition

hki,θi(1− ε) ≥ 1− ε

d

⇔ ki ≥
ln
(
d−ε
ε

)
ln
(

1
θi
− 1

θi
ε
)

�

We can obtain a similar result for the normalized ODE system.

2.5. Discussion

Firstly, we saw in this chapter that statements about the correspondence
between steady states of discrete dynamical systems and corresponding con-
tinuous dynamical systems cannot be generalized directly to trap spaces
(Example 2.4). However, in case of ODE systems created from Boolean
functions by multivariate polynomial interpolation and Hill cubes, Boolean
trap spaces can be linked to invariant sets (Proposition 2.1). Secondly, we
saw that their size can be controlled by the Hill coefficients. We gave lower
bounds for the Hill coefficients to guarantee invariance (Proposition 2.2).

Finally, we demonstrated experimentally in Section 2.3 that this can
be exploited to shift a part of the analysis of the ODE-system into the
analysis of the initial Boolean model. In Schwieger et al. [2018] this was also
demonstrated in a larger example modeling T-cell activation.

The results here open the door for the following work flow:
(1) Start with a Boolean model.
(2) Identify trap spaces and use these trap spaces to generate reduced

Boolean models.
(3) Convert the reduced Boolean models into ODE models and use

quantitative data to fit the ODE models.
(4) Optional: Use the parameters obtained in this way to generate an

ODE model of the complete regulatory network.
Switching between the different formalisms or combining them in hybrid
models is of great benefit for many applications where the available data
sets are highly inhomogeneous, containing data on different levels of resolu-
tion. The Boolean model can be considered as a map that gives us a coarse
understanding of the regulatory network. Then if necessary, we can “zoom”
into parts of this map by generating an ODE model. This allows for a better
understanding of crucial parts of the regulatory networks. In this way the
use of Boolean models can guide the research and successive modeling of a
network in situations where modeling the complete regulatory network with
ODEs is impossible.

In addition, logical models are much more accessible for non-experts,
making it convenient to use them for testing hypotheses that can then be
transferred to more detailed models. The results in this chapter represent an
approach that goes beyond heuristics, since the conservation of certain math-
ematical structures – trap spaces – and properties across the two formalisms
considered here can be proven.

However, it would be beneficial to extend the properties that are guar-
anteed to be transfered from the BN to the ODE model to properties relying
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on paths in the ASTG or STG. This would give us a justification to look
at reachability properties of the ASTG. The results here are more or less
independent of the exact nature of the update-rule and the state transition
graph of the BN.
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In this chapter we introduce several operations on BNs. These operations
will be used in the following chapters. In the most simple case in Section 3.1
we consider how simple graph operations such as intersection and union can
be realized using the update function. We will make use of this in the context
of experiment design in Chapter 5. In Section 3.2 we will consider several
quotient graphs - such as quotient graphs introduced by projections or the
update function of the (asynchronous) BN itself. With quotient graphs it is
possible to summarize several states of a BN into a single node. They can be
seen as a way to abstract the dynamics of a BN. Therefore, it makes sense
to use them in the context of model pools (see Chapter 4). We consider
the operations here mainly from a theoretical point of view as a tool in
our proofs. Therefore, computational aspects are neglected. Nevertheless,
if possible we describe methods to perform the operations directly in terms
of the update function of the asynchronous BN. This should be, at least in
theory, computationally beneficial, since the methods we suggest avoid the
explicit construction of the ASTG.

3.1. Set operations on ASTGs

In this section we discuss various simple set operations on state transition
graphs – more precisely ASTGs. The need for performing such operations
can have different motivations. In general, the state transition graphs of our
Boolean models describe potential behaviors of the modeled GRN. Com-
bining different sources of knowledge or comparing these models (see also
Section 5.1) can in some instances be translated into comparing the state
transition graphs of different BNs. Such comparisons in general rely on set
operations of the state transition graphs:

46
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Definition 3.1 (see e.g. [Ruohonen, 2013, p. 11]). We are given two
graphs G1 = (V 1, E1) and G2 = (V 1, E2).1 Then we define:

G1 ∪G2 := (V 1, E1 ∪ E2),

G1 ∩G2 := (V 1, E1 ∩ E2),

G1\G2 := (V 1, E1\E2),

G14G2 := G1\G2 ∪G2\G1.

From a practical point of view these operations can be performed by
enumerating and comparing all edges of both graphs. In the case of Boolean
networks the transitions of the state transition graph are implicitly given by
a Boolean function. To avoid explicit enumeration of transitions it is prefer-
able to perform the above set operations directly on the Boolean function
inducing the state transition graph. We show here how this can be done for
asynchronous BNs.

For this imagine the case where G1 = Gasync(f) and G2 = Gasync(g)
are induced by two Boolean functions f, g ∈ B(n, n). To perform the set
operations from Definition 3.1 directly on the Boolean representatives of
these graphs we introduce a function condf ∈ B(n, n) associated to f , which
tells us if there is a transition between two states. The function condf will
be constructed in such a way that there is a transition (x, x{i}) ∈ Easync(f),
i ∈ [n] if and only if condfi (x) = 1.

Definition 3.2. For a Boolean function f : {0, 1}n → {0, 1}n we define
condf : {0, 1}n → {0, 1}n, x 7→ condf (x) by condf (x) := id ⊕ f(x), where
id : {0, 1}n → {0, 1}n denotes the identity function.

For a state x ∈ {0, 1}n the function condf evaluates to one in a com-
ponent i ∈ [n] if and only if the value of fi(x) and the value of the state x
differ. The function condf indicates if a change in a component is possible.
More precisely, we have the following lemma:

Lemma 3.1. There is a transition (x, x{i}) ∈ Easync(f), i ∈ [n] if and
only if condfi (x) = 1.

Proof. Consider

(x, x{i}) ∈ Easync(f)⇔i ∈ diff(x, f(x))

⇔xi ⊕ fi(x).

�

It is also easy to see that for f ∈ B(n, n) it holds f = condcond
f
. Further-

more, it is clear that the function cond· : B(n, n) → B(n, n) is a bijection.
Similar to Lemma 3.1 we can represent a graph G = ({0, 1}n, E) constructed
from a Boolean function g : {0, 1}n → {0, 1}n using the component functions
of g as indicator functions for the transitions in E, as an ASTG of a Boolean
function:

1We assume that the set of nodes in both graphs is the same. This simplifying assumption
is made in view of of their applicability to ASTGs in the next section.
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f(= condcond
f
) ∈ B(n, n)

condf ∈ B(n, n)

Gasync(f)condf condcond
f

f as update function

condf as indicator function

Figure 3.1.1. The function cond· : B(n, n)→ B(n, n), f 7→ condf

is a bijective map from B(n, n) to B(n, n). For a function f ∈
B(n, n) the graph Gasync(f) can either be induced by the update
function f or by the condition function condf .

Lemma 3.2. For a graph G = (V,E) defined by V = {0, 1}n and

(v, v{i}) ∈ E :⇔ gi(v),

for i ∈ [n] and g ∈ B(n, n) it holds Gasync(condg) = G.

Proof. This is a consequence of Lemma 3.1. Choose f := condg. Then
due to the identity g = condcond

g
= condf and Lemma 3.1 the transitions of

Gasync(f) are indicated by g, which shows equality. �

So in conclusion, the function condf is just another way to represent the
ASTG Gasync(f). The relation of f and condf is illustrated in Figure 3.1.1.
This observation will be frequently useful. Using this function it is easy to
express common set operations of ASTGs:

Proposition 3.1. It holds

Gasync(f) ∪Gasync(g) = Gasync(condcond
f∨condg),(3.1.1)

Gasync(f) ∩Gasync(g) = Gasync(condcond
f∧condg),(3.1.2)

Gasync(f)\Gasync(g) = Gasync(condcond
f∧¬condg),(3.1.3)

Gasync(f)4Gasync(g) = Gasync(condf⊕g),(3.1.4)
Gasync(¬id)\Gasync(f) = Gasync(¬f).(3.1.5)

Proof. Using Lemma 3.2 it holds for i ∈ [n]:
(3.1.1): (s, s{i}) ∈ Easync(f)∪Easync(g)⇔

[
(s, s{i}) ∈ Easync(f) or (s, s{i}) ∈ Easync(g)

]
⇔ condfi (s) ∨ condgi (s)
(3.1.2): (s, s{i}) ∈ Easync(f)∩Easync(g)⇔

[
(s, s{i}) ∈ Easync(f) and (s, s{i}) ∈ Easync(g)

]
⇔ condfi (s) ∧ condgi (s)
(3.1.3): (s, s{i}) ∈ Easync(f)\Easync(g)⇔

[
(s, s{i}) ∈ Easync(f) and (s, s{i}) 6∈ Easync(g)

]
⇔ condfi (s) ∧ ¬condgi (s)
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(3.1.4):(s, s{i}) ∈ Easync(f)4Easync(g)⇔
[
[(s, s{i}) ∈ Easync(f)]⊕ [(s, s{i}) ∈ Easync(g)]

]
⇔ condfi (s)⊕ condgi (s).
(3.1.5):(s, s{i}) ∈ Easync(¬id)\Easync(f)⇔ (s, s{i}) ∈ Easync(id ⊕ [cond¬id ∧ ¬condf ])=

Easync(id⊕ ¬condf )= Easync(id⊕ ¬id︸ ︷︷ ︸
=1

⊕f)= Easync(¬f).

The above equalities follow then using Lemma 3.1. For (3.1.4) consider the
equality

condfi (s)⊕ condgi (s) = si ⊕ condfi (s)⊕ si ⊕ condgi (s)
= fi(s)⊕ gi(s).

�

Example 3.1. Let us consider the two Boolean functions:

f :{0, 1}3 → {0, 1}3,
(x1,, x2, x3) 7→ (¬x3, x1 ∨ x2 ∨ x3, x2 ∧ ¬x3),

and

g :{0, 1}3 → {0, 1}3,
(x1,, x2, x3) 7→ (f1(x), f2(x), x2 ∨ ¬x3).

Now let us look at G := Gasync(f)4Gasync(g). Using Proposition 3.1 we
conclude that we can represent G as an ASTG with a Boolean function
h := condf⊕g, i.e. G = Gasync(h). Due to condf1 = condg1, cond

f
2 = condg2 it

holds

h1 =id⊕ 0 = id,
h2 =id⊕ 0 = id,

h3(x) =x3 ⊕ f3(x)⊕ g3(x) = ¬x2.

The ASTGs of f, g and h are depicted in Figure 3.1.2.

3.2. Quotient graphs of Boolean networks

Sometimes we are not interested in the specific single states of an ASTG,
but rather in different groups of states sharing some property. Such prop-
erties could be for example that the states in one group belong to the same
subspace or are reachable from each other. Quotient graphs are a common
formalism for such abstractions of graphs. States which share a common
property are referred to as equivalent states. Groups of states with the same
properties are equivalence classes in this formalism. We then construct a new
graph, the quotient graph, which has nodes representing equivalence classes
and edges between these nodes, when the underlying equivalent classes are
connected by an edge somewhere. In the following, we give a formal defini-
tion.

Consider an arbitrary directed graph G = (V,E) and an equivalence
relation ∼ on its nodes V . For a node v ∈ V we denote with [v]∼ its
equivalence class of v with respect to ∼, i.e. the set of nodes equivalent to v.
If it is clear from the context which equivalence relation is meant we write
[v] instead of [v]∼. The relation ∼ can be used to construct a new graph
from G, the so-called quotient graph:
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(a) Gasync(f).
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(c) Gasync(h).

Figure 3.1.2. The graphs Gasync(f), Gasync(g) and Gasync(h) in
Example 3.1.

Definition 3.3 (see e.g. [Hahn and Tardif, 1997, Definition 2.8]). For
any graph G = (V,E) and an equivalence relation ∼ on the set of nodes V
the quotient graph G

/
∼ is defined by

G
/
∼= (Ṽ , Ẽ)

with Ṽ :=
{

[v]|v ∈ V
}
and Ẽ :=

{
([v], [w])|∃ṽ ∈ [v], w̃ ∈ [w] : (ṽ, w̃) ∈ E

}
.

Example 3.2. Consider the equivalence class induced by

v ∼ w :⇔ (v ; w and w ; v),

illustrated in Figure 3.2.1. I.e. two nodes are equivalent if and only if they
are reachable from each other. The quotient graph is then the graph of
strongly connected components.

We will refer to the nodes of a quotient graph derived from an ASTG also
as states and to its edges also as transitions. Quotient graphs are interesting
with respect to path connectedness. Any negative statement about the path-
connectedness of two states in the quotient graph can be lifted up to the
original graph.

Proposition 3.2. Let ∼ be any equivalence relation on the graph G =
(V,E). If there is no path from [v] to [w] in G

/
∼ then there is no path from

v to w in G.

The other direction in Proposition 3.2 is not necessarily true. We demon-
strate this with the following example:
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00

01
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11

(a) There are three
SCCs: {01, 11} and
{00} and {10}.

{01, 11}

{00} {10}

(b) The resulting
SCC-graph.

Figure 3.2.1. Illustration of the SCC-graph in Example 3.2.
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(a) Gasync(f): 000

and 111 are not
path connected.

00

01

10

11

(b)
Gasync(proj{1,3}(f)).
proj{1,3}(000) and
proj{1,3}(111) are
path-connected.

Figure 3.2.2. Illustration of Example 3.3.

Example 3.3. Consider the ASTG depicted in Figure 3.2.2a. We see
that the states 000 and 111 are not path-connected. We now consider the
quotient graph induced by a projection onto the first and third component.
Two states are equivalent if they are projected to the same state (see Sec-
tion 3.2.1 for details.). Each equivalence class is represented by its image
under the projection. In Figure 3.2.2b this quotient graph is depicted. We
see that the states 00 and 11 are connected by a path. However, there was
no path from 000 to 111 in the original graph.

Equivalence classes can be induced by functions of the form ϕ : V → Ṽ .
In the next section we will give an example using projections.

Definition 3.4. For a function ϕ : V → Ṽ we define

v ∼ϕ w
:⇔ϕ(v) = ϕ(w).

We write G
/
ϕ for the quotient graph G

/
∼ϕ.

We can identify the equivalence classes induced by ∼ϕ with their images
under ϕ. Therefore, we can name the states in the quotient graphs by the
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corresponding image under ϕ, i.e. we write for a surjective function ϕ : V →
Ṽ

G
/
∼ϕ= (Ṽ , Ẽ).

The states v ∈ Ṽ of the quotient graph G
/
∼ϕ correspond to the equiva-

lence classes ϕ−1(v). In the following sections we see two such examples. In
the first example we consider projections. In this case we can refer to the set
of states projected to the same components simply as their projected state.

3.2.1. Projections. We study now the case where the equivalence classes
are induced by projections on some of the components of the Boolean net-
work. Since in many biological applications only the values of some com-
ponents matter or can be measured, it is useful to study these maps. In
Section 5.1 for example we will study different formalism involving projec-
tions to design experiments to distinguish different models. In this case we
project our model on the components we want to or can measure and inves-
tigate subsequently properties of the projected model that can be verified
or falsified. As usual, due to the state explosion of Boolean models, our
goal is to perform the projection of the model in such a way that no explicit
enumeration of the state space is necessary. Instead we want to give an im-
plicit description in terms of the Boolean function f ∈ B(n, n) inducing the
Boolean network. Indeed, we see that this is partially possible.

Let ∅ 6= I ⊆ [n] be a set of components of a Boolean network. If not
further specified we will use the letter I for a non-empty subset of [n]. Let
us recall the definition of a projection (see Definition 1.26):

Definition. For any ∅ 6= I ⊆ [n] we defined the map projI : {0, 1}n →
{0, 1}|I|, x 7→ (xi)i∈I and called it projection.

The map projI projects every state in {0, 1}n onto the components in
∅ 6= I ⊆ [n]. Now we introduce the projection of a state transition graph
G = ({0, 1}n, E) as the quotient graph using Definition 3.4.

Definition 3.5. For a graph G = ({0, 1}n, E) we call G/projI the pro-
jection of the graph G on I.

Definition 3.6. For an ASTG Gasync(f) given by a Boolean function
f ∈ B(n, n) and ∅ 6= I ⊆ [n] we call Gasync(f)/projI the projection of the
ASTG on I.

There is a transition between any two states s, t in Gasync(f)/projI if
and only if there is a transition between two states v, w in Gasync(f) and
v is projected to s and w is projected to t. We emphasize that this holds
not necessarily true for paths. We mean with this that it could be that t
is reachable from s in Gasync(f)/projI but there is no pair of states v, w in
Gasync(f) from the corresponding equivalence classes of s and t such that
v ; w (see Example 3.3).

We illustrate the construction of the quotient graph Gasync(f)/projI with
a small example:

Example 3.4. Take the ASTG Gasync(f) induced by the function f :
(x1, x2) 7→ (x1 ⊕ [¬x1 ∧ ¬x2], x2 ⊕ [¬x1 ∧ ¬x2]). Its ASTG is depicted
in Figure 3.2.3. We see that this graph has the transitions 00 → 10 and
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00
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10

11

(a) Gasync(f).

0 1

(b) Projection of
Gasync(f) onto {1}.

Figure 3.2.3. Illustration of Example 3.4. The equivalence
classes in the graph Gasync(f)

/
proj{1} are identified with the im-

ages of proj{1}.

00→ 01. If we project on the first component – that means we consider the
graph Gasync(f)

/
proj{1} – we have the transitions 0 → 1 and 0 → 0. This

means the state (0) has an outgoing transition and a loop. Consequently it
cannot be an ASTG.

3.2.1.1. Compact representation of projected ASTGs. As emphasized in
Section 3.1, in order to avoid enumeration of the states and transitions in
Gasync(f) it would be desirable to have an implicit representation of the
quotient graph Gasync(f)/projI in terms of the update function f . Therefore,
we pose the question if we can derive from the representation f of the graph
Gasync(f) some compact representation of Gasync(f)/projI as an ASTG.

However, we already saw in Example 3.4 that such a Boolean function
cannot exist in general since the projection of an ASTG is not necessarily
anymore an ASTG. However, if we delete loops from the quotient graph the
projection of an ASTG is itself an ASTG and we can derive the function
representing this graph without constructing the complete graph explicitly.
For this purpose we will define a projection projI of a Boolean function in
such a way that for a Boolean function ϕ ∈ B(n, 1) the projected Boolean
function projI(ϕ) ∈ B(|I|, 1) will evaluate to one in a state x ∈ {0, 1}n if and
only there exists a state x̃ ∈ (projI)−1(x) such that ϕ(x̃) evaluates to one.
We generalize this idea to Boolean functions ϕ ∈ B(n,m), n,m ∈ N in the
following definition:

Definition 3.7. For a Boolean function ϕ ∈ B(n,m) with n,m ∈ N and
∅ 6= I ⊆ [n] we define the projection of the map ϕ, denoted by projI(ϕ) to
be the function projI(ϕ) : {0, 1}|I| → {0, 1}m in the following way

projI(ϕ)i :{0, 1}|I| → {0, 1},

x 7→

{
1 if ∃y ∈ (projI)−1(x) : ϕi(y),

0 otherwise,
(3.2.1)

for any i ∈ [m].
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Note that we can replace the expression ∃y ∈ (projI)−1(x) : ϕi(y) also
with a disjunction if convenient:

projI(ϕ)i(x) =
∨

y∈(projI)−1(x)

ϕi(y).

If we consider an ASTGGasync(f) induced by a Boolean function f ∈ B(n, n),
and we choose in the above definition ϕ := condf , then the condition in
(3.2.1) indicates us for each state s in the quotient graph Gasync(f)/projI

and i ∈ I if there is a transition (v, v{i}) somewhere in Gasync(f) which
is projected to (s, s{i}). Indeed, it turns out that we can prove, that the
graphs Gasync(condproj

I(condf )) and Gasync(f)/projI are exactly the same, if
we remove the loops from Gasync(f)/projI . We also note that according to
the remarks at the beginning of Section 3.2 we can identify the states of
Gasync(f)/projI with the images of projI so that it is possible to compare
these graphs.

Proposition 3.3. The graphsGasync(f)/projI andGasync(condproj
I(condf ))

have the same transitions except of possible loops. More precisely, it holds

Easync(condproj
I(condf ))(3.2.2)

=E
(
Gasync(f)

/
projI

)
\{(v, v)|v ∈ {0, 1}|I|}.(3.2.3)

Before we prove Proposition 3.3, we give a small example, illustrating
the construction of the function condproj

I(condf ).

Example 3.5. Consider the ASTG Gasync(f) given by

f :(x1, x2, x3) 7→ (x1 ∧ x3,¬x2 ∧ x3, 0),

condf :(x1, x2, x3) 7→ (x1 ∧ ¬x3, x2 ∨ x3, x3)

depicted in Figure 3.2.4a. Let us consider the ASTG of the projection onto
the first component. According to Proposition 3.3 we need to look at the
function proj{1}(condf ), which is given by

proj{1}(condf ) : {0, 1} →{0, 1},

(x1) 7→
∨

y∈(projI)−1(x1)

condf1(y).(3.2.4)

We can eliminate the quantifier by looking at the DNF (Definition 1.17) of
condf1 and dropping all the variables corresponding to components in [n]\I.
More precisely, we can replace the expression (3.2.4) by∨

y∈(projI)−1(x1)

condf1(y)

=
∨

(y2,y3)∈{0,1}2
(x1 ∧ ¬y3)

=
∨

y3∈{0,1}1
(x1 ∧ ¬y3)

=x1,
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Figure 3.2.4. Illustration of Example 3.5.

so that we obtain
proj{1}(condf ) : (x1) 7→ (x1).

Consequently, in terms of the update function we obtain condproj
I(condf ) =

id⊕ proj{1}(condf ) = x1 ⊕ x1 = 0.
Indeed, in Figure 3.2.4c we see the projection of the ASTGGasync(f)

/
proj{1}.

It differs from Gasync(condproj
I(condf )) only in terms of loops.

The observation above motivates the following definition:

Definition 3.8. We define the ASTG of a projected ASTG Gasync(f)
/
projI

to be the graph Gasync(condproj
I(condf )) = Gasync(id⊕ projI(condf )).

We conclude this section with the proof of Proposition 3.3.

Proof. (Proof of Proposition 3.3) Let ∅ 6= I ⊆ [n] be the set {i1, . . . , i|I|}.
For any transition (v, v{j}) with v ∈ {0, 1}|I|, j ∈ {1, . . . , |I|} we have the
following equivalence:

(v, v{j}) ∈ E
(
Gasync(f)

/
projI

)
⇔∃w ∈ {0, 1}n : projI(w) = v and (w,w{ij}) ∈ Easync(f)

⇔∃w ∈ (projI)−1(v) : (w,w{ij}) ∈ Easync(f)

⇔∃w ∈ (projI)−1(v) : condfij (w)

⇔projI(condf )ij (v)

Using Lemma 3.1 the equality (3.2.2) in Proposition 3.3 follows. �

3.2.1.2. Some remarks on conditions for equality in Proposition 3.3. For
completeness we give a condition for the equality

(3.2.5) Gasync(f)
/
projI = Gasync(condproj

I(condf ))
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in Proposition 3.3. Indeed, Proposition 3.3, implies that (3.2.5) holds iff the
graph Gasync(f)

/
projI contains no loops. We show that this is the case if

and only if diff(Easync(f)) is a subset of I.

Corollary 3.1. We have:

(3.2.6) diff(Easync(f)) ⊆ I ⇔ Gasync(f)
/
projI contains no loops.

Proof. The following equivalences hold

Gasync(f)
/
projI has no loop.

⇔For all (v, v{i}) ∈ Easync(f) it holds projI(v) 6= projI(v{i}).

⇔For all (v, v{i}) ∈ Easync(f) it holds i ∈ I.
⇔diff(Easync(f)) ∩ I = ∅.

�

Using Corollary 3.1 and Proposition 3.3 the following corollary then fol-
lows immediately.

Corollary 3.2. We have

diff(Easync(f)) ⊆ I ⇔ Gasync(f)
/
projI = Gasync(condproj

I(condf )).

Since the condition in the above corollary is very strong, in most cases
there will be loops that we miss in the ASTG Gasync(condproj

I(condf )).
3.2.1.3. Relation between projections, subspaces and trap spaces. It is also

worth noticing that trap spaces are closely related to the graph
Gasync(condproj

I(condf )). The I-subspaces in Definition 1.27 can be consid-
ered equivalence classes [s]projI of states s ∈ {0, 1}n. In fact, it is easy to

see that the steady states of the graph Gasync(condproj
I(condf )) correspond to

the I-trap spaces of Gasync(f). For this first note:

Proposition 3.4. The preimages under the mapping projI of the steady
states of Gasync(f)

/
projI correspond to the I-subspaces in Gasync(f).

Proof. Let p be a steady state of Gasync(f)
/
projI (see Definition 1.9).

Since projI is a graph homomorphism from Gasync(f) onto Gasync(f)
/
projI

the preimage (projI)−1(p) is trap set of Gasync(f) and therefore a trap space
by Definition 1.27.
On the other hand, if (projI)−1(p) is an I-trap space of Gasync(f), then
by definition for any s ∈ (projI)−1(p) there are no transitions of the form
(s, s{i}) ∈ Easync(f), i ∈ I. Since transitions of the form (s, s{i}), i ∈ [n]\I
are projected to loops in Gasync(f)

/
projI , the state p in Gasync(f)

/
projI has

no successors different from itself. By Definition 1.9 it is therefore a steady
state of Gasync(f)

/
projI . �

Due to Proposition 3.3 we can relate the steady states of Gasync(f)
/
projI

and Gasync(condproj
I(condf )) easily to each other:

Remark 3.1. The steady states of Gasync(f)
/
projI correspond to the

steady states of Gasync(condproj
I(condf )).
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Figure 3.2.5. Gasync(f) and Gasync(f)
/
f (see Example 3.6).

Taking Proposition 3.4 and Remark 3.1 we obtain the following corollary:

Corollary 3.3. The following equivalence holds[
p is a steady state in Gasync(condproj

I(condf ))
]

⇔
[
(projI)−1(p) is an I-trapspace in Gasync(f)

]
.

3.2.2. The quotient graph with respect to the update function.
Another example of an equivalence relation that we will consider here is the
identification of states that are mapped to the same image under the update
function f ∈ B(n, n) of the BN:

s ∼f t :⇔ f(s) = f(t)

Again, as in the case of projections the equivalence classes of ∼f can be iden-
tified with the preimages of f Instead ofGasync(f)

/
∼f we writeGasync(f)

/
f .

We will investigate families of such quotient graphs in Section 4.2. The quo-
tient graph Gasync(f)

/
f has states corresponding to the equivalence classes

induced by ∼f . Since we can identify each equivalence class of a state with
its image under f , we can consider the states of Gasync(f)

/
f as states in

{0, 1}n again.2 We illustrate this with with two examples:

Example 3.6. Consider the BN depicted in Figure 3.2.5. We can
see from the ASTG depicted on the left, that f−1(11) =

{
00, 10, 11

}
and

f−1(00) =
{

01
}
. The corresponding quotient graph consisting of the states

11 and 00 is depicted on the right of Figure 3.2.5.

The size of the quotient graphs Gasync(f)
/
f depends on “the degree of

injectivity” of the function f . Consider the following example.

Example 3.7. Consider the Boolean function f : (x1, x2, x3, x4) 7→
(x2, x1, x4 ∧ ¬x2,¬x3). Its ASTG is depicted in Figure 3.2.6a. It has 16
states. The quotient graph Gasync(f)

/
f has 12 states. We see for example

that there is a transition from the state 0011 to 0010. Since f maps 0011 to
0010 and 0010 to 0000, the quotient graph Gasync(f)

/
f contains a transition

0010→ 0000. It is depicted in Figure 3.2.6b.

Since the interaction graphs of Boolean models of GRNs are in general
very sparse, the function f can not vary along many dimensions. Therefore,

2But note that not necessarily all states in {0, 1}n are covered by f .
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for larger networks the quotient graphs Gasync(f)
/
f should be considerable

smaller than Gasync(f). To give some intuition and to point to future possible
applications we list some simple properties of the graph Gasync(f)

/
f .

Proposition 3.5. If s is a steady state of Gasync(f)
/
f then s is a steady

state of Gasync(f) and f−1(s) ⊆ StrongBasin({s}). More precisely it holds:
A) For any t ∈ f−1(s) all sufficiently long directed paths inGasync(f) starting
in t will end in s and each path consists of |diff(t, s)| states not equal to s.
B) If t ∈ f−1(s) then {tA|A ⊆ diff(t, s)} ⊆ f−1(s).

Proof. A): Let t be any state in f−1(s) with s 6= t and let (t, u) be any
transition in Easync(f). Since s is a steady state inGasync(f)

/
f the set f−1(s)

is a trap set in Gasync(f) and therefore also u ∈ f−1(s). It holds d(u, s) <
d(t, s), where d(·, ·) denotes the Hamming distance (see Definition 1.14). By
applying the same argument iteratively to u, we obtain that every sufficiently
long path starting in t will eventually end in s.
B): Let A = {a1, . . . ak}. Since the inclusion A ⊆ diff(t, s) holds there is a
transition (t, t{ai}) in Easync(f) and since f−1(s) is a trap set in Gasync(f)

it holds f(t{ai}) = s. Using the same argument iteratively we obtain that
tA ∈ f−1(s). �

Note also that as an immediate consequence of Proposition 3.5 we obtain
that the number of steady states of any quotient graph Gasync(f)

/
f of an

ASTG Gasync(f) is smaller or equal to the number of steady states in the
original ASTG.

Corollary 3.4. Let f ∈ B(n, n) be the update function of an ASTG
Gasync(f). The number of steady states in Gasync(f)

/
f is smaller or equal

than the number of steady states in Gasync(f). For each steady state s
in Gasync(f)

/
f there is exactly one steady state t ∈ f−1(s) in the ASTG

Gasync(f).

More generally, we have a similar statement about subspaces in
Gasync(f)

/
f . In fact, if [s]projI is a trap set in Gasync(f)

/
f then all states

in its preimage f−1([s]projI ) have a path into f−1([s]projI ) ∩ [s]projI . We
formalize this in the following proposition.

Proposition 3.6. If for some non-empty set I ⊆ [n] the set [s]projI ∩
f({0, 1}n), s ∈ {0, 1}n is a non-empty trap set in Gasync(f)

/
f , then the sets

f−1([s]projI ) and f
−1([s]projI )∩ [s]projI are non-empty trap sets in Gasync(f).

Furthermore, f−1([s]projI ) is in the strong basin of attraction of f−1([s]projI )∩
[s]projI , i.e.

f−1([s]projI ) ⊆ StrongBasin(f−1([s]projI ) ∩ [s]projI ).

.

Proof. The set [s]projI ∩ f({0, 1}n) is a trap set in Gasync(f)
/
f . There-

fore, its preimage f−1
(
[s]projI ∩ f({0, 1}n)

)
= f−1([s]projI ) is a non-empty

trap set in Gasync(f). For all i ∈ I all states t ∈ f−1([s]projI ) are mapped to
si under fi.
Due to the inclusion [s]projI ∩ f−1([s]projI ) ⊆ f−1([s]projI ) the same holds
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Figure 3.2.6. Illustration of the ASTG in Example 3.7 and its
quotient graph.

true for the states in [s]projI ∩ f−1([s]projI ). This shows that also [s]projI ∩
f−1([s]projI ) is a trap set in Gasync(f).
Furthermore, with the same argument it follows that from each
t ∈ f−1([s]projI ) there is a path inGasync(f) leading into [s]projI∩f−1([s]projI ).
Consequently, the set [s]projI ∩ f−1([s]projI ) is not empty and by Defini-
tion 1.10 the inclusion f−1([s]projI ) ⊆ StrongBasin([s]projI ) holds. �

Note that if we choose in Proposition 3.6 a trap space [s]projI consisting
of just one element, i.e. a steady state, then we arrive at Proposition 3.5.

The above points give some examples of the type of knowledge we can
obtain from the quotient graphs about the dynamics of the network. We
demonstrate this with our running example.

Example 3.8. Continuing Example 3.7 we see in Figure 3.2.6b that the
set 00∗∗ is a trap set in Gasync(f)

/
f . It holds f−1(00∗∗) = 00∗∗, which we

can easily check in Figure 3.2.6a is a trap space in Gasync(f). Furthermore
1101 is a steady state in Gasync(f)

/
f . We have f−1(1101) = 110∗. According

to Proposition 3.5 1101 is a steady state in Gasync(f) and the set 110∗ is in
its strong basin of attraction. Again, in Figure 3.2.6a we can see that this is
indeed the case.
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Figure 3.3.1. Illustration of Example 3.9.

3.3. Inverting transitions

As investigated in Fuey et al. [2017] sometimes it is useful to invert tran-
sitions of an ASTG. This can be easily achieved by the following proposition.

Proposition 3.7. For any f ∈ B(n, n) it holds

(v, w) ∈ Easync(f)⇔ (w, v) ∈ Easync(g)

with gi(x) := ¬fi(x{i}) for all x ∈ {0, 1}n, i ∈ [n].

Proof. We have the equivalences:

(v, v{i}) ∈ Easync(g)

⇔condgi (v)

⇔condfi (v{i})

⇔(v{i}, v) ∈ Easync(f)

Furthermore, it holds gi(x) := xi ⊕ condfi (x{i}) = xi ⊕ x
{i}
i ⊕ fi(x

{i}) =

¬fi(x{i}). �

We give a small example:

Example 3.9. Consider the Boolean function f : (x1, x2) 7→ (¬x2, x1).
Its ASTG is depicted in Figure 3.3.1a. According to Proposition 3.7 we
have for g : (x1, x2) 7→ (x2,¬x1) the relation (v, w) ∈ Easync(f) ⇔ (w, v) ∈
Easync(g). Indeed looking on the ASTGs depicted in Figure 3.3.1 we see that
this is the case.

3.4. Discussion

We discussed several ways to perform set operations on ASTGs in terms
of the update functions of these ASTGs. This included simple set operations
such as the union or intersection of ASTGs. Then we considered two types
of quotient graphs, which will be used in the following chapters. If possible
we tried to formulate these operations without considering the graph repre-
sentation. This has the advantage that the state transition graph does not
need to be constructed explicitly.
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There are different aspects not mentioned here, that are also of interest.
For example we restricted ourselves to the asynchronous update scheme. It
would be interesting to consider these operations from a more general point
of view and see how they can be used in arbitrary BNs. We also did not
consider any relations to the interaction graphs. We will come back to this
question in the next chapter for one type of quotient graph considered here.
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In this chapter we describe different methods for investigating sets of
models. Mathematical modeling in systems biology results often in a poten-
tially very large set of models which agree with given data. Therefore, instead
of investigating a specific model, a set of possible models has to be investi-
gated. In this chapter we consider the scenario where all these models have a
common structure but their dynamics are allowed to vary. We are interested
in deducing restrictions on the dynamics from structural descriptions of the
network. This constitutes a scenario of particular interest in applications,
where interaction information is usually more readily available than details
on the processing logic of multiple influences on a target component. This
scenario arises in different modeling frameworks Kuipers [1984], Kaufman
et al. [2007], Remy et al. [2008], Soulé [2003], Thomas [1981], Thomas and
Kaufman [2001b].

The other aspect of the results here is that they relate interaction graphs,
Boolean models and ODE models. In Chapter 2 we looked on very specific
aspects of the dynamics of models (steady states and trap spaces). Our
results here in Chapter 4 will take a different more general point of view
comparing complete model sets arising from different modeling formalisms.
We will compare two methods of abstraction of a family of ODEs and a
family of BNs and show that the result of both methods is almost identical.

62
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The structure of the network is represented as an interaction graph. The
mathematical interpretation of the interaction graph depends on the chosen
modeling framework.

In Section 4.1 we will consider families of ODE systems. We revisit the
theory of qualitative differential equations (QDE) Eisenack [2006]. Here, a
signed interaction graph is interpreted as the sign structure Σ of a Jacobian
matrix of an ODE system. All ODE systems which are consistent with a
given interaction graph are collected in a so-called continuous monotonic
model pool M (Σ). For this model pool, a qualitative state transition graph
(QSTG) GQSTG(Σ) can be constructed whose states represent derivative
signs of the system components and transitions indicate possible changes
in the derivative over time. This graph can then be used to describe the
behavior of the model pool. At the end of Section 4.1 we will reformulate
this result in such a way that the graph GQSTG(Σ) can be considered as a
Boolean state transition graph, i.e. a graph whose nodes are Boolean vectors
in {0, 1}n. This reformulation will be used in Section 4.3 and subsequent
chapters.

In Section 4.2 we consider families of Boolean models. In this case the
number of models that agree with a given interaction graph is finite. How-
ever, analysis of every single model in the set is costly. Exploiting formal
verification techniques allows to investigate the behavior of large numbers of
models in this context Streck et al. [2016], Videla et al. [2017]. A different
approach aims at avoiding enumeration and explicit analysis of every model
in the set by deriving properties directly from the given constraints, e.g.,
inferring dynamical information from coinciding structural characteristics of
all models Thomas and Kaufman [2001a], Remy et al. [2008], Thomas [1981],
Thomas and Kaufman [2001b]. Here, we adopt the latter approach for sets
of BNs consistent with a given signed interaction graph Σ.

Analogous to Section 4.1, we show that a state transition graph GB
QSTG

captures behavioral restrictions on the dynamics exhibited by the models in
the model pool. More specifically, for each Boolean function f consistent
with a given interaction graph, we are interested in the ASTG capturing the
dynamics of the model. We show that while the ASTG cannot be related
directly to GB

QSTG this becomes possible for a quotient graph derived from
the ASTG by identifying system states with the same image under f . This
quotient graph needs to be a subgraph of GB

QSTG. Consequently, analysis of
GB

QSTG allows to infer reachability constraints valid for all models consistent
with the interaction graph. In particular, universal statements about trap
sets and attractors become possible. The results of this section are partially
based on Schwieger and Siebert [2017, 2018].

Finally, in Section 4.3 we compare the graphs GQSTG(Σ) of Section 4.1
and GB

QSTG of Section 4.2. It turns out that GB
QSTG can be considered

a subgraph of GQSTG(Σ) when identifying the states of both graphs in a
reasonable way with each other. Furthermore, the two graphs have the
same reachability properties. Our final result in Section 4.3 will be the
construction of an ASTG Gasync(f

Σ), which will be a subgraph of GB
QSTG

and GQSTG(Σ). We will call this graph the skeleton of the qualitative state
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M (Σ, X) G̃QSTG(Σ)

Sign matrix Σ

Abstracting the reasonable solutions
of the ODEs in M (Σ, X)

Construction via Prop. 4.1

Figure 4.1.1. Sketch of the construction of the graph G̃QSTG(Σ)
for a sign-matrix Σ ∈ {−1, 0, 1}n×n. Instead of solving the po-
tentially infinite ODEs in M (Σ, X) we can construct the graph
G̃QSTG(Σ) with Proposition 4.1 directly from the sign matrix Σ.

transition graphs, since we can show that it contains already all information
about reachability of both graphs.

4.1. The qualitative state transition graph of a continuous
monotonic model pool

This section is based on [Eisenack, 2006, Section 2.2.1]. We will start
by reviewing these results. This includes the introduction of the continuous
monotonic model pool, i.e. the set of models we are investigating. Then
abstractions of the solutions of the ODEs in this model pool are introduced.
These abstractions in turn are used to define a graph capturing possible
behavior. Such a graph would not be useful, if it would need to be explicitly
generated from solutions of ODE-system. Therefore, the most important
result of this section is Proposition 4.1, which gives an equivalent description
of this graph which only depends on the description of the model pool.
Finally in Section 4.1.3 we give a Boolean reformulation (see also Schwieger
and Siebert [2017]) of this graph. The idea of this section is captured in
Figure 4.1.1.

4.1.1. A graph representation of a continuous monotonic model
pool. In this section we analyze families of ODE models ẋ = f(x) which
share some qualitative properties. These qualitative properties are sign con-
straints on the Jacobian matrix of the right hand sides of the ODE-System.
Instead of the solutions x(·) of the ODE systems, so-called abstractions are
considered. The abstractions considered here are intervals on R≥0 on which
the component functions of x(·) are either increasing or decreasing.

Definition 4.1. Let x : J → R be a real valued function defined on an
interval J ⊂ R.
1) x is increasing on J if ∀t1, t2 ∈ J : t1 < t2 ⇒ x(t1) < x(t2) holds.
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2) x is decreasing on J if ∀t1, t2 ∈ J : t1 < t2 ⇒ x(t1) > x(t2) holds.
3) x is strictly monotonic on J if it is either increasing or decreasing.

Due to the monotonicity theorem we can characterize these intervals by
the derivatives of the solutions:

Theorem 4.1 (Monotonicity Theorem). Let x : J → R be a continuous
real valued function defined on an interval J ⊂ R, which is differentiable
inside J .
1) If ẋ(t) > 0 for all t in the interval J , then x is increasing on J .
2) If ẋ(t) < 0 for all t in the interval J , then x is decreasing on J .

Therefore, we can consider abstractions as sequences of sign vectors of the
derivatives of the solutions. A state transition graph on the set of sign vectors
can be constructed based on the sign matrix, which captures restrictions on
the behavior of the solutions. This graph will be the focus of our investigation
in this section.

We define a set of models – referred to as model pool – to be a set of
ODE systems whose corresponding Jacobian matrices share a sign structure.
For this purpose we define:

Definition 4.2. The map sign(·) : R→ {−1, 0, 1} is defined as follows:

sign(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

.

We extend this mapping componentwise to vectors and matrices over R.

We use this notation to define the continuous monotonic model pool to
be the set of r.h.s. functions of ODE systems whose Jacobian matrix has a
specific sign structure.

Definition 4.3 ([Eisenack, 2006, p. 22]). For a given n × n matrix of
signs Σ = (σi,j)i,j∈[n], σi,j ∈ {−1, 0, 1} and a state space X ⊆ Rn we define
the continuous monotonic model pool

M (Σ, X) := {f ∈ C1(X,Rn) | ∀x ∈ X : sign(Jf (x)) = Σ},
where Jf denotes the Jacobian of f .
We call a function x ∈ C1([0, T ],Rn), T ∈ (0,∞], reasonable, if there is only
a finite set of points t with ẋ(t) = 0 in any bounded interval and for all local
extrema of xi, i ∈ [n] the second derivative does not vanish. We define the
space of admissible trajectories by

E :=
{
x ∈ C1([0, T ], X)|x is reasonable

}
.

The solution set SM (Σ,X) for an initial value problem with x(0) = x0 ∈ X
contains all reasonable solutions of corresponding ODE systems whose right
hand side function is contained in the model pool M (Σ, X), i.e.,

SM (Σ,X) := {x ∈ E |∃f ∈M (Σ, X), x0 ∈ X s.t. ẋ = f(x), x(0) = x0}.

In summary, we consider the set of ODE systems with a specific sign
structure for investigating a certain class of solutions – reasonable solutions
– of these ODE systems. For conciseness, we will identify an ODE with its
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Figure 4.1.2. Trajectories of a solution of an ODE in the
continuous monotonic model pool. Its abstraction is given by
(−1,−1,−1,−1) → (1,−1,−1,−1) → (1, 1,−1,−1). The ODE
was parametrized with x0 = (0.6, 0.6, 0.6, 0.6), d = (1, 1, 1, 1),
θ = (0.5, 0.5, 0.5, 0.5) and k = (1, 1, 1, 1).

right hand side function, talking about ODEs as elements of the continuous
monotonic model pool.

Remark 4.1. Note that our definition is slightly different than the def-
inition given in [Eisenack, 2006, p. 22]. We add here the constraint that the
second derivatives do not vanish at local extrema. We will see later that this
constraint is actually necessary for the results in [Eisenack, 2006, Prop. 2].

We illustrate the notions on our running example.

Example 4.1. Consider all solutions of ODE systems ẋ = f(x) with
f ∈ C1([0, 1]4,R4) having a Jacobian matrix with the sign structure

Σ =


−1 0 0 −1
1 −1 0 0
0 1 −1 −1
0 0 −1 −1

 .

They constitute a model pool denoted by M (Σ). As an example for elements
of this model pool, we construct now a function f ∈M (Σ):

ẋ = f̃(x)− x,
x(0) = x0.

with f̃ : [0, 1]4 → [0, 1]4 given by

f̃(x) =
(
1− x4

x4+0.5 ,
x1

x1+0.5 ,
x2

x2+0.5 ·
(
1− x4

x4+0.5

)
, 1− x3

x3+0.5

)t
.

It can easily be checked that the map f is in the model pool M (Σ).1
Figure 4.1.2 shows the solution of the ODE-System, if we choose x0 =(
0.6 0.6 0.6 0.6

)t, and illustrates that it is a reasonable function, thus
belonging to the solution set.

We are now looking for qualitative features of solutions in order to find
properties common to all ODEs in the continuous monotonic model pool.

1In fact the function f̃ can be seen as a Boolean function f 7→(
1− x4 x1 x2 ∧ ¬x4 ¬x3

)t converted into a continuous function with the methods
considered in Chapter 2.
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The idea is to obtain a rough description of solution trajectories by keeping
track of the sign changes in the derivative. In general, to each reasonable
solution x : [0, T ] → X, T finite, we can assign a unique ordered, maximal
sequence (tj)j∈{0,...,M}, tj ∈ [0, T ], with t0 = 0, tM = T and tj ∈ (0, T ) with
the vector ẋ(tj) having a zero entry for j ∈ [M − 1] indicating sign jumps of
the trajectory.2 If T is infinite we can define a similar sequence not ending in
T . In the interval between the points in the sequence the sign of the solution
derivative is then constant. We are now interested in the sequence of those
signs. Formally, we get the following definition.

Definition 4.4 ([Eisenack, 2006, p. 23]). For a solution x ∈ E , consider
the ordered sequence (tj) in [0, T ] consisting of 0 and all boundary points
of the closure of all sets {t ∈ [0, T ]

∣∣sign(ẋ(t)) = v} with v ∈ {−1, 1}n. A
sequence (τj) ⊂ [0, T ] with τj ∈ (tj , tj+1) and ẋi(τj) 6= 0 for all i ∈ [n] gives
rise to the sequence x̃ = (x̃j) := (sign(ẋ(τj)) which is called abstraction of
x(·).3 We denote the set of abstractions of the solutions of the model pool
M (Σ) by

S̃M (Σ) :=
{
x̃ | x̃ is the abstraction of x(·) for some x ∈ SM (Σ)

}
.

The sign vectors in the above definitions are elements of {−1, 1}n. Sub-
sequent elements in an abstraction are always different from each other, since
the sequence (tj) is chosen from the closure of the sets {t ∈ [0, T ]

∣∣sign(ẋ(t)) =
v} and the function x is reasonable. This has the effect that the sequence (tj)
does not contain points, where the derivates of all components vanish, but
subsequently take the same sign as before (e.g. saddle points). To illustrate
the notion, we extract the abstraction for a solution of the running example.

Example 4.2. Consider the solution of the ODE depicted in Figure 4.1.2.
Its abstraction is given by the sequence ((−1,−1,−1,−1), (1,−1,−1,−1),
(1, 1,−1,−1)), since at the beginning of the trajectory all components are
decreasing. Then the first component starts increasing followed by the sec-
ond one.

Based on the abstractions a so-called qualitative state transition graph
can now be constructed. The states correspond to the signs of ẋ(·) and
transitions indicate subsequent sign vectors in some abstraction.

Definition 4.5 ([Eisenack, 2006, p. 23]). The qualitative state transition
graph (QSTG) G̃QSTG(Σ) of the continuous monotonic model pool is defined
by the set of nodes

ṼQSTG(Σ) := {−1, 1}n,
called qualitative states, and the set of edges

ẼQSTG(Σ) :=
{

(v, w)|∃x̃ ∈ S̃M (Σ), j ∈ N : x̃j = v and (x̃j = w or x̃j+1 = w)
}
,

called qualitative transitions.

2[M − 1] denotes the set {1, . . . ,M − 1} (see Section 1.1).
3The additional assumption, not made in [Eisenack, 2006, p. 23], that none of the components

of ẋ(τj) vanishes, is necessary, since in principle there could be for example saddle points on the
interval (tj , tj+1), which are not included in the sequence of boundary points (tj). Note also, that
since x is assumed to be reasonable, it is always possible to choose such points τj ∈ (tj , tj+1).
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Figure 4.1.3. The graph G̃QSTG(Σ) of the model pool in the
running example constructed with Proposition 4.1. We denote 1
with the symbol + and −1 with the symbol −. Self-loops are
omitted from G̃QSTG(Σ).

In the following, we indicate the transitions with →. It is easy to see
that for each qualitative state v there is a self-loop (v, v) in G̃QSTG(Σ).4

Example 4.3. The QSTG of our running example is depicted in Fig-
ure 4.1.3. We see that we can find the path (−1,−1,−1,−1)→ (1,−1,−1,−1)
→ (1, 1,−1,−1) of Example 4.2 in this graph.

Naturally, this graph would not be very helpful in applications if we
would need to solve all ODEs in the model pool to construct it. The following
proposition constitutes a different approach. It basically says that a change
in the sign of a component i must be caused by a consistent dependency on
a component j in the right hand side function f , as captured in the i, j-th
entry σi,j of the sign matrix Σ.

Proposition 4.1 ([Eisenack, 2006, p. 25]). Let v, w ∈ {−1, 1}n =

ṼQSTG(Σ). Then, (v, w) ∈ ẼQSTG(Σ) iff

(4.1.1) ∀i ∈ diff(v, w)∃j ∈ comm(v, w) : wi · vj = σi,j ,

where diff(·, ·) and comm(·, ·) were defined in Definition 1.2.

The proof of Proposition 4.1 will be given in a moment (Section 4.1.2).
To conclude this section, we note that there is no one-to-one correspondence
between the set of QSTGs and the set of sign matrices. It is possible to

4At this point we differ slightly from the definition of the QSTG in [Eisenack, 2006, p. 24],
where the QSTG contains no self-loops.
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change elements on the diagonal of Σ without changing the graph G̃QSTG(Σ).
This is due to the fact that the sets diff(v, w) and comm(v, w) are disjoint
and thus the diagonal elements do not play a role in (4.1.1). Consequently,
the set of transitions does not change when changing the diagonal of Σ.

Remark 4.2. Let Σ be a sign matrix. Then the following equality holds

G̃QSTG(Σ) = G̃QSTG(Σ−D),

where D is any diagonal matrix with entries in {−1, 0, 1}.

However, we will see later, that if we identify sign matrices, which differ
only on elements on the diagonal, the correspondence becomes one-to-one
(see Proposition 4.9 and Corollary 4.6 in Section 4.4.1).

4.1.2. Proof of the main result. We prove now Proposition 4.1. The
reader not interested in the technical details is advised to skip this sec-
tion. The proof is according to [Eisenack, 2006, p. 25] with a few mod-
ifications. Assume for this section that Σ is a n × n sign matrix, i.e.
Σ = (σi,j)i,j∈[n] ∈ {−1, 0, 1}n×n. The proof contains two directions. We
start by proving that if the condition for a transition in Proposition 4.1 is
satisfied, there exists indeed an ODE-system in the model pool with a rea-
sonable solution whose abstraction contains somewhere this transition. To
do so, we start by constructing an ODE-system with r.h.s. f(x) = Ax + c
for some suitable chosen matrix A and vector c.

Also note that for both directions of the proof we can focus on the tran-
sitions of the form (v, w), w 6= v, since for any self-loop Condition (4.1.1)
is trivially satisfied. It is easy to see that for each v ∈ ṼQSTG(Σ) there
is a transition (v, v) ∈ G̃QSTG(Σ), since no assumptions about the second
derivative are made for the solutions in SM (Σ) [Eisenack, 2006, p. 24].

Lemma 4.1. Let (v, w), v, w ∈ {−1, 1}n, v 6= w be a tuple satisfying
Condition (4.1.1) and k be a mapping k : diff(v, w)→ comm(v, w) such that
for all i ∈ diff(v, w) it holds

wi · vk(i) = σi,k(i).

Then for the matrix A := A(v,w),k defined by

ai,j =

{
n · wi · vj if i ∈ diff(v, w) and j = k(i),

σi,j otherwise.

it holds sign(A) = Σ.

Proof. We only need to show that for i ∈ diff(v, w) and j = k(i) it
holds sign(ai,j) = σi,j . But by definition of k it holds wi · vk(i) = σi,k(i).
Therefore, we have ai,j = n · wi · vk(i) = n · σi,k(i) and consequently it holds
sign(ai,j) = sign(n · σi,k(i)) = σi,k(i). �

The mapping k in the above Lemma chooses an index such that the
corresponding sign change in the i-th component could be caused by the
k(i)-th component. By choosing the entries ai,k(i) sufficiently large, we can
guarantee that the corresponding sign change in the i-th component will
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indeed appear in the abstraction of a solution of the corresponding ODE-
system. We make this now precise. For this purpose, we use the matrix A
from the above lemma to construct a suitable ODE-system:

Lemma 4.2. Assume for v, w ∈ {−1, 1}n with v 6= w that Condi-
tion (4.1.1) is satisfied. Then it holds:

∃f ∈M (Σ),x′ ∈ X, t0 < t1 < t2 ∈ R+

and a solution x ∈ SM (Σ,X) with ẋ = f(x), x(0) = x′ and
∀t ∈ [t0, t1) : sign(ẋ(t)) = v,

∀t ∈ (t1, t2] : sign(ẋ(t)) = w(4.1.2)

.

Proof. We construct appropriate f ,x′,t0, t1 and t2. Choose c ∈ Rn
such that

ci =

{
0 if i ∈ diff(v, w),

vi if i ∈ comm(v, w),

holds. Let k : diff(v, w) → comm(v, w) be a mapping and A be a matrix
A = A(v,w),k = (ai,j) ∈ Rn×n in the sense of Lemma 4.1. Now we define

f(x) := Ax+ c.

Again due to Lemma 4.1 it holds f ∈ M (Σ), since Jf (·) = A. We choose
an arbitrary t1 ∈ R>0 and an open interval J0 with t1 ∈ J0 such that
x(·) : J0 → Rn is a solution of the ODE

ẋ = f(x),

x(t1) = 0.

Next, we show that for each i ∈ comm(v, w) we can find an interval around
t1 such that the sign of ẋi on that interval is vi.5 And for each i ∈ diff(v, w)
we can find an interval around t1 such that the sign of the second derivative
ẍi is wi. Then we will take the intersection of these n intervals and the
interval J0, and show that the abstractions on this interval correspond to
the transition v → w described in (4.1.2).

t0 t1

sign(ẋ(t1)) = c

t2
sign(ẋ(t)) = v sign(ẋ(t)) = w

Figure 4.1.4. Illustration of the proof of Lemma 4.2.

Observation 1: For i ∈ comm(v, w) exists an interval Ji with t1 ∈ Ji such
that ∀t ∈ J0 : sign(ẋi(t)) = vi holds.
Proof: It holds ẋ(t1) = A · x(t1)︸ ︷︷ ︸

=0

+c = c and by definition of c also ci = vi 6=

0. Due to continuity of ẋi there is an open interval Ji around t1 such that
∀t ∈ Ji : sign(ẋi(t)) = vi.

5or wi due to i ∈ comm(v, w)
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Observation 2: For i ∈ diff(v, w) exists an interval Ji with t1 ∈ Ji = (a, b)
such that ∀t ∈ J0 : sign(ẍi(t)) = wi holds. Furthermore, it holds ∀t ∈ (a, t1) :
sign(ẋ(t)) = vi and ∀t ∈ (t1, b) : sign(ẋ(t)) = wi.
Proof: For t ∈ J0 it holds ẍ(t) = A · ẋ(t) and ẋ(t1) = c. By construction of
A and c it holds sign(ẍi(t1)) = wi.6 Due to continuity there is an interval
Ji around t1 such that ∀t ∈ Ji : sign(ẍi(t)) = wi. For the second part of the
proof we can use Theorem 4.1 applied to the function ẋi(·) on the interval
Ji. Consequently for t ∈ Ji smaller than t1 the sign of ẋi(t) is vi, while for
t ∈ Ji bigger than t1 the sign of ẋi(t) is wi.

To finish the proof we now choose t0 < t1 < t2 such that t0, t2 ∈
⋂
i=0,...,n Ji.

Using the above observations we obtain finally

∀t ∈ [t0, t1) : sign(ẋ(t)) = v,

∀t ∈ (t1, t2] : sign(ẋ(t)) = w.

The function x is also obviously reasonable on the interval
⋂
i=0,...,n Ji. �

The above lemma shows that if for a tuple (v, w) in {−1, 1}n the con-
dition in Proposition 4.1 is satisfied, then indeed (v, w) is a transition in
G̃QSTG(Σ). It remains to show the other direction. That is, if (v, w) is a
transition in G̃QSTG(Σ) then the condition in Proposition 4.1 is satisfied.

Lemma 4.3. Assume (v, w) ∈ ẼQSTG(Σ), v 6= w then Condition (4.1.1)
is satisfied.

Proof. We prove that the existence of a transition (v, w) ∈ ẼQSTG(Σ)
implies Condition (4.1.1).
Due to Definition 4.5 of the graph G̃QSTG(Σ), there is only a transition (v, w)
if Condition (4.1.2) is satisfied. Due to continuity of ẋ we can conclude from
Condition (4.1.2) that it holds for i ∈ diff(v, w)

(4.1.3) sign(ẋi(t1)) = 0.

Furthermore, since f in Condition (4.1.2) is a function in M (Σ), by defini-
tion f ∈ C1(X,Rn). Therefore, also the second derivative of x exists.
Now consider an i ∈ diff(v, w).
Case vi = 1: Since i ∈ diff(v, w) it holds wi = −1. The function xi obtains
therefore a local maximum at t1 (due to Theorem 4.1). Since ẋ is continu-
ously differentiable, it also holds sign(ẍi(t1)) = wi. The case sign(ẍi(t1)) = 0
is excluded here, since x is a reasonable function what implies according to
our definition that the second derivative cannot vanish in a local maximum.
Case vi = −1: Since i ∈ diff(v, w) it holds wi = 1 and xi obtains therefore a

6In detail: It holds ẍ(t1) = A · ẋ(t1) = A · c and therefore it holds also

ẍi(t1) =
∑
j∈[n]

ai,j · cj

= ai,k(i) · ck(i)︸ ︷︷ ︸
=n·σi,k(i)·vk(i)∈{−n,n}

+
∑

j∈[n]\{k(i)}

∈{−1,0,1}︷ ︸︸ ︷
ai,jcj

︸ ︷︷ ︸
∈[−(n−1),(n−1)]

,

from which we can conclude sign(ẍi(t1)) = σi,k(i) · vk(i). And by the definition of k in Lemma 4.1
it holds wi · vk(i) = σi,k(i) or equivalently wi = σi,k(i) · vk(i) (since vk(i) · vk(i) = 1).
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local minimum at t1. With the same argumentation it holds sign([ẍi(t1)]) =
1 = wi.

To conclude the proof we notice that we also have due to the chain rule
the equality ẍ(t1) = Jf (x(t1)) · ẋ(t1). I.e. for the components we have
ẍi(t1) = ∇fi(x(t1)) · ẋ(t1). This implies:

wi = sign(ẍi(t1)) = sign(∇fi(x(t1)) · ẋ(t1))

The above equality can only hold if ∃j ∈ [n] : wi = sign(∂jfi(x(t1)) · ẋj(t1))
is satisfied. Due to (4.1.3) the values of ẋj(t1) = cj are zero for j ∈ diff(v, w).
Therefore, it holds j ∈ comm(v, w). Then from sign(∂jfi(x(t1)) · ẋj(t1)) =
sign(∂jfi(x(t1))) · sign(ẋj(t1))︸ ︷︷ ︸

vj

= σi,j · vj the claim follows. �

Taking Lemma 4.2 and Lemma 4.3 together we proved now Proposi-
tion 4.1. The proof of Lemma 4.3 corresponds to the proof in [Eisenack,
2006, Prop. 2 (p. 25)]. However, there is the case where the second de-
rivative vanishes is not excluded. Under these relaxed conditions the above
lemma is wrong as the following example shows:

Example 4.4. Consider the monotonic ensemble M (Σ) with

Σ =


1 0 0 0
1 0 0 0
1 0 0 0
0 1 −1 0

 .

According to Proposition 4.1 there should be no transition from


1
−1
−1
−1

 to


1
1
1
1

 in G̃QSTG(Σ) since σ4,1 = 0. However, under the relaxed conditions in

[Eisenack, 2006, Prop. 2 (p. 25)] this is not true. To see this consider the
ODE ẋ = f(x) given by:

f(x) =


x1

(x1 − e)2x1 + 10(x1 − e)
10(x1 − e)
x2 − x3


The Jacobian matrix of f is given by

Jf =


1 0 0 0

(x1 − e)2 + 2x1(x1 − e) + 10 0 0 0
10 0 0 0
0 1 −1 0

 .
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It is easy to see that ∂1f2 is everywhere positive.7 Consequently, we have

sign(Jf ) =


1 0 0 0
1 0 0 0
1 0 0 0
0 1 −1 0


and therefore f ∈M (Σ).

0 1 2 3 4
0

5

10

15

20

Figure 4.1.5. Plot of (∂1f2)(x1) in Example 4.4 on the interval [0, 4].

A solution is given by

x =


et

1
3(et − e)3 + 10(et − et)

10(et − et)
1
18

[
2(e3t − 3e3t)− 9e2t+1

]
+ et+2



⇒ ẋ =


et

(et − e)2et + 10(et − e)
10(et − e)
1
3(et − e)3



⇒ ẍ =


et

(et − e)2et + 2(et − e)e2t + 10et

10et

(et − e)2et

 .

Now we notice that

ẋ(1) =


e
0
0
0

 and ẍ(1) =


e

10e
10e
0


holds. Therefore, we know that x2 and x3 take a local minimum in t = 1.
Consequently, their derivatives change sign in t = 1 from negative to positive.

7Let ϕ(t) = (t−e)2+2t(t−e)+10. The first and second derivatives are given by ϕ̇(t) = 6t−4e

and ϕ̈(t) = 6. Since ϕ is quadratic, ϕ has a global minimum at tmin = 4e
6
. Since ϕ(tmin) ≈ 7, 54

ϕ is positive.
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We also see that ẋ3(t) = 1
3(et − e)3 has a sign change in t = 1 from negative

to positive. Therefore, the derivative of the solution x has a sign change

from


1
−1
−1
−1

 to


1
1
1
1

, which is not in agreement with [Eisenack, 2006, Prop.

2 (p. 25)].

0.6 0.8 1 1.2 1.4
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Figure 4.1.6. Plots of the derivatives of x2 (green), x3 (red) and
x4 (blue) in Example 4.4. All derivatives change sign at t = 1.

4.1.3. Boolean reformulation of the QSTG. The goal of this sec-
tion is to show that we can consider the graph G̃QSTG(Σ) as a graph with
set of nodes in {0, 1}n, if we replace the symbol −1 with 0. This reformu-
lation will be useful in the rest of the chapter, when we compare the graph
G̃QSTG(Σ) with a similar graph constructed for Boolean networks. We will
show that the resulting graph is the following graph:

Definition 4.6. For a sign-matrix Σ ∈ {−1, 0, 1}n×n we define the graph
GQSTG(Σ) :=

(
VQSTG(Σ), EQSTG(Σ)

)
with VQSTG(Σ) := {0, 1}n. The edges
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ofGQSTG(Σ) are given by the following condition, where we used the notation
from Definition 1.15:

(4.1.4) (v, w) ∈ EQSTG(Σ) :⇔
∧

i∈diff(v,w)

∨
j∈comm(v,w)

vi ⊕σi,j vj .

As usual, we call the edges of GQSTG(Σ) transitions and the nodes states.

As a first step we notice that we proved with Proposition 4.1 that the
condition for a transition in the graph G̃QSTG(Σ) can be replaced by:

(4.1.5) (v, w) ∈ ẼQSTG(Σ) :⇔
∧

i∈diff(v,w)

∨
j∈comm(v,w)

(vi · vj = −σi,j).

Note that we substituted wi with −vi in (4.1.5) which is possible due to the
equality vi = −wi for i ∈ diff(v, w). Note also that for all v ∈ ṼQSTG(Σ)

it holds (v, v) ∈ ẼQSTG(Σ) since by convention the empty conjunction is
always true (see Section 1.1.2).

Our goal is to show that the graphs G̃QSTG(Σ) and GQSTG(Σ) are iso-
morphic. Furthermore, the isomorphism is given by replacing the symbol
−1 with 0. More formally, to show that the two graphs are isomorphic we
introduce the mapping

φ :{0, 1} → {−1, 1},

x 7→

{
−1 if x = 0

1 if x = 1
,

and we define the function Φ : {0, 1}n → {−1, 1}n with Φ : x 7→ (φ(x1), . . . , φ(xn)).
This leads to the following proposition:

Proposition 4.2. The function Φ is a graph isomorphism (See Defini-
tion 1.11) from GQSTG(Σ) to G̃QSTG(Σ).

Proof. It is easy to see that for any a, b ∈ {0, 1} and σ ∈ {−1, 0, 1} the
equivalence

a⊕σ b⇔ (φ(a) · φ(b) = −σ)

holds. To do so we need to prove the equivalence for the three cases σ = −1,
σ = 0 and σ = 1 listed in the following table:

σ a⊕σ b φ(a) · φ(b) = −σ
−1 a↔ b φ(a) · φ(b) = 1
0 0 φ(a) · φ(b) = 0
1 a⊕ b φ(a) · φ(b) = −1

From this observation it is easy to show that the graphs G̃QSTG(Σ) and
GQSTG(Σ) are isomorphic. �

In the following we will identify the graphs GQSTG(Σ) and G̃QSTG(Σ)
with each other and use for both the symbol GQSTG(Σ).

4.2. The qualitative state transition graph of a Boolean
monotonic model pool

The goal of this section is to construct a graph GB
QSTG(Σ) depending on a

interaction graph represented as a sign matrix Σ ∈ {−1, 0, 1}n×n. The graph
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GB
QSTG(Σ) will play a similar role as the graph GQSTG(Σ) in Section 4.1. We

will consider the set of Boolean functions agreeing with the interaction graph
induced by Σ. We will refer to this set as Boolean monotonic model pool
M B(Σ). Then we will abstract the dynamics – more specifically the ASTGs
induced by the Boolean functions in M B(Σ) – using quotient graphs. The
quotient graphs we use for abstracting the dynamics are based on the images
of f (see Section 3.2.2).

In Section 4.2.1 we introduce the graph GB
QSTG and state our main result.

In Section 4.2.2 we give the proof of this result. The results here are a
refinement of previous statements about representing a Boolean monotonic
model pool as a state transition graph Schwieger and Siebert [2017, 2018].

4.2.1. A graph representation of a Boolean monotonic model
pool. The object of our study is a set of Boolean functions M B(Σ) agreeing
with a sign matrix Σ = (σi,j)i,j∈[n] ∈ {−1, 0, 1}n×n. With “agree” we mean
that for any Boolean function f : {0, 1}n → {0, 1}n in M B(Σ) the global
interaction graph IGglobal(f) is a subgraph of the graph induced by the sign
matrix Σ.8 We write for this IGglobal(f) ⊆ Σ. More precisely, we define our
set of Boolean functions M B(Σ) in the following way:

Definition 4.7. For any n × n sign matrix Σ = (σi,j)i,j∈[n], σi,j ∈
{−1, 0, 1} we call the set

M B(Σ) :=
{
f : {0, 1}n → {0, 1}n|IGglobal(f) ⊆ Σ

}
the Boolean monotonic model pool. A function f : {0, 1}n → {0, 1}n for
which a sign matrix Σ exists such that f ∈M B(Σ) holds, is called monotonic
function.

The notion of a monotonic function should not be confused with the
notion of monotone functions as defined for example in Melliti et al. [2016],
since the latter one is more restrictive. We illustrate the notions and results
in this section with a running example:

Example 4.5. Consider the Boolean functions f and g defined as fol-
lows:

f : (x1, x2, x3, x4) 7→ (x2, x1, x4 ∧ (¬x2),¬x3)

g : (x1, x2, x3, x4) 7→ (x2, x1,¬x2,¬x3)

It is easy to see that their (global) interaction graphs are given by

Σ =


0 1 0 0
1 0 0 0
0 −1 0 1
0 0 −1 0


and

Σ̃ =


0 1 0 0
1 0 0 0
0 −1 0 0
0 0 −1 0

 .

8I.e. let G = ([n], E) be the graph such that Σ is its adjacency matrix. Then IGglobal(f) ⊆
Σ :⇔ E(IGglobal(f)) ⊆ E.
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x1

x2 x3

x4

Figure 4.2.1. Interaction graph of the running example.
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(b) Gasync(g).

Figure 4.2.2. ASTGs in Example 4.5.

The graph induced by Σ is depicted in Figure 4.2.1. Both functions f and
g are in the Boolean monotonic model pool M B(Σ). Their ASTGs are
depicted in Figure 4.2.2a and Figure 4.2.2b. Clearly, the two BNs have
different dynamics. For example Gasync(f) has only the steady state 1101,
while Gasync(g) has additionally the steady state 0010. It is therefore not
straightforward to see what characteristics of their dynamics are imposed by
Σ.

To analyze the model pool M B(Σ) we introduce a graph GB
QSTG(Σ). The

meaning and relation of this graph to the model pool M B(Σ) will be clarified
later in Theorem 4.2.

Definition 4.8. For a sign matrix Σ = (σi,j)i,j∈[n] ∈ {−1, 0, 1}n×n we
define a graph GB

QSTG(Σ) =
(
V B
QSTG(Σ), EB

QSTG(Σ)
)
with:

V B
QSTG(Σ) = {0, 1}n
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and

(v, w) ∈ EB
QSTG(Σ)

:⇔
∨
j∈[n]

∧
i∈diff(v,w)

(
vi ⊕σi,j vj

)
,(4.2.1)

where a ⊕1 b, a ⊕0 b and a ⊕−1 b for a, b ∈ {0, 1} were defined according to
Definition 1.15.

Proposition 4.3. If Σ has no negative diagonal elements then (4.2.1) is
equivalent to

∨
j∈comm(v,w)

∧
i∈diff(v,w)

(
vi ⊕σi,j vj

)
. This means it holds

(v, w) ∈ EB
QSTG(Σ)

⇔
∨

j∈comm(v,w)

∧
i∈diff(v,w)

(
vi ⊕σi,j vj

)
.(4.2.2)

Proof. Since for any i ∈ [n] it holds σi,i ≥ 0 the logical expressions
vi ⊕σi,i vi are always false. Consequently, we can restrict the set [n] in the
disjunction of (4.2.1) to comm(v, w). �

From the above definition we can derive immediately the following ob-
servations:

• If Condition (4.2.1) is satisfied there is a j ∈ [n] such that for all
i ∈ diff(v, w) the entries σi,j are not zero.
• For each v ∈ {0, 1}n there is a transition (v, v) ∈ EB

QSTG(Σ), since
the set diff(v, v) will be empty in this case and Condition (4.2.1) is
trivially satisfied for any index in [n] = comm(v, v).

To investigate the possible dynamics of models in M B(Σ), we are going to
relate now the graph GB

QSTG(Σ) with the model pool M B(Σ). To do so
we use the equivalence relation based on the update function introduced in
Section 3.2.2. For an update function f ∈ B(n, n) we defined the equivalence
relation ∼f in such a way that for two states s, t in {0, 1}n it holds

s ∼f t :⇔ f(s) = f(t).

We are interested in the quotient graphs Gasync(f)
/
f := Gasync(f)

/
∼f

induced by such equivalences ∼f . In Section 3.2.2 we gave some intuition
and simple properties for these types of quotient graphs.

We state now the main result of this section which explains the relation
of the graph GB

QSTG(Σ) and M B(Σ).

Theorem 4.2. Let Σ ∈ {−1, 0, 1}n×n be a sign-matrix. The graph
GB

QSTG(Σ) is the union of all quotient graphs Gasync(f)/f of Boolean func-
tions in the model pool M B(Σ). I.e.

GB
QSTG(Σ) =

⋃
f∈M B(Σ)

Gasync(f)/f.

While the graph GB
QSTG(Σ) can be easily constructed of the matrix Σ,

the right hand side
⋃
f∈M B(Σ)Gasync(f)/f seems on the first glance very

inaccessible. However, Theorem 4.2 states that it is in fact the same object
as our graph GB

QSTG(Σ). Since GB
QSTG(Σ) is constructed using only the
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matrix Σ, this links the dynamical behavior of the models in M B(Σ) to Σ.
However, this relation between structure and dynamics takes the detour over
the quotient graphs with respect to the update function.
We demonstrate the construction of the graph GB

QSTG(Σ) with our running
example:

Example 4.6. The graph GB
QSTG(Σ) can be easily constructed from the

interaction graph. In the case of our running example with Σ =


0 1 0 0
1 0 0 0
0 −1 0 1
0 0 −1 0


the graph GB

QSTG(Σ) is depicted in Figure 4.2.3. Assume we want to check

if
v︷︸︸︷

1101 →
w︷︸︸︷

1111 is a transition of this graph: Since w = v{3} it holds
diff(v, w) = {3}, and therefore we obtain:∨

j∈{1,2,4}

(v3 ⊕σ3,j vj).

This expression is equivalent to (v3⊕1v4), which is obviously true. Therefore,
1101→ 1111 is a transition in GB

QSTG(Σ) (see Figure 4.2.3).
In Figure 4.2.4 the quotient graphs Gasync(f)

/
f and Gasync(g)

/
g from

Example 4.5 are depicted. We see that they are indeed subgraphs ofGB
QSTG(Σ).

The graph GB
QSTG(Σ) captures restrictions on the structure of the quo-

tient graphs in the monotonic model pool. With the remarks about the
relation of the ASTGs and their quotient graphs we can now summarize
some simple consequences from Theorem 4.2:

Corollary 4.1. 1) If for two states v, w ∈ {0, 1}n there is no path from
v to w in GB

QSTG(Σ), then for no quotient graph Gasync(f)/f of Boolean
functions in the model pool M B(Σ) there is a path from v to w.
2) If v ∈ {0, 1}n has no outgoing transitions in GB

QSTG(Σ), then for each
quotient graph Gasync(f)/f in the model pool M B(Σ) the state v can only
occur as a steady state. Furthermore, either the set f−1(v) is empty or v is
a steady state of Gasync(f).
3) Each trap set T in GB

QSTG(Σ) corresponds to (a possibly empty) trap set in
the quotient graphs Gasync(f)/f of the monotonic model pool. Consequently,
also the preimage f−1(T ) corresponds to a (a possibly empty) trap set in
Gasync(f) for any f ∈M B(Σ).

4.2.2. Proof of the main result. We start by showing the inclusion⋃
f∈M B(Σ)

Gasync(f)/f ⊆ GB
QSTG(Σ)

and continue afterwards with the opposite inclusion. The idea of the proof
is to find a necessary condition for a transition in Gasync(f)/f for any f ∈
M B(Σ), which we can express solely with the images of f representing the
equivalence classes in Gasync(f)/f . This condition will correspond exactly
to Condition (4.2.1).
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Figure 4.2.3. The graph GB
QSTG(Σ) from the running example

(Example 4.6). Loops are omitted.
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Figure 4.2.4. The quotient graphs of the functions defined in
Example 4.5.
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Since the graph GB
QSTG(Σ) has for every state v ∈ GB

QSTG(Σ) a loop
(v, v) and therefore the inclusion

⋃
f∈M B(Σ)Gasync(f)/f ⊆ GB

QSTG(Σ) for
these types of transitions is trivially true, it will be enough to focus for the
first inclusion on transitions (v, w), v, w ∈ {0, 1}n with v 6= w.

To ease later calculations we state the following lemma here, which can
be easily checked by calculating the corresponding truth tables.

Lemma 4.4. For σ ∈ {−1, 1} it holds a⊕σ b⇔ a−(a⊕1)
(b⊕1)−b = (a⊕1)−a

b−(b⊕1) = σ.

Next, we prove a necessary condition for a transition in the quotient
graph Gasync(f)

/
f with f ∈M B(Σ).

Lemma 4.5. Let Σ = (σi,j)i,j∈[n] ∈ {−1, 0, 1}n×n be a n×n sign matrix.
Assume for some f ∈M B(Σ), there are s, t ∈ {0, 1}n s.t. (s, t) ∈ Easync(f),
s 6= t with f(s) = v and f(t) = w (i.e. (v, w) ∈ E(Gasync(f)

/
f)) then the

Boolean expression

(4.2.3)
∨

j∈diff(s,t)

∧
i∈diff(v,w)

(vi ⊕σi,j vj)

is satisfied.

Proof. Due to (s, t) ∈ Easync(f), s 6= t it holds

(4.2.4) ∃j ∈ diff(s, t) : s{j} = t.

Let j ∈ diff(s, t) such that Condition (4.2.4) is satisfied. Then for any
i ∈ diff(v, w) due to the definition of the interaction graph and the dis-
crete derivatives ∂jfi (see (1.3.1)) it holds first ∂jfi(s) = fi(t)−fi(s)

tj−sj 6= 0 and
therefore σi,j 6= 0. Second, it holds:

∀i ∈ diff(v, w) : σi,j =
fi(t)− fi(s)
tj − sj

=
(fi(s)⊕ 1)− fi(s)
tj − (tj ⊕ 1)

⇔∀i ∈ diff(v, w) : fi(s)⊕σi,j tj
⇔∀i ∈ diff(v, w) : fi(s)⊕σi,j fj(s)
⇔∀i ∈ diff(v, w) : vi ⊕σi,j vj
⇔

∧
i∈diff(v,w)

(vi ⊕σi,j vj).

For the first equivalence we used Lemma 4.4 (with a = fi(s) and b = tj). �

For any f ∈M B(Σ) Lemma 4.5 gives us Condition (4.2.3) for the exis-
tence of a transition (v, w) ∈ E(Gasync(f)

/
f). However, Condition (4.2.3)

depends not only on the states ofGasync(f)
/
f but also on the states and tran-

sitions in Gasync(f). In order to embed the graphs Gasync(f)
/
f , f ∈M B(Σ)

into a super graph as in Theorem 4.2, we would like to obtain a condition
similar to Condition (4.2.3) which only depends on the states in Gasync(f)

/
f .

We can do so by introducing the condition:

(4.2.5)
∨
j∈[n]

∧
i∈diff(v,w)

(vi ⊕σi,j vj).

We obtain the the following statement:
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Proposition 4.4. Let Σ be a sign matrix. Assume there is f ∈M B(Σ)
such that (v, w) ∈ E

(
Gasync(f)/f

)
then

(4.2.6)
∨
j∈[n]

∧
i∈diff(v,w)

(vi ⊕σi,j vj).

Proof. Assume (v, w) ∈ E
(
Gasync(f)/f

)
. Then there are two states

s, t in {0, 1}n with f(s) = v and f(t) = w. If v = w holds, Condition (4.2.6)
is trivially satisfied due to diff(v, w) = ∅. Otherwise, it holds s 6= t and
according to Lemma 4.5 the following condition is satisfied:∨

j∈diff(s,t)

∧
i∈diff(v,w)

(vi ⊕σi,j vj).

Due to diff(s, t) ⊆ [n] we obtain:∨
j∈[n]

∧
i∈diff(v,w)

(vi ⊕σi,j vj).

�

As an immediate consequence of Proposition 4.4 the first inclusion in
Theorem 4.2 follows:

Corollary 4.2. It holds⋃
f∈M B(Σ)

Gasync(f)/f ⊆ GB
QSTG(Σ).

Proof. Set
⋃
f∈M B(Σ)Gasync(f)/f := (V,E). We can identify the states

of the quotient graphs Gasync(f)/f with its images under f . These images
are in {0, 1}n. Therefore, clearly V ⊆ {0, 1}n holds. For each transition
e = (v, w) ∈ Gasync(f)/f according to the previous Proposition 4.4, Condi-
tion (4.2.1) in the definition of the graph GB

QSTG(Σ) is satisfied. Therefore,
the inclusion holds as well on the set of transitions. �

It remains to showGB
QSTG(Σ) ⊆

⋃
f∈M B(Σ)Gasync(f)/f . For this purpose

we construct for every transition (v, w) ∈ EB
QSTG(Σ) a Boolean function

f ∈M B(Σ) such that its quotient graph Gasync(f)/f contains the transition
(v, w).

Proposition 4.5. Assume (v, vA) ∈ EB
QSTG(Σ) with A ⊆ [n]. Then

there is a Boolean function f ∈M B(Σ) such that (v, vA) ∈ E(Gasync(f)/f)
holds.

Proof. Due to (v, vA) ∈ EB
QSTG(Σ) by the definition of GB

QSTG(Σ) it
holds:

(4.2.7)
∨
j∈[n]

∧
i∈diff(v,vA)

(
vi ⊕σi,j vj

)
.

And due to Lemma 4.4 and diff(v, vA) = A the following is true:

(4.2.8) ∃j ∈ [n]∀i ∈ A :
[
(σi,j 6= 0) ∧

( vi − (vi ⊕ 1)

(vj ⊕ 1)− vj
=

(vi ⊕ 1)− vi
vj − (vj ⊕ 1)

= σi,j
)]
.
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We pick j ∈ [n] such that ∀i ∈ A :
[
(σi,j 6= 0) ∧

( vi−(vi⊕1)
(vj⊕1)−vj = (vi⊕1)−vi

vj−(vj⊕1) =

σi,j
)]

is satisfied. Furthermore, we define for any t ∈ {0, 1}n the function
f ∈ B(n, n) in the following way9:

(4.2.9) f(t) =

{
v if tj = v

{j}
j

vA if tj = vj

On the hyperplane defined by {t ∈ {0, 1}n|tj = v
{j}
j } every value is mapped

to v by f , while on the hyperplane {t ∈ {0, 1}n|tj = vj} every value is
mapped to vA. Clearly it holds f(v{j}) = v. Therefore, there is a transition
(v{j}, v) ∈ Easync(f). Since f(v{j}) = v and f(v) = vA holds, (v, vA) is a
transition in the quotient graph Gasync(f)/f .
We claim now IGglobal(f) ⊆ Σ which is by definition equivalent to f ∈
M B(Σ). The function f only changes along the j-axis. Therefore, we only
need to check the partial derivatives ∂jfi for i ∈ [n]. Furthermore, for any
i ∈ B the Boolean function fi equals everywhere vi. Therefore, we only need
to check whether the partial derivatives ∂jfi agree with Σ for i ∈ A.
Assume there is s ∈ {0, 1}n such that ∂jfi(s) 6= 0 for some i ∈ A. Then due
to the definition of the discrete derivative it holds:

0 6= fi(s
{j})− fi(s)
s
{j}
j − sj

= ∂jfi(s)

1. Case sj = v
{j}
j : Then fi(s) = vi, fi(s{j}) = vAi = 1⊕vi, sj = v

{j}
j = 1⊕vj

and s{j}j = vj . This leads to:

∂jfi(s) =
fi(s

{j})− fi(s)
s
{j}
j − sj

=
1⊕ vi − vi
vj − 1⊕ vj

2. Case sj = vj : Then fi(s) = vAi = 1 ⊕ vi, fi(s{j}) = vi, sj = vj and
s
{j}
j = v

{j}
j = 1⊕ vj . This leads to:

∂jfi(s) =
fi(s

{j})− fi(s)
s
{j}
j − sj

=
vi − vi ⊕ 1

1⊕ vj − vj

And due to (4.2.8) in both cases it holds ∂jfi(s) = σi,j . �

The following example illustrates the above proof.

Example 4.7. Consider the transition
=v︷︸︸︷

1101→
w︷︸︸︷

1111 in GB
QSTG(Σ) of our

running example. We want to construct a function f whose quotient graph
Gasync(f)

/
f contains this transition. In the above theorem it holds A = {3}

and we can pick j = 4 as in Example 4.6. Consequently, we define

f(s) =

{
(1, 1, 0, 1)t if s4 = 0

(1, 1, 1, 1)t if s4 = 1
.

9Note that we did not exclude the case A = ∅. Therefore, the function f could be constant,
too.



84 4. MODEL POOLS AND THEIR GRAPH REPRESENTATION

I.e.

f(s) =


1
1
s4

1

 .

Due to Proposition 4.5 for every transition (v, w) ∈ EB
QSTG(Σ) we can

construct a Boolean function f ∈ M B(Σ) such that Gasync(f)/f contains
the transition (v, w) and the states v, w. Therefore, we obtain the following
corollary.

Corollary 4.3. It holds GB
QSTG(Σ) ⊆

⋃
f∈M B(Σ)Gasync(f)

/
f .

Corollary 4.2 and Corollary 4.3 prove the equality in Theorem 4.2.

4.2.3. Some further remarks: other Boolean model pools. In
this section we discuss in how far there is potential to refine the results
in Section 4.2. In Section 4.2 we saw that we can relate the dynamics of
different models in a Boolean monotonic model pool to a state transition
graph GB

QSTG(Σ). This relation was elucidated by Theorem 4.2. This result
raises the question if it would be possible to restrict the model pool we
consider here to any subset M ⊂ M B(Σ) and prove a result similar to
Theorem 4.2. A natural candidate would be

MB(Σ) :=
{
f : {0, 1}n → {0, 1}n|IGglobal(f) = Σ

}
.

I.e. we would need to prove that

(4.2.10) GB
QSTG(Σ) =

⋃
f∈MB(Σ)

Gasync(f)/f

holds. However, the following example shows that we can find a sign matrix
Σ for which ⋃

f∈MB(Σ)

Gasync(f)
/
f 6= GB

QSTG(Σ)

holds. The reason for this is roughly speaking that while the update scheme
is asynchronous enforcing transitions of the form(v, v{i}) the change in the
image of f on such transitions i.e. (f(v), f(v{i}) is still synchronous i.e. the
change in one components affects all values in f simultaneously.

We can use this idea to construct an example in which (4.2.10) does not
hold. We choose a very simple matrix Σ, where a change let us say in the
third variable enforces a change in the first and second one (I.e. 001→ 111
in GB

QSTG(Σ)). In the graph GB
QSTG(Σ) that we choose such a transition

would imply also transitions of the form 001→ 011 and 001→ 101 (see also
Proposition 4.8 in Section 4.3). However, as we will see the latter transitions
can not occur in the quotient graphs in the Boolean monotonic model pool.

Example 4.8. Consider the matrix

Σ =

0 0 1
0 0 1
0 0 0

 .
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Figure 4.2.5. Illustration of Example 4.8.

In this specific case it is easy to describe the model pool MB(Σ).
Claim: In the model pool MB(Σ) consists only of two functions, namely

f(s) =

s3

s3

1

 ,

g(s) =

s3

s3

0

 .

Proof: Due to the structure of the global interaction graph for any function
h ∈ MB(Σ) the third component h3 must be constant and the first and
second component must be a function of s3 - i.e. h1(s3), h2(s3). There are
only two non-constant functions {0, 1} → {0, 1} and only one agrees with
the sign structure of Σ.
It is now easy to see that there is a transition (v, w) ∈ EB

QSTG(Σ) which
occurs in none of the two quotient graphs Gasync(f)/f and Gasync(g)/g: In
GB

QSTG(Σ) is the transitions 001→ 101, since

=0︷︸︸︷
v1 ⊕

=1︷︸︸︷
σ1,3

=1︷︸︸︷
v3

is satisfied, which is the condition in Definition 4.8 for this transition. But
001 → 101 is neither a transition in Gasync(f)

/
f nor in Gasync(g)

/
g. The

follows from the fact that 101 is not in the image of f and g.

4.2.4. GB
QSTG(Σ) is a subgraph of GQSTG(Σ). The condition for a

transition in GQSTG(Σ) and GB
QSTG(Σ) are very similar. Let us consider

the case where Σ ∈ {−1, 0, 1}n×n is sign matrix with non-negative diagonal
elements. In this case the condition for a transition in GB

QSTG(Σ) is given
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by (4.2.2) in Proposition 4.3. After switching the order of the conjunction
and disjunction symbol in (4.2.2) one obtains the condition for a transition
in GQSTG(Σ):

(v, w) ∈ EQSTG(Σ)

⇔
∧

i∈diff(v,w)

∨
j∈comm(v,w)

(
vi ⊕σi,j vj

)
(4.2.11)

Therefore, we have:

Corollary 4.4. For a n × n sign matrix with non-negative diagonal
elements it holds GB

QSTG(Σ) ⊆ GQSTG(Σ).

Proof. Condition (4.2.1) implies Condition (4.2.11). Therefore, the in-
clusion holds since every transition of GB

QSTG(Σ) is a transition in GQSTG(Σ).
�

This shows that the graphs GQSTG(Σ) and GB
QSTG(Σ) are in fact not

that different from each other. We will learn more about this in the next
section.

4.3. The skeleton of the qualitative state transition graphs

The goal of this section is to show that we can reduce the transitions
in GQSTG(Σ) and GB

QSTG(Σ) to transitions between states with Hamming
distance one from each other without changing reachability properties of the
graphs. This reduction is useful for several reasons. Firstly, we are mostly
interested in structures of the state space which are defined in terms of
reachability properties (e.g. trap sets, steady states). Secondly, we can argue
that transitions where only one component changes at a time are much more
likely to observe, since the different components of the modeled regulatory
network are likely to interact with each other on different timescales Thomas
[1991]. Lastly, we can represent these transitions as an ASTG. We will call
this ASTG the skeleton of Σ. Interestingly, we will see that for a sign-matrix
Σ with non-negative diagonal the skeleton of GQSTG(Σ) and GB

QSTG(Σ) is
identical. This implies especially that a state w is reachable from a state v
in GQSTG(Σ) if and only if the same holds true in GB

QSTG(Σ). Analogous
to the construction of GQSTG(Σ) and GB

QSTG(Σ) the skeleton, which will
be denoted by Gasync(f

Σ), can be constructed directly from Σ. This allows
us to analyze the skeleton – an asynchronous BN with ASTG Gasync(f

Σ) –
instead of the graphs GQSTG(Σ) and GB

QSTG(Σ). Another aspect is that we
can reconstruct the sign matrix Σ from the skeleton. This is useful if the
sign matrix Σ is unknown and we wish to reconstruct it from observations.
The results in this section are partially published in Schwieger and Siebert
[2018]. We start now with the construction of the graph Gasync(f

Σ).
In Section 4.1 and Section 4.2 we defined the graphs GQSTG(Σ) and

GB
QSTG(Σ) in such a way that for a transition e = (v, w), v, w ∈ {0, 1}n with
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diff(v, w) = A the following conditions hold:

(v, w) ∈ EQSTG(Σ)⇔
∧

i∈diff(v,w)

∨
j∈comm(v,w)

vi ⊕σi,j vj ,

(v, w) ∈ EB
QSTG(Σ)⇔

∨
j∈[n]

∧
i∈diff(v,w)

(vi ⊕σi,j vj).

This implies that there are potentially transitions (v, w) in GQSTG(Σ) and
GB

QSTG(Σ) where the set diff(v, w) has cardinality bigger than one. However,
we want to represent the graphs GQSTG(Σ) and GB

QSTG(Σ) as an ASTG of a
Boolean function. Therefore, we show now in the sequel that we can delete
the transitions (v, w) with |diff(v, w)| > 1 without loosing information about
reachability.10

For the transitions (v, w) for which the set diff(v, w) has cardinality one,
i.e. diff(v, w) = {i}, the conditions for a transition in GQSTG(Σ) where Σ has
no negative diagonal elements and in GB

QSTG(Σ) for any Σ ∈ {−1, 0, 1}n×n
are given by the following logical formula:

(4.3.1)
∨
j∈[n]

(vi ⊕σi,j vj).

We can then use (4.3.1) to construct the Boolean update function of the
corresponding ASTG. We explain this now in detail.

4.3.1. The skeleton of the graph GQSTG(Σ). Since the condition for
a transition in the graph GQSTG(Σ) is independent of the diagonal elements
of Σ we can without loss of generality assume that for the graph GQSTG(Σ)
the diagonal elements of Σ are zero. The following proposition shows that we
can restrict ourselves to transitions with Hamming distance one in GQSTG(Σ)
without loosing information about reachability:

Proposition 4.6. Assume there is a transition (v, vA) ∈ EQSTG(Σ) with
A ⊆ [n]. Then for each B ⊆ A it holds

(v, vB) ∈ EQSTG(Σ),

(vB, vA) ∈ EQSTG(Σ).

Proof. We show first (v, vB) ∈ EQSTG(Σ): Since B ⊆ A ⇔ [n]\A ⊆
[n]\B the following implications hold true:

(v, vA) ∈ EQSTG(Σ)

⇒
∧
i∈A

∨
j∈[n]\A

(
vi ⊕σi,j vj

)
⇒
∧
i∈B

∨
j∈[n]\B

(
vi ⊕σi,j vj

)
⇒(v, vB) ∈ EQSTG(Σ)

10| · | denotes the cardinality of a set. (See also Section 1.1)
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For the second part we know due to (v, vA) ∈ EQSTG(Σ):∧
i∈A

∨
j∈[n]\A

(
vi ⊕σi,j vj

)
.

Let us call C := diff(vB, vA) = A\B. We need to show∧
i∈C

∨
j∈[n]\C

(
vBi ⊕σi,j vBj

)
.

Before we start we make two observations:
1. Observation: ∀j ∈ [n]\A : vj = vAj = vBj
2. Observation: ∀i ∈ C : vi = vBi

Now we are ready to prove the statement of the Proposition. Since B∪C = A
we have C ⊆ A. It follows ∧

i∈A

∨
j∈[n]\A

(
vi ⊕σi,j vj

)
⇒
∧
i∈C

∨
j∈[n]\A

(
vi ⊕σi,j vj

)
.

And due to Observation 1 and 2 we obtain:∧
i∈C

∨
j∈[n]\A

(
vBi ⊕σi,j vBj

)
.

Since C ⊆ A⇔ [n]\A ⊆ [n]\C finally we showed:∧
i∈C

∨
j∈[n]\C

(
vBi ⊕σi,j vBj

)
⇔ (vB, vA) ∈ EQSTG(Σ).

�

Now for transitions with Hamming distance one the condition for a tran-
sition (v, v{k}) with k ∈ [n] in GQSTG(Σ) takes the form

(v, v{k}) ∈ EQSTG(Σ)⇔
∧

i∈diff(v,w)

∨
j∈comm(v,w)

vi ⊕σi,j vj

⇔
∨

j∈[n]\{k}

vk ⊕σk,j vj

⇔
∨
j∈[n]

vk ⊕σk,j vj ,

where the last equivalence holds since vk ⊕σk,k vk is always false.

4.3.2. The skeleton of the graph GB
QSTG(Σ). It can easily be shown

that Proposition 4.6 holds as well for the graph GB
QSTG(Σ) if Σ contains no

negative diagonal elements. However, in the general case we need to be
careful as the following example shows.
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Example 4.9. Consider the sign matrix Σ =

(
−1 0
1 0

)
. The graph

GB
QSTG(Σ) depicted in Figure 4.3.1 contains the transition 10 → 0111 and

10→ 00. However, it does not contain the transition 00→ 0112. This shows
that the analogous statement of Proposition 4.6 is not correct for the graph
GB

QSTG(Σ) if Σ contains negative diagonal elements.

00

10

01

11

Figure 4.3.1. The graph GB
QSTG(Σ) in Example 4.9.

However, we can prove a similar result. We start with the following
lemma which gives us a simplified version of the condition for a transition
in GB

QSTG(Σ) if no component with a negative self-loop changes along a
transition in GB

QSTG(Σ):

Lemma 4.6. Let Σ ∈ {−1, 0, 1}n be a sign matrix. Assume there is a
transition (v, vA) ∈ EB

QSTG(Σ) with A ⊆ [n], A 6= ∅ and for all i ∈ A it holds
σi,i ≥ 0. Then it holds

(4.3.2) (v, vA) ∈ EB
QSTG(Σ)⇔

∨
j∈[n]\A

∧
i∈A

(
vi ⊕σi,j vj

)
.

Proof. It holds

(v, vA) ∈ EB
QSTG(Σ)⇔

∨
j∈[n]

∧
i∈A

(
vi ⊕σi,j vj

)
.

If j ∈ A then the expression
(
vj ⊕σj,j vj

)
is always false. This shows the

equivalence: ∨
j∈[n]

∧
i∈A

(
vi ⊕σi,j vj

)
⇔

∨
j∈[n]\A

∧
i∈A

(
vi ⊕σi,j vj

)
�

11For v = 10 and w = 01 the condition
∨
j∈{1,2}

∧
i∈{1,2}

(
vi ⊕σi,j vj

)
is equivalent to

(v1 ⊕σ1,1 v1) ∧ (v2 ⊕σ2,1 v1) = (v1 ⊕−1 v1) ∧ (v2 ⊕1 v1), which is true.
12For v = 00 and w = 01 the condition

∨
j∈{1,2}

∧
i∈{2}

(
vi ⊕σi,j vj

)
is equivalent to

(v2 ⊕σ2,1 v1)︸ ︷︷ ︸
=0

∨ (v2 ⊕σ2,2 v2)︸ ︷︷ ︸
=0

, which is not satisfied.
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Furthermore, for arbitrary transitions in GB
QSTG(Σ) we have the following

lemma:

Lemma 4.7. Assume there is a transition (v, vA) ∈ EB
QSTG(Σ) with A ⊆

[n]. Then for any subset B ⊆ A there is a transition (v, vB) ∈ EB
QSTG(Σ).

Proof. Since (v, vA) is a transition inGB
QSTG(Σ) it holds ∨j∈[n]

∧
i∈A

(
vi⊕σi,j

vj
)
. It follows that

∨
j∈[n]

∧
i∈B

(
vi⊕σi,j vj

)
is satisfied for any B ⊆ A, which

is equivalent to (v, vB) ∈ EB
QSTG(Σ). �

Using Lemma 4.6 and Lemma 4.7 we can prove now the analogous re-
sult to Proposition 4.6 for transitions not involving negatively autoregulated
components:

Proposition 4.7. Let Σ ∈ {−1, 0, 1}n be a sign matrix. Assume there
is a transition (v, vA) ∈ EB

QSTG(Σ) with A ⊆ [n], A 6= ∅ and for all i ∈ A it
holds σi,i ≥ 0. Then for each B ⊆ A, A 6= B 6= ∅:

(v, vB) ∈ EB
QSTG(Σ),

(vB, vA) ∈ EB
QSTG(Σ).

Proof. This is a consequence of Lemma 4.6 and Lemma 4.7. The proof
is analogous to Proposition 4.6. �

Next, we make the observation that for a component k ∈ [n] with a
negative self-loop (i.e. σk,k = −1) each state v in GB

QSTG(Σ) has a transition
where the k-th component changes:

Lemma 4.8. For any v ∈ {0, 1}n, k ∈ [n] with σk,k = −1 it holds

(v, v{k}) ∈ EB
QSTG(Σ).

Proof. This is true since in this case vk ⊕σk,k vk is always satisfied and
furthermore we have the implications:

vk ⊕σk,k vk
⇒
∨
j∈[n]

∧
i∈{k}

(
vi ⊕σi,j vj

)
⇔(v, v{k}) ∈ EB

QSTG(Σ)

�

Proposition 4.8. For any transition (v, w) in GB
QSTG(Σ) with v 6= w

there is a path from v to w inGB
QSTG(Σ) consisting of transitions of Hamming

distance one.

Proof. Let w = vA with ∅ 6= A ⊂ [n]. We define A = B ∪ C with
B = {i ∈ A|σi,i ≥ 0} and C = A\B. First we notice that due to Lemma 4.7
there is a transition (v, vB) in GB

QSTG(Σ). Due to Proposition 4.7 we know
that there is path consisting of transitions with Hamming distance one from
v to vB in GB

QSTG(Σ). Next, by applying Lemma 4.8 iteratively we obtain
the same result for vB and vA = (vB)C . This proves the claim. �
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Proposition 4.8 and Proposition 4.6 show that we can restrict ourselves to
the transitions induced by the sets {1}, . . . , {n} without loosing information
about reachability of states in GQSTG(Σ) or GB

QSTG(Σ). We call the resulting
graph G(Σ) = (V (Σ), E(Σ)) the skeleton of Σ, where V (Σ) := {0, 1}n and
for v ∈ {0, 1}n, i ∈ [n] it holds

(4.3.3) (v, v{i}) ∈ E(Σ) :⇔
∨
j∈[n]

vi ⊕σi,j vj .

Since each transition inG(Σ) is of the form (v, v{i}), it is possible to represent
this graph as the ASTG of a suitable Boolean function, which we will call
fΣ.

Remark 4.3. Note that the graph G(Σ) has in contrast to the graphs
GQSTG(Σ) and GB

QSTG(Σ) no self-loops. However, this is only a technical
detail since this self-loops can easily be restored from G(Σ) if necessary.

Indeed, due to Lemma 3.2 we can define fΣ in the following way:

Definition 4.9. We define the function fΣ : {0, 1}n → {0, 1}n as

(4.3.4) fΣ = condg
Σ
,

where gΣ
i (v) :=

∨
j∈[n] vi ⊕σi,j vj .

Due to Lemma 3.2 it holds G(Σ) = Gasync(f
Σ). Therefore, we will

denote the skeleton of Σ from now on with Gasync(f
Σ). For two states

v, w ∈ {0, 1}n, v 6= w there is a directed path in Gasync(f
Σ) if and only

if there is a directed path in GQSTG(Σ). The same holds true for Gasync(f
Σ)

and GB
QSTG(Σ). The reduction of GQSTG(Σ) and GB

QSTG(Σ) to Gasync(f
Σ)

has not only the advantage that the graph Gasync(f
Σ) can have significantly

less transitions, but also that certain structural features of Gasync(f
Σ) can

be deduced directly from fΣ. This includes trap sets (see Definition 1.7),
attractors (see Definition 1.9), trap spaces (see Definition 1.27) and no-return
sets (see Definition 1.8).

We illustrate the construction of fΣ with the following example:

Example 4.10. Let us construct the functions gΣ and fΣ in Defini-
tion 4.9 from the sign matrix Σ in Example 4.1. We obtain

gΣ
1 (v) =

∨
j∈{4}

(
v1 ⊕σ1,j vj

)
= ¬(v1 ⊕ v4),

gΣ
2 (v) =

∨
j∈{1}

(
v2 ⊕σ2,j vj

)
= v1 ⊕ v2,

gΣ
3 (v) =

∨
j∈{2,4}

(
v3 ⊕σ3,j vj

)
= (v2 ⊕ v3) ∨ ¬(v3 ⊕ v4),
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gΣ
4 (v) =

∨
j∈{3}

(
v4 ⊕σ4,j vj

)
= ¬(v3 ⊕ v4)

and

fΣ
1 (v) = ¬v4,

fΣ
2 (v) = v1,

fΣ
3 (v) = v3 ⊕

(
(v2 ⊕ v3) ∨ ¬(v3 ⊕ v4)

)
,

fΣ
4 (v) = ¬v3.

In Figure 4.3.2 the skeleton is depicted. The graph GQSTG(Σ), depicted in
Figure 4.1.3, has 50 transitions and its skeletonGasync(f

Σ) has 36 transitions.

We summarize the results in the following proposition:

Corollary 4.5 (of Proposition 4.8 and Proposition 4.6). Let Σ be a sign
matrix in {−1, 0, 1}n×n. Then we have for v, w ∈ {0, 1}n the equivalences:

v ; w in Gasync(f
Σ)

⇔v ; w in GB
QSTG(Σ).(4.3.5)

If Σ has no negative diagonal elements additionally it holds.

v ; w in GQSTG(Σ)

⇔v ; w in Gasync(f
Σ)

⇔v ; w in GB
QSTG(Σ).(4.3.6)

This implies for T ⊆ {0, 1}n and ∗ ∈ {trap set, trap space, steady state,
attractor, weak/strong basin of attraction of a trap set, no-return set} also:

T is a ∗ in GQSTG(Σ)

⇔T is a ∗ in Gasync(f
Σ)

⇔T is a ∗ in GB
QSTG(Σ).

Proof. The equivalences in (4.3.5) and (4.3.6) are an immediate conse-
quence of Proposition 4.6 and Proposition 4.8. For each transition (v, vA),
v ∈ {0, 1}n, A := {i1, . . . , ik} ⊆ [n], k ∈ [n], A 6= ∅ in the graph GQSTG(Σ)

or GB
QSTG(Σ) there exists a path from v to vA of the form v → v{i1} →

v{i1,i2} → · · · → vA. Consequently, it holds
(
v ; w in GQSTG(Σ)

)
⇔
(
v ;

w in Gasync(f
Σ)
)
and

(
v ; w in GB

QSTG(Σ)
)
⇔
(
v ; w in Gasync(f

Σ)
)
. If

Σ has no negative diagonal elements the graphs GQSTG(Σ) and GB
QSTG(Σ)

have the same skeleton. This shows the equivalence (4.3.6). The second part
of the claim follows immediately from this. �

Corollary 4.5 shows that we can shift the analysis of the graphsGQSTG(Σ)

and GB
QSTG(Σ) to the skeletonGasync(f

Σ). For many relevant structures such
as trap spaces, attractors, steady states there exist specialized algorithms for
BNs Klarner et al. [2015], Garg et al. [2008], Hopfensitz et al. [2013], Klarner
and Siebert [2015]. Furthermore, network reduction techniques such as Veliz-
Cuba et al. [2014a], Naldi et al. [2011], Zañudo and Albert [2013] can be used
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Figure 4.3.2. Skeleton in Example 4.10.

to simplify the model. Corollary 4.5 allows to use all these algorithms and
ideas to analyze the graphs GQSTG(Σ) and GB

QSTG(Σ). We also refer to
Schwieger and Siebert [2018] for further ideas such as consistency with time
series data. We will see in the rest of this thesis several applications of the
graph Gasync(f

Σ).

4.4. Reconstruction of the interaction graph

In this section we are going to demonstrate that the techniques developed
in Section 4.3 can be used to infer interaction graphs. To do so we assume
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that the measured data corresponds to transitions in GQSTG(Σ) or more
precisely to transitions in Gasync(f

Σ). By using for example finite differences
the slopes of the courses of concentrations of different species (e.g. proteins
or mRNA) on different time intervals can be approximated. We assume that
these approximated slopes correspond to the states of the graph GQSTG(Σ).
In this way we obtain a set of transitions in GQSTG(Σ) for an unknown
sign matrix Σ which we want to reconstruct. Using Proposition 4.6 we can
assume further that all these transitions stem from the graph Gasync(f

Σ).
We will show in Proposition 4.9 that this approach allows us in principle to
reconstruct the non-diagonal elements of the sign matrix Σ if the amount of
data is sufficient. If this is not the case several sign matrices can agree with
the given data. We can make additional assumptions about the structure of
Σ such as sparsity to restrict the amount of results in this case.

By construction it makes only sense to consider interaction graphs stem-
ming from monotonic functions. This is not a severe restriction since most
models of GRNs are assumed to be monotonic. Also due to the way the
graph GQSTG(Σ) is constructed in Section 4.1 it is not possible to recon-
struct the diagonal elements. Consequently, if possible models containing
autoregulation should not be too simplified such that concentrations of in-
termediate products necessary for the autoregulation can be compared to
the predictions of the model as well.

To formalize our approach we define for a ∈ {−1, 0, 1}n the set of sign
matrices with diagonal a, i.e.

Ma =
{
M ∈ {−1, 0, 1}n×n|diag(M) = a

}
We want to show that it is in principle possible to reconstruct the sign matrix
Σ from the skeleton Gasync(f

Σ) or from the graph GQSTG(Σ). The idea is to
prove that the map which attributes to a sign matrix Σ its skeleton fΣ, i.e.

Φ : Ma → B(n, n),

Σ 7→ fΣ,(4.4.1)

is injective. Since the correspondence between the update function of an
ASTG and its ASTG is as well bijective, this means that we can use the
transitions of Gasync(f

Σ) to reconstruct Σ. However, it will be rarely the
case that all transitions of Gasync(f

Σ) can be observed. This is a general
problem of network inference Laubenbacher and Stigler [2004], Vera-Licona
et al. [2014], Liang et al. [1998], Barman and Kwon [2017], Imani and Braga-
Neto [2015], Lähdesmäki et al. [2003]. Additional assumptions are made to
overcome this problem. A frequent one is that the interaction graph of the
regulatory network is sparse. That means models in agreement with the
measured transitions with smaller interaction graphs are to be preferred.

We start by proving that the function Φ is injective. This shows that it
is in principle possible to restore the interaction graph from its skeleton.

4.4.1. There is a one-to-one correspondence between Σ, Gasync(fΣ),
GQSTG(Σ) and GB

QSTG(Σ). Let Σ = (σi,j)i,j∈[n] ∈ {−1, 0, 1}n be a sign
matrix with non-negative diagonal elements. To show that the map Φ de-
fined in (4.4.1) is injective we first observe that the component functions Φi,
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i ∈ [n] depend only on the elements of Σ in the i-th row which are not on
the diagonal. We therefore define a family of maps

φi : {−1, 0, 1}n →B(n, 1),(
σ1 . . . σn

)
7→
(
x 7→ xi ⊕

[ ∨
j∈[n]\{i}

(xi ⊕σj xj)
])

(4.4.2)

and consider these maps on the hyperplanes where the i-th component is
fixed. Let us denote with σi the i-th row vector of the matrix Σ. It holds
according to Definition 4.9 that Φi(Σ) = (fΣ)i = φi(σi). Each function φi
does not depend on the i-th entry of the sign vector σi. This allows us to
deduce that Φ is injective on the set Ma, a ∈ {−1, 0, 1}n if for all i ∈ [n] the
functions φi are injective on such hyperplanes.

To prove that φi, i ∈ [n] is injective we define for an arbitrary subset W
of the Cartesian product of n sets S a set W i,s consisting of the elements of
W for which the i-th component is s ∈ S. More precisely, for any set S and
W ⊆

∏n
i=1 S the set W i,s, s ∈ S is defined as follows

W i,s :=
{
w ∈W |wi = s

}
.

Using this notation we can prove now that the maps φi are injective. The
idea of the proof is to construct for any two distinct sign vectors σ1, σ2 with
σ1
i = σ2

i a point a = a(σ1, σ2) ∈ {0, 1}n for which φi(σ1)(a) 6= φi(σ2)(a)
holds.

Lemma 4.9. The function φi is injective for i ∈ [n] on the hyperplanes
H i,−1, H i,0, H i,1 with H = {−1, 0, 1}n.

Proof. For a fixed i ∈ [n] assume there are two vectors σ1, σ2 ∈ H i,∗

such that σ1 6= σ2, ∗ ∈
{
− 1, 0, 1

}
. Furthermore, assume w.l.o.g. that there

is an index j ∈ [n]\{i} such that σ2
j 6= 0 and σ1

j 6= σ2
j .
13 We want to show

f1
i := φi(σ1) 6= φi(σ2) =: f2

i . Let a be a vector to be chosen in {0, 1}n. For
j ∈ [n]\{i} we define C1

j := (ai ⊕σ
1
j aj) and C2

j := (ai ⊕σ
2
j aj). Then we can

consider the disjunctions C1 :=
∨
j∈[n]\{i}C

1
j and C2 :=

∨
j∈[n]\{i}C

2
j . It is

easy to see that we can choose a in such a way that for all j ∈ [n]\{i} the
expression C1

j evaluates to zero, while for at least one j ∈ diff(σ1, σ2) the
expression C2

j evaluates to one.14 Then the disjunction C1 is false and C2 is
true. Consequently, it holds φi(σ1)(a) 6= φi(σ2)(a) and the claim follows. �

Using the fact that the i-th component functions of Φ depend only on
the i-th row and that these maps are injective on the hyperplane where the
i-th component is fixed we arrive at the following proposition.

13Otherwise, just change the roles of σ1 and σ2.
14For example choose ai = 1 on Hi,1 and for j ∈ [n]\{i} define

aj :=


0 σ1

j = −1

1 σ1
j = 1

0 σ1
j = 0 and σ2

j = 1

1 σ1
j = 0 and σ2

j ∈ {−1, 0}

.
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Proposition 4.9. The map Φ is injective on the set of sign matrices Ma

for any a ∈ {−1, 0, 1}n.

Proof. According to Lemma 4.9 the maps φi are all injective on H i,a.
Consequently Φ is injective. �

We remark also that from the fact that Φ is injective a few interesting
consequences can be drawn.

Corollary 4.6. Let Σ ∈ {−1, 0, 1}n×n be a sign matrix with non-
negative diagonal elements. Then the correspondences between the graphs
Gasync(f

Σ), GQSTG(Σ), GB
QSTG(Σ) are all one-to-one.

Proof. By deleting all transitions between states with Hamming dis-
tance strictly bigger than one we obtain a mapping from GQSTG(Σ) and
GB

QSTG(Σ) to fΣ. Therefore, we obtain the following diagram for fΣ and
GQSTG(Σ):

GQSTG(Σ)fΣ

Σ ∈Ma

Φ

(similar for fΣ and GB
QSTG(Σ)). Since

Φ is injective all the other mappings in the diagram need to be injective
as well. Consequently, also the correspondence between GQSTG(Σ) and
GB

QSTG(Σ) is one-to-one. �

4.4.2. A network inference algorithm. We show now how based on
the result of the last section a simple network inference algorithm can be
constructed. For this purpose we define some metrics to compare a graph
with a second graph which represents our knowledge about the dynamics of
a BN.

Definition 4.10 (see also Barman and Kwon [2017]). For a graph G̃ =

(V, Ẽ) we define the recall with respect to a graph G = (V,E) as

Recall =

∣∣Ẽ⋂E∣∣∣∣E∣∣ .

If G̃ and G are ASTGs we also define for i ∈ [n]

Recalli =

∣∣{(v, v{i}) ∈ Ẽ
⋂
E|v ∈ {0, 1}n

}∣∣∣∣{(v, v{i}) ∈ E|v ∈ {0, 1}n
}∣∣ .

In the second part of the above definition we consider only transitions
where the i-th component changes. In both parts of the definition the max-
imal recall rate is one which is the case if E ⊆ Ẽ.

We can now put everything together and describe a simple algorithm
that will take as an input some discretized time series data that we assume
will have the form of an ASTG. The idea of our algorithm (Algorithm 1)
is to iterate over all possible skeletons beginning with the ones induced by
the sparsest sign vectors. If there are several solutions induced by equally
“likely” sign vectors (i.e. sign vectors whose support has the same cardinality)
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Algorithm 1 G stores the measured transitions, i is the component of the interac-
tion graph whose incoming edges we want to interpolate, m is the maximal indegree
of the network.

1: function Interpolate fΣ
i (Graph G (an ASTG storing the given data),

i ∈ [n], m ∈ [n− 1])
2: maxr ← −1
3: maxk ← 1
4: results← list()
5: for k = 1..m do
6: for σ ∈ {−1, 0, 1}n, σi = 1 with |{j ∈ [n]|σj 6= 0}| = k do
7: fi ← φi(σi)
8: r ← recalli(fi, G)
9: if r = maxr and k = maxk then

10: results.append(fi)
11: end if
12: if r > maxr then
13: maxk ← k
14: maxr ← r
15: results← list({fi})
16: end if
17: end for
18: if maxr = 1 then
19: return results
20: end if
21: end for
22: return results
23: end function

that agree equally well with the given data the algorithm will return all
possible solutions. Each of the solutions of the algorithm corresponds due to
Proposition 4.9 uniquely to a sign vector σ using the map (φi)−1, i ∈ [n].15

4.4.3. Numerical experiments. We consider the Boolean function

f : (x1, x2, x3, x4) 7→ (¬x4,¬x1, x1 ∧ x2, x3).

Its interaction graph IGglobal(f) is depicted in Figure 4.4.1. We use the
transformation algorithm presented in Chapter 2 with randomly chosen Hill
exponents between 1 and 5, threshold between 0.2 and 0.8, and lifetimes
between 1 and 5. We simulate this ODE-system on the interval [0, 5] and
pick 100 equidistant time points. We use then Algorithm 1 to reconstruct
the interaction graph IGglobal(f).

As a first step we use finite differences to obtain a sequence of sign vectors.
A negative sign is replaced with zero, a positive with one. Subsequent equal
vectors are merged. In this way we obtain the following path: 1101 →
1100→ 1000→ 1010→ 1011. Since we do not have more information about
the behavior of the system, we choose this path as the ASTG representing
the gold standard. Applying Algorithm 1 we obtain Table 4.4.1. Since our

15up to the distinguished coordinate σi
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x1

x2 x3

x4

Figure 4.4.1. Interaction graph we wish to reconstruct. Red
edges denote inhibitions.

component results corresponding edges
x1 x1 -
x2 x2 ⊕ (x2 ⊕−1

x1), x2 ⊕
(x2⊕1 x3),x2⊕

(x2 ⊕1 x4)

x1→x2, x3 → x2,x4 → x2

x3 x3⊕ (x3⊕1 x1),
x3 ⊕ (x3 ⊕−1

x2),
x3⊕(x3⊕−1x4)

x1 → x3, x2→x3, x4→x3

x4 x4 ⊕ (x4 ⊕−1

x2),
x4 ⊕ (x4 ⊕1 x3)

x2→x4, x3 → x4

Table 4.4.1. Red edges denote inhibitory effects, black edges de-
note activating effects.

data contains no change in the first component it is reasonable to assume
that it is not influenced by any other components. For the second component
we obtain three alternative regulators. Either the first down-regulates, or the
third or fourth component up-regulates the second component. While only
the first one is correct, the other two options are also plausible since there
exists a positive path from the third or fourth component to the first one
in the interaction graph of the gold standard depicted in Figure 4.4.1. For
the other components the situation is similar. Only the inhibitory edge from
the second two the fourth component is not reflected in any negative path
in IGglobal(f).

4.5. Discussion

In this chapter we investigated how complete sets of models of GRNs can
be analyzed with a state transition graph derived directly from an interaction
graph. We considered ODE models in Section 4.1 and asynchronous BNs
in Section 4.2. The approach in the two cases is similar. By abstracting
the dynamics of specific models it was possible to construct a finite state
transition graph capturing restrictions on the dynamics of the models.

In Section 4.1 the abstraction of the solutions was the direction of the
slopes of the components of the solution (i.e. increasing or decreasing).
Similar in Section 4.2, Boolean models – represented by a function f ∈
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B(n, n) – were abstracted using quotient graphs Gasync(f)
/
f . This allowed

us to construct in Section 4.1 the graph GQSTG(Σ) and in Section 4.2 the
graph GB

QSTG(Σ). The main result in both cases is that these graphs can
be directly constructed from the sign matrix Σ without considering specific
models.

In both cases, this makes it possible to deduce properties of the set of
models from the graph GQSTG(Σ) or GB

QSTG(Σ). By construction, these
properties are mostly negative, i.e. they concern the limits of possible be-
haviors of the models.

In Section 4.3 we unified the analysis of the graphs GQSTG(Σ) and
GB

QSTG(Σ) by showing that they have a common skeleton. This skeleton
is the ASTG of a Boolean function fΣ ∈ B(n, n) obtained directly from the
sign matrix Σ. The ASTG Gasync(f

Σ) contains already all information about
the reachability of the states in GQSTG(Σ) and GB

QSTG(Σ) to each other.
This allows us to apply theoretical results about BNs to the graphs

GQSTG(Σ) and GB
QSTG(Σ) or to analyze their structure with software tools

developed for asynchronous BNs. For possible applications of our results we
refer also to Corollary 4.1 and the list of simple statements about the rela-
tionship between the quotient graphs Gasync(f)

/
f and Gasync(f) in the end

of Section 4.2.1. These results could in the future be exploited in the anal-
ysis of Boolean monotonic model pools when enumerating models explicitly
is computationally too costly.

In Section 4.4 we investigated how the interaction graph can be recon-
structed from the skeleton. We proved that this is possible by showing that
the interaction graph and the skeleton are in a one-to-one correspondence if
we neglect the elements on the diagonal. Afterwards we gave a naive algo-
rithm which identifies the most sparse skeletons agreeing with given data.

There are a few aspects of the results in this chapter worth investigat-
ing in the future. The considered construction of the graphs GQSTG(Σ) or
GB

QSTG(Σ) can lead to graphs that are very well connected and therefore im-
pose not many restrictions on the dynamics of the models. In some instances
it is therefore not possible to draw many conclusions about the considered set
of models. To overcome this problem it could be interesting to consider the
informations about different time scales at which reactions are taking place.
In many GRNs some reactions are very fast, while others are significantly
slower (See e.g. [Alon, 2007, Table 2.1.]). Replacing Condition (4.1.4) by a
more restrictive version, taking such information into account, could there-
fore be a possible path to improve the results presented here. We could work
also directly on the skeleton and use results on different update schemes (see
e.g. Noual [2012]) using priority classes. Also the idea of using the skeleton
for network inference was just demonstrated here in a proof-of-concept style
and deserves in my opinion further investigation. Another related topic that
we are going to investigate in Chapter 5 is how we can use the representation
of the interaction graph as a skeleton to develop techniques to distinguish
different interaction graphs based on time series data or steady states. In-
teraction graphs are a static description of the interactions in the modeled
regulatory network. However, such a static description is not always straight-
forward to verify especially if components are only indirectly measured. The
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skeleton constructed here we believe is a useful tool to overcome this bridge
containing the relevant and most likely observed possible sign changes which
are in agreement with the interaction graphs.



CHAPTER 5

Methods for applications
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In Chapter 4 we investigated how we can describe sets of ODEs and
Boolean models that have a common structure. If we are not sure about the
structure of a GRN – i.e. several interaction graphs are plausible – we could
compare the corresponding skeletons introduced in the last chapter and see
how well they agree with measured data. However, in most applications
we do not have access to the state of the complete network. Therefore,
comparing different ASTGs is not always straightforward. Normally, it is
only possible to measure a small fraction of the components of the regulatory
network. In this chapter we will present several new ideas and approaches to
distinguish Boolean models based on a limited number of components and
how to select components that could be measured to differentiate between
BNs.

The topic of experiment design is not new and has been studied for
example in Thiele et al. [2018] and many others. Here, we do not investigate
any changes of the network by knock-out experiments. We focus solely on
the question which components should be observed if we do not influence the
behavior of the regulatory network. Also the design of Boolean classifiers in
synthetic biology, considered for example in Mohammadi et al. [2017], Becker
et al. [2018] is related. In these works Boolean classifiers with a specific
structure are searched which can be implemented as synthetic biological
circuits. Here, we do not make such structural assumptions on the Boolean
functions representing the classifiers. We will formalize our criteria using
projections of the states or transitions of a BN. Therefore, there is also a
link to network reduction (see e.g. Paulevé and Richard [2012], Naldi et al.
[2011]). Network reduction methods often try as well to conserve the number
of steady states or more generally attractors, which is in principle a similar
problem to the one considered in this chapter.

101
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Depending on what aspects of a Boolean network we consider as predic-
tive features of the model different criteria for selecting components might be
reasonable. In Section 5.1 we introduce two criteria to distinguish Boolean
models based on states and transitions. The first three subsections of Sec-
tion 5.1 are based on a joint work with Claudine Chaouiya and Pedro T.
Monteiro which took place during a research stay at the INESC-ID1 in Lis-
bon in spring 2018. In Section 5.1.3 these methods will be applied to a
model for cell-fate decision Calzone et al. [2010]. In Section 5.1.4 we explain
how the content of Section 5.1.1 and Section 5.1.2 could be described in the
language of algebraic geometry.

In Section 5.2 we give ideas how sequences of states can be used to
distinguish models. In this section we also demonstrate the methods on four
possible interaction graphs of a Cytokinin signaling pathway suggested in
Topcu-Alici [2012]. To do so the suggested interaction graphs are translated
into the skeletons introduced in the previous chapter.

The ideas in this chapter are meant to be a primer for further research
and should demonstrate how the results of this thesis can be exploited in the
future in applications. We will give a few showcases. However, we will not
go into detail about implementation and algorithmic aspects and leave this
for future work. The methods here are not restricted to Boolean models aris-
ing from interaction graphs considered in Chapter 4. In principle, they are
not even restricted to the scenario where different Boolean models are com-
pared. Normally, asynchronous BNs, due to their nondeterminism, predict
several different possible behaviors of the modeled network. Consequently,
the methods in this chapter can be used to distinguish between different
such possible behaviors of ASTGs as well. In Section 5.1.3 for example we
will demonstrate how different groups of steady states can be distinguished
based on a set of markers in a Boolean model for cell-fate decision.

5.1. Distinguishing Boolean models with criteria based on states
or transitions

In this section we consider two criteria to select components we can mea-
sure to distinguish between models. The criteria will be based on projections
of states or transitions of a BN. Afterwards, we outline algorithms to find
these sets of components.

5.1.1. Criteria based on states for measuring components. In
this section we consider the situation where we are given two disjunct sets
of states A1, A2 in {0, 1}n. These sets could for example represent two
sets of steady states of a BN we wish to distinguish (see the showcase in
Section 5.1.3). Now assume we are given any state in the union of the two
sets – i.e. s ∈ A1∪A2. We want to know what components we need to know
such that we can decide for any state s ∈ A1 ∪A2 whether it belongs to A1

or A2. Let us look at an example to clarify what we mean with this:

1Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em
Lisboa
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000001010011100101110111

00011011

proj{1,2}

(a) After projecting onto the first and sec-
ond component, the two sets remain sepa-
rated. Therefore, it is enough to measure
the first two components.

000001010011100101110111

00011011

proj{2,3}

(b) After projecting these sets of states
onto the second and third component, it
is not possible anymore to distinguish the
two sets from each other.

Figure 5.1.1. Illustration of Example 5.1. The state space
{0, 1}3 is divided into the sets {000, 001} (the red states) and
{0, 1}3\{000, 001} (the blue states).

Example 5.1. Consider the set of states depicted in Figure 5.1.1. The
two groups of states, depicted in the figure, remain separated after the pro-
jection depicted in Figure 5.1.1a. Therefore, it is possible to decide their
membership to the red or blue sets solely based on the first two components.
In Figure 5.1.1b we see that measuring the second and third component is
in this example not sufficient to decide the membership.

We formalize this in the following problem:

Problem 5.1. For two disjoint sets A1, A2 in {0, 1}n find all sets of
indices ∅ 6= I ⊆ [n] such that projI(A1) ∩ projI(A2) = ∅ holds.

An alternative formulation, which is sometimes more convenient, is the
following:

Problem 5.2 (State-Discrimination-Problem). For a given set of states
∅ 6= A ⊂ B ⊆ {0, 1}n we search one or more sets ∅ 6= I ⊆ [n] such that for
all v ∈ B it holds

(5.1.1) v ∈ A⇔ projI(v) ∈ projI(A).

By setting A = A1 and B = A1 ∪ A2 or A1 = A and A2 = B\A it
is clear that these problems can be converted into each other without any
problems. A trivial solution of the State-Discrimination-Problem is always
I = [n]. However, in general we are interested in solutions which contain the
least amount of components, i.e. a set I ⊆ [n] with minimal cardinality. At
this point we need to be careful, since it is in principle possible that different
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00

01

10

11

Figure 5.1.2. Illustration of Example 5.2: In order to identify
A = {00} in the set B = {00, 11} we can either use the first or
second component.

{1, 2}

{1} {2}
(a)

11

10 01

(b)

Figure 5.1.3. The set of solutions A (A,B) in Example 5.2 rep-
resented as Hasse diagram. On the left the elements of A (A,B)
are sets, on the right they are represented as Boolean vectors. The
minimal elements of A (A,B) are the Boolean vectors 10 and 01.

solutions have minimal cardinality. It is easy to construct such an example
in {0, 1}2.

Example 5.2. Let

A =
{

00
}
,

B =
{

00, 11
}
,

be two sets in {0, 1}2. It is easy to see that I = {1} and I = {2} are both
solutions with minimal cardinality to the State-Discrimination-Problem (see
Figure 5.1.2).

We want now to investigate the solutions of the State-Discrimination-
Problem. For ∅ 6= A ⊂ B ⊆ {0, 1}n let us denote the solutions of the State-
Discrimination-Problem with A (A,B). It is clear that if I ∈ A (A,B) is such
a solution then for any index j ∈ [n] also I ∪ {j} ∈ A (A,B). Therefore,
we can represent A (A,B) completely by its inclusion-minimal elements and
equip it with the partial ordering given by the set inclusion. In order to
find the solutions of the State-Discrimination-Problem we will give another
reformulation of the above problem. The first step is to identify the elements
of A (A,B) with Boolean vectors in {0, 1}n using the bijection

P([n])→ {0, 1}n,
I 7→ 0I .(5.1.2)

Therefore, we can think of the set A (A,B) as a subset of {0, 1}n. In Fig-
ure 5.1.3 we see the solutions A (A,B) in Example 5.2. On the right we see
the set A (A,B) represented with Boolean vectors.
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We construct now a Boolean function in B(n, 1) that evaluates to one
for each Boolean vector representing a solution of the State-Discrimination-
Problem. We call such a function an indicator function, defined formally in
the following way:

Definition 5.1. For a set A ⊆ {0, 1}n we denote with indA the following
function:

indA : {0, 1}n → {0, 1},

s 7→

{
1 if s ∈ A
0 if s 6∈ A

,

which we call indicator function of the set A.

We can use the indicator functions not only to represent the elements of
A (A,B) but also for the sets A and B. We want to give a reformulation of
(5.1.1) in terms of indicator functions. We can define the indicator function
indA (A,B) in the following way:

(5.1.3) indA (A,B)(I) =

{
1 if ∀v ∈ B :

(
indA(v)↔ indproj

I(A)(projI(v))
)
,

0 otherwise.

This tells us essentially that the functions indA(·) and indproj
I(A)(projI(·))

need to be equal on the setB if I is a valid solution of the State-Discrimination-
Problem. Next, we can use Definition 3.7 in Section 3.2.1 to express indproj

I(A)

in terms of indA(v) and I such that we do not need to construct the indicator
function of projI(A) from the set projI(A) explicitly.

Lemma 5.1. Let A ⊆ {0, 1}n, ∅ 6= I ⊆ [n]. The indicator function of
projI(A) is projI(indA), i.e. we have projI(indA) = indproj

I(A) (see Defini-
tion 3.7).

Proof. We need to show that projI(indA) is the indicator-function of
the set projI(A). We have the equivalences

projI(y) ∈ projI(A) =
{
projI(z)|z ∈ A

}
⇔∃z ∈ A : projI(z) = projI(y)

⇔∃z ∈ [y]projI : indA(z)(5.1.4)

The latter one corresponds to the definition of projI(indA) (see Definition 3.7).
�

Using the above lemma we will show that indA (A,B) : {0, 1}n → {0, 1}
can be defined in the following way:

(5.1.5) x 7→



1 if ∀y ∈ {0, 1}n :
[
indB(y)︸ ︷︷ ︸
y∈B

→

(
indA(y)︸ ︷︷ ︸
y∈A

↔ ∃z ∈ {0, 1}n : indA(z)︸ ︷︷ ︸
∃z∈A:

∧∀i ∈ [n] : xi → [zi ↔ yi]︸ ︷︷ ︸
projI (z)=projI (y)

)]
,

0 otherwise.

We prove this in the following proposition.
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Proposition 5.1. The indicator function indA (A,B) can be expressed as
the function defined in (5.1.5).

Proof. Let ∅ 6= I ⊆ [n] be a solution of the State-Discrimination-
Problem, i.e. it holds indA (A,B)(0I) = 1. Using Lemma 5.1 we have the
equivalence:

∅ 6= I ⊆ [n] is a solution

⇔∀y ∈ B :
(
indA(y)↔ ∃z ∈ [y]projI : indA(z)︸ ︷︷ ︸

=projI(indA)(y)

)
(5.1.6)

Now the expression ∃z ∈ [y]projI can be replaced using the following equiva-
lence

z ∈ [y]projI ⇔ ∀i ∈ [n] : (0I)i →
zi=yi︷ ︸︸ ︷

(zi ↔ yi)︸ ︷︷ ︸
projI(z)=projI(y)

.

Note that we only need to guarantee equality for the components in I to
ensure that projI(z) = projI(y) ⇔ z ∈ [y]projI is satisfied. Therefore, the
expression (5.1.6) is equivalent to

∀y ∈ {0, 1}n :
[ y∈B︷ ︸︸ ︷
indB(y)→

( y∈A︷ ︸︸ ︷
indA(y)↔

∃z ∈ {0, 1}n : indA(z)︸ ︷︷ ︸
z∈A

∧∀i ∈ [n] : (0I)i → (zi ↔ yi)︸ ︷︷ ︸
projI(z)=projI(y)

)]
.(5.1.7)

In summary, for any given ∅ 6= I ⊆ [n], projI is a solution to State-
Discrimination-Problem if and only if indA (A,B)(0I) = 1 with indA (A,B)

defined as follows:

x 7→


1 if ∀y ∈ {0, 1}n :

[
indB(y)︸ ︷︷ ︸
y∈B

→
(
indA(y)︸ ︷︷ ︸
y∈A

↔ ∃z ∈ {0, 1}n : indA(z)︸ ︷︷ ︸
∃z∈A:

∧∀i ∈ [n] : xi → [zi ↔ yi]︸ ︷︷ ︸
projI (z)=projI (y)

)]
,

0 otherwise.

�

(5.1.5) can be used to compute the solutions of A (A,B) by finding the
solutions of indA (A,B)(x) = 1. We used the solver QFUN described in Jan-
ota [2017] in the examples in this chapter. But others are also possible (e.g.
Benedetti [2005], Zhang and Malik [2002]). Note that we cannot use a con-
ventional SAT solver due to usage of the universal quantifier in (5.1.5) (see
the reformulation of (5.1.5) in Remark 5.1).

Remark 5.1. In order to use the solver described in Janota [2017] we
need to bring (5.1.5) in the following form.
∀y ∈ {0, 1}n :

[
indB(y)→

[(
∃z ∈ {0, 1}n : indA(z) ∧ ∀i ∈ [n] : xi → [zi ↔ yi]︸ ︷︷ ︸

:=α(x,y,z)

)
→ indA(y)

]]
⇔∀y ∈ {0, 1}n :

[
¬indB(y) ∨ ¬

(
∃z ∈ {0, 1}n : α(x, y, z)

)
∨ indA(y)

]
⇔∀y ∈ {0, 1}n :

[
¬indB(y) ∨

(
∀z ∈ {0, 1}n : ¬α(x, y, z)

)
∨ indA(y)

]
⇔∀y ∈ {0, 1}n∀z ∈ {0, 1}n : ¬indB(y) ∨ ¬α(x, y, z) ∨ indA(y)
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In general due to the complexity problems of this type cannot be solved
for larger systems Janota [2017]. For our experiments we considered exam-
ples between 10 and 20 components. However, the running times depend
largely on the structure of the Boolean equations which can allow to tackle
larger systems as well in specific instances Janota [2017].

We also note that in the special case A (A, {0, 1}n) the computation is
much more easy. Indeed, here A (A, {0, 1}n) has a unique minimal element
given by the essential components of the indicator function indA (i.e. the
components indA depends on.). For completeness we prove this here as well:

Definition 5.2 ([Crama and Hammer, 2011, p. 30, Definition 1.23]).
For a Boolean function ϕ : {0, 1}n → {0, 1} we call a component i ∈ [n]
essential if and only if the following holds

(5.1.8) ∃v ∈ {0, 1}n : ϕ(v)⊕ ϕ(v{i}).

For a Boolean function ϕ ∈ B(n, 1) we call Ess(ϕ) the set of its essential
components.

We obtain the following proposition:

Proposition 5.2. For any ∅ 6= A ⊆ {0, 1}n the unique inclusion-wise
minimal set of A (A, {0, 1}n) is Ess(indA).

Proof. We use the indicator function indA (A,{0,1}n) defined in (5.1.3)
of the State-Discrimination-Problem. I.e. ∅ 6= J ⊆ [n] is a solution to the
State-Discrimination-Problem if and only if for all x ∈ {0, 1}n holds:(

indA(x)↔ ∃y ∈ [x]projJ : indA(y)
)

The set of solutions of the State-Discrimination-Problem is then given by:

A (A) : = A (A, {0, 1}n)(5.1.9)

=
{
∅ 6= J ⊆ [n]|∀x ∈ {0, 1}n :

(
indA(x)↔ ∃y ∈ [x]projJ : indA(y)

)}
(5.1.10)

Let Ess(indA) be the set of essential components of indA.
Ess(indA) ∈ A (A): Assume Ess(indA) 6∈ A (A). Then there must be x, y ∈
{0, 1}n such that indA(x) ⊕ indA(y) and y ∈ [x]projI(A) holds2. This implies
that there is some set ∅ 6= J ⊆ [n]\Ess(indA) such that xJ = y and there-
fore, there must be a state s ∈ {0, 1}n such that indA(s) ⊕ indA(s{j}) with
j ∈ J . Therefore, j ∈ J ⊆ [n]\Ess(indA) is an essential component. But
since Ess(indA) consists of the essential components, this is a contradiction
to the assumption.
∀J ∈ A (A) : Ess(indA) ⊆ J : Assume the contradiction, i.e. ∃i ∈ Ess(indA)

⋂
Jc.

Since i is an essential component of indA it holds ∃x ∈ {0, 1}n : indA(x) ⊕
indA(x{i}) and since i ∈ Jc = [n]\J it even holds x{i} ∈ [x]projJ , i.e.

∃x ∈ {0, 1}n∃y ∈ [x]projJ : indA(x)⊕ indA(y),

which implies that J 6∈ A (A). �

2The expression indA(x)⊕ indA(y) means that x or y is in A but not both.
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Transition-Discrimination-Problem over {0, 1}n

State-Discrimination-Problem over {0, 1}n . . . n-th State-Discrimination-Problem over {0, 1}n

A 1(condf1 , cond
g
1) . . . An(condfn, cond

g
n)

intersection of solutions = solutions of the Transition-Discrimination-Problem

consider projections as Boolean vectors in {0, 1}n

Figure 5.1.4. Scheme of solving the Transition-Discrimination-Problem.

5.1.2. Criteria based on transitions for measuring components.
Instead of considering sets of states in {0, 1}n in the State-Discrimination-
Problem we can also consider sets in {0, 1}n×{0, 1}n to select components of
a BN we want to measure. Such sets can represent transitions in a Boolean
network. Since we can in principle consider elements in {0, 1}n × {0, 1}n as
elements in {0, 1}2n we can use the same strategy as in the previous section
to find components which allow us to distinguish sets of transitions. If the
transitions stem from an ASTG an alternative approach is to split up the
problem into maximally n State-Discrimination-Problems. This approach is
depicted in Figure 5.1.4. Note, that splitting up the problem into several
lower dimensional State-Discrimination-Problems is the preferable strategy,
since the complexity of finding the solutions of the State-Discrimination-
Problem is very high (see Janota [2017]) and therefore, we need to keep the
dimension n of the state space in the State-Discrimination-Problem low. We
introduce now the necessary terminology.

To simplify our notation we write for e = (v, w) ∈ {0, 1}n × {0, 1}n
instead of

(
projI(v), projI(w)

)
simply projI(e). Completely analogously to

the previous section we formulate the following problem:

Problem 5.3 (Transition-Discrimination-Problem). For a given set of
transitions ∅ 6= Easync(f) ⊂ Easync(g) with f, g ∈ B(n, n) we search one or
more sets diff(Easync(f)) ⊆ I ⊆ [n] such that for all e ∈ Easync(g) it holds

(5.1.11) e ∈ Easync(f)⇔ projI(e) ∈ projI(Easync(f)).

In the Transition-Discrimination-Problem we only consider transitions
between states with Hamming distance one from each other. Therefore, we
assume w.l.o.g. that these sets are the transitions of two ASTGs Gasync(f)
and Gasync(g). In most applications we want to be able to measure the com-
ponents that change along a transition. Therefore, in the above criterion the
restriction diff(Easync(f)) ⊆ I is added. We denote with C (Easync(f), Easync(g))
the set of solutions of the Transition-Discrimination-Problem. As before we
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equip the set C (Easync(f), Easync(g)) with the set inclusion as partial order-
ing. Also the Transition-Discrimination-Problem has in general no unique
minimal solution.

To compute the set of solutions C (Easync(f), Easync(g)) we want to split
the Transition-Discrimination-Problem into n State-Discrimination-Problems.
To do so we consider the functions condfi and condgi , i ∈ [n] as indicator func-
tions of sets Ai ⊆ {0, 1}n and Bi ⊆ {0, 1}n. More precisely we define

Ai := (condfi )−1(1),

Bi := (condgi )
−1(1).

Then we consider the sets of solutions A (Ai, Bi) of the corresponding State-
Discrimination-Problems. To simplify our notation we write A (condfi , cond

g
i )

instead of A (Ai, Bi). In the last section we explained how we can compute
the sets A (condfi , cond

g
i ). To obtain the set of solutions C (Easync(f), Easync(g))

we just need to intersect all these sets of solutions. We prove this in the fol-
lowing proposition.

Proposition 5.3. Let C (Easync(f), Easync(g)) be the set of solutions
of the Transition-Discrimination-Problem and let for i ∈ diff(Easync(f)) be
A (condfi , cond

g
i ) be the set of solutions of the State-Discrimination-Problem.

Then it holds
C (Easync(f), Easync(g)) =

⋂
i∈diff(Easync(f))

A (condfi , cond
g
i )∩

{
I|diff(Easync(f)) ⊆ I ⊆ [n]

}
.

Proof. Let the sets Ai and Bi, i ∈ [n] be defined as above for Easync(f)
and Easync(g).
” ⊆ ”: Let I ∈ C (Easync(f), Easync(g)) be any solution of the Transition-
Discrimination-Problem. This means it holds

(5.1.12) ∀e ∈ Easync(g) : e ∈ Easync(f)⇔ projI(e) ∈ projI(Easync(f)).

We want to split up (5.1.12) into n equivalences. Let us define for i ∈ [n]
with Eiasync(f) the set of transitions in Easync(f) where the component i
changes, i.e.

Eiasync(f) := {(v, v{i})|(v, v{i}) ∈ Easync(f)}

and analogously for g we define the sets Eiasync(g). It holds

Easync(f) =
⋃

i∈diff(Easync(f))

Eiasync(f)

⇒ projI
(
Easync(f)

)
=

⋃
i∈diff(Easync(f))

projI
(
Eiasync(f)

)
(5.1.13)

Clearly, due to diff(Easync(f)) ⊆ I the sets Eiasync(f) are disjunct from each
other. The same holds true for the sets Eiasync(g) with i ∈ diff(Easync(f)) ⊆ I.
Therefore, we can replace (5.1.12) by |diff(Easync(f))| equivalences

(5.1.14) ∀e ∈ Eiasync(g) : e ∈ Eiasync(f)⇔ projI(e) ∈ projI(Eiasync(f))

with i ∈ diff(Easync(f)). Using the sets Ai and Bi we obtain:
∀ (v, v{i}) ∈ Eiasync(g)︸ ︷︷ ︸

⇔v∈Bi

:
[

(v, v{i}) ∈ Eiasync(f)︸ ︷︷ ︸
⇔v∈Ai

⇔ (projI(v), projI(v{i})) ∈ projI(Eiasync(f))︸ ︷︷ ︸
⇔projI (v)∈projI (Ai)

]
.
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Consequently, it holds I ∈ A (Ai, Bi) = A (condfi , cond
g
i ). Obviously, it also

holds diff(Easync(f)) ⊆ I.

” ⊇ ”: Assume I ∈
⋂
i∈diff(Easync(f)) A (Ai, Bi) and diff(Easync(f)) ⊆ I. For

each i ∈ diff(Easync(f)) we obtain

∀v ∈ Bi : v ∈ Ai ⇔ projI(v) ∈ projI(Ai).

It follows that all |diff(Easync(f))| equivalences (5.1.14) hold. But then also

∀e ∈
⋃

i∈diff(Easync(f))

Eiasync(g) :
[
e ∈

⋃
i∈diff(Easync(f))

Eiasync(f)

︸ ︷︷ ︸
=Easync(f)

⇔ projI(e) ∈
⋃

i∈diff(Easync(f))

projI
(
Eiasync(f)

)
︸ ︷︷ ︸

=projI(Easync(f))

]

holds from which (5.1.12) follows. Therefore, I is an element of the set
C (Easync(f), Easync(g)). �

This means in order to find the solutions of the State-Discrimination-
Problem we can compute the |diff(Easync(f))| ≤ n sets A (condfi , cond

g
i ),

i ∈ diff(Easync(f)).

5.1.3. Showcase: cell-fate decision. We investigate the reduced model
in Calzone et al. [2010] modeling cell-fate decision. We want to use the cri-
teria developed in Section 5.1.1 and Section 5.1.2. Attractors in this model
correspond to the death or survival of the cell, which can be triggered by
certain Cytokines, represented as inputs in the model. Two types of cell
deaths are distinguished: apoptosis, a controlled cell death, and a type of
non-apoptotic cell death with morphological features of necrosis. Here, we
refer to this type of cell death simply as necrosis. Models of this regula-
tory network and their understanding could help to identify how and under
which conditions the cell chooses between different types of cell deaths and
survival. For demonstrating the criteria of Section 5.1.1 and Section 5.1.2
we use the reduced model derived from the complete one for the analysis in
Calzone et al. [2010]. The corresponding complete model can be found in
the BioModels database with the reference MODEL0912180000. The com-
plete model has 27 steady states, which are the only attractors of the model
[Calzone et al., 2010, Figure 2]. For the reduction of the model results from
Paulevé and Richard [2012], Naldi et al. [2011] are used. The steady states in
the reduced model can be attributed one-to-one to steady states in the com-
plete model via a projection. This implies that results on the components
which need to be measured can be lifted up to the complete model.

The Boolean function f : {0, 1}11 → {0, 1}11, representing the reduced
model, is defined in Table 5.1.1 and its interaction graph is depicted in
Figure 5.1.5.
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Alias Component Boolean function
x1 ATP ¬MPT
x2 C3 ATP ∧MOMP ∧ ¬NFkB
x3 C8 (TNF ∨ FAS ∨ C3) ∧ ¬NFkB
x4 FAS FAS
x5 MOMP MPT ∨ (C8 ∧ ¬NFkB)
x6 MPT ROS ∧ ¬NFkB
x7 NFkB (cIAP ∧RIP1) ∧ ¬C3
x8 RIP1 ¬C8 ∧ (TNF ∨ FAS)
x9 ROS ¬NFkB ∧ (RIP1 ∨MPT )
x10 TNF TNF
x11 cIAP (NFkB ∨ cIAP ) ∧ ¬MOMP

Table 5.1.1. Reduced model in [Calzone et al., 2010, Table 1].
The components TNF and FAS are inputs.

ATP

MPT

MOMP
C3

cIAP

NFkB

C8

ROS

RIP1
FAS

TNF

Figure 5.1.5. The (global) interaction graph of the Boolean func-
tion defined in Table 5.1.1.

Computing the attractors (Definition 1.9) yields 13 steady states:

S ={00001100100︸ ︷︷ ︸
s1

, 00101100110︸ ︷︷ ︸
s2

, 00111100100︸ ︷︷ ︸
s3

, 00111100110︸ ︷︷ ︸
s4

, 10000000000︸ ︷︷ ︸
s5

,

10000000001︸ ︷︷ ︸
s6

, 10000011011︸ ︷︷ ︸
s7

, 10010011001︸ ︷︷ ︸
s8

, 10010011011︸ ︷︷ ︸
s9

, 11101000000︸ ︷︷ ︸
s10

,

11101000010︸ ︷︷ ︸
s11

, 11111000000︸ ︷︷ ︸
s12

, 11111000010︸ ︷︷ ︸
s13

}.
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These 13 steady states are exactly the steady states of the complete model
with FADD = 1 projected on the components of the reduced model.

According to Calzone et al. [2010] the components NFkB and ATP can
be used as markers for the survival, apoptosis or necrosis of the cell. More
precisely, we define the indicator functions of these groups in the following
way:

indsurvival : x 7→ x7,

indnecrosis : x 7→ ¬x1,

indapoptosis : x 7→ ¬indsurvival(x) ∧ ¬indnecrosis(x).

Using these markers the 13 steady states can be partitioned into three groups
(Table 5.1.2)3. We can use the criteria from Section 5.1.1 to ask if the above
components are the only possible markers for this classification:

Example 5.3. In Table 5.1.2 we see three groups of steady states and
for each of these groups the projections are listed which enable us to de-
cide whether a state belongs to this group or not. Combing any two such
projections (i.e. taking the union) from two rows of this table will allow us
to distinguish between the three groups. For example in Table 5.1.2 we see
that the projection represented by 01001000000 will allow us to distinguish
between steady states corresponding to necrosis and steady states not corre-
sponding to necrosis. Components marked with a 1 need to be measured (see
(5.1.2) in Section 5.1.1). In the second row we see that the projection rep-
resented by 10000001000 allows us to distinguish between apoptotic steady
states and the remaining steady states. We conclude that the projection
11001001000 will allow us to distinguish between apoptotic, necrotic, and
surviving steady states. Using the numbering in Table 5.1.1 we obtain that
the components ATP , C3, MOMP and RIP1 could be used as markers
for the three groups of cell death as well. The indicator function on these
components is given by:

indsurvival : x 7→ x1 ∧ ¬x2 ∧ ¬x5 ∧ x8,

indnecrosis : x 7→ ¬x2 ∧ x5,

indapoptosis : x 7→ x1 ∧ ¬x8.

In contrast to the original indicator function the ones above depend on
four components. Nevertheless, such alternative markers could be useful in
applications if for example they are more convenient to measure for biologists.

Instead of solely considering the steady states we could as well try to
distinguish the strong basins of attractions of the three groups of steady
states.

Example 5.4. In Table 5.1.3 we see for each group of attractors (corre-
sponding to necrosis, apoptosis and survival of the cell) the projections which
allow us to distinguish between the strong basins of attraction. Combining
00000100000 from the first row and 00010010110 from the second row of
Table 5.1.3 allows us for example to distinguish between the strong basins of

3The three sets of states
{
x ∈ {0, 1}11|indsurvival(x)

}
,
{
x ∈ {0, 1}11|indnecrosis(x)

}
and{

x ∈ {0, 1}11|indapoptosis(x)
}
.
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attraction of the apoptotic, necrotic and surviving cells. The corresponding
indicator functions are the following:

indstrong basin of surviving ss : x 7→ ¬indstrong basin of necrotic ss(x) ∧ ¬indstrong basin of apoptotic ss(x),

indstrong basin of necrotic ss : x 7→ x6,

indstrong basin of apoptotic ss : x 7→
[
¬x4 ∧ ¬x9 ∧ ¬x10

]
∨
[
¬x7 ∧ ¬x9

]
.

Other combinations of projections are of course possible, too.

Sometimes we are interested in which “moment” a trajectory enters a
strong basin of attraction. This means we want to distinguish between the
strong and weak basin of a group of attractors. In our case, states in the
strong basin lie on trajectories leading to steady states corresponding to one
specific type of cell death, while states in the weak basin lie on trajectories
which can lead to steady states corresponding to different types of cell death.
The components necessary for detecting such a “decision” could elucidate
possible ways of interventions.

Example 5.5. In Table 5.1.4 the weak and strong basins for each group
of attractors are listed. In Table 5.1.5 the projections are listed necessary to
distinguish for each of them between its weak and strong basin of attraction.
We see that in all three cases it is necessary to measure almost all components
of the network. For finding these projections we make the assumption that
we only observe states in the strong basins.

To reduce the amount of components, we could instead focus on the
transitions from the weak to the strong basin and consider only transition
where specific components change.

Example 5.6. Assume we are interested in the transitions from the
weak to the strong basin of attraction for the attractors corresponding to
the necrotic steady states. Due to the complex form of the basins we would
need to measure in this case almost all components. However, we could focus
on the changes of specific components and ask what we need to measure
to detect all transitions (v, v{i}), i ∈ [11] leading from the weak to the
strong basin of attraction. For most components this leads still to many
components we need to measure. But for example for the component cIAP
we obtain the minimal projection 00000110100. I.e. in this case we only need
to measure four components: cIAP (corresponding to x11)4 and the three
other components as indicated by the minimal projection (MPT , NFkB
and ROS).

More precisely: For the set A in the State-Discrimination-Problem the
indicator function is given by5

indweak basin of necrotic steady states(v) ∧ indstrong basin of necrotic steady states(v{11}) ∧ condf11(v).

4Since this is the component that changes.
5We need to restrict the condition function of f in the 11th component condf11 to transi-

tions from the weak basin to the strong basin. The term indweak basin of necrotic steady states(v)

is only satisfied if the origin v of the transition (v, v{11}) is in the weak basin,
indstrong basin of necrotic steady states(v{11}) is only satisfied if the destination of the transi-
tion v{11} is inside the strong basin. Combining these three conditions we see that
indweak basin of necrotic steady states(v)∧ indstrong basin of necrotic steady states(v{11})∧ condf11(v) is
the necessary and sufficient condition for such transitions.
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This indicator function takes the value one on the subspace ∗ ∗ ∗ ∗ 110 ∗ 1 ∗ 1
(This means A = ∗∗∗∗110∗1∗1). The indicator function of the set B in the
State-Discrimination-Problem is given by condf11(v) and it can be shown that
B is the union of the subspaces ∗∗∗∗0∗1∗∗∗0 and ∗∗∗∗1∗∗∗∗∗1. Computing
the minimal solutions of the State-Discrimination-Problem with this choice
of sets yields the single minimal projection represented by 00000110100.
Furthermore, it is possible to show that for any change in the 11th component
cIAP we could evaluate the term x6 ∧ ¬x7 ∧ x9 derived from the projection
and the subspace representation6 to check whether a change in the value of
cIAP causes the “trajectory” to lead towards a necrotic steady state.

5.1.4. An algebraic reformulation of the State-Discrimination-
Problem. In this section we demonstrate that the criteria in Section 5.1.1
and Section 5.1.2 can also be considered from an algebraic point of view.
This is possible since we can consider Boolean functions B(n, 1) as elements
of the polynomial ring F2[x1, . . . , xn]/〈x2

1−x1, . . . , x
2
n−xn〉. Then the idea is

to consider instead of the set B ⊆ {0, 1}n the vanishing ideal I(B) of B. Due
to the Boolean Strong Nullstellensatz there is an easy relation between the
set B and its vanishing ideal I(B). Instead of considering Boolean functions
which allow us to distinguish the set A and its complement in the State-
Discrimination-Problem we can consider the equivalence class indA

/
I(B).

The first result of this section is that the solution diagram A (A,B) is ac-
tually given by the set of variables of the polynomials in the equivalence
class indA

/
I(B) (Proposition 5.4). Afterwards we consider how we can use

Gröbner bases to obtain minimal solutions of A (A,B).
For a more extensive introduction to algebraic geometry and Gröbner

bases we refer to Cox et al. [2007]. We use in this section the letter I
for an ideal in k[x1, . . . , xn], where k is any field. With V(I) we denote
the set of points for which all polynomials in I vanish. For a set S ⊆ kn

we denote with I(S) the vanishing ideal, the set of all polynomials that
vanish on S. In the State-Discrimination-Problem we were given two sets
∅ 6= A ⊂ B ⊆ Fn2 . In order to give an algebraic formulation of the State-
Discrimination-Problem we need to look at the vanishing ideals of the set B.
If we consider polynomials in F2[x1, . . . , xn] we need to take into account that
the set of polynomials does not coincide with the set of Boolean functions.
This is the case since the polynomials x2

1 − x1, . . . , x2
n − xn evaluate to zero

on Fn2 . We call the polynomials x2
1 − x1, . . . , x2

n − xn field polynomials.
However, we can say that any two polynomials whose difference is a sum of
field polynomials corresponds to the same Boolean function (see e.g. Cheng
and Qi [2009]). In other words we can identify the ring of Boolean functions
B(n, 1) with F2[x1, . . . , xn]/〈x2

1 − x1, . . . , x
2
n − xn〉. We will denote both

objects with B(n, 1).
In B(n, 1) we have for any set S ⊆ Fn2 the identity V(I(S)) = S due to

the Boolean Strong Nullstellensatz :

Theorem 5.1 (Boolean Strong Nullstellensatz). (Sato et al. [2011], Gao
et al. [2011]) Let I be an ideal in B(n, 1) such that V(I) 6= ∅. Then for any

6The subspace representation corresponds to a representation as a DNF and can be used to
obtain the projected indicator function (see Definition 3.7 and Example 3.5).
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Group of steady states Steady states corresponding
minimal projections

Nekrosis 00001100100,
00101100110,
00111100100,
00111100110

01001000000,
10000000000,
00000100000,
00000000100

Apoptosis 10000000000,
10000000001,
11101000000,
11101000010,
11111000000,
11111000010

10000001000,
10000010000,
00010100011,
01010100010,
01001010000,
01001001000,
00011100010,
00011000110,
00000010100,
00000001100,
00000110000,
00000101000,
01011000010,
00110100010,
00010000111,
00110000110,
10010000011,
10110000010,
10011000010,
11010000010,
01010000110

Survival 10000011011,
10010011001,
10010011011

00110000010,
11010000010,
01010000110,
01010100010,
00010000011,
00011000010,
00000001000,
00000010000

Table 5.1.2. Three groups of steady states (red: necrotic, green:
apoptotic, blue: survival) and the projections allowing to distin-
guish one group from the other two.

polynomial h(x) ∈ B(n, 1) it holds

h(x) ∈ I ⇔ ∀v ∈ V(I) : h(v) = 0.

Let us now come back to the problem of minimal sets of components we
need to measure. We assume the sets A and B in the State-Discrimination-
Problem to be represented by the indicator functions indA and indB. The
implicit representation of the sets A and B can have advantages. For exam-
ple if the set B consists of the steady states of a synchronous or asynchronous
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Projections to
distinguish strong

basins of attractions

Projections to
distinguish weak

basins of attractions
Necrosis 00000100000,

00000010100,
00000001101,
00110000111

01111111111

Apoptosis 00010010110,
00110100010,
00010101010,
00010001110,
00010110010,
00110000110

01111111111

Survival 00010010010,
00110000011,
00010101010,
00110100010,
00010001011

00110011011

Table 5.1.3. Minimal projections enabling to distinguish one
strong basin of attraction from the two other.

BN represented by a function f ∈ B(n, n), then indB(x) can be represented
by the Boolean formula

[ ∧
i∈[n]

(fi(x)↔ xi)
]

︸ ︷︷ ︸
⇔f(x)=x

without need for explicit compu-

tation of the steady states. We define the ideal

I := 〈indB(x)− 1〉 ⊆ B(n, 1).

In other words I is the vanishing ideal of B. We have the following
relation to the State-Discrimination-Problem.

Proposition 5.4. Let ϕ ∈ B(n, 1) be any polynomial such that indA −
ϕ ∈ I holds. Let J be the essential components of ϕ, i.e. J := Ess(ϕ).
Then it holds J ∈ A (A,B) (I.e. J is a solution to the State-Discrimination-
Problem).

Proof. Due to the Boolean Strong Nullstellensatz indA −ϕ ∈ I means
that indA and ϕ are equal on the set B.7 In order to know the value of ϕ
we only need to know the values of its essential components. Therefore, the
essential components of ϕ are enough to decide if a state in B is in A or
not. �

On the other hand every solution J ⊆ [n] of the State-Discrimination-
Problem corresponds to a polynomial depending on the variables with indices
in J in the equivalence class indA

/
I :

7It holds V (I) = B and according to the Boolean Strong Nullstellensatz ∀v ∈ B : ϕ(v) −
indA(v) = 0⇔ ϕ(v)− indA(v) ∈ I



5.1. CRITERIA BASED ON STATES OR TRANSITIONS 117

Marker Steady
states

weak basin of attraction strong basin of
attraction

Necrosis 00001100100,
00101100110,
00111100100,
00111100110

******1**10, ******10*1*,
****1*1**1*, ***0****10*,
***1**1***0, ***1**10***,
***11*1****, **0******10,
**0****0*1*, **0***0**1*,
**0*1****1*, **01******0,
**01***0***, **01**0****,
**011******, **1****1*1*,
**1***1**1*, **11***1***,
**11**1****, *1****1**1*,
*1*1**1****, *10******1*,
*101*******, ********1*0,
*******01**, *******1**0,
******0*1**, ******01***,
****1***1**, ****1**1***,
**1*****1**, *1******1**,
*1*****1***, *****1*****

***0*10010*,
**1**1001**,
*****10*1*0

Apoptosis 10000000000,
10000000001,
11101000000,
11101000010,
11111000000,
11111000010

***0***1*01, **0****0*11,
**0***0**11, **0**1***11,
**0*1****11, **01***0**1,
**01**0***1, **01*1****1,
**011*****1, *10******11,
*101******1, ******01**1,
*****1*1**1, ****1**1**1,
***0****00*, ***0**1**0*,
***0*0***0*, **1****1**1,
*1*****1**1, ********0*0,
*******00**, ******0*0**,
******1***0, ******10***,
*****0****0, *****0*0***,
*****00****, *****1**0**,
*****11****, ****1***0**,
****1*1****, ****10*****,
**1*****0**, **1***1****,
**1**0*****, *1******0**,
*1****1****, *1***0*****

*00000*0001,
*000000000*,
*000001*001,
111*10000**,
**1**00001*,
**11*0000**

Survival 10000011011,
10010011001,
10010011011

*******1*11, ***1***1**1,
**0******11, **01******1,
******1**1*, ***1**1****

*00*0011*11,
*0010011**1

Table 5.1.4. Weak and strong basins of attractions of the three
groups of attractors represented as list of subspaces.
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Projections to distinguish strong and weak basins of attractions
Necrosis 00110111111
Apoptosis 11111111111
Survival 01101111001

Table 5.1.5. Minimal components to distinguish between the
strong and weak basin of attraction of each group of attractors.

Proposition 5.5. Let J be any solution of the State-Discrimination-
Problem, i.e. J ∈ A (A,B). Then it holds

indA − indproj
J (A) ∈ I,

where we interpret and indproj
J (A) as a polynomial in B(n, 1). Furthermore,

for all v ∈ B it holds:

indA(v) = indproj
J (A)(projJ(v)).

Proof. Since J is a solution to State-Discrimination-Problem it holds
for all v ∈ B that

v ∈ A⇔ projJ(v) ∈ projJ(A)

⇔indA(v) = indproj
J (A)(projJ(v)),

which proves the second claim. According to the Boolean Strong Null-
stellensatz it follows ∀v ∈ B : indproj

J (A)(projJ(v)) − indA(v) = 0 ⇔
indproj

J (A) − indA ∈ I. �

Proposition 5.4 and Proposition 5.5 allow us to describe the set of solu-
tions A (A,B) of the State-Discrimination-Problem and the corresponding
indicator functions of the projected sets as equivalence classes with respect
to the vanishing ideal of B.

We want to obtain inclusion-wise minimal elements of the solution-diagram
A (A,B) of the State-Discrimination-Problem. For this purpose we intro-
duce the notions of a monomial ordering on the monomials of k[x1, . . . , xn].
They are used in the context of Gröbner bases which will be introduced in
a moment. We define these monomial orderings on Zn≥0.

Definition 5.3. [Cox et al., 2007, p. 69]A monomial ordering on the set
of monomials in k[x1, . . . , xn] is any relation � on Zn≥0 or equivalently, any
relation on the set of monomials xα, α ∈ Zn≥0 satisfying:
(i) � is a total ordering on Zn≥0.
(ii) If α � β and γ ∈ Zn≥0, then α+ γ � β + γ.
(iii) � is a well-ordering on Zn≥0 (Every nonempty subsets of Zn≥0 has a
smallest element under �.).

Each monomial can be identified with a point in Zn≥0 depending on which
variable occurs with which power in the monomial. For example the mono-
mial x1 · x3 in F2[x1, x2, x3] is identified with 101, since it depends on x1

1

and x1
3. For α ∈ Zn≥0 we write xα :=

∏
i∈[n] x

αi
i . For any polynomial in

p ∈ k[x1, . . . , xn] and monomial ordering � we write LT (p) for the largest
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term occurring in p with respect to �. Here, we are only interested in specific
orderings – the lexicographical orderings – on these monomials.

Definition 5.4. [Cox et al., 2007, p. 70]Let α =
(
α1 . . . αn

)
and

β =
(
β1 . . . βn

)
be two elements in Zn≥0. We say α �lex β if the leftmost

nonzero entry of α− β ∈ Zn is positive. We write xα �lex xβ if α �lex β.

This gives us a way to order the minimal solutions of the State-Discrimination-
Problem.

Next, we explain how we can obtain the minimal solutions of A (A,B).
For this purpose we need the notion of Gröbner bases. Let ≺ be any term
ordering.

Definition 5.5 ([Sturmfels, 1996, p. 1]). For an ideal I ⊆ k[x] we define
its initial ideal as the ideal

in≺(I) := 〈in≺(f)|f ∈ I〉,
where in≺(f) denotes the initial monomial of f . A finite subset G ⊆ I is a
Gröbner basis for I with respect to ≺ if in≺(I) is generated by {in≺(g)|g ∈
G}. If no element of the Gröbner basis G is redundant, then G is minimal .
It is called reduced if for any two distinct elements g, g′ ∈ G no term of g′ is
divisible by in≺(g). The reduced Gröbner basis is unique for an ideal and a
term ordering and we denote it by G≺(I), provided the leading coefficients
of the elements of G are set to one. Every monomial not lying in in≺(I) is
called standard monomial .

We have the following proposition explaining the outcome of the divi-
sion algorithm (see [Cox et al., 2007, p. 61] for details about the division
algorithm).

Proposition 5.6 ([Sturmfels, 1996, p. 1],[Cox et al., 2007, p. 82, Prop.
1]). The standard monomials form a k-vector space basis for the residue ring
k[x]/I.

The division algorithm rewrites every polynomial f modulo I uniquely
as a linear combination of these standard monomials [Sturmfels, 1996, p. 1].

Assume ≺ is a a lexicographical ordering. Let G≺(I) be the reduced
Gröbner basis for I with respect to ≺. Let ϕ be the the result of the division
algorithm applied to indA (i.e. it holds ϕ− indA ∈ I.) with G≺(I) and the
ordering ≺. It would be tempting to conclude due to Proposition 5.4 that
the essential components of ϕ correspond to a minimal element in A (A,B).
However, we need to be careful here. The essential components of ϕ cor-
respond not necessarily to a minimal solution of the State-Discrimination-
Problem. To see this consider the following counter example.

Example 5.7. Consider the set A = {111} and B = {000, 111, 011, 101}
in the State-Discrimination-Problem. We can express the set B as the
set of vanishing points of an ideal generated by x1x2 + x1 + x2 + x3, i.e.
B = V (〈x1x2 + x1 + x2 + x3〉). It is easy to see that {1, 2} ∈ A (A,B)
is the only minimal element in A (A,B) with corresponding indicator func-
tion indproj

{1,2}(A)(x) = x1x2. When using the lexicographical ordering with
x1 � x2 � x3 and applying the division algorithm with a corresponding
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Gröbner basis (In this case this is just {x1x2 + x1 + x2 + x3}) we obtain
ϕ(x) = x1 + x2 + x3. We have {1, 2} ⊂ Ess(ϕ) = {1, 2, 3}. But {1, 2, 3}
is not a minimal solution of the State-Discrimination-Problem. This second
representative ϕ depends on more variables than indproj

{1,2}(A). However, its
leading monomial x1 has a smaller degree than x1x2.

However, we can show that for some lexicographical ordering any mini-
mal element of A (A,B) is the result of the reduction algorithm with corre-
sponding Gröbner basis. This is achieved by choosing for a minimal solution
J ∈ A (A,B) a lexicographical ordering such for all i ∈ [n]\J and j ∈ J it
holds xi � xj .

Proposition 5.7. Let J be any minimal solution in A (A,B) then there
is a lexicographical ordering ≺ such that for the result of the division al-
gorithm – let us say ϕ – with respect to this ordering and a Gröbner basis
G≺(I) it holds

Ess(ϕ) = J.

Proof. Choose a lexicographical ordering ≺ such that for all i ∈ [n]\J
and j ∈ J it holds xi � xj holds. W.l.o.g. we can say that this lexico-
graphical ordering is given by x1 � · · · � xn and that jmin is the minimal
element in J , i.e. we have J = {jmin, . . . , n}. Let us say ϕ is the result
of the division algorithm with respect to the corresponding Gröbner basis
applied to indA. Now assume Ess(ϕ) 6= J . It cannot hold Ess(ϕ) ⊂ J , since
according to Proposition 5.4 then J would not be a minimal solution due to
Ess(ϕ) ∈ A (A,B).
Consequently, there is some smallest element j in Ess(ϕ)

⋂
[n]\J . But xj =

LT (ϕ) = LT (ϕ − indproj
J (A)) and due to Proposition 5.5 we have ϕ −

indproj
J (A) ∈ I. This shows that LT (ϕ) is not a standard monomial which

is a contradiction due to Proposition 5.6. �

So in order to find the minimal solutions of A (A,B) we can iterate over
the lexicographical orderings. This is computationally very costly. However,
one can either focus on a specific subset of lexicographic orderings interesting
for applications or develop methods taking the structure of the Gröbner basis
into account to avoid enumerating all orderings. We illustrate this in the
following example.

Example 5.8. Let us continue with Example 5.7. In the following ta-
ble we see the six possible lexicographical orderings and the corresponding
solutions in A (A,B).

lex. or-
dering

Gröbner basis Result of
Reduction
Algorithm

Corresponding
solution in
A (A,B)

1,2,3 x1x2 + x1 + x2 + x3 x1 +x2 +x3 {1, 2, 3}
1,3,2 x1x2 + x1 + x3 + x2 x1 +x3 +x2 {1, 2, 3}
2,1,3 x2x1 + x2 + x1 + x3 x2 +x1 +x3 {1, 2, 3}
2,3,1 x2x1 + x2 + x3 + x1 x2 +x3 +x1 {1, 2, 3}
3,1,2 x3 + x1x2 + x1 + x2 x1x2 {1, 2}
3,2,1 x3 + x2x1 + x2 + x1 x2x1 {1, 2}
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We can see that indeed for the lexicographical ordering x3 � x1 � x2

and x3 � x2 � x1 the reduction algorithm finds the minimal solution of
the State-Discrimination-Problem. Furthermore, we see that the first four
lexicographical orderings produce a Gröbner basis with identical initial ideal.
Therefore, the outcome of the division algorithm will be in these cases always
the same.

5.2. Distinguishing Boolean models with criteria based on walks

In the previous section we investigated criteria to distinguish different
ASTGs based on a limited number of components we measure. One of the
criteria was based on the transitions of the ASTGs. However, in many
scenarios such criteria will have limited use since they require many states
to be measured. However, if we focus not solely on transitions, but walks
in ASTGs with potentially longer lengths in certain cases we might be still
able to distinguish two models projected on a set of components even though
their transitions are after the projection identical. To find these walks we
will follow here an approach based on finite automata. In the context of
Boolean networks they have been previously used for so-called fixable families
Gadouleau and Richard [2018] and for Boolean control networks Zhang and
Zhang [2016]. Büchi automata have been used for model checking of BNs
(see e.g. Klarner et al. [2012], Streck and Siebert [2015]). The problem we
will consider here is also related to observability of Boolean control networks
mostly investigated in the context of synchronous Boolean networks Cheng
and Qi [2009], Fornasini et al. [2013]. Before we start, we look at a simple
example to demonstrate how walks of length bigger or equal than two can
be used to distinguish between models.

Example 5.9. Consider two models: The first model consists of the

transitions:
(

0
0

)
→
(

0
1

)
and

(
1
1

)
→
(

1
0

)
. The second model consists

of the transitions:
(

0
0

)
→
(

0
1

)
and

(
0
1

)
→
(

0
0

)
.8 When projecting to

the components {2} we obtain in both models the transitions
(
0
)
→
(
1
)

and
(
1
)
→
(
0
)
. So according to the criterion in the State-Discrimination-

Problem we cannot distinguish the two models. However, if we look at walks
with length two then the walk

(
0
)
→
(
1
)
→
(
0
)
can occur only in the second

model.

5.2.1. Formalization. In order to formalize this idea, we introduce the
notion of projected walks.

Definition 5.6. Assume ∅ 6= I ⊆ [n] and let p = (s1, . . . , sk) for k ∈ N,
si ∈ {0, 1}n, i ∈ [k] be a walk in an arbitrary ASTG in {0, 1}n, we call the

8In other words, the first model is induced by the function f : x 7→


01 if x = 00

10 if x = 11

x otherwise
and the

second model by g : x 7→


01 if x = 00

10 if x = 01

x otherwise
.
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000

001

010

011

100

101

110

111

(a) Assume f is
defined by the
above ASTG. The
corresponding
NFA-ε Auto(f, {1})
will accept the
sequence 01010 and
its subsequences.

000

001

010

011

100

101

110

111

(b) Assume g is de-
fined by the above
ASTG. The cor-
responding NFA-ε
Auto(g, {1}) will
accept an arbitrary
long alternating
sequence of 0s and
1s.

Figure 5.2.1. The smallest word that is accepted by Auto(g, {1})
but not by Auto(f, {1}) is the word 10101. Therefore, to distin-
guish the two corresponding NFAs you need to consider words of
length ≥ 5.

projected walk projI(p) the walk obtained of the sequence (projI(s1), . . . ,
projI(sk)) by deleting subsequent identical elements.

For example for I = {1} and p = (000, 010, 110) it holds projI(p) = (0, 1).
The projected walk projI(p) consists only of two states, since the first two
states in the walk p are both mapped to 0. We use the notion of a projected
walk to state the following problem:

Problem 5.4. For two ASTGs Gasync(f) and Gasync(g) induced by func-
tions f : {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n and a set of components
∅ 6= I ⊆ [n], what sequences of states do we need to measure to distinguish
the two models? More precisely, what are the sequences p̃ = (s̃1, . . . , s̃k̃),
k̃ ∈ N of states in {0, 1}|I| such that there is a walk p = (s1, . . . , sk), k ∈ N
in Gasync(f) such that projI(p) = p̃ but there is no walk in Gasync(g) which
is projected to p̃ under projI?

In order to solve this problem algorithmically we introduce the notion of
a nondeterministic finite automaton with ε−moves (NFA-ε):

Definition 5.7. A nondeterministic finite automaton with ε-moves (NFA-
ε) is represented formally by a 5− tuple M = (Q,Σ,4, q0, F ), where
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1) Q is a finite set of states.
2) Σ is a finite set of input symbols with ε 6∈ Σ.
3) 4 is a transition function of the form 4 : Q× (Σ ∪ {ε})→P(Q).
4) q0 ∈ Q is an initial state.
5) F ⊆ Q is the set of final states.

The set Σ is called alphabet and its elements σ ∈ Σ are called letters. Finite
sequences over Σ ∪ {ε} are called words. The symbol ε is called the empty
string.

We can represent a NFA-ε as a transition graph:

Definition 5.8. The transition graph G = (V,E,W ) of a NFA-ε denoted
by (Q,Σ,4, q0, F ), where V is the vertex set and E the edge set is defined
by:

V =Q,

E =
{

(s, t, a) ∈ V × V × (Σ ∪ {ε})|t ∈ 4(s, a)
}
.

We call a word w̃ over the alphabet Σ∪ {ε} an ε-extensions of a word w
over the alphabet Σ if w can be obtained from w̃ by deleting all occurrences
of ε. We say a word w = a1 . . . an over an alphabet Σ is accepted by the
NFA-ε M if some ε−extension of w labels a path in the transition graph
corresponding to M .

To use tools and theory developed for NFAs, we want to reformulate
Problem 5.4 in terms of NFAs. To do so, we associate to an ASTG Gasync(f),
induced by a Boolean function f and a set of components ∅ 6= I ⊆ [n], a NFA-
ε Auto(f, I). The words accepted by Auto(f, I) will be the projected walks
of Gasync(f) onto the components I. The alphabet of the NFA-ε Auto(f, I)

will consist of the projected state space (i.e. {0, 1}|I|).

Definition 5.9. For an ASTG induced by a Boolean function f : {0, 1}n →
{0, 1}n and a set of components ∅ 6= I ⊆ [n] we define the following NFA-ε
with initial state q0 and a distinguished state qfailed denoted by Auto(f, I):
1) Q = {q0} ∪ {0, 1}n ∪ {qfailed} and F = Q\{q0, qfailed}.
2) Σ = {0, 1}|I| = projI({0, 1}n)
3) 4(q0, σ) = {t ∈ F |projI(t) = σ} for σ ∈ Σ.
4) 4(qfailed, σ) = {qfailed} for all σ ∈ Σ.
5) And for s ∈ F , σ ∈ Σ ∪ {ε} we define:

A(s, σ) =

{
{t ∈ F |(s, t) ∈ Easync(f) and σ = projI(t) 6= projI(s)} if σ 6= ε,

{t ∈ F |(s, t) ∈ Easync(f) and projI(t) = projI(s)} otherwise,

4(s, σ) =

{
A(s, σ) if A(s, σ) 6= ∅,
{qfailed} otherwise.

By construction the NFA-ε Auto(f, I) accepts only words with no sub-
sequent equal letters, since transitions between states which are projected
to the same state by projI carry the weight ε. Furthermore, except for the
initial state q0 and qfailed all states of Auto(f, I) are final states. The state
qfailed has no outgoing transitions to other states. We give a small example,
omitting the state qfailed, how such an automaton can look like:
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q0

00

01

10

11

00

11

00

11

00

01

10
11

(a) Auto(f, {1, 2}) omitting
the state qfailed and transitions
leading to it.

q0

00

01

10

11

ε

1

0

ε

0

0

1

1

(b) Auto(f, {1}) omitting the
state qfailed and transitions
leading to it.

Figure 5.2.2. Two NFAs derived from Example 5.10.

Example 5.10. Consider an ASTG given by f : {0, 1}2 → {0, 1}2,
(x1, x2) 7→ (x2, x1). The two NFAs corresponding to the projection on the
first – Auto(f, {1}) – and on both components – Auto(f, {1, 2}) – are de-
picted in Figure 5.2.2. We see that Auto(f, {1, 2}) essentially is the ASTG
Gasync(f) if we omit the initial state q0 and qfailed from the NFA-ε and
add to each transition the destination state as a weight. In the case of
Auto(f, {1, 2}) each word accepted by this NFA-ε corresponds to a walk
in Gasync(f). If we consider the graph-representation of Auto(f, {1}) we
see transitions with the weight ε - i.e. the transitions of the ASTG, where
the first component does not change. If the first component changes, the
new value of this component, is the weight of the corresponding transition.
A word accepted by Auto(f, {1}) here, can correspond to several potential
walks in Gasync(f). For example, the word 0 could stem from the sequence
of states q0, 01 or q0, 01, 00 or simply q0, 00.

To get some intuition for these sort of NFAs we give in the following
some simple observations:

Remark 5.2. 1) For no f : {0, 1}n → {0, 1}n and ∅ 6= I ⊆ [n] the empty
word is accepted by Auto(f, I).
2) Let w be any word of length bigger or equal 1. If a word wσ, σ ∈ Σ is
accepted by Auto(f, I) then w is accepted by Auto(f, I). Similar, if σw is
accepted by Auto(f, I) then w is accepted by Auto(f, I).
3) Let w = σ1 . . . σk, k ∈ N, k > 1 a word over Σ accepted by Auto(f, I).
Then for all i ∈ [k − 1] it holds σi 6= σi+1.

The first observation in Remark 5.2 simply follows from the fact that
the initial state is no final state in Auto(f, I). The second one is correct
since there is an edge to every state from the initial state q0 of Auto(f, I).
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Therefore, every sequence of states accepted by Auto(f, I) can be shortened
from the left side remaining an accepted sequence. Similar arguments show
that accepted words can be shortened from the right. The third observation
follows since edges between states which are projected to the same state
carry the weight ε.

A simple consequence of the second observation in Remark 5.2 is the
following:

Remark 5.3. Assume w1, w2, w3 are words over the alphabet {0, 1}k,
k ∈ [n] and w2 has length ≥ 1. If the word w1w2w3 is accepted by the NFA-ε
Auto(f, I) then w2 is accepted by Auto(f, I).

Proof. This is a simple consequence of applying the previous remark
several time to the word w1w2w3. �

We can also prove the following:

Proposition 5.8. The automaton Auto(f, I) accepts a word w corre-
sponding to a walk p̃ in {0, 1}|I| if and only if there is a walk p in Gasync(f)

such that projI(p) = p̃.

Proof. ”⇐ ”: Assume there is a walk p inGasync(f) such that projI(p) =

p̃. Let us say p = (s1, . . . , sk) for k ∈ N. We want to show that q0, s
1, . . . , sk

is an accepting sequence. Then due to the definition of the NFA-ε Auto(f, I)
for i ∈ [k − 1] si → si+1 is a transition with weight{

projI(si+1) if projI(si+1) 6= projI(si),
ε otherwise.

In other words the sequence of projected states projI(s1), . . . , projI(sk) af-
ter deleting subsequent equal elements – i.e. projI(p) – corresponds to the
sequence of weights on the accepting sequence, which proves that the word
p̃ is accepted by Auto(f, I).
”⇒ ”: Any accepting sequence of states q0, s

1, . . . , sk corresponds to a walk
p from s1 → · · · → sk in Gasync(f). When projecting the walk p onto the
components I, we obtain the words p̃, since transitions in Auto(f, I) carry
only a weight different than ε if two subsequent states on the sequence of
states p are different. �

Using the above proposition we are now ready to restate Problem 5.4.

Problem 5.5. For two Boolean functions f, g from {0, 1}n → {0, 1}n and
∅ 6= I ⊆ [n], which words w over the alphabets of Auto(f, I) and Auto(g, I)
are only accepted by one of the two NFAs?

To solve the above problem we can use standard algorithms to obtain
the NFA-ε accepting the symmetric difference of two NFAs, i.e. the language
of words which are only accepted by one of the two NFAs but not by both
Nozaki [1979]. If two automata Auto(f, I) and Auto(g, I) for f, g ∈ B(n, n)
are equivalent for a set ∅ 6= I ⊆ [n] then we do not have a chance to dis-
tinguish the ASTGs Gasync(f) and Gasync(g) based on the components in
I, since there is no sequence of states that can only stem from one of the
two automata. The running time for checking for the equivalence of two
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Figure 5.2.3. Interaction graphs of four alternative Cytokinin-
models Topcu-Alici [2012].

NFAs with state numbers m and n is bounded by O(2m+ 2n) Nozaki [1979].
Therefore, the size of the compared BNs must remain relatively small. If
this is not the case one has to try to choose promising subnetworks.

5.2.2. Application to four models of a Cytokinin signaling path-
way. We demonstrate the methods presented here on a small example. We
consider four interaction graphs depicted in Figure 5.2.3. These four interac-
tion graph represent four possible models of a Cytokinin signaling pathway
suggested in Topcu-Alici [2012]. We use the results of Chapter 4 and con-
sider the skeletons of these interaction graphs. More precisely, we consider
the following Boolean functions with parameter K ∈ {0, 1} representing the
skeletons (see Section 4.3) of four interaction graphs stemming from the
models A, AB, B, P (see Figure 5.2.3):



5.2. CRITERIA BASED ON WALKS 127

fA(P,B,A,Ap) =


P ⊕ [(P ⊕−1 A) ∨ (P ⊕K)]

B ⊕B ⊕ P
A⊕A⊕B

Ap ⊕ [(Ap ⊕A) ∨ (Ap ⊕ P )]



=


1⊕AK ⊕AP ⊕KP ⊕A⊕ P

P
B

AP ⊕AAp ⊕ PAp ⊕A⊕ P



=


¬A ∨ (B ∧ ¬P ) ∨ (¬B ∧ P )

P
B

(A ∧ P ) ∨ (A ∧ ¬Ap) ∨ (P ∧ ¬Ap)



fAB(P,B,A,Ap) =


P ⊕ [(P ⊕−1 A) ∨ (P ⊕−1 B) ∨ (P ⊕K)]

B ⊕B ⊕ P
A⊕A⊕B

Ap ⊕ [(Ap ⊕A) ∨ (Ap ⊕ P )]



=


1⊕AB ⊕KP ⊕ABK ⊕ABP ⊕AKP ⊕BKP ⊕ P

P
B

AP ⊕AAp ⊕ PAp ⊕A⊕ P



=


(¬A ∧ ¬B) ∨ (¬A ∧ ¬P ) ∨ (¬B ∧ ¬P )

P
B

(A ∧ P ) ∨ (A ∧ ¬Ap) ∨ (P ∧ ¬Ap)



fB(P,B,A,Ap) =


P ⊕ P ⊕K

B ⊕ [(B ⊕ P ) ∨ (B ⊕−1 Ap)]
A⊕A⊕B

Ap ⊕ [(Ap ⊕ P ) ∨ (Ap ⊕A)]



=


K

1⊕BP ⊕BAp ⊕ PAp ⊕B ⊕Ap
B

AP ⊕AAp ⊕ PZ ⊕A⊕ P



fP (P,B,A,Ap) =


P ⊕ [(P ⊕K) ∨ (P ⊕−1 Ap)]

B ⊕B ⊕ P
A⊕A⊕B

Ap ⊕ [(Ap ⊕ P ) ∨ (Ap ⊕A)]



=


1⊕KP ⊕KAp ⊕ PAp ⊕ P ⊕Ap

P
B

AP ⊕AAp ⊕ PAp ⊕A⊕ P


The skeletons of model A and model B are depicted in Figure 5.2.4 and

Figure 5.2.5.
Below we give some examples of components we could measure and cor-

responding sequences. For this purpose let us fix the value of K to 1.
• To distinguish Gasync(f

AB) and Gasync(f
A) we could measure:

B and A: The sequence 00, 10, 00 would indicate that fA is not
a realistic model, while fAB would be possible. If we measure the
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Figure 5.2.4. Model A.

components B and A in only two time points we do not have any
chance to distinguish the two models.
• To distinguish Gasync(f

AB) and Gasync(f
B) we could measure:

P : The sequence 1 → 0 would indicate that fB is not a realistic
model, while fAB would be possible.

P and A: If we measure P and A in two points the sequences
10→ 00 or 11→ 01, corresponding to the previous case would indi-
cate that fB is not representing a realistic model, while fAB could
still explain this observation. In other words, it does not help to
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Figure 5.2.5. Model AB.

measure additionally the component A. However, if we would mea-
sure three instead of two time-points, we have a chance to observe
time series that would speak against model fAB (marked in red)
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fAB fB

00,10,00 true false
01,00,01 false true
01,11,01 true false
10,00,01 true false
10,00,10 true false
10,11,01 true false
10,11,10 false true
11,01,00 true false
11,01,11 true false
11,10,00 true false

.

The remaining time series would be covered by measuring only P
again.
• To distinguish Gasync(f

AB) and Gasync(f
P ) we could measure:

B and Ap: We need to measure at least three time-points and only
the sequence 00→ 10→ 00 could eliminate fP .

5.3. Discussion

In this chapter we presented several ideas how different BNs or different
possible behaviors of a single BN can be distinguished based on a subset of
components of the BN. In Section 5.1 we presented formalizations of such
criteria and we were able to use QBF solvers (e.g. Janota [2017] here) to find
solutions in smaller systems. The reformulation of the State-Discrimination-
Problem in Proposition 5.1 suggests that there exists no algorithm for this
type of problems that will scale well. Nevertheless, we were able to demon-
strate the usefulness of this approach on a a cell-fate decision model with
11 components in Section 5.1.3 from Calzone et al. [2010]. This suggests
that for many biological models it is still possible to obtain helpful results.
Also note that the original cell-fate decision model constructed in Calzone
et al. [2010] contained 28 components. To analyze this model the original
model was reduced in Calzone et al. [2010] using a network reduction method
suggested in Naldi et al. [2011]. This shows that combining clever ways of
reducing the Boolean network before using the methods presented here can
enable us to tackle bigger systems. In Section 5.1.4 we gave another sugges-
tion by reformulating the State-Discrimination-Problem into the language
of algebraic geometry. We showed that the usage of Gröbner bases con-
stitutes another possibility to compute the solutions. In the Boolean case
there are relatively efficient computational tools for such tasks Brickenstein
and Dreyer [2009]. Therefore, this could be a further promising approach
to obtain better running times. Another problem is that the criteria in this
chapter can lead to too many components that are necessary to measure.
Therefore, it could be useful to relax the criteria in Section 5.1 by including
probabilistic methods. I.e. allowing that the projected sets A and B\A in
the State-Discrimination-Problem intersect to a certain degree.

Also the opposite approach – to analyze what can be said about a hy-
pothesis given a fixed set of components we measure – is of interest.



5.3. DISCUSSION 131

This approach we followed in Section 5.2. Here, we used finite automata
to analyze walks projected on some components to distinguish models. As a
showcase we considered four interaction graphs. We computed the skeleton
of these interaction graphs (see Section 4.3) and gave for a given set of com-
ponents corresponding sequences of signs we need to measure to distinguish
them. Also here we do not expect the methods presented to scale well with
the number of components in BNs due to the use of nondeterministic fi-
nite automata. Methods for decreasing the average running time or suitable
heuristic approaches should be investigated consequently here as well. Re-
stricting the length of potential sequences a priori for example would be an
easy approach to tackle bigger systems. Another problem of this approach is
that measurements are not sufficient to observe a complete projected walk.
There are also several theoretical aspects worth investigating still in the fu-
ture. For example it would be interesting to investigate which ASTGs are
equivalent with respect to certain output-nodes. Such ideas could be useful
with respect to so-called network motifs, where the relation of certain reoc-
curring patterns in interaction graphs with the dynamics of corresponding
BNs is suggested.



CHAPTER 6

Conclusion

In this thesis, several approaches to link ODE models and Boolean mod-
els of gene regulatory networks were considered. This is not solely of theo-
retical interest, but also of practical relevance as properties preserved across
different classes of models of GRNs are unlikely to be model artifacts. This
holds especially for Boolean models due to their simplicity. In light of this
reasoning, the comparison between different modeling formalisms of GRNs
can serve as an indicator as to the validity of results. At the beginning of
this thesis, we set ourselves the task of determining the relations between
these different classes of models. We made two contributions in this respect.

In Chapter 2 we studied a well-known algorithm that takes a Boolean
function f as an input and outputs a family of ODE systems. We saw that
the resulting ODE-system has trajectories resembling the discrete trajecto-
ries, but that in many cases there is no reasonable way to link the dynamics
of the ODE-system with the dynamics of the corresponding Boolean net-
work. However, looking at simple characteristics such as steady states or
trap spaces, made it possible to prove that these properties are preserved
during the conversion.

Unfortunately, this result alone is less than satisfying, given the fact,
that a very large amount of analysis and research in Boolean networks is
invested into properties of the state transition graphs relying on reachabil-
ity properties. Conclusions based on such properties are thus built on a
very shaky foundation. Firstly, the interpretation of Boolean states in the
continuous setting is not straightforward. And secondly, even in those spe-
cific situations where the interpretation of continuous data is simpler, the
“trajectories” found in Boolean models do not necessarily correspond to tra-
jectories in the continuous models. Thus, we believe the construction of
Boolean models should be more thoroughly linked to the behavior of ODEs.

In Chapter 4 we presented such an approach. There, we compared spe-
cific sets of ODE models with sets of Boolean models. For this purpose we
considered the theory of qualitative differential equations. This constitutes a
more general perspective on the relation between ODE systems and Boolean
networks. Instead of looking at the concentrations of species in regulatory
networks, we considered their dynamic trends, i.e. whether their concentra-
tions are increasing or decreasing. In this approach, nothing more than the
interaction graph of a regulatory network is necessary. To link these trends
to Boolean networks, we reformulated a condition for possible sign changes
in terms of a Boolean state transition graph. Afterwards, we showed that
this Boolean state transition graph can be treated as the asynchronous state
transition graph of a Boolean network. Thus, this approach constitutes an
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illustration of how Boolean networks can arise from families of ODEs, al-
lowing an exact interpretation of states and transitions in the corresponding
ODEs.

Also in Chapter 4, we were able to use a similar technique to analyze sets
of Boolean models. We were able to obtain in this case an analogous Boolean
state transition graph, which is essentially the same as the one obtained
from sets of continuous models. This result is in and of itself interesting.
Furthermore, such a graph can be effectively generated and reduced to the
asynchronous state transition graph of a Boolean network. In principle,
it can be used to investigate restrictions on the dynamics in certain sets of
asynchronous Boolean networks. This is an area ripe for future investigation.

The focus of this work lies on the rather theoretical question of how
different modeling formalisms of GRNs compare to one another. More gen-
erally, the overall goal, this thesis seeks to realize, is a good understanding
of different modeling formalisms of GRNs and the ability to combine them
efficiently without relying purely on heuristics. Despite this theoretical ap-
proach, we gave throughout this thesis ideas for applications of the presented
results. We believe these ideas deserve more attention in the future and con-
stitute a natural continuation of this research. In our opinion, the present
goal should be to exploit the results in this thesis regarding the relation
between different modeling frameworks for concrete applications.

The results in Chapter 2 on trap spaces open the door for combining
Boolean and continuous models in better ways. Trap spaces could be used to
facilitate parameter estimation by reducing the dynamics of an ODE model
to trap spaces obtained from a coarser Boolean counterpart. This should be
tested systematically for more models.

In Chapter 4, we considered a specific way of abstracting the dynamics
of continuous models. However, this constitutes only a special case in the
more general theory of qualitative reasoning Kuipers [1994]. In our opinion,
it could be interesting to investigate different ways of abstracting ODEs and
linking them to Boolean networks or, more generally, discrete multivalued
networks.

Finally, the reduction of the Boolean state transition graphs to asynchro-
nous Boolean networks considered in Chapter 4 constitutes a link between
ODE models, interaction graphs and Boolean networks which deserves more
attention. Similar to the results in Chapter 2, this yields the possibility of
using Boolean networks to analyze models in different model classes. This
was also the motivation to deviate in Chapter 5 from the original question of
this thesis. Motivated by the relationship between Boolean networks, ODE
models and interaction graphs, we began in Chapter 5 to explore ways to
take advantage of these relationships. It will be interesting to see how such
results will unfold in combination with the ideas of Chapter 5 in the future.

.
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Appendix

Zusammenfassung

Diese Arbeit beschäftigt sich mit unterschiedlichen Typen von qualita-
tiven Modellen genregulatorischer Netzwerke. Vier Typen von Modellen wer-
den betrachtet:

(1) Interaktionsgraphen
(2) Boolesche Netzwerke
(3) Modelle, die auf Differentialgleichungen basieren
(4) Diskrete Abstraktionen von Differentialgleichungen

Wir werden mehr über die Beziehungen zwischen diesen Modellgruppen ler-
nen und wie diese Beziehungen genutzt werden können, um einzelne Modelle
zu analysieren. Der Schwerpunkt liegt hierbei auf der mathematischen Ana-
lyse dieser Modellgruppen. In dieser Hinsicht leistet diese Arbeit mehrere
Beiträge.

Zunächst betrachten wir Boolesche Netzwerke und parametrisierte Fami-
lien von gewöhnlichen Differentialgleichungen (ODEs). Um solche ODE-
Modelle systematisch aus Booleschen Modellen abzuleiten, wurden in der
Vergangenheit verschiedene automatische Konvertierungsalgorithmen vor-
geschlagen. In Kapitel 2 werden einige dieser Algorithmen näher unter-
sucht. Wir werden beweisen, dass bestimmte invariante Mengen bei der
Konvertierung eines Booleschen Modells in ein ODE-Modell erhalten bleiben.

Der zweite Ansatz, der in dieser Arbeit verfolgt wird, beschäftigt sich
mit diskreten Abstraktionen der Dynamik von Modellen. Mit Hilfe dieser
Abstraktionen ist es möglich, die Struktur – den Interaktionsgraphen – und
die Dynamik der zugehörigen Modelle in Bezug zu setzen. Diese Methode
wird sowohl auf Boolesche Modelle als auch auf ODE-Modelle angewandt.
Gleichzeitig erlaubt dieser Ansatz Mengen von Modellen in unterschiedlichen
Modellgruppen zu vergleichen, die dieselbe Struktur haben.

Die abstra-hierten Dynamiken (genauer die Einschränkungen der ab-
strahierten Dynamiken) der Booleschen Modellmengen oder ODE-Modell-
mengen können als Boolesche Zustandsübergangsgraphen repräsentiert wer-
den. Wir werden zeigen, dass diese Zustandsübergangsgraphen wiederum
selber als (asynchrone) Boolesche Netzwerke aufgefasst werden können.

Trotz der theoretischen Ausgangsfrage werden in dieser Arbeit zahlreiche
Anwendungen aufgezeigt. Die Ergebnisse aus Kapitel 2 können zur Modellre-
duktion benutzt werden, indem die Dynamik der ODE-Modelle auf den zu
den Booleschen Netzwerken gehörigen “trap spaces” betrachtet wird. Die
Resultate aus Kapitel 4 können zur Netzwerkinferenz oder zur Analyse von
Modellmengen genutzt werden. Weiterhin werden im letzten Kapitel dieser
Arbeit einige Anwendungsideen im Bezug auf Experimentdesign eingeführt.
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Dies führt zu der Fragestellung, wie verschiedene asynchrone Boolesche Netz-
werke oder unterschiedliche Dynamiken, die mit einem einzelnen Modell vere-
inbar sind, unterschieden werden können.
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