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Summary 

 

 

 

 

Artificial intelligence has permeated almost every area of life in modern society, and its signifi-

cance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful 

set of methodologies that propose innovative and robust solutions to a variety of complex prob-

lems. Soft Computing methods, because of their broad range of application, have the potential to 

significantly improve human living conditions. The motivation for the present research emerged 

from this background and possibility. 

 

This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the 

gap between Soft Computing techniques and their application to intricate problems. On the other 

hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective 

tools for such problems. 

 

This thesis synthesizes the results of extensive research on Soft Computing methods and their ap-

plications to optimization, Computer Vision, and medicine. This work is composed of several in-

dividual projects, which employ classical and new optimization algorithms.  

 

The manuscript presented here intends to provide an overview of the different aspects of Soft 

Computing methods in order to enable the reader to reach a global understanding of the field. 

Therefore, this document is assembled as a monograph that summarizes the outcomes of these pro-

jects across 12 chapters. The chapters are structured so that they can be read independently. The 

key focus of this work is the application and design of Soft Computing approaches for solving 

problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, 

Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast 

Thermogram Analysis.  

 

One of the outcomes presented in this thesis involves the development of two evolutionary ap-

proaches for global optimization. These were tested over complex benchmark datasets and showed 

promising results, thus opening the debate for future applications. Moreover, the applications for 

Computer Vision and medicine presented in this work have highlighted the utility of different Soft 

Computing methodologies in the solution of problems in such subjects. A milestone in this area is 

the translation of the Computer Vision and medical issues into optimization problems. 

 

Additionally, this work also strives to provide tools for combating public health issues by expand-

ing the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and 

breast cancer. The application of Soft Computing techniques in this field has attracted great inter-

est worldwide due to the exponential growth of these diseases. 

 

Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday 

domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many 

other industrial and commercial applications of Soft Computing have also been integrated into 

everyday use, and this is expected to increase within the next decade. Therefore, the research con-

ducted here contributes an important piece for expanding these developments. The applications 

presented in this work are intended to serve as technological tools that can then be used in the de-

velopment of new devices. 

 



Zusammenfassung  

 

 

 
Künstliche Intelligenz hat nahezu jeden Lebensbereich der modernen Gesellschaft durchdrungen, 

und ihre Bedeutung nimmt stetig zu. In diesem Sinne hat sich auch Soft-Computing in den letzten 

Jahren zu einem leistungsfähigen Methodenset entwickelt, das innovative und robuste Lösungen 

für eine Vielzahl komplexer Probleme bietet. Soft-Computing-Methoden haben aufgrund ihrer 

vielfältigen Anwendungsmöglichkeiten das Potenzial, die menschlichen Lebensbedingungen maß-

geblich zu verbessern. Hieraus entstand die Motivation für die vorliegende Forschung. 

 

Mit dieser Forschungsarbeit sollen zwei Hauptziele erreicht werden: Auf der einen Seite wird ver-

sucht, die Lücke zwischen Soft Computing-Techniken und deren Anwendung bei komplexen 

Problemen zu schließen. Auf der anderen Seite werden die hypothetischen Vorteile von Soft Com-

puting-Methoden als neuartige und effektive Werkzeuge für solche Probleme untersucht. 

 

Diese Dissertation fasst die Ergebnisse umfangreicher Forschungen zu Soft-Computing-Methoden 

und deren Anwendungen für Optimierungsprobleme, Bildverarbeitung und Medizin zusammen. 

Die Arbeit besteht aus mehreren Einzelprojekten, in denen klassische und neue Optimierungsalgo-

rithmen verwendet werden.  

 

Das hier vorgestellte Manuskript soll einen Überblick über die verschiedenen Aspekte des Soft-

Computings geben, um dem Leser ein generelles Verständnis dieses Fachgebiets zu vermitteln. 

Daher ist dieses Dokument als Monographie zusammengestellt, welche die Ergebnisse dieser Pro-

jekte in zwölf Kapiteln bündelt. Die Kapitel sind so aufgebaut, dass sie unabhängig voneinander 

gelesen werden können. Der Schwerpunkt liegt auf der Anwendung und Gestaltung von Soft-

Computing-Ansätzen zur Lösung folgender Probleme: Block Matching, Mustererkennung, 

Schwellenwert-verfahren, Eckenerkennung, Template Matching, Kreiserkennung, Farbsegmentie-

rung, Leukozytenerkennung und Brustthermogrammanalyse.  

 

Eines der Ergebnisse, die in dieser Arbeit vorgestellt werden, beinhaltet die Entwicklung von zwei 

evolutionären Ansätzen für die globale Optimierung. Diese wurden an komplexen Benchmark-

Datensätzen getestet und zeigten vielversprechende Ergebnisse, was die Diskussion über zukünfti-

ge Anwendungen eröffnet. Darüber hinaus haben die hier dargestellten Anwendungen für Bildver-

arbeitung und Medizin den Nutzen verschiedener Soft-Computing-Methoden bei der Lösung von 

Problemen in solchen Gebieten hervorgehoben. Ein Meilenstein in diesem Bereich ist die Über-

führung von Bildverarbeitung und medizinischen Fragestellungen in Optimierungsprobleme. 

 

Zudem zielt diese Arbeit darauf ab, Instrumente zur Bewältigung von Problemen der öffentlichen 

Gesundheitsfürsorge bereitzustellen, indem die Konzepte auf automatisierte Erkennungs- und Di-

agnosehilfen für Krankheiten wie Leukämie und Brustkrebs ausgeweitet werden. Die Anwendung 

von Soft Computing-Techniken in diesem Bereich hat aufgrund der exponentiellen Zunahme die-

ser Krankheiten weltweit großes Interesse geweckt. 

 

Abschließend ist zu erwähnen, dass der Einsatz von Fuzzy-Logik, künstlichen neuronalen Netzen 

und Expertensystemen in vielen Haushaltsgeräten, wie Waschmaschinen, Küchenherden und 

Kühlschränken, heutzutage bereits Realität ist. Auch viele andere industrielle und kommerzielle 

Anwendungen von Soft Computing wurden in den Alltag integriert, was sich im kommenden Jahr-

zehnt noch verstärken wird. Die hier durchgeführte Forschung leistet daher einen wichtigen Bei-

trag zur Steigerung dieser Entwicklungen. Die vorgestellten Anwendungen sollen als technologi-

sche Werkzeuge dienen, die bei der Entwicklung neuer Geräte eingesetzt werden können. 
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Chapter 1 

Introduction 

 

 

 

 

 
 

Artificial Intelligence (AI) has emerged as a powerful tool for information processing, decision-

making, and knowledge management. Soft Computing, as a subfield of AI, has been successfully 

developed to solve problems in all areas of science and technology. Due to the strong capacities of 

Soft Computing methods, they can be used to elucidate intricate problems to help improve peo-

ple’s lives in several areas.  

 

The central focus of this research is the application and design of Soft Computing approaches to 

the following problems in global optimization, Computer Vision, and medicine: Block Matching, 

Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color 

Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. 

 

The aim of this work is to design technological tools that can be used in the development of new 

devices, as well as to highlight the utility of different Soft Computing methodologies as solutions 

for problems in a variety of fields. This research started from the premise that the approaches pro-

posed here may help, even indirectly, to improve quality of life. The framework for these potential 

contributions is briefly presented in section 1.1. 

 

This chapter also provides a conceptual overview of a selection of Soft Computing techniques and 

optimization approaches and describes their main characteristics. This introduction will present the 

considerations involved in using Soft Computing methods for solving complex problems. The 

study of optimization methods found in the later chapters clearly demonstrates the necessity of us-

ing intelligent optimization methods for the solution of problems in optimization, Computer Vi-

sion, and medicine. 

 

The remainder of this chapter is organized as follows: Section 1.1 presents the motivation for this 

research project. Section 1.2 gives a brief description of Soft Computing, its main characteristics, 

and the properties of three of its important methodologies. Section 1.3 explains the key concepts 

and features of optimization. Section 1.4 enumerates the main objectives of this research. Finally, 

Section 1.5 provides an overview of this manuscript. 

1.1. Motivation 

 

The number of people living on less than $1.25 per day has dramatically increased in the last 

three decades.  To understand poverty, we must first define it. The Centers for Disease Control and 

Prevention (CDC) defines poverty simply as a condition in which “a person or group of people 

lack human needs because they cannot afford them” (“Definitions | Social Determinants of Health | 

NCHHSTP | CDC,” 2018) . 

 

The top five poorest countries in the world are India (with 33% of the world's poor), China (13%), 

Nigeria (7%), Bangladesh (6%) and the Democratic Republic of Congo (5%). If expanded to In-

donesia, Pakistan, Tanzania, Ethiopia, Kenya, and Latin American, these collective regions would 

include almost 80% of the world's poor. About 22,000 children die each day due to conditions of 
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poverty. Approximately 1.2 billion people still live without access to electricity and healthcare. 

Sub-Saharan Africa accounts for more than one-third of the world's extreme poor. The combined 

results from 27 Sub-Saharan African countries show 54% of residents living in extreme poverty; 

this is the highest proportion among global regions worldwide. About 75% of the world's poor live 

in rural areas, depending on agriculture for their livelihood. In 2010, the average income of the ex-

tremely poor in the developing world was 87 cents per capita per day, up from 74 cents in 1981 

1981 (US Census Bureau Applications Development and Services Division, 2018). 

 

Poverty around the globe has brought with it a large number of problems. Quality of life, measured 

in terms of access to basic services (e.g. water, energy, healthcare, food, among others) has only 

gotten worse and worse. 

 

Fighting poverty is about more than slick posters and hashtags. It involves a tough look at all of 

the factors that create economic inequality, both locally and on the global scale. Because of the 

complexity of this issue, several specialists believe that the next round of progress against poverty 

will be driven by new technologies, especially in health, farming, and education.  

 

Among the newest of these technologies, Artificial Intelligence is concerned with the use of hu-

man models as an inspiration for solving computational problems. Moreover, it has proved to be 

useful in several areas (Shahin, 2016) through making relevant contributions to optimization, pat-

tern recognition, shape detection, and machine learning. It has also gained considerable research 

interest in the Computer Vision community, as AI algorithms have successfully contributed to 

solving challenging Computer Vision problems. 

 

AI is generally defined as computational modelling of human behaviour or human thoughts. The 

exact meaning of AI is much debated. It is widely accepted that the concept of AI evolved closely 

with the development of computers that have the potential ability for a thought process similar to 

that of humans, which includes learning, reasoning, and self-correction (Londhe & Bhasin, 2018). 

 

AI has evolved from the research efforts of scientists from a variety of disciplines, including math-

ematics, philosophy, economics, and neuroscience. We humans accelerate the future with our 

minds. This is both a strength and a weakness. Often, our predictions of the future are highly inac-

curate. Based on forecasts from a book called The World in 2010, published in 1976, we should 

have been living above and below the surfaces of three planets as of five years ago. Predictions re-

garding the future of AI are equally likely to be off base (Gurkaynak, et al., 2016). Most of what 

we consider AI today is really our own intelligence re-formatted and re-cycled with the help of 

computers that lack any real skills for learning or a true consciousness of being. 

 

Computer scientists have adapted Descartes’ concept of ‘tabula rasa’ to describe the development 

of autonomous agents that have the capability to reason and plan towards their goal without any 

built-in knowledge base of their environment (Gurkaynak et al., 2016). While weak AI may out-

perform humans at a specific task, such as playing chess or solving equations, general AI would 

outperform humans at nearly every cognitive level.  

 

AI is an important technology that supports daily social life and economic activity. It contributes 

greatly to sustainable economic growth and solves various social problems. In recent years, Soft 

Computing (SC) as a specific area of AI has attracted attention as a key for growth in developed 

and developing countries (Lu, et al., 2017). 

 

In recent years, SC technologies have developed dramatically due to improvements in computer 

processing capacity and the accumulation of big data. However, the yields of current AI technolo-

gies remain limited to specific intellectual areas, such as image recognition, speech recognition, 
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and dialogue response (Lu et al., 2017). Currently, SC is a specialized type of AI acting intellectu-

ally in a so-called individual area. Therefore, research in this field is still an open problem. 

 

Presently, we are faced with many complex engineering systems that need to be manipulated. As 

they are usually not fully theoretically tractable, it is not possible to use traditional deterministic 

methods. SC, as opposed to conventional deterministic methods, is a set of methodologies working 

synergistically rather than competitively that, in one form or another, exploits the tolerance for im-

precision, uncertainty, and approximate reasoning in order to achieve tractability, robustness, low-

cost solutions, and close resemblance to human-like decision making. Among the methodologies 

of SC, those most often employed in current research include Neural Networks, Evolutionary 

Computation, Fuzzy Logic, and Learning Automata. Recent years have witnessed tremendous suc-

cess by these powerful methods in virtually all areas of science and technology, as evidenced by 

the large numbers of results published in a variety of journals, conferences, and books. 

 

On the other hand, optimization is a rich source of challenges where each new approach that is de-

veloped by mathematicians and computer scientists is quickly identified, understood, and assimi-

lated for application. Because these specific problems are often of a nature that can only be solved 

by an expert with proper training, SC has targeted this class by capturing the essence of human 

cognition at the highest level.  

 

In recent years, there has been a growing interest in the use of SC in all science domains, and it has 

fueled many visions and hopes (Salehi & Burgueño, 2018). Adeli & Hung (1995) presented a mul-

tiparadigm learning technique, through which the authors demonstrated that performance could be 

notably enhanced by skillful integration of different SC branches, including neural networks, ge-

netic algorithms, fuzzy sets, and parallel processing. An extensive study of evolutionary computa-

tion, a branch of SC, in the context of structural design was conducted by Kicinger et al. (2005). 

Liao et al. (2011) carried out a review of studies concerning the application of metaheuristics as 

optimization techniques to address issues faced in the lifetime of a construction or engineering 

project. A survey on different SC methods for civil engineering was conducted by Lu et al. (2012). 

Shahin et al. (Shahin, 2013) studied applications of SC in geotechnical engineering; and Saka et al. 

(2013) conducted a survey on mathematical and metaheuristic algorithms in design optimization of 

steel frame structures. Aldwaik et al. (2014) carried out a review on progress in the optimization of 

high-rise buildings; and a survey on the applications and methodologies of the fuzzy multiple cri-

teria decision-making techniques was conducted by Mamdani et al. (2015). 

 

 

Parallel developments in SC in the filed of medicine have also had impacts on the field of 

healthcare. Furthermore, advancements in medical technology have allowed physicians to better 

diagnose and treat multiple patients. Thanks to the continuous development of technology in the 

medical field, countless lives have been saved, and the overall quality of life in poor continues 

could be improved over time. 

 

The application of SC concepts to healthcare has led to an era of cognitive computing in which 

such models can digest a large amount of data to detect patterns they have previously been ex-

posed to. For example, targeted therapies have been used in patients with cancer with limited suc-

cess despite oncologists’ attempt to define subsets of patients who might benefit from a specific 

treatment (Londhe & Bhasin, 2018). It is predictable that in the near future SC will play a more 

important role in the medical context. 

 

Moreover, recent advances in digital imaging and computer hardware technology have led to an 

explosion in the use of these images in a variety of medical applications, particularly for the im-

provement and acceleration of illness diagnosis. A significant percentage of medical images are 

obtained by X-ray radiography, CT, and MRI. These provide essential information for prompt and 
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accurate diagnoses based on advanced computer vision techniques. These applications result from 

the interaction between fundamental scientific research on the one hand and the development of 

new and high-standard technology on the other. 

 

It is important to note that medical images considered for diagnoses often have artifacts and noise 

produced by the physical method with which they are taken. Normally, classical image processing 

methods face great difficulty dealing with images containing noise and distortions. To address 

these conditions, SC approaches have been recently extended to these challenging real-world im-

age processing problems (Shahin, 2016). Interest among researchers in this application to medical 

imaging is increasing day by day, as is indicated by the huge volume of research published in lead-

ing international journals and international conference proceedings.  

 

An example of the aforementioned mentioned work in medicine is the unsupervised protein–

protein interaction algorithms that led to novel therapeutic target discoveries (Theofilatos et al., 

2015). Included in the virtual applications of SC are electronic medical records where specific al-

gorithms are used to identify subjects with a family history of a hereditary disease or an augment-

ed risk of a chronic disease (Hamet & Tremblay, 2017).  

 

Much research has been conducted in the area of medical characteristic detection. In Wang & Chu 

( 2009), a method based on boundary support vectors is proposed to identify characteristics. In this 

approach, the intensity of each pixel is used to construct feature vectors whereas a support vector 

machine (SVM) is used for classification and segmentation. By using a different approach, Wu et 

al. (2007) developed an iterative Otsu method based on the circular histogram for leukocyte seg-

mentation. According to this technique, the smear images are processed in the Hue-Saturation-

Intensity (HSI) space by considering that the Hue component contains most of the WBC infor-

mation. One of the latest advances in medical characteristics research is the algorithm proposed by 

Shitong et al. (2007), which is based on the fuzzy cellular neural network (FCNN). Although such 

a method has proved successful in detecting several features in the image, it has not yet been tested 

over images containing complex conditions. Moreover, its performance commonly decays when 

the iteration number is not properly defined, itself yielding a challenging problem with no clear 

clues on how to make the best determination. 

 

Since several medical anomalies can be approximated with a quasi-circular form, shape detector 

algorithms may be employed. The problem of detecting shape features holds paramount im-

portance, particularly for medical image analysis (Karkavitsas & Rangoussi, 2005). The shape de-

tection in digital images is commonly performed by the Hough transform (Muammar & Nixon, 

1989). A typical Hough-based approach employs an edge detector whose information guides the 

inference for shape values. Peak detection is then attained by averaging, filtering, and histogram-

ming the transform space. However, such an approach requires a large storage space, given the 3D 

cells needed to cover all parameters. It also implies a high computational complexity, yielding a 

low processing speed. Furthermore, the accuracy of the extracted parameters for the detected circle 

is poor, particularly in the presence of noise (Atherton & Kerbyson, 1993). For a digital image 

holding a significant width and height and a densely populated edge pixel map, the required pro-

cessing time for circular Hough transform prohibits deployment in real time applications. In order 

to overcome such a problem, researchers have proposed new approaches based on the Hough 

transform, including the probabilistic Hough transform (Fischler & Bolles, 1981; Shaked, et al., 

1996), the randomized Hough transform (RHT) (Xu, et al., 1990), and the fuzzy Hough transform 

(Han, et al., 1994). Alternative transformations have also been presented, such as the one proposed 

by Becker et al. (2002). Although these new approaches demonstrate better processing speeds in 

comparison to the original Hough transform, they are still very sensitive to noise. 

 

As an alternative to Hough transform-based techniques, the shape detection problem has also been 

handled through evolutionary computation (EC) methods. These methods are derivative-free pro-
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cedures that do not require that the objective function be neither two-times differentiable nor uni-

modal. Therefore, EC methods as global optimization algorithms can deal with non-convex, non-

linear, and multimodal problems subject to linear or nonlinear constraints with continuous or dis-

crete decision variables. In general, EC methods have been shown to deliver better results than 

those based on Hough Transform (HT), considering accuracy, speed, and robustness (Ayala-

Ramirez, et al., 2006). Such approaches have produced several robust shape detectors using differ-

ent optimization algorithms, such as genetic algorithms (GAs) (Ayala-Ramirez et al., 2006), har-

mony search (HS) (Cuevas, et al., 2012), differential evolution (DE) (Cuevas, et al., 2011), and the 

electromagnetism-like optimization algorithm (EMO) (Cuevas, et al., 2012). A detailed description 

of these and other evolutionary methods can be found in my previous collaborations with other re-

searchers (Cuevas, et al., 2016). 

 

Although detection algorithms based on the optimization approaches present several advantages in 

comparison to those based on the Hough transform, they have rarely been applied to medical char-

acteristic detection. One exception is the work presented by Karkavitsas et al. (2005) that solves 

the shape detection problem through the use of Genetic Algorithms. However, since the evaluation 

function, which assesses the quality of each solution, considers the number of pixels contained in-

side of a circle with a fixed radius, the method is prone to produce misdetections, particularly for 

images that contain overlapped or irregular White Blood Cells (WBC). 

 

Conversely, detection of medical characteristics in images plays a significant role in the diagnosis 

of different diseases. Although digital image processing techniques have successfully contributed 

to generating new methods for cell analysis, which, in turn, have led into more accurate and relia-

ble systems for disease diagnosis, high variability of such characteristics and localization compli-

cates the data extraction process. Moreover, medical images contain noise and distortions pro-

duced by unstable lighting conditions during the capturing process. 

 

In this research, we strive to present new state-of-the-art techniques by applying recent Soft Com-

puting strategies to challenging and significant problems, such as those described above, in opti-

mization, Computer Vision, and medicine. 

 

1.2. Soft Computing 

 

Soft computing (SC) (Patnaik & Zhong, 2014) is a computer science area that tries to develop 

intelligent systems. Under soft computing, the objective is to produce computer elements which 

artificially operate based on intelligent processes typically extracted from natural or biological 

phenomena.   

 

SC considers a set of methodologies that try to develop systems with tolerance to the imprecision 

and robustness to the uncertainty. SC techniques have demonstrated their capacities in the solution 

of several engineering applications. Different to classical methods, soft computing approaches 

emulate cognition elements in many important aspects: they can acquire knowledge from experi-

ence. Furthermore, SC techniques employ flexible operators that perform input/output mappings 

without the consideration of deterministic models. With such operators, it is possible to extend the 

use of SC techniques even to those applications in which the precise and accurate representations 

are not available.    

 

SC involves a set of approaches extracted from many fields of the computational intelligence. SC 

considers three main elements (Chaturvedi, 2008): (A) fuzzy Systems, (B) neural networks and 

(C) evolutionary computation. Furthermore, other alternative approaches have been associated 

with SC. They include techniques such as machine learning (ML) and probabilistic reasoning 
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(PR), belief networks, and expert systems, etc. Fig. 1.1 shows a conceptual map that describe the 

different branches of SC. 

 

 
 

Fig. 1.1. Different branches of Soft Computing. 

 

 

Soft Computing, in general, considers the inspiration from natural phenomena or biological sys-

tems. Neural networks emulate the animal brain connections; evolutionary algorithms base its op-

eration on the characteristics of Darwinian evolution. Meanwhile fuzzy logic aims to simulate the 

highly imprecise nature of human reasoning. 

1.2.1. Fuzzy logic 

Humans handle imprecise and uncertain information in their day life routines. This fact can be 

observed in the structure of the language which includes various qualitative and subjective terms 

and expressions such as “quite expensive”, “very old”, or “pretty close”, “cheap”, etc. In human 

knowledge, approximate reasoning is employed and considered to provide several levels of impre-

cision and uncertainty in the concepts that are transmitted among persons. 

 

Fuzzy logic (Ghosh, et al., 1998) represents a generalization of classical logic. It considers fuzzy 

sets which are an extension of crisp sets in classical logic theory. In classical logic, an element be-

longs to either a member of the set or not at all, in fuzzy logic, an element could belong at a certain 

level “degree of membership” to the set. Hence, in fuzzy logic, the membership function of an el-

ement varies in the range from 0–1, but in classical logic, the membership value is only 0 or 1. 

 

A fuzzy system involves four different modules:  a fuzzy rule base, a fuzzification module, an in-

ference engine, and a defuzzification module. Such elements are shown in Fig. 1.2. The fuzz-

ification module translates the input values into fuzzy values which are used by the fuzzy system. 

The inference engine considers the outputs of the fuzzification element and uses the fuzzy rules in 

the fuzzy rule base to produce an intermediate result. Finally, the defuzzification module uses this 

intermediate result to obtain the global output. 

 

 

 
 

Fig. 1.2. Elements of a fuzzy system. 
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1.2.2. Neural Networks 

 

Neural networks (NN) (G. P. Zhang, 2000), are defined as interconnected systems which paral-

lel wise perform a general process. Such elements are undergone to a learning task which automat-

ically modifies the network parameters as a consequence of the optimization of a certain criterion. 

Each unit of the neural network is considered as a highly simplified model of the biological neuron 

present in the animal brain. 

 

The main characteristics of NN models can be summarized as follows: 

 

  • Parallelism – All neural network architectures maintain some level of parallelism in the 

computation of their numerous units;  

 

• Units – The basic units of a NN correspond to the same elements which maintain the 

same characteristics and behavior; 

 

 • Information processing – the output value of each unit depends completely on its cur-

rent state and the output values of other units to which it is associated; and 

 

• Learning – NN parameters are undergone to changes, according to a learning scheme 

which minimizes a certain performance criterion. 

 

NN architectures are classified in according to several criteria: 

 

1. According to their connections, there are three major types of NN such as, a. recurrent 

network, b. Feed forward network and c. Competitive networks. 

2. According to their structure: a. Static (fixed) structure and b. Dynamic structure. 

3. According to their learning algorithms, a. Supervised learning and b. Unsupervised 

learning. 

4. NN models can also be divided regarding the processes in which they are used such as 

a. Pattern recognition, b. Classification and c. Regression. 

 

1.2.3. Evolutionary computation 

 

Evolutionary computation (EC) (Dan, 2013) methods are derivative-free procedures, which do not 

require that the objective function must be neither two-times differentiable nor uni-modal. There-

fore, EC methods as global optimization algorithms can deal with non-convex, nonlinear, and mul-

timodal problems subject to linear or nonlinear constraints with continuous or discrete decision 

variables.  

 

The field of EC has a rich history. With the development of computational devices and demands of 

industrial processes, the necessity to solve some optimization problems arose despite the fact that 

there was not sufficient prior knowledge (hypotheses) on the optimization problem for the applica-

tion of a classical method. In fact, in the majority of image processing and pattern recognition cas-

es, the problems are highly nonlinear, or characterized by a noisy fitness, or without an explicit 

analytical expression as the objective function might be the result of an experimental or simulation 

process. In this context, the EC methods have been proposed as optimization alternatives. 

 

An EC technique is a general method for solving optimization problems. It uses an objective func-

tion in an abstract and efficient manner, typically without utilizing deeper insights into its mathe-

matical properties. EC methods do not require hypotheses on the optimization problem nor any 
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kind of prior knowledge on the objective function. The treatment of objective functions as “black 

boxes” (Blum & Roli, 2003) is the most prominent and attractive feature of EC methods.  

 

EC methods obtain knowledge about the structure of an optimization problem by utilizing infor-

mation obtained from the possible solutions (i.e., candidate solutions) evaluated in the past. This 

knowledge is used to construct new candidate solutions which are likely to have a better quality. 

 

Recently, several EC methods have been proposed with interesting results. Such approaches use as 

inspiration our scientific understanding of biological, natural or social systems, which at some lev-

el of abstraction can be represented as optimization processes (Nanda & Panda, 2014a). These 

methods include the social behavior of bird flocking and fish schooling such as the Particle Swarm 

Optimization (PSO) algorithm (Kennedy & Eberhart, 1995b), the cooperative behavior of bee col-

onies such as the Artificial Bee Colony (ABC) technique (Dervis Karaboga, 2005), the improvisa-

tion process that occurs when a musician searches for a better state of harmony such as the Har-

mony Search (HS) (Geem, et al., 2001), the emulation of the bat behavior such as the Bat 

Algorithm (BA) method (Yang, 2010a),  the mating behavior of firefly insects such as the Firefly 

(FF) method (Yang, 2009), the social-spider behavior such as the Social Spider Optimization 

(SSO) (Cuevas, et al., 2013), the simulation of the animal behavior in a group such as the Collec-

tive Animal Behavior (Cuevas, et al., 2012), the emulation of immunological systems as the clonal 

selection algorithm (CSA) (Leandro N. De Castro & Von Zuben, 2002), the simulation of the elec-

tromagnetism phenomenon as the electromagnetism-like algorithm (EMO) (Birbil & Fang, 2003), 

and the emulation of the differential and conventional evolution in species such as the Differential 

Evolution (DE) (Storn & Price, 1995) and Genetic Algorithms (GA)  (Goldberg & Holland, 1988), 

respectively. 

 

1.3. Optimization Concepts 

1.3.1. Definition of an optimization problem 

 

The vast majority of image processing and pattern recognition algorithms use some form of op-

timization, as they intend to find some solution which is “best” according to some criterion. From 

a general perspective, an optimization problem is a situation that requires to decide for a choice 

from a set of possible alternatives in order to reach a predefined/required benefit at minimal costs 

(Akay & Karaboga, 2015).  

 

Consider a public transportation system of a city, for example. Here the system has to find the 

“best” route to a destination location. In order to rate alternative solutions and eventually find out 

which solution is “best,” a suitable criterion has to be applied. A reasonable criterion could be the 

distance of the routes. We then would expect the optimization algorithm to select the route of 

shortest distance as a solution. Observe, however, that other criteria are possible, which might lead 

to different “optimal” solutions, e.g., number of transfers, ticket price or the time it takes to travel 

the route leading to the fastest route as a solution. 

 

Mathematically speaking, optimization can be described as follows: Given a function :f S →  

which is called the objective function, find the argument which minimizes f : 

 
* arg  min  ( )



=
x S

x f x  (1.1) 

 

S defines the so-called solution set, which is the set of all possible solutions for the optimization 

problem. Sometimes, the unknown(s) x are referred to design variables. The function f describes 
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the optimization criterion, i.e., enables us to calculate a quantity which indicates the “quality” of a 

particular x. 

 

In our example, S is composed by the subway trajectories and bus lines, etc., stored in the database 

of the system, x is the route the system has to find, and the optimization criterion ( )f x  (which 

measures the quality of a possible solution) could calculate the ticket price or distance to the desti-

nation (or a combination of both), depending on our preferences. 

 

Sometimes there also exist one or more additional constraints which the solution *x has to satisfy. 

In that case we talk about constrained optimization (opposed to unconstrained optimization if no 

such constraint exists). As a summary, an optimization problem has the following components:  

 

• One or more design variables x for which a solution has to be found 

• An objective function ( )f x  describing the optimization criterion  

• A solution set S specifying the set of possible solutions x 

• (optional) One or more constraints on x 

 

In order to be of practical use, an optimization algorithm has to find a solution in a reasonable 

amount of time with reasonable accuracy. Apart from the performance of the algorithm employed, 

this also depends on the problem at hand itself. If we can hope for a numerical solution, we say 

that the problem is well-posed. For assessing whether an optimization problem is well-posed, the 

following conditions must be fulfilled: 

 

1. A solution exists.  

2. There is only one solution to the problem, i.e., the solution is unique.  

3. The relationship between the solution and the initial conditions is such that small per-

turbations of the initial conditions result in only small variations of *x . 

 

1.3.2. Classical optimization 

 

Once a task has been transformed into an objective function minimization problem, the next 

step is to choose an appropriate optimizer. Optimization algorithms can be divided in two groups: 

derivative-based and derivative-free (X. S. Yang, 2010b).  

 

In general, ( )f x  may have a nonlinear form respect to the adjustable parameter x. Due to the 

complexity of ( )f , in classical methods, it is often used an iterative algorithm to explore the input 

space effectively. In iterative descent methods, the next point 
1+kx  is determined by a step down 

from the current point 
kx  in a direction vector d: 

 

1 ,+ = +k kx x d  (1.2) 

 

where  is a positive step size regulating to what extent to proceed in that direction. When the di-

rection d in Eq. 1.2 is determined on the basis of the gradient (g) of the objective function ( )f , 

such methods are known as gradient-based techniques. 

 

The method of steepest descent is one of the oldest techniques for optimizing a given function. 

This technique represents the basis for many derivative-based methods. Under such a method, the 

Eq. 1.3 becomes the well-known gradient formula: 
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1 ( ( )),+ = −k kx x f xg  (1.3) 

 

However, classical derivative-based optimization can be effective as long the objective function 

fulfills two requirements:  

 

- The objective function must be two-times differentiable. 

- The objective function must be uni-modal, i.e., have a single minimum. 

 

A simple example of a differentiable and uni-modal objective function is 

 

( )2 2
1 23

1 2( , ) 10
− + 

= −
x x

f x x e  (1.4) 

 

Figure 1.3 shows the function defined in Eq. 1.4. 

 

 
Fig. 1.3. Uni-modal objective function. 

 

Unfortunately, under such circumstances, classical methods are only applicable for a few types of 

optimization problems. For combinatorial optimization, there is no definition of differentiation. 

 

Furthermore, there are many reasons why an objective function might not be differentiable. For 

example, the “floor” operation in Eq. 1.5 quantizes the function in Eq. 1.4, transforming Fig. 1.3 

into the stepped shape seen in Fig. 1.4. At each step’s edge, the objective function is non-

differentiable: 

 

( )( )
2 2
1 23

1 2( , ) floor 10
− + 

= −
x x

f x x e  (1.5) 

 

 
Fig. 1.4. A non-differentiable, quantized, uni-modal function 

 

Even in differentiable objective functions, gradient-based methods might not work. Let us consider 

the minimization of the Griewank function as an example.  

 

minimize 2 2

1 2 2

1 2 1( , ) cos( )cos 1
4000 2

+  
= − + 

 

x x x
f x x x   

(1.6) 
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subject to 130 30−  x
 

230 30−  x  
 

 

From the optimization problem formulated in Eq. 1.6, it is quite easy to understand that the global 

optimal solution is 
1 2 0= =x x . Figure 1.5 visualizes the function defined in Eq. 1.6. According to 

Fig. 1.5, the objective function has many local optimal solutions (multimodal) so that the gradient 

methods with a randomly generated initial solution will converge to one of them with a large prob-

ability. 

 

Considering the limitations of gradient-based methods, image processing and pattern recognition 

problems make difficult their integration with classical optimization methods. Instead, some other 

techniques which do not make assumptions and which can be applied to wide range of problems 

are required (Sumit Ghosh et al., 1998). 

 

 
 

Fig. 1.5. The Griewank multi-modal function 

 

1.3.3. Optimization with Evolutionary computation 

 

From a conventional point of view, an EC method is an algorithm that simulates at some level of 

abstraction a biological, natural or social system. To be more specific, a standard EC algorithm in-

cludes: 

1. One or more populations of candidate solutions are considered. 

2. These populations change dynamically due to the production of new solutions.  

3. A fitness function reflects the ability of a solution to survive and reproduce. 

4. Several operators are employed in order to explore an exploit appropriately the space of 

solutions. 

 

The EC methodology suggest that, on average, candidate solutions improve their fitness over gen-

erations (i. e., their capability of solving the optimization problem). A simulation of the evolution 

process based on a set of candidate solutions whose fitness is properly correlated to the objective 

function to optimize will, on average, lead to an improvement of their fitness and thus steer the 

simulated population towards the global solution. 

 

Most of the optimization methods have been designed to solve the problem of finding a global so-

lution of a nonlinear optimization problem with box constraints in the following form: 

  

maximize ( )f x ,     
1( , , ) d

dx x= x  

subject to x X  
 

(1.7) 
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where : df → is a nonlinear function whereas  , 1, ,d

i i il x u i d=    =X x is a bounded 

feasible search space, constrained by the lower (
il ) and upper (

iu ) limits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6. The basic cycle of an EC method. 

 

In order to solve the problem formulated in Eq. 1.6, in an evolutionary computation method, a 

population 
k

P (
1 2{ , , , }k k k

Np p p ) of N candidate solutions (individuals) evolves from the initial 

point (k=0) to a total gen number iterations (k=gen). In its initial point, the algorithm begins by ini-

tializing the set of N candidate solutions with values that are randomly and uniformly distributed 

between the pre-specified lower (
il ) and upper (

iu ) limits. In each iteration, a set of evolutionary 

operators are applied over the population 
k

P to build the new population
1k+

P . Each candidate so-

lution k

ip  (  1, ,i N ) represents a d-dimensional vector  ,1 ,2 ,, , ,k k k

i i i dp p p where each dimen-

sion corresponds to a decision variable of the optimization problem at hand. The quality of each 

candidate solution k

ip  is evaluated by using an objective function ( )k

if p  whose final result repre-

sents the fitness value of k

ip . During the evolution process, the best candidate solution g 

(
1 2, , dg g g ) seen so-far is preserved considering that it represents the best available solution. 

Fig. 1.6 presents a graphical representation of a basic cycle of an EC method. 

1.4. Research Objectives 

The central focus of this research is to address global problems in optimization, Computer Vi-

sion, and medicine through the development and application of Soft Computing approaches in-

cluding Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, 

Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. 

 

The aim of this work is to design technological tools, which can be used in the development of 

new devices, as well as to highlight the utility of different Soft Computing methodologies in solv-

ing problems in a variety of fields. This research started from the premise that the approaches pro-

posed here may help to improve human quality of life, even if indirectly.  

 

k 0 
k

P  Random [X]  

1+k
P  Operators (

k
P )  

k<gen  

k  k+1 

solution 

g 

Yes No 
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A particular goal of this research is to apply both well-known and new methodologies in SC to the 

solution of complex problems in the three aforementioned key fields in order to demonstrate the 

strong capabilities of such methodologies. This research was partially conducted as a collaboration 

between the Freie Universität Berlin and the University of Guadalajara. In this project, we strive to 

present solutions that can be potentially beneficial for the engineering and medical communities. 

 

Another objective of this research is the translation of Computer Vision and medical problems into 

pptimization problems. The main reason for this is to open the topic for new proposals that can al-

so present new methodologies for solving such problems.  

 

Moreover, in this Ph.D. research, the anomaly detection task in the field of medicine is approached 

as an optimization problem, and AI techniques are used to build the shape approximation. These 

methods are mainly Evolutionary Computation Techniques (ECTs), which are based on several 

biological or social phenomena. In the detection process, ECTs search the entire parameter space 

of the optimization problem through candidate solutions (individuals). An objective function is 

employed to evaluate the quality of the detection. Conducted as such by the values of objective 

function, the group of candidate solutions are modified through evolutionary operators so that the 

optimal detection can be found.  

 

This research also strives to expand the above concepts to automated detection and diagnosis for 

pathologies such as Leukemia and breast cancer. It is my goal to have a significant impact on 

healthcare by bringing such advances to the clinical context. 

 

Finally, a secondary goal of this research is the development of new evolutionary approaches for 

the optimization of complex problems. In this stage, general approaches to the construction of effi-

cient solutions to optimization problems are produced. They can be translated into common con-

trol and data structures provided by most high-level languages. The temporal and spatial require-

ments of the algorithms that result will be precisely analyzed. The continuous growth in 

complexity of computer systems is making the task of implementation increasingly multifaceted.  

 

In general, the problem of developing effective algorithms can be stated as finding the best trade-

off between accuracy and speed. This optimal trade-off is dependent on the particular use of the 

implementation process. The process of translation and design of a generic optimization problem 

in engineering is described in section 1.3 of this chapter. 

1.5. Thesis Overview 

 

This manuscript is composed of 13 chapters and, it was assembled in a way, that each chapter 

can be read independently from the other. The purpose of this, was to create a collection of the ap-

plications and algorithms developed during this research. In this sense, each chapter holds its own 

conclusions, such construction also provides easiness in the reading and comprehension of the di-

verse topics treated along this manuscript. The organization of the following chapters was done, 

bearing in mind the three proposed research topics. Considering this, chapters 1 and 2, correspond 

merely to optimization approaches, chapters 3 to 10 are related to Computer Vision problems and, 

chapters 11 and 12 present medical applications, Finally, chapter 13 elucidates some conclusions 

of this research. The remainder of this section is dedicated to present a brief description of the con-

tents of each chapter. 

 

In Chapter 2, is presented an enhanced evolutionary approach known as Electromagnetism-Like 

(EMO) algorithm. The improvement considers the Opposition-Based Learning (OBL) approach to 

accelerate the global convergence speed. OBL is a machine intelligence strategy which considers 

the current candidate solution and its opposite value at the same time, achieving a faster explora-
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tion of the search space. The presented method significantly reduces the required computational 

effort yet avoiding any detriment to the good search capabilities of the original EMO algorithm. 

Experiments are conducted over a comprehensive set of benchmark functions, showing that the 

presented method obtains promising performance for most of the discussed test problems. 

 

Chapter 3 presents a methodology to implement human-knowledge-based optimization strategies. 

In the scheme, a Takagi-Sugeno Fuzzy inference system is used to reproduce a specific search 

strategy generated by a human expert. Therefore, the number of rules and its configuration only 

depend on the expert experience without considering any learning rule process. Under these condi-

tions, each fuzzy rule represents an expert observation that models the conditions under which 

candidate solutions are modified in order to reach the optimal location. To exhibit the performance 

and robustness of the presented method, a comparison to other well-known optimization methods 

is conducted. The comparison considers several standard benchmark functions which are typically 

found in scientific literature. The results suggest a high performance of the Fuzzy-based method-

ology. 

 

In Chapter 4, an image segmentator algorithm based on Learning Vector Quantization (LVQ) 

networks is presented and tested on a tracking application. In LVQ networks, neighboring neurons 

learn to recognize neighboring sections of the input space. Neighboring neurons would correspond 

to object regions illuminated in a different manner. The segmentator involves a LVQ network that 

operate directly on the image pixels and a decision function. This algorithm has been applied to 

color tracking, and have shown more robustness on illumination changes than other standard algo-

rithms. 

 

Chapter 5 presents a Block matching (BM) algorithm that combines an evolutionary algorithm 

(such Harmony Search) with a fitness approximation model is presented. The approach uses mo-

tion vectors belonging to the search window as potential solutions. A fitness function evaluates the 

matching quality of each motion vector candidate. In order to save computational time, the ap-

proach incorporates a fitness calculation strategy to decide which motion vectors can be only esti-

mated or actually evaluated. Guided by the values of such fitness calculation strategy, the set of 

motion vectors is evolved through evolutionary operators until the best possible motion vector is 

identified. The presented method is also compared to other BM algorithms in terms of velocity and 

coding quality. Experimental results demonstrate that the presented algorithm exhibits the best 

balance between coding efficiency and computational complexity. 

 

In Chapter 6, the use of the Learning Automata (LA) algorithm to compute threshold points for 

image segmentation is explored. Despite other techniques commonly seek through the parameter 

map, LA explores in the probability space providing better convergence properties and robustness. 

In the chapter, the segmentation task is therefore considered as an optimization problem and the 

LA is used to generate the image multi-threshold separation. In the approach, a 1-D histogram of a 

given image is approximated through a Gaussian mixture model whose parameters are calculated 

using the LA algorithm. Each Gaussian function approximating the histogram represents a pixel 

class and therefore a threshold point. The method shows fast convergence avoiding the typical 

sensitivity to initial conditions such as the Expectation-Maximization (EM) algorithm or the com-

plex time-consuming computations commonly found in gradient methods. Experimental results 

demonstrate the algorithm’s ability to perform automatic multi-threshold selection and show inter-

esting advantages as it is compared to other algorithms solving the same task. 

 

Chapter 7 presents an algorithm based on fuzzy reasoning to detect corners even under imprecise 

information. The robustness of the presented algorithm is compared to well-known conventional 

corner detectors and its performance is then tested on a number of benchmark images to illustrate 

the efficiency of the algorithm under uncertainty conditions. 
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Chapter 8 presents an algorithm for the automatic detection of circular shapes from complicated 

and noisy images with no consideration of the conventional Hough transform principles. The pre-

sented algorithm is based on an Artificial Immune Optimization (AIO) technique, known as the 

Clonal Selection algorithm (CSA). The CSA is an effective method for searching and optimizing 

following the Clonal Selection Principle (CSP) in the human immune system which generates a re-

sponse according to the relationship between antigens (Ag), i.e. patterns to be recognized and anti-

bodies (Ab) i.e. possible solutions. The algorithm uses the encoding of three points as candidate 

circles over the edge image. An objective function evaluates if such candidate circles (Ab) are ac-

tually present in the edge image (Ag). Guided by the values of this objective function, the set of 

encoded candidate circles are evolved using the CSA so that they can fit to the actual circles on the 

edge map of the image. Experimental results over several synthetic as well as natural images with 

varying range of complexity validate the efficiency of the presented technique with regard to accu-

racy, speed, and robustness. 

 

In Chapter 9, an algorithm for detecting patterns in images is presented. The approach is based on 

an evolutionary algorithm known as the States of Matter. Under the presented method can be 

strongly reduced the number of search locations in the detection process. In the presented ap-

proach, individuals emulate molecules that experiment state transitions which represent different 

exploration–exploitation levels.  In the algorithm, the computation of search locations is radically 

reduced by incorporating a fitness calculation strategy which indicates when it is feasible to calcu-

late or only estimate the Normalized cross-correlation values for new search locations. Conducted 

simulations show that the presented method achieves the best balance over other detecting algo-

rithms, in terms of estimation accuracy and computational cost. 

 

Chapter 10 explores the use of the Artificial Bee Colony (ABC) algorithm to compute threshold 

selection for image segmentation. ABC is a heuristic algorithm motivated by the intelligent behav-

ior of honey-bees which has been successfully employed to solve complex optimization problems. 

In this approach, an image 1-D histogram is approximated through a Gaussian mixture model 

whose parameters are calculated by the ABC algorithm. For the approximation scheme, each 

Gaussian function represents a pixel class and therefore a threshold. Unlike the Expectation-

Maximization (EM) algorithm, the ABC-based method shows fast convergence and low sensitivity 

to initial conditions. Remarkably, it also improves complex time-consuming computations com-

monly required by gradient-based methods. Experimental results demonstrate the algorithm’s abil-

ity to perform automatic multi-threshold selection yet showing interesting advantages by compari-

son to other well-known algorithms. 

 

In Chapter 11, an algorithm for the automatic detection of blood cell images based on the DE al-

gorithm is presented. The proposed method uses the encoding of five edge points as candidate el-

lipses in the edge map of the smear. An objective function allows to accurately measure the re-

semblance of a candidate ellipse with an actual WBC on the image. Guided by the values of such 

objective function, the set of encoded candidate ellipses are evolved using the DE algorithm so 

that they can fit into actual WBC on the image. The approach generates a sub-pixel detector, 

which can effectively identify leukocytes in real images. Experimental evidence shows the effec-

tiveness of such method in detecting leukocytes despite complex conditions. Comparison to the 

state-of-the-art WBC detectors on multiple images demonstrates a better performance of the pro-

posed method. 

 

Furthermore, in Chapter 12 is described a segmentation technique for thermographic images that 

consider the spatial information of the pixel contained in the image. This approach employs a nov-

el optimization technique called the Dragonfly Algorithm to compute the best thresholds that seg-

ment the image. The experimental results exhibit a well-performance of the method in comparison 

to the other methods over a set of randomly selected thermograms retrieved from the Database for 

Research Mastology with Infrared Image. The presented approach could provide a highly reliable 
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clinical decision support, which aims to help clinicians in performing a diagnosis using thermog-

raphy images. 

 

Finally, Chapter 13 elucidates the conclusions of this research and their contribution.



 

Chapter 2 

Global optimization using Opposition-based Electromag-

netism-like algorithm 

 

 

 

 

 
Electromagnetism-like Optimization (EMO) is a global optimization algorithm which allows to 

solve complex multimodal optimization problems. EMO employs search agents that emulate a 

population of charged particles which interact to each other according to Electro-magnetism’s laws 

(attraction and repulsion). Traditionally, EMO requires a large number of generations in its local 

search procedure. If this local search process is eliminated, it is severely damaged the overall con-

vergence, exploration, population diversity and accuracy. This chapter presents an enhanced EMO 

algorithm called OBEMO, which uses the Opposition-based Learning (OBL) approach to acceler-

ate the global convergence speed. OBL is a machine intelligence strategy which considers the cur-

rent candidate solution and its opposite value at the same time, achieving a faster exploration of 

the search space. The presented OBEMO method significantly reduces the required computational 

effort without causing any detriment to the search capabilities of the original EMO algorithm. Ex-

periments showed that OBEMO obtains promising performance for most of the discussed test 

problems. 

2.1. Introduction 

 

Global Optimization (GO) (Borji & Hamidi, 2008; S. Tan, Cheng, & Xu, 2007) has issued ap-

plications for many areas of science (Yang, et al., 2009), engineering (W. Gao & Ren, 2011), eco-

nomics (Chang, 2009; Xu, et al., 2006) and others whose definition requires mathematical model-

ling (Borzabadi, et al., 2010; Takeuchi, 2008). In general, GO aims to find the global optimum for 

an objective function which has been defined over a given search space. The difficulties associated 

with the use of mathematical methods over GO problems have contributed to the development of 

alternative solutions. Linear programming and dynamic programming techniques, for example, of-

ten have failed in solving (or reaching local optimum at) NP-hard problems which feature a large 

number of variables and non-linear objective functions. In order to overcome such problems, re-

searchers have proposed metaheuristic-based algorithms for searching near-optimum solutions. 

 

Metaheuristic algorithms are stochastic search methods that mimic the metaphor of biological or 

physical phenomena. The core of such methods lies on the analysis of collective behavior of rela-

tively simple agents working on decentralized systems. Such systems typically gather an agent’s 

population that can communicate to each other while sharing a common environment. Despite a 

non-centralized control algorithm regulates the agent behavior, the agent can solve complex tasks 

by analyzing a given global model and harvesting cooperation to other elements. Therefore, a nov-

el global behavior evolves from interaction among agents as it can be seen on typical examples 

that include ant colonies, animal herding, bird flocking, fish schooling, honey bees, bacteria, 

charged particles and many more. Some other metaheuristic optimization algorithms have been re-

cently proposed to solve optimization problems, such as Genetic Algorithms (GA) (Holland, 

1992), Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995a), Ant Colony Optimiza-

tion (ACO) (Dorigo et al., 1991), Differential Evolution (DE) (Price, et al., 2005), Artificial Im-

mune Systems (AIS) (Fyfe & Jain, 2005), Artificial Bee Colony (Dervis Karaboga, 2005) and 

Gravitational Search Algorithm (GSA) (Rashedi, et al., 2011). Electromagnetism-like algorithm 
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(EMO) is a relatively new population-based metaheuristic algorithm which was firstly introduced 

by Birbil and Fang (2003) to solve continuous optimization models using bounded variables. The 

algorithm imitates the attraction–repulsion mechanism between charged particles in an electro-

magnetic field. Each particle represents a solution and carries a certain amount of charge which is 

proportional to the solution quality (objective function). In turn, solutions are defined by position 

vectors which give real positions for particles within a multi-dimensional space. Moreover, objec-

tive function values of particles are calculated considering such position vectors. Each particle ex-

erts repulsion or attraction forces over other population members; the resultant force acting over a 

particle is used to update its position. Clearly, the idea behind the EMO methodology is to move 

particles towards the optimum solution by exerting attraction or repulsion forces. Unlike other tra-

ditional metaheuristics techniques such as GA, DE, ABC and AIS, whose population members ex-

change materials or information between each other, the EMO methodology assumes that each 

particle is influenced by all other particles in the population, mimicking other heuristics methods 

such as PSO and ACO. Although the EMO algorithm shares some characteristics with PSO and 

ACO, recent works have exhibited its better accuracy regarding optimal parameters (Rocha & 

Fernandes, 2009a, 2009b; Tsou & Kao, 2008; Wu, et al., 2004a), yet showing convergence (Birbil, 

et al., 2004). EMO has been successfully applied to solve different sorts of engineering problems 

such as flow-shop scheduling (Naderi, et al., 2010), communications (Hung & Huang, 2011), ve-

hicle routing (Yurtkuran & Emel, 2010), array pattern optimization in circuits (Jhang & Lee, 

2009), neural network training (Wu, et al., 2004b) control systems (Lee & Chang, 2010) and im-

age processing (Cuevas, et al., 2012). 

 

EMO algorithm employs four main phases: initialization, local search, calculation and movement. 

The local search procedure is a stochastic search in several directions over all coordinates of each 

particle. EMO’s main drawback is its computational complexity resulting from the large number 

of iterations which are commonly required during the searching process. The issue becomes worst 

as the dimension of the optimization problem increases. Several approaches, which simplify the 

local search, have been proposed in the literature to reduce EMO’s computational effort. In Alcalá-

Fdez, et al. (2009) was proposed a discrete encoding for the particle set in order to reduce search 

directions at each dimension. In Rocha & Fernandes (2007) and Rocha & Fernandes (2011), au-

thors include a new local search method which is based on a fixed search pattern and a shrinking 

strategy that aims to reduce the population size as the iterative process progresses. Additionally, in 

(Rocha & Fernandes, 2009a), a modified local search phase that employs the gradient descent 

method is adopted to enhance its computational complexity. Although all these approaches have 

improved the computational time which is required by the original EMO algorithm, recent works 

have demonstrated that reducing or simplifying EMO’s local search processes also affects other 

important properties, such as convergence, exploration, population diversity and accuracy (Lee & 

Chang, 2010; Lee, et al., 2012). 

  

On the other hand, the Opposition-based Learning (OBL), that has been initially proposed in 

Tizhoosh, (2005), is a machine intelligence strategy which considers the current estimate and its 

correspondent opposite value (i.e., guess and opposite guess) at the same time to achieve a fast ap-

proximation for a current candidate solution. It has been mathematically proved (Rahnamayan, et 

al., 2007, 2008; Wang, et al., 2011) that an opposite candidate solution holds a higher probability 

for approaching the global optimum solution than a given random candidate, yet quicker. Recent-

ly, the concept of opposition has been used to accelerate metaheuristic-based algorithms such as 

GA  (Iqbal, et al, 2011), DE (Rahnamayan, et al., 2008), PSO (Wang, et al., 2011) and GSA 

(Shaw, et al., 2012) 

 

In this chapter, an Opposition-Based EMO called OBEMO is presented, it was constructed by 

combining the opposition-based strategy and the standard EMO technique. The enhanced algo-

rithm allows a significant reduction on the computational effort which required by the local search 

procedure yet avoiding any detriment to the good search capabilities and convergence speed of the 
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original EMO algorithm. The presented algorithm has been experimentally tested by means of a 

comprehensive set of complex benchmark functions. Comparisons to the original EMO and others 

state-of-the-art EMO-based algorithms (Takeuchi, 2008) demonstrate that the OBEMO technique 

is faster for all test functions, yet delivering a higher accuracy. Conclusions on the conducted ex-

periments are supported by statistical validation that properly supports the results. 

 

The rest of the chapter is organized as follows: Section 2.2 introduces the standard EMO algo-

rithm. Section 2.3 gives a simple description of OBL and Section 2.4 explains the implementation 

of the proposed OBEMO algorithm. Section 2.5 presents a comparative study among OBEMO and 

other EMO variants over several benchmark problems. Finally, some conclusions are drawn in 

Section 2.6. 

2.2. Electromagnetism - Like Optimization Algorithm (EMO) 

 

EMO algorithm is a simple and direct search algorithm which has been inspired by the electro-

magnetism phenomenon. It is based on a given population and the optimization of global multi-

modal functions. In comparison to GA, it does not use crossover or mutation operators to explore 

feasible regions; instead it does implement a collective attraction–repulsion mechanism yielding a 

reduced computational cost with respect to memory allocation and execution time. Moreover, no 

gradient information is required as it employs a decimal system which clearly contrasts to GA. 

Few particles are required to reach converge as has been already demonstrated in (Dorigo et al., 

1991). 

 

EMO algorithm can effectively solve a special class of optimization problems with bounded varia-

bles in the form of: 

 

 ulx

xf

,

)(min


 (2.1) 

 

where    , | ,  1,2,... n

d d dl u x l x u d n=    =  and n being the dimension of the variable x, 

 , nl u  , a nonempty subset and a real-value function  : ,f l u → . Hence, the following problem 

features are known: 

 

• n :  Dimensional size of the problem. 

• 
du :  The highest bound of the 

thk dimension. 

• 
dl :  The lowest bound of the 

thk dimension. 

• ( )f x :  The function to be minimized. 

 

EMO algorithm has four phases (Chang, 2009): initialization, local search, computation of the to-

tal force vector and movement. A deeper discussion about each stage follows. 

 

Initialization, a number of m particles is assembled as their highest ( )u  and lowest limit ( )l     are 

identified. 

 

Local search, collects local information for a given point p
g , where (1, , )p m . 

 

Calculation of the total force vector, charges and forces are calculated for every particle. 

 

Movement, each particle is displaced accordingly, matching the corresponding force vector. 
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2.2.1. Initialization 

 

First, the population of m solutions is randomly produced at an initial state. Each n-dimensional 

solution is regarded as a charged particle holding a uniform distribution between the highest (u) 

and the lowest (l) limits. The optimum particle (solution) is thus defined by the objective function 

to be optimized. The procedure ends when all the m samples are evaluated, choosing the sample 

(particle) that has gathered the best function value. 

 

2.2.2. Local Search 

 

The local search procedure is used to gather local information within the neighbourhood of a can-

didate solution. It allows obtaining a better exploration and population diversity for the algorithm. 

 

Considering a pre-fixed number of iterations known as ITER and a feasible neighbourhood search 

 , the procedure iterates as follows: Point p
g  is assigned to a temporary point t to store the initial 

information. Next, for a given coordinate d, a random number is selected ( )1  and combined 

with   as a step length, which in turn, moves the point t along the direction d, with a randomly de-

termined sign ( )2 . If point t observes a better performance over the iteration number ITER, 

point p
g is replaced by t and the neighbourhood search for point p

g finishes, otherwise p
g is held. 

The pseudo-code is listed in Fig. 2.1. 

 

In general, the local search for all particles can also reduce the risk of falling into a local solution 

but is time consuming. Nevertheless, recent works (Lee et al., 2012; Rocha & Fernandes, 2009a) 

have shown that eliminating, reducing or simplifying the local search process affects significantly 

the convergence, exploration, population diversity and accuracy of the EMO algorithm. 

 

2.2.3. Total force vector computation 

The total force vector computation is based on the superposition principle (Fig. 2.2) from the elec-

tro-magnetism theory which states: “the force exerted on a point via other points is inversely pro-

portional to the distance between the points and directly proportional to the product of their charg-

es” (Cowan, 1968). The particle moves following the resultant Coulomb’s force which has been 

produced among particles as a charge-like value. In the EMO implementation, the charge for each 

particle is determined by its fitness value as follows: 
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(2.2) 

 

where n denotes the dimension of p
g  and m represents the population size. A higher dimensional 

problem usually requires a larger population. In Eq. (2.2), the particle showing the best fitness 

function value best
g  is called the “best particle”, getting the highest charge and attracting other 

particles holding high fitness values. The repulsion effect is applied to all other particles exhibiting 

lower fitness values. Both effects, attraction-repulsion are applied depending on the actual proxim-
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ity between a given particle and the best-graded element. The overall resultant force between all 

particles determines the actual effect of the optimization process.  

 

The final force vector for each particle is evaluated under the Coulomb’s law and the superposition 

principle as follows: 
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where ( ) ( )h pf fg g  represents the attraction effect and ( ) ( )h pf fg g  represents the repulsion 

force (see Fig. 2.3). The resultant force of each particle is proportional to the product between 

charges and is inversely proportional to the distance between particles. In order to keep feasibility, 

the vector in expression (2.3) should be normalized as follows: 
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(2.4) 

 

 

1: 1Counter   12: ( )2d d Lenght −t t  

2:  ( )max d dLenght u l −  
13: end if 

3:  1 to  p m=for do 14: ( ) ( )pf ft gif  then  

4:  1 to  p n=for do 15: p g t 

5: ( )1 U 0,1   16: 1Counter ITER −  

6:   Counter ITERwhile do  17: end if 

7: pt g  18: 1Counter Counter +  

8: ( )2 U 0,1   19: end while 

9: 
1 0.5  if then 20: end for 

10: ( )2d d Lenght +t t  21: end for 

11: Else 22: ( ) argmin ,best pf p g g  

 

Fig. 2.1.  Pseudo-code list for the local search algorithm 

 

 

 
  

 Fig. 2.2. The superposition principle 
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2.2.4. Movement 

 

The change of the d-coordinate for each particle p is computed with respect to the resultant force 

as follows: 

 

( )

( )

ˆ ˆif 0
, ,

ˆ ˆif 0

p p p p

d d d d dp
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d d d d d
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 (2.5) 

 

In Eq. (2.5),   is a random step length that is uniformly distributed between zero and one. du and 

dl represent the upper and lower boundary for the d-coordinate, respectively. ˆ p

dF represents the d 

element of ˆ p
F . If the resultant force is positive, then the particle moves towards the highest 

boundary by a random step length. Otherwise it moves toward the lowest boundary. The best par-

ticle does not move at all, because it holds the absolute attraction, pulling or repelling all others in 

the population.  

 

 
Fig. 2.3. Coulomb law: α represents the distance between charged particles, 1 2,q q are the charges, and 

F is the exerted force as has been generated by the charge interaction. 

 

The process is halted when a maximum iteration number is reached or when the value ( )bestf g  is 

near to zero or to the required optimal value. 

 

2.3. Opposition-based Learning (OBL) 

Opposition-based Learning (Tizhoosh, 2005)  is a new concept in computational intelligence 

that has been employed to effectively enhance several soft computing algorithms (Mahootchi, et 

al., 2007; Shokri, et al., 2006). The approach simultaneously evaluates a solution x and its opposite 

solution x  for a given problem, providing a renewed chance to find a candidate solution lying 

closer to the global optimum (Rahnamayan et al., 2007). 

 

2.3.1. Opposite Number 

 

Let  ,x l u be a real number, where l and u are the lowest and highest bound respectively. The 

opposite of x is defined by: 

x u l x= + −  (2.6) 
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2.3.2. Opposite Point 

 

Similarly, the opposite number definition is generalized to higher dimensions as follows: Let 

1 2( , , , )nx x x=x  be a point within a n-dimensional space, where 
1 2, , , nx x x  and  ,i i ix l u , 

1,2, ,i n . The opposite point 
1 2( , , , )nx x x=x is defined by: 

i i i ix u l x= + −  (2.7) 

2.3.3. Opposite-based Optimization 

 

Metaheuristic methods start by considering some initial solutions (initial population) and trying to 

improve them toward some optimal solution(s). The process of searching ends when some prede-

fined criteria are satisfied. In the absence of a priori information about the solution, random guess-

es are usually considered. The computation time, among others algorithm characteristics, is related 

to the distance of these initial guesses taken from the optimal solution. The chance of starting with 

a closer (fitter) solution can be enhanced by simultaneously checking the opposite solution. By do-

ing so, the fitter one (guess or opposite guess) can be chosen as an initial solution following the 

fact that, according to probability theory, 50% of the time a guess is further from the solution than 

its opposite guess (Rahnamayan et al., 2008). Therefore, starting with the closer of the two guesses 

(as judged by their fitness values) has the potential to accelerate convergence. The same approach 

can be applied not only to initial solutions but also to each solution in the current population. 

 

By applying the definition of an opposite point, the opposition-based optimization can be defined 

as follows: Let x  be a point in a n-dimensional space (i.e. a candidate solution). Assume ( )f x  is 

a fitness function which evaluates the quality of such candidate solution. According to the defini-

tion of opposite point, x is the opposite of x . If ( )f x is better than ( )f x , then x  is updated 

with x , otherwise current point x is kept. Hence, the best point ( x or x ) is modified using known 

operators from the population-based algorithm. 

 

Figure 2.4 shows the opposition-based optimization procedure. In the example, Fig. 2.4(a) and 

2.4(b) represent the function to be optimized and its corresponding contour plot, respectively.  By 

applying the OBL principles to the current population P (see Fig. 2.4(b)), the three particles 
1x , 

2x  and 
3x  produce a new population OP, gathering particles 

1x , 
2x  and 

3x . The three fittest par-

ticles from P and OP are selected as the new population ´P . It can be seen from Fig. 2.4(b) that 

1x , 
2x  and 

3x  are three new members in P . In this case, the transformation conducted on 
1x  did 

not provide a best chance of finding a candidate solution closer to the global optimum. Consider-

ing the OBL selection mechanism, 
1x is eliminated from the next generation. 

 



 Chapter 2. Global Optimization using Opposition-Based Electromagnetism-like algorithm                                     34            

                                                                                                             

 

 
(a) (b) 

Fig. 2.4. The opposition-based optimization procedure: (a) Function to be optimized and (b) its contour plot. 

The current population P includes particles
1x , 

2x  and 
3x . The corresponding opposite population OP is 

represented by 
1x , 

2x  and 
3x . The final population P  is obtained by the OBL selection mechanism 

yielding particles
1x , 

2x  and 
3x . 

 

2.4. Opposition-based Electromagnetism-like Optimization Algorithm 

 

Similarly, to all metaheuristic-based optimization algorithms, two steps are fundamental for the 

EMO algorithm: the population initialization and the production of new generations by evolution-

ary operators. In the approach, the OBL scheme is incorporated to enhance both steps. However, 

the original EMO is considered as the main algorithm while the opposition procedures are embed-

ded into EMO aiming to accelerate its convergence speed. Figure 2.5 shows a data flow compari-

son between the EMO and the OBEMO algorithm. The novel extended opposition procedures are 

explained in the following subsections. 

 

 

  
(a) (b) 

 

Fig. 2.5. Dataflow for: (a) the EMO method and (b) the OBEMO algorithm. 
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2.4.1. Opposition-based Population Initialization 

 

In population-based meta-heuristic techniques, the random number generation is the common 

choice to create an initial population in absence of a priori knowledge. Therefore, as mentioned in 

Section 2.3, it is possible to obtain fitter starting candidate solutions by utilizing OBL despite no a-

priori knowledge about the solution(s) is available. The following steps explain the overall proce-

dure. 

1) Initialize the population X  with 
pN representing the number of particles. 

2) Calculate the opposite population by 

 
j j

i i i ix u l x= + −  

1,2, , ;i n= 1,2, , Pj N=  

(2.8) 

 

where j

ix and j

ix denote the ith parameter of the jth particle of the population and its correspond-

ing opposite particle. 

3) Select the
PN fittest elements from  X X as initial population. 

2.4.2. Opposition-based production for new generation 

 

Starting from the current population, the OBL strategy can be used again to produce new popula-

tions. In this procedure, the opposite population is calculated, and the fittest individuals are select-

ed from the union of the current population and the opposite population. The following steps 

summarize the OBEMO implementation as follows:  

 

Step 1 
Generate 

pN  initial random particles 
h

x to create the particle vector X , with 

1,2, ph N .  

Step 2 
Apply the OBL strategy by considering 

pN  particles from vector X  and generating 

the opposite vector X  through Eq. (2.7).  

Step 3 
Select the 

pN  fittest particles from X X according to ( )f  . These particles build 

the initial population 
0X . 

Step 4 

Calculate the local search procedure for each particle of 
0X  as follows: For a given 

dimension d, the particle 
h

x is assigned to a temporary point y to store the initial in-

formation. Next, a random number is selected and combined with   to yield the step 

length. Therefore, the point y is moved along that direction. The sign is determined 

randomly. If ( )hf x is minimized, the particle 
h

x  is replaced by y, ending the neigh-

borhood-wide search for a particle h. The result is stored into the population vector 

LocalX . 

Step 5 

Determine the best particle 
best

x of the population vector 
LocalX (with 

 argmin ( ),best hf h x x  ). 

Step 6 

Calculate the charge among particles using expression (2.2) and the vector force 

through Eq. (2.3). The particle showing the better objective function value holds a 

bigger charge and therefore a bigger attraction force. 

Step 7 Change particle positions according to their force magnitude. The new particle’s po-
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sition is calculated by expression (2.5). 
best

x is not moved because it has the biggest 

force and attracts others particles to itself. The result is stored into the population 

vector 
MovX . 

Step 8 
Apply the OBL strategy over the m particles of the population vector 

MovX , the op-

posite vector 
MovX can be calculated through Eq. (2.7).  

Step 9 
Select the m fittest particles from 

Mov MovX X  according to ( )f  . Such particles rep-

resent the population 
0X . 

Step 10 

Increase the Iteration index. If iteration = MAXITER or the value of ( )f X  is small-

er than the pre-defined threshold value, then the algorithm is stopped and the flow 

jumps to step 11. Otherwise, it jumps to step 4. 

Step 11 
The best particle 

best
x  is selected from the last iteration as it is considered as the so-

lution. 

 

2.5. Experimental Results 

 

In order to test the algorithm’s performance, the proposed OBEMO is compared to the standard 

EMO and others state-of-the-art EMO-based algorithms. In this section, the experimental results 

are discussed in the following subsections: 

 

        (2.5.1) Test problems 

        (2.5.2) Parameter settings for the involved EMO algorithms 

        (2.5.3) Results and discussions 

2.5.1. Test problems 

A comprehensive set of benchmark problems, that includes 14 different global optimization tests, 

has been chosen for the experimental study. According to their use in the performance analysis, 

the functions are divided in two different sets: original test functions ( )1 9f f−  and multidimen-

sional functions ( )10 14f f− . Every function at this paper is considered as a minimization problem 

itself. 

 

The original test functions, which are shown in Table 2.1, agree to the set of numerical benchmark 

functions presented by the original EMO paper (Birbil & Fang, 2003). Considering that such func-

tion set is also employed by a vast majority of EMO-based new approaches, its use in our experi-

mental study facilitates its comparison to similar works. More details can be found in (Hirche, 

1979). 

 

Function Search 

domain 

Global 

minima 

2 2

1 1 2 2 1 1 12

5 5 1
( , ) ( 6) 10(1 )cos 10

4 8
f x x x x x x

  
= − + − + − +  

15 10x−  

20 15x   
0.397887 

2
2

2 2

1
2 1 2 2

4.5 2
( , )

x

x x
f x x

e

− + +
= −  

 

1 22 , 2x x−    -1.031 

2 2 2

3 1 2 1 2 1 1 2 1 2 2( , ) 1 ( 1) (19 14 13 14 6 3 )f x x x x x x x x x x= + + +  − + − + +  

        
2 2 2

1 2 1 1 2 1 2 2(30 2 3 ) (18 32 12 48 36 27 )x x x x x x x x + −  − + − − +  

1 22 , 2x x−    3.0 
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4 3

2

4

1 1

( ) exp ( )i ij j ij

i j

f A x P
= =

 
= − − − 

  
 x (3-dimensional) 

 1,1.2,3,3.2=α ,
3.0 10 30

0.1 10 35

3.0 10 35

 
 

=  
  

A ,  

4

6890 1170 2673

4699 4387 7470
10

1091 8732 5547

381 5743 8828

−

 
 
 =
 
 
 

P  

0 1ix   

1,2,3i =  
-3.8627 

4 6

2

5

1 1

( ) exp ( )i ij j ij

i j

f B x Q
= =

 
= − − − 

  
 x (6-dimensional) 

 

 1,1.2,3,3.2=α ,

10 3 17 3.05 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 
 
 =
 
 
 

B ,   

                         

4

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991
10

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

−

 
 
 =
 
 
 

Q  

0 1ix 

1,2,3, ,6i =  
-3.8623 

 
1

4

2

1 1

( ) ( )

m

m i ij j

j i

S x C 

−

= =

 
= − − + 

  
 x (4-dimensional) 

                        1,2,2,4,4,6,3,7,5,5]T =  β , 

                       

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

 
 
 =
 
 
 

C  

 

0 1ix   

1,2,3,4i =  

 

 

 

 

6 5( ) ( )f S=x x  
-10.1532 

 

7 7( ) ( )f S=x x  
-10.4029 

 

8 10( ) ( )f S=x x  -10.5364 
5 5

9 1 2 1 2

1 1

( , ) cos(( 1) ) cos(( 1) )

i i

f x x i i x i i i x i

= =

  
= + + + +  
  
  
   1 210 , 10x x−  

 
-186.73 

 

Table 2.1. Optimization test functions corresponding to the original test set ( )1 9f f− . 

 

The major challenge of an EMO-based approach is to avoid the computational complexity that 

arises from the large number of iterations which are required during the local search process. Since 

the computational complexity depends on the dimension of the optimization problem, one set of 

multidimensional functions (see Table 2.2) is used in order to assess the convergence and accuracy 

for each algorithm. Multidimensional functions include a set of five different functions whose di-

mension has been fixed to 30. 

 

 

 

Function Search Global minima 
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domain 

2

10 1
( ) 10cos(2 ) 10

n

i ii
f x x

=
 = − + x  

30[ 5.12,5.12]−  0 

2

11 1 1

1 1
( ) 20exp 0.2 exp cos(2 ) 20

n n

i ii i
f x x

n n


= =

   
= − − − +       

 x  30[ 32,32]−  0 

2

12 1 1

1
( ) cos 1

4000

nn i
ii i

x
f x

i= =

 
= − + 

 
 x  30[ 600,600]−  0 

 1 2 2 2

13 1 11
( ) 10sin( ) ( 1) 1 10sin ( ) ( 1)

n

i i ni
f y y y y

n


 

−

+=
 = + − + + − x  

         
1

( ,10,100,4)
n

ii
u x

=
+  

                    1
1

4

i
i

x
y

+
= +            

( )

( , , , ) 0

( )

m

i i

i i

m

i i

k x a x a

u x a k m a x a

k x a x a

 − 


= −  
 − −  −

 

30[ 50,50]−  

 
0 

2 2 2

14 1 1
( ) sin (3 ) ( 1) 1 sin (3 1)

n

i ii
f x x x 

=
 = + − + + x  

       
2 2

1
( 1) 1 sin (2 ) ( ,5,100,4)

n

n n ii
x x u x

=
 + − + +       

30[ 50,50]−  

0 

 

 

 

Table 2.2. Multidimensional test function set ( )10 14f f− . 

2.5.2. Parameter settings for the involved EMO algorithms 

 

The experimental set aims to compare four EMO-based algorithms including the proposed 

OBEMO. All algorithms face 14 benchmark problems. The algorithms are listed below: 

- Standard EMO algorithm (Birbil & Fang, 2003); 

- Hybridizing EMO with descent search (HEMO) (Rocha & Fernandes, 2009b); 

- EMO with fixed search pattern (FEMO) (Rocha & Fernandes, 2007); 

- The proposed approach OBEMO. 

 

For the original EMO algorithm described in (Ş. I. Birbil & Fang, 2003) and the proposed 

OBEMO, the parameter set is configured considering: 0.001δ =  and LISTER=4. For the HEMO, 

the following experimental parameters are considered:
max 10LsIt = , 0.001r =  and 0.00001 = . 

Such values can be assumed as the best configuration set according to (Rocha & Fernandes, 

2009a). Diverging from the standard EMO and the OBEMO algorithm, the HEMO method reduc-

es the local search phase by only processing the best found particle
best

x . The parameter set for the 

FEMO approach is defined by considering the following values: max 100feN = , max 10lsN = , 

0.001δ = , 
min 81 10δ −=  and 0.1δε = . All aforementioned EMO-based algorithms use the same 

population size of m = 50. 

 

2.5.3. Results 

 

Original test functions set 

 

On this test set, the performance of the OBEMO algorithm is compared to standard EMO, HEMO 

and FEMO, considering the original test functions set. Such functions, presented in Table 2.1, hold 

different dimensions and one known global minimum. The performance is analysed by consider-
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ing 35 different executions for each algorithm. The case of no significant changes in the solution 

being registered (i.e. smaller than 410− ) is considered as stopping criterion. 

 

The results, shown by Table 2.3, are evaluated assuming the averaged best value ( )f x  and the 

average number of executed iterations (MAXITER). Figure 2.6 shows the optimization process for 

the function 
3f  and 

6f . Such function values correspond to the best case for each approach that 

is obtained after 35 executions. 

 

In order to statistically analyse the results in Table 2.3, a non-parametric significance proof known 

as the Wilcoxon’s rank test (García, et al., 2008; Santamaría, et al., 2009; Wilcoxon, 1945) has 

been conducted. Such proof allows assessing result differences among two related methods. The 

analysis is performed considering a 5% significance level over the “averaged best value of ( )f x ” 

and the “averaged number of executed iterations of MAXITER” data. 

 

  

Function 1f  
2f  

3f  
4f  

5f  
6f  

7f  
8f  

9f  

Dimension 2 2 2 3 6 4 4 4 2 

E
M

O
 

Averaged 

best 

values f(x) 

0.3980 -1.015 3.0123 -3.7156 -3.6322 -10.07 -10.23 -10.47 -186.71 

Averaged 

MAXITER 
103 128 197 1.59E+03 1.08E+03 30 31 29 44 

O
B

E
M

O
 

Averaged 

best 

values f(x) 

0.3980 -1.027 3.0130 -3.7821 -3.8121 -10.11 -10.22 -10.50 -186.65 

Averaged 

MAXITER 
61 83 101 1.12E+03 826 18 19 17 21 

H
E

M
O

 

Averaged 

best 

values f(x) 

0.5151 -0.872 3.413 -3.1187 -3.0632 -9.041 -9.22 -9.1068 -184.31 

Averaged 

MAXITER 
58 79 105 1.10E+03 805 17 18 15 22 

F
E

M
O

 

Averaged 

best 

values f(x) 

0.4189 -0.913 3.337 -3.3995 -3.2276 -9.229 -9.88 -10.18 -183.88 

Averaged 

MAXITER 
63 88 98 1.11E+03 841 21 22 19 25 

 

Table 2.3. Comparative results for the EMO, the OBEMO, the HEMO and the FEMO algorithms 

considering the original test functions set (Table 2.1). 

 

Table 2.4 and Table 2.5 reports the p-values produced by Wilcoxon’s test for the pair-wise com-

parison of the “averaged best value” and the “averaged number of executed iterations” respective-

ly, considering three groups. Such groups are formed by OBEMO vs. EMO, OBEMO vs. HEMO 

and OBEMO vs. FEMO. As a null hypothesis, it is assumed that there is no difference between the 

values of the two algorithms. The alternative hypothesis considers an actual difference between 

values from both approaches. The results obtained by the Wilcoxon test indicate that data cannot 

be assumed as occurring by coincidence (i.e. due to the normal noise contained in the process).  
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(a) (b) 

 

Fig. 2.6. Comparison of the optimization process for two original test functions: (a) 
3f  and (b) 

6f . 

 

Table 2.4 considers the Wilcoxon analysis with respect to the “averaged best value” of ( )f x . The 

p-values for the case of OBEMO vs EMO are larger than 0.05 (5% significance level), which is a 

strong evidence supporting the null hypothesis which indicates that there is no significant differ-

ence between both methods. 

 

Function 
p-Values OBEMO vs. 

EMO HEMO FEMO 

1f  0.3521 1.21E-04 1.02E-04 

2f  0.4237 1.05E-04 0.88E-04 

3f  0.2189 4.84E-05 3.12E-05 

4f  0.4321 1.35E-05 1.09E-05 

5f  0.5281 2.73E-04 2.21E-04 

6f  0.4219 1.07E-04 0.77E-04 

7f  0.3281 3.12E-05 2.45E-05 

8f  0.4209 4.01E-05 3.62E-05 

9f  0.2135 1.86E-05 1.29E-05 

 

Table 2.4. Results from Wilcoxon’s ranking test considering the “averaged best value of ( )f x ”. 

 

On the other hand, in cases for the p-values corresponding to the OBEMO vs HEMO and OBEMO 

vs FEMO, they are less than 0.05 (5% significance level), which accounts for a significant differ-

ence between the “averaged best value” data among methods. Table 2.5 considers the Wilcoxon 

analysis with respect to the “averaged number of executed iterations” values. Applying the same 

criteria, it is evident that there is a significant difference between the OBEMO vs. EMO case, de-

spite the OBEMO vs HEMO and OBEMO vs FEMO cases offering similar results. 

 

Multidimensional functions 

 

In contrast to the original functions, Multidimensional functions exhibit many local mini-

ma/maxima which are, in general, more difficult to optimize. In this section the performance of the 

OBEMO algorithm is compared to the EMO, the HEMO and the FEMO algorithms, considering 

functions in Table 2.2. This comparison reflects the algorithm’s ability to escape from poor local 

optima and to locate a near-global optimum, consuming the least number of iterations. The dimen-

sion of such functions is set to 30. The results (Table 2.6) are averaged over 35 runs reporting the 

“averaged best value” and the “averaged number of executed iterations” as performance indexes.  
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Function 
p-Values OBEMO vs. 

EMO HEMO FEMO 

1f  2.97E-04 0.2122 0.2877 

2f  3.39E-04 0.1802 0.2298 

3f  8.64E-09 0.1222 0.1567 

4f  7.54E-05 0.2183 0.1988 

5f  1.70E-04 0.3712 0.3319 

6f  5.40E-13 0.4129 0.3831 

7f  7.56E-04 0.3211 0.3565 

8f  1.97E-04 0.2997 0.2586 

9f  1.34E-05 0.3521 0.4011 

 

Table 2.5. Results from Wilcoxon’s ranking test considering the “averaged number of executed 

iterations”. 

 

 

Function 10f  
11f  

12f  
13f  

14f  

Dimension 30 30 30 30 30 

E
M

O
 

Averaged best 

values f(x) 
2.12E-05 1.21E-06 1.87E-05 1.97E-05 2.11E-06 

Averaged MAXITER 622 789 754 802 833 

O
B

E
M

O
 Averaged best 

values f(x) 
3.76E-05 5.88E-06 3.31E-05 4.63E-05 3.331E-06 

Averaged MAXITER 222 321 279 321 342 

H
E

M
O

 

Averaged best 

values f(x) 
2.47E-02 1.05E-02 2.77E-02 3.08E-02 1.88E-2 

Averaged MAXITER 210 309 263 307 328 

F
E

M
O

 

Averaged best 

values f(x) 
1.36E-02 2.62E-02 1.93E-02 2.75E-02 2.33E-02 

Averaged MAXITER 241 361 294 318 353 

 

Table 2.6. Comparative results for the EMO, OBEMO, HEMO and the FEMO algorithms being applied 

to the multidimensional test functions (Table 2.2). 

 

The Wilcoxon rank test results, presented in Table 2.7, shows that the p-values (regarding to the 

“averaged best value” values of Table 2.6) for the case of OBEMO vs EMO, indicating that there 

is no significant difference between both methods. p-values corresponding to the OBEMO vs 

HEMO and OBEMO vs FEMO show that there is a significant difference between the “averaged 

best” values among the methods. Figure 2.7 shows the optimization process for the function  
12f  

and  
14f . Such function values correspond to the best case, for each approach, obtained after 35 

executions. 

 

Table 2.8 considers the Wilcoxon analysis with respect to the “averaged number of executed itera-

tions” values of Table 2.6. As it is observed, the outcome is similar to the results from last test on 

the original functions.  
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Function 
p-Values OBEMO vs. 

EMO HEMO FEMO 

10f  0.2132 3.21E-05 3.14E-05 

11f  0.3161 2.39E-05 2.77E-05 

12f  0.4192 5.11E-05 1.23E-05 

13f  0.3328 3.33E-05 3.21E-05 

14f  0.4210 4.61E-05 1.88E-05 

Table 2.7. Results from Wilcoxon’s ranking test considering the “best averaged values”. 

 

 

Function 
p-Values OBEMO vs. 

EMO HEMO FEMO 

10f  3.78E-05 0.1322 0.2356 

11f  2.55E-05 0.2461 0.1492 

12f  6.72E-05 0.3351 0.3147 

13f  4.27E-05 0.2792 0.2735 

14f  3.45E-05 0.3248 0.3811 

 

Table 2.8. Results from Wilcoxon’s ranking test considering the “averaged number of executed iterations” 

 

 

  
(a) (b) 

Fig. 2.7. Optimization process comparison for two multidimensional test functions: (a) 
12f  and (b) 

14f . 

 

2.6. Conclusions 

 

In this chapter, an Opposition-Based EMO, named as OBEMO, has been presented by combin-

ing the opposition-based learning (OBL) strategy and the standard EMO technique. The OBL is a 

machine intelligence strategy which considers, at the same time, a current estimate and its opposite 

value to achieve a fast approximation for a given candidate solution. The standard EMO is en-

hanced by using two OBL steps: the population initialization and the production of new genera-

tions. The enhanced algorithm significantly reduces the required computational effort yet avoiding 

any detriment to the good search capabilities of the original EMO algorithm. 

 

A set of 14 benchmark test functions has been employed for experimental study. Results are sup-

ported by a statistically significant framework, the Wilcoxon test (García et al., 2008; Santamaría 

et al., 2009; Wilcoxon, 1945), to demonstrate that the OBEMO is as accurate as the standard EMO 

yet requiring a shorter number of iterations. Likewise, it is as fast as others state-of-the-art EMO-
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based algorithms such as HEMO (Takeuchi, 2008) and FEMO (Rocha & Fernandes, 2007), still 

keeping the original accuracy. 

  

Although the results offer evidence to demonstrate that the Opposition-Based EMO method can 

yield good results on complicated optimization problems, the chapter’s aim is to show that the Op-

position-based Electromagnetism-like method can effectively be considered as an attractive alter-

native for solving global optimization problems. 



 

Chapter 3 

A Metaheuristic Optimization methodology based on 

Fuzzy Logic 

 

 

 

 

 
Many processes are too complex to be manipulated quantitatively; however, humans succeed 

by using simple rules of thumb that are extracted from their experiences. Fuzzy Logic emulates the 

human reasoning in the use of imprecise information to generate decisions. Unlike traditional ap-

proaches, which require a mathematical understanding of the system, Fuzzy Logic comprises an 

alternative way of processing, which permits modeling complex systems through the use of human 

knowledge. On the other hand, several new metaheuristic algorithms have recently been proposed 

with interesting results. Most of them use operators based on metaphors of natural or social ele-

ments to evolve candidate solutions. In this chapter, a methodology to implement human-

knowledge-based optimization strategies is presented. In the scheme, a Takagi-Sugeno Fuzzy in-

ference system is used to reproduce a specific search strategy generated by a human expert. There-

fore, the number of rules and its configuration only depend on the expert experience without con-

sidering any learning rule process. Under these conditions, each fuzzy rule represents an expert 

observation that models the conditions under which candidate solutions are modified in order to 

reach the optimal location. To exhibit the performance and robustness of the presented method, a 

comparison to other well-known optimization methods is conducted. The comparison considers 

several standard benchmark functions which are typically found in scientific literature. The results 

suggest a high performance of the proposed methodology. 

3.1. Introduction 

 

There are processes that humans can do much better than deterministic systems or computers, 

such as obstacle avoidance while driving or planning a strategy. This may be due to our unique 

reasoning capabilities and complex cognitive processing. Although processes can be complex, 

humans undertake them by using simple rules of thumb extracted from their experiences.  

 

Fuzzy Logic (Zadeh, 1965) is a practical alternative for a variety of challenging applications since 

it provides a convenient method for constructing systems via the use of heuristic information. The 

heuristic information may come from a system-operator who has directly interacted with the pro-

cess. In the Fuzzy Logic design methodology, this operator is asked to write down a set of rules on 

how to manipulate the process. We then incorporate these into a Fuzzy system that emulates the 

decision-making process of the operator (He, et al., 2015) For this reason, the partitioning of the 

system behavior into regions is an important characteristic of a Fuzzy system (Taur & Tao, 1997). 

In each region, the characteristics of the system can be simply modeled using a rule that associates 

the region under which certain actions are performed (Ali & Shabir, 2014). Typically, a Fuzzy 

model consists of a rule base, where the information available is transparent and easily readable. 

The Fuzzy modeling methodology has been largely exploited in several fields such as Pattern 

Recognition (Novák, et al., 2015; Papakostas, et al., 2013), Control (Castillo & Melin, 2014; 

Wang, et al., 2015) and Image Processing (Raju & Nair, 2014; Zareiforoush, et al., 2015). 

 

Recently, several optimization algorithms based on random principles have been proposed with in-

teresting results. Such approaches are inspired by our scientific understanding of biological or so-
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cial systems, which at some abstraction level can be represented as optimization processes (Nanda 

& Panda, 2014a). These methods mimic the social behavior of bird flocking and fish schooling in 

the Particle Swarm Optimization (PSO) method (Kennedy & Eberhart, 1995b), the cooperative 

behavior of bee colonies in the Artificial Bee Colony (ABC) technique (Dervis Karaboga, 2005), 

the improvisation process that occurs when a musician searches for a better state of harmony in the 

Harmony Search (HS) (Geem et al., 2001), the attributes of bat behavior in the Bat Algorithm 

(BAT) method (Yang, 2010a),  the mating behavior of firefly insects in the Firefly (FF) method 

(Yang, 2009), the social behaviors of spiders in the Social Spider Optimization (SSO) (Cuevas et 

al., 2013), the characteristics of animal behavior in a group in the Collective Animal Behavior 

(CAB) (Cuevas, et al., 2012) and the emulation of the differential and conventional evolution in 

species in the Differential Evolution (DE) (Storn & Price, 1995) and Genetic Algorithms (GA) 

(Goldberg, 1989), respectively. 

 

On the other hand, the combination of Fuzzy systems with metaheuristic algorithms has recently 

attracted the attention in the Computational Intelligence community. As a result of this integration, 

a new class of systems known as Evolutionary Fuzzy Systems (EFSs) (Fernández, et al., 2015; 

Herrera, 2008) has emerged. These approaches basically consider the automatic generation and 

tuning of fuzzy systems through a learning process based on a metaheuristic method. The EFSs 

approaches reported in the literature can be divided into two classes (Fernández, et al., 2015; 

Herrera, 2008): tuning and learning.  

 

In a tuning approach, a metaheuristic algorithm is applied to modify the parameters of an existent 

Fuzzy system, without changing its rule base. Some examples of tuning in EFSs include the cali-

bration of Fuzzy controllers (Caraveo, et al., 2016; Castillo, et al., 2015), the adaptation of type-2 

Fuzzy models (Olivas, et al., 2016) and the improvement of accuracy in Fuzzy models (Castillo, et 

al., 2016; Guerrero, et al., 2015). In learning, the rule base of a fuzzy system is generated by a me-

taheuristic algorithm, so that the final Fuzzy system has the capacity to accurately reproduce the 

modeled system. There are several examples of learning in EFSs, which consider different types of 

problems such as the selection of Fuzzy rules with membership functions (Alcalá-Fdez et al., 

2009; Alcala, et al., 2011), rule generation (Alcala-Fdez, et al., 2011; Alcala, et al., 2007) and de-

termination of the entire Fuzzy structure (Carmona, et al., 2011; Cordón, 2011; Cruz-Ramírez, et 

al., 2014). 

 

The proposed method cannot be considered an EFSs approach, since the Fuzzy system, used as op-

timizer, is not automatically generated or tuned by a learning procedure. On the contrary, its de-

sign is based on expert observations extracted from the optimization process. Therefore, the num-

ber of rules and its configuration are fixed, remaining static during its operation. Moreover, in a 

typical EFSs scheme, a metaheuristic algorithm is used to find an optimal base rule for a Fuzzy 

system with regard to an evaluation function. Different to such approaches, in the presented meth-

od here, a Fuzzy system is employed to obtain the optimum value of an optimization problem. 

Hence, the produced Fuzzy system directly acts as any other metaheuristic algorithm conducting 

the optimization strategy implemented in its rules.  

 

A metaheuristic algorithm is conceived as a high-level problem-independent methodology that 

consists of a set of guidelines and operations to develop an optimization strategy. In this chapter, it 

is described how the Fuzzy Logic design methodology can be used to construct algorithms for op-

timization tasks. As opposed to “conventional” metaheuristic approaches where the focus is on the 

design of optimization operators that emulate a natural or social process, in this presented ap-

proach it is focused on gaining an intuitive understanding of how to conduct an efficient search 

strategy to model it directly into a Fuzzy system. 

 

Although sometimes unnoticed, it is well understood that human heuristics play an important role 

in optimization methods. It must be acknowledged that metaheuristic approaches use human heu-
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ristics to tune their corresponding parameters or to select the appropriate algorithm for a certain 

problem (Lessmann, et al., 2011). Under such circumstances, it is important to ask the following 

questions: How much of the success may be assigned to the use of a certain metaheuristic ap-

proach? How much should be attributed to its clever heuristic tuning or selection? Also, if we ex-

ploit the use of human heuristic information throughout the entire design process, can we obtain 

higher performance optimization algorithms? 

 

The use of Fuzzy Logic for the construction of optimization methods presents several advantages. 

(A) Generation. “Conventional” metaheuristic approaches reproduce complex natural or social 

phenomena. Such a reproduction involves the numerical modeling of partially-known behaviors 

and non-characterized operations, which are sometimes even unknown (Sörensen, 2015). There-

fore, it is notably complicated to correctly model even very simple metaphors. On the other hand, 

Fuzzy Logic provides a simple and well-known method for constructing systems via the use of 

human knowledge (Omid et al., 2010). (B) Transparency. The metaphors used by metaheuristic 

approaches lead to algorithms that are difficult to understand from an optimization perspective. 

Therefore, the metaphor cannot be directly interpreted as a consistent search strategy (Sörensen, 

2015). On the other hand, Fuzzy Logic generates fully interpretable models whose content ex-

presses the search strategy as humans can conduct it (Fullér, et al., 2012). (C) Improvement. Once 

designed, metaheuristic methods maintain the same procedure to produce candidate solutions. In-

corporating changes to improve the quality of candidate solutions is very complicated and severely 

damages the conception of the original metaphor (Sörensen, 2015). As human experts interact with 

an optimization process, they obtain a better understanding of the correct search strategies that al-

low finding the optimal solution. As a result, new rules are obtained so that their inclusion in the 

existing rule base improves the quality of the original search strategy. Under the Fuzzy Logic 

methodology, new rules can be easily incorporated to an already existent system. The addition of 

such rules allows the capacities of the original system to be extended (Cordón & Herrera, 1997). 

 

In this chapter, a methodology to implement human-knowledge-based optimization strategies is 

presented. In the scheme, a Takagi-Sugeno Fuzzy inference system (Takagi & Sugeno, 1985) is 

used to reproduce a specific search strategy generated by a human expert. Therefore, the number 

of rules and its configuration only depend on the expert experience without considering any learn-

ing rule process. Under these conditions, each Fuzzy rule represents an expert observation that 

models the conditions under which candidate solutions are modified in order to reach the optimal 

location. To exhibit the performance and robustness of the proposed method, a comparison to oth-

er well-known optimization methods is conducted. The comparison considers several standard 

benchmark functions which are typically found in the literature of metaheuristic optimization. The 

results suggest a high performance of the proposed methodology in comparison to existing optimi-

zation strategies. 

 

This chapter is organized as follows: In Section 3.2, the basic aspects of fuzzy logic and the differ-

ent reasoning models are introduced. In Section 3.3, the proposed methodology is exposed. Sec-

tion 3.4 discusses the characteristics of the proposed methodology. In Section 3.5 the experimental 

results and the comparative study is presented. In Section 3.6, conclusions are drawn. Additional-

ly, in Section 3.7 are exhibited the benchmark functions employed. 

 

3.2. Fuzzy logic and reasoning models 

 

This section presents an introduction to the main Fuzzy Logic concepts. The discussion particu-

larly considers the Takagi-Sugeno Fuzzy inference model (Takagi & Sugeno, 1985).  
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3.2.1. Fuzzy logic concepts 

 

A Fuzzy set (A) (Zadeh, 1965) is a generalization of a Crisp or Boolean set, which is defined in a 

universe of discourse X. A is a linguistic label which defines the Fuzzy set through the word A. 

Such a word defines how a human expert perceives the variable X in relationship to A. The Fuzzy 

set (A) is characterized by a membership function ( )A x  which provides a measure of degree of 

similarity of an element x from X to the Fuzzy set A. It takes values in the interval [0,1], that is: 

 
           ( ) : 0,1A x X →   

 

(3.1) 

Therefore, a generic variable 
cx can be represented using multiple Fuzzy sets 1 2, , ,c c c

mA A A , 

each one modeled by a membership function 
1 2

( ), ( ), , ( )c c c
m

c c cA A A
x x x   . 

 

A Fuzzy system is a computing model based on the concepts of Fuzzy Logic. It includes three 

conceptual elements: a rule base, which contains a selection of Fuzzy rules; a database, which de-

fines the membership functions used by the Fuzzy rules; and a reasoning mechanism, which per-

forms the inference procedure. There are two different inference Fuzzy systems: Mamdani 

(Mamdani & Assilian, 1999) and Takagi-Sugeno (TS) (Takagi & Sugeno, 1985).  

 

The central difference between the two inference models is in the consequent section of the Fuzzy 

systems. In the Mamdani model, all the structure of the Fuzzy system has linguistic variables and 

Fuzzy sets. However, the consequent section of the TS model consists of mathematical functions. 

Different to the Mamdani structure, the TS model provides computational efficiency and mathe-

matical simplicity in the rules (Bagis & Konar, 2016). Therefore, in order to obtain higher model-

ling accuracy with fewer rules, the TS Fuzzy model is a good candidate that obtains better models 

when the rules are described as functional associations defined in several local behaviors (Bagis & 

Konar, 2016; Guney & Sarikaya, 2009). Since the available knowledge for the design of the Fuzzy 

system conceived in our approach includes functional, local behaviors, the TS inference model has 

been used in this work for the system modeling. 

3.2.2. The Takagi-Sugeno (TS) fuzzy model 

 

TS Fuzzy systems allow us to describe complicated nonlinear systems by decomposing the input 

space into several local behaviors, each of which is represented by a simple regression model 

(Taur & Tao, 1997). The main component of a TS Fuzzy system is the set of its K Fuzzy rules. 

They code the human knowledge that explains the performance of the actual process. Each rule 

denoted by 
iR  relates the input variables to a consequence of its occurrence. A typical TS Fuzzy 

rule is divided in two parts: Antecedent (I) and consequent (II), which are described as follows: 

 

          

I

1 2

1 2

II

: IF  is  and  is , ,  and  is  Then ( )i n

p q n r i iR x A x A x A y g= x , 1,2, ,i K=   

 

(3.2) 

 

where 
1 2[ , , , ]T

nx x x=x is the n-dimensional input variable and 
iy  represents the output rule. 

( )g x is a function which can be modeled by any function as long as it can appropriately describe 

the behavior of the system within the Fuzzy region specified by the antecedent of rule i. In 

Eq.(3.2), p, q and r symbolizes one Fuzzy set which models the behavior of variables
1x , 

2x and 

nx , respectively. 
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3.2.2.1. Antecedent (I) 

 

The antecedent is a logical combination of simple prepositions of the form “
ex  is e

dA ”. Such a 

preposition, modeled by the membership function ( )e
d

eA
x , provides a measure of degree of simi-

larity between 
ex  and the Fuzzy set e

dA . Since the antecedent is concatenated by using the “and” 

connector, the degree of fulfilment of the antecedent ( )i x  is calculated using a t-norm operator 

such as the minimum: 

 

( )1 21 2( ) min ( ), ( ), , ( )n
p q r

i nA A A
x x x   =x  (3.3) 

3.2.2.2. Consequent (II) 

 

( )ig x  is a function which can be modeled by any function as long as it can appropriately describe 

the behavior of the system within the Fuzzy region specified by the antecedent of rule i.  

 

3.2.2.2. Inference in the TS model 

 

The global output y of a TS Fuzzy system is composed as the concatenation of the local behaviors, 

and can be seen as the weighted mean of the consequents: 

 

          1

1

( )

( )

K

i i

i

K

i

i

y

y

x





=

=



=




x

  

 

 

 

(3.4) 

where ( )i x is the degree of fulfillment of the ith rule’s antecedent and 
iy  is the output of the 

consequent model of that rule. Fig. 3.1 shows the Fuzzy reasoning procedure for a TS Fuzzy sys-

tem with two rules. The example considers two variables (
1x ,

2x ) and only two membership 

functions (I and II) for each variable. Now, it should be clear that the spirit of Fuzzy Logic systems 

resembles that of “divide and conquer”. Therefore, the antecedent of a Fuzzy rule defines a local 

Fuzzy region, while the consequent describes the behavior within the region 

 

Rules 
1 1 2

1 1 2 2 1 1: IF  is  and  is  THEN ( )R x A x A y g= x  

2 1 2

1 2 2 1 2 2: IF  is  and  is  THEN ( )R x A x A y g= x  

 

Fig. 3.1. TS Fuzzy model 
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3.3. The Fuzzy-based methodology 

 

Since there is no specific solution for several kinds of complex problems, human experts often 

follow a trial-and-error approach to solve them. Under this process, humans obtain experience as 

the knowledge gained through the interaction with the problem. In general, a Fuzzy system is a 

model that emulates the decisions and behavior of a human that has specialized knowledge and 

experience in a particular field. Therefore, a Fuzzy system is then presumed to be capable of re-

producing the behavior of a target system. For example, if the target system is a human operator in 

charge of a chemical reaction process, then the Fuzzy system becomes a Fuzzy controller that can 

regulate the chemical process. Similarly, if the target system is a person who is familiar with opti-

mization strategies and decision-making processes, then the Fuzzy inference becomes a Fuzzy ex-

pert system that can find the optimal solution to a certain optimization problem, as if the search 

strategy were conducted by the human expert.  

 

In this chapter we present a methodology for emulating human search strategies in an algorithmic 

structure. In this section, the Fuzzy optimization approach is explained in detail. First, each com-

ponent of the Fuzzy system is described; then, the complete computational procedure is presented. 

 

Under a given set of circumstances, an expert provides a description of how to conduct an optimi-

zation strategy for finding the optimal solution to a generic problem using natural language. Then, 

the objective is to take this “linguistic” description and model it into a Fuzzy system. The linguis-

tic representation given by the expert is divided into two parts: (A) linguistic variables and (B) rule 

base formulation. 

 

(A) Linguistic variables describe the way in which a human expert perceives the circumstances of 

a certain variable in terms of its relative values. One example is the velocity that could be identi-

fied as low, moderate and high. (B) Rule base formulation captures the construction process of a 

set of IF-THEN associations. Each association (rule) expresses the conditions under which certain 

actions are performed. Typically, a Fuzzy model consists of a rule base that maps Fuzzy regions to 

actions. In this context, the contribution of each rule to the behavior of the Fuzzy system will be 

different depending on the operating region.  

 

3.3.1. Optimization strategy 

 

Most of the optimization methods have been designed to solve the problem of finding a global so-

lution to a nonlinear optimization problem with box constraints in the following form (Baldick, 

2006): 

  

maximize   ( )f x ,     
1( , , ) n

nx x= x  

subject to x X  
 

(3.5) 

 

where : nf → is a nonlinear function whereas  , 1, ,n

i i il x u i n=    =X x is a bounded 

feasible search space, constrained by the lower (
il ) and upper (

iu ) limits.  

 

To solve the optimization problem presented in Eq. (3.5), from a population-based perspective 

(Dan, 2013), a set 
k

P
1 2({ , , , })k k k

Np p p  of N candidate solutions (individuals) evolves from an ini-

tial state (k=0) to a maximum number of generations (k=Maxgen). In the first step, the algorithm 

initiates producing the set of N candidate solutions with values that are uniformly distributed be-
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tween the pre-specified lower (
il ) and upper (

iu ) limits. In each generation, a group of evolution-

ary operations are applied over the population 
k

P to generate the new population
1k+

P . In the pop-

ulation, an individual k

ip  (  1, ,i N ) corresponds to a n-dimensional vector 

 ,1 ,2 ,, , ,k k k

i i i np p p where the dimensions represent the decision variables of the optimization prob-

lem to be solved. The quality of a candidate solution k

ip  is measured through an objective func-

tion ( )k

if p  whose value corresponds to the fitness value of k

ip . As the optimization process 

evolves, the best individual g 
1 2( , , )ng g g seen so-far is conserved, since it represents the current 

best available solution. 

 

In the presented approach, an optimization human-strategy is modelled in the rule base of a TS 

Fuzzy inference system, so that the implemented Fuzzy rules express the conditions under which 

candidate solutions from
k

P are evolved to new positions
1k+

P . 

 

3.3.1.1. Linguistic variables characterization (A) 

 

To design a fuzzy system from expert knowledge, it is necessary the characterization of the lin-

guistic variables and the definition of a rule base. A linguistic variable is modeled through the use 

of membership functions. They represent functions which assign a numerical value to a subjective 

perception of the variable. The number and the shape of the membership functions that model a 

certain linguistic variable depend on the application context (Wong, et al., 2015). Therefore, in or-

der to maintain the design of the Fuzzy system as simple as possible, we characterize each linguis-

tic variable by using only two membership functions (Yap, Wong, & Tiong, 2013). One example 

is the variable velocity V that could be defined by the membership functions: low ( )L
 and 

high ( )H
. Such membership function are mutually exclusive or disjoint. Therefore, if 0.7 =L

, 

then 0.3 =H
. Assuming that the linguistic variable velocity V has a numerical value inside the 

interval from 0 to 100 revolutions per minute (rpm), L
and H

are characterized according to the 

membership functions shown in Figure 3.2. 

 

 
 

Fig. 3.2. Example of membership functions that characterize a linguistic variable. 

 

3.3.1.2. Rule base formulation (B) 

 

Several optimization strategies can be formulated by using human knowledge. In this section, a 

simple search strategy is formulated considering basic observations of the optimization process. 

Therefore, the simplest search strategy is to move candidate solutions to search regions of the 

space where it is expected to find the optimal solution. Since the values of the objective function 

are only known in the positions determined by the candidate solutions, the locations with the high-

est probabilities of representing potential solutions are those located near the best candidate solu-

tion in terms of its fitness value. 

 



 Chapter 3. A Metaheuristic Optimization methodology based on Fuzzy Logic                                                          51            

                                                                                                             

Taking this into consideration, a simple search strategy could be formulated by the following four 

rules: 

 

1. IF the distance from k

ip  to g is short AND ( )k

if p is good THEN k

ip is moved towards 

(Attraction) g. 

 

This rule represents the situation where the candidate solution k

ip is moved to the best can-

didate solution seen so-far g in order to improve its fitness quality. Since the fitness values of 
k

ip and g are good in comparison to other members of
k

P , the region between k

ip and g main-

tains promising solutions that could improve g. Therefore, with this movement, it is expected to 

explore the unknown region between k

ip and g. In order to show how each rule performs. Fig. 3 

shows a simple example which expresses the conditions under which action rules are executed. 

In the example, a population 
k

P of five candidate solutions is considered (see Fig. 3.3(a)). In 

the case of rule 1, as it is exhibited in Fig. 3.3(b), the candidate solution 
5

k
p that fulfills the rule 

requirements is attracted to g. 

 

2. IF the distance from k

ip  to g is short AND ( )k

if p is bad THEN k

ip is moved away from 

(Repulsion) g. 

 

In this rule, although the distance between k

ip and g is short, the evidence shows that there 

are no good solutions between them. Therefore, the improvement of k

ip is searched in the op-

posite direction of g. A visual example of this behavior is presented in Fig. 3.3(c). 

 

3. IF the distance from k

ip  to g is large AND ( )k

if p is good THEN k

ip is refined. 

 

Under this rule, a good candidate solution k

ip that is far from g is refined by searching with-

in its neighborhood. The idea is to improve the quality of competitive candidate solutions 

which have already been found (exploitation). Such a scenario is presented in Figure 3.3(d) 

where the original candidate solution 
2

k
p is substituted by a new position 1

2

+k
p which is ran-

domly produced within the neighborhood of 
2

k
p . 

 

4. IF the distance from k

ip  to g is large AND ( )k

if p is bad THEN a new position is ran-

domly chosen. 

 

This rule represents the situation in Figure 3.3(e) where the candidate solution 
4

k
p is so bad 

and so far from g that is better to replace it by other solution ( 1

4

+k
p ) randomly produced within 

the search space X.  

 

 

Each of the four rules listed above is a “linguistic rule” which contains only linguistic information. 

Since linguistic expressions are not well-defined descriptions of the values that they represent, lin-

guistic rules are not accurate. They represent only conceptual ideas about how to achieve a good 

optimization strategy according to the human perspective. Under such conditions, it is necessary to 

define the meaning of their linguistic descriptions from a computational point of view. 

 



 Chapter 3. A Metaheuristic Optimization methodology based on Fuzzy Logic                                                          52            

                                                                                                             

 
(a) 

  
(b) Rule 1 (c) Rule 2 

  
(d) Rule 3 (e) Rule 4 

 

Fig. 3.3. Visual example that expresses the conditions under which action rules are executed. (a) Current 

configuration of the candidate solution population
k

P , (b) rule 1, (c) rule 2, (d) rule 3 and (e) rule 4. 

 

3.3.1.3. Implementation of the TS fuzzy system  

 

In this section, we will discuss the implementation of the expert knowledge concerning the optimi-

zation process in a TS fuzzy system. 

 

I) Membership functions and antecedents 

 

In the rules, two different linguistic variables are considered, distance from de candidate solution 

k

ip  to the best solution g  ( ( , )k

iD p g ) and the fitness value of the candidate solution ( )( )k

if p . 

Therefore, ( , )k

iD p g is characterized by two membership functions: short and large (see 3.3.1.1). 

On the other hand, ( )k

if p is modeled by the membership functions good and bad. Fig. 3.4 shows 

the fuzzy membership functions for both linguistic variables. The distance ( , )k

iD p g  is defined as 

the Euclidian distance
k

i−g p . Therefore, as it is exhibited in Fig. 3.4(a), two complementary 

membership functions define the relative distance ( , )k

iD p g : short (S) and large (L). Their support 

values are 0 and 
maxd , where 

maxd represents the maximum possible distance delimited by the 

search space X which is defined as follows: 

 

          2

max

1

( )
=

= −
d

s s

s

d u l  , 

 

(3.6) 
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where d represents the number of dimensions in the search space X. In the case of ( )k

if p , two dif-

ferent membership functions define its relative value: bad (B) and good (G). Their support values 

are 
minf  and 

maxf . These values represent the minimum and maximum fitness values seen so-far. 

Therefore, they can defined as following: 

 

          
 
 

min
1,2, ,

1,2, ,

min ( ( ))




= k

i
i N

k gen

f f p  and 
 
 

max
1,2, ,

1,2, ,

max ( ( ))




= k

i
i N

k gen

f f p   

 

(3.7) 

From Eq. (3.7), it is evident that ( )max =f f g . If a new minimum or maximum value of ( )k

if p is 

detected during the evolution process, it replaces the past values of 
minf  or 

maxf . Fig. 3.4(b) 

shows the membership functions that describe ( )k

if p . 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 3.4. Membership functions for (a) distance ( , )k

iD p g and (b) for ( )k

if p . 

 

Considering the membership functions defined in Fig. 3.4, the degree of fulfilment of the anteced-

ent ( )w x for each rule  ( )1, 2,3, 4w  is defined in Table 3.1. 

 

Rule Degree of fulfilment ( )w x  

1 ( )1( ) min ( ( , )), ( ( ))k k k

i i iD f  =
S G

p p g p  

2 ( )2( ) min ( ( , )), ( ( ))k k k

i i iD f  =
S B

p p g p  

3 ( )3( ) min ( ( , )), ( ( ))k k k

i i iD f  =
L G

p p g p  

4 ( )4( ) min ( ( , )), ( ( ))k k k

i i iD f  =
L B

p p g p  

 

Table 3.1. Degree of fulfilment of the antecedent ( )w x for each rule  ( )1,2,3,4w . 

 

II) Actions or consequents 

 

Actions or Consequents are functions which can be modeled by any function as long as it can ap-

propriately describe the desired behavior of the system within the fuzzy region specified by the an-

tecedent of a rule i  ( )1, 2,3, 4i . The consequents of the four rules are modeled by using the fol-

lowing behaviors. 

 

Rule 1. Attraction 

( )max 1( ) ( )k k k

i i iAt f f = −  − p p g p , 
(3.8) 

0 

1 

0 

maxd  

S L 
1 

0 

maxf  

B G 

minf  
( , )k

iD p g  

( ( , ))k

iμ DS p g  ( ( ))k

iμ fB p  ( ( ))k

iμ fG p  ( ( , ))k

iμ DL p g  

( )k

if p  
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where 
1α  represents a tuning factor. Under this rule, the function ( )k

iAt p produces a change of po-

sition in the direction of the attraction vector ( )k

i−g p . The magnitude depends on the difference of 

the fitness values between g and k

ip . 

 

Rule 2. Repulsion 

 

( )max 2( ) ( )k k k

i i iRep f f = −  + p p g p , 
(3.9) 

 

where 
2α  represents a tuning factor. 

 

Rule 3. Refining or perturbation. 

 

max( ) ( )k k

i iRef f f = −  p p v , 
(3.10) 

 

where  1 2, , , dv v v=v  is a random vector where each component represents a random number 

between -1 and 1 whereas γ  represents a tuning factor. In this rule, the function ( )k

iRef p generates 

a random position within the limits specified by max ( )k

if f − p . 

 

Rule 4. Random substitution. 

 

( )k

iRan =p r , (3.11) 

 

where  1 2, , , dr r r=r  is a random vector where each component 
ur  represents a random number 

between the lower (
ul ) and upper (

uu ) limits of the search space X. 

 

 

III) Inference of the TS model. 

 

The global change of position Δ k

ip of the TS fuzzy system is composed as the concatenation of 

the local behaviors produced by the four rules, and can be seen as the weighted mean of the conse-

quents: 

 

1 2 3 4

1 2 3 4

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Δ

( ) ( ) ( ) ( )

k k k k k k k k

k i i i i i i i i

i k k k k

i i i i

At β Rep β +Ref β Ran β

β β β β

 +   + 
=

+ + +

p p p p p p p p
p

p p p p
, 

(3.12) 

 

Once Δ k

ip  has been calculated, the new position 1k

i

+
p is calculated as follows: 

 
1 Δk k k

i i i

+ = +p p p , (3.13) 

 

3.3.2. Computational procedure 

 

The proposed algorithm is implemented as an iterative process in which several operations are ex-

ecuted. Such operations can be summarized in the form of pseudo-code in Algorithm 3.1. The pro-

posed method uses as input information the number of candidate solutions (N), the maximum 
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number of generations (Maxgen), and the tuning parameters
1α , 

2α , γ . Similar to other metaheu-

ristic algorithms, in the first step (line 2), the algorithm initiates producing the set of N candidate  

 

solutions with values that are uniformly distributed between the pre-specified lower and upper lim-

its. These candidate solutions represent the first population
0

P . After initialization, the best ele-

ment g in terms of its fitness value is selected (line 3).  Then, for each particle k

ip  its distance to 

the best value g is calculated (line 6). With ( , )k

iD p g and ( )k

if p , the search optimization strategy 

implemented in the fuzzy system is applied (lines 7-9). Under such circumstances, the antecedents 

(line 7) and consequents (line 8) are computed while the final displacement Δ k

ip  is obtained as a 

result of the operation performed by the TS model (line 9). Afterwards, the new position 1+k

ip is 

updated (line 10). Once the new population 
1k+

P is obtained as a result of the iterative operation of 

lines 6-10, the best value g is updated (line 12). This cycle is repeated until the maximum number 

the iterations Maxgen has been reached. 

 

 

Algorithm 3.1. Pseudo-code for the proposed Fuzzy method 

1. Input: N, Maxgen, 
1α , 

2α , γ , k=0. 

2. k
P  Initialize(N); 

3. g  SelectBestParticle( k
P ); 

4. while k<=Maxgen do 
5. for (i=1;i>N;i++) 
6. ( ),k

iD p g  CalculateTheDistancetoTheBest( k

ip ,g); 

7. [
1 ,

2 ,
3 ,

4 ] EvaluateAntecedents( ( ),k

iD p g , ( )k

if p );  
Fuzzy 
System 

8. [At,Rep,Ref,Ran]  EvaluateConsequents( k

ip ,g, ( )k

if p ); 

9. Δ k

ip  InferenceTS(
1 ,

2 ,
3 ,

4 ,At,Rep,Ref,Ran); 

10. 1+k

ip  Δ+k k

i ip p  

11. end for 
12. g  SelectBestParticle( 1+k

P ); 

13. k k+1 

14. end while 
15. Output: g 

 
 

Algorithm 3.1. Summarized operations of the proposed Fuzzy method. 

 

3.4. Discussion about the proposed methodology 

 

In this section, several important characteristics of the proposed algorithm are discussed. First, 

in sub-section 3.4.1, interesting operations of the optimization process are analyzed.  Next, in sub-

section 3.4.2 the modelling properties of the proposed approach are highlighted. 

3.4.1. Optimization algorithm 

 

A metaheuristic algorithm is conceived as a high-level problem-independent methodology that 

consists of a set of guidelines and operations to develop an optimization strategy. In the proposed 
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methodology, a Fuzzy system is generated based on expert observations about the optimization 

process. The final Fuzzy system then performs various Fuzzy Logic operations to produce a new 

candidate solution 1k

i

+
p from the current solution k

ip . During this process, the following opera-

tions are involved:  

1. Determination of the degree of membership between the input data ( ( , )k

iD p g , ( )k

if p ) and 

the defined Fuzzy sets ("short &large" or "good & bad"). 

 

2. Calculation of the degree of relevance for each rule based on the degree of fulfilment 

( )w x for each rule  ( )1, 2,3, 4w  in the antecedent part of the rule.  

 

3. Evaluation of the consequent of each rule: At, Rep, Ref, Ran. 

 

4. Derivation of the new candidate solution 1k

i

+
p based on the weighted mean of the consequent 

functions, according to the TS model. 

 

Under such circumstances, the generated Fuzzy system is applied over all candidate solutions from 
k

P in order to produce the new population
1k+

P . This procedure is iteratively executed until a ter-

mination criteria has been reached. 

 

3.4.2. Modeling characteristics 

 

Metaheuristic algorithms are widely employed for solving complex optimization problems. Such 

algorithms have been developed by a combination of deterministic models and randomness, mim-

icking the behavior of biological or social systems. Most of the metaheuristic methods divide the 

individual behavior into several processes which show no coupling among them (Nanda & Panda, 

2014b; Sörensen, 2015).  

 

In the presented methodology, the produced Fuzzy system models a complex optimization strate-

gy. This modeling is accomplished by a number of Fuzzy IF-THEN rules, each of which describes 

the local behavior of the model. In particular, the rules express the conditions under which new 

positions are explored. In order to calculate a new candidate solution 1k

i

+
p , the consequent actions 

of all rules are aggregated.  In this way, all the actions are presented in the computation of a certain 

solution 1k

i

+
p , but with different influence levels. By coupling local behaviors, fuzzy systems are 

able to reproduce complex global behaviors. An interesting example of such modeling characteris-

tics is rule 1 and rule 2. If these rules are individually analyzed, the attraction and repulsion 

movements conducted by the functions are completely deterministic. However, when all rules are 

considered, rule 3 and rule 4 add randomness to the final position of 1k

i

+
p . 

3.5. Experimental study 

 

An illustrative set of 19 functions has been used to examine the performance of our approach. 

These test functions represent the base functions from the latest competition on single objective 

optimization problems at CEC2015 (Liang, et al., 2014). Tables 3.17, 3.18 and 3.19 in Section 3.7 

show the benchmark functions employed in our experiments. These functions are ordered into 

three different classes: Unimodal (Table 3.17), Multimodal (Table 3.18) and Hybrid (Table 3.19) 

test functions. In the tables, n represents the dimension in which the function is operated, 
*( )f x characterizes the optimal value of the function in the position 

*
x  and S is the defined 

search space.  
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The main objective of this section is to present the performance of the proposed algorithm on nu-

meric optimization problems. Moreover, the results of our method are compared with some popu-

lar optimization algorithms by using the complete set of benchmark functions. The results of the 

proposed algorithm are verified by a statistical analysis of the experimental data. 

 

The experimental results are divided into two sub-sections. In the first section, the performance of 

the proposed algorithm is evaluated with regard to its tuning parameters. In the second section, the 

overall performance of the presented method is compared to six popular optimization algorithms 

based on random principles. 

 

3.5.1. Performance evaluation with regard to its own tuning parameters 

 

The three parameters of the rules
1α , 

2α  and γ  affect the expected performance of the proposed 

Fuzzy optimization algorithm. In this sub-section we analyze the behavior of the proposed algo-

rithm considering the different settings of these parameters. All experiments have been executed 

on a Pentium dual-core computer with 2.53-GHz and 4-GB RAM under MATLAB 8.3. For the 

sake of simplicity, only the functions from 
1f to 

14f (unimodal and multimodal) have been con-

sidered in the tuning process. In the simulations, all the functions operate with a dimension n=30. 

As an initial condition, the parameters
1α , 

2α  and γ  are set to their default values 
1 1.4=α , 

2 0.05=α  and 0.005=γ . Then, in our analysis, the three parameters are evaluated one at a time, 

while the other two parameter remain fixed to their default values. To minimize the stochastic ef-

fect of the algorithm, each benchmark function is executed independently a total of 10 times. As a 

termination criterion, the maximum number of iterations (Maxgen) is set to 1000.  In all simula-

tions, the population size N is fixed to 50 individuals. 

 

In the first stage, the behavior of the proposed algorithm is analyzed considering different values 

for
1α . In the analysis, the values of 

1α vary from 0.6 to 1.6 whereas the values of 
2α  and γ re-

main fixed at 0.05 and 0.005, respectively. In the simulation, the proposed method is executed in-

dependently 30 times for each value of
1α  on each benchmark function. The results are registered 

in Table 3.2. These values represent the average best fitness values ( f ) and the standard devia-

tions (
fσ ) obtained in terms of a certain parameter combination of 

1α , 
2α  and γ . From Table 

3.2, we can conclude that the proposed Fuzzy algorithm with 
1 1.4=α  maintains the best perfor-

mance on functions
1f -

9f , and
11f . Under this configuration, the algorithm obtains the best re-

sults in 9 out of 14 functions. On the other hand, when the parameter 
1α  is set to any other value, 

the performance of the algorithm is inconsistent, producing generally bad results.  

 

In the second stage, the performance of the proposed algorithm is evaluated considering different 

values for
2α . In the experiment, the values of 

2α are varied from 0.01 to 0.1 whereas the values 

of 
1α  and γ  remain fixed at 1.4 and 0.005, respectively. The statistical results obtained by the 

Fuzzy algorithm using different values of 
2α  are presented in Table 3.3. From Table 3.3, it is 

clear that our Fuzzy optimization algorithm with 
2 0.05=α  outperforms the other parameter con-

figurations. Under this configuration, the algorithm obtains the best results in 8 of the 14 functions. 

However, if another parameter set is used, it results in a bad performance. 

 

Finally, in the third stage, the performance of the proposed algorithm is evaluated considering dif-

ferent values for γ . In the simulation, the values of γ  are varied from 0.001 to 0.01 whereas the 

values of 
1α  and 

2α remain fixed at 1.4 and 0.05, respectively. Table 3.4 summarizes the results 

of this experiment. From the information provided by Table 3.4, it can be seen that the proposed 
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fuzzy algorithm with 0.005γ =  obtains the best performance on functions
1f , 

2f , 
3f , 

4f , 
6f , 

7f , 
10f , 

12f and
13f . However, when the parameter γ  takes any other value, the performance of 

the algorithm is inconsistent. Under this configuration, the algorithm presents the best possible 

performance, since it obtains the best indexes in 10 out of 14 functions. 

 

 

1α  0.6 0.7 0.8 0.9 1 1.2 1.3 1.4 1.5 1.6 

1f  
f  6.95E-55 7.74E-89 3.97E-167 1.01E-39 1.02E-193 0.00E+00 4.26E-29 3.08E-281 1.15E-28 6.85E-28 

fσ  3.67E-54 4.24E-88 0.00E+00 5.54E-39 0.00E+00 0.00E+00 2.19E-28 0.00E+00 3.41E-28 1.08E-27 

2f  
f  6.10E-23 1.14E-53 1.12E-124 2.49E-139 1.08E-158 7.16E-22 1.31E-78 2.66E-207 2.03E-15 7.52E+00 

fσ  3.34E-22 6.07E-53 4.81E-124 1.36E-138 0.00E+00 3.89E-21 7.18E-78 0.00E+00 4.31E-15 2.35E+01 

3f  
f  4.69E-10 1.80E-17 2.22E-22 3.23E-22 2.00E-27 4.96E-24 4.11E-27 1.00E-27 2.68E-18 1.93E-11 

fσ  1.62E-09 6.81E-17 8.87E-22 1.64E-21 4.73E-27 2.66E-23 9.21E-27 1.50E-27 1.12E-17 5.52E-11 

4f  
f  1.55E-23 1.48E-30 1.51E-130 4.64E-180 2.84E-112 6.13E-19 2.00E-183 3.85E-220 9.09E-16 5.16E-15 

fσ  7.09E-23 8.12E-30 8.25E-130 0.00E+00 1.56E-111 3.31E-18 0.00E+00 0.00E+00 2.76E-15 6.91E-15 

5f  
f  2.85E+01 2.85E+01 2.85E+01 2.55E+01 3.85E+01 1.75E+01 2.65E+01 3.04E-03 2.85E+01 2.99E+01 

fσ  4.38E-02 3.86E-02 3.87E-02 4.37E-02 3.04E-02 3.72E-02 4.50E-02 3.02E-02 4.58E-02 4.72E-02 

6f  
f  2.15E-02 1.05E-02 1.19E-02 1.57E-02 1.59E-02 1.67E-02 1.69E-02 7.94E-03 1.98E-02 1.92E-02 

fσ  1.90E-02 3.86E-03 1.13E-02 1.56E-02 1.49E-02 1.37E-02 1.49E-02 1.89E-03 1.80E-02 9.92E-03 

7f  
f  8.98E-03 3.22E-03 2.22E-03 1.88E-03 1.75E-03 2.07E-03 1.79E-03 1.36E-03 1.59E-03 1.64E-03 

fσ  1.27E-02 2.65E-03 2.17E-03 1.48E-03 1.62E-03 2.26E-03 1.92E-03 1.10E-03 1.45E-03 1.50E-03 

8f  
f  -4.95E+03 -6.12E+03 -5.01E+04 -5.13E+04 -4.96E+03 -3.02E+03 -5.14E+04 -5.58E+04 -4.94E+03 -5.21E+03 

fσ  4.36E+02 5.09E+02 4.15E+02 5.55E+02 5.08E+02 4.78E+02 4.24E+02 4.10E+02 4.85E+02 4.60E+02 

9f  
f  6.20E+01 2.91E+01 1.70E+01 1.57E+01 5.94E+00 5.21E+00 5.86E+00 4.76E-01 9.94E+00 2.02E+01 

fσ  6.08E+01 5.32E+01 4.17E+01 4.27E+01 3.17E+01 2.77E+01 2.90E+01 2.38E+00 3.77E+01 5.22E+01 

10f  
f  8.70E-15 7.16E-15 7.99E-15 9.18E-15 9.41E-15 1.04E-14 1.19E-14 8.47E-15 1.07E-14 1.38E-14 

fσ  5.39E-15 3.92E-15 3.61E-15 2.53E-15 2.57E-15 5.22E-15 6.00E-15 3.82E-15 6.64E-15 7.83E-15 

11f  
f  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.46E-05 

fσ  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.32E-04 

12f  
f  8.76E-02 8.32E-02 8.42E-02 7.82E-02 7.70E-02 8.73E-02 9.45E-02 9.59E-01 3.84E+00 6.49E+02 

fσ  2.74E-02 3.35E-02 4.73E-02 2.30E-02 1.80E-02 2.78E-02 2.15E-02 3.26E+00 8.79E+00 2.65E+03 

13f  
f  2.88E-01 3.30E-01 3.69E-01 3.77E-01 3.99E-01 3.72E-01 4.27E-01 3.91E-01 2.44E+01 1.83E+06 

fσ  1.42E-01 1.03E-01 1.63E-01 1.57E-01 2.20E-01 1.16E-01 3.78E-01 1.76E-01 9.67E+01 1.00E+07 

14f  
f  -8.43E+02 -8.33E+02 -8.31E+02 -8.29E+02 -8.43E+02 -8.97E+02 -8.98E+02 -8.90E+02 -8.86E+02 -8.84E+02 

fσ  1.14E+01 9.37E+00 1.06E+01 1.12E+01 1.68E+01 2.54E+01 2.19E+01 1.80E+01 2.13E+01 2.48E+01 

 

Table 3.2. Experimental results obtained by the proposed algorithm using different values of 
1α . 

 

In general, the experimental results shown in Tables 3.2, 3.3 and 3.4 suggest that a proper combi-

nation of the parameter values can improve the performance of the proposed method and the quali-

ty of solutions. In this experiment we can conclude that the best parameter set is composed by the 

following values:
1 1.4=α , 

2 0.05=α  and 0.005=γ .  

 

Once the parameters
1α , 

2α  and γ  have been experimentally set, it is possible to analyze their in-

fluence in the optimization process. In the search strategy, integrated in the Fuzzy system, 
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1α modifies the attraction that a promising individual experiments with regard to the best current 

element in the population. This action aims to improve the solution quality of the individual, con-

sidering that the unexplored region between the promising solution and the best element could 

contain a better solution. On the other hand, 
2α  adjusts the repulsion to which a low quality indi-

vidual is undergone. This operation intends to enhance the quality of the bad candidate solution 

through a movement in opposite direction of the best current element. This repulsion is considered, 

since there is evidence that the unexplored section between the low quality solution and the best 

current element does not enclose promising solutions. Finally, γ  defines the neighborhood around 

a promising solution, from which a local search operation is conducted. The objective of this pro-

cess is to refine the quality of each solution that initially maintains an acceptable fitness value.  

 

2α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

1f  
f  1.01E-39 3.25E-28 3.39E-28 2.35E-28 5.18E-49 1.48E-28 1.36E-28 2.61E-28 2.15E-28 2.29E-28 

fσ  5.54E-39 9.09E-28 1.02E-27 7.44E-28 2.34E-48 5.19E-28 4.95E-28 8.03E-28 6.36E-28 6.94E-28 

2f  
f  6.25E-16 3.61E-16 1.67E-22 2.66E-20 7.16E-22 1.15E-19 7.85E-16 3.29E-17 4.82E-16 6.57E-30 

fσ  2.85E-15 1.97E-15 9.11E-22 1.45E-19 3.89E-21 5.41E-19 2.97E-15 1.53E-16 2.47E-15 3.59E-29 

3f  
f  4.96E-24 9.65E-27 9.29E-26 2.22E-25 1.97E-27 2.52E-23 2.81E-21 4.94E-22 7.99E-23 6.69E-21 

fσ  2.66E-23 3.49E-26 4.33E-25 1.12E-24 2.02E-27 1.37E-22 1.53E-20 2.64E-21 2.25E-22 2.13E-20 

4f  
f  1.96E-15 1.20E-15 3.44E-17 5.99E-18 3.08E-29 1.92E-20 4.91E-26 6.13E-19 3.98E-16 1.42E-28 

fσ  5.12E-15 4.45E-15 1.33E-16 3.28E-17 1.69E-28 9.01E-20 2.69E-25 3.31E-18 2.18E-15 7.76E-28 

5f  
f  3.85E+01 3.85E+01 2.55E+01 1.55E+01 1.99E-04 1.85E-01 4.85E-02 1.23E+01 1.35E+01 2.85E+01 

fσ  4.45E-02 4.42E-02 4.38E-02 4.52E-02 3.74E-02 5.02E-02 3.45E-02 4.12E-02 5.02E-02 4.04E-02 

6f  
f  1.55E-02 1.47E-02 2.11E-02 2.15E-02 1.07E-03 1.73E-02 1.94E-02 1.78E-02 2.35E-01 2.04E-02 

fσ  9.87E-03 5.13E-03 2.10E-02 4.72E-03 1.67E-02 6.85E-03 1.90E-02 7.59E-03 1.17E+00 2.21E-02 

7f  
f  1.03E-03 1.56E-03 1.09E-03 1.42E-03 1.36E-03 2.17E-03 1.88E-03 2.12E-03 2.53E-03 2.55E-03 

fσ  8.62E-04 1.60E-03 7.41E-04 1.07E-03 1.10E-03 1.22E-03 1.56E-03 2.59E-03 3.04E-03 2.10E-03 

8f  
f  -3.10E+03 -5.24E+03 -2.17E+03 -5.00E+03 -5.13E+03 -5.01E+03 -6.29E+03 -5.11E+03 -5.24E+03 -5.18E+03 

fσ  5.08E+02 4.49E+02 4.65E+02 3.83E+02 4.77E+02 3.68E+02 5.35E+02 4.36E+02 5.03E+02 4.41E+02 

9f  
f  8.98E+00 3.41E-02 5.91E+00 9.16E-02 4.76E-01 8.28E+00 7.75E-02 4.07E+00 1.64E+01 5.83E+00 

fσ  3.42E+01 1.87E-01 3.14E+01 2.81E-01 2.38E+00 3.15E+01 2.61E-01 2.18E+01 5.02E+01 3.13E+01 

10f  
f  1.12E-14 1.01E-14 1.10E-14 1.17E-14 8.47E-15 9.30E-15 9.89E-15 1.21E-14 1.21E-14 1.20E-14 

fσ  4.88E-15 3.82E-15 4.86E-15 7.26E-15 3.44E-15 4.71E-15 3.82E-15 6.19E-15 7.11E-15 6.03E-15 

11f  
f  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

fσ  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

12f  
f  1.03E+00 7.77E-01 9.55E-02 1.93E+00 9.59E-01 4.14E-01 1.17E+00 1.26E+00 1.60E+00 6.41E+00 

fσ  3.80E+00 2.63E+00 3.50E-02 4.30E+00 3.26E+00 1.75E+00 3.56E+00 4.41E+00 4.70E+00 2.28E+01 

13f  
f  3.54E-01 4.08E-01 1.69E+00 2.38E+00 3.51E-01 4.20E-01 1.17E+00 1.12E+00 8.94E-01 1.34E+00 

fσ  1.91E-01 2.18E-01 5.25E+00 7.65E+00 1.76E-01 1.69E-01 4.03E+00 3.38E+00 2.53E+00 4.99E+00 

14f  
f  -8.85E+02 -8.84E+02 -8.91E+02 -8.88E+02 -8.90E+02 -8.87E+02 -8.82E+02 -8.86E+02 -8.94E+02 -8.82E+02 

fσ  2.41E+01 1.81E+01 2.25E+01 2.39E+01 1.80E+01 1.47E+01 2.37E+01 1.63E+01 2.07E+01 1.54E+01 

 

Table 3.3. Experimental results obtained by the proposed algorithm using different values of 
2α  

γ  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 

1f  f  3.73E-28 5.52E-29 4.79E-29 1.14E-28 1.01E-39 2.04E-28 1.92E-28 1.20E-28 8.28E-29 1.27E-28 
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fσ  8.01E-28 2.74E-28 2.23E-28 5.10E-28 5.54E-39 7.66E-28 7.31E-28 4.91E-28 4.46E-28 6.93E-28 

2f  
f  1.78E-16 5.62E-16 6.03E-16 9.19E-17 5.26E-35 4.20E-16 2.44E-22 7.16E-22 3.97E-17 2.41E-18 

fσ  8.72E-16 2.14E-15 2.30E-15 4.21E-16 2.88E-34 1.63E-15 1.34E-21 3.89E-21 2.18E-16 1.30E-17 

3f  
f  1.19E-23 5.91E-25 1.31E-23 1.74E-24 2.35E-25 4.96E-24 6.38E-22 1.91E-23 3.41E-21 7.75E-13 

fσ  6.49E-23 2.61E-24 6.52E-23 5.07E-24 8.29E-25 2.66E-23 2.64E-21 1.04E-22 1.85E-20 4.24E-12 

4f  
f  3.34E-26 9.36E-16 5.20E-16 5.23E-16 6.13E-19 7.80E-18 5.46E-16 6.14E-16 7.75E-21 4.90E-16 

fσ  1.52E-25 3.79E-15 2.85E-15 2.86E-15 3.31E-18 4.27E-17 2.99E-15 2.37E-15 4.24E-20 2.56E-15 

5f  
f  2.75E+01 2.85E+01 2.97E+01 3.85E-04 1.45E-01 3.55E-01 8.35E-01 1.23E+00 2.78E+01 2.85E+01 

fσ  4.67E-02 4.29E-02 4.47E-02 2.85E-02 4.38E-02 4.52E-02 4.31E-02 3.96E-02 4.18E-02 4.49E-02 

6f  
f  1.89E-02 1.93E-02 1.60E-02 1.85E-02 1.54E-02 1.57E-02 2.17E-02 2.06E-02 2.15E-02 1.92E-02 

fσ  1.27E-02 1.50E-02 7.99E-03 1.14E-02 5.55E-03 8.61E-03 1.45E-02 1.91E-02 1.90E-02 1.34E-02 

7f  
f  1.98E-03 1.76E-03 1.49E-03 1.58E-03 1.32E-03 1.71E-03 1.61E-03 1.95E-03 2.30E-03 1.36E-03 

fσ  2.02E-03 1.62E-03 2.01E-03 1.56E-03 1.03E-03 1.38E-03 1.92E-03 2.03E-03 2.79E-03 1.10E-03 

8f  
f  -5.11E+02 -5.05E+03 -5.27E+04 -5.19E+03 -5.13E+04 -4.98E+03 -5.05E+03 -4.12E+02 -5.11E+02 -4.98E+03 

fσ  5.20E+02 4.42E+02 5.69E+02 4.20E+02 4.77E+02 4.66E+02 4.54E+02 5.31E+02 3.24E+02 5.47E+02 

9f  
f  1.14E-14 6.94E+00 4.72E+00 1.07E+01 4.76E-01 6.13E+00 8.69E+00 2.16E+01 7.27E-02 1.41E+01 

fσ  2.75E-14 2.55E+01 2.56E+01 4.05E+01 2.38E+00 3.18E+01 3.15E+01 5.64E+01 2.81E-01 4.31E+01 

10f  
f  1.23E-14 8.70E-15 9.06E-15 1.13E-14 1.04E-14 1.05E-14 9.06E-15 1.26E-14 8.47E-15 8.82E-15 

fσ  6.29E-15 3.29E-15 2.97E-15 6.79E-15 2.97E-15 6.06E-15 3.82E-15 6.47E-15 5.55E-15 3.58E-15 

11f  
f  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.78E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

fσ  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.85E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

12f  
f  2.11E+00 9.59E-01 9.95E-01 7.95E-01 9.38E-02 8.96E-01 5.60E-01 1.08E+00 1.32E-01 6.74E-01 

fσ  7.38E+00 3.26E+00 3.37E+00 3.83E+00 1.99E-02 3.17E+00 2.48E+00 3.73E+00 1.76E-01 3.12E+00 

13f  
f  3.98E-01 4.28E-01 4.12E-01 3.90E-01 3.85E-01 1.06E+00 3.91E-01 4.08E-01 1.14E+00 3.88E-01 

fσ  2.68E-01 2.24E-01 3.49E-01 1.90E-01 1.51E-01 3.82E+00 1.76E-01 2.24E-01 4.12E+00 2.08E-01 

14f  
f  -8.86E+02 -8.82E+02 -8.91E+02 -8.91E+02 -8.90E+02 -8.93E+02 -8.93E+02 -8.97E+02 -8.89E+02 -8.89E+02 

fσ  2.29E+01 2.03E+01 2.22E+01 2.03E+01 1.80E+01 2.72E+01 1.91E+01 2.24E+01 1.97E+01 1.98E+01 

 

Table 3.4. Experimental results obtained by the proposed algorithm using different values of γ . 

 

Considering their magnitude, the values of 
1 1.4=α , 

2 0.05=α  and 0.005=γ indicate that the at-

traction procedure is the most important operation in the optimization strategy. This fact confirms 

that the attraction process represents the most prolific operation in the Fuzzy strategy, since it 

searches new solutions in the direction where high fitness values are expected.  According to its 

importance, the repulsion operation holds the second position. Repulsion produces significant 

small modifications of candidate solutions in comparison to the attraction process. This result indi-

cates that the repulsion process involves an exploration with a higher uncertainty compared with 

the attraction movement. This uncertainty is a consequence of the lack of knowledge, if the oppo-

site movement may reach a position with a better fitness value. The only available evidence is that 

in direction of the attraction movement, it is not possible to find promising solutions. Finally, the 

small value of γ  induces a minor vibration for each acceptable candidate solution, in order to re-

fine its quality in terms of fitness value. 
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3.5.2. Comparison with other optimization approaches 

 

In this subsection, the proposed method is evaluated in comparison with other popular optimiza-

tion algorithms based on evolutionary principles. In the experiments, we have applied the Fuzzy 

optimization algorithm to the 19 functions from section 3.7, and the results are compared to those 

produced by the Harmony Search (HS) method (Geem et al., 2001), the Bat (BAT) algorithm 

(Yang, 2010), the Differential Evolution (DE) (Storn & Price, 1995), the Particle Swarm Optimi-

zation (PSO) method (Kennedy & Eberhart, 1995b), the Artificial Bee Colony (ABC) algorithm 

(Dervis Karaboga, 2005) and the Co-variance Matrix Adaptation Evolution Strategies (CMA-ES) 

(Hansen, et al., 1995). These are considered the most popular metaheuristic algorithms currently in 

use (Boussaïd, et al., 2013). In the experiments, the population size N has been configured to 50 

individuals. The operation of the benchmark functions is conducted in 50 and 100 dimensions. In 

order to eliminate the random effect, each function is tested for 30 independent runs. In the com-

parison, a fixed number FN of function evaluations has been considered as a stop criterion. There-

fore, each execution of a test function consists of FN=
410 n  function evaluations (where n repre-

sents the number of dimensions). This stop criterion has been decided to keep compatibility with 

similar works published in the literature (Han, et al., 2014; Li, et al., 2016; Meng & Pan, 2016; Yu 

& Li, 2015). 

 

For the comparison, all methods have been configured with the parameters, which according to 

their reported references reach their best performance. Such configurations are described as fol-

lows: 

 

1. HS (Geem et al., 2001): HCMR=0.7 and PArate=0.3.  

2. BAT (Yang, 2010): Loudness (A=2), Pulse Rate (r=0.9), Frequency minimum (
min 0=Q ) 

and Frequency maximum (
min 1=Q ). 

3. DE (Storn & Price, 1995): CR=0.5 and F=0.2. 

4. PSO (Kennedy & Eberhart, 1995b): 
1 2c =  and

2 2c = ; the weight factor decreases line-

arly from 0.9 to 0.2. 

5. ABC (Dervis Karaboga, 2005): limit=50.  

6. CMA-ES (Hansen et al., 1995): The source code has been obtained from the original au-

thor (“Laboratoire de Recherche en Informatique,” 2017). In the experiments, some mi-

nor changes have been applied to adapt CMA-ES to our test functions, but the main body 

is unaltered.   

7. FUZZY: 
1 1.4=α , 

2 0.05=α  and 0.005=γ .   

Several tests have been conducted for comparing the performance of the proposed Fuzzy algo-

rithm. The experiments have been divided in Unimodal functions (Table 3.17), Multimodal func-

tions (Table 3.18) and Hybrid functions (Table 3.19). 

 

3.5.2.1. Unimodal test functions 

 

In this test, the performance of the Fuzzy algorithm is compared with HS, BAT, DE, PSO, CMA-

ES and ABC, considering functions with only one optimum. Such functions are represented by 

functions
1f  to 

7f  in Table 3.17. In the test, all functions have been operated in 50 dimensions 

(n=50). The experimental results obtained from 30 independent executions are presented in Table 

3.5. They report the averaged best fitness values ( f ) and the standard deviations (
fσ ) obtained 

in the runs. We have also included the best (
Bestf ) and the worst (

Worstf ) fitness values obtained 

during the total number of executions. The best entries in Table 3.5 are highlighted in boldface. 
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From Table 3.5, according to the averaged best fitness value ( f ) index, we can conclude that the 

proposed method performs better than the other algorithms in functions
1f , 

3f , 
4f and 

7f . In 

the case of functions
2f , 

5f and
6f , the CMA-ES algorithm obtains the best results.  

 

Unimodal functions of Table 3.17 with n=50. 

 HS BAT DE PSO CMA-ES ABC FUZZY 

1f  

f  87035.2235 121388.0212 61.1848761 4.39E+03 1.34E-11 3.09E-06 2.30E-29 

fσ  5262.26532 6933.129294 163.555175 1261.19173 5.1938E-12 3.4433E-06 1.17237E-28 

Bestf  76937.413 108807.878 0.03702664 1.65E+03 5.69E-12 2.47E-07 5.17E-114 

Worstf  95804.9747 138224.1125 878.436103 7.37E+03 2.55E-11 1.72E-05 6.42E-28 

2f  

f  1.3739E+14 4.31636E+17 0.04057031 4.54E+01 9.92E-06 1.39E-03 4.15E-04 

fσ  3.188E+14 1.53734E+18 0.09738928 16.386199 2.5473E-06 0.00071159 0.00227186 

Bestf  1.0389E+10 1633259021 4.03E-12 2.61E+01 5.87E-06 5.62E-04 7.20E-59 

Worstf  1.64E+15 7.60E+18 0.45348954 9.75E+01 1.44E-05 2.98E-03 0.01244379 

3f  

f  130472.801 297342.4211 55982.8182 1.57E+04 2.89E-03 4.14E+04 1.93E-05 

fσ  11639.2864 99049.83213 9234.85975 9734.92204 0.00164804 4785.18216 4.2843E-05 

Bestf  104514.012 164628.01 36105.5799 4.23E+03 9.88E-04 2.85E+04 1.66E-10 

Worstf  147659.604 563910.1737 70938.4205 4.96E+04 8.88E-03 4.84E+04 0.00018991 

4f  

f  80.1841708 90.17564768 25.8134455 2.32E+01 3.96E-04 7.35E+01 3.37E-16 

fσ  2.55950002 1.862675447 6.30765469 3.51409694 8.2083E-05 3.60905231 1.8484E-15 

Bestf  73.2799506 86.11297617 15.7894785 1.73E+01 2.57E-04 6.55E+01 7.52E-70 

Worstf  83.8375161 92.78058061 38.8210447 3.06E+01 5.65E-04 7.90E+01 1.01E-14 

5f  

f  1024.70257 276.2438329 52.5359064 6.04E+02 3.51E-05 4.53E+01 4.85E-04 

fσ  100.932656 45.12095642 7.69858817 198.334321 0.49723274 1.13628434 0.0389642 

Bestf  783.653134 211.6001157 47.1421071 289.29993 1.21E-09 42.1783081 3.30E-09 

Worstf  1211.08532 399.1608511 75.1362468 1126.38574 3.0654249 47.7422282 4.6323356 

6f  

f  88027.4244 119670.6412 43.5155273 4.51E+03 1.42E-11 4.15E-06 2.18E-07 

fσ  5783.21576 6818.723503 80.4217558 2036.72193 5.5321E-12 8.5588E-06 0.84607249 

Bestf  77394.5062 105958.6224 0.01832758 1705.47866 5.88E-12 6.00E-07 1.18513127 

Worstf  97765.4819 130549.7364 306.098587 13230.6439 2.85E-11 4.79E-05 5.18913374 

7f  

f  197.476174 116.8196698 0.08164158 4.43E+01 2.82E-02 6.86E-01 3.43E-04 

fσ  28.808573 16.46542385 0.12240289 17.8200508 0.00499868 0.14547266 0.00447976 

Bestf  116.483527 87.64501186 0.01387586 15.7697307 0.0201694 0.41798576 0.00018152 

Worstf  263.233333 156.0245904 0.65353574 85.526355 0.03888318 0.8957427 0.02057915 

 

Table 3.5. Minimization results of unimodal functions of Table 3.17 with n=50.  

 

By contrast, the rest of the algorithms presents different levels of accuracy, with ABC being the 

most consistent. These results indicate that the proposed approach provides better performance 

than HS, BAT, DE, PSO and ABC for all functions except for the CMA-ES which delivers similar 

results to those produced by the proposed approach. By analyzing the standard deviation (
fσ ) in-
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dex in Table 3.5, it becomes clear that the metaheuristic method which presents the best results al-

so normally obtains the smallest deviations. 

 

Wilcoxon test for unimodal functions of Table 3.17 with n=50. 

FUZZY vs HS BAT DE PSO CMA-ES ABC 

1f  5.0176E-07▲ 9.4988E-08▲ 7.3648E-07▲ 7.8952E-05▲ 7.234E-03▲ 5.1480E-04▲ 

2f  4.0553E-07▲ 2.4620E-08▲ 2.0793E-03▲ 2.0182E-05▲ 0.0937► 3.0415E-03▲ 

3f  2.0189E-08▲ 3.7451E-08▲ 1.0492E-07▲ 4.1590E-05▲ 0.0829► 2.7612E-06▲ 

4f  3.5470E-07▲ 2.1490E-08▲ 3.4081E-06▲ 2.0121E-06▲ 8.143E-03▲ 4.1680E-07▲ 

5f  1.0795E-08▲ 4.0479E-09▲ 2.0354E-07▲ 8.1350E-09▲ 0.1264► 1.2541E-07▲ 

6f  6.1769E-07▲ 6.5480E-08▲ 4.5972E-06▲ 2.1594E-07▲ 0.0741► 2.1548E-03▲ 

7f  4.3617E-07▲ 1.9235E-08▲ 2.8070E-04▲ 5.4890E-06▲ 0.1031► 1.0430E-03▲ 

▲ 7 7 7 7 2 7 

▼ 0 0 0 0 0 0 

► 0 0 0 0 5 0 

 

Table 3.6.  p-values produced by Wilcoxon test comparing FUZZY vs. HS, FUZZY vs. BAT, FUZZY vs. 

DE, FUZZY vs. PSO, FUZZY vs. CMA-ES and FUZZY vs. ABC over the “averaged best fitness values” 

from Table 3.5. 

 

To statistically analyze the results of Table 3.5, a non-parametric test known as the Wilcoxon 

analysis (García, et al., 2009; Wilcoxon, 1945) has been conducted. It allows us to evaluate the 

differences between two related methods. The test is performed for the 5% (0.05) significance lev-

el over the “averaged best fitness values ( )f ” data.  Table 3.6 reports the p-values generated by 

Wilcoxon analysis for the pair-wise comparison of the algorithms. For the analysis, five groups are 

produced: FUZZY vs. HS, FUZZY vs. BAT, FUZZY vs. DE, FUZZY vs. PSO, FUZZY vs. CMA-

ES and FUZZY vs. ABC. In the Wilcoxon analysis, it is considered a null hypothesis that there is 

no notable difference between the two methods. On the other hand, it is admitted as an alternative 

hypothesis that there is an important difference between the two approaches. In order to facilitate 

the analysis of Table 3.6, the symbols ▲, ▼, and ► are adopted. ▲ indicates that the proposed 

method performs significantly better than the tested algorithm on the specified function. ▼ symbol-

izes that the proposed algorithm performs worse than the tested algorithm, and ► means that the 

Wilcoxon rank sum test cannot distinguish between the simulation results of the Fuzzy optimizer 

and the tested algorithm. The number of cases that fall in these situations are shown at the bottom 

of the table.  

 

After an analysis of Table 3.6, it is evident that all p-values in the FUZZY vs. HS, FUZZY vs. 

BAT, FUZZY vs. DE, FUZZY vs. PSO and FUZZY vs. ABC columns are less than 0.05 (5% sig-

nificance level) which is a strong evidence against the null hypothesis and indicates that the pro-

posed method performs better (▲) than the HS, BAT, DE, PSO and ABC algorithms.  This data is 

statistically significant and shows that it has not occurred by coincidence (i.e. due to the normal 

noise contained in the process).  

 

In the case of the comparison between FUZZY and CMA-ES, the FUZZY method maintains a bet-

ter (▲) performance in functions 
1f  and

4f . In functions
2f , 

3f , 
5f , 

6f  and 
7f  the CMA-ES 

presents a similar performance to the FUZZY method. This fact can be seen from the column 

FUZZY vs. CMA-ES, where the p-values of functions
2f , 

3f , 
5f , 

6f  and 
7f  are higher than 

0.05 (►). These results reveal that there is no statistical difference in terms of precision between 

FUZZY and CMA-ES, when they are applied to the aforementioned functions. In general, the re-
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sults of the Wilcoxon analysis demonstrate that the presented FUZZY algorithm performs better 

than most of the other methods.   

 

Unimodal functions of Table 3.17 with n=100. 

 HS BAT DE PSO CMA-ES ABC FUZZY 

1f  

f  2.19E+05 2.63E+05 3.89E+02 1.43E+04 1.32E-05 2.45E-02 1.89E-16 

fσ  10311.7753 14201.563 323.607739 2920.78144 3.2095E-06 0.02575058 1.0358E-15 

Bestf  1.74E+05 2.30E+05 1.26E+01 9.64E+03 8.00E-06 4.46E-03 6.43E-68 

Worstf  2.30E+05 2.89E+05 1.38E+03 2.09E+04 2.04E-05 1.26E-01 5.67E-15 

2f  

f  7.24E+37 1.31E+45 5.73E-01 1.51E+02 1.26E-02 9.28E-02 1.89E-08 

fσ  2.587E+38 6.9056E+45 0.57775559 41.1235147 0.00287131 0.02545392 1.03445E-07 

Bestf  5.45E+31 3.36E+34 2.94E-02 9.05E+01 8.91E-03 5.40E-02 4.84E-46 

Worstf  1.35E+39 3.79E+46 2.56E+00 2.52E+02 2.38E-02 0.18353771 5.67E-07 

3f  

f  4.98E+05 1.15E+06 2.84E+05 7.90E+04 8.76E-04 1.84E+05 2.07E-08 

fσ  58467.2769 312595.437 27132.9955 34174.7164 0.7743521 20108.5821 0.54899784 

Bestf  3.37E+05 4.69E+05 2.31E+05 3.71E+04 8.76E-04 1.27E+05 3.94E-09 

Worstf  616974.994 1942095.52 356515.579 160139.954 145362.58 219982.397 2.25159901 

4f  

f  9.01E+01 9.46E+01 4.05E+01 2.81E+01 2.16E-06 9.04E+01 2.63E-15 

fσ  1.11508888 0.85959226 6.84190892 3.2581793 0.03982112 1.8297347 6.0638E-15 

Bestf  8.69E+01 9.29E+01 2.70E+01 2.15E+01 1.39E-08 8.37E+01 1.24E-67 

Worstf  9.16E+01 9.62E+01 5.55E+01 3.40E+01 2.91E-01 9.30E+01 2.02E-14 

5f  

f  2.70E+03 1.15E+03 1.29E+02 3.95E+03 9.09E-04 1.04E+02 9.86E-04 

fσ  540.831375 88.3793364 18.7799545 641.937017 1.45575683 6.27511831 0.14584341 

Bestf  0 980.500576 101.873611 2571.71519 1.32E-05 96.9508931 2.43E-06 

Worstf  3247.18778 1308.54456 167.973469 5316.76433 94.8276069 121.37168 99.203712 

6f  

f  2.21E+05 2.64E+05 3.70E+02 1.45E+04 1.51E-05 1.92E-02 2.02E-05 

fσ  9381.48118 18216.585 280.553973 2798.89068 2.2704E-06 0.01816388 2.87413087 

Bestf  198863.662 226296.005 16.8023385 9243.44125 1.10E-05 0.0025079 0.15E-05 

Worstf  235307.769 288557.483 1278.66865 20954.2719 1.94E-05 0.09120152 23.7436855 

7f  

f  1.28E+03 4.67E+02 7.35E-01 4.85E+02 7.03E-02 2.20E+00 4.51E-03 

fσ  100.811769 54.7947564 0.58830651 125.201537 0.01043989 0.36193003 0.00535871 

Bestf  975.480173 351.38694 0.08400938 233.702775 0.04689927 1.43278953 3.59E-05 

Worstf  1424.35137 609.120842 2.38315757 806.350617 0.08989015 2.98777544 0.0213576 

  
  Table 3.7. Minimization results of unimodal functions of Table 3.17 with n=100. 

 

In addition to the experiments in 50 dimensions, it was also conducted a set of simulations on 100 

dimensions to test the scalability of the presented Fuzzy method. In the analysis, it was also em-

ployed all the compared algorithms in this test. The simulation results are presented in Tables 3.7 

and 3.8, which report the data produced during the 30 executions and the Wilcoxon analysis, re-

spectively. According to the averaged best fitness value ( )f  index from Table 3.7, the proposed 

method performs better than the other algorithms in functions
1f , 

2f , 
3f , 

4f and 
7f . In the 
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case of functions 
5f and

6f , the CMA-ES algorithm obtains the best results. On the other hand, 

the rest of the algorithms present different levels of accuracy.  

 

After analyzing Table 3.7, it is clear that the proposed fuzzy method presents slightly better results 

than CMA-ES in 100 dimensions. From Table 3.8, it is evident that all p-values in the FUZZY vs. 

HS, FUZZY vs. BAT, FUZZY vs. DE, FUZZY vs. PSO and FUZZY vs. ABC columns are less 

than 0.05, which indicates that the proposed method performs better than the HS, BAT, DE, PSO 

and ABC algorithms. In the case of FUZZY vs. CMA-ES, the FUZZY method maintains a better 

performance in functions
1f , 

2f  and
4f . In functions

3f , 
5f , 

6f  and 
7f  the CMA-ES presents 

a similar performance to the FUZZY method. This experiment shows that the more dimensions 

there are, the worse the performance of the CMA-ES is.  

 

Wilcoxon test for unimodal functions of Table 3.17 with n=100. 

FUZZY vs HS BAT DE PSO CMA-ES ABC 

1f  3.0150E-08▲ 8.0794E-08▲ 6.4901E-06▲ 2.0146E-07▲ 7.9460E-04▲ 4.0168E-05▲ 

2f  5.3480E-11▲ 1.1302E-11▲ 7.4985E-05▲ 4.7001E-06▲ 2.4920E-04▲ 8.2940E-04▲ 

3f  6.0145E-07▲ 7.0651E-08▲ 4.6782E-07▲ 8.4670E-06▲ 0.0743► 2.3014E-07▲ 

4f  1.4920E-07▲ 3.7912E-07▲ 2.0142E-06▲ 1.4972E-06▲ 7.4682E-04▲ 2.1966E-07▲ 

5f  8.7942E-06▲ 5.4972E-06▲ 9.4662E-05▲ 2.1580E-07▲ 0.1851► 4.7223E-05▲ 

6f  2.7301E-07▲ 4.7920E-07▲ 8.0493E-05▲ 5.7942E-06▲ 0.2451► 1.4901E-04▲ 

7f  1.0458E-07▲ 5.4201E-06▲ 2.0051E-04▲ 7.6190E-06▲ 0.0851► 4.610E-05▲ 

▲ 7 7 7 7 3 7 

▼ 0 0 0 0 0 0 

► 0 0 0 0 4 0 

 

Table 3.8.  p-values produced by Wilcoxon test comparing FUZZY vs. HS, FUZZY vs. BAT, FUZZY vs. 

DE, FUZZY vs. PSO, FUZZY vs. CMA-ES and FUZZY vs. ABC over the “averaged best fitness values” 

from Table 3.7. 

 

3.5.2.2. Multimodal test functions 

 

Contrary to unimodal functions, multimodal functions include many local optima. For this cause, 

they are, in general, more complicated to optimize. In this test the performance of our algorithm is 

compared with HS, BAT, DE, PSO, CMA-ES and ABC regarding multimodal functions. Multi-

modal functions are represented by functions from
8f  to 

14f  in Table 3.18, where the number of 

local minima increases exponentially as the dimension of the function increases. Under such con-

ditions, the experiment reflects the ability of each algorithm to find the global optimum in the 

presence of numerous local optima. In the simulations, the functions are operated in 50 dimensions 

(n=50). The results, averaged over 30 executions, are reported in Table 3.9 in terms of the best fit-

ness values ( )f  and the standard deviations (
fσ ). The best results are highlighted in boldface.  

Likewise, p-values of the Wilcoxon test of 30 independent repetitions are exhibited in Table 3.10. 

In the case of 
8f , 

10f , 
11f and 

14f , the proposed fuzzy method presents a better performance than 

HS, BAT, DE, PSO, CMA-ES and ABC. For functions 
12f  and

13f , the fuzzy approach exhibits a 

worse performance compared to CMA-ES. Additionally, in the case of function 
9f the proposed 

method and ABC maintain the best performance compared to HS, BAT, DE, PSO and CMA-ES. 

The rest of the algorithms present different levels of accuracy, with ABC being the most con-

sistent. In particular, this test yields a large difference in performance, which is directly related to a 

better trade-off between exploration and exploitation produced by the formulated rules of the pro-

posed Fuzzy method.   
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Multimodal functions of Table 3.18 with n=50. 

 HS BAT DE PSO CMA-ES ABC FUZZY 

8f  

f  -415.83905 -270.254967 -0232.0393 -1.00E+04 -6.22E+03 -1.94E+04 -2.69E+05 

fσ  318.326084 474.2974644 799.670519 1139.72504 577.603827 328.074723 338131.298 

Bestf  -183.25306 -253.007751 -0830.6009 -12207.27 -910.14987 -0460.0202 -602802.18 

Worstf  -937.01673 -560.016959 -6849.3789 -417.20923 -277.36121 -8598.5718 -1860.8124 

9f  

f  637.314967 370.181231 94.9321639 2.78E+02 9.12E-03 6.43E-06 1.03E-06 

fσ  25.9077403 31.0789956 23.8913991 38.1965572 8.314267 2.34825349 1.6781696 

Bestf  581.055495 321.398632 49.5787092 2.09E+02 6.91E-04 1.99899276 0 

Worstf  681.505155 450.919651 143.664199 375.979507 342.621828 11.2277505 310.43912 

10f  

f  20.2950743 19.2995398 1.04072229 1.21E+01 8.74E-07 1.69E-02 1.40E-14 

fσ  0.09866263 0.11146929 0.69779278 1.03376556 1.4921E-07 0.01136192 4.489E-15 

Bestf  19.9003135 18.9741996 0.0040944 9.35E+00 5.62E-07 2.92E-03 7.99E-15 

Worstf  20.472367 19.576839 2.78934934 1.38E+01 1.18E-06 5.30E-02 2.22E-14 

11f  

f  786.564993 1072.40695 0.98725915 4.05E+01 9.87E-10 6.23E-03 0.00E+00 

fσ  49.0195978 70.0220465 0.62998733 12.8397453 4.8278E-10 0.01154936 0 

Bestf  658.158623 926.062051 0.00107768 14.1594978 2.92E-10 0.01503879 0 

Worstf  860.983823 1186.93137 2.4153938 64.7187195 2.32E-09 0.053391 0 

12f  

f  557399404 1029876322 1309.87126 4.08E+01 2.58E-12 3.67E-07 1.91E-08 

fσ  68320767.6 150067294 4319.40539 27.0146375 1.0706E-12 4.1807E-07 0.63138873 

Bestf  444164964 763229039 0.20366113 16.607083 9.05E-13 2.14E-08 1.95E-08 

Worstf  700961313 1277767934 17508.9826 136.891908 5.63E-12 1.84E-06 19.8206283 

13f  

f  1163989772 1982187734 29551.4297 1.41E+05 5.03E-11 5.98E-06 9.06E-09 

fσ  123421334 291495991 137415.981 186740.994 2.7928E-11 7.5042E-06 0.0439066 

Bestf  898858903 1250159582 4.37613356 1594.63864 1.37E-11 5.06E-07 6.91E-10 

Worstf  1453640537 2558128052 754699.3 735426.524 1.38E-10 3.48E-05 60.2604938 

14f  

f  -58.679663 -1066.80779 -937.10075 -1.40E+03 -1.84E+03 -1.32E+03 -1.96E+03 

fσ  40.8885038 61.5793102 13.199329 77.8992722 41.6063335 29.4904745 0.06633944 

Bestf  -060.29598 -1213.46466 -958.29881 -527.69665 -915.89813 -395.05118 -958.30818 

Worstf  -93.619964 -988.87492 -915.09727 -275.90292 -732.12078 -1262.8218 -958.04305 

 

Table 3.9. Minimization results of multimodal functions of Table 3.18 with n=50. 

 

The results of the Wilcoxon analysis, presented in Table 3.10, statistically demonstrate that the 

proposed algorithm performs better than HS, DE, BAT, DE and PSO in all test functions (
8f -

14f ). In the case of the comparison between FUZZY and CMA-ES, the FUZZY method maintains 

a better (▲) performance in functions
8f , 

9f , 
10f , 

11f  and
14f .  

 

On the other hand, in functions 
12f  and 

13f  the FUZZY method presents worse results (▼) than 

the CMA-ES algorithm. However, according to Table 3.10, the proposed FUZZY approach ob-

tains a better performance than ABC in all cases except for function
9f , where there is no differ-

ence in results between the two. 
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Wilcoxon test for Multimodal functions of Table 3.18 with n=50. 

FUZZY vs HS BAT DE PSO CMA-ES ABC 

8f  7.1350E-05▲ 5.4032E-05▲ 3.4760E-05▲ 1.1452E-05▲ 4.7201E-06▲ 2.4993E-05▲ 

9f  4.1640E-05▲ 2.4886E-05▲ 6.1472E-04▲ 2.1235E-05▲ 4.2910E-04▲ 0.0783► 

10f  3.1425E-05▲ 3.0183E-05▲ 7.4920E-04▲ 1.4982E-05▲ 3.1157E-04▲ 9.4872E-04▲ 

11f  5.4971E-08▲ 9.3345E-09▲ 7.1350E-04▲ 5.3791E-06▲ 8.4973E-03▲ 6.1540E-03▲ 

12f  6.4821E-11▲ 8.4038E-11▲ 4.6840E-08▲ 5.2920E-06▲ 7.2365E-04▼ 4.0312E-03▲ 

13f  7.9824E-11▲ 9.7930E-11▲ 4.1622E-10▲ 7.4682E-11▲ 9.4003E-04▼ 4.5513E-05▲ 

14f  7.1352E-06▲ 4.5821E-07▲ 5.7920E-04▲ 8.1641E-05▲ 9.6401E-04▲ 5.6820E-05▲ 

▲ 7 7 7 7 5 6 

▼ 0 0 0 0 2 0 

► 0 0 0 0 0 1 

 

Table 3.10.  p-values produced by Wilcoxon test comparing FUZZY vs. HS, FUZZY vs. BAT, FUZZY 

vs. DE, FUZZY vs. PSO, FUZZY vs. CMA-ES and FUZZY vs. ABC over the “averaged best fitness values” 

values from Table 3.9. 

  

Multimodal functions of Table 3.18 with n=100. 

 HS BAT DE PSO CMA-ES ABC FUZZY 

8f  

f  -7.87E+03 -4.47E+03 -2.34E+04 -1.48E+04 -8.66E+03 -3.51E+04 -1.62E+05 

fσ  584.340059 799.31231 3914.77561 1729.15916 831.547363 554.101741 47514.2941 

Bestf  -141.81789 -497.01004 -32939.624 -9362.7097 -0177.5382 -6655.8271 -72938.668 

Worstf  -669.02042 -858.38997 -8358.9463 -2408.7377 -375.40434 -3939.9476 -87985.343 

9f  

f  1.44E+03 9.12E+02 3.98E+02 7.49E+02 2.37E+02 6.49E+01 4.00E-05 

fσ  41.464352 60.4785656 67.0536747 67.5932069 209.403173 7.90879809 0.00015207 

Bestf  1293.19918 772.978721 205.209989 635.167862 74.8466353 49.9922666 0 

Worstf  1503.0147 1033.80416 522.504376 865.893944 806.576683 79.9136576 0.0005994 

10f  

f  2.06E+01 1.98E+01 2.42E+00 1.33E+01 6.14E-04 3.01E+00 3.96E-12 

fσ  0.06052521 0.08670819 0.82882063 0.87767923 9.6205E-05 0.31154878 2.1504E-11 

Bestf  2.05E+01 1.96E+01 1.12E+00 1.16E+01 4.14E-04 2.26E+00 1.51E-14 

Worstf  2.08E+01 2.00E+01 4.63E+00 1.51E+01 8.49E-04 3.59E+00 1.18E-10 

11f  

f  1.96E+03 2.38E+03 4.46E+00 1.18E+02 1.20E-03 1.61E-01 0.00E+00 

fσ  81.7177655 134.986806 2.67096611 22.637086 0.00028091 0.14553457 0 

Bestf  1773.68789 2035.67623 1.02086153 86.1907763 0.00066065 0.01309143 0 

Worstf  2083.84569 2557.11279 12.932624 170.763675 2.25E-03 0.64617359 0 

12f  

f  1.88E+09 2.55E+09 4.85E+04 2.06E+04 2.20E-06 5.96E-03 2.67E+02 

fσ  110307213 242921094 140231.648 50859.5682 7.1926E-07 0.01533206 1423.14186 

Bestf  1.64E+09 1.87E+09 1.86E+00 2.93E+01 1.27E-06 2.91E-05 4.21E-01 

Worstf  2090764763 2966731722 769582.376 251450.989 4.07E-06 0.06229125 7801.38816 

13f  

f  3.54E+09 4.83E+09 6.63E+05 1.77E+06 2.20E+01 4.74E-03 4.71E-05 

fσ  255789666 477261470 1076152.4 1373210.26 33.1622741 0.00582626 1.2473E-05 

Bestf  2936347707 3998731504 3147.16418 417561.443 9.98142144 0.00075547 2.65E-05 

Worstf  3928279153 5901118241 4651437.83 7741055.37 176.314279 0.02480097 7.86E-05 

14f  f  -1.57E+03 -1.82E+03 -3.83E+03 -2.46E+03 -3.57E+03 -3.78E+03 -2.30E+03 
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fσ  79.1693639 76.7852589 36.6930452 97.0301039 59.5947211 22.8558428 65.2812493 

Bestf  -722.36681 -945.12523 -900.49741 -683.50044 -676.29234 -823.95029 -455.01558 

Worstf  -432.17812 -695.67279 -740.63055 -280.67655 -393.55796 -3724.2658 -156.74064 

 

Table 3.11. Minimization results of multimodal functions from Table 3.18 with n=100. 

 

In addition to the 50-dimension benchmark function tests, we also performed a series of simula-

tions with 100 dimensions by using the same set of functions in Table 3.18. The results are pre-

sented in Tables 3.11 and 3.12, which report the data produced during the 30 executions and the 

Wilcoxon analysis, respectively.  

 

In Table 3.11, it can be seen that the proposed method performs better than HS, BAT, DE, PSO, 

CMA-ES and ABC for functions
8f , 

9f , 
10f , 

11f and 
13f . On the other hand, the CMA-ES main-

tains better results than HS, BAT, DE, PSO, ABC and the fuzzy optimizer for function
12f . Like-

wise, the DE method obtains better indexes than the other algorithms for function
14f .  

 

From the Wilcoxon analysis shown in Table 3.12, the results indicate that the proposed method 

performs better than the HS, BAT, DE, PSO and ABC algorithms. In the case of FUZZY vs. 

CMA-ES, the FUZZY method maintains a better performance in all test functions except in prob-

lem 
12f , where the CMA-ES produces better results than the proposed FUZZY method. This ex-

periment also shows that the more dimensions there are, the worse the performance of the CMA-

ES is.  

 

 

Wilcoxon test for Multimodal functions of Table 3.18 with n=100. 

FUZZY vs HS BAT DE PSO CMA-ES ABC 

8f  8.1340-05▲ 6.4720E-05▲ 4.6920E-05▲ 3.1664E-05▲ 7.1163E-05▲ 3.7920E-05▲ 

9f  1.3642E-07▲ 9.4982E-06▲ 7.6012E-06▲ 8.6620E-06▲ 5.4901E-06▲ 3.1362E-06▲ 

10f  6.9482E-07▲ 6.3482E-07▲ 3.5698E-06▲ 6.1345E-06▲ 3.1692E-04▲ 3.9302E-06▲ 

11f  4.9842E-07▲ 8.1647E-07▲ 7.1352E-04▲ 5.3120E-06▲ 2.0162E-03▲ 9.4867E-03▲ 

12f  4.2682E-08▲ 7.6801E-08▲ 8.4672E-07▲ 7.4682E-07▲ 3.0521E-06▼ 1.6428E-05▲ 

13f  4.5926E-09▲ 6.4720E-09▲ 6.1680E-07▲ 7.4682E-08▲ 9.1722E-06▲ 7.4682E-04▲ 

14f  8.1550E-05▲ 8.9647E-05▲ 6.4923E-04▼ 9.4212E-03▲ 5.4682E-04▲ 6.0125E-04▲ 

▲ 7 7 6 7 6 7 

▼ 0 0 1 0 1 0 

► 0 0 0 0 0 0 

 

Table 3.12.  p-values produced by Wilcoxon test comparing FUZZY vs. HS, FUZZY vs. BAT, FUZZY 

vs. DE, FUZZY vs. PSO, FUZZY vs. CMA-ES and FUZZY vs. ABC over the “averaged best fitness values” 

from Table 3.11. 

 

 

 

3.5.2.3. Hybrid test functions 

 

In this test, hybrid functions are employed to test the optimization performance of the proposed 

approach. Hybrid functions, shown in Table 3.19, are multimodal functions with complex behav-

iors, since they are built from different multimodal single functions. A detailed implementation of 

the hybrid functions can be found in (Wong et al., 2015).  In the experiments, the performance of 
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our proposed Fuzzy algorithm is compared with HS, BAT, DE, PSO, CMA-ES and ABC, consid-

ering functions
15f  to

19f .  

 

In the first test, all functions have been operated in 50 dimensions (n=50). The experimental re-

sults obtained from 30 independent executions are presented in Tables 3.13 and 3.14. In Table 

3.13, the indexes f , 
fσ ,

Bestf and
Worstf , obtained during the total number of executions, are re-

ported. Furthermore, Table 3.14 presents the statistical Wilcoxon analysis of the averaged best fit-

ness values f  from Table 3.13.  

 

Hybrid functions of Table 3.19 with n=50. 

 HS BAT DE PSO CMA-ES ABC FUZZY 

15f  

f  7.9969E+13 5.1022E+21 12.3509776 9.64E+03 6.36E-06 5.23E-04 2.49E-15 

fσ  1.3868E+14 2.7945E+22 16.9157032 5195.1729 2.0915E-06 0.00018266 6.6512E-15 

Bestf  1.5309E+10 8.1918E+12 0.01189652 4.19E+03 4.16E-06 2.68E-04 3.17E-58 

Worstf  4.7627E+14 1.53E+23 65.8109321 2.50E+04 1.48E-05 1.02E-03 2.53E-14 

16f  

f  2706.73644 3508.41961 73.699317 5.99E+02 5.88E+02 4.91E+01 4.90E+01 

fσ  103.253645 252.48393 13.915609 114.611979 9.03874746 0.19971751 0.00025806 

Bestf  2491.6759 2883.46006 49.0005972 393.824001 48.9964485 48.998348 48.9973691 

Worstf  2876.20757 3869.21201 103.690098 878.998232 81.0717712 49.6854294 48.9981462 

17f  

f  1151151029 2105822689 67405.5759 3.13E+05 5.40E+01 8.96E+02 5.40E+01 

fσ  113601255 190215425 193321.347 421404.743 0.00020018 132.212771 9.8857E-05 

Bestf  909668213 1637035871 413.088353 15529.3525 53.9999308 546.710586 53.9998073 

Worstf  1428940501 2452560936 936409.163 1947952.34 54.0007602 1155.9351 54.000177 

18f  

f  2.0155E+14 3.3427E+19 54.2557544 9.06E+02 5.99E+01 4.90E+01 4.90E+01 

fσ  3.9073E+14 1.83E+20 10.4970565 291.082635 12.4089453 0.01211373 0 

Bestf  911061731 3.2735E+13 49.0002421 530.607446 49.0000116 49.0021079 49 

Worstf  1.85E+15 1.00E+21 97.123625 1597.0748 86.0099556 49.0607764 49 

19f  

f  7.7416E+14 7.7174E+18 -9.5833354 1.17E+06 -1.44E+02 -1.43E+02 2.18E+01 

fσ  1.6757E+15 4.2201E+19 117.854019 5835860.88 0.39733093 0.29998167 472.608012 

Bestf  1343488881 1.939E+10 -43.748394 4511.91824 -44.056723 -43.608756 -3.2609165 

Worstf  7.53E+15 2.31E+20 334.753741 32053489.3 -42.208256 -143.0037 2523.59236 

 

Table 3.13. Minimization results of hybrid functions from Table 3.19 with n=50. 

 

According to Table 3.13, the proposed approach maintains a superior performance in comparison 

to most of the other methods. In the case of 
15f , 

16f  and 
18f , the proposed fuzzy method performs 

better than HS, BAT, DE, PSO, CMA-ES and ABC. For function
19f , the fuzzy approach presents 

a worst performance than CMA-ES or ABC.  However, in functions 
16f  and 

18f , the proposed 

method and ABC maintain a better performance than HS, BAT, DE, PSO and CMA-ES. For func-

tion 
17f  the proposed FUZZY method and CMA-ES perform better than other methods. There-

fore, the proposed FUZZY algorithm reaches better f values in 4 from 5 different functions. This 

fact confirms that the FUZZY method is able to produce more accurate solutions than its competi-

tors. From the analysis of 
fσ  in Table 3.13, it is clear that our FUZZY method obtain a better 
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consistency than the other algorithms, since its produced solutions present a small dispersion. As it 

can be expected, the only exception is function
19f , where the FUZZY algorithm does not achieve 

the best performance. Additional to such results, Table 3.13 shows that the proposed FUZZY 

method attains the best produced solution 
Bestf  during the 30 independent executions than the 

other algorithms, except for 
19f function. Besides, the worst fitness values 

Worstf  generated by the 

Fuzzy technique maintain a better solution quality than the other methods excluding function
19f . 

The case of obtaining the best 
Bestf  and 

Worstf indexes reflexes the remarkable capacity of the pro-

posed FUZZY method to produce better solutions through use an efficient search strategy.  

 

Table 3.14 shows the results of the Wilcoxon analysis over the averaged best fitness values f  

from Table 3.13.  They indicate that the proposed method performs better than the HS, BAT, DE 

and PSO algorithms. In the case of FUZZY vs. CMA-ES, the FUZZY method maintains a better 

performance in all test functions except in problem 
19f , where the CMA-ES produces better re-

sults than the proposed FUZZY method. However, in the comparison between the FUZZY algo-

rithm and ABC, FUZZY obtains the best results in all test functions except in problems
18f and 

16f , where there is no statistical difference between the two methods.  

 

 

Wilcoxon test for Hybrid functions of Table 3.19 with n=50. 

FUZZY vs HS BAT DE PSO CMA-ES ABC 

15f  4.6102E-10▲ 7.6801E-11▲ 8.1253E-07▲ 3.1678E-09▲ 1.3542E-04▲ 5.6932E-05▲ 

16f  5.6922E-08▲ 6.4982E-09▲ 6.3142E-04▲ 8.4320E-05▲ 6.4931E-05▲ 0.1560► 

17f  8.6523E-11▲ 9.4685E-11▲ 6.3352E-09▲ 7.3477E-10▲ 0.0956► 4.6501-04▲ 

18f  3.4962E-11▲ 7.6851E-12▲ 4.6820E-04▲ 5.3102E-06▲ 4.8235E-04▲ 0.1986► 

19f  7.6301E-10▲ 9.3114E-11▲ 4.3301E-07▲ 6.0021E-09▲ 6.3315E-07▼ 5.8937E-07▼ 

▲ 5 5 5 5 4 3 

▼ 0 0 0 0 1 1 

► 0 0 0 0 0 1 

 

Table 3.14.  p-values produced by Wilcoxon test comparing FUZZY vs. HS, FUZZY vs. BAT, FUZZY 

vs. DE, FUZZY vs. PSO, FUZZY vs. CMA-ES and FUZZY vs. ABC over the “averaged best fitness values” 

from Table 3.13. 

 

In addition to the test in 50 dimensions, a second set of experiments have also conducted in 100 

dimensions considering the same set of hybrid functions. Tables 3.15 and 3.16 present the results 

of the analysis in 100 dimensions. In Table 3.15, the indexes f , 
fσ ,

Bestf and
Worstf , obtained dur-

ing the total number of executions, are reported. On the other hand, Table 14 presents the statisti-

cal Wilcoxon analysis of the averaged best fitness values f  from Table 3.15.  

 

Table 3.15 confirms the advantage of the proposed method over HS, BAT, DE, PSO, CMA-ES 

and ABC. After analyzing the results, it is clear that the proposed FUZZY method produces better 

results than HS, BAT, DE, PSO, CMA-ES and ABC in functions 
15f -

18f .  However, it can be 

seen that the proposed method performs worse than CMA-ES and ABC in function
19f .  Similar to 

the case of 50 dimensions, in the experiments of 100 dimensions, the proposed FUZZY algorithm 

obtains solutions with the smallest level of dispersion (
fσ ). This consistency is valid for all func-

tions, except for problem
19f , where the CMA-ES obtain the best 

fσ value. Considering 

the
Bestf and 

Worstf  indexes, similar conclusion can be established that in the case of 50 dimensions. 
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In 100 dimension, it is also observed that the proposed FUZZY technique surpass all algorithms in 

the production of high quality solutions.  

  

 

Hybrid functions of Table 3.19 with n=100. 

 HS BAT DE PSO CMA-ES ABC FUZZY 

15f  

f  1.07E+38 1.45E+46 1.67E+02 3.58E+04 8.48E-03 8.13E-02 1.03E-05 

fσ  2.6648E+38 7.9319E+46 212.77092 19777.8798 0.00248591 0.04144673 5.64261E-05 

Bestf  1.88E+28 1.31E+37 5.17E+00 1.58E+04 5.99E-03 4.35E-02 4.50E-44 

Worstf  1.21E+39 4.34E+47 1.15E+03 9.15E+04 1.75E-02 2.66E-01 3.09E-04 

16f  

f  6.46E+03 8.00E+03 1.90E+02 1.36E+03 1.55E+02 1.81E+02 9.90E+01 

fσ  316.896114 426.761823 28.0273818 129.05773 18.161094 18.5185506 0.00187142 

Bestf  5753.69747 7125.84623 148.521771 1116.8234 122.010095 129.807203 98.9958572 

Worstf  6997.63377 8965.08163 260.542179 1681.54333 187.628218 206.634292 99.0057217 

17f  

f  3.57E+09 5.03E+09 6.85E+05 2.10E+06 5.95E+02 3.72E+03 1.09E+02 

fσ  251070990 401513619 1158365.05 1426951.79 84.33472 459.761456 0.0026802 

Bestf  2908492728 4028081811 4767.47553 428429.323 428.761773 2973.30401 108.99997 

Worstf  3953742523 5605713616 4789383.94 6274361.22 784.972289 4756.54052 109.01469 

18f  

f  3.30E+38 5.29E+43 1.33E+02 2.09E+03 1.49E+02 3.34E+02 1.08E+02 

fσ  1.2038E+39 2.669E+44 20.7615151 481.839456 23.6851947 908.915277 8.76059629 

Bestf  5.02E+29 4.38E+34 1.01E+02 1.24E+03 1.12E+02 9.90E+01 99.6507148 

Worstf  5.86E+39 1.47E+45 1.92E+02 3.51E+03 2.10E+02 4.24E+03 134.545048 

19f  

f  1.01E+38 1.49E+44 9.38E+03 6.45E+07 -2.94E+02 -2.01E+02 4.29E+07 

fσ  3.9907E+38 6.2388E+44 40545.7303 217095412 0.55047399 1.27097202 200132558 

Bestf  4.34E+29 1.43E+36 -1.10E+02 4.71E+04 -2.95E+02 -295.68221 -9.45E+01 

Worstf  2.18E+39 3.36E+45 2.23E+05 1.17E+09 -2.92E+02 -88.145624 1.08E+09 

 

Table 3.15. Minimization results of hybrid functions from Table 3.19 with n=100. 

 

On the other hand, the data obtained from the Wilcoxon analysis (Table 3.16) demonstrates that 

the proposed FUZZY method performs better than the other metaheuristic algorithms in all test 

functions, except in problem
18f , where the CMA-ES and ABC produce the best results.  

 

In the Table 3.16, it is also summarized the results of the analysis through the symbols ▲, ▼, and 

►. The conclusions of the Wilcoxon test statistically validate the results of Table 3.15. They indi-

cate that the superior performance of the FUZZY method is as a consequence of a better search 

strategy and not for random effects.  

 

 

 

 

Wilcoxon test for Hybrid functions of Table 3.19 with n=100. 

FUZZY vs HS BAT DE PSO CMA-ES ABC 

15f  8.4682E-12▲ 9.7624E-12▲ 6.4950E-07▲ 7.0012E-08▲ 3.1261E-04▲ 7.6823E-04▲ 

16f  7.6332E-05▲ 8.4220E-05▲ 6.5010E-04▲ 2.0035E-04▲ 3.9630E-04▲ 6.0012E-11▲ 
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17f  5.3422E-08▲ 6.8892E-08▲ 3.3019E-07▲ 9.0394E-07▲ 4.2961E-04▲ 8.6301E-05▲ 

18f  4.9302E-12▲ 8.3670E-12▲ 5.6312E-04▲ 3.4621E-05▲ 6.0341E-04▲ 1.3025E-05▲ 

19f  6.9210E-11▲ 2.4950E-12▲ 6.3301E-06▲ 2.0182E-04▲ 6.3019E-07▼ 4.1305E-07▼ 

▲ 5 5 5 5 4 4 

▼ 0 0 0 0 1 1 

► 0 0 0 0 0 0 

Table 3.16.  p-values produced by Wilcoxon test comparing FUZZY vs. HS, FUZZY vs. BAT, FUZZY 

vs. DE, FUZZY vs. PSO, FUZZY vs. CMA-ES and FUZZY vs. ABC over the “averaged best fitness values” 

from Table 3.15. 

 

 

  

1f  
2f  

  

3f  
4f  

  

5f  
6f  

 

Fig. 3.5. Convergence test results for functions 1f -
6f . 

 

 

 

 

3.5.2.4. Convergence experiments 

 

The comparison of the final fitness value cannot completely describe the searching performance of 

an optimization algorithm. Therefore, in this section, a convergence test on the seven compared 

algorithms has been conducted. The purpose of this experiment is to evaluate the velocity with 

which a compared method reaches the optimum. In the experiment, the performance of each algo-
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rithm is considered over all functions (
1f -

19f ) from Section 3.7, operated in 50 dimensions. In 

order to build the convergence graphs, we employ the raw simulation data generated in Sections 

3.5.2.1, 3.5.2.2 and 3.5.2.3. As each function is executed 30 times for each algorithm, we select the 

convergence data of the run which represents the median final result. Figures 3.5, 3.6 and 3.7 show 

the convergence data of the seven compared algorithms. Fig. 3.5 presents the convergence results 

for functions 
1f -

6f , Fig. 3.6 for functions 
7f -

12f  and Fig. 3.7 for functions 
13f -

19f . In the 

Figures, the x-axis is the elapsed function evaluations, and the y-axis represents the best fitness 

values found.  

 

  

7f  
8f  

  

9f  
10f  

  

11f  
12f  

Fig. 3.6. Convergence test results for functions 
7f -

12f . 

 

From Figure 3.5, it is clear that the proposed FUZZY method presents a better convergence than 

the other algorithms for functions
1f , 

2f , 
4f and 

5f . However, for function 
3f and 

6f the 

CMA-ES reaches faster an optimal value. After an analysis of Figure 3.5, we can say that the pro-

posed Fuzzy method and the CMA-ES algorithm attain the best convergence responses whereas 

the other techniques maintain slower responses. In Figure 3.6, the convergence graphs show that 

the proposed fuzzy method obtains the best responses for functions
9f , 

10f and 
11f . In func-

tion
7f , even though the Fuzzy technique finds in a fat way optimal solutions, the DE algorithm 

presents the best convergence result.  

 

An interesting case is function
9f , where several optimization methods such as FUZZY, CMA-

ES, ABC and DE obtain an acceptable convergence response. In case of function
8f , the DE and 



 Chapter 3. A Metaheuristic Optimization methodology based on Fuzzy Logic                                                          74            

                                                                                                             

ABC methods own the best convergence properties. Finally, in function
12f , the CMA-ES attains 

the fastest reaction.  

 

 

  

13f  
14f  

  

15f  
16f  

  

17f  
18f  

 

19f  

Fig. 3.7. Convergence test results for functions 
13f -

19f . 

 

Finally, in Figure 3.7, the convergence responses for functions 
13f -

19f are presented. In func-

tion
13f of Figure 3.7, the algorithms CMA-ES and ABC obtain the best responses.  In case of 

function
14f , DE and ABC find an optimal solution in a prompt way than the other optimization 

techniques. Although for functions 
15f -

18f  the proposed FUZZY algorithm reaches the fastest 

convergence reaction, the CMA-ES method maintains a similar response. For function 
19f , the 

CMA-ES and ABC own the best convergence properties. 
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Therefore, the convergence speed of the proposed FUZZY method in solving unimodal optimiza-

tion (
1f -

7f ) problems is faster than HS, BAT, DE, PSO, CMA-ES and ABC, except in
7f , 

where the CMA-ES reaches the best response. On the other hand, when solving multimodal opti-

mization problems (
8f -

14f ), the fuzzy algorithm generally converges as fast as or even faster 

than the compared algorithms. This phenomenon can be clearly observed in Figures 3.6 and 3.7, 

where the proposed method generates a similar convergence curve to the others, even in the worst 

case scenario. Finally, after analyzing the performance of all algorithms on hybrid functions (
15f -

19f ), it is clear that the convergence response of the proposed approach is not as fast as CMA-ES. 

In fact, the proposed FUZZY and the CMA-ES algorithms present the best convergence properties 

when they face the optimization of hybrid functions.  

 

3.5.2.5. Computational complexity 

 

In this section, the computational complexity of all methods is evaluated. Metaheuristic methods 

are, in general, complex processes with several random operations and stochastic sub-routines. 

Therefore, it is impractical to conduct a complexity analysis from a deterministic point of view. 

For that reason, the computational complexity (C) is used in order to evaluate the computational 

effort of each algorithm. C exhibits the averaged CPU time invested by an algorithm with regard 

to a common time reference, when it is under operation. In order to assess the computational com-

plexity, the procedure presented in (J. J. Liang et al., 2014) has been conducted. Under this pro-

cess, C is obtained through the subsequent method: 

 

1. The time reference 
0T  is computed. 

0T represents the computing time consumed by 

the execution of the following standard code: 

 

for j=1:1000000 

v=0.55+j 

v=v+v; v=v/2; v=v*v; v=sqrt(v); v=exp(v); v=v/(v+2); 

end 
 

2. Evaluate the computing time
1T for function operation. 

1T  Expresses the time in which 

200000 runs of function 
9f  (multimodal) are executed (only the function without optimi-

zation method). In the test, the function 
9f  is operated with n=100. 

3. Calculate the execution time 
2T  for the optimization algorithm. 

2T exhibits the 

elapsed time in which 200000 function evaluations of 
9f are executed (here, optimization 

method and function are combined). 

4. The average time 
2T  is computed. First, execute the Step 3 five times. Then, extract 

their average value 1 2 3 4 5

2 2 2 2 2 2( ) / 5= + + + +T T T T T T . 

5.  The computational complexity C is obtained as follows:
2 1 0( ) /= −C T T T . 

 

Under this process, the computational complexity (C) values of HS, BAT, DE, PSO, CMA-ES, 

ABC, and FUZZY are obtained. Their values correspond to 77.23, 81.51, 51.20, 36.87, 40.77, 

70.17 and 40.91, respectively. A smaller C value indicates that the method is less complex, which 

allows a faster execution speed under the same evaluation conditions. An analysis of the experi-

ment results shows that although the proposed FUZZY algorithm is slightly more complex than 

PSO and CMA-ES, their computational complexity (C) values are comparable.  Additionally, the 

three algorithms are significantly less computationally complex than HS, BAT, DE and ABC. 
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3.6. Conclusions 

Recently, several new metaheuristic algorithms have been proposed with interesting results. 

Most of them use operators based on metaphors of natural or social elements to evolve candidate 

solutions. Although humans have demonstrated their potential to solve real-life complex optimiza-

tion problems, the use of human knowledge to build optimization algorithms has been less popular 

than the natural or social metaphors. In this chapter, a methodology to implement human-

knowledge-based optimization strategies has been presented. Under the approach, a conducted 

search strategy is modeled in the rule base of a Takagi-Sugeno Fuzzy inference system, so that the 

implemented Fuzzy rules express the conditions under which candidate solutions are evolved dur-

ing the optimization process.  

 

All the approaches reported in the literature that integrate Fuzzy logic and metaheuristic tech-

niques consider the optimization capabilities of the metaheuristic algorithms for improving the 

performance of Fuzzy systems. In the presented method, the approach is completely different. Un-

der this new schema, the Fuzzy system directly conducts the search strategy during the optimiza-

tion process. In this chapter our intent is to propose a methodology for emulating human search 

strategies in an algorithmic structure. To the best of our knowledge, this is the first time that a 

Fuzzy system is used as a metaheuristic algorithm. 

 

The presented methodology presents three important characteristics: (1) Generation. Under the 

proposed methodology, Fuzzy Logic provides a simple and well- known method for constructing a 

search strategy via the use of human knowledge. (2) Transparency. It generates fully interpretable 

models whose content expresses the search strategy as humans can conduct it.  (3) Improvement. 

As human experts interact with an optimization process, they obtain a better understanding of suc-

cessful search strategies capable of finding optimal solutions. As a result, new rules are added so 

that their inclusion in the existing rule base improves the quality of the original search strategy.  

 

Under the proposed methodology, new rules can be easily incorporated to an already existent sys-

tem. The addition of such rules allows the capacities of the original system to be extended.  

 

To demonstrate the ability and robustness of our approach, the presented FUZZY algorithm has 

been experimentally evaluated with a test suite of 19 benchmark functions. To assess the perfor-

mance of the FUZZY algorithm, it has been compared to other popular optimization approaches 

based on evolutionary principles currently in use. The results, statistically validated, have con-

firmed that the presented algorithm outperforms its competitors for most of the test functions in 

terms of its solution quality and convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. List of benchmark functions 
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Table 3.17. Unimodal test functions used in the experimental study. 
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Table 3.18. Multimodal test functions used in the experimental study. 
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Table 3.19. Hybrid test functions used in the experimental study. 



 

Chapter 4 

Color Segmentation using LVQ Neural Networks 

 

 

 

 

 
Color segmentation in digital images is a challenging task due to image capture conditions. 

Typical segmentation algorithms present several difficulties in this process because they do not 

tolerate variations in color hue corresponding to the same object. In this chapter is presented an 

approach for color segmentation based on Learning Vector Quantization (LVQ) networks, which 

conducts the segmentation process by means a color-based pixel classification. In the LVQ net-

works, neighboring neurons have the capability to learn how to recognize close sections of the in-

put space. The presented segmentation approach classifies the pixels directly by means of the LVQ 

network. The experimental results over a set of images show the efficiency of the LVQ-based 

method to satisfactorily segment color despite remarkable illumination problems.   

4.1. Introduction 

 

The color discrimination plays an important role in humans for individual object identification. 

Humans usually do not search in a bookcase for a previously known book solely by its title. We 

try to remember the color on the cover (e.g., blue) and then search among all the books with a blue 

cover for the one with the correct title. The same applies to recognizing an automobile in a parking 

site. In general, humans do not search for model A of company B, but rather we look for a red car. 

It is only when a red vehicle is spotted, when it is decided according to its geometry, whether that 

vehicle is the one of the required kinds. 

 

Image segmentation is the first step in image analysis and pattern recognition. It is a critical and 

essential component but also it is one of the most difficult tasks in image processing. The actual 

operation of the algorithm determines the quality of the overall image analysis.   

 

Color image segmentation is a process of extracting from the image domain one or more connect-

ed regions satisfying the uniformity (homogeneity) criterion (Egmont-Petersen, et al., 2002) which 

is derived from spectral components (Cheng, et al., 2001; Gonzalez & Woods, 2008). These com-

ponents are defined within a given color space model such as the RGB model -the most common 

model, which considers that a color point is defined by the color component levels of the corre-

sponding pixel, i.e. red (R), green (G), and blue (B). Other color spaces can also be employed con-

sidering that the performance of an image segmentation procedure is known to depend on the 

choice of the color space. Many authors have sought to determine the best color space for their 

specific color image segmentation problems. Unfortunately, there is not an ideal color space to 

provide satisfying results for the segmentation of all kinds of images. 

 

Image segmentation has been the subject of considerable research activity over the last two dec-

ades. Many algorithms have been elaborated for gray scale images. However, the problem of seg-

mentation for color images that implies a lot of information about objects in scenes has received 

much less attention of the scientific community. Although color information allows a more com-

plete representation of images and more reliable segmentations, processing color images requires 

computational times considerably larger than those needed for gray-level images as it is very sen-

sitive to illumination changes. 
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This chapter considers the color image segmentation as a pixel classification problem. By means 

of the LVQ neural networks and their classification schemes, classes of pixels are detected by ana-

lyzing the similarities between the colors of the pixels. 

 

In particular, color image segmentation techniques described in the literature can be categorized 

into four main approaches: Histogram thresholding and color space clustering; region-based ap-

proaches, edge detection, probabilistic methods and soft-computing techniques. The following sec-

tion discusses on each technique, summarizing their main features. 

4.1.1. Histogram thresholding and color space clustering 

 

Histogram thresholding is one of the widely used techniques for monochrome image segmenta-

tion. It assumes that images are composed of regions with different gray levels. The histogram of 

an image can be separated into a number of peaks (modes), each corresponding to one region, and 

there exists a threshold value corresponding to valley between the two adjacent peaks. As for color 

images, the situation is different from monochrome images because of multi-features. Multiple 

histogram-based thresholding divides the color space by thresholding each component histogram. 

 

The classes for color segmentation are built by means of a cluster identification scheme which is 

performed either by an analysis of the color histogram (Park, et al., 1998) or by a cluster analysis 

procedure (T. Q. Chen & Lu, 2002). When the classes are constructed, the pixels are assigned to 

one of them by means of a decision rule and then mapped back to the original image plane to pro-

duce the segmentation. The regions of the segmented image are composed of connected pixels 

which are assigned to the same classes. When the distribution of color points is analyzed in the 

color space, the procedures generally lead to a noisy segmentation with small regions scattered 

through the image. Usually, a spatial-based post-processing is performed to reconstruct the actual 

regions in the image (Nikolaev & Nikolayev, 2004). 

4.1.2. Edge detection 

 

Region based approaches, including region growing, region splitting (Ohlander, et al., 1978), re-

gion merging (Cheng, et al., 2002) and their combination (Tremeau & Borel, 1997), attempt to 

group pixels into homogeneous regions. In the region growing approach, a seed region is first se-

lected. Thus, it is expanded to include all homogeneous neighbors, repeating the process until all 

pixels in the image are classified. One problem with region growing is its inherent dependence on 

the selection of seed region and the order in which pixels and regions are examined. In the region 

splitting approach, the initial seed region is simply the whole image. If the seed region is not ho-

mogeneous, it is usually divided into four squared sub-regions, which become new seed regions. 

This process is repeated until all sub-regions are homogeneous. The major drawback of region 

splitting is that the resulting image tends to mimic the data structure used to represent the image 

and comes out too square. The region merging approach is often combined with region growing or 

region splitting to merge similar regions for making a homogeneous section as large as possible. 

4.1.3. Probabilistic methods 

 

Probabilistic color segmentation estimates the probability ( , ) [0,1]iP x y for a given pixel I(x,y) of 

belonging to a region i in the image I. Although the probability density ( , )iP x y  is usually deter-

mined, its parameters are often unknown. In (Jepson, et al., 2003; McKenna, et al., 1999; Raja, et 

al., 1998) have already discussed color segmentation when the joint distribution of color is mod-

eled by a mixture of Gaussians within a 3-dimensional space. Since no spatial coordinates are in-

corporated, once the model has been inferred, it needs a spatial grouping step which applies a max-

imum-vote filter and uses the connected component algorithm.  
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Isard & MacCormick,(2001) have employed color information to implement particle filtering. 

Lately, Pérez, et al., (2002)  introduced an approach that also uses color histograms and particle 

filtering for multiple object tracking. Both methods differ in the initialization procedure for the 

tracker, the model updating, the region shape and the observation of the tracking performance. 

Bradski (1998) modified the mean-shift algorithm (Camshift) which operates on probability distri-

butions to track colored objects in video frame sequences.  

4.1.4. Soft-Computing techniques 

 

A trendy issue is the use of soft-computing approaches for image processing systems. Artificial 

neural network models have been proposed to segment images directly from pixel similarity or 

discontinuity. More than 200 neural networks used in image processing are presented by Egmont-

Petersen et al. (2002) by means of an 2D taxonomy. In (Cheng et al., 2001) it is also discussed on 

many color image Segmentation techniques, including the histogram Thresholding, characteristic 

feature Clustering, Edge Detection, Region-based methods, Fuzzy methods, and Neural Networks. 

 

Color segmentation is successfully computed by Self-organizing Maps (SOMs) and competitive 

networks in (Dong & Xie, 2005; Ong, et al., 2002; Yeo, et al., 2005). In (Ong et al., 2002) a two-

stage strategy includes a fixed-size two dimensional feature map (SOM) to capture the dominant 

colors of an image by unsupervised training. In a second stage, the algorithm combines a variable-

sized one-dimensional feature map and color merging to control the number of color clusters that 

are used for segmentation. The model in (G. Dong & Xie, 2005) is based on a two-step neural 

network. In the first step, a SOM performs color reduction and then a simulated annealing step 

searches for the optimal clusters from SOM prototypes. The task involves a procedure of hierar-

chical prototype learning (HPL) to generate different sizes of color prototypes from the sampled 

object colors. 

4.1.5. Scheme 

 

Learning Vector Quantization (LVQ) networks learn to recognize groups of similar input vectors 

in such a way neurons that locate nearby to others in the neuron layer respond to similar input vec-

tors. The learning is supervised and the inputs vectors into target classes are chosen by the user. 

 

The LVQ algorithm presented in this chapter works only with image pixels, with no dynamic 

model or probability distribution, which in turn, improves the processing speed and facilitates the 

implementation process. 

 

The approach naturally avoids the complex structures commonly resulting from other neural 

methods such as those in (Dong & Xie, 2005; Ong, et al., 2002; Yeo, et al., 2005). It incorporates a 

decision function which eases the segmentation of the objective color. The method has been ap-

plied on several color segmentation problems (face localization and color tracking), showing 

enough capacity to comprehensively segment color even under illumination differences.   

 

This chapter is organized as follows: Section 4.2 revisits some background concepts while Section 

4.3 presents an introductory study of competitive neural networks and their main features. Section 

4.4 explains relevant details of LVQ networks and Section 4.5 shows the architecture and charac-

teristics of the presented color-segmentation system, including some practical discussions. Section 

4.6 offers a simple explanation on the algorithm’s implementation. Section 4.7 reports the results 

and some discussions, finally in Section 4.8 are presented some conclusions.  
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4.2. Background Issues 

4.2.1. RGB Space Color 

 

Color is perceived by humans as a combination of triple stimuli R (red), G (green), and B (blue) 

which are usually named as primary colors. From R,G,B representation, it is possible to derive 

other kinds of color representations (spaces) by using either linear or nonlinear transformations. 

The RGB color space can be geometrically represented within a 3-dimensional cube as shown in 

Figure 4.1. The coordinates of each point inside the cube represent the values of red, green and 

blue components, respectively. 

 

 

 

 

 

 

 

 

 

 

Fig 4.1. RGB Space Color 

 

The laws of color theory are: (1) any color can be created by these three colors and the combina-

tion of the three colors is unique; (2) if two colors are equivalent, they will be again equivalent af-

ter multiplying or dividing the three components by the same number; (3) the luminance of a mix-

ture of colors is equal to the sum of the luminance of each color. The triple stimuli values that 

served as the color basis are: 425.8 nm for blue, 546.1 nm for green and 700.0 nm for red. Any 

color can be expressed by these three color bases. 

 

RGB is the most widely accepted model for television systems and pictures acquired by digital 

cameras. Video monitors commonly display color images by modulating the intensity of the three 

primary colors (red, green, and blue) at each pixel of the image (Comaniciu & Meer, 1997) . RGB 

is suitable for color display as it is complicated for color segmentation’s purposes, considering the 

high correlation among the R, G, and B components (Pietikainen, et al., 1996). High correlation re-

fers to the intensity changes which assume that all the three components will change accordingly. 

The measurement of a color in RGB space does not represent color differences in a uniform scale 

and hence it is impossible to evaluate the similarity of two colors from their distance in RGB 

space. 

4.2.2. Artificial Neural Networks 

 

Artificial Neural Networks are composed from simple elements that commonly mimic biological 

systems following parallel arrangements. By nature, a network function is determined by the con-

nections between such neural elements. It is possible to train a neural network to “learn” a given 

function by adjusting the values of the connections (W weights) between elements. 

 

A common training algorithm seeks to match a given neural input to a specific target output as 

shown in Figure 4.2. The network is adjusted by comparing the network’s output and the target 

value, until the network output matches, as close as possible, the target. Typically, a great number 

of input/target pairs are used following the supervised learning scheme to train the network. 

 



 Chapter 4. Color Segmentation using LVQ Neural Networks                                                                                     83                 

                                                                                                        

 
 

Fig. 4.2. Supervised learning in Neural Networks 

 

Batch training of a network proceeds by making weight and bias changes based on an entire set 

(batch) of input vectors. Incremental training changes are applied to the weights and biases of a 

network after the presentation of each individual input vector. Incremental training is sometimes 

referred as on-line or adaptive training. 

 

Neural networks may be employed to solve several sorts of problems, ranging from pattern recog-

nition, identification, classification, speech, control systems and computational vision. The super-

vised training methods are widely known in the school. Other kind of networks can be obtained 

from unsupervised training techniques or from direct design methods. Unsupervised networks can 

be applied, for instance, to identify groups of data. 

4.3. Competitive Networks 

 

Competitive Networks (Kohonen, 1989) learn to classify input vectors according to how they 

are grouped in the input space. They differ from other networks in that neighboring neurons learn 

to recognize neighboring sections of the input space. Thus, competitive layers learn both the dis-

tributions and topology of the input vectors in which they are trained on. The neurons in the layer 

of a competitive network are arranged originally in physical positions according to a topology pat-

tern such as grid, hexagonal, or random topology.  

 

The architecture of a competitive network is shown in Figure 4.3. The |Ndist| box in the figure re-

ceive the input vector p and the input weight matrix IW and produces a vector or a matrix S ac-

cording to the topological configuration. The elements are the negative distances between the input 

vector p and the matrix IW. The net value v of the competitive layer is computed by finding the 

negative distance between input vector p and the weight matrix IW and then adding the biases b. 

If, all biases are zero, the maximum net input that a neuron can have is 0. This occurs when the in-

put vector p equals the neuron’s weight vector contained in the matrix IW. 

 

The competitive transfer function C receive a net value v and returns outputs of 0 for all neurons 

except for the winner, the neuron associated with the most positive element of input v. Thus, the 

winner’s output is 1. The weights of the winning neuron are adjusted by the Kohonen learning 

rule. Supposing that the ith neuron wins, the elements of the ith row of the input weight matrix and 

all neurons within a certain neighborhood radius Ni(d) of the winning neuron are adjusted as 

shown in Eq. (4.1). In other words, Ni(d) is the neighbor’s number around of the winner neuron to 

be affected. 

1,1 1,1 1,1( ) ( 1) ( ( ) ( 1))i i iq q q q= − + − −IW IW p IW  (4.1) 

Here α is the learning rate and Ni(d) contains the index for all of the neurons that lie within a radi-

us d of the ith winning neuron. Thus, when a vector p is presented, the weights of the winning neu-

ron and its closest neighbors move toward p. Consequently, after many presentations, neighboring 
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neurons will have learned vectors similar to each others. The winning neuron’s weights are altered 

accordingly by the learning rate. The weights of neurons in its neighborhood are altered propor-

tional to half of the learning rate. In this work, the learning rate and the neighborhood distance 

(used to determine which neurons are in the winning neuron’s neighborhood) are not altered dur-

ing training.  

 

 

 
 

Fig. 4.3. Architecture of a competitive network 

 

To illustrate the concept of neighborhoods, consider the Figure 4.4. Left, it is shown a two-

dimensional neighborhood of radius d = 1 around neuron 13. Aside it is shown a neighborhood of 

radius d = 2. 

 

These neighborhoods could be written as: 

 

13 13(1) (8,12,13,14,18), (2) (3,7,8,9,11,12,13,14,15,17,18,19,23)N N= =  

 

 

           
 

Fig. 4.4. Left, two-dimensional neighborhood with radius d = 1. Right, neighborhood with radius d = 2. 

4.4. Learning Vectors Quantization Vectors 

 

An LVQ Network (Kohonen, 1989) has first, a competitive layer and second, a linear layer. The 

competitive layer learns to classify input vectors like the networks of the last section. The linear 

layer transforms the competitive layer’s classes into target classifications defined by the user. We 

refer to the classes learned by the competitive layer as subclasses and the classes of the linear layer 

as target classes. Both the competitive and linear layers have one neuron per class. However, the 

neurons in the competitive layer can be arranged according to a topology pattern. 

 

Thus, the competitive layer can learn S1 classes, according to how they are grouped in the topo-

logical space. These, in turn, are combined by the linear layer to form S2  target classes. This pro-

cess can be considered as a lineal transformation carried out on the learned classes S1  (in unsu-

pervised manner) by the competitive layer to a mapping on S2  defined by LW. This 
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transformation allows distributing similar patterns around the target neuron in the linear layer. The 

LVQ Network architecture is shown in Fig. 4.5. 

 

    
 

Figure 4.5. Schematic representations of the LVQ net. 

 

4.5. Architecture of the color segmentation system 

 

The core of the proposed algorithm is an LVQ network whose inputs are connected directly to 

each RGB pixel component of the image I . The output of the LVQ network is a vector S2  con-

nected to the decision function 
d

f . If the RGB components of the original pixel represents the 

color to be segmented, then the 
d

f function output is 1, if not is 0. The result is a new image I´ . 

The segmentator takes advantage of the LVQ property to learn to recognize neighboring sections 

of the input space. Figure 4.6 shows the segmentator’s architecture.  

 

Considering that the LVQ net is configured with a grid of 6 5x neurons in the competitive layer 

and 30 one-dimensional output neurons (linear layer), then would be possible to train the competi-

tive network to learn the color-pixel space and its topology (described as the vector P  with ele-

ments 
Rp , 

Gp  and 
Bp coming from the image).  The 6 5x grid in the competitive layer was cho-

sen after considering a tradeoff between the neuron distribution and the computational cost [16]. 

The size of the linear layer (30) is considered only as being coherent to the neurons contained on 

the grid ( )6 5x . 

 

The net training is achieved in two phases: Ordering phase and tuning phase. In the ordering phase 

the neurons of competitive layer learn to recognize groups of similar color vectors in an unsuper-

vised manner. Using supervised learning, they learn the tuning phase for the linear layer. It was for 

supported, we suppose that the image I contains an object O  with the color to be segmented, be-

ing 
Op  a RGB pixel corresponding to the object, we train the linear network in such a way, that 

the class of this pixel is assigned in the middle of the linear layer (15). Using the neuron 15th as ob-

jective helps to have symmetry in the class distribution. This defines a pattern similarity, depend-

ing on the presented neighborhood with regard to this class. 

 

 
 

Figure 4.6. Architecture of the color segmentation system 

 

The idea is that the winning neuron activated in the competitive layer (as consequence of have 

been excited by the RGB color combination to be segmented) will be located halfway of the linear 
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layer as consequence of the LW mapping. This intrinsic LVQ property allows to locate similar 

colors in the neighboring neurons. Thus, if exists a color vector 
1p  that correspond, in fact, to the 

same object, however due to the illumination conditions and noise, it is a little different to the tar-

get pattern, this color could not be classified by the neuron 15 but for some close to it. 

 

The classification performed by the LVQ network finds a vector of elements categorized by S2 of 

30 elements corresponding to 30 classes. Each element of S2 vector could have two possible val-

ues, 1 or 0 and only an element from each vector could be 1, while the other elements will be 0. 

Then for the color to be segmented, the activation of the neurons is concentrated in the middle of 

the vector, Thus, neurons nearest to the 15 will have a bigger possibility to be activated, for similar 

color patterns.  

 

Considering the problematic above described, is necessary to describe a function 
df who defines 

the neuron’s density which will be taken to consider if a pixel corresponds or not to the color to be 

segmented, this function will be called in this work “decision function”. Is possible to formulate 

many functions which could solve the decision problem satisfactorily. In this work the Gaussian 

function has been chosen to resolve the decision problem, although it is possible to use other, in-

cluding non-symmetrical distributions functions. Figure 4.7 shows graphically the Gaussian func-

tion and its relationship with the output layer. Eq. (4.2) shows mathematically this function where 

g is the index (1,...,30)  of the activated neuron, N is the neuron number of the linear layer (for this 

paper, 30N = ) and   is the standard deviation. Therefore, 
df has only a calibration parameter 

represented by   which determines the generalization capacity of the complete system. Thus, for 

example, if the value of   is chosen small enough, the segmentation capacity will be more selec-

tive than in the case of a bigger  . 
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Figure 4.7. Decision function model 

4.6. Implementation 

 

The implementation is divided in two parts, the net training and the segmentation application.  

First, the training process requires an image frame containing the object whose color will be seg-

mented. Then, a pixel’s block is selected to train the LVQ net according to the color to be seg-

mented but specifying that this pixel must be located at the 15th neuron that means, at the middle 

of the 30 neurons array. Using this selection, the patterns are similarly distributed around the 15th 

neuron. 
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The weight matrix IW and LW are randomly initialized for the training. During the unsupervised 

training the learning rate α=0.1 was used as well as a distance radius Ni(d) =3. This conditions as-

sure that winner neurons weights will be affected in a reason of 0.1. While its three neighboring 

neurons weights (in both ways) be affected in a reason of 0.05. During the training of the lineal 

layer the values of LW are calculated. These values transform the classes lineally allowing dis-

tributing them around the neuron 15. Initially due to the aleatory configuration, the learned classes 

by the competitive layer cannot be correctly mapped to the output vector, however after some iter-

ation; these values are classified correctly as consequence of the adaptation of LW. The Fig. 4.8 

shows the classification results of the neurons in the competitive layer arranged in a 5 x 2 grid on 

an image obtained of Webcam.  

 

 

 
 

Figure 4.8. Classification performed by a LVQ network with 10 neurons in the competitive layer. 

 

For the segmentator use, a decision function 
d

f with parameters μ =15 and σ =3 was integrated to 

the previously trained network. The complete system was programmed using Visual C ++ and 

tested on a PCx86 at 900 MHz with 128 MBytes RAM.  

4.7. Results and discussion 

 

In order to test the robustness of the segmentation algorithm, the approach is applied to video-

streamed images. The patch of color to be segmented may exhibit illumination changes within the 

video sequence; however, the algorithm’s operation prevails despite such changes.   

 

 

   

   
 

Figure 4.9. Sequence performed by the LVQ segmentator in indoor environment. 
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The overall performance is tested considering two different experiments. First, the system perfor-

mance is tested over an indoor footage as shown by Figure 4.9. In order to train the LVQ Network, 

one video-frame is considered to choose some pixels that belong to the skin of a couple of human 

individuals who are participating in a handshaking gesture. Once the system is fully trained, a full-

long video sequence is tested. It is important to consider all changes in the skin color that are relat-

ed to variable illumination. The effect is generated as a result of changes in the relative position 

and orientation of the object with respect to the light source. Despite such changes and the close-

ness of other similar colors in the scene, the algorithms have been able to acceptably segment the 

skin color as shown by Figure 4.9. 

 

The second experiment tests the algorithm’s sensitivity in response to abrupt changes on illumina-

tion. An external setting is used to generate the video sequence which naturally includes changes 

in sun lighting and therefore shading too. Figure 4.10 shows the resulting sequence once the algo-

rithm is segmenting a red spot representing one backpack. Although the shape of the object of in-

terest exhibits several irregular holes generated from lighting variations, the algorithm is still ca-

pable to segment the patch yet if it is located under the shade or passing by a transition zone or 

under full illumination from the sun. 

 

The overall performance of the algorithm can be successfully compared to other algorithms such 

as those in (Jang & Kweon, 2001; Nummiaro, et al., 2002). However, the LVQ algorithm works 

directly on the image pixels with no dynamical model or probability distribution, improving the 

execution time and simplifying the implementation. However, contrary to other approaches 

(Salmond, 1990), the average execution time required by the algorithm to classify one pixel is al-

ways constant depending solely on the color complexity. 

 

It is remarkable the influence of the σ parameter over the decision function itself. Best results were 

achieved with σ falling between 3 and 5. It is easy to envision that improving the robustness of the 

system may evolve considering an adaptable σ parameter. As an example, Figures 4.11(a)-(b) 

show several cases when using different values for σ. 

 

 

   

   
 

Figure 4.10. Image sequence as processed by the LVQ segmentator while segmenting for the backpack with-

in an outdoor environment. 
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(a) (b) 

 

Figure 4.11. Results obtained using (a) σ = 4 and (b) σ = 1. 

 

The proposed algorithm also exhibits better generalization properties compared to other classical 

lookup table algorithms. Particularly, if it considers images with changing illumination.  

 

The robustness of the LVQ algorithm facing variable lighting can be compared to the popular 

Cam-Shift algorithm. Aiming for a fair comparison, three indexes are considered just as it is pro-

posed in (Salmond, 1990). The first performance index is related to “tracking failure”. Both algo-

rithms run until a failure in the tracking process is registered. According to this measurement, a 

track is assumed to be lost either when the center of the segmented object is sufficiently far from 

the true center, i.e. when the object position determined by the algorithm does not match to the real 

position or when the computed center falls outside the image location in five consecutive steps. 

Finally, the “track-lifetime” is defined according to the number of time steps until the tracking was 

lost. This index is commonly averaged across all trials. Fig. 4.12 shows the results from these ex-

periments. Both algorithms were tested considering 100 lux as an initial point –a standard office’s 

illumination. At this point, the averaged track-lifetime is infinite for both algorithms. Measure-

ments are taken in both directions, showing that the LVQ algorithm has a higher robustness, par-

ticularly in case of low intensity lighting. 

 

 
 

Figure 4.12. Comparison of LVQ and Cam-Shift algorithms. 

4.8. Conclusions 

 

This chapter presents an image segmentator approach based on LVQ networks which considers 

the segmentation process as a pixel classification which is fully based on color. The segmentator 

operates directly upon the image pixels using the classification properties of the LVQ networks. 

The algorithm is effectively applied to the segmentation of sampled images showing its capacity to 

satisfactorily segment color despite remarkable illumination differences, considering indoor and 

outdoor scenes. The results demonstrate the operation of the LVQ algorithm which in turn is capa-
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ble of organizing topologically the input space, accomplishing the segmentation process, despite a 

small number of neurons.  

 

The presented system has two important features. First, since the LVQ algorithm works directly on 

the image pixels with no dynamic model or probability distribution, the execution time is faster 

than other approaches. Second, the algorithm exhibits interesting generalization properties, in par-

ticular considering images with changing illumination. 

 

Further increases in the segmentator performance might be reached, if the parameter   is also 

adapted using some kind of optimization technique. 



 

Chapter 5 

Motion estimation algorithm using Block-matching and 

Harmony Search Optimization 

 

 

 

 

 
Motion estimation is one of the major problems in developing video coding applications. On 

the other hand, Block-matching (BM) algorithms are the most popular methods due to their effec-

tiveness and simplicity for both software and hardware implementations. A BM approach assumes 

that the movement of pixels within a defined region of the current frame can be modeled as a 

translation of pixels contained in the previous frame. During this procedure is obtained a motion 

vector by minimizing a certain matching metric that is produced between the current frame and the 

previous frame. However, the evaluation of such matching measurement is computationally ex-

pensive and represents the most consuming operation in the BM process. Therefore, BM motion 

estimation can be viewed as an optimization problem whose goal is to find the best-matching 

block within a search space. Harmony Search (HS) algorithm is a metaheuristic optimization 

method inspired by the music improvisation process, in which a musician polishes the pitches to 

obtain a better state of harmony. In this chapter, a BM algorithm that combines HS with a fitness 

approximation model is presented. The approach uses motion vectors belonging to the search win-

dow as potential solutions. A fitness function evaluates the matching quality of each motion vector 

candidate. In order to minimize computational time, the approach incorporates a fitness calculation 

strategy to decide which motion vectors can be only estimated or actually evaluated. Guided by the 

values of such a fitness calculation strategy, the set of motion vectors is evolved through HS oper-

ators until the best possible motion vector is identified. The presented method has been compared 

to other BM algorithms in terms of velocity and coding quality and its experimental results 

demonstrate that the algorithm exhibits the best balance between coding efficiency and computa-

tional complexity. 

5.1. Introduction 

 

Motion estimation plays important roles in a number of applications such as automobile naviga-

tion, video coding, surveillance cameras and so forth. The measurement of the motion vector is a 

fundamental problem in image processing and computer vision, which has been faced using sever-

al approaches (Bohlooli & Jamshidi, 2012; Cirrincione & Cirrincione, 2003; Kang, et al., 2012; 

Risinger & Kaikhah, 2008). The goal is to compute an approximation to the 2-D motion field – a 

projection of the 3-D velocities of surface points onto the imaging surface. 

 

Video coding is currently utilized in a vast amount of applications ranging from fixed and mobile 

telephony, real-time video conferencing, DVD and high-definition digital television. Motion Esti-

mation (ME) is an important part of any video coding system, since it can achieve significant 

compression by exploiting the temporal redundancy existing in a video sequence. Several ME 

methods have been studied aiming for a complexity reduction at video coding, such as block 

matching (BM) algorithms, parametric-based models (Tzovaras, et al., 1999), optical flow 

(Barron, et al., 1994) and recursive techniques (Skowronski, 1999). Among such methods, BM 

seems to be the most popular technique due to its effectiveness and simplicity for both software 

and hardware implementations (Huang, et al., 2006). Furthermore, in order to reduce the computa-

tional complexity in ME, many BM algorithms have been proposed and used in implementations 
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of various video compression standards such as MPEG-4 (VISUAL ISO/IEC 14496-2 Committee 

Draft, 1998) and H.264 (Joint Video Team (JVT), 2002). 

 

In BM algorithms, the video frames are partitioned in non-overlapping blocks of pixels. Each 

block is predicted from a block of equal size in the previous frame. Specifically, for each block in 

the current frame, we search for a best matching block within a searching window in the previous 

frame that minimizes a certain matching metric. The most used matching measure is the Sum of 

Absolute Differences (SAD) which is computationally expensive and represents the most consum-

ing operation in the BM process. The best matching block found represents the predicted block, 

whose displacement from the previous block is represented by a transitional motion vector (MV). 

Therefore, BM is essentially an optimization problem, with the goal of finding the best matching 

block within a search space. 

 

The full search algorithm (FSA) (Jain & Jain, 1981) is the simplest block-matching algorithm that 

can deliver the optimal estimation solution regarding a minimal matching error as it checks all 

candidates one at a time. However, such exhaustive search and full-matching error calculation at 

each checking point yields an extremely computational expensive BM method that seriously con-

straints real-time video applications.  

 

In order to decrease the computational complexity of the BM process, several BM algorithms have 

been proposed considering the following three techniques:  

 

(1) using a fixed pattern: which means that the search operation is conducted over a fixed subset of 

the total search window. The Three Step Search (TSS) (Jong, et al., 1994), the New Three Step 

Search (NTSS) (Li, et al., 1994), the Simple and Efficient TSS (SES) (Lu & Liou, 1997), the Four 

Step Search (4SS) (Po & Ma, 1996) and the Diamond Search (DS) (Zhu & Ma, 2000) are some of 

its well-known examples. Although such approaches have been algorithmically considered as the 

fastest, they are not able eventually to match the dynamic motion-content, delivering false motion 

vectors (image distortions).  

 

(2) Reducing the search points: in this method, the algorithm chooses as search points exclusively 

those locations which iteratively minimize the error-function (SAD values). This category in-

cludes: the Adaptive Rood Pattern Search (ARPS) (Nie & Ma, 2002), the Fast Block Matching Us-

ing Prediction (FBMAUPR) (Liaw, et al., 2009), the Block-based Gradient Descent Search 

(BBGD) (Liu & Feig, 1996) and the Neighbourhood Elimination algorithm (NE) (Saha, et al., 

2011). Such approaches assume that the error-function behaves monotonically, holding well for 

slow-moving sequences; however, such properties do not hold true for other kind of movements in 

video sequences (Chow & Liou, 1993), which risks on algorithms getting trapped into local mini-

ma.  

 

(3) Decreasing the computational overhead for every search point, which means the matching cost 

(SAD operation) is replaced by a partial or a simplify version that features less complexity. The 

New pixel-Decimation (ND) (Saha, et al., 2008), the Efficient Block Matching Using Multilevel 

Intra and Inter-Sub-blocks (Li et al., 1994) and the Successive Elimination Algorithm (Chen, et al., 

2002), all assume that all pixels within each block move by the same amount and a good estimate 

of the motion could be obtained through only a fraction of the pixel pool. However, since only a 

fraction of pixels enters into the matching computation, the use of these regular sub-sampling 

techniques can seriously affect the accuracy of the detection of motion vectors due to noise or il-

lumination changes. 

 

Another popular group of BM algorithms employ spatio-temporal correlation, using the neighbor-

ing blocks in spatial and temporal domain. The main advantage of these algorithms is that they al-

leviate the local minimum problem to some extent. Since the new initial or predicted search center 
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is usually closer to the global minimum, the chance of getting trapped in a local minimum de-

crease. This idea has been incorporated by many fast block motion estimation algorithms such as 

the enhanced predictive zonal search (EPZS) (Tourapis, 2002) and the UMHexagonS (Chen et al., 

2002). However, the information delivered by the neighboring blocks occasionally conduces to 

false initial search points, producing distorted motion vectors. Such problem is typically caused 

when very small objects moves during the image sequence (Nisar, et al., 2012). 

 

Alternatively, evolutionary approaches such as genetic algorithms (GA) (Holland, 1992) and parti-

cle swarm optimization (PSO) (Kennedy & Eberhart, 1995b) are well known for locating the glob-

al optimum in complex optimization problems. Despite of such fact, only few evolutionary ap-

proaches have specifically addressed the problem of BM, such as the light-weight genetic block 

matching (LWG) (Lin & Wu, 1998), the genetic four-step search (GFSS) (Wu & So, 2003) and the 

PSO-BM (Yuan & Shen, 2008). Although these methods support an accurate identification of the 

motion vector, their spending times are very long in comparison to other BM techniques. 

 

On the other hand, the Harmony Search (HS) algorithm introduced by Geem et al., (2001) is one 

of the population-based evolutionary heuristics algorithms which are based on the metaphor of the 

improvisation process that occurs when a musician searches for a better state of harmony. The HS 

generates a new candidate solution from all existing solutions. In HS, the solution vector is analo-

gous to the harmony in music, and the local and global search schemes are analogous to musi-

cian’s improvisations. In comparison to other metaheuristics in the literature, HS imposes fewer 

mathematical requirements as it can be easily adapted for solving several sorts of Engineering Op-

timization challenges (Mahdavi, et al., 2007; Omran & Mahdavi, 2008).  

 

Furthermore, numerical comparisons have demonstrated that the evolution for the HS is faster than 

GA (Lee & Geem, 2005; Lee, et al., 2005; Mahdavi et al., 2007), attracting ever more attention. It 

has been successfully applied to solve a wide range of practical optimization problems such as 

structural optimization, parameter estimation of the nonlinear Muskingum model, design optimiza-

tion of water distribution networks, vehicle routing, combined heat and power economic dispatch, 

design of steel frames, bandwidth-delay-constrained least-cost multicast routing, computer vision, 

among others (Ayvaz, 2007; Cuevas, et al., 2012; Geem, 2005, 2006, 2008; Kim, et al., 2001; Lee 

& Geem, 2004, 2005; Lee et al., 2005). 

 

A main difficulty applying HS to solve real-world problems is that it usually needs a large number 

of fitness evaluations before an acceptable result can be obtained. In practice, however, fitness 

evaluations are not always straightforward because either an explicit fitness function does not exist 

(an experiment is needed instead) or the evaluation of the fitness function is computationally de-

manding.  

 

Moreover, since random numbers are involved in the calculation of new individuals, they may en-

counter the same positions (repetition) that other individuals have visited in previous iterations, 

especially when the individuals are confined to a small area. 

 

The problem of considering expensive fitness evaluations has already been faced in the field of 

evolutionary algorithms (EA) and is better known as fitness approximation (Jin, 2005). In such ap-

proach, the idea is to estimate the fitness value of so many individuals as it is possible instead of 

evaluating the complete set. Such estimations are based on an approximate model of the fitness 

landscape. Thus, the individuals to be evaluated and those to be estimated are determined follow-

ing some fixed criteria which depend on the specific properties of the approximate model (Jin, 

2011). The models involved at the estimation can be built during the actual EA run, since EA re-

peatedly sample the search space at different points (Branke & Schmidt, 2005).  

 

There are many possible approximation models, and several have already been used in combina-

tion with EA (e.g. polynomials (Zhou, et al., 2005), the kriging model (Ratle, 2001), the feed-
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forward neural networks that includes multi-layer Perceptrons (Lim, et al., 2010) and radial basis-

function networks (Ong, et al., 2008)). These models can be either global, which make use of all 

available data or local which make use of only a small set of data around the point where the func-

tion is to be approximated. Local models, however, have a number of advantages (Branke & 

Schmidt, 2005): they are well-known and suitably established techniques with relatively fast 

speeds. Moreover, they consider the intuitively most important information: the closest neighbors. 

 

In this chapter, is presented a BM algorithm that combines HS with a fitness approximation model. 

Since the presented method approaches the BM process as an optimization problem, its overall op-

eration can be formulated as follows: First, a population of individuals is initialized where each in-

dividual represents a motion vector candidate (a search location). Then, the set of HS operators is 

applied at each iteration in order to generate a new population. The procedure is repeated until 

convergence is reached whereas the best solution is expected to represent the most accurate motion 

vector.  In the optimization process, the quality of each individual is evaluated through a fitness 

function which represents the SAD value corresponding to each motion vector.  In order to save 

computational time, the approach incorporates a fitness estimation strategy to decide which search 

locations can be only estimated or actually evaluated. The method has been compared to other BM 

algorithms in terms of velocity and coding quality. Experimental results show that the HS-BM al-

gorithm exhibits the best trade-off between coding efficiency and computational complexity. 

 

The overall chapter is organized as follows: Section 5.2 holds a brief description about the HS 

method In Section 5.3, the fitness calculation strategy for solving the expensive optimization prob-

lem is presented. Section 5.4 provides background about the BM motion estimation issue while 

Section 5.5 exposes the final BM algorithm as a combination of HS and the fitness calculation 

strategy. Section 5.6 demonstrates experimental results for the presented approach over standard 

test sequences and some conclusions are drawn in Section 5.7. 

5.2. Harmony Search Algorithm 

5.2.1. The Harmony Search Algorithm 

 

In the basic HS, each solution is called a ‘‘harmony” and is represented by an n-dimension real 

vector. An initial population of harmony vectors are randomly generated and stored within a Har-

mony Memory (HM). A new candidate harmony is thus generated from the elements in the HM by 

using a memory consideration operation either by a random re-initialization or a pitch adjustment 

operation.  

 

Finally, the HM is updated by comparing the new candidate harmony and the worst harmony vec-

tor in the HM. The worst harmony vector is replaced by the new candidate vector in case it is bet-

ter than the worst harmony vector in the HM. The above process is repeated until a certain termi-

nation criterion is met. The basic HS algorithm consists of three basic phases: HM initialization, 

improvisation of new harmony vectors and updating of the HM. The following discussion address-

es details about each stage. 

 

5.2.1.1. Initializing the problem and algorithm parameters 

 

In general, the global optimization problem can be summarized as follows: 

( )  min : ( ) ( ), ( ) ,   1,2, , ,f x j l j u j j n =x  where ( )f x  is the objective function, 

( ) ( ) ( )( )1 , 2 ,...,x x x n=x  is the set of design variables, n  is the number of design variables, and 

( )l j  and ( )u j  are the lower and upper bounds for the design variable ( )x j , respectively. The 

parameters for HS are the harmony memory size, i.e., the number of solution vectors lying on the 
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harmony memory (HM), the harmony-memory consideration rate (HMCR), the pitch adjusting rate 

(PAR), the distance bandwidth (BW) and the number of improvisations (NI) which represents the 

total number of iterations. It is obvious that the performance of HS is strongly influenced by pa-

rameter values which determine its behavior. 

 

5.2.1.2. Harmony memory initialization 

 

In this stage, initial vector components at HM, i.e., HMS vectors, are configured. Let 

( ) ( ) ( ) 1 , 2 ,...,i i i ix x x n=x  represent the i-th randomly-generated harmony vector: 

( ) ( ) ( ) ( ) ( )( )0,1ix j l j u j l j rand= + −   for 1,2,...,j n=  and 1,2,...,i HMS= , where ( )0,1rand  is 

an uniform random number between 0 and 1.  

 

Then, the HM matrix is filled with the HMS harmony vectors as follows: 

 

1

2
HM

HMS

 
 
 =
 
 
 

x

x

x

 (5.1) 

 

 

5.2.1.3. Improvisation of new harmony vectors 

 

In this phase, a new harmony vector 
newx is built by applying the following three operators: 

memory consideration, random re-initialization and pitch adjustment. Generating a new harmony 

is known as ‘improvisation’. In the memory consideration step, the value of the first decision vari-

able ( )1newx for the new vector is chosen randomly from any of the values already existing in the 

current HM i.e., from the set  1 2(1), (1), , (1)HMSx x x . For this operation, a uniform random num-

ber 
1r is generated within the range [0, 1]. If 

1r is less than HMCR, the decision variable ( )1newx  is 

generated through memory considerations; otherwise, ( )1newx is obtained from a random re-

initialization between the search bounds  (1), (1)l u . Values of the other decision variables 

(2), (3), , ( )new new newx x x n are also chosen accordingly. Therefore, both operations, memory con-

sideration and random re-initialization, can be modelled as follows: 

 

 1 2( ) ( ), ( ), , ( ) with probability       
( )

( ) ( ( ) ( )) (0,1)      with probability 1-

i HMS

new

x j x j x j x j HMCR
x j

l j u j l j rand HMCR


= 

+ − 
 (5.2) 

 

Every component obtained by memory consideration is further examined to determine whether it 

should be pitch-adjusted. For this operation, the Pitch-Adjusting Rate (PAR) is defined as to assign 

the frequency of the adjustment and the Bandwidth factor (BW) to control the local search around 

the selected elements of the HM. Hence, the pitch adjusting decision is calculated as follows: 

 

( ) ( ) (0,1)  with probability       
( )

( )                                         with probability (1- )

new new

new

new

x j x j rand BW PAR
x j

x j PAR

=  
= 


 (5.3) 

 

Pitch adjusting is responsible for generating new potential harmonies by slightly modifying origi-

nal variable positions. Such operation can be considered similar to the mutation process in evolu-

tionary algorithms. Therefore, the decision variable is either perturbed by a random number be-
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tween 0 and BW or left unaltered. In order to protect the pitch adjusting operation, it is important 

to assure that points lying outside the feasible range  ,l u  must be re-assigned i.e., truncated to the 

maximum or minimum value of the interval. 

 

5.2.1.4. Updating the harmony memory 

 

After a new harmony vector 
newx  is generated, the harmony memory is updated by the survival of 

the fit competition between 
newx  and the worst harmony vector 

wx  in the HM. Therefore 
newx  will 

replace 
wx  and become a new member of the HM in case the fitness value of 

newx  is better than 

the fitness value of
wx . 

5.2.2. Computational procedure 

 

The computational procedure of the basic HS can be summarized as follows (Liaw et al., 2009): 

 

Step 1 Set the parameters HMS, HMCR, PAR, BW and NI. 

Step 2 
Initialize the HM and calculate the objective function value of each 

harmony vector. 

Step 3 

Improvise a new harmony 
newx  as follows: 

for (j = 1 to n) do 

      if (
1r < HMCR) then 

            ( )newx j  = ( )ax j  where a is element of ( )1,2, , HMS  ran-

domly selected 

             if (
2r < PAR) then 

                
3( ) ( )new newx j x j r BW=    where 

1 2 3, , rand(0,1)r r r   

             end if 

               if  ( ) ( )newx j l j  

                ( ) ( )newx j l j=   

                end if 

                if  ( ) ( )newx j u j  

                ( ) ( )newx j u j=   

                end if 

      else 

           ( ) ( ) ( ( ) ( )),newx j l j r u j l j= +  −  where rand(0,1)r  

      end if 

 end for 

Step 4 Update the HM as  if ( ) ( )w new new wf f= x x x x  

Step 5 
If NI is completed, the best harmony vector 

bx in the HM is returned; 

otherwise go back to step 3. 

5.3. Fitness approximation method 

 

Evolutionary algorithms that use fitness approximation aim to find the global minimum of a 

given function considering only a very few numbers of function evaluations and a large number of 

estimations, based on an approximate model of the function landscape. In order to apply such ap-

proach, it is necessary that the objective function implicates a very expensive evaluation and con-

sists of few dimensions (up to five) (Luo, et al., 2011). Recently, several fitness estimators have 

been reported in the literature (Lim et al., 2010; Ong et al., 2008; Ratle, 2001; Zhou et al., 2005) in 
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which the number of function evaluations is considerably reduced to hundreds, dozens, or even 

less. However, most of these methods produce complex algorithms whose performance is condi-

tioned to the quality of the training phase and the learning algorithm in the construction of the ap-

proximation model. 

 

In this chapter, we explore the use of a local approximation scheme based on the nearest-neighbor-

interpolation (NNI) for reducing the function evaluation number. The model estimates the fitness 

values based on previously evaluated neighboring individuals which have been stored during the 

evolution process. At each generation, some individuals of the population are evaluated through 

the accurate (real) fitness function while the other remaining individuals are only estimated. The 

positions to be accurately evaluated are determined based on their proximity to the best individual 

or regarding their uncertain fitness value. 

5.3.1 Updating the individual database 

 

In a fitness approximation method, every evaluation of an individual produces one data point (in-

dividual position and fitness value) that is potentially taken into account for building the approxi-

mation model during the evolution process. Therefore, in our approach, we keep all seen-so-far 

evaluated individuals and their respective fitness values within a history array T which is em-

ployed to select the closest neighbor and to estimate the fitness value of a new individual. Thus, 

each element of T consists of two parts: the individual position and its respective fitness value. 

The array T begins with null elements in the first iteration. Then, as the optimization process 

evolves, new elements are added. Since the goal of a fitness approximation approach is to evaluate 

the least possible number of individuals, only few elements are contained in T. 

5.3.2 Fitness calculation strategy  

 

This section explains the strategy to decide which individuals are to be evaluated or estimated. The 

presented fitness calculation scheme estimates most of fitness values to reduce the computational 

overhead at each generation. In the model, those individuals positioned nearby the individual with 

the best fitness value at the array T (Rule 1) are evaluated by using the actual fitness function. 

Such individuals are important as they possess a stronger influence over the evolution process than 

the others. Moreover, it also evaluates those individuals placed in regions of the search space with 

no previous evaluations (Rule 2). Fitness values for these individuals are uncertain since there is 

no close reference (close points contained in T) to calculate their estimates. 

 

The remaining individuals, for which there exist a close point that is previously evaluated and its 

fitness value is not the best contained in the array T, are estimated using the NNI criterion (Rule 

3). Thus, the fitness value of an individual is approximated by assigning the same fitness value that 

the nearest individual stored in T. 

 

Therefore, the fitness computation model follows three important rules to evaluate or estimate fit-

ness values: 

 

1. Exploitation rule (evaluation). If a new individual (search position) P is located closer 

than a distance d with respect to the nearest individual 
qL  contained in T 

( 1,2,3, ,q m= ; where m is the number of elements contained in T), whose fitness value 

qLF  corresponds to the best fitness value, then the fitness value of P is evaluated by using 

the actual fitness function. Figure 5.1(a) draws the rule procedure.  
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2. Exploration rule (evaluation). If a new individual P is located further away than a dis-

tance d with respect to the nearest individual
qL contained in T, then its fitness value is 

evaluated by using the actual fitness function. Figure 5.1(b) outlines the rule procedure. 

 

3. NNI rule (estimation). If a new individual  P is located closer than a distance d with re-

spect to the nearest individual 
qL  contained in T, whose fitness value 

qLF  does not corre-

spond to the best fitness value, then its fitness value is estimated  assigning it the same 

fitness that 
qL (

qP LF F= ). Figure 1c sketches the rule procedure. 

 

  
(a) (b) 

 
(c) 

 

Fig. 5.1. The fitness calculation strategy. (a) According to the rule 1, the individual (search position) P is 

evaluated since it is located closer than a distance d with respect to the nearest individual location 3L . There-

fore, the fitness value 
3LF  corresponds to the best fitness value (minimum). (b) According to the rule 2, the 

search point P is evaluated and there is no close reference within its neighborhood. (c) According to rule 3, 

the fitness value of P is estimated by means of the NNI-estimator, assigning 
2P LF F=  

 

The d value controls the trade-off between the evaluation and the estimation of search locations. 

Typical values of d range from 1 to 4. Values close to 1 improve the precision at the expense of a 

higher number of fitness evaluations (the number of evaluated individuals is more than the number 

of estimated). On the other hand, values close to 4 decrease the computational complexity at the 

price of poor accuracy (decreasing the number of evaluation and increasing the number of estima-

tions). After exhaustive experimentation, it has been determined that a value of d=3 represents the 

best trade-off between computational overhead and accuracy, so it is used throughout the study.  

 

The presented method, from an optimization perspective, favors the exploitation and exploration in 

the search process. For the exploration, the method evaluates the fitness function of new search lo-

cations which have been located far from previously calculated positions. Additionally, it also es-

timates those that are closer.  

 

For the exploitation, the presented method evaluates the fitness function of those new searching 

locations which are placed nearby the position that holds the minimum fitness value seen so far. 

Such fact is considered as a strong evidence that the new location could improve the “best value” 

(the minimum) already found. 
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With the purpose of knowing which rule must be applied by the fitness approximation strategy, 

considering a new search position P, it is only necessary to identify the closest individual 
qL  

which is contained in T. Then, it is inquired if the positional relationship between them and the fit-

ness value 
qLF  of 

qL  fulfill the properties imposed by each rule (distance, if 
qLF  is the best fitness 

values contained in T, etc). As the number of elements of the array T is very limited, the computa-

tional complexity resulting from such operations is negligible.   

 

Fig. 5.1 illustrates the procedure of fitness computation for a new solution (point P). In the prob-

lem, the objective function f is minimized with respect to two parameters (
1 2,x x ). In all figures 

(Figs. 5.1(a), (b) and (c)), the individual database array T contains five different elements 

( )1 2 3 4 5, , , ,L L L L L with their corresponding fitness values ( )
1 2 3 4 5
, , , ,L L L L LF F F F F . Figures 5.1(a) and 

(b) show the fitness evaluation ( )1 2( , )f x x  of the new solution P, following the rule 1 and 2 re-

spectively, whereas Fig. 5.1(c) present the fitness estimation of P using the NNI approach which is 

laid by rule 3.  

 

 

 
(a) 

 
(b) 

 

Fig. 5.2. Differences between the conventional HS and the HS optimization method presented in this 

chapter. (a) Conventional HS and (b) the HS algorithm including the fitness calculation strategy 
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5.3.3. HS optimization method  

 

The coupling of HS and the fitness approximation strategy is presented in this chapter as an opti-

mization approach. The only difference between the conventional HS and the enhanced HS meth-

od is the fitness calculation scheme.  

 

In the presented algorithm, only some individuals are actually evaluated (Rules 1 and 2) at each 

generation. All other fitness values for the rest are estimated using the NNI-approach (Rule 3). The 

estimation is executed by using the individuals previously calculated which are contained in the ar-

ray T.  

 

Fig.5.2 shows the difference between the conventional HS and the presented version. It is clear 

that two new blocks have been added, the fitness estimation and the updating individual database. 

Both elements and the actual evolution block, represent the fitness calculation strategy just as it 

has been explained at Section 5.3.2. As a result, the HS approach can substantially reduce the 

number of function evaluations preserving the good search capabilities of HS. 

5.4. Motion estimation and Block-Matching 

 

For motion estimation, in a BM algorithm, the current frame of an image sequence 
tI  is divided 

into non-overlapping blocks of NxN pixels. For each template block in the current frame, the best 

matched block within a search window ( )S of size ( ) ( )2 1 2 1W x W+ +  in the previous frame
1tI −

 

is determined, where W is the maximum allowed displacement. The position difference between a 

template block in the current frame and the best matched block in the previous frame is called the 

Motion Vector (MV) (see Fig. 5.3). Therefore, BM can be viewed as an optimization problem, 

with the goal of finding the best MV within a search space. 

 

 

 
 

Fig. 5.3. Block Matching procedure. 

 

The most well-known matching criterion for BM algorithms is the sum of absolute difference 

(SAD). It is defined in Eq. (5.5) considering a template block at position (x, y) in the current frame 

and the candidate block at position ˆ ˆ( , )x u y v+ +  in the previous frame 
1tI −
. 

 
1 1

1

0 0

ˆ ˆ ˆ ˆSAD( , ) ( , ) ( , )

N N

t t

j i

u v g x i y j g x u i y v j

− −

−

= =

= + + − + + + +  (5.4) 
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where ( )tg  is the gray value of a pixel in the current frame 
tI  and 

1( )tg −   is the gray level of a 

pixel in the previous frame 
1tI −
. Therefore, the MV in ( , )u v is defined as follows: 

 

( , )
ˆ ˆ( , ) arg  min  SAD( , )

u v S
u v u v


=  (5.5) 

 

where  ˆ ˆ ˆ ˆ( , )  ,S u v W u v W= −   and ˆ ˆ( , )x u y v+ +  is a valid pixel position 1tI −
. As it can be seen, 

the computing of such matching criterion is a consuming time operation which represents the bot-

tle-neck in the BM process.  

 

In the context of BM algorithms, the FSA is the most robust and accurate method to find the MV. 

It tests all possible candidate blocks from 
1tI −
 within the search area to find the block with mini-

mum SAD. For the maximum displacement of W, the FSA requires 2(2 1)W +  search points. For 

instance, if the maximum displacement W is ±7, the total search points are 225. Each SAD calcula-

tion requires 
22N  additions and the total number of additions for the FSA to match a 16 16x  block 

is 130,560. Such computational requirement makes the application of FSA difficult for real time 

applications. 

5.5. Block-Matching algorithm based on Harmony Search with the estimation strategy 

 

FSA finds the global minimum (the accurate MV), considering all locations within the search 

space S. Nevertheless, the approach has a high computational cost for practical use. In order to 

overcome such a problem, many fast algorithms have been developed yielding only a poorer preci-

sion than the FSA. A better BM algorithm should spend less computational time on searching and 

obtaining accurate motion vectors (MVs). 

 

The BM algorithm presented at this chapter is comparable to the fastest algorithms and delivers a 

similar precision to the FSA approach. Since most of fast algorithms use a regular search pattern 

or assume a characteristic error function (uni-modal) for searching the motion vector, they may get 

trapped into local minima considering that for many cases (i.e., complex motion sequences) an 

uni-modal error is no longer valid.  

 

Fig. 5.4 shows a typical error surface (SAD values) which has been computed around the search 

window for a fast-moving sequence. On the other hand, the presented BM algorithm uses a non-

uniform search pattern for locating global minimum distortion.  

 

 

      
 

Fig. 5.4. Common non-unimodal error surface with multiple local minimum error points 
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Under the effect of the HS operators, the search locations vary from generation to generation, 

avoiding to get trapped into a local minimum. Besides, since the presented algorithm uses a fitness 

calculation strategy for reducing the evaluation of the SAD values, it requires fewer search posi-

tions. 

 

In the algorithm, the search space S consists of a set of 2-D motion vectors û and v̂  representing 

the x and y components of the motion vector, respectively. The particle is defined as: 

 

 ˆ ˆ, ,i i i i iP û v W û v W= −    (5.6) 

 

where each particle i represents a possible motion vector. In this chapter, the search windows, con-

sidered in the simulations, are set to ±8 and ±16 pixels. Both configurations are selected in order to 

compare the results with other approaches presented in the literature. 

5.5.1. Initial population 

 

The first step in HS optimization is to generate an initial group of individuals. The standard litera-

ture of evolutionary algorithms generally suggests the use of random solutions as the initial popu-

lation, considering the absence of knowledge about the problem (Goldberg, 1989).  

 

 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 5.5. Motion vector distribution for Foreman and Stefan sequences. (a)-(b) MV distribution for the 

Foreman sequence. (c)-(d) MV distribution for the Stefan sequence. 

 

However, several studies (Xiao, et al., 2011; Luque, et al., 2011; Soak & Lee, 2012; Xiao, 2008) 

have demonstrated that the use of solutions generated through some domain knowledge to set the 

initial population (i.e., non-random solutions) can significantly improve its performance. In order 

to obtain appropriate initial solutions (based on knowledge), an analysis over the motion vector 

distribution was conducted. After considering several sequences (see Table 5.1 and Fig. 5.9), it can 

be seen that 98% of the MVs are found to lie at the origin of the search window for a slow-moving 

sequence such as the one at Container, whereas complex motion sequences, such as the Carphone 
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and the Foreman examples, have only 53.5% and 46.7% of their MVs in the central search region. 

The Stefan sequence, showing the most complex motion content, has only 36.9%. Figure 5.5 

shows the surface of the MV distribution for the Foreman and the Stefan.  

 

On the other hand, although it is less evident, the MV distribution of several sequences shows 

small peaks at some locations lying away from the center as they are contained inside a rectangle 

that is shown in Fig. 5.5(b) and 5.5(d) by a white overlay. Real-world moving sequences concen-

trate most of the MVs under a limit due to the motion continuity principle (Zhu & Ma, 2000).  

 

Therefore, in this chapter, initial solutions are selected from five fixed locations which represent 

points showing the higher concentration in the MV distribution, just as it is shown by Figure 5.6. 

 

 

 
 

Fig. 5.6. Fixed pattern of five elements in the search window of  ±8, used as initial solutions. 

 

Since most movements suggest displacements near to the center of the search window (Jong et 

al., 1994; Li et al., 1994), the initial solutions shown by Fig. 5.6 are used as initial position for the 

HS algorithm. This consideration is taken regardless of the search window employed (±8 or ±16). 

5.5.2. Tuning of the HS algorithm 

 

The performance of HS is strongly influenced by parameter values which determine its behavior. 

HS incorporates several parameters such as the population size, the operator’s probabilities (as 

HMCR and PAR) or the total number of iterations (NI).  

 

Determining the most appropriate parameter values for a determined problem is a complex issue, 

since such parameters interact to each other in a highly nonlinear manner and there are not mathe-

matical models of such interaction. Throughout the years, two main types of methods have been 

proposed for setting up parameter values of an evolutionary algorithm: off-line and on-line strate-

gies (Montero & Riff, 2011).  

 

An off-line method (called tuning) searches for the best set of parameter values through experi-

mentation. Once defined, these values remain fixed. Such methodology is appropriate when the 

optimization problem maintains the same properties (dimensionality, multimodality, uncon-

strained, etc) each time that the EA is applied.  

 

On the other hand, on-line methods focus on changing parameter values during the search process 

of the algorithm. Thus, the strategy must decide when to change parameter values and determine 

new values. Therefore, these methods are indicated when EA faces optimizations problems with 

dimensional variations or restriction changes, etc. 
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Considering that the optimization problem outlined by the BM process maintains the same proper-

ties (same dimensions and similar error landscapes), the off-line method has been used for tuning 

the HS algorithm. Therefore, after exhaustive experimentation, the following parameters have 

been found as the best parameter set, HMCR=0.7, PAR=0.3.  

 

Considering that the presented approach is tested by using two different search windows (±8 and 

±16), the values of BW and NI have different configurations depending on the selected search win-

dow. Therefore, it is employed BW=8 and NI=25 in the case of a window search of ±8 whereas the 

case of ±16, it uses BW=16 and NI=45. Once such configurations are defined, the parameter set is 

kept for all test sequences through all experiments. 

5.5.3. The HS-BM algorithm 

 

The goal of our BM-approach is to reduce the number of evaluations of the SAD values (real fit-

ness function) avoiding any performance loss and achieving an acceptable solution. The HS-BM 

method is listed below: 

 

Step 1 Set the HS parameters. HMCR=0.7, PAR=0.3, BW=8 in case of a search window of ±8 

and 16 in case of ±16. 

Step 2 Initialize the harmony memory with five individuals (HMS=5), where each decision 

variable u
 
and v of the candidate motion vector MVa

 is set according to the fixed pat-

tern shown in Fig. 5.6. Considering (1,2, , )a HMS . Define also the individual da-

tabase array T, as an empty array. 

Step 3 Compute the fitness values for each individual according to the fitness calculation 

strategy presented in Section 5.3. Since all individuals of the initial population fulfil 

rule 2 conditions, they are evaluated through a real fitness function (calculating the real 

SAD values). 

Step 4 Update the new evaluations in the individual database array T. 

Step 5 Determine the candidate solution MVw  
of HMS holding the worst fitness value. 

Step 6 Improvise a new harmony MVnew
such that: 

for (j = 1 to 2) do 

      if (
1r < HMCR) then 

            MV ( )new j  = MV ( )a j  where a is element of ( )1,2, , HMS  randomly se-

lected 

             if (
2r < PAR) then 

                
3MV ( ) MV ( )new newj j r BW=    where 

1 2 3, , (0,1)r r r   

                if  MV ( ) ( )new j l j  

                MV ( ) ( )new j l j=   

                end if 

                if  MV ( ) ( )new j u j  

                MV ( ) ( )new j u j=   

                end if 

              end if 

      else 

           MV ( ) 1 round( ),new pj r E= +   where ( 1,1)r − , 8pE = or 16. 

      end if 

 end for 

8pE = , in case of a search window of ±8 and 16 in case of ±16. 
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Step 7 Compute the fitness value of MVnew
 by using the fitness calculation strategy presented 

in Section 5.3. 

Step 8 Update the new evaluation in the individual database array T. 

Step 9 Update HM. In case that the fitness value (evaluated or approximated) of the new solu-

tion MVnew
, is better than the solution MVw

, such position is selected as an element of 

HM, otherwise the solution MVw
 remains. 

Step 10 Determine the best individual of the current new population. If the new fitness (SAD) 

value is better than the old best fitness value, then update ˆ
bestu , ˆ

bestv . 

Step 11 If the number of iterations (NI) has been reached (25 in the case of a search window of 

±8 and 45 for ±16) , then the MV is ˆ
bestu , ˆ

bestv ; otherwise go back to Step 5. 

 

 

Thus, the presented HS-BM algorithm considers different search locations, 30 in the case of a 

search window of ±8 and 50 for ±16, during the complete optimization process (which consists of 

25 and 45 different iterations depending on the search window, plus the five initial positions). 

However, only a few search locations are evaluated using the actual fitness function (5-14, in the 

case of a search window of ±8 and 7-22, for ±16) while the remaining positions are just estimated. 

Therefore, as the evaluated individuals and their respective fitness values are exclusively stored in 

the array T, the resources used for the management of such data are negligible.  

 

Figure 5.7 shows two search-patterns examples that have been generated by the HS-BM approach. 

Such patterns exhibit the evaluated search-locations (rule 1 and 2) in white-cells, whereas the min-

imum location is marked in black. Grey-cells represent cells that have been estimated (rule 3) or 

not visited during the optimization process. 

 

 
(a) (b) 

Fig. 5.7. Search-patterns generated by the HS-BM algorithm. (a) Search window pattern ±8 

with solution 1ˆ 0
best

u =  and 1ˆ 6
best

v = − .    (b) Search window pattern ±16 with solution 

2ˆ 11
best

u =  and 2ˆ 12
best

v = . 

 

5.5.4. Discussion on the accuracy of the fitness approximation strategy 

 

HS has been found to be capable of solving several practical optimization problems. A distinguish-

ing feature of HS is about its operation with only a population of individuals. It uses multiple can-

didate solutions at each step. This requires the computation of the fitness function for each candi-

date at every iteration. The ability to locate the global optimum depends on sufficient exploration 
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of the search space which requires the use of enough individuals. Under such circumstances, this 

work intends to couple the HS method with a fitness approximation model in order to replace 

(when it is feasible) the use of an expensive fitness function to compute the quality of several indi-

viduals. 

 

Similar to other EA approaches, HS maintains two different phases on its operation: exploitation 

and exploration (Tan, et al., 2009). Exploitation (local search) refers to the action of refining the 

best solutions found so far whereas exploration (global search) represents the process of generat-

ing semi-random individuals in order to capture information of unexplored areas. In spite of this, 

the optimization process is guided by the best individuals seen-so-far (Wang, et al., 2011). They 

are selected more frequently and thereby modified or combined by the evolutionary operators in 

order to generate new promising individuals. 

 

Therefore, the main concern in using fitness approximation models, is to accurately calculate the 

quality of those individuals which either hold great possibilities of grasping an excellent fitness 

value (individuals that are to close to one of the best individuals seen-so-far), or do not have refer-

ence about their possible fitness values (individuals located in unexplored areas) (Buche, et al., 

2005; Tenne, 2012).  

 

Most of the fitness approximation methods proposed in the literature (Lim et al., 2010; Ong et al., 

2008; Ratle, 2001) use interpolation models in order to compute the fitness value of new individu-

als. Since the estimated fitness value is approximated considering other individuals which might 

be located far away from the position to be calculated, it introduces big errors that harshly affects 

the optimization procedure (Jin, 2011). Different to such methods, in our approach, the fitness val-

ues are calculated using three different rules which promote the evaluation of individuals that re-

quire particular accuracy (Rule 1 and Rule 2).  

 

On the other hand, the strategy estimates those individuals which according to the evidence known 

so-far (elements contained in the array T) represent unacceptable solutions (bad fitness values). 

Such individuals do not play an important roll in the optimization process, therefore their accuracy 

is not considered critical (Branke & Schmidt, 2005; Giannakoglou, et al., 2006). 

 

It is important to emphasize that the presented fitness approximation strategy has been designed 

considering some of the BM process particularities. Error landscapes in BM, due to the continuity 

principle (Saha et al., 2011; Tai, et al., 2007; Nie & Ma, 2002) of video sequences, present the fol-

lowing particularity: the closer neighbors to one global/local minimum (a motion vector with a low 

SAD value) decrement their SAD value as they approach to it. Such behavior is valid even in the 

most complex movement types. Under such circumstances, when it is necessary calculate the fit-

ness value of a search position which is close to one of the search positions previously visited (ac-

cording to array T) and whose fitness value was unacceptable, its fitness value is estimated accord-

ing to Rule 3. This decision is taken considering that there is a strong evidence to consider such 

position as a bad individual from which it is no necessary to get a good accuracy level.   

 

Fig. 5.8 presents the optimization procedure achieved by the combination between HS and the fit-

ness approximation strategy presented in this chapter over a complex movement case. The exam-

ple illustrates the fitness strategy operation for a complex movement considering a search window 

of ±8.  

 

Fig. 5.8(a) shows the error landscape (SAD values) in a 3-D view, whereas Fig. 5.8(b) depicts the 

search positions calculated by the fitness approximation strategy over the SAD values that are 

computed for all elements of the search window as reference (for the sake of representation, both 

Figures are normalized from 0 to 1). Yellow squares indicate evaluated search positions whereas 

blue squares represent the estimated ones. Since random numbers are involved by HS in the gener-
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ation of new individuals, they may encounter same positions (repetition) that other individuals 

have visited in previous iterations. Circles represent search positions that have been selected sev-

eral times during the optimization procedure.  

 

(a) 

 

(b) 

 
 

Fig. 5.8. Example of the optimization procedure: (a) Error landscape (SAD values) in a 3-D view. (b) 

Search positions calculated by the fitness approximation strategy over the SAD values which are computed 

for all elements of the search window of size ±8. 

 

The problem of accuracy, in the estimation process, can also be appreciated through a close analy-

sis from the red dashed square of Fig. 5.8(b). As the blue squares represent the estimated search 

positions according to the Rule 3, their fitness values are both assigned to 0.68 substituting their 

actual value of 0.63 and 0.67 respectively. Thus, considering that such individuals present an un-

acceptable solution (according to the elements stored in the array T), the differences in the fitness 

value are negligible for the optimization process.  

 

From Fig. 5.8(b), it can be seen that although the fitness function considers 30 individuals only 12 

are actually evaluated by the fitness function (note that circle positions represent multiple evalua-

tions).  

 

5.6. Experimental results 

 

5.6.1. HS-BM results 

 

This section presents the results of comparing the HS-BM algorithm with other existing fast 

BMAs.  The simulations have been performed over the luminance component of popular video se-

quences that are listed in Table 5.1. Such sequences consist of different degrees and types of mo-

tion including QCIF (176x144), CIF (352x288) and SIF (352x240) respectively. The first four se-

quences are Container, Carphone, Foreman and Akiyo in QCIF format. The next two sequences 

are Stefan in CIF format and Football in SIF format. Among such sequences, Container has gen-
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tle, smooth and low motion changes and consists mainly of stationary and quasi-stationary blocks. 

Carphone, Foreman and Akiyo have moderately complex motion getting a ‘‘medium’’ category 

regarding its motion content. Rigorous motion which is based on camera panning with translation 

and complex motion content can be found in the sequences of Stefan and Football. Figure 5.9 

shows a sample frame from each sequence.  

 

Each picture frame is partitioned into macro-blocks with the sizes of 16x16 (N=16) pixels for mo-

tion estimation, where the maximum displacement within the search range W is of ±8 pixels in 

both horizontal and vertical directions for the sequences Container, Carphone, Foreman, Akiyo 

and Stefan. The sequence Football has been simulated with a window size W of ±16, which re-

quires a greater number of iterations (8 iterations) by the HS-BM method. 

 

 

 
 

Fig. 5.9.  Test video sequences. 

 

In the comparison, two relevant performance indexes have been considered: the distortion perfor-

mance and the search efficiency. 

 

 

Sequence Format Total frames Motion type 

Container QCIF(176x144) 299 Low 

Carphone QCIF(176x144) 381 Medium 

Foreman QCIF(352x288) 398 Medium 

Akiyo QCIF(352x288) 211 Medium 

Stefan CIF(352x288) 89 High 

Football SIF(352x240) 300 High 

 

Table 5.1. Test sequences used in the comparison test.  

 

In order to compare the performance of the HS-BM approach, different search algorithms such as 

FSA, TSS (Jong et al., 1994), 4SS (Po & Ma, 1996), NTSS (Li et al., 1994), BBGD (Liu & Feig, 

1996), DS (Zhu & Ma, 2000), NE (Saha et al., 2011), ND (Saha et al., 2008), LWG (Lin & Wu, 

1998), GFSS (Wu & So, 2003) and PSO-BM (Yuan & Shen, 2008) have been all implemented in 
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our simulations.  For comparison purposes, all six video sequences in Fig. 5.8 have been all used. 

All simulations are performed on a Pentium IV 3.2 GHz PC with 1GB of memory. 

 

Distortion performance 

 

First, all algorithms are compared in terms of their distortion performance which is characterized 

by the Peak-Signal-to-Noise-Ratio (PSNR) value. Such value indicates the reconstruction quality 

when motion vectors, which are computed through a BM approach, are used. In PSNR, the signal 

is the original data frames whereas the noise is the error introduced by the calculated motion vec-

tors. The PSNR is thus defined as: 
2

10

255
PSNR 10 log

MSE

 
=   

 
 (5.7) 

 

where MSE is the mean square between the original frames and those compensated by the motion 

vectors. Additionally, as an alternative performance index, it is used in the comparison the PSNR 

degradation ratio (
PSNRD ). This ratio expresses in percentage (%) the level of mismatch between 

the PSNR of a BM approach and the PSNR of the FSA which is considered as reference. Thus the 

PSNRD  is defined as 

 

FSA BM

PSNR

FSA

PSNR PSNR
100%

PSNR
D

 −
= −  

 
 (5.8) 

 

Table 5.2 shows the comparison of the PSNR values and the PSNR degradation ratios (
PSNRD ) 

among the BM algorithms. The experiment considers the six image sequences presented in Fig. 

5.8. As it can be seen, in the case of the slow-moving sequence Container, the PSNR values (the 

PSNRD  ratios) of all BM algorithms are similar. For the medium motion content sequences such as 

Carphone, Foreman and Akiyo, the approaches consistent of fixed patterns (TSS, 4SS and NTSS) 

exhibit the worst PSNR value (high 
PSNRD ratio) except for the DS algorithm. On the other hand, 

BM methods that use evolutionary algorithms (LWG, GFSS, PSO-BM and HS-BM) present the 

lowest 
PSNRD ratio, only one step under the FSA approach which is considered as reference. Final-

ly, approaches based on the error-function minimization (BBGD and NE) and pixel-decimation 

(ND), show an acceptable performance. For the high motion sequence of Stefan, since the motion 

content of these sequences is complex producing error surfaces with more than one minimum, the 

performance, in general, becomes worst for most of the algorithms especially for those based on 

fixed patterns. In the sequence Football, which has been simulated with a window size of ±16, the 

algorithms based on the evolutionary algorithms present the best PSNR values. Such performance 

is because evolutionary methods adapt better to complex optimization problems where the search 

area and the number of local minima increase. As a summary of the distortion performance, the 

last column of Table 5.2 presents the average PSNR degradation ratio (
PSNRD ) obtained for all se-

quences.  According to such values, the HS-BM method is superior to any other approach. Due to 

the computation complexity, the FSA is considered just as a reference. The best entries are bold-

cased in Table 5.2. 

 

Search efficiency 

 

The search efficiency is used in this section as a measurement of computational complexity. The 

search efficiency is calculated by counting the average number of search points (or the average 

number of SAD computations) for the MV estimation.  
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In Table 5.3, the search efficiency is compared, where the best entries are bold-cased. Just above 

FSA, some evolutionary algorithms such as LWG, GFSS and PSO-BM hold the highest number of 

search points per block. On the contrary, the HS-BM algorithm can be considered as a fast ap-

proach as it maintains a similar performance to DS. 

 

From data shown in Table 5.3, the average number of search locations, corresponding to the HS-

BM method, represents the number of SAD evaluations (the number of SAD estimations are not 

considered whatsoever). Additionally, the last two columns of Table 5.3 present the number of 

search locations that have been averaged (over the six sequences) and their performance rank. Ac-

cording to these values, the HS-BM method is ranked in the first place.  

 

 

Algorithm 

 

Container 

W=±8 

Carphone 

W=±8 

Foreman 

W=±8 

Akiyo 

W=±8 

Stefan 

W=±8 

Football 

W=±16 
Total 

Average 

(
PSNRD ) PSNR

 PSNRD
 

PSNR PSNRD  PSNR PSNRD  PSNR PSNRD  PSNR PSNRD  PSNR PSNRD  

FSA 

 
43.18 0 31.51 0 31.69 0 29.07 0 25.95 0 23.07 0 0 

TSS 43.10 -0.20 30.27 -3.92 29.37 -7.32 26.21 -9.84 21.14 -18.52 20.03 -13.17 -8.82 

4SS 43.12 -0.15 30.24 -4.01 29.34 -7.44 26.21 -9.84 21.41 -17.48 20.10 -12.87 -8.63 

NTSS 43.12 -0.15 30.35 -3.67 30.56 -3.57 27.12 -6.71 22.52 -13.20 20.21 -12.39 -6.61 

BBGD 43.14 -0.11 31.30 -0.67 31.00 -2.19 28.10 -3.33 25.17 -3.01 22.03 -4.33 -2.27 

DS 43.13 -0.13 31.26 -0.79 31.19 -1.59 28.00 -3.70 24.98 -3.73 22.35 -3.12 -2.17 

NE 43.15 -0.08 31.36 -0.47 31.23 -1.47 28.53 -2.69 25.22 -2.81 22.66 -1.77 -1.54 

ND 43.15 -0.08 31.35 -0.50 31.20 -1.54 28.32 -2.56 25.21 -2.86 22.60 -2.03 -1.59 

LWG 43.16 -0.06 31.40 -0.36 31.31 -1.21 28.71 -1.22 25.41 -2.09 22.90 -0.73 -0.95 

GFSS 43.15 -0.06 31.38 -0.40 31.29 -1.26 28.69 -1.28 25.34 -2.36 22.92 -0.65 -1.01 

PSO-BM 43.15 -0.07 31.39 -0.38 31.27 -1.34 28.65 1.42 25.39 -2.15 22.88 -0.82 -1.03 

HS-BM 43.16 -0.03 31.49 -0.03 31.63 -0.21 29.01 -0.18 25.89 -0.20 23.01 -0.20 -0.18 

 

Table 5.2. PSNR values and 
PSNRD  comparison of the BM methods 

 

Algorithm 
Container 

W=±8 

Carphone 

W=±8 

Foreman 

W=±8 

Akiyo 

W=±8 

Stefan 

W=±8 

Football 

W=±16 

Total 

Average 
Rank 

FSA 289 289 289 289 289 1089 422.3 12 

TSS 25 25 25 25 25 25 25 8 

4SS 19 25.5 24.8 27.3 25.3 25.6 24.58 7 

NTSS 17.2 21.8 22.1 23.5 25.4 26.5 22.75 6 

BBGD 9.1 14.5 14.5 13.2 17.2 22.3 15.13 3 

DS 7.5 12.5 13.4 11.8 15.2 17.8 13.15 2 

NE 11.7 13.8 14.2 14.5 19.2 24.2 16.36 5 

ND 10.8 13.4 13.8 14.1 18.4 25.1 16.01 4 

LWG 75 75 75 75 75 75 75 11 

GFSS 60 60 60 60 60 60 60 10 

PSO-BM 32.5 48.5 48.1 48.5 52.2 52.2 47 9 

HS-BM 8.0 12.2 11.2 11.5 17.1 15.2 12.50 1 

 

Table 5.3. Averaged number of visited search points per block for all ten BM methods. 
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The average number of search points visited by the HS-BM algorithm ranges from 9.2 to 17.3, 

representing the 4% and the 7.4% respectively in comparison to the FSA method. Such results 

demonstrate that our approach can significantly reduce the number of search points. Hence, the 

HS-BM algorithm presented in this chapter is comparable to the fastest algorithms and delivers a 

similar precision to the FSA approach. 

5.6.2. Results on H.264 

 

Other set of experiments have been performed in JM-12.2 [64] of H.264/AVC reference software. 

In the simulations, we compare FS, DS (Zhu & Ma, 2000), EPZS (Tourapis, 2002), TSS (Jong et 

al., 1994), 4SS ( Po & Ma, 1996), NTSS (Li et al., 1994), BBGD (Liu & Feig, 1996) and the HS-

BM algorithm in terms of coding efficiency and computational complexity. 

 

For encoding purposes JM-12.2 Main Encoder Profile has been used. For each test sequence only 

the first frame has been coded as “I frame” and the remaining frames are coded as P frames. Only 

one reference frame has been used.  

 

Each pixel in the image sequences is uniformly quantized to 8 bits. Sum of absolute difference 

(SAD) distortion function is used as the block distortion measure (BDM). Image formats used are 

QCIF, CIF and SIF meanwhile sequences are tested at 30 fps (frames per second). The simulation 

platform in our experiments is a PC with Intel Pentium IV 2.66 GHz CPU. 

 

The test sequences used for our experiments are Container, Akiyo and Football. These sequences 

exhibit a variety of motion that is generally encountered in real video. For the sequences Container 

and Akiyo a search window of ±8 is selected meanwhile for the football sequence a search window 

of ±16 is considered. The group of experiments has been performed over such sequences at four 

different quantization parameters (QP=28,32,36,40) in order to test the algorithms at different 

transmission conditions. 

a) Coding efficiency 

 

In the first experiment, the performance of the HS-BM algorithm is compared to other BM algo-

rithms regarding the coding efficiency. Two different performance indexes are used for evaluating 

the coding quality: the PSNR Gain and the increasing of the Bit Rate.  

 

In order to comparatively assess the results, two additional indexes, called PSNR loss and Bit Rate 

Incr., relate the performance of each method with the FSA performance as a reference. Such in-

dexes are calculated as follows: 

 

PSNR loss=PSNR FSA-PSNR algorithm  (5.9) 

 

Bit Rate algorithm-Bit Rate FSA
Bit Rate Incr.= 100

Bit Rate FSA

 
 

 
 

(5.10) 

 

 

Tables 5.4 – 5.6 show a coding efficiency comparison among BM algorithms. It is observed, from 

experimental results, that the HS-BM algorithm holds an effective coding quality because the loss 

in terms of PSNR and the increase of the Bit rate are low with an average of 1.6dB and -0.04%, re-

spectively. Such coding performance is similar to the one produced by the EPZS method whereas 

it is much better than the obtained by other BM algorithms which posses the worst coding quality. 
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b) Computational complexity 

 

In the second experiment, we have compared the performance of the HS-BM algorithm to other 

BM algorithms in terms of computational overhead. As the JM-12.2 platform allows to simulate 

BM algorithms in real time conditions, we have used such results in order to evaluate their per-

formances. 

 

Three different performance indexes are used for evaluating the computational complexity; they 

are the Averaged Coding Time (ACT), Instruction Number (IN) and Consumed Memory (CM). 

The ACT is the averaged time employed to codify a complete frame (the averaged time consumed 

after finding all the corresponding motion vectors for a frame).  IN represents the number of in-

structions used to implement each algorithm in the JM-12.2 profile. CM considers the memory  

size used by the JM-12.2 platform in order to manage the data that are employed by each BM al-

gorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4. Coding efficiency results for the container sequence, considering a window size W of ±8. 

 

 

BM 

Coding efficiency Computational complexity 

PSNR 
Bit-rate 

(Kbits/s) 

PNSR loss 

(dB) 

Bit-rate increase 

(%) 

ACT 

(ms) 
IN 

CM 

(Bytes) 

FSA 38.19 25.6 - - 133.2 122 3072 

DS 38.11 25.9 0.08 1.20 7.45 138 420 

EPZS 38.19 25.3 - -1.20 22.1 621 8972 

TSS 30.32 29.3 7.87 14.45 2.1 100 180 

4SS 32.42 28.4 5.77 10.93 2.8 100 204 

NTSS 33.57 27.2 4.62 6.25 3.7 110 256 

BBGD 35.21 26.8 2.98 4.68 10.1 256 1024 

HS-BM 38.17 25.5 0.02 -0.40 3.9 189 784 

 

Table 5.5. Simulation results for the Akiyo sequence, considering a window size W of ±8. 

 

Tables 5.4 – 5.6 show the computational complexity comparison among the BM algorithms. It is 

observed from the experimental results that the HS-BM algorithm possesses a competitive ACT 

value (from 3.8 to 4.1 milliseconds) in comparison to other BM algorithms. This fact reflexes that 

although the cost of applying the fitness approximation strategy represents an overhead that is not 

required in most fast BM methods, such overhead is negligible in comparison to the cost of the 

number of fitness evaluations which have been saved. The ACT values, presented by the HS-BM, 

are lightly superior to those produced by the fast BM methods (TSS, 4SS and NTSS) whereas it is 

much better than those generated by the EPZS algorithm which posseses the worst computational 

performance. On the other hand, the resources (in terms of number of instructions IN and required 

 

BM 

Coding efficiency Computational complexity 

PSNR 
Bit-rate 

(Kbits/s) 

PNSR loss 

(dB) 

Bit-rate increase 

(%) 

ACT 

(ms) 
IN 

CM 

(Bytes) 

FSA 36.06 41.4 - - 133.2 122 3072 

DS 36.04 43.4 0.02 4.83 6.33 138 420 

EPZS 36.04 41.3 0.02 -0.20 19.5 621 8972 

TSS 34.01 45.2 2.05 9.17 2.1 100 180 

4SS 35.22 44.7 0.84 7.97 2.8 100 204 

NTSS 35.76 44.3 0.30 7.00 3.7 110 256 

BBGD 35.98 42.1 0.08 1.70 9.1 256 1024 

HS-BM 36.04 41.5 0.02 0.20 3.8 189 784 
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memory CM) needed by the HS-BM approach are considered as standard in software and hard-

ware architectures. 

 

 

BM 

Coding efficiency Computational complexity 

PSNR 
Bit-rate 

(Kbits/s) 

PNSR loss 

(dB) 

Bit-rate increase 

(%) 

ACT 

(ms) 
IN 

CM 

(Bytes) 

FSA 34.74 98.85 - - 245.7 122 12288 

DS 32.22 99.89 2.52 1.02 10.36 144 600 

EPZS 34.72 98.81 0.02 -0.04 26.8 678 20256 

TSS 27.12 106.42 7.62 7.65 2.9 113 180 

4SS 27.91 105.29 6.83 6.51 3.1 113 204 

NTSS 29.11 104.87 5.63 6.09 4.2 113 256 

BBGD 29.76 103.96 4.98 5.19 16.41 268 2048 

HS-BM 34.73 98.91 0.01 0.06 4.1 201 1024 

 

Table 5.6. Simulation results for the Football sequence, considering a window size W of ±16. 

 

5.7. Conclusions 

 

In this chapter, a Block-Matching algorithm that combines Harmony Search with a fitness ap-

proximation model is presented. The approach uses as potential solutions the motion vectors be-

longing to the search window. A fitness function evaluates the matching quality of each motion 

vector candidate. To save computational time, the approach incorporates a fitness calculation strat-

egy to decide which motion vectors can be estimated or actually evaluated. Guided by the values 

given by such fitness calculation strategy, the set of motion vectors are evolved using the HS oper-

ators so the best possible motion vector can be identified.  

 

Since the presented algorithm does not consider any fixed search pattern during the BM process or 

any other movement assumption, a high probability for finding the true minimum (accurate motion 

vector) is expected regardless of the movement complexity contained in the sequence. Therefore, 

the chance of being trapped into a local minimum is reduced in comparison to other BM algo-

rithms.  

 

The performance of HS-BM has been compared to other existing BM algorithms by considering 

different sequences which present a great variety of formats and movement types. Experimental 

results demonstrate that the presented algorithm maintains the best balance between coding effi-

ciency and computational complexity. 

 

Although the experimental results indicate that the HS-BM method can yield better results on 

complicated sequences, it should be noticed that the aim of this chapter is to show that the fitness 

approximation can effectively serve as an attractive alternative to evolutionary algorithms for solv-

ing complex optimization problems, yet demanding fewer function evaluations. 



 

Chapter 6 

Multi-Threshold Segmentation using Learning Automata 

 

 

 

 

 
Multi-Threshold selection for image segmentation is considered as a critical pre-processing step 

for image analysis, pattern recognition and computer vision.  This chapter explores the use of the 

Learning Automata (LA) algorithm to compute the thresholding points for segmentation proposes. 

LA is a heuristic method which is able to solve complex optimization problems with interesting 

results in parameter estimation. Different to other optimization approaches, LA explores in the 

probability space providing appropriate convergence properties and robustness. In this chapter the 

segmentation task is considered as an optimization problem and the LA is used to generate the im-

age multi-threshold points. In this approach, one 1-D histogram of a given image is approximated 

through a Gaussian mixture model whose parameters are calculated using the LA algorithm. Each 

Gaussian function approximating the histogram represents a pixel class and therefore a threshold-

ing point. Experimental results show fast convergence of the method, avoiding the typical sensitiv-

ity to initial conditions.   

6.1. Introduction 

 

Several image processing applications aim to detect and mark relevant features which may be 

later analyzed to perform several high-level tasks. In particular, image segmentation seeks to 

group pixels within meaningful regions. Commonly, gray levels belonging to the object, are sub-

stantially different from those featuring the background. Thresholding is thus a simple but effec-

tive tool to isolate objects of interest; its applications include several classics such as document 

image analysis, whose goal is to extract printed characters (Abak, et al., 1997; Kamel & Zhao, 

1993), logos, graphical content, or musical scores; also it is used for map processing which aims to 

locate lines, legends, and characters (Trier & Jain, 1995). Moreover, it is employed for scene pro-

cessing, seeking for object detection, marking (Bhanu, 1986a) and for quality inspection of materi-

als (Sezgin & Sankur, 2001; Sezgin & Taşaltı́n, 2000). 

 

Thresholding selection techniques can be classified into two categories: bi-level and multi-level. In 

the former, one limit value is chosen to segment an image into two classes: one representing the 

object and the other one segmenting the background. When distinct objects are depicted within a 

given scene, multiple threshold values have to be selected for proper segmentation, which is com-

monly called multilevel thresholding. 

 

A variety of thresholding approaches have been proposed for image segmentation, including con-

ventional methods (Guo & Pandit, 1998; Pal & Pal, 1993; Sahoo, et al., 1988; Snyder, et al., 1990) 

and intelligent techniques (see for instance (Chen & Wang, 2005; Lai, 2006)). Extending the seg-

mentation algorithms to a multilevel approach may cause some inconveniences: (i) they may have 

no systematic or analytic solution when the number of classes to be detected increases and (ii) they 

may also show a slow convergence and/or high computational cost (Chen & Wang, 2005).  

 

In this chapter, the segmentation algorithm is based on a parametric model holding a probability 

density function of gray levels which groups a mixture of several Gaussian density functions 

(Gaussian mixture). Mixtures represent a flexible method of statistical modelling as they are em-
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ployed in a wide variety of contexts (Böhning & Seidel, 2003). Gaussian mixture has received 

considerable attention in the development of segmentation algorithms despite its performance is 

influenced by the shape of the image histogram and the accuracy of the estimated model parame-

ters (Gupta & Sortrakul, 1998). The associated parameters can be calculated considering an ap-

proximated maximum aposterior estimation (MAP) or the maximum likelihood (ML) estimation, 

considering the Expectation Maximization (EM) algorithm (Dempster, et al., 1977; Zhang, et al., 

2003) or Gradient-based methods (Park, et al., 2000). 

 

The EM algorithm provides a simple alternative procedure for computing posterior density or like-

lihood functions. However, its slow convergence speed has been pointed out as the most serious 

practical problem (Redner & Walker, 1984). When the EM is used aside Gaussian mixtures, the 

convergence speed depends on the separation of component populations within such mixture. 

Therefore, the EM algorithms are very sensitive to the choice of the initial values (Park & Ozeki, 

2009). Moreover, the EM algorithm also tends to converge to local minima (Ma, et al., 2000; Xu 

& Jordan, 1996). A feasible way for solving this problem is to choose several sets of initial values, 

applying the EM algorithm and finally choosing the best outcome-set as the best estimation. By 

doing so, it can alleviate the influence of the initial values on the algorithm but increasing the 

computational cost. Additionally, the EM algorithm fails to converge if one or some variances of 

the Gaussian mixture approach to zero as it has been demonstrated when big objects with uniform 

intensities have undergone segmentation (Gupta & Sortrakul, 1998). 

 

On the other hand, Gradient-based methods are also computationally expensive and may easily get 

stuck within local minima (Gupta & Sortrakul, 1998). Redner and Walkerin argued in (Redner & 

Walker, 1984) -a widely-cited article, that Newtonian methods (such as Levenberg-Marquardt, 

LM) should generally be preferred over EM particularly for unconstrained optimization problems. 

However, they must be modified in order to be used within Gaussian mixtures, where there are 

probabilistic constraints on the parameters (Xu & Jordan, 1996) that may result in singularities.  

 

In the parameter space of mixture models, the singularities occur when two or more components 

are exactly overlapped, and they can be dismissed as a single component. Recent works  (Olsson, 

et al., 2007; Park & Ozeki, 2009) have shown that singularities cause slow convergence in Newto-

nian and quasi-Newtonian methods while they are applied to determine parameters of Gaussian 

mixtures. 

 

Despite gradient-based methods and the EM algorithm seem to have different mechanisms for pa-

rameter updating. Xu & Jordan (1996) have established a relationship between the gradient of the 

log likelihood and the updating step within the parameter space while using the EM algorithm. 

They found that the EM algorithm can be viewed as a variable metric gradient algorithm with a 

projection matrix changing at each step and behaving just like a function of the current parameter 

value.  In the EM algorithm, the new value of the parameter 1k +  is thus chosen close to the pre-

vious value k mimicking gradients methods. Therefore, the updating rule may get the EM algo-

rithm easily stuck within local minima (Olsson et al., 2007). 

 

In this chapter, an alternative approach using an optimization algorithm based on learning automa-

ta for determining the parameters of a Gaussian mixture is presented. The Learning Automata 

(LA) (Najim & Poznyak, 1994; Narendra & Thathachar, 1989) is an adaptive decision making 

method that operate in unknown random environments while progressively improve their perfor-

mance via a learning process. Since LA theorists study the optimization under uncertainty, it is 

very useful for optimization of multi-modal functions when the function is unknown and only 

noise-corrupted evaluations are available. In such algorithms, a probability density function, which 

is defined over the parameter space, is used to select the next point. The reinforcement signal (ob-

jective function) and the learning algorithm are used by the learning automata (LA) to update the 

probability density function at each stage. LA has been successfully applied to solve different sorts 
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of engineering problems such as pattern recognition (Zahiri, 2008), adaptive control (Zeng, et al., 

2000) signal processing (Howell & Gordon, 2001) and power systems (Wu, 1995). 

 

One main advantage of the LA method is that it does not need knowledge of the environment or 

any other analytical reference to the function to be optimized. Additionally, one interesting ad-

vantage of LA lies on the fact that it offers fast convergence mainly when it is considered for the 

estimation of many parameters (Thathachar & Sastry, 2002). Other methods such as Gradient and 

the EM which make use of iterative updating procedures within the parameter space, may exhibit 

slow convergence or local minima trapping. However, LA is focused on the probability space 

(Zeng & Liu, 2005) leading to global optimization (Beigy & Meybodi, 2006) by allowing any el-

ement of the action set (or parameter) to be chosen. Such fact makes LA insensitive to initial val-

ues. 

 

Recently, more effective LA-based algorithms have been proposed for multimodal complex func-

tion optimization (Beigy & Meybodi, 2006; Howell, et al., 1997; Thathachar & Sastry, 2002; Zeng 

& Liu, 2005). It has also been experimentally shown that the performance of such optimization al-

gorithms is comparable to or better than the genetic algorithm (GA) in (Zeng & Liu, 2005). On the 

other hand, the algorithm known as continuous action reinforcement learning automata (CARLA) 

(Frost, 1998), has been used for parameter identification of particularly complex systems, showing 

the effectiveness of the approach with interesting results on  adaptive control (Frost, 1998; Howell 

& Best, 2000; Howell et al., 1997; Kashki, et al., 2008) and digital filter design (Howell & 

Gordon, 2001). 

 

In this chapter, the segmentation process is considered as an optimization problem approximating 

the 1-D histogram of a given image by means of a Gaussian mixture model. The operation pa-

rameters are calculated through the CARLA algorithm. Each Gaussian contained within the histo-

gram represents a pixel class and therefore belongs to the thresholding points. The experimental 

results, presented in this work, demonstrate that LA exhibits fast convergence, relatively low com-

putational cost and no sensitivity to initial conditions by keeping an acceptable segmentation of the 

image, i.e. a better mixture approximation in comparison to the EM or gradient based algorithms. 

 

The chapter is organized as follows. Section 6.2 presents the Gaussian approximation to the histo-

gram while Section 6.3 introduces the LA algorithm. Section 6.4 shows the most important im-

plementation issues. Experimental results for the proposed approach are presented in Section 6.5 

and some relevant conclusions are discussed in Section 6.6.  

6.2. Gaussian approximation 

 

Let consider an image holding L gray levels [0, , 1]L−  whose distribution is displayed within 

a histogram ( )h g . In order to simplify the description, the histogram is normalized just as a prob-

ability distribution function, yielding: 

 

( ) ,   ( ) 0,
gn

h g h g
N

=   

1 1

0 0

,  and ( ) 1,

L L

g

g g

N n h g

− −

= =

= =   
(6.1) 

 

where 
gn  denotes the number of pixels with gray level g and N being the total number of pixels in 

the image.  
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The histogram function can thus be contained into a mix of Gaussian probability functions of the 

form: 

 
2

2

1 1

( )
( ) ( ) exp

22

K K

i i

i i

ii i i

P x
p x P p x



= =

 − −
=  =  

 
   

 

(6.2) 

 

with Pi being the probability of class i, ( )ip x  being the probability distribution function of gray-

level random variable x in class i, with
i and 

i  being the mean and standard deviation of the i-

th probability distribution function and K being the number of classes within the image. In addi-

tion, the constraint 
1

1
K

i
i

P
=

=  must be satisfied. 

 

The mean square error is used to estimate the 3K parameters
iP , 

i  and ,  1,...,i i K = . For in-

stance, the mean square error between the Gaussian mixture ( )ip x  and the experimental histogram 

function ( )ih x is now defined as follows: 

 

2

1 1

1
( ) ( ) 1

n K

j j i

j i

J p x h x P
n


= =

 
 = − +  −  

 
   

 

(6.3) 

Assuming an n-point histogram and   being the penalty associated with the constrain 

1
1

K

i
i

P
=

= . 

 

In general, the estimation of the parameters that minimize the square error produced by the Gauss-

ian mixture is not a simple problem. A straightforward method is to consider the partial derivatives 

of the error function to zero, obtaining a set of simultaneous transcendental equations (Gonzalez & 

Woods, 2008). However, an analytical solution is not available considering the non-linear nature 

of the equations. The algorithms therefore make use of an iterative approach which is based on the 

gradient information or maximum likelihood estimation, just like the EM algorithm. Unfortunate-

ly, such methods may also get easily stuck within local minima.  

 

For the EM algorithm and the gradient-based methods, the new parameter point lies within a 

neighbourhood distance of the previous parameter point. However, this is not the case for the LA’s 

adaptation algorithm which is based on stochastic principles.  

 

The new operating point is thus determined by a parameter probability function and therefore it 

can be far from the previous operating point. This gives the algorithm a higher ability to locate and 

pursue a global minimum.  

 

It has been shown by many works in the literature that intelligent approaches may actually provide 

a satisfactory performance for image processing problems (Baştürk & Günay, 2009; Chen & 

Wang, 2005; Lai, 2006; Lai & Tseng, 2001; Tseng & Lai, 1999). The LA approach was chosen 

aiming into find appropriate parameters and their corresponding threshold values yet relying on 

the LA convergence characteristics and its immunity to initial values. 

6.3. Learning Automata (LA) 

 

LA operates by selecting actions via a stochastic process. Such actions operate within an envi-

ronment while being assessed according to a measure of the system performance. Figure 6.1(a) 
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shows the typical learning system architecture. The automaton selects an action (X) probabilisti-

cally. Such actions are applied to the environment and the performance evaluation function pro-

vides a reinforcement signal  . This is used to update the automaton’s internal probability distri-

bution whereby actions that achieve desirable performance are reinforced via an increased 

probability.  

 

Likewise, those underperforming actions are penalised or left unchanged depending on the particu-

lar learning rule which has been employed. Over time, the average performance of the system will 

improve until a given limit is reached. In terms of optimization problems, the action with the high-

est probability would correspond to the global minimum as demonstrated by rigorous proofs of 

convergence available in (Najim & Poznyak, 1994; Narendra & Thathachar, 1989). 

 

A wide variety of learning rules have been reported in the literature. One of the most widely used 

algorithms is the linear reward/inaction (
RIL ) scheme, which has been shown to guaranteed con-

vergence properties (see (Najim & Poznyak, 1994; Narendra & Thathachar, 1989)). In response to 

action
ix , which is selected at time step k, the probabilities are updated as follows: 

 

( 1) ( ) ( ) (1 ( ))i i ip n p n n p n + = +   −  

( 1) ( ) ( ) ( )j j jp n p n n p n + = −   , if i j  

 

(6.4) 

 

being  a learning rate parameter and 0 1  and [0,1]   the reinforcement signal; 1 =  indi-

cates the maximum reward and 0 = is a null reward. Eventually, the probability of successful 

actions will increase to become close to unity. In case that a single and foremost successful action 

prevails, the automaton is deemed to have converged.  

 

  
(a) (b) 

 

Fig. 6.1. (a) Reinforcement learning system and (b) Interconnected automata. 

 

With a large number of discrete actions, the probability of selecting any particular action becomes 

low and the convergence time can become excessive. To avoid this, LA can be connected in a par-

allel setup as the one shown in Figure 6.1(b). Each automaton operates a smaller number of actions 

and the ‘team’ works together in a co-operative manner. This scheme can also be used where mul-

tiple actions are required. 

 

Discrete stochastic LA can be used to determine global optimal parameters for optimization appli-

cations within multi-modal mean-square error surfaces. However, the discrete nature of the autom-

ata requires the discretization of a continuous parameter space while the quantization level tends to 

reduce the convergence rate. Therefore, a sequential approach is adopted for the CARLA imple-

mentation (Frost, 1998), overcoming the problem by means of an initial coarse quantization. The 

method may be refined again by using a re-quantization around the most successful action later on.  
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6.3.1. CARLA Algorithm 

The continuous action reinforcement learning automata (CARLA) is developed as an extension of 

the discrete stochastic LA for applications involving searching of continuous action space in a ran-

dom environment (Howell & Gordon, 2001). Several CARLA can be connected in parallel simi-

larly to discrete automata (Figure 6.1(b)), in order to search multidimensional action spaces. Alt-

hough the interconnection of the automata is through the environment, no direct inter-automata 

communication exists.  

 

The automaton’s discrete probability distribution is replaced by a continuous probability density 

function which is used as the basis for action selection. It operates a reward/inaction learning rule 

similar to the discrete LA shown in Equation (6.4). Successful actions receive an increase on the 

probability of being selected in the future via a Gaussian neighborhood function which augments 

the probability density in the vicinity of such successful action.  

 

Table 6.1 shows the generic pseudo-code for the CARLA algorithm.  The initial probability distri-

bution can be chosen as being uniform over a desired range. After a considerable number of itera-

tions, it converges to a probability distribution with a global maximum around the best action val-

ue (Beigy & Meybodi, 2006). 

 

CARLA Algorithm 

Initialize the probability density function to a uniform distribution 

     Repeat 

              Select an action using its probability density function 

              Execute action on the environment 

              Receive cost/reward for previous action 

              Update performance evaluation function   

              Update probability density function 

    Until stopping condition is reached. 

 

Table 6.1. Generic pseudo-code for the CARLA algorithm. 

 

If action x (parameter) is defined over the range
min max( , )x x , the probability density func-

tion ( , )f x n at iteration n is updated according to the following rule: 

 

min min[ ( , ) ( ) ( , )] if ( , )
( , 1)

0 otherwise

f x n n H x r x x x
f x n

  +  
+ = 


 (6.5) 

 

with   being chosen to re-normalize the distribution according to the following condition 

 
max

min

( , 1) 1

x

x

f x n dx+ =  (6.6) 

 

with ( )n being again the reinforcement signal from the performance evaluation and ( , )H x r be-

ing a symmetric Gaussian neighborhood function centered on ( )r x n= . It yields 

 
2

2

( )
( , ) exp

2

x r
H x r 



 −
=  − 

 
 (6.7) 
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with   and  being parameters that determine the height and width of the neighborhood function. 

They are defined in terms of the range of actions as follows: 

 

max min( )wg x x =  −  

 
(6.8) 

max min( )

hg

x x
 =

−
 (6.9) 

 

The speed and resolution of learning are thus controlled by free parameters
wg and

hg . Let action 

x(n) be applied to the environment at iteration n, returning a cost or performance index J(n).  

 

Current and previous costs are stored as a reference set R(n). The median and minimum values 

medJ  and 
minJ  may thus be calculated by means of ( )n , which is defined as follows: 

 

med

med min

( )
( ) max 0,

J J n
n

J J


 −
=  

− 
 (6.10) 

 

To avoid problems with infinite storage requirements and to allow the system to adapt to changing 

environments, only the last m values of the cost functions are stored in R(n). Equation (6.10) limits 

( )n  to values between 0 and 1 and only returns nonzero values for those costs that are below the 

median value. It is easy to understand how ( )n  affects the learning process as follows: during the 

learning, the performance and the number of selecting actions can be wildly variable, generating 

extremely high computing costs. However, ( )n is insensitive to such extremes and to high values 

of J(n) resulting from a poor choice of actions. As the learning continues, the automaton converges 

towards more worthy regions of the parameter space as such actions are chosen to be evaluated 

more often. When more of such responses are being received, 
medJ  gets reduced. Decreasing 

medJ  in ( )n  effectively enables the automaton to refine its reference around better responses 

(previously received), and hence resulting in a better discrimination between selected actions. 

 

In order to define an action value x(n) which has been associated to a given probability density 

function, an uniformly distributed pseudo-random number z(n) is generated within the range of 

[0,1]. Simple interpolation is thus employed to equate this value to the cumulative distribution 

function: 

min

( )

( , ) ( )

x n

x

f x n dx z n=  (6.11) 

 

For implementation purposes, the distribution is stored at discrete points with an equal inter-

sample probability. Linear interpolation is used to determine values at intermediate positions (see 

full details in (Howell & Gordon, 2001)). 

6.4. Implementation 

 

Four different pixel classes are used to segment the images. The idea is to show the effective-

ness of the algorithm and its performance against other algorithms solving the same task. The im-

plementation can easily be transferred to cases with a greater number of pixel classes. 

 

To approach the histogram of an image by 4 Gaussian functions (one for each pixel class), it is 

necessary to calculate the optimum values of the 3 parameters (Pi, i and 
i ) for each Gaussian 
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function (in this case, 12 values according to Equation (6.2)). This problem can be solved by opti-

mizing equation 3, considering that function ( )p x gathers 4 Gaussian functions. 

 

The parameters to be optimized are summarized in Table 6.2, with i

Pk  being the parameter repre-

senting the a priori probability (P), ik  holding the variance ( ) and ik
 representing the ex-

pected value (  ) of the Gaussian function i. 

 

In the LA optimization, each parameter is considered like an Automaton which is able to choose 

actions. Such actions correspond to values assigned to the parameters by a probability distribution 

within the interval. All intervals considered in this work are defined as i

Pk [0,0.5],  ik [0,128], 

and ik
[0,255]. 

 

For this 12-dimensional problem, 12 different automatons will be created to represent parametric 

approach of the corresponding histogram. One of the main advantages of the LA algorithm regard-

ing multi-dimensional problems is that the automatons are coupled only through the environment, 

thus each automaton operates independently during optimization.  

 

Thus, at each instant n, each automaton chooses an action according to their probability distribu-

tion which can be represented in a vector A(n)={ 1

Pk , 1k , 1k
…, 4

Pk , 4k , 4k
}.  This vector rep-

resents a certain approach to the histogram. Then, the quality of the approach is evaluated (accord-

ing to Equation (6.3)) and converted into a reinforcement signal ( )n  (through Equation 6.10). 

After the reinforcement value ( )n  is defined as a product of the elected approach A(n), the distri-

bution of probability is updated for n+1 of each automaton (according to the Equation (6.5)). To 

simplify parameters in Equation (6.8) and (6.9), they will take the same value for the 12 automa-

tons, such that 0.02wg = and
hg =0.3.  In this work, the optimization process considers a limit up 

to 2000 iterations. 

   

The optimization algorithm can thus be described as follows: 

 

i Set iteration number n=0. 

ii Define the action set A(n)={ 1

Pk , 1k , 1k
…, 4

Pk , 4k , 4k
} such that i

Pk [0,0.5], 

ik [0,128] and ik
[0,255]. 

iii Define probability density functions at iteration n: ( , )i

Pf k n , ( , )if k n
 and ( , )if k n

  

iv Initialize ( , )i

Pf k n , ( , )if k n
 and ( , )if k n

 as a uniform distribution between the de-

fined limits. 

v Repeat while 2000n   

 (a) Using a pseudo-random number generator for each automaton, select 

( )i

Pz n , ( )iz n
 and ( )iz n

 uniformly between 0 and 1. 

 (b) Select i

Pk [0,0.5], ik [0,128] and ik
[0,255] where the area under 

the probability density function is 
( )

0
( , ) ( )

i
Pk n

i i

P Pf k n z n= , 

( )

0
( , ) ( )

ik n
i if k n z n



 =  and
( )

0
( , ) ( )

ik n
i if k n z n



 = . 

 (c) Evaluate the performance using Eq. (6.3). 

 (d) Obtain the minimum,
minJ , and median, 

medJ  of  J (n). 

 (e) Evaluate ( )n via Eq. (6.10). 
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 (f) Update the probability density functions ( , )i

Pf k n , ( , )if k n
 and ( , )if k n

 

using Eq. (6.5). 

 (g) Increment iteration number n. 

 

The learning system searches within the 12-dimensional parameter space aiming for reducing the 

values of J in Equation (6.3).  

 

The final step is to determine the optimal threshold values  
iT . In this case, the pixel classification 

corresponds to the maximum likelihood (ML) estimator. The classes can be determined by simple 

thresholding following standard methods, just as it is illustrated in the Figure 6.2.  

 

 

 

Parameters Gaussian 

1

Pk  
1k

 

1k
 1 

2

Pk  
2k

 

2k
 2 

3

Pk  
3k

 

3k
 3 

4

Pk  
4k

 

4k
 4 

 

 

Table 6.2. Parameters to be optimized by the LA algorithm.  

 

 

 

 
Figure 6.2. Thresholding points determination. 

6.5. Experimental Results 

 

This section presents the experimental work with the LA algorithm. The discussion is divided 

into two parts: the first one shows the performance of the proposed LA algorithm while the second 

discusses on a comparison between the LA segmentator, the EM algorithm and the Levenberg-

Marquardt method.  

6.5.1. LA algorithm performance in image segmentation 

This section presents two experiments to analyze the LA’s performance considering a segmenta-

tion mixture of four classes while the original histogram of the image is approached by the LA 

method. In order to test consistency, 10 independent repetitions are made for each experiment. 
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The first test considers the histogram shown by Figure 6.3(b) while Figure 6.3(a) presents the orig-

inal image. After applying the LA algorithm (as it is explained in the previous section), a mini-

mum is obtained (Equation (6.3)), as the point is defined by 1

Pk =0.094, 1k =6, 1k
=15, 

2

Pk =0.1816, 2k =29, 2k
=63, 3

Pk =0.2733, 3k =10, 3k
=93, 4

Pk =0.4503, 4k =30, and 4k
=163. 

The values of such parameters define four different Gaussian functions which are clearly visible in 

Figure 6.4. The original histogram and its approximation by the Gaussian mixture are visually 

compared in Figure 6.5. 

 

The evolution of the probability density parameters which in turn represent the expected val-

ues 1( , )f k n
, 2( , )f k n

, 3( , )f k n
 and 4( , )f k n

of the Gaussian functions are shown in Figure 6.6. It 

can be seen that most of the convergence is achieved at the first 1050 iterations, as subsequent 

steps yield a bit of sharpening in the distribution’s shape. The final highest probability value ob-

tained from the distribution (n=2000) corresponds to the final parameter value. 

 

 
 

(a) (b) 

 

Figure 6.3. (a) Original image used on the first experiment, (b) and its histogram. 

 

 

 
 

Figure 6.4. Gaussian functions obtained by LA. 

 

 
 

Figure 6.5. Comparison between the original histogram and its approach. 
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From the Gaussian functions obtained by LA in Figure 6.4, the threshold values 
iT  are calculated 

using well-known methods.  Considering such values, the segmented image is shown in Figure 

6.7. 

 

For the second experiment the image shown in Figure 6.8 is tested. The method aims to segment 

the image into four different classes using the LA approach. After executing the algorithm accord-

ing to the parameters defined in Section 6.4, the resulting Gaussian functions approximating the 

histogram are shown in Figure 6.9(a). 

 

The comparison between the original image and its Gaussian approximation is shown in Figure 

6.9(b). It is clear that the algorithm approaches each of all the pixel concentrations distributed 

within the histogram but the first one, which is presented approximately around the intensity value 

seven. This effect shows that the algorithm discards the smallest pixel accumulation as it prefers to 

cover classes that contribute to generate smaller errors during optimization of the Equation (6.3). 

Such results can improve if five-pixel classes were used instead. 

 

  

(a) (b) 

  
(c) (d) 

 

Figure 6.6. Evolution of the probability densities parameters and their expected values of the Gaussian 

functions (a) 1( , )f k n
, (b) 2( , )f k n

, (c) 3( , )f k n
 and (d) 4( , )f k n

. 

 

 
 

Figure 6.7. Image segmented in four classes by the LA method. 
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Figure 6.8.  Original image used in the second experiment. 

 

From the Gaussian mixture obtained by the LA method (Figure 6.9(a)), the threshold values 
iT  are 

calculated again using well-known methods. Figure 6.10 shows the segmented image after the de-

tection task. Figure 6.11 shows the separation of each class after applying the LA algorithm. 

 

 

(a) 

 

(b) 

 
 

Figure 6.9.  (a) Gaussian functions obtained by the LA algorithm and (b) its comparison to the original 

histogram. 

 

 

 
 

Figure 6.10. Segmentation obtained by LA. 
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6.5.2. Comparing the LA algorithm vs. the EM and LM methods 

 

This section discusses on the comparison between LA and other algorithms such as the EM algo-

rithm and one Levenberg-Marquardt (LM) method. The discussion is focused on the following is-

sues: first, sensitivity to the initial conditions; second, singularities and third, convergence and 

computational costs.  

 

  
(a) (b) 

  
(c) (d) 

 

Figure 6.11. Class separation as it is produced by the LA algorithm. (a) Pixel class 1, (b) pixel class 2, (c) 

Pixel class 3, and (d) Pixel class 4. 

 

 

  
(a) (b) 

 

Figure 6.12. (a) Original image used for the comparison on initial conditions and (b) its corresponding 

histogram. 

 

a) Sensitivity to the initial conditions. In this experiment, initial values for all methods are initial-

ized in different values while the same histogram is considered for the approximation task. The fi-

nal parameters representing the Gaussian mixture after convergence are reported. Figure 6.12(a) 

shows the image used in this comparison while Figure 6.12(b) pictures the histogram. All experi-

ments are conducted several times in order to assure consistency. Only two different initial states 

with the highest variation are reported in Table 6.3. Likewise, Figure 6.13 shows the obtained 

segmented images considering the two initial conditions reported by Table 6.3. In the LA case, the 

algorithm does not require initialization as it works with random initial values; however, in order 
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to assure a valid comparison, the same initial values are considered for the EM, the LM and the 

LA method. 

 

By analyzing the information in Table 6.3, the sensitivity of the EM algorithm to initial conditions 

becomes evident. Figure 6.13 shows a clear pixel misclassification in some sections of the image 

as a consequence of such sensitivity.   

 

Parameters Initial condition 1 EM LM LA Initial condition 2 EM LM LA 

1k
 40.6 33.13 32.12 32.10 10 20.90 31.80 32.92 

2k
 81.2 81.02 82.05 82.01 100 82.78 80.85 82.12 

3k
 121.8 127.52 127 126.95 138 146.67 128 127.01 

4k
 162.4 167.58 166.80 166.72 200 180.72 165.90 166.62 

1k  15 25.90 25.50 25.51 10 18.52 20.10 25.11 

2k  15 9.78 9.70 9.66 5 12.52 9.81 9.68 

3k  15 17.72 17.05 17.10 8 20.5 15.15 17.12 

4k  15 17.03 17.52 17.55 22 10.09 18.00 17.15 

1

Pk  0.25 0.0313 0.0310 0.312 0.20 0.0225 0.0312 0.312 

2

Pk  0.25 0.2078 0.2081 0.2078 0.30 0.2446 0.2079 0.2088 

3

Pk  0.25 0.2508 0.2500 0.2510 0.20 0.5232 0.2502 0.2500 

4

Pk  0.25 0.5102 0.5110 0.5103 0.30 0.2098 0.5108 0.5103 

 

Table 6.3. Comparison between the EM, the LM and the LA algorithm, considering two different initial 

conditions. 

 

Initial Condition Set Number 1 

 
Initial Condition Set Number 1 

 
EM LM LA 

 

Figure 6.13. Segmented images after applying the EM, the LM and the LA algorithm with different initial 

conditions. 
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b) Singularities. The experiment aims to test the LA performance under certain circumstances on 

which it is well-reported in the literature (Gupta & Sortrakul, 1998; Park & Ozeki, 2009) that the 

EM and the LM have underperformed. Two cases are relevant to such purpose. First, the Gaussian 

variance is small or near to zero, i.e. big objects are present in the image with a homogeneous in-

tensity value (Gupta & Sortrakul, 1998). Second, the LM algorithm exhibits a slow convergence 

when the Gaussians are overlapped (Olsson et al., 2007; Park & Ozeki, 2009). For both cases, the 

EM method never reaches convergence. The benchmark image and its histogram are shown in 

Figure 6.14. 

 

Case 1. The experiment shows the lack of convergence of the EM algorithm when a small or near 

to zero Gaussian variance is considered. The test consists on using all the algorithms to obtain the 

Gaussian mixture parameters that approximate the histogram shown in the Figure 6.14(b). It is ev-

ident that only 4 classes are relevant. In order to assure consistency, the experiment is repeated 

over 100 times with different initial conditions. The results show that the EM method never con-

verge to an acceptable value whatsoever. Table 6.4 shows the results for the LM and the LA algo-

rithm as they are averaged over 100 experiments. 

 

 

  
(a) (b) 

 

Figure 6.14. (a) Original image used by the singularity experiment, and (b) its histogram. 

 

 

Parameters LM LA 
1k  42.6 40.1 

2k  98.3 99.89 

3k  153.7 150.05 

4k  220.1 220.01 

1k  7 0.05 

2k  12 0.07 

3k  5 0.10 

4k  0.3 0.03 

1

Pk  0.20 0.0313 

2

Pk  0.3 0.2078 

3

Pk  0.25 0.2508 

4

Pk  0.25 0.5102 

iterations 997 1050 

 

Table 6.4. Comparison between the LM and the LA algorithms using variances values close to zero. 
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By analyzing data in Table 6.4, it is clear that the LM and the LA algorithms are able to success-

fully segment the image shown in Figure 6.14(a). The LM method converges a little faster than the 

LA algorithm. However, it shows a sub-optimal approximation to a local minimum (see Figure 

6.15(a)). 

 

Case 2. This case analyzes the slow convergence of the LM method when the parameters of the 

Gaussian mixture are overlapped. For the experiment, the Gaussian’s overlapping is caused by 

considering initial values falling on the same position. Although the results fully match with those 

in Case 1 (see Table 6.4), the differences on the required iterations are evident. For instance, the 

LA method requires nearly 1000 iterations while the LM method as much as 2300 iterations -

averaging 100 experiments for both cases. The convergence speed in the LA method is clearly not 

affected by such singularity. 

 

  
(b) (b) 

 

Figure 6.15. Graphical view of approximations using near zero variances with: a) the LM algorithm and 

b) the LA method. 

 

Iterations 
(a) (b) (c) (d) 

Time elapsed 

EM 
1855 1833 1861 1870 

2.72s 2.70s 2.73s 2.73s 

LM 
985 988 945 958 

4.03s 4.04s 4.98s 4.98s 

LA 
970 991 951 951 

1.51s 1.53s 1.48s 1.48s 

 

Table 6.5. Iterations and time requirements of the EM, the LM and the LA algorithm as they are applied 

to segment benchmark images (see Figure 6.16). 

 

c) Convergence and computational cost. The experiment aims to measure the number of required 

steps and the computing time spent by the EM, the LM and the LA algorithm required to calculate 

the parameters of the Gaussian mixture in benchmark images (see Figure 6.16(a-c)). All experi-

ments consider four classes. Table 6.5 shows the averaged measurements as they are obtained 

from 20 experiments. It is evident that the EM is the slowest to converge (iterations) and the LM 

shows the highest computational cost (time elapsed) because it requires complex Hessian approx-

imations. On the other hand, the LA shows an acceptable compromise between its convergence 

time and its computational cost. Finally, Figure 6.16 below shows the segmented images as they 

are generated by each algorithm.   

 



 Chapter 6. Multi-Threshold Segmentation using Learning Automata                                                                      130                   

                                                                                                      

6.6. Conclusions 

In this chapter, an automatic image multi-threshold approach based on Learning Automata (LA) 

is proposed. The segmentation process is considered to be similar to an optimization problem. The 

algorithm approximates the 1-D histogram of a given image using a Gaussian mixture model 

whose parameters are calculated through the LA algorithm CARLA. Each Gaussian function ap-

proximating the histogram represents a pixel class and therefore one threshold point.  

 

Experimental evidence shows that LA algorithm has an acceptable compromise between its con-

vergence time and its computational cost when it is compared to the Expectation-Maximization 

(EM) method and the Levenberg-Marquardt (LM) algorithm. Additionally, the LA algorithm also 

exhibits a better performance under certain circumstances (singularities) on which it is well-

reported in the literature (Gupta & Sortrakul, 1998; Park & Ozeki, 2009) that the EM and the LM 

have underperformed. Two cases are reported: First, when Gaussian variance is small or near to 

zero (i.e. big objects are presented on the image with a homogeneous intensity value). Second, it is 

when the parameters of the Gaussian mixture are overlapped. Finally, the results have shown that 

the stochastic search accomplished by the LA method shows a consistent performance with no re-

gard of the initial value and still showing a greater chance to reach the global minimum. 

 

(a) 
(b) (c) (d) 

Original Images 

 
EM Segmented Images 

 
LM Segmented Images 

 
LA Segmented Images 

 
 

Figure 6.16. Original benchmark images a)-c), and segmented images obtained by the EM, the LM and 

the LA algorithms.



 

Chapter 7 

Fuzzy-based System for Corner Detection 

 

 

 

 

 
Corner detection is an important task in computer vision problems due to the complexity of de-

terminate the shape of different regions within an image. Real-life image data are always inexact 

due to inherent uncertainties that may arise from the imaging capture process such as defocusing, 

illumination changes, noise, etc. Therefore, the localization and detection of corners has become a 

difficult task under research, in order to accomplish the detection process under such imperfect 

situations. On the other hand, Fuzzy systems are well known for their efficient handling capacities 

when they face uncertainness and incompleteness. Fuzzy systems use modelling concepts in the 

same way as a human do. Under these circumstances, corners could be modelled by means of lin-

guistic rules. This chapter presents a corner detection algorithm which employs Fuzzy reasoning. 

The robustness of the presented algorithm is compared to well-known conventional corner detec-

tors and its performance is also tested over a number of benchmark images to illustrate the effi-

ciency of the algorithm under uncertainty. 

7.1. Introduction 

 

The human visual system has a highly developed capability for detecting many classes of pat-

terns including visually significant arrangements of image elements. From the psychovisual as-

pect, points representing high curvature are one of the dominant classes of patterns that play an 

important role in almost all real-life image analysis applications (Fischler & Wolf, 1994; Loupias 

& Sebe, 2000; Lowe, 1985). These points encode a significant amount of shape information. Cor-

ners are generally formed at the junction of differ-ent edge segments which may be the meeting (or 

crossing) of two edges.  

 

Cornerness of an edge segment depends solely on the curvature formed at the meeting point of 

two-line segments. Corner detection is one of the fundamental tasks in computer vision and it can 

be regarded as a special type of feature segmentation. Extracted corners can be used for meas-

urement and/or recognition purposes.  

 

A large number of algorithms already exist in the literature. In particular, corner detection on gray 

level images can be classified into two main approaches. In the first approach, the gray level im-

age is first converted into its binary version for extraction of boundaries using some thresholding 

technique. After a successful extraction of boundaries, the corners or the high curvature points are 

detected using directional codes or other polygonal approximation techniques (Freeman & Davis, 

1977).  

 

In the second approach, the gray level image is taken directly as an input for corner detection. In 

this paper, the discussion is restricted to the second approach only. Most of the general-purpose 

detectors based on gray level, use either a topology-based or an auto-correlation-based approach. 

Topology based corner detectors, mainly use gradients and surface curvature to define the meas-

ure of cornerness. Points are marked as corners, if the value of cornerness exceeds some prede-

fined threshold condition. Alternatively, a measure of curvature can be obtained using auto-
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correlation (Kitchen & Rosenfeld, 1982; Rattarangsi & Chin, 1992; Rosenfeld & Johnston, 1973; 

Teh & Chin, 1989; Zheng, et al., 1999).  

 

There exist several classical corner detection algorithms for estimating corner points. Such detec-

tors are based on a local structure matrix which consists on the first partial derivatives of the in-

tensity function. A clear example is the Harris feature point detector (Harris & Stephens, 1988), 

which is based on a comparison: the measure of the corner strength - which is defined by the 

method and is based on a local structure matrix - is compared to an appropriately chosen concrete 

threshold. Another well-known corner detector is the SUSAN (Smallest Univalue Segment Assim-

ilating Nucleus) detector which is based on brightness comparison (Smith & Brady, 1997). It does 

not depend on image derivatives. The SUSAN area will reach a minimum while the nucleus lies 

on a corner point. The effectiveness of the above-mentioned algorithms is acceptable. Recent stud-

ies such as (Zou, et al., 2008) demonstrate that the Harris corner detector performs better for sev-

eral circumstances in comparison to the SUSAN algorithm. 

 

Data from natural images are always imprecise and noisy due to inherent uncertainties that may 

arise from the imaging process (such as defocusing, wide variations of illuminations, etc.). Thus, 

precise localization and detection of corners become difficult under such imperfect situations.  

 

On the other hand, Fuzzy systems are well known for efficiently handling of impreciseness and in-

completeness (Pal, et al., 2000; Yu, et al., 2007; Zadeh, 1965) due to imperfection of data. There-

fore, it may result reasonable to model corner properties using a fuzzy rule-based system as they 

have been successfully applied to image processing in a wide variety of applications (Basak & Pal, 

2005; Jacquey, et al., 2008; Karmakar & Dooley, 2002).   

 

This chapter seeks to contribute to enhance the application of Fuzzy Logic to image processing, 

just as it has been proposed in (Russo, 1999). The method adopts a template-based rule-driven 

procedure and has been specifically developed to deal with topics related to image processing pur-

poses. The presented method is able to address many different processing tasks (Kim, Lee, & 

Kweon, 2004; Liang & Looney, 2003; Tizhoosh, 2003) and to produce better results than classical 

methods when applied to some critical issues such as noise (Russo, 2004; Tizhoosh, 2003; Yüksel, 

2007). 

 

Only few Fuzzy approaches have specifically addressed the problem of corner detection for gen-

eral purposes. Banerjee & Kundu (2008) have proposed an algorithm to extract significant gray 

level corner points. The measure of cornerness in each point is computed by means of the fuzzy 

edge strength and the gradient direction. Different corner Fuzzy-sets are obtained by considering 

different threshold values from the fuzzy edge map. However, the algorithm’s main drawback is 

that it uses several feature detectors which operate at different stages, yielding a high computa-

tional load. 

 

On the other hand, Várkonyi-Kóczy (1993) have proposed, a Fuzzy Corner Detector that employs 

a local structure matrix. It builds a continuous transient between the localized and not localized 

corner points. The algorithm uses a fuzzy pre-filter that improve the quality of the image under 

process. Despite both Fuzzy approaches show a good performance, they demand an expensive 

computing load in comparison to other classical algorithms such as the Harris method or SUSAN. 

 

This chapter presents a new robust algorithm to extract significant gray level corner points. The 

method is derived from a Fuzzy-rule approach which aims to detect corners even under complex 

conditions. In the presented approach, the measure of “cornerness” for each pixel in the image is 

computed by Fuzzy rules (represented as templates) which are applied to a set of pixels belonging 

to a rectangular window. As the algorithm scans each pixel of the image at a time, a new pixel of 
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the resulting image is generated by Fuzzy reasoning.  Hence, the possible uncertainty contained in 

the window-neighborhood is handled by using an appropriate rule base (template set).  

 

Experimental evidence shows the effectiveness of such method for detecting corners under sever-

al conditions. A comparison between one state-of-the-art Fuzzy-based method (Banerjee & 

Kundu, 2008) and the Harris algorithm (Harris & Stephens, 1988) demonstrates the performance 

of the Fuzzy-based method. 

 

This chapter is organized as follows: Section 7.2 briefly describes the mathematical approach and 

the fuzzy model used in this work. Section 7.3 describes the experimental results while Section 7.4 

describes the performance comparison regarding to other methods. On the other hand, Section 7.5 

offers some conclusions about the development and performance of this technique. 

7.2. Fuzzy rule-based System 

7.2.1. Fuzzy System 

 

Most of the approaches for corner detection are easy to implement and demand a low computa-

tional load. However, their effective operation largely relies on the fact that noisiness must be lim-

ited. In this section, a more robust technique is proposed. The new procedure is set to deliver a bet-

ter performance for noisy environments. The Fuzzy system is simple to implement and still fast in 

computation if it is compared to some existing Fuzzy methods (Banerjee & Kundu, 2008; 

Várkonyi-Kóczy, 1993). Also, it can be easily extended to detect other features. In the proposed 

approach, the fuzzy rules are applied to a set of pixels belonging to a rectangular N x N window 

(usually 3x3 pixels), where the gray-level differences between the center pixel 
,m np  and its sur-

rounding pixels are computed and stored within matrix E as follows: 

 

, 1, 1 , 1, , 1, 1

, , 1 , , 1

, 1, 1 , 1, , 1, 1

0

m n m n m n m n m n m n

m n m n m n m n

m n m n m n m n m n m n

p p p p p p

E p p p p

p p p p p p

− − − − +

− +

+ − + + +

 − − −
 

= − − 
 − − − 

 (7.1) 

 

where m and n represent the coordinates of the central pixel. If the neighborhood is a homogenous 

region, then E contains values near zero.  

 

  
(a) (b) 

 

Fig. 7.1. Region shaping with respect to gray level differences: (a) the resulting template and (b) the real 

corner that originates the template. 

 

In the case of corners, the matrix E possesses a specific configuration depending on the corner 

type. These divide E in two connected regions, one with positive (pixel type A) and another with 

negative (pixel type B) difference values (see Figure 7.1). The reasoning structure uses two differ-

ent types of rules: the THEN-rules and the ELSE-rules (don’t care conditions) respectively. Each 

THEN-rule includes a determined pixel configuration as antecedent and only one pixel as conse-
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quent. Antecedents are related to a corner existence test and the consequent to its presence or ab-

sence. The rule-base gathers many Fuzzy rules (THEN-rules) and only one ELSE-rule (i.e. do-not-

care rule). Therefore, only relevant rules (i.e. configurations) are formulated as THEN-rules while 

other not important configurations may be handled as a group of ELSE-rules. 

 

The set of THEN-rules lies on the very core of the algorithm. The rules must deliver successful 

structure detection, i.e. corners in this case, while still cancelling other inconsistencies such as 

noise. Such tradeoff may be solved by using a reduced set of rules (configurations) which in turn 

represent the minimum number in order to coherently detect the structure as it is required by a giv-

en application. Such procedure allows dealing with noisy pixels or imprecision.  

 

The proposed corner detector considers twelve THEN-rules that represent the same number of 

possible corner configurations and only one ELSE-rule as it is graphically explained by Fig. 7.2. It 

may be also possible to consider some other corner configurations. However, it may reduce the al-

gorithm’s ability to deal with noise or uncertainty (Russo, 1999; Tizhoosh, 2003; Yüksel, 2007). 

Despite using a reduced rule base, the performance in the detection process can be considered ac-

ceptable when it is compared to other algorithms solving the same task. The rule base (THEN-

rules and ELSE-rule) supporting the detector algorithm is shown in Table 7.1.   

 

    
Case 1 Case 2 Case 3 Case 4 

    
Case 5 Case 6 Case 7 Case 8 

    
Case 9 Case 10 Case 11 Case 12 

 
 

Fig. 7.2.  Different corner cases to be considered for building the fuzzy rules. The image region containing 

the corner is shown in the upper section while the resulting 3x3 template is shown below each case. 

Each rule has the following form: 
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If the corner structure in E possesses positive elements 

 

 

and the opposite region possesses negative elements, 

 

 

then the pixel represent a corner, 

 

 

else the pixel does not represent a corner  
 

(7.2) 

 

The principle can be explained as follows: If one region of the neighborhood, according to any of 

the twelve cases, contains positive/negative differences with respect to the center pixel, and if any 

other region contains the opposite (negative/positive) differences with respect to the center pixel, 

then the center pixel is a corner (see Fig. 7.2). The procedure can be considered as the evaluation 

of each one of the 12 different THEN-rules (configurations), yielding two auxiliary matrices 
pE and 

nE  as follows: 

 

1 if ( , ) 0
( , )

0 else

p
E i j

E i j


= 


 (7.3) 

1 if ( , ) 0
( , )

0 else

n
E i j

E i j


= 


 (7.4) 

 

where i,j represents de row and column of the matrix E ( , (1,2,3)i j ), Eq. (7.1).  

 

Rule 1 Rule 2 Rule 3 Rule 4 

    

Rule 5 Rule 6 Rule 7 Rule 8 

    

Rule 9 Rule 10 Rule 11 Rule 12 

    

Rule 13 

 

 

Table 7.1. The rule base (THEN-rules and ELSE-rule) supporting the corner detector algorithm. 
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For the case that all elements of /p nE E are ones (meaning all elements of ( , )E i j  are positives or 

negatives), it is possible to construct regions A and B within the window-neighborhood according 

to the existing relative differences. Thus, the values of 
pE and 

nE  can be recalculated as follows: 

 

1 if ( , )
( , )

0 else

hp
E i j t

E i j


= 


 

1 if ( , )
( , )

0 else

hn
E i j t

E i j


= 


 

(7.5) 

 

 

For all the elements of 
pE  being ones, and 

 

1 if ( , )
( , )

0 else

hp
E i j t

E i j
 −

= 


 

1 if ( , )
( , )

0 else

hn
E i j t

E i j
 −

= 


 

(7.6) 

 

For all the elements of 
nE  being ones, 

ht  is a threshold that controls the sensitivity of the consid-

ered differences. Typical values for 
ht  normally fall into the interval [5,35]. The lowest value of 5 

would yield a higher detector’s sensitivity which may detect a great number of corners correspond-

ing to noisy intensity changes which are commonly found in images.  

 

On the other hand, a maximum value of 35 would detect corners matching to a significant differ-

ence between several objects in the structure, i.e. object whose pixels may be considered as being 

connected.  

 

Although the selection of the best value for 
ht  clearly depends on the particular application, a good 

compromise can be obtained by taking a value on approximately half the overall interval, i.e. 

20ht = . 

 

The membership values ( , )c m n  (where 1,2, ,12c = ) are computed depending on the corner 

types (see Fig. 7.2). Such values represent the antecedents of each employed THEN-rule. They can 

be calculated as follows: 

 

1
( , ) max ( , ) ( , ) ,

20

                            ( , ) ( , )

p n

c

ij A ij B

p n

ij B ij A

m n E i j E i j

E i j E i j


 

 

   
=    

   

   
    

   

 

 

 (7.7) 

 

Expression (7.7) considers a normalization factor equal to 20 which represents the maximum pos-

sible value, i.e. the highest product of the multiplication among the pixels between 
pE and

nE . 

Hence, the membership value ( , )c m n  falls between 0 and 1.  

 

Equation (7.7) can be considered as the numerical implementation of the generic rule previously 

defined by Eq. (7.2).  
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If Rule 1 (case 1) is considered as an example, the expressions corresponding to expression (7.7) 

would thus be: 

 

( , ) (1, 2) (1,3) (2, 2) (2,3)p p p p p

ij A

E i j E E E E


= + + +  

( , ) (1,1) (2,1) (3,1) (3, 2) (3,3)n n n n n n

ij B

E i j E E E E E


= + + + +  

( , ) (1,1) (2,1) (3,1) (3, 2) (3,3)p p p p p p

ij B

E i j E E E E E


= + + + +  

( , ) (1, 2) (1,3) (2, 2) (2,3)n n n n n

ij A

E i j E E E E


= + + +  

(7.8) 

 

Analogously to (7.8), membership values 
2 12( , ),..., ( , )i j i j   for other rules (cases) can be calcu-

lated. Finally, the 12 fuzzy rules can be added into a single fuzzy value using the max (maximum) 

operator. The final fuzzy value represents the linguistic meaning of cornerness yielding: 

 

1 2 12( , ) max( ( , ), ( , ),..., ( , ))cornerness m n m n m n m n   =  (7.9) 

 

The pixels whose value ( , )cornerness m n are near to one, belong to a feature similar to a corner, while 

values near to zero would represent any other feature. 

7.2.2. Robustness 

 

This kind of corner detection clearly differs from other classical procedures in several ways. Con-

ventional corner detectors look usually for the explicit corner location by means of detecting the 

zero-crossing of derivatives in different directions. On the contrary the presented approach detects 

the entire area where the corner could lie. 

 

In particular, gradient-based methods are normally highly sensitive to the noise in real images and 

being mainly affected by the impulsive noise. Also, most of the corner detection algorithms incor-

porate several pre-filters (Harris & Stephens, 1988; Lowe, 1985; Moravec, 1997; Smith & Brady, 

1997), which allow attenuation but do not eliminate impulsive noise. 

 

On the other hand, Fuzzy detectors allow corner marking despite noisy environments either by im-

plementing Fuzzy pre-filtering that eliminates uncertainty on the image or by incorporating Fuzzy 

sets for modeling imprecision (Banerjee & Kundu, 2008).  

 

 
 

Fig. 7.3.  The effect of the impulsive noise in matrices E+ and E− . Matrices E+ and E−  would contain 

only ones or zeros depending on the gray-level difference. 

 

The method presented in this chapter considers vagueness due to noise and grayness ambiguity to 

be handled by the Fuzzy rules introduced in expression (7.2). If the image of Figure 7.3 is consid-
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ered, with a pixel holding a gray value different from its neighbors is located within a homogene-

ous region. This situation can be considered as impulsive noise. 

 

Under these circumstances, matrices 
pE and 

pE  would contain only ones or zeros depending on 

the gray-level difference. Therefore, the values used to calculate the membership functions in ex-

pression (7.7), for any of the twelve cases, would yield 

 

( , ) ( , ) 0p p

ij Rp ij Rn

E i j E i j
 

   
    

   
   (7.10) 

( , ) ( , ) 0p n

ij Rn ij Rp

E i j E i j
 

   
    

   
   (7.11) 

 

Now, considering the values from expressions (7.10) and (7.11) and a noisy pixel, the resulting 

value of its cornerness can be calculated by expression (7.9) as ( , ) 0cornerness i j  .  

 

The impulsive noise is thus classified by the Fuzzy system as a homogeneous region. In the same 

way, the central pixel would not be marked as corner for cases not considered in Table 7.2 which 

normally represent noisy configurations. It is mainly because the inference system works with 

ELSE-rules. 

 

 
 

Fig. 7.4.  Neighborhood method for corner selection. Example, where ( , )cornerness m n  represents the cor-

nerness of the pixel currently under evaluation, by assuming ( , )cornerness cm n t  . Inside the window H H  

that has been established around it, there exist other two pixels 
,i jp  and  

,i jp  
, whose values ( , )cornerness i j  

and ( , )cornerness i j    are lower than ( , )cornerness m n . Therefore, a point  
,m np  can thus be considered as a corner 

within the image. 

 

7.2.3. Corner Selection 

 

In order to detect corners, it would be enough to choose an appropriate threshold 
ct . If 

( , )cornerness cm n t  , then the pixel 
,m np  can be assumed as such. Under these assumptions, the val-

ue 
ct  must be selected as close to 1 as it is likely to assure that pixel 

,m np  may be a corner. How-

ever, a more convenient approach is to choose a small threshold value 
ct  whose value allows de-

tecting a wider number of corners despite a higher uncertainty.  
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The corner selection process can therefore be explained as follows:   

 

For each pixel, if ( , )cornerness cm n t  , a neighborhood of H H dimension is established around 

it (commonly H N ). The pixel 
,m np  is thus selected as a corner if its value ( , )cornerness m n is 

maximum within the neighborhood H H , otherwise it does not represent a corner point.  

7.3. Experimental Results 

 

Different sorts of images have been tested in order to analyze the performance of the method 

for corner detection. Such benchmark set includes image alterations such as blurring, illumination 

change, impulsive noise etc.  

 

Table 7.2 presents the parameters of the presented algorithm used in this chapter. Once they 

have been determined experimentally, they are kept for all the test images through all experiments. 

 

 

ht  
ct  H 

20 0.7 10 

 

Table 7.2. Parameter setup for the proposed corner detector 

 

First, Figure 7.5(b) shows the value of ( , )cornerness m n , as it is computed by the fuzzy system ac-

cording to Eq. (7.9) to detect corners in a real image. In Figure 7.5(a), the blue crosses represent 

the corners obtained using the corner selection procedure explained in sub-section 7.2.3.  

 

Figure 7.6 shows the algorithm´s performance on different image conditions such as the case with 

variable illumination and blurring. Figures 7.6(a)-(b) present the performance of the fuzzy corner 

detector as it is applied to over-exposed and over-illuminated images. The effect of high illumina-

tion on the images was made by applying a linear transformation of the form ( , ) 80I i j + .  

 

 

  
(a) (b) 

 

Fig. 7.5.  (a) Detected corners using the proposed approach, and (b) values of ( , )cornerness m n  

 

On the other hand, Figures 7.6(c)-(d) show the effectiveness of the presented detector using low-

illuminated or sub-exposed images. Such effect was made by another linear transformation: 

( , ) 40I i j − . The images in Figures 7.6(e)-(f) illustrate the sensitivity of the fuzzy detector to blur-

ring.  
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Such steamed up effect was made by applying a low-pass filter to the original images, with a 5x5 

kernel as follows: 

 

1 1 1 1 1

1 1 1 1 1
1

( , ) 1 1 1 1 1
25

1 1 1 1 1

1 1 1 1 1

h i j

 
 
 
 =
 
 
 
 

 (7.12) 

 

From results shown in Figure 7.6, it can be observed as the fuzzy detector exhibits immunity to 

changes in illumination, see for instance Figures 7.6(a)-(7b) and 7.6(c)-(d). However, it also shows 

sensitivity to blurring in Figures 7.6(e)-(f). For the case of blurring images, the detector is able to 

find all the corners over the simulated image in 7.6(e).  

 

The latter figure exhibits low distortion in the homogeneous gray levels within the image as a con-

sequence of the filter operation. On the other hand, some sensitivity may be lost while applying the 

detector to the real image shown in Figure 7.6(f). Moreover, after applying distortion to the image, 

several points that do not belong to a corner as such have been wrongly marked as corners.  

 

Despite all previous comments, the Fuzzy detector was able to detect in Figure 7.6(f) the corners 

which delimit the object´s shape. This is not a common feature of other corner detectors (Harris & 

Stephens, 1988; Azriel Rosenfeld & Johnston, 1973; Smith & Brady, 1997; Zou et al., 2008). 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Fig. 7.6.  Performance of the fuzzy corner detector over different conditions on the image: (a)-(b) over-

exposition or high illumination, (c)-(d) sub-exposition or low illumination and (e)-(f) blurring. 
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7.4. Performance Comparison 

 

A variety of quantitative evaluation methods for corner detection algorithms have been pro-

posed in the literature (Mokhtarian & Mohanna, 2006; Schmid, Mohr, & Bauckhage, 2000; Zou et 

al., 2008). Following the criteria in (Mokhtarian & Mohanna, 2006), the performance analysis 

considers the Harris algorithm (Harris & Stephens, 1988), the fuzzy method presented by Banerjee 

& Kundu (2008) and the approach presented in this chapter. A quantitative comparison over three 

criteria is presented: stability, noise immunity and computational effort. The study aims analyze 

the performance objectively. 

 

The parameters for each detector algorithm are set as follows:  

 

For the Harris algorithm, the gradient operators [-2 -1 0 1 2] and [-2 -1 0 1 2]T are set in 

directions u and v separately. The Gaussian smoothing filter employs a Gaussian window 

function of size 7×7 and a standard deviation of 2 with k=0.06. The parametric setup ap-

pears as the best set following data in (Zou et al., 2008) and considering lots of hand tun-

ing experiments.  

 

For the fuzzy method proposed by Banerjee & Kundu, the parameter are set following guidelines 

from (Banerjee & Kundu, 2008), with a Gaussian window function of size 3×3 and a standard de-

viation of 2, ( ) 0.9d P  and 0.2hT = . Finally, the parameters of the presented approach are set 

according to the Table 7.2. 

 

7.4.1. Stability Criterion 

Two frames in an image sequence are processed by the algorithm to detect corners. If the corner’s 

positions are unchanged from one frame to the next one, the algorithm can be regarded as stable. 

However, the gray-level value of each pixel would normally vary in actual images because of sev-

eral factors affecting the image.  

 

If the algorithm is applied to a given image, then it cannot be assured the number and position of 

all detected corners would be exactly the same. Therefore, absolute stability is almost non-existent. 

A factor η to measure the stability of a corner algorithm can be defined as follows: 

 

( )
1 2

1 2

100%,
min ,

A A

A A
 =   

(7.13) 

 

where
1A  and 

2A  representing the corner sets for the first and the second frame respectively (the 

intersection operator  stands for common corners); 
iA represents the number of elements in 

iA  

set and the overall numerator holds the number of corresponding corners in two frames. From ex-

pression (7.8), it can be concluded that a greater η yields a more stable corner detection algorithm.  

 

Fifty pairs of images holding different contrast and brightness levels are gathered in order to com-

pare the presented fuzzy detector and other classic methods.  

 

Figure 7.7(a) shows the comparison with respect to the stability factor, where the horizontal axis 

represents the image pair number and the vertical axis represents the value of such stability factor. 

The average stability factor of Harris detector is 75%, while the Fuzzy method Banerjee & Kundu  

holds 70% and the proposed Fuzzy detector shows 83%. 
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7.4.2. Noise Immunity 

 

Noise immunity is measured by factor ρ which it can be defined as follows: 

 

( )
1 2

1 2

100%,
max ,

B B

B B
 =   

(7.14) 

 

where 
1B  is the corner set of the original image and 

2B is the corner set of the image with added 

noise. In this case, the maximum operator seeks to consider that false corners have been added as a 

result of additive noise. As ρ increases, it can be assumed that the algorithm’s ability to avoid 

noisy corners is stronger. 

 

One experiment is focus on comparing such noise immunity among methods. Fifty images with 

10% of added impulsive noise are considered.  

 

Figure 7.7(b) shows the noise immunity factor, with the Harris detector showing 9%, the fuzzy 

method Banerjee & Kundu holding 65% and the proposed fuzzy detector showing 80%. 

 

7.4.3. Computational Effort 

The speed and computational effort of a corner detector algorithm must meet demands for real-

time tasks, regarding speed and required processing time. The runtime of an algorithm can be a 

reference to its overall computational effort. In order to compare the three algorithms, fifty pairs of 

images are considered in order to register the algorithm’s runtime for testing images holding 

320×240 pixels.  

 

The average runtime for the Harris method, the fuzzy Banerjee & Kundu algorithm and the Fuzzy-

based corner detectors is 1.8686s, 6.2125s and 0.878s respectively, as all are tested under the 

MatLab© R2008b environment.  

 

  
(a) (b) 

 

Fig. 7.7.  Performance comparison among corner detectors.  (a) Stability factor and (b) noisy immunity 

factor. 

7.4.4. Comparison Results 

 

Table 7.3 shows a final comparison between all the methods. The presented fuzzy detector can be 

considered as equally stable as the Harris method. It also shows stronger noise immunity being 

slightly superior to the Fuzzy detector proposed by Banerjee & Kundu. The presented corner de-

tector can also be regarded as the algorithm showing the best computational performance.  
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Corner Detector 

 

Stability 

±Std Dev (%) 

Noise 

±Std Dev (%) 

Time 

±Std Dev (s) 

Harris 75± 5.5 9± 4.4 1.8686± 0.3 

Fuzzy Banerjee & Kundu 70± 7.8 65± 7.1 6.2125± 0.21 

The presented fuzzy-based detector 83± 4.1 80± 4.6 0.878± 0.11 

 

Table 7.3. Performance comparison among the three corner detectors considered by the study. 

Figures 7.8, 7.9 and 7.10 shows the performance of the detector algorithms considered in the study 

while analyzing a number of benchmark images.  

 

 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 7.8.  House: (a) Original image, (b) the Harris algorithm, (c) the fuzzy Banerjee & Kundu method and 

(d) the Fuzzy-based presented detector. 

7.5. Conclusions 

 

This chapter has presented a corner detection algorithm which models the structure of a poten-

tial corner in images based on a Fuzzy rule set. The method is able to tolerate implicit imprecision 

and impulsive noise.  

 

Experimental evidence suggests that the fuzzy-based presented algorithm produces better results 

than other common methods such as the Harris detector and the Fuzzy approach proposed by 

Banerjee & Kundu (2008).  

 

The presented algorithm is able to successfully identify corners on images holding different uncer-

tainty conditions. However, it is also sensitive to blurring in particular when a steaming up effect 

is produced by considering neighborhood window wider than the one previously considered for 

building the Fuzzy model of corners (templates). Such fact shall not be considered as inconvenient 

because the Fuzzy-based algorithm is still capable of identifying corners over similar blurring lev-

els than those of conventional algorithms. 
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The presented detector is stable and has shown robustness to impulsive noise which in turn repre-

sents its major advantage over the Harris method considering that impulsive noise is commonly 

found in real-time images.  

 

Although the algorithm exhibits a tolerance to imprecision that matches the performance of the 

Banerjee & Kunduand, the presented approach requires a lighter computational cost for analyzing 

benchmark images.  

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 7.9.  Circle: (a) Original image, (b) Harris algorithm, (c) the fuzzy Banerjee & Kundu method and (d) 

the presented fuzzy-based detector. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 7.10.  Noisy chessboard image: (a) Original image and the output after applying (b) the Harris algo-

rithm, (c) the Fuzzy Banerjee & Kundu method and (d) the presented Fuzzy-based detector. 



 

Chapter 8 

Clonal Selection algorithm applied to Circle detection 

 

 

 

 

 
Automatic circle detection in digital images is considered an important and complex task for the 

computer vision community. Consequently, recently, a tremendous amount of research has been 

devoted to find an optimal circle detector. This chapter presents an algorithm for the automatic de-

tection of circular shapes from complicated and noisy images without making use of the conven-

tional Hough transform principles. The presented algorithm is based on the Artificial Immune Op-

timization (AIO) technique, known as the Clonal Selection algorithm (CSA). The CSA is an 

effective method for searching and optimizing following the Clonal Selection Principle (CSP) in 

the human immune system which generates a response according to the relationship between anti-

gens (Ag), i.e. patterns to be recognized and antibodies (Ab) i.e. possible solutions. The algorithm 

uses the encoding of three points as candidate circles (x,y,r) over the edge image. An objective 

function evaluates if such candidate circles (Ab) are actually present in the edge image (Ag). 

Guided by the values of this objective function, the set of encoded candidate circles are evolved 

using the CSA so that they can fit to the actual circles on the edge map of the image. Experimental 

results over several synthetic as well as natural images with varying range of complexity validate 

the efficiency of the presented technique with regard to accuracy, speed, and robustness. 

8.1. Introduction 

 

Bio-inspired computing (Brabazon & O’Neill, 2006) lies within the realm of Natural Compu-

ting, a field of research that is concerned with both the use of biology as an inspiration for solving 

computational problems and the use of the natural world experiences to solve real world problems. 

The increasing interest in this field lies in the fact that nowadays the world is facing more and 

more complex, large, distributed and ill-structured systems, while on the other hand, people notice 

that the apparently simple structures and organizations in nature are capable of dealing with most 

complex systems and tasks with ease. Bio-inspired computing has proved to be useful in various 

application areas. Following features from optimization, pattern recognition, shape detection and 

machine learning, the Bio-inspired algorithms have recently gained considerable research interest 

from the computer vision community.  

 

Currently, bio-inspired algorithms are widely applied to solve challenging computer vision prob-

lems. For instance, Chih-Chih Lai, (2006) have applied the Particle Swarm Optimization (PSO) 

algorithm for image segmentation. Le Hgarat-Mascle, et al., (2007) proposed a non-stationary 

Markov model-based image regularization algorithm, which uses another swarm intelligence algo-

rithm known as Ant Colony Optimization (ACO). In (Hammouche, et al., 2008), the authors pro-

posed a multilevel method that allows the determination of the appropriate number of thresholds 

for image segmentation. Such method combines a Genetic Algorithm (GA) with a wavelet trans-

form. More recently,  Baştürk & Günay, (2009) have proposed an image edge detector based on a 

cellular neural network which is optimized by the Differential Evolution (DE) algorithm. 

 

The problem of detecting circular features holds paramount importance for image analysis, in par-

ticular for industrial applications such as automatic inspection of products and components, aided 

vectorization of drawings, target detection, etc (Costa & Cesar, 2001). Many methods have been 



 Chapter 8. Clonal Selection algorithm applied to Circle detection                                                                          146                   

                                                                                                      

developed to solve the shape-detection problem (Peura, et al., 1997). Solving the object location is 

normally approached from two viewpoints: deterministic techniques which include the application 

of Hough transform (Yuen, et al., 1990), geometric hashing, template or model matching tech-

niques (Iivarinen, et al., 1997; Jones, et al., 1990). On the other hand, stochastic techniques include 

random sample consensus (Fischler & Bolles, 1981), simulated annealing (Bongiovanni, et al., 

1995) and genetic algorithms (GA) (Roth & Levine, 1994). 

 

Template and model matching techniques are the first approaches to be successfully applied to 

shape localization. Shape coding techniques and combination of shape properties are used to rep-

resent such objects. The main drawback of these techniques is related to the contour extraction 

from real images. Additionally, it is difficult for models to deal with pose invariance unless only 

simple objects are considered. 

 

Commonly, circle detection in digital images is performed by means of Circular Hough Transform 

(Muammar & Nixon, 1989). A typical Hough-based approach employs an edge detector and uses 

edge information to infer locations and radius values. Peak detection is then applied by averaging, 

filtering and histogramming the transform space. However, such approach requires a large storage 

space -given the 3-D cells needed to store the parameters (x, y, r), the computational complexity 

yielding low processing speeds.  

 

The accuracy of the detected circle’s parameters is poor, under noisy conditions (Atherton & 

Kerbyson, 1993). The required processing time for Circular Hough Transform makes it prohibitive 

to be deployed in real time applications, in particular for digital images with significant width and 

height and a densely populated area around edge pixels. In order to overcome such a problem, oth-

er researchers have proposed new approaches based on the Hough transform (HT) such as the 

probabilistic HT ( Fischler & Bolles, 1981; Shaked, et al., 1996b), the randomized HT (RHT) (Xu 

et al., 1990) and the Fuzzy Hough transform (FHT) (Han, et al., 1994a). In (Lu & Tan, 2008), the 

authors proposed a novel approach based on RHT called Iterative Randomized Hough Transfor-

mation (IRHT) that achieves better results on complex images and noisy environments. The algo-

rithm iteratively applies the randomized Hough transform (RHT) to a region of interest in the im-

age which is determined from the latest estimation of ellipse/circle parameters. 

  

Shape recognition can also be approached using stochastic search methods such as Genetic Algo-

rithms (GA). In particular, GA has recently been applied to important shape detection tasks e.g. 

Roth & Levine, (1994) proposed use of GA for primitive extraction of images. Lutton & Martinez, 

(1994), developed a further improvement of the aforementioned method. Yao, et al., (2004), came 

up with a multi-population GA method to detect ellipses. In (Lu & Tan, 2008), GA was used for 

template matching when the pattern has been the subject of an unknown affine transformation.  

 

Ayala-Ramirez et al., (2006), presented a GA-based circle detector that is capable of detecting 

multiple circles on real images, but it fails frequently when detecting imperfect circles. Recently, 

Dasgupta, et al., (2010) proposed an automatic circle detector using the bacterial foraging algo-

rithm as optimization method. For the case of ellipsoidal detection Rosin, (1999) proposed an el-

lipse fitting algorithm that uses five points.  

 

On the other hand, biological inspired methods can successfully be transferred into novel computa-

tional paradigms as shown by the successful development of artificial neural networks, evolution-

ary algorithms, swarming algorithms and so. The Human Immune System (HIS) is a highly 

evolved, parallel and distributed adaptive system (Goldsby, 2005) that exhibits remarkable abili-

ties that can be imported into important aspects in the field of computation. This emerging field is 

known as Artificial Immune Systems (AIS) (De Castro & Timmis, 2002) which is a computational 

system fully inspired by the immunology theory and its functions, including principles and mod-

els.  
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AIS have recently reached considerable research interest from different communities (Dasgupta, 

2006), focusing on several aspects of optimization, pattern recognition, abnormality detection, data 

analysis and machine learning. Artificial Immune Optimization has been successfully applied to 

tackle numerous challenging optimization problems with remarkable performance in comparison 

to other classical techniques (Wang, et al., 2004).  

 

Clonal Selection algorithm (CSA) (De Castro & Von Zuben, 2002) is one of the most widely em-

ployed AIO approaches. The CSA is a relatively novel evolutionary optimization algorithm which 

has been built on the basis of the Clonal Selection Principle (CSP) (Ada & Nossal, 1987) of HIS. 

The CSP explains the immune response when an antigenic pattern is recognized by a given anti-

body. In the clonal selection algorithm, the antigen (Ag) represents the problem to be optimized 

and its constraints, while the antibodies (Ab) are the candidate solutions of the problem. The anti-

body-antigen affinity indicates the matching as well between the solution and the problem. The al-

gorithm performs the selection of antibodies based on affinity either by matching against an anti-

gen pattern or by evaluating the pattern via an objective function. In mathematical grounds, CSA 

has the ability of getting out of local minima while simultaneously operating over a pool of points 

within the search space. It does not use the derivatives or any of its related information as it em-

ploys probabilistic transition rules instead of deterministic ones. Despite to its simple and straight-

forward implementation, it has been extensively employed in the literature for solving several 

kinds of challenging engineering problems (Campelo, et al., 2005; Coello & Cortes, 2005; Dong, 

et al., 2007). 

 

This chapter presents an algorithm for the automatic detection of circular shapes from complicated 

and noisy images with no consideration of the conventional Hough transform principles. The pre-

sented algorithm is based on a recently developed Artificial Immune Optimization (AIO) tech-

nique, known as the Clonal Selection algorithm (CSA). The algorithm uses the encoding of three 

non-collinear edge points as candidate circles (x,y,r) in the edge image of the scene. An objective 

function evaluates if such candidate circles (Ab) are actually present in the edge image (Ag). 

Guided by the values of this objective function, the set of encoded candidate circles are evolved 

using the CSA so that they can fit into the actual circles within the edge map of the image. The ap-

proach generates a sub-pixel circle detector which can effectively identify circles in real images 

despite circular objects exhibiting a significant occluded portion. Experimental evidence shows the 

effectiveness of such method for detecting circles under different conditions. Comparison to one 

state-of-the-art GA-based method (Han et al., 1994a) and a randomized Hough transform approach 

(IRHT) (Bongiovanni et al., 1995) on multiple images demonstrates a better performance of the 

presented method. 

 

The chapter is organized as follows: Section 8.2 provides a brief CSA explanation. Section 8.3 

formulates the approach and studies the main features of the CSA method as it is used to detect 

circles in images. Section 8.4 shows the experimental results of applying our method to the recog-

nition of circles in different image conditions. Finally, Section 8.5 discusses several conclusions. 

8.2. Clonal Selection Algorithm 

 

In natural immune systems, only the antibodies (Abs) which are able to recognize the intrusive 

antigens (non-self cells) are to be selected to proliferate by cloning (Goldsby, 2005). Therefore, 

the fundament of the clonal optimization method is that only capable Abs will proliferate. Particu-

larly, the underlying principles of the CSA are borrowed from the CSP as follows: 

 

• Maintenance of memory cells which are functionally disconnected from repertoire, 

• Selection and cloning of most stimulated Abs, 



 Chapter 8. Clonal Selection algorithm applied to Circle detection                                                                          148                   

                                                                                                      

• Suppression of non-stimulated cells, 

• Affinity maturation and re-selection of clones showing the highest affinities, and 

• Mutation rate proportional to Abs affinities. 

 

From immunology concepts, an antigen is any substance that forces the immune system to produce 

antibodies against it. Regarding the CSA systems, the antigen concept refers to the pending opti-

mization problem which focuses on circle detection. In CSA, B cells, T cells and antigen-specific 

lymphocytes are generally called antibodies. An antibody is a representation of a candidate solu-

tion for an antigen, e.g. the prototype circle in this work. A selective mechanism guarantees that 

those antibodies (solutions) that better recognize the antigen and therefore may elicit the response, 

are to be selected holding long life spans. Therefore such cells are to be named memory cells (M). 

8.2.1. Definitions 

 

In order to describe the CSA, the notation includes boldfaced capital letters indicating matrices 

and boldfaced small letters indicating vectors. Some relevant concepts are also revisited below:  

 

(i) Antigen: the problem to be optimized and its constraints (circle detection). 

(ii) Antibody: the candidate solutions of the problem (circle candidates).  

(iii) Affinity: the objective function measurement for an antibody (circle matching). 

The limited-length character string d is the coding of variable vector x as d = encode(x); and x 

is called the decoding of antibody d following x = decode(d). 

 

Set I is called the antibody space namely d I . The antibody population space is thus defined as: 

 

 1 2: ( , , , ),    ,   1    m

m k k m= =   I D D d d d d I  (8.1) 

 

where the positive integer m is the size of antibody population  1 2, , , m=D d d d which is an m-

dimensional group of antibody d, being a spot within the antibody space I.  

 

8.2.2. CSA Operators 

 

Based on (Gong, et al., 2009), the CSA implements three different operators: the clonal prolifera-

tion operator ( C

PT ), the affinity maturation operator ( A

MT ) and the clonal selection operator ( C

ST ). 

( )kA  is the antibody population at time k that represents the set of antibodies a, such as 

 1 2( ) ( ), ( ), , ( )nk k k k=A a a a . The evolution process of CSA can be described as follows: 

 
P CA

C SM( ) ( ) ( ) ( ) ( 1)
T TT

k k k k k⎯⎯→ ⎯⎯→ ⎯⎯→ +A Y Z A A  (8.2) 

 

 

 8.2.2.1 Clonal proliferation operator ( C

PT ) 

 

Define 

 
C C C C

P P 1 P 1 P( ) ( ( )) ( ( )), ( ( )), , ( ( ))nk T k T k T k T k = =  Y A a a a  (8.3) 
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where C

P( ) ( ( )) ( )i ik T k k= = Y A e a  1,2, , ,i n= , and 
ie is a 

iq -dimensional identity column vec-

tor. Function round(x), gets x to the least integer bigger than x. There are various methods for cal-

culating
iq . In this work, it is calculated as follows: 

 

1

( ( ))
( ) round    1,2, ,

( ( ))

i

i c n

jj

F k
q k N i n

F k
=

 
 =  =
 
 

a

a
 (8.4) 

 

where
cN is called the clonal size. The value of ( )iq k  is proportional to the value of ( ( ))iF ka . After 

clonal proliferation, the population becomes 

 

 1 2( ) ( ), ( ), , ( )nk k k k=Y Y Y Y  (8.5) 

 

where 

 

   1 2( ) ( ) ( ), ( ), , ( )
ii ij i i iqk k k k k= =Y y y y y  and 

1( ) ( ),   1,2, , .  1,2, ,ij ik k j q i n= = =y a  
(8.6) 

 

 

8.2.2.2. Affinity maturation operator ( A

MT ) 

 

The affinity maturation operation is performed by hypermutation. Random changes are introduced 

into the antibodies just like it happens in the immune system. Such changes may lead to increase 

the affinity. The hypermutation is performed by the operator A

MT  which is applied to the population 

Y(k) as it is obtained by clonal proliferation C

M( ) ( ( ))k T k=Z Y . The mutation rate is calculated us-

ing the following equation (De Castro & Von Zuben, 2002): 

 
( )ρ ( )

α
F ab

e
− 

=  (8.7) 

 

being α the mutation rate, F being the objective function value of the antibody (ab) as it is normal-

ized between [0,1] and ρ being a fixed step. In (Cutello, et al., 2005), it is demonstrated the im-

portance of including the factor ρ into Eq. (8.7) to improve the algorithm performance. The 

way ρ modifies the shape of the mutation rate is shown by Figure 8.1. 

 

 
 

Fig. 8.1. Hypermutation rate versus fitness, considering some size steps 

 

The number of mutations held by a clone with objective function value F, is equal to αL  , consid-

ering L as the length of the antibody 22 bits are used in this chapter. For the binary encoding, mu-
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tation operation can be done as follows: each gene within an antibody may be replaced by its op-

posite number (i.e. 0-1 or 1-0). Following the affinity maturation operation, the population be-

comes: 

 

 1 2( ) ( ), ( ), , ( )nk k k k=Z Z Z Z  

   
11 2( ) ( ) ( ), ( ), , ( )i ij i i iqk k k k k= =Z z z z z and                                            

A

M 1( ) ( ( )),   1,2, ,   1,2, ,ij ijk T k j q i n= = =z y  

(8.8) 

 

where A

MT is the operator as it is defined by Eq. 8.7 and applied onto the antibody 
ijy . 

 

8.2.2.3. Clonal selection operator ( C

ST ) 

 

Define 1,2, , ,i n =  ( ) ( )i ik kb Z as the antibody with the highest affinity in ( )i kZ , then  
C

S( 1) ( ( ) ( ))i i ik T k k+ =a Z a , where C

ST  is defined as: 

 

 

 

C

S

( )   if ( ( )) ( ( ))
( ( ) ( ))

( )   if ( ( )) ( ( ))

i i i

i i

i i i

k F k F k
T k k

k F k F k


= 



b a b
Z a

a a b
 (8.9) 

 

where 1,2, , .i n=  

 

Each step of the CSA may be defined as follows:  

 

Step 1 Initialize randomly a population (Pinit), a set h= Pr+n of candidate solu-

tions of subsets of memory cells (M) which is added to the remaining 

population (Pr), with the total population being PT=Pr+M, with M holding 

n memory cells. 

Step 2 Select the n best individuals of the population PT to build A(k), according 

to the affinity measure (objective function). 

Step 3 Reproduce ( C

PT ) population A(k) proportionally to their affinity with the 

antigen and generate a temporary population of clones Y(k). The clone 

number is an increasing function of the affinity with the antigen (Eq. 8.4). 

Step 4 Mutate ( A

MT ) the population Y(k) of clones according to the affinity of the 

antibody to the antigen (Eq. 8.7). A maturated antibody population Z(k) 

is thus generated. 

Step 5 Re-select ( C

ST ) the best individuals from Z(k) and A(k) to compose a new 

memory set M=A(k+1). 

Step 6 Add random Pr novel antibodies (diversity introduction) to the new 

memory cells M to build PT. 

Step 7 Stop if any criteria are reached, otherwise return to Step 2. 

 

Figure 8.2 shows the full draw of the CSA. The clone number in Step 3 is defined according to Eq. 

(8.4). Although a unique mutation operator is used in Step 5, the mutated values of individuals are 

inversely proportional to their fitness by means of Eq. (8.7), i.e. the more Ab shows a better fit-

ness, the less it may change.  

 

The similarity property (Gong, et al., 2008) within the Abs can also affect the convergence speed 

of the CSA. The idea of the antibody addition based on the immune network theory is introduced 
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for providing diversity to the newly generated Abs in M, which may be similar to those already in 

the old memory M. Holding such a diverse Ab pool, the CSA can avoid being trapped into local 

minima (Gao, et al., 2009), contrasting to well-known genetic algorithms (GA) which usually tend 

to bias the whole population of chromosomes towards only the best candidate solution (Langdon 

& Poli, 2002). Therefore, it can effectively handle challenging multimodal optimization tasks 

(Tang & Qiu, 2006; Wang, et al., 2005; Xu & Zhang, 2007; Yoo & Hajela, 1999). 

 

The management of population includes a simple and direct searching algorithm for globally op-

timal multi-modal functions. This is also another clear difference in comparison to other evolu-

tionary algorithms, like GA, because it does not require crossover but only cloning and hyper-

mutation of individuals in order to use affinity as selection mechanism. The CSA is adopted in this 

work in order to find the circle parameters (x, y, r) that better represent the actual circles in the im-

age. 

 
 

Fig. 8.2. Basic flow diagram of clonal selection algorithm (CSA). 

8.3. Circle detection using CSA 

 

Circles are represented in this work by means of parameters of a well-known second degree 

equation (see Equation 8.10), that passes through three points (Roth & Levine, 1994) in the edge 

space of the image. Images are preprocessed by an edge detection method which uses a single-

pixel contour detector. Such task is accomplished by the classical Canny algorithm which stores 

locations for each edge point. Therefore, such points are the only potential candidates to define 

circles by considering triplets. All the edge points in the image are then stored within a vector ar-

ray  1 2, , ,
pNP p p p=  with 

pN as the total number of edge pixels contained in the image. The 

algorithm stores the ( , )i ix y  coordinates for each edge pixel 
ip  in the edge vector. 

 

In order to construct each of the circle candidates (or antibodies within the AIS-framework), the 

indexes
1i , 

2i  and 
3i  of three non-collinear edge points must be combined, assuming the circle’s 

contour goes through points
1i

p ; 
2i

p ; 
3i

p . A number of candidate solutions are generated random-

ly for the initial pool. The solutions will thus evolve through the application of the CSA as the 

evolution takes place over the pool until a minimum is reached and the best individual is consid-

ered as the solution for the circle detection problem. 

 

Applying classic methods based on Hough Transform for circle detection would normally require 

huge amounts of memory and consume large computation time. In order to reach a sub-pixel reso-

lution –just like the method discussed in this chapter, they also consider three edge points to cast a 

vote for the corresponding point within the parameter space. Such methods also require an evi-

dence-collecting step which is also implemented by the method in this chapter.  
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As the overall evolution process evolves, the objective function improves at each generation by 

discriminating non-plausible circles and locating others by avoiding a visit to other image points. 

 

The following discussion clearly explains the required steps to formulate the circle detection task 

just as an AIO optimization problem. 

8.3.1. Individual representation 

 

Each antibody C of the pool uses three edge points as elements. In this representation, the edge 

points are stored according to one index that is relative to their position within the edge array P. In 

turn, the procedure will encode an Ab as the circle that passes through three points
ip ,

jp and
kp  

( { , , }i j kC p p p= ).  

Each circle C is represented by three parameters:
0x , 

0y  and r, being 
0 0( , )x y  the (x, y) coordi-

nates of the center of the circle and r its radius. The equation of the circle passing through the three 

edge points can thus be computed as follows: 

  
2 2 2

0 0( ) ( )x x y y r− + − =  (8.10) 

 

considering 

 
2 2 2 2

2 2 2 2

( ) 2 ( )

( ) 2 ( )

j j j i j i

k k i i k i

x y x y y y

x y x y y y

 + − +  −
=  

+ − +  − 
A  

2 2 2 2

2 2 2 2

2 ( ) ( )

2 ( ) ( )

j i j j i i

k i k k i i

x x x y x y

x x x y x y

  − + − +
=  

 − + − + 
B  

(8.11) 

0

det( )

4(( )( ) ( )( ))j i k i k i j i

x
x x y y x x y y

=
− − − − −

A
 

0

det( )

4(( )( ) ( )( ))j i k i k i j i

y
x x y y x x y y

=
− − − − −

B
 

(8.12) 

 

and 

 

2 2

0 0( ) ( )d dr x x y y= − + −  (8.13) 

 

being det(.) the determinant and  , ,d i j k . Figure 8.3 illustrates the parameters defined by 

Equations 8.10 to 8.13. 

 

 
 

Fig. 8.3. Circle candidate (individual) built from the combination of points
ip ,

jp and
kp . 
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Therefore it is possible to represent the shape parameters (for the circle, [
0x ,

0y , r]) as a trans-

formation R of the edge vector indexes i, j  and k. 

 

 0 0, , ( , , )x y r R i j k=  (8.14) 

 

with R being the transformation calculated after the previous computations of 
0x ,

0y , and r. 

 

By exploring each index as an individual parameter, it is possible to sweep the continuous space 

looking for the shape parameters using the AIO through the CSA. This approach reduces the 

search space by eliminating unfeasible solutions. 

 

8.3.2. Objective function or matching function 

 

A circumference may be calculated as a virtual shape in order to measure the matching factor be-

tween C and the presented circle in the image (antigenic). It must be also validated, i.e. if it really 

exists in the edge image. The test for such points is
1 2{ , , , }

sNS s s s= , with 
sN representing the 

number of test points over which the existence of an edge point will be verified. 

 

The test S is generated by the Midpoint Circle Algorithm (MCA) (Bresenham, 1977) which deter-

mines the required points for drawing a circle considering the radius r and the center 

point
0 0( , )x y . The MCA employs the circle equation x2 + y2 = r2 with only the first octant. It 

draws a curve starting at point (r, 0) and proceeds upwards-left by using integer additions and sub-

tractions. See full details in (Van Aken, 1984). 

 

The MCA aims to calculate the points 
sN  which are required to represent the circle considering 

coordinates
1 2{ , , , }

sNS s s s= . Although the algorithm is considered the quickest providing a 

sub-pixel precision, it is important to assure that points lying outside the image plane must not be 

considered as they must be included in
sN , thus protecting the MCA operation. 

 

The matching function or objective function J(C) represents the matching (or error) resulting from 

pixels S for the circle candidate and the pixels that actually exist in the edge image, yielding: 
 

1

( , )

( ) 1

sN

i i

i

s

E x y

J C
N

== −


 

(8.15) 

 

with ( , )i iE x y accumulating the number of expected edge points (the points in S) that are actually 

present in the edge image. 
sN is the number of pixels within the perimeter of the circle that corre-

spond to C, currently under testing. 

 

Therefore, the algorithm aims to minimize J(C), given that a smaller value implies a better re-

sponse (matching) of the “circularity” operator. The optimization process can thus be stopped after 

the maximum number of epochs is reached, and the individuals are clearly defined satisfying the 

threshold. The stopping criterion depends on the a priori knowledge about the application context.  
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8.3.3. Implementation of CSA 

 

In this work, an antibody will be represented (in binary form) by a bit chain of the form:  

 

1 2, ,...,= Lc c c c  (8.16) 

 

where c representing a point in an L-dimensional (with L bits) space,  

 

 Lc S  (8.17) 

 

The CSA implementation can be stated as follows: 

 

1. An original pool of N antibodies is generated, considering the size of 22 bits. 

2. The n best Ab’s are selected based on the matching function. They will represent the memory 

set. 

3. Best Ab’s are cloned. 

 

4. Perform hyper-mutation of the cloned Ab’s following the affinity between antibodies and an-

tigens while generating one improved antibody pool. 

5. From the hyper-mutated pool, the Ab’s with the highest affinity are to be re-selected. 

6. As for the original pool, the Ab’s with the lowest affinity are replaced improving the overall 

cells set. 

 

Once the above steps are completed, the process is started again, until one Ab shows the best 

matching i.e. finding the minimum value of J(C). In this work, the algorithm considers three index 

points embedded into a single Ab to represent one circle. Each single index has the variable 

iP (with i=1, 2, 3) representing the Hamming shape-space by means of a 22-bits word over the 

following range: 

 

: 1,i pP N    (8.18) 

 

considering 
pN  the total number of edge pixels contained in the image. Hence, the first step is to 

generate the initial antibody pool by means of: 

 
AB = 2 .* rand( ,S ) - 1;pN  (8.19) 

 

where Sp
represents the bit size as it is assigned to each of N  initial Abs (twenty two for this 

work). In order to perform the mapping from binary string to base 10, it yields 

 

( )
21

2 1 2
0 10

,..., , 2 '
=

 
=  = 
 
 i

L i

i

c c c c r  (8.20) 

 

Finding the corresponding real value for r: 

 

max

22
'

2 1

r
r r= 

−
 

(8.21) 

 

by using 
max  r to represent 

pN .  
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8.4. Experimental results 

8.4.1. Parametric setup 

 

Table 8.1 presents the parameters of CSA used in this work. Once they have been determined ex-

perimentally, they are kept for all the test images through all experiments. 

 

h n Nc 
ρ  Pr L Te ITER 

120 100 80 10 20 22 0.01 400 

 

Table 8.1. Parameter setup for the CSA detector 

 

All the experiments are performed on a Pentium IV 2.5 GHz computer under C language pro-

gramming. All the images are preprocessed by the standard Canny edge-detector using the image-

processing toolbox for MATLAB R2008a.   

 

For comparison purposes, the CSA algorithm is tested against the IRHT and the GA circle detec-

tors to each image individually.   

 

For the GA algorithm described in (Ayala-Ramirez et al., 2006), the population size is 70, the 

crossover probability is 0.55, the mutation probability is 0.10 and number of elite individuals is 2. 

The roulette wheel selection and the 1-point crossover are applied. The parameter setup and the 

fitness function follow the configuration suggested also in (Ayala-Ramirez et al., 2006). The pa-

rameter values are defined as suggested in the IRHT algorithm proposed for Lu & Tan, (2008). In 

IRHT, the most important parameters are grouped into the vector
c  which defines the desired set 

of enlargements of the circle/ellipse parameters to build a new region of interest. In this compari-

son, 
c  is considered as  c 0.5 0.5 0.5 0.5 0x x a b    =     . Such configuration is 

chose according to (Lu & Tan, 2008) as such values make the algorithm insensitive to noise imag-

es. 

8.4.2. Error score and success rate 

 

Real-life images rarely contain perfectly-shaped circles. Therefore, in order to test the accuracy of 

the CSA approach, the results are compared to a ground-truth circle (see (Dasgupta et al., 2010)) 

which is manually detected from the original edge-map. The parameters ( , , )true true truex y r of the 

ground-truth circle are computed using the Equations 8.10-8.13, over the three circumference 

points from the manually detected circle. If the center and the radius of such circle are found by 

the algorithm, defining ( , )D Dx y and
Dr , then the error score defined as follows: 

 

( )Es= true D true D true Dx x y y r r  − + − +  −  (8.22) 

 

The first term represents the shift of the center of the detected circle as it is compared to the 

ground-truth circle. The second term accounts for the difference between their radii.   and   are 

two weights associated to each term in expression (8.22). They may be chosen according to the re-

quired accuracy as 0.05 = and 0.1 = . This particular choice of parameters ensures that the ra-

dii difference is strongly weighted than difference of center positions between the manually de-

tected and the machine-detected circle. It is assumed that if the Es is found to be less than 1, then 

the algorithm gets a success. Otherwise, it is considered to have failed in detecting the edge-circle. 

Notice that for 0.05 =  and 0.1 = yields Es<1 which means that the maximum tolerated differ-
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ence of  radius length is 10 pixels while the maximum mismatch in the location of the center can 

be up to 20 pixels. From this viewpoint, the success rate (SR) is defined as percentage of reaching 

success after a certain number of trials. 

8.4.3. Presentation of results 

 

Figure 8.4 provides three synthetic images and their counterparts after processing with CSA. Fig-

ure 8.5 presents the same experimental results on natural images. In order to test the robustness of 

the algorithm, salt and pepper noise have been added to the synthetic images before applying the 

algorithm. Likewise, the natural image shown by Figure 5b is also corrupted with salt and pepper 

noise.  It also illustrates the performance of the algorithm considering noisy and corrupted pixels.  

 

Image Original Image Image with detected circle 
Image with “salt and pep-

per noise” 

(a) 

   

(b) 

   

(c) 

   

 

Fig. 8.4. Synthetic images and their detected circles. 

 

As real-life images rarely contain perfectly-shaped circles, the presented algorithm must approxi-

mate the circle that better fits into imperfect shapes within a noisy image. Such circle would there-

fore correspond to the better match in the objective function J(C). 

 

Considering the benchmark images and their corresponding edge maps shown by Figure 8.4, Fig-

ure 8.5 provides a visual performance illustration of the GA algorithm (Ayala-Ramirez et al., 

2006), the IRHT algorithm (Lu & Tan, 2008) and the presented approach, over three challenging 

problem instances, i.e. occluded circle, uneven circumference and synthetic noisy image).  

 

The results are averaged over 35 independent runs of each algorithm. It is interesting to observe 

that the deviation between the detected circle and actual circle is the smallest under the CSA detec-

tor. Table 8.2 shows the averaged execution time, the success rate (in %), and averaged error score 

-following Eq. 8.22, for the three competitor algorithms over six test images shown by Figures 8.4 

and 8.5. Table 8.3 contents the results after processing noisy images shown by Figure 8.4. The best 

results are marked in bold for both Tables.  
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Image Original Image Image with detected circle 

(a) 

  

(b) 

  

(c) 

  

 

Fig. 8.5. Natural images and their detected circles. 

 

 

Image Original Image Edge-map 

(a) 

  

(b) 

  

(c) 

  

 

Fig. 8.6. Complex benchmark images and their corresponding edge maps. 
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A close inspection of Tables 8.2 and 8.3 reveals that the CSA method is able to achieve the 

highest success rate and minimum error tracking least computational time in majority of the cases. 

 

 

Image 

Average time ± Standard deviation (s) Success rate (SR) (%) Es ± Standard deviation 

GA IRHT CSA GA IRHT CSA GA IRHT CSA 

Synthetic images 

(a) 
1.18 

±(0.20) 

2.10 

±(0.80) 

0.52 

±(0.10) 
100 92 100 

0.77 

±(0.081) 

0.62 

±(0.070) 

0.40 

±(0.051) 

(b) 
1.24 

±(0.39) 

1.80 

±(0.65) 

0.46 

±(0.24) 
95 81 98 

0.62 

±(0.050) 

0.45 

±(0.023) 

0.37 

±(0.085) 

(c) 
2.16 

±(0.11) 

3.18 

±(0.36) 

0.60 

±(0.19) 
91 82 100 

0.60 

±(0.041) 

0.57 

±(0.041) 

0.31 

±(0.024) 

Natural Images 

(a) 
2.11 

±(0.51) 

2.61 

±(0.52) 

1.12 

±(0.37) 
90 92 100 

0.77 

±(0.031) 

0.82 

±(0.043) 

0.43 

±(0.055) 

(b) 
2.91 

±(0.34) 

3.21 

±(0.14) 

1.61 

±(0.17) 
92 90 100 

0.97 

±(0.055) 

1.02 

±(0.136) 

0.51 

±(0.041) 

(c) 
3.82 

±(0.97) 

4.36 

±(0.17) 

1.95 

±(0.41) 
88 81 98 

1.21 

±(0.102) 

1.42 

±(0.155) 

0.59 

±(0.073) 

 

Table 8.2. Averaged execution time and success rate of the GA, the IRHT and the CSA method, over the 

six test images shown by Figures 8.4 and 8.5. 

 

  

 

GA-Detector IRHT CSA-Detector 

   

   

   

 

Fig. 8.7. Performance of the CSA method, the GA and the IRHT over complex images. 
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Image 

 

Average time ± Standard deviation 

(s) 

Success rate 

(SR) (%) 
Es ± Standard deviation 

GA IRHT CSA GA IRHT CSA GA IRHT CSA 

Synthetic noisy images 

(a) 
2.11 

±(0.31) 

3.04 

±(0.29) 

0.57 

±(0.13) 
100 92 100 

0.87 

±(0.071) 

0.71 

±(0.051) 

0.54 

±(0.071) 

(b) 
2.50 

±(0.39) 

2.80 

±(0.17) 

0.51 

±(0.11) 
91 80 97 

0.67 

±(0.081) 

0.61 

±(0.048) 

0.31 

±(0.015) 

(c) 
3.02 

±(0.63) 

4.11 

±(0.71) 

0.64 

±(0.33) 
93 78 100 

0.71 

±(0.036) 

0.77 

±(0.044) 

0.42 

±(0.011) 

 

Table 8.3. Averaged execution time and success rate of the GA, the IRHT and the CSA method over three 

noisy images shown by Figure 8.4. 

8.5. Conclusions 

 

This chapter has presented an algorithm for the automatic detection of circular shapes from 

complicated and noisy images with no consideration of the conventional Hough transform princi-

ples. The presented method is based on a newly developed Artificial Immune Optimization (AIO) 

technique, known as the Clonal Selection algorithm (CSA). To the best of our knowledge, the 

CSA has not been yet applied to any such circle detection task until date. The algorithm uses the 

encoding of three non-collinear edge points as circle candidates within the edge image of the sce-

ne. An objective function evaluates if a given circle candidate is actually present in the edge image 

(Ag). Guided by the values of the objective function, the set of encoded candidate circles are 

evolved using the CSA so that they can fit into the actual circles in the edge map of the image. As 

it can be  

 

observed from the results shown by Figures 8.4, 8.5 and 8.7, our approach detects the circle in 

complex images with little visual distortion despite the presence of noisy background pixels.  

 

An important feature is to consider the circle detection problem as an optimization approach. Such 

view enables the algorithm to detect arcs or occluded circles still matching imperfect circles. The 

CSA is capable of finding circle parameters according to J(C) instead of making a review of all 

circle candidates towards detecting occluded or imperfect circles as it is commonly done by other 

methods. 

 

In order to test the circle detection accuracy, a score function is used (Eq. 8.22) following the work 

in (Dasgupta et al., 2010). It can objectively evaluate the mismatch between a manually detected 

circle and a machine-detected shape. We demonstrated that the CSA method outperforms both the 

GA (as described in (Ayala-Ramirez et al., 2006)) and the IRHT (as described in (Lu & Tan, 

2008)) within a statistically significant framework. 

 

Although the Hough Transform methods for circle detection also use three edge points to cast a 

vote for the potential circular shape in the parameter space, they would require huge amounts of 

memory and longer computational time to obtain a sub-pixel resolution. In the HT-based methods, 

the parameter space is quantized and the exact parameters for a circle are often not equal to the 

quantized parameters, therefore it rarely finds the exact parameters of a circle in the image (Chen 

& Chung, 2001). However, the presented CSA method does not employ the quantization of the pa-

rameter space. In our approach, the detected circles are directly obtained from equations 8.10–

8.13, still reaching sub-pixel accuracy. 

 



 Chapter 8. Clonal Selection algorithm applied to Circle detection                                                                          160                   

                                                                                                      

Although Figure 8.6 indicates that the CSA method can yield better results on complicated and 

noisy images in comparison to the GA and the IRHT methods, notice that the aim of this chapter is 

to show that the Artificial Immune Systems can effectively serve as an attractive alternative to 

evolutionary algorithms which have been employed before to successfully extract circular shapes 

in images. 

 



 

Chapter 9 

States of Matter Algorithm applied to Pattern Detection 

 

 

 

 

 
Pattern Detection (PD) plays an important role in several image processing applications such as 

feature tracking, object recognition, stereo matching and remote sensing. PD involves two critical 

aspects: similarity measurement and search strategy. The simplest available PD method finds the 

best possible coincidence between the images through an exhaustive computation of the Normal-

ized cross-correlation (NCC) values (similarity measurement) for all elements of the source image 

(search strategy). However, the use of such approach is strongly restricted, since the NCC evalua-

tion is a computationally expensive operation. Recently, several PD algorithms, based on evolu-

tionary approaches, have been proposed to reduce the number of NCC operations by calculating 

only a subset of search locations. In this chapter, is presented an algorithm based on the States of 

Matter with the purpose of reduce the number of search locations in the PD process. In the pre-

sented approach, individuals emulate molecules that experiment state transitions which represent 

different exploration–exploitation levels. In the algorithm, the computation of search locations is 

drastically reduced by incorporating a fitness calculation strategy which indicates when it is feasi-

ble to calculate or only estimate the NCC value for new search locations. Conducted simulations 

show that the presented method achieves the best balance over other PD algorithms, in terms of es-

timation accuracy and computational cost. 

9.1. Introduction 

 

Pattern Detection (PD), which measures the degree of similarity between two image sets that 

are superimposed on one another, is one of the most important and challenging subjects in digital 

photogrammetry, object recognition, stereo matching, feature tracking, remote sensing, and com-

puter vision (Brunelli, 2009). It relies on calculating at each position of the image under examina-

tion a correlation or distortion function that measures the degree of similarity to the template im-

age, and the best matching is obtained when the similarity value is maximized. 

 

Generally, a process like pattern detection, involves two critical aspects: similarity measurement 

and search strategy (Grailu, et al., 2009). It is used a matching criterion, typically the Normalized 

cross-correlation (NCC) which is computationally expensive and represents the most consuming 

operation in the PD process (Krattenthaler, et al., 1994). 

 

The full search algorithm (Rosenfeld & VanderBrug, 1977; Tanimoto, 1981; Uenohara & Kanade, 

1997) is the simplest PD algorithm that can deliver the optimal detection with respect to a maximal 

NCC coefficient as it checks all pixel-candidates one at a time. However, such exhaustive search 

and the NCC calculation at each checking point, yields an extremely computational expensive PD 

method that seriously constraints its use for several image processing applications.  

 

Recently, several PD algorithms, based on evolutionary approaches, have been proposed to reduce 

the number of NCC operations by calculating only a subset of search locations. Such approaches 

have produced several robust detectors using different optimization methods such as Genetic algo-

rithms (GA) (Dong et al., 2011), Particle Swarm Optimization (PSO) (Liu, et al., 2012; Wu et al., 

2009) and Imperialist competitive algorithm (ICA) (Xu, et al., 2010). Although these algorithms 
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allow reducing the number of search locations, they do not explore the whole region effectively 

and often suffers premature convergence which conducts to sub-optimal detections. The reason of 

these problems is the operators used for modifying the particles. In such algorithms, during their 

evolution, the position of each agent in the next iteration is updated yielding an attraction towards 

the position of the best particle seen so-far (Adra & Fleming, 2011; Chen, et al., 2009). This be-

havior produces that the entire population, as the algorithm evolves, concentrates around the best 

particle, favoring the premature convergence and damaging the particle diversity. 

 

Every evolutionary algorithm (EA) needs to address the issue of exploration-exploitation of the 

search space. Exploration is the process of visiting entirely new points of a search space whilst ex-

ploitation is the process of refining those points within the neighborhood of previously visited lo-

cations, in order to improve their solution quality. Pure exploration degrades the precision of the 

evolutionary process but increases its capacity to find new potential solutions.  

 

On the other hand, pure exploitation allows refining existent solutions but adversely driving the 

process to local optimal solutions. Therefore, the ability of an EA to find a global optimal solution 

depends on its capacity to find a good balance between the exploitation of found-so-far elements 

and the exploration of the search space (Tan et al., 2009). So far, the exploration–exploitation di-

lemma has been an unsolved issue within the framework of EA. 

 

In this chapter, a novel nature-inspired algorithm, called the States of Matter Search (SMS) is pro-

posed for solving the PD problem. The SMS algorithm is based on the simulation of the states of 

matter phenomenon. In SMS, individuals emulate molecules which interact to each other by using 

evolutionary operations based on the physical principles of the thermal-energy motion mechanism. 

Such operations allow the increase of the population diversity and avoid the concentration of parti-

cles within a local minimum.  

 

The presented approach combines the use of the defined operators with a control strategy that 

modifies the parameter setting of each operation during the evolution process. The algorithm is 

devised by considering each state of matter at one different exploration–exploitation rate. Thus, 

the evolutionary process is divided into three stages which emulate the three states of matter: gas, 

liquid and solid. At each state, molecules (individuals) exhibit different behaviors. Beginning from 

the gas state (pure exploration), the algorithm modifies the intensities of exploration and exploita-

tion until the solid state (pure exploitation) is reached. As a result, the approach can substantially 

improve the balance between exploration–exploitation yet preserving the good search capabilities 

of an evolutionary approach. 

 

However, one particular difficulty in applying any EA to real-world problems is about its demand 

for a large number of fitness evaluations before delivering a satisfying result. Fitness evaluations 

are not always straightforward in many applications as either an explicit fitness function does not 

exist, or the fitness evaluation is computationally expensive. Furthermore, since random numbers 

are involved in the calculation of new individuals, they may encounter same positions (repetition) 

that have been visited by other individuals at previous iterations, particularly when individuals are 

confined to a finite area. 

 

The problem of considering expensive fitness evaluations has already been faced in the field of 

evolutionary algorithms (EA) and is better known as fitness approximation (Jin, 2005). In such ap-

proach, the idea is to estimate the fitness value of so many individuals as it is possible instead of 

evaluating the complete set. Such estimations are based on an approximate model of the fitness 

landscape. Thus, the individuals to be evaluated and those to be estimated are determined follow-

ing some fixed criteria which depend on the specific properties of the approximate model (Jin, 

2011b).  
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The models involved at the estimation can be built during the actual EA run, since EA repeatedly 

samples the search space at different points (Branke & Schmidt, 2005). There are many possible 

approximation models which have been used in combination with EA (e.g. polynomials (Zhou et 

al., 2005), the kriging model (Ratle, 2001), the feed-forward neural networks that includes multi-

layer Perceptrons (Lim, et al., 2010b) and radial basis-function networks (Ong, et al., 2008b)). 

 

In this chapter, a new algorithm based on SMS is presented to reduce the number of search loca-

tions in the PD process. The algorithm uses a simple fitness calculation approach which is based 

on the Nearest Neighbor Interpolation (NNI) algorithm in order to estimate the fitness value (NCC 

operation) for several candidate solutions (search locations). As a result, the approach can not only 

substantially reduce the number search positions (by using the SMS approach), but also to avoid 

the NCC evaluation for many of them (by incorporating the NNI strategy). The presented method 

achieves the best balance over other PD algorithms, in terms of both estimation accuracy and 

computational cost. 

 

The overall chapter is organized as follows: Section 9.2 holds a description about the SMS algo-

rithm. In Section 9.3, the fitness calculation strategy for solving the expensive optimization prob-

lem is presented. Section 9.4 provides backgrounds about the PD process while Section 9.5 expos-

es the final PD algorithm as a combination of SMS and the fitness calculation strategy. Section 9.6 

demonstrates experimental results for the presented approach over standard test images and some 

conclusions are drawn in Section 9.7. 

9.2. SMS-Algorithm 

 

The matter can take different phases which are commonly known as states. Traditionally, three 

states of matter are known: solid, liquid, and gas. The differences among such states are based on 

forces which are exerted among particles composing a material (Ceruti & Rubin, 2007). 

 

 

 

 

 

(a) (b) (c) 

 

Fig. 9.1. Different states of matter: (a) gas, (b) liquid, and (c) solid. 

 

In the gas phase, molecules present enough kinetic energy so that the effect of intermolecular forc-

es is small (or zero for an ideal gas), while the typical distance between neighboring molecules is 

greater than the molecular size. A gas has no definite shape or volume but occupies the entire con-

tainer in which it is confined. Fig. 9.1(a) shows the movements exerted by particles in a gas state. 

The movement experimented by the molecules represent the maximum permissible displace-

ment
1ρ among particles (Chowdhury & Stauffer, 2000). In a liquid state, intermolecular forces are 

more restrictive than those in the gas state. The molecules have enough energy to move relatively 

to each other still keeping a mobile structure. Therefore, the shape of a liquid is not definite but is 

determined by its container.  
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Fig. 9.1(b) presents a particle movement 
2ρ  within a liquid state. Such movement is smaller than 

those considered by the gas state but larger than the solid state. In the solid state, particles (or mol-

ecules) are packed together closely with forces among particles being strong enough so that the 

particles cannot move freely but only vibrate. As a result, a solid has a stable, definite shape and a 

definite volume. Solids can only change their shape by force, as when they are broken or cut.  

 

Fig. 9.1(c) shows a molecule configuration in a solid state. Under such conditions, particles are 

able to vibrate (being perturbed) considering a minimal 
3ρ  distance (Chowdhury et al., 2000). In 

this chapter, a nature-inspired algorithm known as the States of Matter Search (SMS) is presented 

for solving global optimization problems. The SMS algorithm is based on the simulation of the 

states of matter phenomenon that considers individuals as molecules which interact to each other 

by using evolutionary operations based on the physical principles of the thermal-energy motion 

mechanism. The algorithm is devised by considering each state of matter at one different explora-

tion–exploitation ratio. Thus, the evolutionary process is divided into three stages which emulate 

the three states of matter: gas, liquid and solid. In each state, individuals exhibit different behav-

iors. 

9.3. States of matter search (SMS) 

9.3.1. Definition of Operators 

 

In the approach, individuals are considered as molecules whose positions on a multidimensional 

space are modified as the algorithm evolves. The movement of such molecules is motivated by the 

analogy to the motion of thermal-energy. 

 

The velocity and direction of each molecule’s movement are determined by considering the colli-

sion, the attraction forces and the random phenomena experimented by the molecule set (Cengel, 

2014). In our approach, such behaviors have been implemented by defining several operators such 

as the direction vector, the collision and the random positions operators, all of which emulate the 

behavior of actual physics laws.  

 

The direction vector operator assigns a direction to each molecule in order to lead the particle 

movement as the evolution process takes place. On the other side, the collision operator mimics 

those collisions that are experimented by molecules as they interact to each other. A collision is 

considered when the distance between two molecules is shorter than a determined proximity dis-

tance. The collision operator is thus implemented by interchanging directions of the involved mol-

ecules.  

 

In order to simulate the random behavior of molecules, the proposed algorithm generates random 

positions following a probabilistic criterion that considers random locations within a feasible 

search space. 

 

The next section presents all operators that are used in the algorithm. Although such operators are 

the same for all the states of matter, they are employed over a different configuration set depend-

ing on the particular state under consideration. 

 

9.3.1.1. Direction vector 

 

The direction vector operator mimics the way in which molecules change their positions as the 

evolution process develops. For each n-dimensional molecule 
ip  from the population P, it is as-

signed an n-dimensional direction vector 
id  which stores the vector that controls the particle 
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movement. Initially, all the direction vectors (
1 2{ , , , }

pN=D d d d ) are randomly chosen within 

the range of [-1,1].  

 

As the system evolves, molecules experiment several attraction forces. In order to simulate such 

forces, the proposed algorithm implements the attraction phenomenon by moving each molecule 

towards the best so-far particle.  

 

Therefore, the new direction vector for each molecule is iteratively computed considering the fol-

lowing model:  

 

1 1 0.5 ,k k

i i i

k

gen

+  
=  −  + 

 
d d a  (9.1) 

where 
ia represents the attraction unitary vector calculated as ( ) /best best

i i i= − −a p p p p , being 

best
p  the best individual seen so-far, while 

ip  is the molecule i of population P. k represents the 

iteration number whereas gen involves the total iteration number that constitutes the complete evo-

lution process. 

 

Under this operation, each particle is moved towards a new direction which combines the past di-

rection, which was initially computed, with the attraction vector over the best individual seen so-

far. It is important to point out that the relative importance of the past direction decreases as the 

evolving process advances. This particular type of interaction avoids the quick concentration of in-

formation among particles and encourages each particle to search around a local candidate region 

in its neighborhood, rather than interacting to a particle lying at distant region of the domain.  

 

The use of this scheme has two advantages: first, it prevents the particles from moving toward the 

global best position in early stages of algorithm and thus makes the algorithm less susceptible to 

premature convergence; second, it encourages particles to explore their own neighborhood thor-

oughly, just before they converge towards a global best position. Therefore, it provides the algo-

rithm with local search ability enhancing the exploitative behavior. 

 

In order to calculate the new molecule position, it is necessary to compute the velocity 
iv  of each 

molecule by using: 

i i initv= v d  (9.2) 

 

being 
initv  the initial velocity magnitude which is calculated as follows: 

 

1

( )
n

high low

j j

j

init

b b

v β
n

=

−

= 


 

(9.3) 

 

where low

jb and high

jb are the low j parameter bound and the upper j parameter bound respectively, 

whereas [0,1]β . 

 

Then, the new position for each molecule is updated by: 

 
1

, , , rand(0,1) ( )k k high low

i j i j i j j jp p v b b+ = +    −  (9.4) 

where 0.5 1ρ  . 
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9.3.1.2. Collision 

 

The collision operator mimics the collisions experimented by molecules while they interact to each 

other. Collisions are calculated if the distance between two molecules is shorter than a determined 

proximity value. Therefore, if i q r− p p , a collision between molecules i and q is assumed; oth-

erwise, there is no collision, considering  , 1, , pi q N  such that i q . If a collision occurs, the 

direction vector for each particle is modified by interchanging their respective direction vectors as 

follows: 

 

i q=d d and 
q i=d d  (9.5) 

 

The collision radius is calculated by: 

 

1

( )
n

high low

j j

j

b b

r α
n

=

−

= 


 

(9.6) 

where [0,1]α . 

 

Under this operator, a spatial region enclosed within the radius r is assigned to each particle. In 

case the particle regions collide to each other, the collision operator acts upon particles by forcing 

them out of the region. The radio r and the collision operator provide the ability to control diversi-

ty throughout the search process. In other words, the rate of increase or decrease of diversity is 

predetermined for each stage.  

 

Unlike other diversity-guided algorithms, it is not necessary to inject diversity into the population 

when particles gather around a local optimum because the diversity will be preserved during the 

overall search process. The collision incorporation therefore enhances the exploratory behavior in 

the proposed approach. 

 

9.3.1.3. Random positions 

 

In order to simulate the random behavior of molecules, the proposed algorithm generates random 

positions following a probabilistic criterion within a feasible search space. 

 

For this operation, a uniform random number 
mr is generated within the range [0,1]. If 

mr is 

smaller than a threshold H, a random molecule´s position is generated; otherwise, the element re-

mains with no change. Therefore, such operation can be modeled as follows:  

 

1

, 1

,

 rand(0,1) ( )   with probability       

             with probability (1- )

low high low

j j jk

i j k

i j

b b b H
p

p H

+

+

 +  −
= 


 (9.7) 

 

where  1, , pi N and  1, ,j n .  

 

9.3.1.4. Best Element Updating 

 

Despite this updating operator does not belong to State of Matter metaphor, it is used to simply 

store the best so-far solution. In order to update the best molecule best
p  seen so-far, the best found 
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individual from the current k population ,best k
p  is compared to the best individual , 1best k−

p  of the last 

generation. If ,best k
p is better than , 1best k−

p according to its fitness value, best
p is updated with ,best k

p , 

otherwise best
p remains with no change. Therefore, best

p stores the best historical individual found 

so-far. 

9.3.2. SMS algorithm 

 

The overall SMS algorithm is composed of three stages corresponding to the three States of Mat-

ter:  the gas, the liquid and the solid state. Each stage has its own behavior. In the first stage (gas 

state), exploration is intensified whereas in the second one (liquid state) a mild transition between 

exploration and exploitation is executed. Finally, in the third phase (solid state), solutions are re-

fined by emphasizing the exploitation process.  

 

9.3.2.1. General procedure 

 

At each stage, the same operations are implemented. However, depending on which state is re-

ferred, they are employed considering a different parameter configuration. The general procedure 

in each state is shown as pseudo-code in Algorithm 9.1. Such procedure is composed by five steps 

and maps the current population 
k

P to a new population
1k+

P . The algorithm receives as input the 

current population 
k

P and the configuration parameters  ,  ,  , and H,  whereas it yields the 

new population 
1k+

P . 

 

9.3.2.2. The complete algorithm 

 

The complete algorithm is divided into four different parts. The first corresponds to the initializa-

tion stage, whereas the last three represent the States of Matter. All the optimization process, 

which consists of a gen number of iterations, is organized into three different asymmetric phases, 

employing 50% of all iterations for the gas state (exploration), 40% for the liquid state (explora-

tion-exploitation) and 10% for the solid state (exploitation). The overall process is graphically de-

scribed by Figure 9.2. At each state, the same general procedure (see Algorithm 9.1) is iteratively 

used considering the particular configuration predefined for each State of Matter. Figure 9.3 shows 

the data flow for the complete SMS algorithm. 

 

Initialization 

 

The algorithm begins by initializing a set P of 
pN  molecules (

1 2{ , , , }
pN=P p p p ). Each molecule 

position 
ip is a n-dimensional vector containing the parameter values to be optimized. Such val-

ues are randomly and uniformly distributed between the pre-specified lower initial parameter 

bound low

jb  and the upper initial parameter bound high

jb , just as it is described by the following ex-

pressions: 
0

, (0,1) ( )low high low

i j j j jp b rand b b= +  −  

1,2, , ;    1,2, , ,pj n i N= =  
(9.8) 

 

where j and i, are the parameter and molecule index respectively whereas zero indicates the initial 

population. Hence, j

ip is the j-th parameter of the i-th molecule.  
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Fig. 9.2. Evolution process in the proposed approach. 

 

 

Step 1: Evaluate the fitness value of each particle and find the best element of the population P 

    1 2( ) max ( ), ( ), , ( )
p

best best

NJ J J J =p P p p p p  
   

Step 2: Calculate 
initv and r    

 

1

( )
n

high low

j j

j

init

b b

v β
n

=

−

= 


   

1

( )
n

high low

j j

j

b b

r α
n

=

−

= 


 

   

Step 3: Compute the new molecules by using the Direction vector operator 9.3.1.1 

 for (i=1; i<
pN +1; i++)    

 ( ) /best best

i i i= − −a p p p p   

 for (j=1; j<n+1; j++)   

 

 

 1

, , ,1 0.5k k

i j i j i j

k
d d a

gen

+  
=  −  + 

 
 

 

 
1

, ,

k

i j i j initv d v+=    

 
1

, , , rand(0,1) ( )k k high low

i j i j i j j jp p v b b+ = +    −   

 end for  

 end for  

Step 4: Solve collisions by using the Collision operator 9.3.1.2 

 for (i=1; i<
pN +1; i++)  

 for (j=1; j<
pN +1; j++)  

 if ((
i j r− p p ) and ( i j ))  

 i=t d  

 i j=d d  

 j =d t  

 end if 

 end for 

 end for 

Step 5: Generate new random positions by using the Random positions operator 9.3.1.3 

 for (i=1; i<
pN +1; i++)  

 if ( mr < H) then; where rand(0,1)mr    

 for (j=1; j<n+1; j++)  

 
1

, rand(0,1) ( )k low high low

i j j j jp b b b+ = +  −  

 end for 

 end if 

 end for 

 

Algorithm 9.1. General procedure executed by all the states of matter. 
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Gas state 

 

In the gas state, molecules experiment severe displacements and collisions. Such state is character-

ized by random movements produced by non-modeled molecule phenomena (Cengel, 2014). 

Therefore, the  value from the direction vector operator is set to a value near to one so that the 

molecules can travel longer distances. Similarly, the H value representing the random positions 

operator is also configured to a value around one, in order to allow the random generation for other 

molecule positions. The gas state is the first phase and lasts for the 50% of all iterations which 

compose the complete optimization process. The computational procedure for the gas state can be 

summarized as follows: 

 

Step 1 Set the parameters  0.8,1 ,  0.8,  0.8   = = and 0.9H =  being consistent with the gas 

state. 

Step 2 Apply the general procedure which is illustrated in Algorithm 9.1. 

Step 3 If the 50% of the total iteration number is completed (1 0.5 )k gen   , then the process 

continues to the liquid state procedure; otherwise go back to step 2. 

 

 Liquid state 

 

Although molecules currently at the liquid state exhibit restricted motion in comparison to the gas 

state, they still show a higher flexibility with respect to the solid state. Furthermore, the generation 

of random positions which are produced by non-modeled molecule phenomena is scarce (Hecht & 

Bueche, 2011). For this reason, the  value from the direction vector operator is bounded to a 

value between 0.3 and 0.6.  

 

Similarly, the random position operator H is configured to a value near to cero in order to allow 

the random generation of fewer molecule positions. In the liquid state, collisions are also less 

common than in gas state, so the collision radius, that is controlled by  , is set to a smaller value 

in comparison to the gas state.   

 

The liquid state is the second phase and lasts the 40% of all iterations which compose the complete 

optimization process. The computational procedure for the liquid state can be summarized as fol-

lows: 

 

Step 4 Set the parameters  0.3,0.6 ,  0.4,  0.2   = =  and 0.2H =  being consistent with the 

liquid state. 

Step 5 Apply the general procedure that is defined in Algorithm 9.1. 

Step 6 If the 90% (50% from the gas state and 40% from the liquid state) of the total iteration 

number is completed (0.5 0.9 )gen k gen    , then the process continues to the solid 

state procedure; otherwise go back to step 5. 

 

Solid state 

 

In the solid state, forces among particles are stronger so that particles cannot move freely but only 

vibrate. As a result, effects such as collision and generation of random positions are not considered 

(Turner & Betts, 1974).  

 

Therefore, the  value of the direction vector operator is set to a value near to zero indicating that 

the molecules can only vibrate around their original positions.  
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The solid state is the third phase and lasts for the 10% of all iterations which compose the com-

plete optimization process. The computational procedure for the solid state can be summarized as 

follows: 

 

Step 7 Set the parameters  0,0.1 ,  0.1,  0   = =  and 0H =  being consistent with the solid 

state. 

Step 8 Apply the general procedure that is defined in Algorithm 9.1. 

Step 9 If the 100% of the total iteration number is completed (0.9 )gen k gen   , the process 

is finished; otherwise go back to step 8. 

 

It is important to clarify that the use of this particular configuration ( 0 = and 0H = ) disables the 

collision and generation of random positions operators which have been illustrated in the general 

procedure. 

 

 

 
 

Fig. 9.3. Data flow of the complete SMS algorithm 

9.3. Fitness approximation method 

 

Evolutionary methods based on fitness approximation aim to find the global optimum of a giv-

en function considering only a very few numbers of function evaluations. In order to apply such 

approach, it is necessary that the objective function portrait the following conditions:  According 

to (Ratle, 2001) (1) it must be very costly to evaluate and (2) must have few dimensions (up to 

five). Recently, several fitness estimators have been reported in the literature (Branke & Schmidt, 

2005; Jin, 2005; Jin, 2011b; Zhou et al., 2005), where the function evaluation number is consider-

ably reduced (to hundreds, dozens, or even less). However, most of these methods produce com-

plex algorithms whose performance is conditioned to the quality of the training phase and the 

learning algorithm in the construction of the approximation model. 

 

In this chapter, we explore the use of a local approximation scheme, based on the nearest-

neighbor-interpolation (NNI), in order to reduce the function evaluation number. The model esti-

mates the fitness values based on previously evaluated neighboring individuals, stored during the 

evolution process. At each generation, some individuals of the population are evaluated with the 

accurate (real) objective function, while the remaining individuals’ fitnesses are estimated. The in-

dividuals to be evaluated accurately are determined based on their proximity to the best fitness 

value or uncertainty. 
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9.3.1. Updating individual database 

 

In our fitness calculation approach, during de evolution process, every evaluation or estimation of 

an individual produces a data point (individual position and fitness value) that is potentially taken 

into account for building the approximation model. Therefore, we keep all seen so far evaluations 

in a history array T, and then just select the closest neighbor to estimate the fitness value of a new 

individual. Thus, all data are preserved and potentially available for use, while the construction of 

the model is still fast since only the most relevant data points are actually used to construct the 

model. 

9.3.2. Fitness calculation strategy  

In the presented fitness calculation scheme, most of the fitness values are estimated to reduce the 

calculation time in each generation. In the model, it is evaluated (using the real fitness function) 

those individuals that are near the individual with the best fitness value contained in T (rule 1). 

Such individuals are important, since they will have a stronger influence on the evolution process 

than other individuals.  

 

Moreover, it is also evaluated those individuals in regions of the search space with few previous 

evaluations (rule 2). The fitness values of these individuals are uncertain; since there is no close 

reference (close points contained in T) in order to calculate their estimates.  

 

The rest of the individuals are estimated using NNI (rule 3). Thus, the fitness value of an individu-

al is estimated assigning it the same fitness value that the nearest individual stored in T.  

 

  
(a) (b) 

 
(c) 

 

Fig. 9.4. The fitness calculation strategy. (a) According to the rule 1, the individual (search position) P is 

evaluated (J(P)), since it is located closer than a distance d with respect to the nearest individual location 
1L  

whose fitness value 
1LF  corresponds to the best fitness value (maximum so-far). (b) According to the rule 2, 

the search point P is evaluated (J(P)), as there is no close reference in its neighborhood. (c) According to the 

rule 3, the fitness value of P is estimated ( ( ))J P  by means of the NNI-estimator, assigning 
2P LF F=  

 

For the sake of clarity, it is considered that the fitness value of i is evaluated by the true fitness 

function using the representation J(i) whereas ( )J i  indicates that the fitness value of the individu-

al i has been estimated using an alternative model. Therefore, the estimation model follows 3 dif-

ferent rules in order to evaluate or estimate the fitness values: 
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1. If the new individual (search position) P is located closer than a distance d with respect to 

the nearest individual location 
qL  whose fitness value 

qLF  corresponds to the best fitness 

value stored in T, then the fitness value of P is evaluated using the true fitness function 

(J(P)). Figure 9.4(a) draws the rule procedure.  

 

2. If the new individual P is located longer than a distance d with respect to the nearest indi-

vidual location 
qL  whose fitness value 

qLF  has been already stored in T, then its fitness 

value is evaluated using the true fitness function (J(P)). Figure 9.4(b) outlines the rule 

procedure. 

 

3. If the new individual  P is located closer than a distance d with respect to the nearest in-

dividual location 
qL  whose fitness value 

qLF  has been already stored in T, then its fitness 

value is estimated ( ( )J P ) assigning it the same fitness that 
qL (

qP LF F= ). Figure 9.4(c) 

sketches the rule procedure. 

 

The d value controls the trade off between the evaluation and estimation of search locations. Typi-

cal values of d range from 5 to 10; in this chapter, the value of 7 has been selected. Thus, the pro-

posed approach favors the exploitation and exploration in the search process. For the exploration, 

the estimator evaluates the true fitness function of new search locations that have been located far 

from the positions already calculated. Meanwhile, it also estimates those that are closer. For the 

exploitation, the proposed method evaluates the effective fitness function of those new searching 

locations that are placed near to the position with the minimum fitness value seen so far, aiming to 

improve its minimum.  

 

Step 1: Evaluate or estimate the fitness value of each particle and find the best element of the pop-

ulation P 

 for (i=1; i<
pN +1; i++)    

If ( ip fulfils rule 1 or rule 2) then ( )iJ p    

If ( ip fulfils rule 3) then ( )iJ p    

update T   

end for   

   1 2( ) max ( ), ( ), , ( )
p

best best

NJ J J J =p T p p p p  
   

Step 2: Calculate 
initv and r    

 

1

( )
n

high low

j j

j

init

b b

v β
n

=

−

= 


   

1

( )
n

high low

j j

j

b b

r α
n

=

−

= 


 

 

   

Step 

3: 

Evaluate the fitness value of each particle and find the best element of the population P 

 

Algorithm 9.2. Enhanced general procedure executed by all the states of matter. The procedure incorpo-

rates the fitness calculation strategy in order to reduce the number of function evaluations. 

 

 

The three rules show that the fitness calculation strategy is simple and straightforward. Fig. 9.4 il-

lustrates the procedure of fitness computation for a new solution (point P) considering the three 

different rules. In the problem, the objective function J is maximized with respect to two parame-

The other steps are similar to those presented in Algorithm 9.1. 
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ters (
1 2,x x ). In all figures (Figs. 9.4(a), (b) and (c)) the individual database array T contains five 

different elements (
1 2 3 4 5, , , ,L L L L L ) with their corresponding fitness values (

1 2 3 4 5
, , , ,L L L L LF F F F F ).  

 

Figures 9.4(a) and (b) show the fitness evaluation (
1 2

( , )x xJ P P ) of the new solution P following the 

rule 1 and 2 respectively, whereas Fig. 9.4(c) present the fitness estimation of P ( ( )J P ) using the 

NNI approach considered by rule 3.  

 

9.3.3. Proposed optimization SMS method 

In this section, it has been proposed a fitness calculation approach in order to accelerate the SMS 

algorithm. Only the fitness calculation scheme shows difference between the proposed SMS and 

the enhanced one. In the modified SMS, only some individuals are actually evaluated (rules 1 and 

2) in each generation. The fitness values of the rest are estimated using the NNI-approach (rule 3). 

The estimation is executed using the individual database (array T).  

 

Fig. 9.5 shows the difference between the original SMS and the modified one. In the Figure, it is 

clear that two new blocks have been added, the fitness estimation and the updating individual da-

tabase. Both elements, together with the actual evaluation block, represent the fitness calculation 

strategy presented in this sub-section. The incorporation of the fitness calculation strategy modi-

fies only the step 1 of the general procedure shown in Algorithm 9.1. Such step is extended by in-

corporating the decision rules (whether the individual i  is J(i) or ( )J i ) and the sub-system that 

updates the T array. Algorithm 9.2 illustrates the enhanced procedure. As a result, the SMS ap-

proach can substantially reduce the number of function evaluations preserving its good search ca-

pabilities.  

 

  
(a) (b) 

 

Fig. 9.5. Differences between the original SMS and the modified SMS. (a) Conventional SMS and (b) 

SMS algorithm included the fitness calculation strategy 

 

9.4. Pattern Detection process 

 

Consider the problem of localizing a given reference image (template) R within a larger intensi-

ty image I, which we call the source image. The task is to find those positions where the contents 

of the reference image R and the corresponding sub-image of I are either the same or most similar. 

If it is denoted by 
, ( , ) ( , )u vR x y R x u y v= − − , the reference image R shifted by the distance (u,v) 
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in the horizontal and vertical directions, respectively, then the matching problem (illustrated in 

Fig. 9.6) can be summarized as:  

 

Given are the source image I and the reference image R.  

Find the offset (u,v) inside of the search region S, such that the similarity between the shifted 

reference image 
,u vT , and  

The corresponding sub-image of I is a maximum. 

 

To successfully solve this task, several issues need to be addressed such as determining a mini-

mum similarity value for accepting a match and developing a good search strategy for finding, in a 

fast way, the optimal displacement.  

 

Several Pattern Detection algorithms (Chen et al., 2009; Dong et al., 2011; Liu et al., 2012; Wu et 

al., 2009; Xu et al., 2010) have been proposed to reduce the number of search positions, using evo-

lutionary approaches as search strategy. Among the similarity criteria, NCC is the most effective 

and robust method that allow to measure the resemblance between R and its coincident region 

within I, at each displacement (u,v).  

 

The NCC value between a given image I of size M×N, and a template image R of size m×n at the 

displacement (u,v) is given by: 

 

1 1

1 1

2 2

1 1 1 1

( , ) ( , ) ( , )

( , )

( , ) ( , ) ( , )

m n

i j

m n m n

i j i j

I u i v j I u v R i j R

NCC u v

I u i v j I u v R i j R

= =

= = = =

   + + −  −   
=

   
+ + −  −   

   



 

 
(9.9) 

 

where ( , )I u v  is the grey-scale average intensity of the source image in the region coincident with 

the template image R and R  is the grey-scale average intensity of the template image. Such val-

ues are defined as: 

 

1 1

1
( , ) ( , )

m n

i j

I u v I u i v j
m n = =

= + +

  

 
1 1

1
( , )

m m

i j

R R i j
m n = =

=

  

(9.10) 

 

Therefore, the point ( , )u v which presents the best possible resemblance between R and I is defined 

as follows: 

 

ˆ ˆ( , )
ˆ ˆ( , ) arg  max  ( , )

u v S
u v NCC u v


=  (9.11) 

 

where  ˆ ˆ ˆ ˆ( , )  1 ,1S u v u M m v N n=   −   − . 

 

Fig. 9.7 illustrates the PD process considering Fig. 9.7(a) and 9.7(b) as the source and template 

image respectively. It is important to point out that the template image (9.7(b)) is similar but not 

equal to the coincident pattern, contained in the source image (9.7(a)). Fig. 9.7(c) shows the NCC 

values (color-encoded) calculated in all locations of the search region S. On the other hand, Fig. 

9.7(d) presents the NCC surface which exhibits the highly multi-modality nature of the PD prob-

lem. 



 Chapter 9. States of Matter Algorithm applied to Pattern Detection                                                                        175       

                                                                                                                  

 
 

Fig. 9.6. Geometry of pattern detection. The reference image R is shifted across the search image I by an 

offset ( , )u v  using the origins of the two images as the reference points. The dimensions of the source image 

(MxN) and the reference image (mxn) determine the maximal search region (S) for this comparison. 

 

 

 

 

(a) (b) 

 
 

(c) (d) 

 

Fig. 9.7.  Pattern detection process. (a) Example source image, (b) template image, (c) color-encoded 

NCC values and (d) NCC multi-modal surface. 

 

9.5. PD algorithm based on SMS with the estimation strategy 

 

The simplest available PD method finds the global maximum (the accurate detection 

point ( , )u v ), considering all locations within the search space S. Nevertheless, the approach has a 

high computational cost for its practical use. Several PD algorithms (Dong et al., 2011; Liu et al., 

2012; Wu et al., 2009; Xu et al., 2010) have been proposed to accelerate the search process by cal-

culating only a subset of search locations. Although these algorithms allow reducing the number of 

search locations, they do not explore the whole region effectively and often suffers premature con-

vergence which conducts to sub-optimal detections. The cause of these problems is the operators 

used for modifying the particles. In such algorithms, during their evolution, the position of each 

agent in the next iteration is updated yielding an attraction towards the position of the best particle 

seen so-far (Lim et al., 2010b; Ong et al., 2008b). This behavior produces that the entire popula-

tion, as the algorithm evolves, concentrates around the best coincidence seen so-far, favoring the 

premature convergence in a local minimum of the multi-modal surface. Therefore, a better PD al-
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gorithm should spend less computational time on the search strategy and get the optimum match 

position. 

 

In the SMS-based algorithm, individuals represent search positions ( , )u v  which move throughout 

the search space S. The NCC coefficient, used as a fitness value, evaluates the matching quality 

presented between the template image R and the source image I, for a determined search position 

(individual). The number of NCC evaluations is drastically reduced by considering a fitness calcu-

lation strategy which indicates when it is feasible to calculate or only estimate the NCC values for 

new search locations. Guided by the fitness values (NCC coefficients), the set of encoded candi-

date positions are evolved using the SMS operators until the best possible resemblance has been 

found. In the algorithm, the search space S consists of a set of 2-D search positions û and v̂  repre-

senting the x and y components of the detection locations, respectively. Each particle is thus de-

fined as: 

 ˆ ˆ ˆ ˆ( , )  1 ,1i i i i iP u v u M m v N n=   −   −  (9.12) 

9.5.2. The SMS-PD algorithm 

 

The goal of our PD-approach is to reduce the number of evaluations of the NCC values (actual fit-

ness function) avoiding any performance loss and achieving the optimal solution. The SMS-PD 

method is listed below:  

Step 1 Set the SMS parameters.  

Step 2 

 

Initialize the population of 5 random individuals  1 5, ,P P=P inside of the search 

region S and the individual database array T, as an empty array.  

Step 3 

 

Compute the fitness values for each individual according to the fitness calculation 

strategy presented in Section 9.3.  

Step 4 Update new evaluations in the individual database array T. 

Step 5 Set the parameters [0.8,1] , 0.8 = , 0.8 =  and H=0.9 being consistent with the 

gas state. 

Step 6 Apply the enhanced general procedure which is illustrated in Algorithm 9.2. 

Step 7 If the 50% of the total iteration number is completed (1 0.5 )k gen   , then the pro-

cess continues to the liquid state procedure; otherwise go back to step 6. 

Step 8 Set the parameters [0.3,0.6] , 0.4 = , 0.2 =  and H=0.2 being consistent with 

the liquid state. 

Step 9 Apply the enhanced general procedure which is illustrated in Algorithm 9.2. 

Step 10 If the 90% (50% from the gas state and 40% from the liquid state) of the total iteration 

number is completed (0.5 0.9 )gen k gen    , then the process continues to the solid 

state procedure; otherwise go back to step 9. 

Step 11 Set the parameters [0.0,0.1] and 0.1 = , 0 =  and H=0 being consistent with 

the solid state. 

Step 12 Apply the enhanced general procedure which is illustrated in Algorithm 9.2. 

Step 13 If the 100% of the total iteration number is completed (0.9 )gen k gen   , the pro-

cess is finished; otherwise go back to step 11. 

Step 14 If the number of target iterations has been reached, then determine the best individual 

(matching position) of the final population is ˆ
bestu , ˆ

bestv . 
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The proposed SMS-PD algorithm considers multiple search locations during the complete optimi-

zation process. However, only a few of them are evaluated using the true fitness function whereas 

all other remaining positions are just estimated.  

 

Figure 9.8 shows a search-pattern that has been generated by the SMS-PD approach considering 

the problem exposed in Fig. 9.7. Such pattern exhibits the evaluated search-locations (rule 1 and 2) 

in red-cells, whereas the minimum location is marked in green. Blue-cells represent those that 

have been estimated (rule 3) whereas gray-intensity-cells were not visited at all, during the optimi-

zation process.  

 

Since most of fast PD methods employ optimization algorithms that face difficulties with multi-

modal surfaces, they may get trapped into local minima and find sub-optimal detections. On the 

other hand, the proposed approach allows finding out the optimal solution due to a better balance 

between the exploration and exploitation of the search space.  

 

Under the effect of the SMS operators, the search locations vary from generation to generation, 

avoiding staying trapped into a local minimum. Besides, since the proposed algorithm uses a fit-

ness calculation strategy for reducing the evaluation of the NCC values, it requires fewer search 

positions.  

 

As example Fig. 9.8 shows how the SMS-PD algorithm found the optimal detection, evaluating 

only the 11% of the feasible search locations. 

 

 

 
 

Fig. 9.8. Search-pattern generated by the SMS-PD algorithm. Red points represent the evaluated search 

positions whereas blue points indicate the estimated locations. The Green point exhibits the optimal match 

detection. 

 

9.6. Experimental results 

 

In order to verify the feasibility and effectiveness of our proposed algorithm in this work, series 

of comparative experiments with other PD algorithms are also given. Simulations have been per-

formed over a set of images which are shown in Fig. 9.9. The proposed approach has been applied 

to the experimental set whose results have been compared to those produced by the ICA-PD meth-

od (Xu et al., 2010) and the PSO-PD algorithm (Liu et al., 2012). These are considered state-of-

the-art algorithms whose results have been recently published.  

 

The maximum iteration number for the experimental set has been set to 300. Such stop criterion 

has been selected to maintain compatibility to similar works reported in the literature (Dong et al., 

2011; Liu et al., 2012; Wu et al., 2009; Xu et al., 2010).  
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Image  Template Properties 

 

(a) 

 

Dog 

Image size 574x800 

Template size 

131x141 

 

(b) 

 

Waldo One 

Image size 768x1024 

Template size 

59x36 

 

(c) 

 

Waldo Two 

Image size 768x1024 

Template size 

59x61 

 

(d) 

 

Map 

Image size 843x1417 

Template size 

55x71 

 

(e) 

 

Board one 

Image size 

2563x2779 

Template size 

209x176 

 

(f) 
 

Board Two 

Image size 

2400x3200 

Template size 

248x455 

 

Fig. 9.9. Experimental set used in the comparisons for the SMS-PD algorithm. 

 

The parameter setting for each algorithm in the comparison is described as follows: 

 

1. ICA-PD: The parameters are set to NumOfCountries = 100, NumOfImper = 10, NumOf- 

Colony = 90, 
maxT = 300, ξ = 0.1, 

1ε = 0.15 and 
2ε = 0.9. Such values are the best param-

eter set for this algorithm according to (Xu et al., 2010). 
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2. PSO-PD: The parameters are set to particle number=100, 
1 1.5c =  and

2 1.5c = ; besides, 

the particle velocity is initialized between [−4, 4].  

3. SMS-PD: The algorithm was configured by using: Particle number= 100 and d=3.   

Once all algorithms were configured with such values, they are used without modification during 

the experiments. The comparisons are analyzed considering three performance indexes: the aver-

age elapsed time (At), the success rate (Sr), the Average number of checked locations (AsL) and 

the average number of function evaluations (AfE). The Average elapsed time (At) indicates the 

time in seconds employed during the execution of each single experiment. The success rate (Sr) 

represents the number of executions in percentage in which the algorithms find out successfully 

the optimal detection point. The Average number of checked locations (AsL) exhibits the number 

of search locations which has been visited during a single experiment. The average number of 

function evaluations (AfE) indicates the number of times that the NCC coefficient is computed. In 

order to assure statistic consistency, all these performance indexes are averaged considering a de-

termined number of executions.  

 

The results after 30 runs are reported in Table 9.1 where the best outcome for each image is bold-

faced. According to this table, SMS-PD delivers better results than ICA and PSO for all images. In 

particular, the test remarks the largest difference in the success rate (Sr) and the average number of 

checked locations (AsL). Such facts are directly related to a better trade-off between exploration 

and exploitation, and the incorporation of the fitness calculation strategy, respectively. Fig. 9.10 

present the matching evolution curve for each image considering the average best NCC value seen 

so-far for all the algorithms employed in the comparison. 

 

 

Image Algorithm 

Average 

elapsed 

time 

(At) 

Success 

rate 

(Sr)% 

Average number 

of checked loca-

tions 

(AsL) 

 

Average number of 

function evalua-

tions 

(AfE) 

(a) 

ICA-TM 12.345 88.12 32000 32000 

PSO-TM 10.862 80.84 31250 31250 

SMS-TM 2.854 100 30000 5640 

(b) 

ICA-TM 17.534 70.23 82000 82000 

PSO-TM 16.297 62.45 81784 81784 

SMS-TM 3.643 100 60000 9213 

(c) 

ICA-TM 24.342 70.21 82000 82000 

PSO-TM 23.174 60.33 81784 81784 

SMS-TM 6.871 99 60000 8807 

(d) 

ICA-TM 26.249 67.12 220,512 220,512 

PSO-TM 26.381 58.12 210,784 210,784 

SMS-TM 6.937 98 100,512 18,506 

(e) 

ICA-TM 37.231 90.54 578,400 578,400 

PSO-TM 35.925 85.27 578,400 578,400 

SMS-TM 10.214 100 220,512 54,341 

(f) 

ICA-TM 40.287 89.78 578,400 578,400 

PSO-TM 38.298 81.47 578,400 578,400 

SMS-TM 10.719 100 220,512 57,981 

 

Table 9.1. Performance comparison of ICA-PD, PSO-PD and the proposed approach for the experimental 

set shown in Fig. 9.9. 
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From Table 9.1, it turns out that the average cost of our algorithm is 6.873 s, while the average 

cost of the ICA-PD and the PSO-PD algorithms are 26.331 and 25.156, respectively. Such fact 

demonstrates that SMS-PD spends less time on image matching in reference to its counterparts. 

According to Table 9.4, the SMS-PD presents a better performance than the other two algorithms 

in terms of effectiveness, since it detects practically in all experiments the optimal detection point. 

On the other hand, although the three algorithms visit approximately the same number of search 

location, the proposed algorithm evaluates (NCC evaluation) a minimal number of them. It is im-

portant to recall that such evaluation represents the main computational cost associated to the PD 

process.  

 

Image SMS-PD vs. ICA-PD SMS-PD vs. PSO-PD 

(a) 1.52E-10 1.78E-10 

(b) 3.23E-12 5.47E-12 

(c) 1.56E-12 2.67E-12 

(d) 3.21E-12 5.87E-12 

(e) 4.87E-12 7.58E-12 

(f) 2.11E-12 4.49E-12 

 

Table 9.2.  p-values produced by Wilcoxon’s test comparing SMS-PD vs. ICA-PD and SMS-PD vs. PSO-

PD over the average number of function evaluations (AfE) values from Table 9.1. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 9.10. Evolution curves for ICA-PD, PSO-PD and the proposed SMS-PD considering the average best 

NCC value seen so-far, each curve corresponds to the image of the experimental set. 

 

A non-parametric statistical significance proof known as the Wilcoxon’s rank sum test for inde-

pendent samples (García et al., 2008; Wilcoxon, 1945) has been conducted over the average num-

ber of function evaluations (AfE) data of Table 9.1, with an 5% significance level. Table 9.2 re-

ports the p-values produced by Wilcoxon’s test for the pair-wise comparison of the average 
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number of function evaluations (AfE) of four groups. Such groups are formed by SMS-PD vs. 

ICA-PD and SMS-PD vs. PSO-PD. As a null hypothesis, it is assumed that there is no significant 

difference between mean values of the two algorithms. The alternative hypothesis considers a sig-

nificant difference between the AfE values of both approaches.  

 

All p-values reported in Table 9.2 are less than 0.05 (5% significance level) which is a strong evi-

dence against the null hypothesis. Therefore, such evidence indicates that SMS-PD results are sta-

tistically significant and that it has not occurred by coincidence (i.e. due to common noise con-

tained in the process).  

 

9.7. Conclusions 

 

In this chapter, a novel nature-inspired algorithm, called the States of Matter Search (SMS) has 

been proposed for solving the pattern detection (PD). The SMS algorithm is based on the simula-

tion of the states of matter phenomenon. In SMS, individuals emulate molecules which interact to 

each other by using evolutionary operations based on the physical principles of the thermal-energy 

motion mechanism. Such operations allow the increase of the population diversity and avoid the 

concentration of particles within a local minimum. The presented approach combines the use of 

the defined operators with a control strategy that modifies the parameter setting of each operation 

during the evolution process. The algorithm is devised by considering each state of matter at one 

different exploration–exploitation rate. Thus, the evolutionary process is divided into three stages 

which emulate the three states of matter: gas, liquid and solid. At each state, molecules (individu-

als) exhibit different behaviors. Beginning from the gas state (pure exploration), the algorithm 

modifies the intensities of exploration and exploitation until the solid state (pure exploitation) is 

reached. 

 

The approach also incorporates a simple fitness calculation approach which is based on the Near-

est Neighbor Interpolation (NNI) algorithm in order to estimate the fitness value (NCC operation) 

for several candidate solutions (search locations). The method is able to save computational time 

by identifying which NCC values can be just estimated or must be calculated instead.  As a result, 

the approach can not only substantially reduce the number search positions (by using the SMS ap-

proach), but also to avoid the NCC evaluation for many of them (by incorporating the NNI strate-

gy). The presented method achieves the best balance over other PD algorithms, in terms of both 

estimation accuracy and computational cost. As a result, the approach can substantially reduce the 

number of functions evaluations, yet preserving the good search capabilities of SMS. 

 

Since the proposed algorithm is designed to have a better exploration-exploitation balance than 

other evolutionary algorithms, a high probability for finding the true matching point (accurate de-

tection point) is expected regardless of the high multi-modality nature of the PD process.  

 

The performance of the proposed approach has been compared to other existing PD algorithms by 

considering different images which present a great variety of formats and complexities. Experi-

mental results demonstrate the high performance of the proposed method in terms of elapsed time 

and the number of NCC evaluations. 



 

Chapter 10 

Artificial Bee Colony algorithm applied to Multi-

threshold Segmentation 

 

 

 

 

 
Image segmentation is a very important task in Computer Vision community, due to its capabil-

ities for further steps that lead to recognizing patterns in digital images. Thus, the process of 

thresholding selection has become an interesting area, in recent years this procedure has been in-

vestigated as an optimization problem. On the other Hand, ABC is a nature inspired algorithm 

based on the intelligent behaviour of honey-bees which has been successfully used to solve com-

plex real life optimization problems. In this chapter, a multi-thresholding approach, in which an 

image 1-D histogram is approximated by means of a Gaussian mixture model is presented. In the 

approach, the parameters are calculated by using the ABC algorithm. Under this method, each 

Gaussian function represents a pixel class; hence a threshold. The presented ABC approach shows 

fast convergence and low sensitivity to initial conditions. Experimental results has shown the 

ABC-method’s capability to perform multi-threshold selection and interesting advantages in com-

parison to other algorithms. 

10.1. Introduction 

Several image processing applications aim to detect and classify relevant features which may be 

later analyzed to perform several high-level tasks. In particular, image segmentation seeks to 

group pixels within meaningful regions. Commonly, gray levels belonging to the object, are sub-

stantially different from those featuring the background. Thresholding is thus a simple but effec-

tive tool to isolate objects of interest; its applications include several classics such as document 

image analysis, whose goal is to extract printed characters (Abak, et al., 1997b; Kamel & Zhao, 

1993), logos, graphical content, or musical scores; also it is used for map processing which aims to 

locate lines, legends, and characters (Trier & Jain, 1995). Moreover, it is employed for scene pro-

cessing, seeking for object detection, marking (Bhanu, 1986b) and for quality inspection of mate-

rials (Sezgin & Sankur, 2001; Sezgin & Taşaltı́n, 2000). 

 

Thresholding selection techniques can be classified into two categories: bi-level and multi-level. In 

the former, one limit value is chosen to segment an image into two classes: one representing the 

object and the other one segmenting the background. When distinct objects are depicted within a 

given scene, multiple threshold values have to be selected for proper segmentation, which is com-

monly called multilevel thresholding. 

 

A variety of thresholding approaches have been proposed for image segmentation, including con-

ventional methods (Guo & Pandit, 1998; Pal & Pal, 1993; Sahoo et al., 1988; Snyder et al., 1990) 

and intelligent techniques (Chen & Wang, 2005; Lai, 2006). Extending the segmentation algo-

rithms to a multilevel approach may cause some inconveniences: (i) they may have no systematic 

or analytic solution when the number of classes to be detected increases and (ii) they may also 

show a slow convergence and/or high computational cost (Chen & Wang, 2005).  

 

In this work, the segmentation algorithm is based on a parametric model holding a probability den-

sity function of gray levels which groups a mixture of several Gaussian density functions (Gaussi-

an mixture). Mixtures represent a flexible method of statistical modelling as they are employed in 
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a wide variety of contexts (Gonzalez & Woods, 2008). Gaussian mixture has received considera-

ble attention in the development of segmentation algorithms despite its performance is influenced 

by the shape of the image histogram and the accuracy of the estimated model parameters (Gupta & 

Sortrakul, 1998). The associated parameters can be calculated considering the Expectation Maxi-

mization (EM) algorithm (Dempster et al., 1977; Zhang et al., 2003) or Gradient-based methods 

such as Levenberg-Marquardt (LM) (Park et al., 2000). However, EM algorithms are very sensi-

tive to the choice of the initial values  (Park & Ozeki, 2009), meanwhile Gradient-based methods 

are computationally expensive and may easily get stuck within local minima (Gupta & Sortrakul, 

1998). Therefore, some researchers have attempted to develop methods based on modern global 

optimization algorithms such as the Learning Automata (LA) (Cuevas, et al., 2011) and Differen-

tial Evolution algorithm (DE) (Cuevas, et al., 2010). In this chapter, an alternative approach using 

an optimization algorithm for determining the parameters of a Gaussian mixture is presented.  

 

On other hand, Karaboga, (2005) has presented a metaheuristic algorithm for solving numerical 

optimization problems known as the artificial bee colony (ABC) method. Inspired by the intelli-

gent foraging behavior of a honeybee swarm, the ABC algorithm consists of three essential com-

ponents: food source positions, nectar-amounts and several honey-bee classes. Each food source 

position represents a feasible solution for the problem under consideration. The nectar-amount for 

a food source represents the quality of such solution according to its fitness value. Each bee-class 

symbolizes one particular operation for generating new candidate food source positions (i.e. can-

didate solutions). 

 

The ABC algorithm starts by producing a randomly distributed initial population (food source lo-

cations). After initialization, an objective function evaluates whether such candidates represent an 

acceptable solution (nectar-amount) or not. Guided by the values of such objective function, can-

didate solutions are evolved through different ABC operations (honey-bee types). When the fitness 

function (nectar-amount) cannot be further improved after a maximum number of cycles, its relat-

ed food source is assumed to be abandoned and replaced by a new randomly chosen food source 

location.  

 

The performance of ABC algorithm has been compared to other metaheuristic methods such as 

Genetic Algorithms (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO) 

(Karaboga & Basturk, 2008; Karaboga & Akay, 2009). The results have shown that ABC can pro-

duce optimal solutions yet more effectively than other methods for several optimization problems. 

Such characteristics have motivated the use of ABC to solve different sorts of engineering prob-

lems within different fields such as signal processing (Karaboga, 2009), flow shop scheduling 

(Pan, et al., 2011), structural inverse analysis (Kang, et al., 2009), clustering (Karaboga & Ozturk, 

2011; Zhang, et al., 2010) and electromagnetism (Ho & Yang, 2009). 

 

This chapter presents the use of the Artificial Bee Colony (ABC) algorithm to compute threshold 

selection for image segmentation. In this approach, the segmentation process is considered as an 

optimization problem approximating the 1-D histogram of a given image by means of a Gaussian 

mixture model. The operation parameters are calculated through the ABC algorithm. Each Gaussi-

an function approximating the histogram represents a pixel class and therefore a threshold point in 

the segmentation scheme.  

 

The experimental results, presented in this work, demonstrate that ABC exhibits fast convergence, 

relatively low computational cost and no sensitivity to initial conditions by keeping an acceptable 

segmentation of the image, i.e. a better mixture approximation in comparison to the EM or gradi-

ent based algorithms. 

 

The chapter is organized as follows: Section 10.2 presents the Gaussian approximation of the his-

togram while Section 10.3 discusses on the ABC algorithm. Section 10.4 formulates the threshold 
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determination with Section 10.5 presenting all experimental results after the presented approach is 

implemented. Section 10.6 summarizes a full discussion on the algorithm performance. 

 

10.2. Gaussian approximation 

 

Let consider an image holding L gray levels [0, , 1]L−  whose distribution is displayed within 

a histogram ( )h g . In order to simplify the description, the histogram is normalized just as a proba-

bility distribution function, yielding: 

 

( ) ,   ( ) 0,
gn

h g h g
N

=   

1 1

0 0

,  and ( ) 1,

L L

g

g g

N n h g

− −

= =

= =   
(10.1) 

 

where 
gn  denotes the number of pixels with gray level g and N being the total number of pixels in 

the image. The histogram function can thus be contained into a mix of Gaussian probability func-

tions of the form: 
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with Pi being the probability of class i, ( )ip x  being the probability distribution function of gray-

level random variable x in class i, with
i and 

i  being the mean and standard deviation of the i-

th probability distribution function and K being the number of classes within the image. In addi-

tion, the constraint 
1

1
K

i
i

P
=

=  must be satisfied. 

 

The mean square error is used to estimate the 3K parameters
iP , 

i  and
i , i = 1, . . , K. For in-

stance, the mean square error between the Gaussian mixture ( )ip x  and the experimental histogram 

function ( )ih x is defined as follows: 

 

2

1 1

1
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n K

j j i

j i
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n


= =

 
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Assuming an n-point histogram as in (Gonzalez & Woods, 2008) and   being the penalty associ-

ated with the constrain 
1

1
K

i
i

P
=

= . 

 

In general, the parameter estimation that minimizes the square error produced by the Gaussian 

mixture is not a simple problem. A straightforward method is to consider the partial derivatives of 

the error function to zero by obtaining a set of simultaneous transcendental equations (Gonzalez & 

Woods, 2008). However, an analytical solution is not always available considering the non-linear 

nature of the equation which in turn yields the use of iterative approaches such as gradient-based 

or maximum likelihood estimation. Unfortunately, such methods may also get easily stuck within 

local minima or be time expensive. 
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In the case of other algorithms such as the EM algorithm and the gradient-based methods, the new 

parameter point lies within a neighbourhood distance of the previous parameter point. However, 

this is not the case for the ABC adaptation algorithm which is based on stochastic principles. New 

operating points are thus determined by a parameter probability function that may yield points ly-

ing far away from previous operating points, providing the algorithm with a higher ability to locate 

and pursue a global minimum.  

10.3. Artificial Bee Colony (ABC) algorithm 

 

The ABC algorithm assumes the existence of a set of operations that may resemble some fea-

tures of the honey bee behavior. For instance, each solution within the search space includes a pa-

rameter set representing food source locations. The “fitness value” refers to the food source quality 

that is strongly linked to the food’s location. The process mimics the bee’s search for valuable 

food sources yielding an analogous process for finding the optimal solution. 

10.3.1. Biological bee profile 

 

The minimal model for a honey bee colony consists of three classes: employed bees, onlooker bees 

and scout bees. The employed bees will be responsible for investigating the food sources and shar-

ing the information with recruit onlooker bees. They, in turn, will make a decision on choosing 

food sources by considering such information.  

 

The food source having a higher quality will have a larger chance to be selected by onlooker bees 

than those showing a lower quality. An employed bee, whose food source is rejected as low quali-

ty by employed and onlooker bees, will change to a scout bee to randomly search for new food 

sources. Therefore, the exploitation is driven by employed and onlooker bees while the exploration 

is maintained by scout bees. The implementation details of such bee-like operations in the ABC 

algorithm are described in the next sub-section. 

 

10.3.2. Description of the ABC algorithm 

 

Resembling other metaheuristic approaches, the ABC algorithm is an iterative process. It starts 

with a population of randomly generated solutions or food sources. The following three operations 

are applied until a termination criterion is met (Karaboga & Akay, 2009): 

 

1. Send the employed bees. 

2. Select the food sources by the onlooker bees. 

3. Determine the scout bees. 

 

10.3.2.1. Initializing the population 

 

The algorithm begins by initializing 
pN  food sources. Each food source is a D-dimensional vector 

containing the parameter values to be optimized, which are randomly and uniformly distributed 

between the pre-specified lower initial parameter bound low

jx  and the upper initial parameter 

bound high

jx . 

 

, rand(0,1) ( );low high low

j i j j jx x x x= +  −  

1,2, , ;    1,2, , .pj D i N= =  
(10.4) 
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with j and i being the parameter and individual indexes respectively. Hence, 
,j ix is the jth parame-

ter of the ith individual.  

 

10.3.2.2. Send employed bees 

 

The number of employed bees is equal to the number of food sources. At this stage, each em-

ployed bee generates a new food source in the neighborhood of its present position as follows: 

 

, , , , ,( ),  withj i j i j i j i j kv x x x= + −  

   1, 2, , ;  1, 2, ,pk N j D   
(10.5) 

,j ix  is a randomly chosen j parameter of the ith individual and k is one of the 
pN  food sources, sat-

isfying the condition i k . If a given parameter of the candidate solution 
iv  exceeds its predeter-

mined boundaries, that parameter should be adjusted in order to fit the appropriate range. The 

scale factor 
,j i is a random number between [ 1,1]− . Once a new solution is generated, a fitness 

value representing the profitability associated with a particular solution is calculated. The fitness 

value for a minimization problem can be assigned to each solution 
iv by the following expression: 

 

1
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1 ( )     if 0

i

ii
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J
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abs J J
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 (10.6) 

 

where 
iJ  is the objective function to be minimized. A greedy selection process is thus applied be-

tween 
iv  and 

ix . If the nectar- amount (fitness) of 
iv  is better, then the solution

ix  is replaced by 

iv ; otherwise, 
ix remains. 

 

10.3.2.3. Select the food sources by the onlooker bees 

 

Each onlooker bee (the number of onlooker bees corresponds to the food source number) selects 

one of the proposed food sources, depending on their fitness value, which has been recently de-

fined by the employed bees. The probability that a food source will be selected can be obtained 

from the following equation: 

 

1

p

i

i N

i

i

fit
Prob

fit
=

=


 

(10.7) 

 

where 
ifit is the fitness value of the food source i, which is related to the objective function value 

(
iJ ) corresponding to the food source i. The probability of a food source being selected by on-

looker bees increases with an increase in the fitness value of the food source. After the food source 

is selected, onlooker bees will go to the selected food source and select a new candidate food 

source position inside the neighborhood of the selected food source.  

 

The new candidate food source can be expressed and calculated by Eq.(10.5). In case the nectar-

amount, i.e., fitness of the new solution, is better than before, such position is held; otherwise, the 

last solution remains. 
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10.3.2.4. Determine the scout bees 

 

If a food source i (candidate solution) cannot be further improved through a predetermined trial 

number known as “limit”, the food source is assumed to be abandoned and the corresponding em-

ployed or onlooker bee becomes a scout. A scout bee explores the searching space with no previ-

ous information, i.e., the new solution is generated randomly as indicated by Eq.(10.4). In order to 

verify if a candidate solution has reached the predetermined “limit”, a counter 
iA  is assigned to 

each food source i. Such a counter is incremented consequent to a bee-operation failing to improve 

the food source’s fitness.  

10.4. Determination of Thresholding Values 

 

In order to determine optimal threshold values, it is considered that the data classes are orga-

nized such that 
1 2 K     . Therefore, threshold values are obtained by computing the 

overall probability error of two adjacent Gaussian functions, yielding: 

 

1 1 2( ) ( ) ( ),h h h i hE T P E T P E T+=  +   

1,2, , 1h K= −  
(10.8) 

 

considering 
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and 
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h
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1( )hE T is the probability of mistakenly classifying the pixels in the (h + 1)-th class belonging to the 

h-th class, while 
2 ( )hE T is the probability of erroneously classifying the pixels in the h-th class be-

longing to the (h + 1)-th class. sjP   are the a priori probabilities within the combined probability 

density function, and 
hT  is the threshold value between the h-th and the (h + 1)-th classes. One 

hT  value is chosen such as the error ( )hE T  is minimized. By differentiating ( )hE T  with respect 

to
hT  and equating the result to zero, it is possible to use the following equation to define the op-

timum threshold value
hT : 
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(10.12) 

Although the above quadratic equation has two possible solutions, only one of them is feasible, i.e. 

a positive value falling within the interval. 
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10.5. Experimental Results 

By considering that the mixture parameters are extracted from the fitness function J (Eq.(10.3)) 

after applying the ABC algorithm, three experiments are set to evaluate the performance of the 

presented algorithm. The first one considers the well-known image “The Camera-man” which is 

shown by Figure 10.1a, with its corresponding histogram shown by Figure 10.1b. The goal is to 

segment the image in three different pixel classes. According to Eq. (10.2), during learning, the 

ABC algorithm adjusts nine parameters, following the minimization procedure conducted by Eq. 

(10.3). In this experiment, a population of 20 (
pN ) bees is considered, with ten employed and ten 

onlooker bees. Each candidate holds 9 dimensions, such as:  

 

 1 1 1 2 2 2 3 3 3, , , , , , , ,N N N N N N N N N

NI P P P     =  (10.13) 

 

with N representing the individual's number. The parameters ( , ,P   ) are randomly initialized, but 

assuming some restrictions to each parameter (for example  must fall between 0 and 255).  

 

  
(a) (b) 

 

Fig. 10.1. (a) Original image “The Cameraman”, and (b) its correspondent histogram. 

 

 

  
(a) (b) 

 

Fig. 10.2. Applying the ABC algorithm for 3 classes and its results: (a) Gaussian functions for each class, 

(b) Mixed Gaussian functions (approach to the original histogram). 

 

The experiments suggest that after 200 iterations, the ABC algorithm has converged to the global 

minimum. Figure 10.2(a) shows the obtained Gaussian functions (pixel classes) plotted over the 

original histogram while Figure 10.2(b) shows the Gaussian mixture. Figure 10.3 shows the seg-

mented image whose threshold values are calculated according to Eqs. (10.11) and (10.12). 

 

The algorithm is tested with a greater number of Gaussian functions yielding the need of optimiz-

ing more parameters (according to Eq. 10.3). Thus, twelve parameters are now considered corre-

sponding to the values of four Gaussian functions. One population of 20 bees and 12 dimensions 

are used for the test. Figure 10.4(a) shows the Gaussian functions (pixel classes) plotted over the 
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histogram after 200 iterations, while in Figure 10.4(b) presents the Gaussian mixture. The seg-

mented image is depicted by Figure 10.5. 

 

 
 

Fig. 10.3. Segmented image considering only three classes. 

 

  
(a) (b) 

Fig. 10.4. Segmentation of the test image as it was obtained by the ABC algorithm considering 4 classes: 

(a) Gaussian functions for each class. (b) Mixed Gaussian functions approaching the original histogram. 

 

 
 

Fig. 10.5. Segmented image considering four classes. 

 

  
(a) (b) 

Fig. 10.6. Second experiment, (a) the original image “The scene”, and (b) its histogram. 

 

The second experiment considers the popular benchmark image known as “The scene” (see Figure 

10.6(a)). The image’s histogram is presented by Figure 10.6(b). Following the first experiment, the 

image is segmented considering four-pixel classes. The optimization is performed by the ABC al-
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gorithm which results in the classes shown by Figure 10.7(a). In turn, Figure 10.7(b) presents the 

Gaussian mixture as it results from the addition of other Gaussian functions. Figure 10.8 shows the 

image segmentation considering four classes. 

 

  
(a) (b) 

 

Fig. 10.7. Results obtained by the ABC algorithm for 4 classes: (a) Gaussian functions at each class, (b) 

Mixed Gaussian functions approaching the original histogram 

 

 
 

Fig. 10.8. Segmented image considering four classes. 

 

  
(a) (b) 

 
(c) 

Fig. 10.9. Segmentation of a blood smear image considering three classes for the ABC algorithm: (a) 

Original image, (b) Comparison between the original histogram and the Gaussian approach, (c) the segment-

ed image. 
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The final experiment considers a blood-smear image as it is processed by the ABC algorithm.  The 

image shows a set of leukocytes cells in the blood smear (darker cells on image of Figure 10.9(a)). 

The gray blobs represent the red blood cells while the background is white yielding only three 

classes to be considered. 

 

10.5.1. Comparing the ABC algorithm vs. the EM and LM methods. 

This section discusses on the comparison between ABC and other algorithms such as the EM algo-

rithm and the Levenberg-Marquardt (LM) method which are commonly employed for determining 

Gaussian mixtures. The discussion focuses on the following issues: sensitivity to the initial condi-

tions, convergence and computational costs.  

 

  
(a) (b) 

 

Figure 10.10. (a) Original image used for the comparison experiment and (b) its corresponding histogram. 

 

Parameters Initial condition 1 EM LM ABC Initial condition 2 EM LM ABC 

1  40.6 33.13 32.12 32.01 10 20.90 31.80 32.50 

2  81.2 81.02 82.05 82.30 100 82.78 80.85 82.42 

3  121.8 127.52 127 127.00 138 146.67 128 127.72 

4  162.4 167.58 166.80 166.10 200 180.72 165.90 166.50 

1  15 25.90 25.50 25.30 10 18.52 20.10 25.01 

2  15 9.78 9.70 9.80 5 12.52 9.81 10.00 

3  15 17.72 17.05 17.71 8 20.5 15.15 17.57 

4  15 17.03 17.52 17.21 22 10.09 18.00 17.22 

1P  0.25 0.0313 0.0310 0.307 0.20 0.0225 0.0312 0.317 

2P  0.25 0.2078 0.2081 0.201 0.30 0.2446 0.2079 0.255 

3P  0.25 0.2508 0.2500 0.249 0.20 0.5232 0.2502 0.260 

4P  0.25 0.5102 0.5110 0.555 0.30 0.2098 0.5108 0.511 

 

Table 10.1. Comparison between the EM, the LM and the ABC algorithm, considering two different ini-

tial conditions. 

 

a) Sensitivity to initial conditions. This experiment considers different initial values for all meth-

ods assuming the same histogram in the approximation task. After convergence, only final pa-

rameters representing the Gaussian mixture are reported. Figure 10.10(a) shows the image used in 

the comparison while Figure 10.10(b) pictures the histogram. All experiments are conducted sev-

eral times in order to assure consistency. Only two different initial states with the highest variation 
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are reported in Table 10.1. Likewise, Figure 10.11 shows the obtained segmented images consider-

ing two initial conditions as it is reported by Table 10.1. In the ABC case, the algorithm does not 

require initialization as random initial values are employed. However, in order to assure a valid 

comparison, same initial values are considered for the EM, the LM and the ABC method. 

 

By analyzing the information in Table 10.1, the sensitivity of the EM algorithm to initial condi-

tions becomes evident. Figure 10.11 shows a clear pixel misclassification in some sections of the 

image as a consequence of such sensitivity.   

 

Initial condition set number 1 

 
Initial condition set number 2 

 
EM LM ABC 

Figure 10.11. Segmented images after applying the EM, the LM and the ABC algorithm with different in-

itial conditions. 

 

b) Convergence and computational cost. The experiment aims to measure the number of required 

steps and the computing time spent by the EM, the LM and the ABC algorithm required to calcu-

late the parameters of the Gaussian mixture in benchmark images (see Figure 10.12(a-c)). All ex-

periments consider four classes.  

 

Iterations 
(a) (b) (c) 

Time elapsed 

EM 
1855 1833 1870 

2.72s 2.70s 2.73s 

LM 
985 988 958 

4.03s 4.04s 4.98s 

ABC 
409 399 512 

0.78s 0.70s 0.81s 

 

Table 10.2. Iterations and time requirements of the EM, the LM and the ABC algorithm as they are ap-

plied to segment benchmark images (see Figure 10.12). 

 

Table 10.2 shows the averaged measurements as they are obtained from 20 experiments. It is evi-

dent that the EM is the slowest to converge (iterations) and the LM shows the highest computa-

tional cost (time elapsed) because it requires complex Hessian approximations. On the other hand, 

the ABC shows an acceptable trade off between its convergence time and its computational cost. 

Finally, Figure 10.12 below shows the segmented images as they are generated by each algorithm.   
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(a) (b) (c) 

Original images 

 
EM segmented images 

 
LM segmented images 

 
ABC segmented images 

 
 

Figure 10.12. Original benchmark images (a)-(c), and segmented images obtained by the EM, the LM and 

the ABC algorithms. 

10.6. Conclusions 

 

In this chapter, an automatic image multi-threshold approach based on the Artificial Bee Colo-

ny (ABC) algorithm is presented. The segmentation process is considered to be similar to an opti-

mization problem. The algorithm approximates the 1-D histogram of a given image using a Gauss-

ian mixture model whose parameters are calculated through the ABC algorithm. Each Gaussian 

function approximating the histogram represents a pixel class and therefore one threshold point.  

 

Experimental evidence shows that the ABC algorithm has an acceptable compromise between its 

convergence time and its computational cost when it is compared to the Expectation-Maximization 

(EM) method and the Levenberg-Marquardt (LM) algorithm.  

 

Additionally, the ABC algorithm also exhibits a better performance under certain circumstances 

(initial conditions) on which it is well-reported in the literature (Park & Ozeki, 2009) that the EM 

has underperformed. Finally, the results have shown that the stochastic search accomplished by the 
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ABC method shows a consistent performance with no regard of the initial value and still showing 

a greater chance to reach the global minimum. 

 



 

Chapter 11 

Leukocyte Detection through an Evolutionary Method 

 

 

 

 

 
Classical image processing methods often face great difficulties while dealing with images con-

taining noise and distortions. Under such conditions, the use of soft computing approaches has 

been recently extended to address challenging real-world image processing problems. The auto-

matic detection of Leukocytes or White Blood Cells (WBC) still remains as an unsolved issue in 

medical imaging. The analysis of WBC images has engaged researchers from fields of medicine 

and image processing alike. Since WBC can be approximated by an ellipsoid form, an ellipse de-

tector algorithm may be successfully applied in order to recognize such elements. This chapter 

presents an algorithm for the automatic detection of leukocytes embedded into complicated and 

cluttered smear images that considers the complete process as a multi-ellipse detection problem. 

The approach, which is based on the Differential Evolution (DE) algorithm, transforms the detec-

tion task into an optimization problem whose individuals represent candidate ellipses. An objec-

tive function evaluates if such candidate ellipses are actually present in the edge map of the smear 

image. Guided by the values of such function, the set of encoded candidate ellipses (individuals) 

are evolved using the DE algorithm so that they can fit into the leukocytes which are enclosed 

within the edge map of the smear image. Experimental results from white blood cell images with a 

varying range of complexity are included to validate the efficiency of the proposed technique in 

terms of its accuracy and robustness. 

11.1. Introduction 

 

Medical image processing has become more and more important in diagnosis with the devel-

opment of medical imaging and computer technique. Huge amounts of medical images are ob-

tained by X-ray radiography, CT and MRI. They provide essential information for efficient and 

accurate diagnosis based on advance computer vision techniques (Scholl, et al., 2011; Zhuang & 

Meng, 2004). 

 

On the other hand, White Blood Cells (WBC) also known as leukocytes play a significant role in 

the diagnosis of different diseases. Although computer vision techniques have successfully con-

tributed to generate new methods for cell analysis, which in turn, have led into more accurate and 

reliable systems for disease diagnosis. However, high variability on cell shape, size, edge and lo-

calization, complicates the data extraction process. Moreover, the contrast between cell boundaries 

and the image’s background may vary due to unstable lighting condi-tions during the capturing 

process.  

 

Many works have been conducted in the area of blood cell detection. In (Wang & Chu, 2009) a 

method based on boundary support vectors is proposed to identify WBC. In such approach, the in-

tensity of each pixel is used to construct feature vectors whereas a Support Vector Machine (SVM) 

is used for classification and segmentation. By using a different approach, Wu et al., (2007) devel-

oped an iterative Otsu method based on the circular histogram for leukocyte segmentation. Ac-

cording to such technique, the smear images are processed in the Hue-Saturation-Intensity (HSI) 

space by considering that the Hue component contains most of the WBC infor-mation. One of the 

latest advances in white blood cell detection research is the algorithm proposed by Wang (Shitong 
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Wang et al., 2007b) that is based on the fuzzy cellular neural network (FCNN). Although such 

method has proved successful in detecting only one leukocyte in the image, it has not been tested 

over images containing several white cells. Moreover, its performance commonly decays when the 

iteration number is not properly defined, yielding a challenging problem itself with no clear clues 

on how to make the best choice. 

 

Since white blood cells can be approximated with an ellipsoid form, computer vision techniques 

for detecting ellipses may be used in order to recognize them. Ellipse detection in real images is an 

open research problem since long time ago. Several approaches have been proposed which tradi-

tionally fall under three categories: Symmetry-based, Hough transform-based (HT) and Random 

sampling.  

 

In symmetry-based detection (Atherton & Kerbyson, 1993; Muammar & Nixon, 1989), the ellipse 

geometry is taken into account. The most common elements used in ellipse geometry are the el-

lipse center and axis. Using these elements and edges in the image, the ellipse parameters can be 

found. Ellipse detection in digital images is commonly solved through the Hough Transform 

(Fischler & Bolles, 1981). It works by representing the geometric shape by its set of parameters, 

then accumulating bins in the quantized parameter space. Peaks in the bins provide the indication 

of where ellipses may be. Obviously, since the parameters are quantized into discrete bins, the in-

tervals of the bins directly affect the accuracy of the results and the computational effort. There-

fore, for fine quantization of the space, the algorithm returns more accurate results, while suffering 

from large memory loads and expensive computation.  In order to overcome such a problem, some 

other researchers have proposed other ellipse detectors following the Hough transform principles 

by using random sampling. In random sampling-based approaches(Shaked et al., 1996b; Xu et al., 

1990), a bin represents a candidate shape rather than a set of quantized parameters, as in the HT. 

However, like the HT, random sampling approaches go through an accumulation process for the 

bins. The bin with the highest score represents the best approximation of an actual ellipse in the 

target image.  

 

The work of Han et al., (1994a) shows that a random sampling-based approach produces im-

provements in accuracy and computational complexity, as well as a reduction in the number of 

false positives (non-existent ellipses), when compared to the original HT and the number of its im-

proved variants. 

As an alternative to traditional techniques, the problem of ellipse detection has also been handled 

through optimization methods. In general, they have demon-strated to give better results than those 

based on the HT and random sampling with respect to accuracy and robustness (Ayala-Ramirez et 

al., 2006). Such approaches have produced several robust ellipse detectors using different optimi-

zation algorithms such as Genetic Algorithms (GA) (Lutton & Martinez, 1994; Yao, et al., 2005) 

and Particle Swarm Optimization (PSO) (Cheng, et al., 2009).  

 

Although detection algorithms based on optimization approaches present several advantages in 

comparison to traditional approaches, they have been scarcely applied to WBC detection. One ex-

ception is the work presented by Karkavitsas & Rangoussi, (2005) that solves the WBC detection 

problem through the use of GA. However, since the evaluation function, which assesses the quali-

ty of each solution, considers the number of pixels contained inside of a circle with fixed radius, 

the method is prone to produce misdetections particularly for images that contained overlapped or 

irregular WBC. 

 

In this work, the WBC detection task is approached as an optimization problem and the differential 

evolution algorithm is used to build the ellipsoidal approx-imation. Differential Evolution (DE), 

introduced by Storn & Price, (1995), is a novel evolutionary algorithm, which is used to optimize 

complex continuous nonlinear functions. As a population-based algorithm, DE uses simple muta-

tion and crossover operators to generate new candidate solutions and applies one-to-one compe-
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tition scheme to greedily decide whether the new candidate or its parent will survive in the next 

generation. Due to its simplicity, ease of implementation, fast convergence, and robustness, the DE 

algorithm has gained much attention, report-ing a wide range of successful applications in the lit-

erature (Babu & Munawar, 2007; Chiou, et al., 2005; Cuevas et al., 2010; Kannan, et al., 2005; 

Mayer, et al., 2005). 

 

This chapter presents an algorithm for the automatic detection of blood cell images based on the 

DE algorithm. The proposed method uses the encoding of five edge points as candidate ellipses in 

the edge map of the smear. An objective function allows to accurately measure the resemblance of 

a candidate ellipse with an actual WBC on the image. Guided by the values of such objective func-

tion, the set of encoded candidate ellipses are evolved using the DE algorithm so that they can fit 

into actual WBC on the image. The approach generates a sub-pixel detector, which can effectively 

identify leukocytes in real images. Experimental evidence shows the effectiveness of such method 

in detecting leukocytes despite complex conditions. Comparison to the state-of-the-art WBC de-

tectors on multiple images demonstrates a better performance of the proposed method. 

 

The main contribution of this study is the proposal of a new WBC detector algorithm that effi-

ciently recognize WBC under different complex conditions while considering the whole process as 

an ellipse detection problem. Although ellipse detectors based on optimization present several in-

teresting properties, to the best of our knowledge, they have not yet been applied to any medical 

image processing up to date. 

 

This chapter is organized as follows: Section 11.2 provides a description of the DE algorithm 

while in Section 11.3 the ellipse detection task is fully explained from an optimization perspective 

within the context of the DE approach. The complete WBC detector is presented in Section 11.4. 

Section 11.5 reports the obtained experimental results whereas Section 11.6 conducts a compari-

son between state-of-the-art WBC detectors and the proposed approach. Finally, in section 11.7, 

some conclusions are drawn. 

 

11.2. Differential Evolution Algorithm 

 

The DE algorithm is a simple and direct search algorithm, which is based on population and 

aims for optimizing global multi-modal functions. DE employs the mutation operator as to provide 

the exchange of information among several solutions.  

 

There are various mutation base generators to define the algorithm type. The version of DE algo-

rithm used in this work is known as rand-to-best/1/bin or ‘‘DE1” (Storn & Price, 1995). DE algo-

rithms begin by initializing a population of 
pN  and D-dimensional vectors considering parameter 

values that are randomly distributed between the pre-specified lower initial parameter bound 

,j lowx and the upper initial parameter bound 
,highjx as follows: 

 

, , ,low ,high ,lowrand(0,1) ( );j i t j j jx x x x= +  −  

1,2, , ;    1,2, , ;    0.pj D i N t= = =
 

(11.1) 

 

The subscript t is the generation index, while j and i are the parameter and particle indexes re-

spectively. Hence, 
, ,j i tx  is the jth parameter of the ith particle in generation t.  
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In order to generate a trial solution, DE algorithm first mutates the best solution vector 
,best tx  

from the current population by adding the scaled difference of two vectors from the current popu-

lation. 

 

1 2, , , ,( );i t best t r t r tF= +  −v x x x  

 1 2, 1,2, , pr r N  
(11.2) 

 

with 
,i tv  being the mutant vector. Indices 

1r  and 
2r  are randomly selected with the condition 

that they are different and have no relation to the particle index i whatsoever (i.e., 
1 2r r i  ). The 

mutation scale factor F is a positive real number, typically less than one. Figure 11.1 illustrates the 

vector-generation process defined by Equation (11.2).  

In order to increase the diversity of the parameter vector, the crossover operation is applied be-

tween the mutant vector 
,i tv  and the original individuals

,i tx . The result is the trial vector 
,i tu  that 

is computed by considering element to element as follows: 

 

, , rand

, ,

, ,

, if rand(0,1)  or ,

, otherwise.

j i t

j i t

j i t

v CR j j
u

x

 =
= 


 (11.3) 

 

with  rand 1,2, ,j D .  The crossover parameter (0.0 1.0)CR  controls the fraction of pa-

rameters that the mutant vector is contributing to the final trial vector. In addition, the trial vector 

always inherits the mutant vector parameter according to the randomly chosen index 
randj , assur-

ing that the trial vector differs by at least one parameter from the vector to which it is compared 

(
,i tx ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.1. Two-dimensional example of an objective function showing its contour lines 

and the process for generating v in scheme DE/best/l/exp from vectors of the current generation. 

 

Finally, a greedy selection is used to find better solutions. Thus, if the computed cost function 

value of the trial vector 
,i tu  is less or equal than the cost of the vector

,i tx , then such trial vector re-

places
,i tx  in the next generation. Otherwise, 

,i tx  remains in the population for at least one more 

generation: 

 

, , ,

, 1

,

, if ( ) ( ),

, otherwise.

i t i t i t

i t

i t

f f
+


= 


u u x
x

x
 (11.4) 

1,r tx  

2,r tx  

1, 2,r t r t−x x

 

,best tx

 ,i tv

 

1, 2,( )r t r tF  −x x

 

1x

 

2x
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Here, f( ) represents the objective function. These processes are repeated until a termination cri-

terion is attained or a predetermined generation number is reached. 

11.3. Ellipse detection using DE 

 

11.3.1 Data Preprocessing 

In order to detect ellipse shapes, candidate images must be preprocessed first by an edge detec-

tion algorithm, which yields an edge map image. Then, the ( , )i ix y coordinates for each edge pixel 

ip  are stored inside the edge vector  1 2, , ,
pNP p p p= , with 

pN being the total number of edge 

pixels.  

 

11.3.2 Individual Representation 

Just as a line requires two points to completely define its characteristics, an ellipse is defined by 

five points. Therefore, each candidate solution E (ellipse candidate) considers five edge points to 

represent an individual. Under such representation, edge points are selected following a random 

positional index within the edge array P. This procedure will encode a candidate solution as the el-

lipse that passes through five points 
1p ,

2p ,
3p ,

4p and
5p  (

1 2 3 4 5{ , , , , }E p p p p p= ).Thus, by 

substituting the coordinates of each point of E into Eq. 11.5, we gather a set of five simultaneous 

equations which are linear in the five unknown parameters , , ,a b f g and h .  

 
2 22 2 2 1 0ax hxy by gx fy+ + + + + =  

(11.5) 

 

Considering the configuration of the edge points shown by Figure 11.2, the ellipse center 

0 0( , )x y , the radius maximum (
maxr ), the radius minimum (

minr ) and the ellipse orientation ( ) can 

be calculated as follows:  

 

0 ,
hf bg

x
C

−
=  

(11.6) 

0 ,
gh af

y
C

−
=  

(11.7) 

max

2
,

( )
r

C a b R

− 
=

+ −
 

(11.8) 

min

2
,

( )
r

C a b R

− 
=

+ +
 

(11.9) 

1 2
arctan

2

h

a b


 
=  

− 
 (11.10) 

where  2 2 2( ) 4R a b h= − + , 
2C ab h= −  and det

1

a h g

h b f

g f

 
 

 =  
 
 

 (11.11) 
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Fig. 11.2. Ellipse candidate (individual) built from the combination of points
1p ,

2p ,
3p ,

4p and
5p . 

 

11.3.3 Objective Function 

Optimization refers to choosing the best element from one set of available alternatives. In the 

simplest case, it means to minimize an objective function or error by systematically choosing the 

values of variables from their valid ranges. In order to calculate the error produced by a candidate 

solution E, the ellipse coordinates are calculated as a virtual shape which, in turn, must also be val-

idated, i.e. if it really exists in the edge image. The test set is represented by
1 2{ , , , }

sNS s s s= , 

where
sN are the number of points over which the existence of an edge point, corresponding to E, 

should be tested. 

 

The set S is generated by the Midpoint Ellipse Algorithm (MEA) (Bresenham & Jack, 1977), 

which is a searching method that seeks required points for drawing an ellipse. For any point (x, y) 

lying on the boundary of the ellipse with a, h, b, g and f, it does satisfy the equation 
2 2 2 2

max min max min( , )ellipsef x y r x r y r r + − , where 
maxr and 

minr represent the semi-major and semi-minor 

axis, respectively. However, MEA avoids computing square root calculations by comparing the 

pixel separation distances. A method for direct distance comparison is to test the halfway position 

between two pixels (sub-pixel distance) to determine if this midpoint is inside or outside the el-

lipse boundary. If the point is in the interior of the ellipse, the ellipse function is negative. Thus, if 

the point is outside the ellipse, the ellipse function is positive. Therefore, the error involved in lo-

cating pixel positions using the midpoint test is limited to one-half the pixel separation (sub-pixel 

precision).  To summarize, the relative position of any point (x, y) can be determined by checking 

the sign of the ellipse function: 

 

0 if ( , ) is inside the ellipse boundary  

( , ) 0 if ( , ) is on the ellipse boundary       

0 if ( , ) is outside the ellipse boundary

ellipse

x y

f x y x y

x y



=


 
(11.12) 

 
The ellipse-function test in Eq. (11.12) is applied to mid-positions between pixels nearby the el-

lipse path at each sampling step. Figure 11.3(a) and 11.4(a) show the midpoint between the two 

candidate pixels at sampling position. The ellipse is used to divide the quadrants into two regions 

the limit of the two regions is the point at which the curve has a slope of -1 as shown in Figure 

11.4. 

 

In MEA the computation time is reduced by considering the symmetry of ellipses. Ellipses sec-

tions in adjacent octants within one quadrant are symmetric with respect to the dy/dy=-1 line di-
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viding the two octants. These symmetry conditions are illustrated in Figure 11.4. The algorithm 

can be considered as the quickest providing a sub-pixel precision (Van Aken, 1984). However, in 

order to protect the MEA operation, it is important to assure that points lying outside the image 

plane must not be considered in S. 

 

 
(a) (b) 

 

Fig. 11.3. (a) symmetry of the ellipse: an estimated one octant which belong to the first region 

where the slope is greater than -1, (b) In this region the slope will be less than -1 to complete the 

octant and continue to calculate the same so the remaining octants.  

 

 
 

Fig. 11.4. Midpoint between candidate pixels at sampling position kx along an elliptical path. 

 

The objective function J(E) represents the matching error produced between the pixels S of the el-

lipse candidate E and the pixels that actually exist in the edge image, yielding: 

 

1

( , )

( ) 1

Ns

v v

v

G x y

J E
Ns

== −


 

(11.13) 

 

where ( , )i iG x y is a function that verifies the pixel existence in ( , )v vx y , with ( , )v vx y S  and 

sN  being the number of pixels lying on the perimeter corresponding to E currently under testing.  

Hence, function ( , )v vG x y is defined as: 

1 if the pixel ( , ) is an edge point
( , )

0 otherwise

v v

v v

x y
G x y


= 


 
(11.14) 
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A value of J(E) near to zero implies a better response from the “ellipsoid” operator. Figure 5 

shows the procedure to evaluate a candidate action E with its representation as a virtual shape S. 

Figure 11.5(a) shows the original edge map, while Figure 11.5(b) presents the virtual shape S rep-

resenting the individual
1 2 3 4 5{ , , , , }E p p p p p= . In Figure 11.5(c), the virtual shape S is compared 

to the original image, point by point, in order to find coincidences between virtual and edge points. 

The individual has been built from points
1p ,

2p ,
3p ,

4p  and 
5p  which are shown by Fig. 

11.5(a).  

The virtual shape S, obtained by MEA, gathers 47 points (
sN = 47) with only 25 of them existing 

in both images (shown as darker points in Fig. 11.5(c)) and yielding: 

1

( , ) 25

Ns

v v

v

G x y

=

= , there-

fore J(E)=0.255. This value indicates that the obtained virtual shape S, has a considerable number 

of coincidences with the edge map. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 11.5. Evaluation of a candidate solution E: the image in (a) shows the original edge map while (b) pre-

sents the individual 
1E p= ,

2p ,
3p ,

4p  and 
5p to be evaluated. The image (c) shows the virtual shape S 

and its corresponding pixels in bold line. The image in (d) shows coincidences between both images which 

have been marked by darker pixels while the virtual shape is also depicted through a dashed line 

11.3.4 Implementation of de DE for ellipse detection 

The ellipse detector algorithm based on DE can be summarized in the following steps: 

 

 

Step 1 Set the DE parameters F=0.25 and CR=0.8.  

Step 2 

Initialize the population of m individuals 
1 2{ , , , }k k k k

mE E E=E  where each deci-

sion variable
1p ,

2p ,
3p ,

4p and
5p  of k

aE is set randomly within the interval [1,
pN ]. 

All values must be integers. Considering that k=0 and (1,2, , )a m . 

Step 3 

Evaluate the objective value J( k

aE ) for all m individuals, and determining the 

,best kE showing the best fitness value, such that  , ,( )best k k best kE J E =E  

 1 2min ( ), ( ), , ( )k k k

mJ E J E J E . 
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Step 4 

Generate the trial population 
1 2{ , , , }mT T T=T : 

 

for (i=1; i<m+1; i++)  

do 
1r =floor(rand(0,1) m ); while (

1r i= ); 

do 
2r =floor(rand(0,1) m ); while ((

2r i= ) or (
2 2r r= )); 

jrand=floor( 5  rand(0,1)); 

 

for (j=1; j<6; j++) // generate a trial vector 

        if (rand(0,1)<=CR or j=jrand) 

        
1 2

,

, , ,( );best k k k

j i j j r j rT E F E E= +  −            

                else 
                                    

, , ;k

j i j iT E=  

                      end if 

 

              end for 

end for 

Step 5 

Evaluate the fitness values ( )iJ T  (  1,2, ,i m ) of all trial individuals. Check all 

individuals. If a candidate parameter set is not physically plausible, i.e. out of the 

range [1,
pN ], then an exaggerated cost function value is returned. This aims to elim-

inate ‘‘unstable” individuals. 

Step 6 

Select the next population 1 1 1 1

1 2{ , , , }k k k k

mE E E+ + + +=E : 

 

for (i=1; i<m+1; i++) 

      if ( ( ) ( ))k

i iJ T J E  

       1k

i iE T+ =  

                 else 

                1k k

i iE E+ =  

      end if 

end for 

 

Step 7 
If the iteration number (NI) is met, then the output 

,best kE is the solution (an actual 

ellipse contained in the image), otherwise go back to Step 3. 

 

11.4. The White Blood Cell Detector 

 

In order to detect WBC, the presented detector combines a segmentation strategy with the ellipse 

detection approach presented in section 11.3. 

11.4.1 Image Preprocessing 

To employ the proposed detector, smear images must be preprocessed to obtain two new imag-

es: the segmented image and its corresponding edge map. The segmented image is produced by us-

ing a segmentation strategy whereas the edge map is generated by a border extractor algorithm. 

Such edge map is considered by the objective function to measure the resemblance of a candidate 

ellipse with an actual WBC. 

 

The goal of the segmentation strategy is to isolate the white blood cells (WBC’s) from other struc-

tures such as red blood cells and background pixels. Information of color, brightness and gradients 
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are commonly used within a thresholding scheme to generate the labels to classify each pixel. Alt-

hough a simple histogram thresholding can be used to segment the WBC’s, at this work the Dif-

fused Expectation-Maximization (DEM) has been used to assure better results (Boccignone, et al., 

2004). 

 

DEM is an Expectation-Maximization (EM) based algorithm which has been used to segment 

complex medical images (Boccignone, et al., 2007). In contrast to classical EM algorithms, DEM 

considers the spatial correlations among pixels as a part of the minimization criteria. Such adapta-

tion allows to segment objects in spite of noisy and complex conditions. The method models an 

image as a finite mixture, where each mixture component corresponds to a region class and uses a 

maximum likelihood approach to estimate the parameters for each class, via the expectation max-

imization (EM) algorithm, which is coupled to anisotropic diffusion over classes in order to ac-

count for the spatial dependencies among pixels.  

 

 

(a) 

 

 

(b) (c) 

 

Fig. 11.6. Preprocessing process. (a) original smear image, (b) segmented image obtained by DEM and (c) 

the edge map obtained by using the morphological edge detection procedure. 

 

For the WBC’s segmentation, it has been used the implementation of DEM provided in 

(Boccignone, et al., Mathworks, 2004). Since the implementation allows to segment gray-level 

images and color images, it can be used for operating over all smear images with no regard about 

how each image has been acquired. The DEM has been configured considering three different 

classes (K=3), ( )
9 / 5

ik ikg h h
−

 =  , 0.1λ =  and  m=10 iterations. These values have been found as 

the best configuration set according to (Boccignone et al., 2004). 

 

As a final result of the DEM operation, three different thresholding points are obtained: the first 

corresponds to the WBC’s, the second to the red blood cells whereas the third represents the pixels 

classified as background. Figure 11.6(b) presents the segmentation results obtained by the DEM 

approach employed at this work considering the Figure 11.6(a) as the original image. 

 

Once the segmented image has been produced, the edge map is computed. The purpose of the edge 

map is to obtain a simple image representation that preserves object structures. The DE-based de-

tector operates directly over the edge map in order to recognize ellipsoidal shapes. Several algo-
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rithms can be used to extract the edge map; however, at this work, the morphological edge detec-

tion procedure (Gonzalez & Woods, 2008) has been used to accomplish such a task. Morphologi-

cal edge detection is a traditional method to extract borders from binary images in which original 

images (
BI ) are eroded by a simple structure element (

EI ) composed by a matrix-template of 

3x3 with all its values equal to one.  Then, the eroded image is inverted (
EI ) and compared with 

the original image (
E BI I ) in order to detect pixels which are present in both images. Such pixels 

compose the computed edge map from
BI . Figure 11.6(c) shows the edge map obtained by using 

the morphological edge detection procedure. 

 

11.4.2 Ellipse Detection Approach 

The edge map is used as input image for the ellipse detector presented in Section 11.3. Table 11.1 

presents the parameter set that has been used in this work for the DE algorithm after several cali-

bration examples have been conducted. The final configuration matches the best possible calibra-

tion proposed in (Wang & Huang, 2010), where it has been analyzed the effect of modifying the 

DE-parameters for several generic optimization problems. The population-size parameter (m=20) 

has been selected considering the best possible balance between convergence and computational 

overload. Once it has been set, such configuration has been kept for all test images employed in 

the experimental study. 

 

 

m F CR NI 

20 0.25 0.80 200 

 

Table 11.1. DE parameters used for leukocites detection in medical images. 

 

Under such assumptions, the complete process to detect WBC’s is implemented as follows: 

 

Step 1 Segment the WBC’s using the DEM algorithm (described in 11.4.1) 

Step 2 Get the edge map from the segmented image. 

Step 3 
Start the ellipse detector based in DE over the edge map while saving best ellipses 

(Section 11.3). 

Step 4 Define parameter values for each ellipse that identify the WBC’s. 

 

11.4.3. Numerical Example 

 

In order to present the algorithm’s step-by-step operation, a numerical example has been set by 

applying the proposed method to detect a single leukocyte lying inside of a simple image. Figure 

11.7(a) shows the image used in the example. After applying the threshold operation, the WBC is 

located besides few other pixels which are merely noise (see Fig. 11.7(b)). Then, the edge map is 

subsequently computed and stored pixel by pixel inside the vector P. Fig. 11.7(c) shows the result-

ing image after such procedure.  

 

The DE-based ellipse detector is executed using information of the edge map (for the sake of easi-

ness, it only considers a population of four particles). Like all evolutionary approaches, DE is a 

population-based optimizer that attacks the starting point problem by sampling the search space at 

multiple, randomly chosen, initial particles. By taking five random pixels from vector P, four dif-

ferent particles are constructed. Fig. 11.7(d) depicts the initial particle distribution 
0 0 0 0 0

1 2 3 4{ , , , }E E E E=E . By using the DE operators, four different trial particles 
1 2 3 4{ , , , }T T T T=T   
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(ellipses) are generated, their locations are shown in Fig. 11.7(e). Then, the new population 
1

E  is 

selected considering the best elements obtained among the trial elements T and the initial particles 
0

E . The final distribution of the new population is depicted in Fig. 11.7(f). Since the particles 0

2E  

and 0

2E  hold (in Fig. 11.7(f)) a better fitness value ( 0

2( )J E and 0

3( )J E ) than the trial elements 
2T  

and 3T , they are considered as  particles of the final population 
1

E . Figures 7(g) and 7(h) present 

the second iteration produced by the algorithm whereas Fig. 6(i) shows the population configura-

tion after 25 iterations. From Fig. 11.7(i), it is clear that all particles have converged to a final po-

sition, which is able to accurately cover the WBC. 

 

 

   

 

 

 

 

 

 

 

(a) (b) (c) 

   

 

 

 

 

 

 

(d) (e) (f) 

   

 

 

 

 

 

 

(g) (h) (i) 

 

Fig. 11.7.  Detection numerical example: (a) The image used as example. (b) Segmented image. (c) Edge 

map. (d) Initial particles 
0

E . (e) Trial elements T produced by the DE operators. (f) New population
1

E . (g) 

Trial elements produced considering 
1

E as input population. (h) New population
2

E . (i) Final particle con-

figuration after 25 iterations. 

  

11.5. Experimental Results 

Experimental tests have been developed in order to evaluate the performance of the WBC de-

tector. It was tested over microscope images from blood-smears holding a 960 x 720 pixel resolu-

tion. They correspond to supporting images on the leukemia diagnosis. The images show several 

complex conditions such as deformed cells and overlapping with partial occlusions. The robust-

ness of the algorithm has been tested under such demanding conditions. All the experiments has 

been developed using an Intel Core i7-2600 PC, with 8GB in RAM.   
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Figure 11.8(a) shows an example image employed in the test. It was used as input image for the 

WBC detector. Figure 11.8(b) presents the segmented WBC’s obtained by the DEM algorithm. 

Figures 11.8(c) and 11.8(d) present the edge map and the white blood cells after detection, respec-

tively. The results show that the proposed algorithm can effectively detect and mark blood cells 

despite cell occlusion, deformation or overlapping. Other parameters may also be calculated 

through the algorithm: the total area covered by white blood cells and relationships between sever-

al cell sizes.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 11.8. Resulting images of the first test after applying the WBC detector: (a) Original image, (b) image 

segmented by the DEM algorithm, (c) edge map and (d) the white detected blood cells. 

 

Other example is presented in Figure 11.9. It represents a complex example with an image show-

ing seriously deformed cells. Despite such imperfections, the proposed approach can effectively 

detect the cells as it is shown in Figure 11.9(d). 

 

  
(a) (b) 

  

(c) (d) 

Fig. 11.9. Resulting images of the second test after applying the WBC detector: (a) Original image, 

(b)image segmented by the DEM algorithm, (c) edge map and (d) the white detected blood cells. 
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11.6. Comparisons to other Methods 

A comprehensive set of smear-blood test images is used to test the performance of the proposed 

approach. We have applied the proposed DE-based detector to test images in order to compare its 

performance to other WBC detection algorithms such as the Boundary Support Vectors (BSV) ap-

proach (Wang & Chu, 2009), the Iterative Otsu (IO) method (Wu, et al., 2006), the Wang algo-

rithm (Wang Shitong et al., 2007a) and the Genetic algorithm-based (GAB) detector (Karkavitsas 

& Rangoussi, 2008). In all cases, the algorithms are tuned according to the value set which is orig-

inally proposed by their own references. 

 

11.6.1 Detection Comparison 

To evaluate the detection performance of the proposed detection method, Table 11.2 tabulates 

the comparative leukocyte detection performance of the BSV approach, the IO method, the Wang 

algorithm, the BGA detector and the proposed method, in terms of detection rates and false alarms. 

The experimental data set includes 50 images which are collected from the ASH Image Bank 

(http://imagebank.hematology.org/). Such images contain 517 leukocytes (287 bright leukocytes 

and 230 dark leukocytes according to smear conditions) which have been detected and counted by 

a human expert. Such values act as ground truth for all the experiments. For the comparison, the 

detection rate (DR) is defined as the ratio between the number of leukocytes correctly detected and 

the number leukocytes determined by the expert. The False Alarm Rate (FAR) is defined as the ra-

tio between the number of non-leukocyte objects that have been wrongly identified as leukocytes 

and the number leukocytes which have been actually determined by the expert. 

 

Experimental results show that the proposed DE method, which achieves 98.26% leukocyte detec-

tion accuracy with 2.71% false alarm rate, is compared favorably against other WBC detection al-

gorithms, such as the BSV approach, the IO method, the Wang algorithm and the BGA detector.  

 

 

Leukocyte 

Type 
Method 

Leukocytes 

detected 

 

Missing 
False 

alarms 
DR FAR 

Bright  

Leukocytes 

(287) 

BSV  130 157 84 45.30% 29.27% 

IO  227 60 73 79.09% 25.43% 

Wang  231 56 60 80.49% 20.90% 

BGA  220 67 22 76.65% 7.66% 

DE-based 281 6 11 97.91% 3.83% 

Dark  

Leukocytes 

(230) 

BSV  105 125 59 46.65% 25.65% 

IO  183 47 61 79.56% 26.52% 

Wang  196 34 47 85.22% 20.43% 

BGA  179 51 23 77.83% 10.00% 

DE-based 227 3 3 98.70% 1.30% 

Overall 

(517) 

BSV  235 282 143 45.45% 27.66% 

IO  410 107 134 79.30% 25.92% 

Wang  427 90 107 82.59% 20.70% 

BGA  399 118 45 77.18% 8.70% 

DE-based 508 9 14 98.26% 2.71% 

 

Table 11.2. Comparative leukocyte detection performance of the BSV approach, the IO method, the Wang 

algorithm, the BGA detector and the proposed DE method over the data set, which contains 30 images and 

426 leukocytes 
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11.6.2 Robustness Comparisson 

Images of blood smear are often deteriorated by noise due to various sources of interference 

and other phenomena that affect the measurement processes in imaging and data acquisition sys-

tems. Therefore, the detection results depend on the algorithm’s ability to cope with different kinds 

of noises. In order to demonstrate the robustness in the WBC detection, the proposed DE approach 

is compared to the BSV approach, the IO method, the Wang algorithm and the BGA detector un-

der noisy environments. In the test, two different experiments have been studied.  

 

The first inquest explores the performance of each algorithm when the detection task is accom-

plished over images corrupted by Salt & Pepper noise. The second experiment considers images 

polluted by Gaussian noise. Salt & Pepper and Gaussian noise are selected for the robustness anal-

ysis because they represent the most compatible noise types commonly found in images of blood 

smear (Landi & Piccolomini, 2012). The comparison considers the complete set of 50 images pre-

sented in Section 11.6.1 containing 517 leukocytes which have been detected and counted by a 

human expert.  

 

The added noise is produced by MatLab©, considering two noise levels of 5% and 10% for Salt & 

Pepper noise whereas 5= and 10=  are used for the case of Gaussian noise. Such noise lev-

els, according to (Tapiovaara & Wagner, 1993), correspond to the best trade of between detection 

difficulty and the real existence in medical imaging. If higher noise levels are used then the detec-

tion process would be unnecessarily complicated without representing a feasible image condition. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 11.10. Examples of images included in the experimental set for robustness comparison. (a)-(b) Origi-

nal images. (c) Image contaminated with 10% of Salt & Pepper noise and (d) image polluted with 10= of 

Gaussian noise. 

 

Fig. 11.10 shows two examples of the experimental set. The outcomes in terms of the detection 

rate (DR) and the false alarm rate (FAR) are reported for each noise type in Table 11.3 and Table 

11.4. The results show that the proposed DE algorithm presents the best detection performance, 

achieving in the worst case a DR of 89.55% and 91.10%, under contaminated conditions of Salt & 

Pepper and Gaussian noise, respectively. On the other hand, the DE detector possesses the least 

degradation performance presenting a FAR value of 5.99% and 6.77%. 
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Noise 

level 

Method Leukocytes 

detected 

 

Missing False  

alarms 

DR FAR 

 

5% 

Salt & Pepper 

noise 

517 Leukocytes 

 

BSV  

 

185 

 

332 

 

133 

 

34.74% 

 

26.76% 

IO 311 206 106 63.38% 24.88% 

Wang  250 176 121 58.68% 27.70% 

BGA  298 219 135 71.83% 24.18% 

DE-based 482 35 32 91.55% 7.04% 

 

10% 

Salt & Pepper 

noise 

517 Leukocytes 

BSV  105 412 157 20.31% 30.37% 

IO  276 241 110 53.38% 21.28% 

Wang  214 303 168 41.39% 32.49% 

BGA 337 180 98 65.18% 18.95% 

DE-based 463 54 31 89.55% 5.99% 

 

Table 11.3. Comparative WBC detection among methods that considers the complete data set of 30 imag-

es corrupted by different levels of Salt & Pepper noise 

 

 

Noise 

level 

Method Leukocytes 

detected 

 

Missing False  

alarms 

DR FAR 

 

5=  

Gaussian 

noise 

517 Leukocytes 

 

BSV  

 

214 

 

303 

 

98 

 

41.39% 

 

18.95% 

IO  366 151 87 70.79% 16.83% 

Wang  358 159 84 69.25% 16.25% 

GAB  407 110 76 78.72% 14.70% 

DE-based 487 30 21 94.20% 4.06% 

 

10=  

Gaussian 

noise 

517 Leukocytes 

BSV  162 355 129 31.33% 24.95% 

IO  331 186 112 64.02% 21.66% 

Wang  315 202 124 60.93% 23.98% 

GAB  363 154 113 70.21% 21.86% 

DE-based 471 46 35 91.10% 6.77% 

 

Table 11. 4. Comparative WBC detection among methods that considers the complete data set of 30 im-

ages corrupted by different levels of Gaussian noise. 

 

11.6.3 Stability Comparison 

In order to compare the stability performance of the proposed method, its results are compared 

to those reported by Wang Shitong et al., (2007a) which is considered as an accurate technique for 

the detection of WBC.  

 

The Wang algorithm is an energy-minimizing method which is guided by internal constraint ele-

ments and influenced by external image forces, producing the segmentation of WBC’s at a closed 

contour. As external forces, the Wang approach uses edge information which is usually represent-

ed by the gradient magnitude of the image. Therefore, the contour is attracted to pixels with large 

image gradients, i.e. strong edges. At each iteration, the Wang method finds a new contour config-

uration, which minimizes the energy that corresponds to external forces and constraint elements.  

 

In the comparison, the net structure and its operational parameters, corresponding to the Wang al-

gorithm, follow the configuration suggested in (Wang Shitong et al., 2007a) while the parameters 

for the DE-based algorithm are taken from Table 11.1. 
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(a) 

  
(b) (c) 

 

Fig. 11.11. Comparison of the DE and the Wang’s method for white blood cell detection in medical imag-

es. (a) Original image. (b) Detection using the Wang’s method, (c) Detection after applying the DE method.  

 

Figure 11.11 shows the performance of both methods considering a test image with only two 

white blood cells. Since the Wang method uses gradient information in order to appropriately find 

a new contour configuration, it needs to be executed iteratively in order to detect each structure 

(WBC).  Figure 11(b) shows the results after the Wang approach has been applied considering on-

ly 200 iterations. Furthermore, Figure 11(c) shows results after applying the DE-based method 

which has been proposed in this paper.  

 

 

  
(a) (b) 

 

Fig. 11.12. Result comparison for the white blood cells detection showing (a) Wang’s algorithm after 400 

cycles and (b) DE detector method considering 1000 cycles. 

 

The Wang algorithm uses the fuzzy cellular neural network (FCNN) as optimization approach. It 

employs gradient information and internal states in order to find a better contour configuration. In 

each iteration, the FCNN tries, as contour points, different new pixel positions which must be lo-

cated nearby the original contour position. Such fact might cause the contour solution to remain 

trapped into a local minimum. In order to avoid such a problem, the Wang method applies a con-

siderable number of iterations so that a near optimal contour configuration can be found. However, 

when the number of iterations increases the possibility to cover other structures increases too. 

Thus, if the image has a complex background (just as smear images do) or the WBC’s are too 

close, the method gets confused so that finding the correct contour configuration from the gradient 

magnitude is not easy. Therefore, a drawback of Wang’s method is related to its optimal iteration 

number (instability). Such number must be determined experimentally as it depends on the image 

context and its complexity. Figure 11.12(a) shows the result of applying 400 cycles of the Wang’s 
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algorithm while Figure 11.12(b) presents the detection of the same cell shapes after 1000 iterations 

using the proposed algorithm. From Fig. 11.12(a), it can be seen that the contour produced by 

Wang´s algorithm degenerates as the iteration process continues, wrongly covering other shapes 

lying nearby. 

 

In order to compare the accuracy of both methods, the estimated WBC area which has been ap-

proximated by both approaches, is compared to the actual WBC size considering different degrees 

of evolution i.e. the cycle number for each algorithm. The comparison considers only one WBC 

because it is the only detected shape in the Wang’s method. Table 11.5 shows the averaged results 

over twenty repetitions for each experiment. In order to enhance the analysis, Fig. 11.13 illustrates 

the Error-percentage vs. Iterations evolution from an extended data set which has been compiled 

from Table 11.5. 

 

Algorithm Iterations Error% 

Wang 

30 

60 

88% 

70% 

200 1% 

400 

600 

121% 

157% 

DE-based 

30 

60 

24.30% 

7.17% 

200 2.25% 

400 

600 

2.25% 

2.25% 

 

Table 11.5. Error in cell’s size estimation after applying the DE algorithm and the Wang’s method to 

detect one leukocite embedded into a blood-smear image. The error is averaged over twenty experiments. 

 

 
 

Fig. 11.13. Error percentage vs. Iterations evolution from an extended data set from Table 11.5. 

 

11.7. Conclusions 

 

In this chapter, an algorithm for the automatic detection of blood cell images based on the DE 

algorithm has been presented. The approach considers the complete process as a multiple ellipse 

detection problem. The proposed method uses the encoding of five edge points as candidate ellip-

ses in the edge map of the smear. An objective function allows to accurately measure the resem-

blance of a candidate ellipse with an actual WBC on the image. Guided by the values of such ob-

jective function, the set of encoded candidate ellipses are evolved using the DE algorithm so that 
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they can fit into actual WBC on the image. The approach generates a sub-pixel detector which can 

effectively identify leukocytes in real images. 

 

The performance of the DE-method has been compared to other existing WBC detectors (the 

Boundary Support Vectors (BSV) approach (Wang & Chu, 2009), the Iterative Otsu (IO) method 

(Wu et al., 2006), the Wang algorithm (Wang Shitong et al., 2007a) and the Genetic algorithm-

based (BGA) detector (Karkavitsas & Rangoussi, 2008) considering several images which exhibit 

different complexity levels. Experimental results demonstrate the high performance of the pro-

posed method in terms of detection accuracy, robustness and stability. 

 



 

Chapter 12 

A Multi-Level Thresholding method for Breast Thermo-

grams Analysis using Dragonfly Algorithm 

 

 

 

 

 
Breast cancer is one of the most common diseases and the second cause of death in women 

around the world. The presence of a cancerous tumor increase temperature in the region near to it, 

such heating is then transferred to the skin surface. In this sense, screening seeks to help in cancer 

diagnostic process before symptoms became evident in a person, different imaging techniques are 

employed for this purpose (Mammography, Ultrasonography, X-ray, Magnetic Resonance, etc). In 

the past decade, thermography has shown its major potential to early diagnosis of breast diseases. 

Thermographic images provide information related to vascular or physiological changes and have 

some advantages regarding other diagnostic methods; they are non-ionizing, non-invasive, passive, 

painless and real-time screening. On the other hand, thresholding has been widely used to solve 

several problems. It is regularly the first step in the process of image analysis that uses histograms 

to classify the pixels in the image. Segmentation of medical digital images has been stated as an 

important task for several medical applications. This chapter proposes a segmentation technique 

for thermographic images that consider the spatial information of the pixel contained in the image. 

This approach employs a novel optimization technique called the Dragonfly Algorithm to compute 

the best thresholds that segment the image. The experimental results exhibit a well-performance of 

the proposal in comparison to the other methods over a set of randomly selected thermograms re-

trieved from the Database for Research Mastology with Infrared Image. The presented approach 

could provide a highly reliable clinical decision support, which aims to help clinicians in perform-

ing a diagnosis using thermography images. 

 

12.1. Introduction 

 

Breast cancer is the most commonly detected cancer in females around the world. Approxi-

mately 1 in 8 women in the United States of America (Society, 2013) and 2 of 5 globally 

(Canadian Cancer Society, 2015) will develop breast cancer throughout their lifetime. Since 2013 

breast cancer was typified as the second cause of death in women (Society, 2013). The increase of 

cases in the incidence of breast cancer is perhaps due to the change in lifestyle factors, the rapid 

growth of industries and urbanization (PA, Naik Nagappa, Udupa, & Mathew, 2015). In the same 

context, several studies have shown that if breast cancer is discovered in early stages increases the 

survival rate of women (better prognosis), and therefore, it would allow providing proper treat-

ment (Gautherie, 1980; Lee & Chen, 2015; Walker & Kaczor, 2012). This fact motivates research-

ers to search novel techniques that reach an early and accurate diagnosis, thus, improving the life 

expectancy of patients. 

 

Some studies reported that the presence of a cancerous tumour increase temperature in the region 

near to it, that is caused by the Nitric Oxide produced for cancer cells (Usuki et al., 1990). Nitric 

Oxide interferes with the normal blood vessel flow and produces local vasodilatation and conse-

quently an increased blood flow (Anbar et al., 2001; Gamagami, 1996; Ignarro, et al., 1986), this 

vasodilatation process causes a higher temperature compared to the standard breast tissue tempera-

ture. It has been reported, that deep breast cancerous lesions can increase the temperature in the 

skin surface (Anbar, 1994).  
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It is known that objects irradiate infrared energy above absolute zero temperature. The Stefan 

Boltzmann Law (Boltzmann, 1884) states that the total radiation emitted by an object is directly 

proportional to the fourth power of its temperature in Kelvin. Therefore, it describes the relation 

between the energy radiated by an object and its temperature. Hence, it is possible to get the body 

temperature distribution by measuring its infrared radiation (Kermani, Samadzadehaghdam, & 

EtehadTavakol, 2015).  

 

On the other hand, screening seeks to help in cancer diagnostic process before symptoms became 

evident in a person. Therefore, it may help to reduce the time for finding a diagnose and thus dis-

cover cancer at its early stage. Over the last decades, several medical imaging techniques have 

been intensively used with the purpose of detecting early signs of breast cancer, which include 

Ultrasound, Positron Emission Tomography (PET), Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), and Mammography. Mammography screening method is the most 

used diagnostic imaging technique nowadays, despite the uncomfortable, distressing and painful 

procedure required for its capture (Kolb, et al., 2002; Sathish, et al., 2017; Tan, et al., 2007), as 

well as the several false positives or negatives in women with dense breasts, because dense breasts 

could hide a tumor underneath the tissue (4-34% of false negative ratio) (Etehadtavakol, et al., 

2013; Huynh, et al., 1998; Lee & Chen, 2015). Moreover, mammography uses X-Ray radiation, 

and this could increase the risks of future cancer since this type of radiation is noxious to human 

tissue (Huynh et al., 1998; Tan et al., 2007).  

 

Furthermore, mammography technique presents accuracy problems regarding small tumours; 

several studies show that there is approximately a 4-34% of false negative ratio with this proce-

dure (Huynh et al., 1998). In this sense, it represents a major nuisance and causes pain in patients 

(Kolb et al., 2002). 

 

Another breast screening method significantly employed is ultrasound (Kuhl et al., 2005), it has 

been used majorly in young women with the purpose of diminishing the radiation received in a 

woman’s life. Nonetheless, this method presents several performance issues, due to noise condi-

tions and expertise from the technician that captures it. These problems lead to failures of this 

technique when it tries to detect micro-calcifications and deep breast tissue (Qi & Diakides, 2003).  

 

There is another technique for breast screening which is mostly used as a complementary diagnos-

tic method, which is Magnetic Resonance Imaging (MRI). Although MRI has better capabilities 

than mammography or ultrasound, it has numerous negative issues, such as a high rate of false-

positive and a long data acquisition time (Port, Park, Borgen, Morris, & Montgomery, 2007). In 

the past decade, thermography has shown its major potential to early diagnosis of breast diseases. 

Thermography has the potential of detecting first signs of forming cancer earlier that mammogra-

phy (Etehadtavakol, et al., 2010; Keyserlingk, et al., 1998; Qi & Diakides, 2003).  

 

The temperature related to each point of breasts skin surface may be analyzed with the purpose of 

detecting pathologies. In thermal imaging, the body emissions are sensed by an infrared camera 

and display temperature distribution (Borchartt, et al., 2013; Diakides & Bronzino, 2006). Thus, 

results settle thermography as a complementary method for breast pathology detection. In some 

works (Elhoseny et al., 2018; Ng, 2009; Ng & Sud, 2001; Ng & Sudharsan, 2015), it has been 

stated that thermography could have the potential for breast cancer detection up to 10 years earlier 

than the most used method. 

 

Thermographic images provide information related to vascular or physiological changes 

(Etehadtavakol, et al., 2010), in this case of breasts. Thermal images had some advantages regard-

ing other diagnostic methods, they are non-ionizing, non-invasive, passive, painless and real-time, 

which makes it safe to repeat in case of monitoring. The capability to not use ionizing radiation 
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makes this method appropriate for pregnant or nursing women too (Etehadtavakol & NG, 2013). It 

is comfortable for patients because it does not require contact with the skin and presents ad-

vantages for young women, due to young women’s tissues are dense, and early diagnosis is diffi-

cult and risky through X-Ray screening. Some authors have indicated that Computer-aided detec-

tion systems (CADs) might help physicians in diagnosing by providing valuable information on 

pathologies or abnormalities existing in the medical images (Arakeri & Reddy, 2013; Moghbel & 

Mashohor, 2013). 

 

On the other hand, the segmentation technique has been widely used to solve several problems. It 

is regularly the first step in the process of image analysis because image segmentation is a crucial 

step in digital image processing applications to observe abnormal regions or to classify the ele-

ments in such images (Gharbia, et al., 2018; Kim & Seo, 2013; Manh & Lee, 2013). The primary 

objective of segmentation is to divide an image into different areas based on established criteria, 

such as color, texture, brightness or motion, to simplify the next analysis step (Chang & Teng, 

2007; Dhungana, 2002; Sonali, et al., 2018). Habitually, a segmentation procedure is followed by a 

visualization, detection, recognition and quantification analysis. Moreover, over the last decade, 

thresholding has been extensively employed in the automation process for medical image analysis 

(Balafar, et al., 2010; Chae, et al., 2016; Huang, et al., 2017; Mishra, et al., 2015; Wahab, et al., 

2017) as a mean to help physicians in the diagnostic procedure. Although there are many works 

for automatic and semi-automatic segmentation, the interpretation of image details and analysis is 

still a problem to solve nowadays, due to complicated structures with similar characteristics, noise 

conditions, low contrast, and unclear boundaries, which are typical circumstances in medical im-

ages (Hall et al., 1992).  

 

Segmentation of medical digital images has been stated as an important task for several medical 

applications, which includes surgical and post-surgical assessment, pathology and abnormality 

recognition, diagnostic, and treatment planning (Huang et al., 2017; Shehab et al., 2018; Zhang, et 

al., 2007). The clinical applicability of thermography screening is still limited; nevertheless, con-

sidering the needs for helping in the diagnostic procedure, it is critical improving the application of 

such technique and the automatic detection in order to increase the reliability and high acceptance 

in the clinical practice (Essa, et al., 2017; Wahab et al., 2017).  

 

In (Scales, Herry, & Frize, 2004) has been proposed a semi-automatic segmentation method for 

thermal images consistent of eight steps. However, here the authors have reported that only 4 of 21 

images presented a pleasing detection of the region of interest, as well as most of the errors, were 

caused by the inframammary fold and problems with the edge detection process. Schaefer 

(Schaefer & Nakashima, 2007), proposed a semi-automatic segmentation method for thermogra-

phy screenings, the authors here used a fuzzy rule-based system for classifying the segmented 

regions, yet they employed a beforehand step to segment manually the images by a human expert.  

 

Recently, in (Motta, et al., 2010) has been presented an automatic segmentation method for ther-

mal breast images, which combines automatic thresholding and border detection techniques. De-

spite this method presents promising results, the region of interest detected may not include some 

portions of the upper breasts. Hence, the development of an automatic technique is still open re-

search, which should hold properties like low computational cost and robustness to support the 

process of diagnosing of breast cancer using thermograms. Thus, reliable thresholding of breast 

thermograms could act as a fast indicator of being used in further clinical diagnose assessment. In 

this paper is proposed a robust automatic multi-thresholding methodology for breast thermogram 

analysis by means of a swarm algorithm. The main goal of this work is to develop a new tech-

nique, which may assist the clinicians in the diagnostical process of breast cancer.  

 

In the proposed approach, the multi-thresholding task is performed using a novelty swarm tech-

nique, named Dragonfly Algorithm (DA), which it was introduced in 2015 for Seyedali Mirjalili, 
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(2016). In the designed methodology were employed two typical segmentation techniques, the 

Otsu’s method and the Kapur’s entropy, such techniques were used as objective functions on the 

DA. Since in the related literature, the segmentation is performed over the histogram, there is no 

contextual information about the pixels. To overcome this problem, the method presented in this 

paper is based on the energy curve instead of the histogram.  

 

The energy curve possesses similar features as the histogram (Oliva, et al., 2018), and it is com-

puted using the energy function (EF) that was first introduced in (Ghosh, et al., 2007; Patra, et al., 

2014). The EF computes the energy of each intensity level considering the position and vicinity of 

each pixel. 

 

For image segmentation the typically used techniques are non-parametrical, the usage of a swarm 

algorithm to compute the multi-thresholding provides a lower computational cost and adds robust-

ness to the method. With the purpose to get an objective performance evaluation of the proposed 

approach, it was compared with two classic metaheuristic algorithms, the Particle Swarm 

Optimization (PSO) (Kennedy & Eberhart, 1995b) and the Genetic Algorithms (GA) (De Jong, 

1988), as well as with two recently proposed metaheuristics, the Krill Herd algorithm (KH) 

(Gandomi & Alavi, 2012), and the Runner-Root Algorithm (RRA) (Merrikh-Bayat, 2015). 

Furthermore, as a part of the evaluation of the quality of the segmented images are presented a 

qualitative analysis realized by a human expert, as well as a quantitative valuation conducted using 

different metrics, which correspond to the Standard Deviation (STD), the Peak-Signal-to-Noise 

Ratio (PSNR), the Structure Similarity Index (SSIM) and the Feature Similarity Index (FSIM). 

 

The remainder of this document is organized as follows. Section 12.2 presents the overall descrip-

tion of the swarm technique employed, correspondingly to the Dragonfly Algorithm. In section 

12.3 are described in detail the segmentation approaches employed for this proposal.  

 

On the other hand, in section 12.4 is explained the proposed methodology used for the multi-level 

thresholding using the Dragonfly Algorithm. Subsequently, in section 12.5 are exhibited the re-

sults obtained by applying the proposed approach and a fair comparison between the different 

methods, by describing the qualitative and quantitative evaluations. In section 12.6 is presented a 

brief discussion from the experimental results since both points of view for the valuation. Finally, 

section 12.7 draws some conclusions from this work. 

12.2. Dragonfly Algorithm 

 

The Dragonfly Algorithm (DA) was proposed in 2015 for Seyedali Mirjalili, (2016) and is 

based on the two different types of swarming behaviors of Dragonflies in nature. The DA algo-

rithm balances the phases of exploration and exploitation by imitating the natural swarm interac-

tion of dragonflies for navigating, food search and enemy avoidance. Such behavior is called dy-

namic or static swarming. The dynamic swarming refers to the moving phase, and the static 

swarming denotes the hunting phase. In the static swarming, the minimum possible number of 

Dragonflies form a small group and fly in all directions, meanwhile in the dynamic swarming, a 

significant number of Dragonflies is required to conform a big set, and afterwards they only fly in 

one direction. Correspondingly, in the DA there are two basic phases, exploration and exploitation, 

in the same way, that any other meta-heuristic algorithm.  

 

Considering this, the exploration stage of the DA corresponds to the static swarm behavior. 

Consequently, the exploitation state refers to the dynamic comportment. In the exploration state, 

Dragonflies generate a sub-set to move (fly) over diverse areas to achieve the goal of exploring the 

search space, while in the exploitation phase, Dragonflies move in bigger clusters along only one 

direction, and with this, they reach the primary objective for exploitation.  
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All swarms present a behavior following the principles given by Reynolds, (1987): 

 

Separation. This process states the static collision avoidance between individuals in the same 

neighborhood.  

Alignment. It refers to the velocity of matching between individuals in the same neighborhood. 

Cohesion. This procedure indicates the tendency of the individuals in the direction of the center 

of the neighborhood. 

 

Such principles are also recreated in the Dragonfly Algorithm. Considering that the principal goal 

of a swarm is surviving, the entire individuals of the swarm are attracted to the food sources and in 

the same way, diverted away from the enemies by using the beforehand mentioned principles.  

 

The swarm will have five different type of actions to update the position of the new individuals; 

these behaviors are mathematically modeled in the following manner: 

 

Separation: 

 

1

N

i j

j

S X x
=

= − −  (12.1) 

Where X  represents the position of the current individual, 
jX  exhibits the thj −  position 

neighboring individual and, N  corresponds to the number of neighboring individuals. 

 

Alignment: 

 

1

N

j

j

i

V

A
N

=
=


 

(12.2) 

Where 
jX  is the velocity of the thj −  neighboring individual. 

 

Cohesion: 

 

1

N

j

j

i

X

C X
N

=
= −


 

(12.3) 

Where X  represents the position of the current individual, N  corresponds to the number of 

neighborhoods and, 
jX  is the thj −  position neighboring individual. 

 

Attraction to a food source: 

 

iF X X+= −  (12.4) 

Where X  corresponds to the position of the current individual and, X +
 is the position of the food 

source. 

 

Deflection from enemies: 

 

iE X X−= +  (12.5) 
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Where X  shows the current individual position and, X −
 corresponds to the enemy’s position. 

Therefore, the behavior of the dragonflies in the swarm is supposed to be represented by the com-

bination of the beforehand mentioned actions.  

 

Once the positions of the dragonflies, enemies and food source are updated, is necessary to update 

the radius of dragonflies’ neighbors. Considering, that a dragonfly possesses one, as a minimum 

number of neighbors, the velocity vector is calculated as follows: 

 

( )1t i i i i i tX sS aA cC fF eE w X+ = + + + + +   (12.6) 

Where s  represents the separation weight, 
iS  corresponds to the separation of the individual 

thi − , a  is the alignment weight, 
iA  refers to the alignment of the individual thi −  , c  is the 

cohesion weight, 
iC  symbolizes the cohesion of the individual thi − , f  is the food factor, 

iF  

embodies the food source of the individual thi − , e  refers to the enemy factor, 
iE  corresponds to 

the position of the enemy of the individual thi − , w  states the inertia weight and, t  shows the 

iteration counter. 

 

Once the velocity vector is calculated, the position vector is estimated by: 

 

1 1t t tX X X+ += +  (12.7) 

Where t  refers to the current iteration and therefore 1t + is the next iteration. By taking into con-

sideration the parameters ,  ,  ,   and s a c f e  (separation, alignment, cohesion, food and enemy fac-

tors), it is possible to achieve diverse types of exploration and exploitation behaviors.  

12.3. Segmentation Approaches 

The problem of thresholding is solved using the histogram of the image as input; therefore, the 

information regarding the image is provided by it. Nevertheless, the frequency of occurrence of 

each pixel does not provide much information. In this sense, building a curve similar to a 

histogram that describes the energy of an image provides another way to perform thresholding by 

incorporating contextual information. In other words, this new representation is calculated based 

on the characteristics of the energy curve. Considering this, the gray values of the pixel in a given 

range represent an object on the image. (Let the gray values of the pixel in the range represent an 

object in the image.) Providing a new curve as input with smooth and transparent behavior facili-

tates the discrimination of different objects in the image as compared to the histogram. Thus, the 

energy curve becomes more useful to detect appropriate threshold values. Thresholding methods 

can be directly applied to the energy curve since it has similar features to the histogram. The fol-

lowing three subsections briefly discuss the formulation of the energy curve and two representa-

tive approaches for image thresholding. 

12.3.1. Energy Curve 

The energy of the image I at gray intensity value ( )0l l L 
is calculated by generating a two-

dimensional matrix for every intensity value as  , ,1 ,1l i jB b i m j n=      where 
, 1i jb =  if the 

intensity at the current position is greater than l the intensity value (
,i jl l ), or else 

, 1i jb = − . 
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To create the energy curve, we define a digital image I for this process as a matrix 

 ,1 ,1ijI l i m j n=      of size m n  where 
ijl denotes the gray level of the image I at the pixel 

(i,j). The maximum value of the gray intensity of the image I is denoted as L.  

 

Considering the described in (Patra et al., 2014), the contextual spatial correlation between sur-

rounding pixels is calculated; for this purpose, a neighborhood N of order d at given position (i,j) 

is used ( ) ( ) , , ,d d

ijN i u j v u v N= + +  . The value of d determines the configuration that the 

neighborhood system takes ( Ghosh et al., 2007). This paper considers the second-order neighbor-

hood system N2. The system can be defined in spatial terms 

as ( ) ( ) ( )( )( ) , 1,0 , 0, 1 1, 1 1, 1u v     −   and is shown in Figure 12.1. 

 

 

 

 

 

 

 

 

 

 

Figure. 12.1. Spatial representation of the neighborhood system N2. 

 

Let  ,1 ,1ijC c i m j n=      be a constant matrix where ( )1, ,ijc i j=  . The energy value 

lE of the image I at the gray intensity value l is computed as: 

 

2 21 1 1 1
ij ij

m n m n

l ij pq ij pq

i j i jpq N pq N

E b b c c
= = = = 

= −  +      (12.8) 

 

 

The right side of the Equation (12.8) is a constant term devoted to assuring a positive energy value 

0lE  . A quick look at Eq. 12.8 shows that for a given image I at the intensity value l will be zero 

if all the elements of the binary image 
lB  are either 1 or -1. This approach determinates the ener-

gy associated to every intensity value of the image to generate a curve considering spatial contex-

tual information of the image. 

12.3.2. Otsu´s between class variance 

The thresholding methodology uses strategies to select a threshold value to partition a histogram 

into two categories, a popular technique was proposed by Otsu (1979). On the use of images, it is 

often difficult to detect the valleys and bottoms precisely, especially in such cases where the valley 

is flat and broad with noise. In this case, the information concerning neighboring pixels in the orig-

inal picture can modify the histogram to make it more useful for thresholding. 

 

For the multi-level approach, nt thresholds are necessary to divide the original image into nt+1 

classes. Thus, the set of thresholds used for segmentation for a given image is encoded as 

 1 2
, ,...,

nt
th th th=th . In this sense, the energy value  iE of each pixel of a digital image according 

to the frequency of its occurrence generates a probability 
i iPE E NP=  where 

1
=1 

NP

ii
PE

=  and 

(i 1, j 1)− −  (i 1, j)−  (i 1, j 1)− +  

(i, j 1)−  (i, j)  (i, j 1)+  

(i 1, j 1)+ −  (i 1, j)+  (i 1, j 1)+ +  
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NP is the total number of pixels. According to the placement of every threshold value, each of the 

generated classes is used to compute the variance 2  and their means 
k  as: 

 

( )
2

2

1 1

nt nt

k k k T

k k

    
= =

= = −   (12.9) 

1 1

( )

k

k

th

i

k

i th i i

kPE

th




+ −

=

=   (12.10) 

where 

1 1k

k

th

k i

i th

PE
+ −

=

=   (12.11) 

Finally, the Otsu´s method maximizes the variance for the given set of threshold values: 

2( ) max( ( )),     0 1,     1,2,...,Otsu if th L i nt=   − =th th
 (12.12) 

12.3.3. Kapur’s entropy 

The technique of Kapur tries to segment a histogram based on the probability distribution of the 

image´s histogram using entropy as a measure (Kapur, et al., 1985). The set of thresholds at which 

the function returns a maximum value is considered as the optimal set of threshold values. Similar 

to Otsu´s method, it can be applied directly to the energy curve. Kapur´s method searches for the 

optimal set of thresholds th that maximizes the overall entropy. 

 

( )
1

max
nt

Kapur k

k

f H
=

 
=  

 
th  (12.13) 

where the entropy of each class is calculated as in Eq. 12.14. 
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+ −

=

 
=  
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The probability distribution 
iPE  and 

k  are computed using the same criteria as Otsu’s method. 

12.4. Dragonfly algorithm for thermal image thresholding 

 

This section explains the process for implement the Dragonfly Algorithm (DA) to segment 

thermal images from mammography using the energy curve. The Energy Curve defines the search 

space to consider the problem of multi-level thresholding from an optimization point of view. The 

implementation of the DA can be divided into two approaches, the first one uses the Otsu’s method 

and the second one employs the Kapur’s entropy as the objective function. 

 

In this optimization process, the thermal image (I) represents the input, and the first step is to 

compute the Energy Curve, after that the DA initialize a random population of candidate solutions 

(second step). Considering that the image has 255 intensity levels (L), the search space is then 

defined between the bounds [0, 255]. The construction of the population and the candidate 

solutions are defined in Eq. (12.15). 
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(12.15) 

 

From Eq. (12.15), 
i th X  and it is a vector that contains the set of thresholds (

jth ) that should 

segment the image, and T refers to the transpose operator. The amount of thresholds in 
ith  is 

defined by the dimensions of the problem (nt). 

12.4.1. DA Implementation 

The proposed segmentation algorithm for thermal images has been implemented considering the 

Otsu’s and Kapur’s methods as the objective function. In this sense, there is a binary selector (SM) 

that permits to change the objective function. The DA implementation can be summarized into the 

following steps: 

Step 1 Read the thermal image I and store it as the grayscale image IGr. 

Step 2 Obtain the energy curve 

Step 3 Initialize the DA control parameters and step vectors 

Step 4 Initialize a population X of N random particles with nt dimensions 

Step 5 

if SM =1 

     Evaluate X in the Otsu objective function Eq. (12.12) 

else 

     Evaluate X in the Kapur objective function Eq. (12.13) 

end if 

Step 6 Update the food source and enemy 

Step 7 Update the parameters w, s, a, c, f, and e 

Step 8 Calculate S, A, C, F, and E using Equations (12.1) to (12.5) 

Step 9 Update the neighborhood radius 

Step 10 

if a dragonfly has one or more dragonflies in its vicinity 

     Update the velocity vector using Eq. (12.6) 

     Update the position vector using Eq. (12.7) 

else 

     Update the position vector using Eq. (12.7) 

end 

Step 11 Verify if the new positions exist in the feasible search space 

Step 12 
The iteration counter is increased in 1, and if the stop criteria is satisfied then go to step 

13. Otherwise, jump to step 5 

Step 13 Select the best thresholds an apply them to the thermal image in grayscale 

 

12.4.2. Performance Evaluation 

 

From an optimization point of view, the quality of the solutions is evaluated on the objective func-

tion. However, for the problem of multi-level segmentation, it is necessary to verify the accuracy 

of the pixel’s classification.  

 

For experimental purposes in this paper are used the following metrics that evaluate the quality of 

the segmented images are the Standard Deviation (STD), the Peak-Signal-to-Noise Ratio (PSNR), 
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the Structure Similarity Index (SSIM) and the Feature Similarity Index (FSIM). The selected met-

rics are widely used in the related literature to verify different aspects that exist between the input 

and output images (Cuevas, Osuna, et al., 2017; Oliva et al., 2017).  

 

For example, the STD is used to verify the stability of the results obtained by the optimization 

(Ghamisi, et al., 2012), and it is computed as follows: 

 

( )max

1

Iter
i

i

STD
Ru

 

=

−
=    

(12.16) 

 

In the same way, the PSNR is used to verify the similarity that exist between the original and the 

segmented image. To compute the PSNR it is necessary to use the Root Mean Square Error 

(RMSE) pixel to pixel (Agrawal, et al., 2013; Akay, 2013; Horng & Liou, 2011; Oh, et al., 2004), 

the PSNR is the defined as: 
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In Eq. (12.17), Iin is the original image, Iseg is the segmented image. Meanwhile, ro and co are the 

maximum numbers of rows and columns of the image. A comparison of the structures contained in 

the segmented image is performed using the SSIM (Wang, et al., 2004), and it is defined in Eq. 

(12.18). A higher SSIM value represents a better segmentation of the original image. 
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(12.18) 

 

From Eq. (12.18) 
inI is the mean of the input (original) image and 

segI is the mean of the seg-

mented image. In the same way, for each image, the values of 
inI  and 

segI  correspond to the 

standard deviation. C1 and C2 are constants used to avoid the instability when 2 2 0
in segI I +  . 

The values of C1 and C2 are set to 0.065 considering the experiments of (Agrawal et al., 2013).  

 

In the same context, the FSIM (Zhang, et al., 2011), helps to verify the similarity between two im-

ages. In this paper, the FSIM employs the original grayscale image and the segmented image. As 

PSNR and SSIM the higher value is interpreted as better performance of the thresholding method. 

The FSIM is then defined as: 

( ) ( )

( )

L m

w

m

w

S w PC w

FSIM
PC w





=



  (12.19) 
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In Eq. (12.19) the entire domain of the image is defined by Ω, and their values are computed by 

Eq. (12.20). 
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G is the gradient magnitude (GM) of a digital image and is defined, and the value of PC that is the 

phase congruence is defined as follows: 
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 (12.21) 

 

Where ( )nA w  is the local amplitude on scale n and ( )E w  is the magnitude of the response vector 

in w on n.  is a small positive number and ( ) ( ) ( )( )1 2max ,mPC w PC w PC w= . 

12.5. Experimental Results 

 

This chapter introduces the use of the DA for thermal image segmentation. Specifically, this 

methodology is evaluated in the case of Breast Thermography. For this purpose, a set of 8 images 

retrieved from the Database for Research Mastology with Infrared Image (Silva, et al., 2014) were 

randomly selected from the entire database to visually analyze the performance of the proposed 

approach. The selected images with the corresponding histograms and the energy curves are 

presented in Fig. 12.2.  

 

The images were captured considering various protocols with a FLIR SC-620 camera; images are 

containing artificial artifacts such as labels, bars or logos were cropped to focus the segmentation 

of the body. Since some images are stored as RGB images rather than encoding the intensity of the 

thermal radiation directly, RGB images are firstly converted to gray-scale (intensity) images to 

perform the thresholding process. Considering this fact and the random selection of the images, 

some of them are presented in grayscale and others in the RGB format. 

 

The performance of the proposed methodology is compared with other metaheuristic approaches 

such as GA, PSO, KH, and RRA considering the control parameters recommended by their respec-

tive authors. Since metaheuristic algorithms involve the use of random variables, it is necessary to 

perform a statistical analysis of the results. Each experiment is composed of 35 independent runs 

of the same algorithm over a specific image, and the average and deviation are reported.  
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Image Histogram Energy Curve 
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Figure 12.2. Selected images and their corresponding histogram and energy curve 
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Since Breast Thermography images are taken on a controlled environment, it is possible to seg-

ment them using only 2, 3, 4, and 5 thresholds. Each run of every algorithm is stopped after 500 it-

erations containing 50 individuals each to provide a fair comparison. All experiments were evalu-

ated on the environment of MATLAB 8.3 on an Intel I7 700 @ 3.5 GHz with 8GB of RAM. 

12.5.1. Otsu´s results 

The proposed methodology based on the DA for the segmentation of Breast Thermography images 

is compared to other metaheuristic methodologies considering the Otsu´s method to identify the 

best possible thresholds for a given image. Table 12.1 presents the best thresholds found by each 

method. It can be noticed that many approaches find the same threshold values, especially during 

segmentation with a small number of thresholds. 

 

Image t DA GA KH PSO RRA 

test10 2 102,184 102,184 110,223 102,184 102,184 

test10 3 92,165,192 92,165,192 102,184,186 92,165,192 92,165,192 

test10 4 89,160,183,203 88,160,183,203 95,167,193,194 89,160,183,203 89,160,183,203 

test10 5 79,145,171,187,206 78,143,170,186,205 78,154,179,200,236 77,142,172,187,205 78,154,172,185,236 

test11 2 100,182 100,182 108,154 100,182 100,182 

test11 3 91,164,194 91,164,194 100,182,249 91,164,193 91,164,194 

test11 4 89,160,184,209 90,161,184,209 92,164,193,241 90,160,183,208 89,160,184,209 

test11 5 59,122,163,186,210 62,123,163,185,210 91,162,188,218,223 64,122,163,186,208 64,123,162,185,210 

test2 2 125,169 125,169 146,174 125,169 125,169 

test2 3 115,147,181 115,147,181 125,169,211 115,147,181 115,147,181 

test2 4 113,144,176,206 113,144,176,206 113,147,183,234 113,144,175,207 113,144,176,206 

test2 5 108,129,154,179,207 107,130,155,179,208 114,143,176,213,233 106,129,154,177,205 105,127,150,177,215 

test3 2 124,168 124,168 145,177 124,168 124,168 

test3 3 77,133,173 77,133,173 123,168,215 78,133,173 77,133,173 

test3 4 74,119,151,180 73,119,151,180 81,132,172,178 73,119,150,180 74,119,151,180 

test3 5 73,114,141,165,184 69,114,140,164,183 72,119,147,178,181 72,113,138,162,183 70,114,138,164,183 

test30 2 104,197 104,197 116,208 104,197 104,197 

test30 3 100,181,210 100,181,210 104,197,209 100,181,210 100,181,210 

test30 4 91,164,192,217 90,163,192,217 105,181,211,251 91,163,192,217 91,164,192,217 

test30 5 82,151,179,200,221 81,150,178,199,220 79,160,188,212,241 82,152,179,199,220 82,150,179,200,224 

test31 2 80,145 80,145 128,207 80,145 80,145 

test31 3 77,134,176 77,134,176 80,145,158 77,134,176 77,134,176 

test31 4 75,120,151,181 75,120,151,181 76,135,176,220 72,120,151,180 75,120,151,181 

test31 5 75,120,151,178,207 77,120,151,178,207 75,120,151,183,215 77,120,150,179,209  

test4 2 79,142 79,142 137,252 79,142 79,142 

test4 3 76,125,165 76,125,165 79,142,180 76,125,165 76,125,165 

test4 4 75,120,153,183 74,120,153,183 73,126,166,206 74,120,153,182 75,120,153,183 

test4 5 73,110,132,158,184 70,110,132,159,185 78,121,155,183,246 74,111,132,157,182 70,113,132,159,187 

test5 2 74,144 74,144 137,151 74,144 74,144 

test5 3 72,125,167 72,125,167 74,144,168 72,125,167 72,125,167 

test5 4 71,118,151,185 71,118,151,185 71,126,168,248 69,118,152,185 71,118,151,185 

test5 5 70,112,138,167,202 73,112,138,167,202 78,116,148,183,191 65,111,138,167,201 78,112,148,181,191 

 

Table 12.1. Thresholds obtained by DA, GA, KH, PSO, and RRA using Otsu´s method as the objective 

function. 

The objective of image thresholding is to generate high-quality images with a given number of 

thresholds. As described in the previous subsection, the PSNR is a quality metric often used to an-
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alyze the quality of a processed signal concerning the original. However, PSNR has been extended 

to analyze multi-dimensional signals, images in this case. On Table 12.2, a higher mean value of 

PSNR indicates better segmentation of the image considering the thresholds values of a given al-

gorithm. Contrary to the mean value, a smaller value of STD is desired as it reflects less variation 

between the results generated by each approach. Typically, the STD value increases together with 

the number of thresholds, as the problem becomes more complex. 

 

Image t DA GA KH PSO RRA 

test10 2 14.6687 1.26E-14 14.6687 1.26E-14 13.5481 2.20E+00 13.1867 1.46E-01 14.6687 1.26E-14 

test10 3 19.0755 1.06E-02 19.0085 1.18E-01 14.6051 3.63E-01 16.9484 4.67E-01 19.0798 1.49E-02 

test10 4 20.1734 5.59E-03 20.1220 2.57E-01 18.0927 1.54E+00 18.3513 4.80E-01 20.1523 1.42E-01 

test10 5 22.1036 2.94E-02 22.0340 1.14E-01 20.2068 1.12E+00 19.6899 4.03E-01 12.2507 0.00E+00 

test11 2 14.5316 0.00E+00 14.5316 0.00E+00 14.4225 2.09E+00 13.0335 1.23E-01 14.5316 0.00E+00 

test11 3 17.7455 3.60E-15 17.7293 8.19E-02 14.6255 4.56E-01 15.9579 2.22E-01 17.7293 3.60E-15 

test11 4 18.5435 4.40E-04 18.5104 1.77E-01 17.6970 8.76E-01 17.4437 1.27E+00 18.4966 5.32E-02 

test11 5 21.5254 5.48E-01 21.4719 3.01E-01 20.1041 1.20E+00 19.1363 8.27E-01 11.6602 1.08E-14 

test2 2 10.1335 5.41E-15 10.1335 5.41E-15 8.7132 4.62E-02 9.0780 7.81E-02 10.1335 5.41E-15 

test2 3 11.2974 7.21E-15 11.3151 1.05E-01 10.0853 1.84E-01 10.1557 3.03E-01 11.3328 6.59E-02 

test2 4 12.1731 2.75E-02 11.6385 1.69E-01 11.4805 6.32E-01 11.6444 3.70E+00 11.6429 9.26E-02 

test2 5 17.5442 4.04E+00 14.8925 4.23E+00 14.1203 3.97E+00 16.8609 4.27E+00 9.2574 1.80E-15 

test3 2 12.1067 7.21E-15 12.1114 1.92E-02 10.2866 1.42E-01 10.9184 6.83E-02 12.1067 7.21E-15 

test3 3 19.0459 1.08E-14 19.0373 1.59E-01 12.1821 2.96E-01 17.0906 5.26E-01 19.0507 1.63E-02 

test3 4 20.5130 2.55E-01 20.4970 2.74E-01 19.1492 7.62E-01 18.3894 6.19E-01 20.5177 2.27E-01 

test3 5 21.2057 4.08E-01 21.1571 5.01E-01 20.1831 1.00E+00 19.1823 7.00E-01 12.1362 7.21E-15 

test30 2 15.1364 5.41E-15 15.1364 5.41E-15 14.4597 1.65E+00 13.5849 1.05E-01 15.1364 5.41E-15 

test30 3 16.7166 0.00E+00 16.6983 9.11E-02 15.2292 5.09E-01 15.0489 2.96E-01 16.7107 2.99E-02 

test30 4 19.3592 1.08E-14 19.1880 1.95E-01 17.0289 1.32E+00 17.4175 3.94E-01 19.2058 6.48E-02 

test30 5 20.3050 5.46E-02 20.2358 1.42E-01 19.3267 6.15E-01 18.2120 1.69E-01 11.3916 5.41E-15 

test31 2 16.6405 3.60E-15 16.6405 3.60E-15 11.5916 1.50E-01 14.9381 9.79E-02 16.6405 3.60E-15 

test31 3 17.4062 3.60E-15 17.3939 1.07E-01 16.8352 2.38E-01 15.6016 3.17E-01 17.4082 1.20E-02 

test31 4 18.3440 3.94E-02 18.2651 1.65E-01 17.3622 4.83E-01 16.4892 4.43E-01 18.3221 1.07E-01 

test31 5 18.4365 2.17E-02 18.3613 1.83E-01 18.2791 5.66E-01 16.8223 4.08E-01 11.6463 3.60E-15 

test4 2 17.1131 0.00E+00 17.1155 9.95E-03 9.8767 7.05E-02 15.1451 1.33E+00 17.1131 0.00E+00 

test4 3 18.7283 3.60E-15 18.7028 1.20E-01 17.4631 3.61E-01 16.9111 4.08E-01 18.7283 3.60E-15 

test4 4 19.3847 3.60E-15 19.2365 2.26E-01 18.8003 8.73E-01 17.4880 8.35E-01 19.3554 1.21E-01 

test4 5 20.2407 2.95E-01 20.1937 2.46E-01 19.4868 1.05E+00 18.1292 7.31E-01 9.7554 0.00E+00 

test5 2 16.7890 3.60E-15 16.7890 3.60E-15 9.8326 5.70E-02 15.1808 4.03E-01 16.7890 3.60E-15 

test5 3 18.2873 7.21E-15 18.2185 1.73E-01 17.1246 2.91E-01 16.3585 5.33E-01 18.2873 7.21E-15 

test5 4 18.9319 1.21E-01 18.9077 3.56E-01 18.2989 9.84E-01 17.1750 7.89E-01 18.8769 2.58E-01 

test5 5 19.5870 3.11E-02 19.4124 5.47E-01 19.3108 1.22E+00 17.6162 1.05E+00 11.0702 0.00E+00 

 

Table 12.2. Mean and STD values of the PSNR metric using Otsu by the DA, GA, KH, PSO, and RRA. 
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The Feature Similarity Index (FSIM) is evaluated for all approaches and reported in Table 12.3. 

This metric is evaluated to determinate how well the features of an image are preserved after its 

processing. The features can play an important role in classification systems for Breast Thermo-

graphic images. The DA provides better results than its counterparts regarding FSIM on most test 

scenarios. 

 

Image t DA GA KH PSO RRA 

test10 2 0.7394 5.63E-16 0.7394 5.63E-16 0.7842 1.77E-02 0.6653 6.60E-04 0.7394 5.63E-16 

test10 3 0.7832 3.64E-06 0.7820 2.09E-03 0.7448 6.01E-03 0.7009 5.76E-03 0.7833 3.61E-04 

test10 4 0.8155 9.65E-05 0.8145 8.68E-04 0.7774 1.38E-02 0.7318 2.87E-03 0.8155 2.36E-04 

test10 5 0.8425 2.44E-04 0.8420 1.70E-03 0.8129 7.38E-03 0.7531 6.31E-03 0.8196 3.38E-16 

test11 2 0.7906 4.51E-16 0.7906 4.51E-16 0.8138 9.73E-03 0.7115 1.61E-03 0.7906 4.51E-16 

test11 3 0.8167 4.51E-16 0.8165 2.69E-04 0.7912 4.13E-03 0.7345 1.98E-03 0.8165 4.51E-16 

test11 4 0.8248 3.82E-05 0.8238 8.49E-04 0.8133 6.25E-03 0.7450 7.70E-03 0.8248 2.74E-04 

test11 5 0.8541 7.30E-03 0.8521 1.23E-03 0.8314 1.01E-02 0.7625 6.67E-03 0.8188 0.00E+00 

test2 2 0.6897 1.13E-16 0.6897 1.13E-16 0.6539 7.50E-03 0.6205 1.06E-03 0.6897 1.13E-16 

test2 3 0.7287 5.63E-16 0.7284 5.00E-04 0.6950 7.86E-03 0.6556 1.78E-03 0.7285 3.19E-04 

test2 4 0.7395 5.50E-05 0.7394 6.23E-04 0.7263 6.78E-03 0.6795 2.90E-02 0.7395 1.83E-04 

test2 5 0.8030 2.86E-02 0.7850 3.00E-02 0.7586 3.48E-02 0.7273 3.32E-02 0.6546 3.38E-16 

test3 2 0.7235 5.63E-16 0.7234 1.52E-04 0.7076 6.63E-03 0.6509 1.32E-03 0.7235 5.63E-16 

test3 3 0.7715 4.51E-16 0.7716 1.11E-03 0.7244 8.78E-03 0.6944 4.77E-03 0.7718 1.10E-03 

test3 4 0.8232 9.00E-03 0.8243 2.28E-03 0.7764 1.00E-02 0.7397 6.05E-03 0.8245 2.95E-03 

test3 5 0.8449 1.09E-02 0.8456 1.06E-02 0.8171 1.15E-02 0.7633 1.18E-02 0.8364 2.25E-16 

test30 2 0.8386 2.25E-16 0.8386 2.25E-16 0.8358 3.22E-03 0.7547 2.16E-04 0.8386 2.25E-16 

test30 3 0.8386 3.38E-16 0.8385 2.07E-04 0.8398 1.69E-03 0.7548 7.96E-04 0.8385 9.16E-05 

test30 4 0.8543 4.51E-16 0.8531 1.78E-03 0.8436 5.51E-03 0.7713 5.17E-03 0.8532 2.26E-04 

test30 5 0.8703 8.71E-04 0.8693 2.56E-03 0.8587 6.56E-03 0.7826 2.51E-03 0.7437 1.13E-16 

test31 2 0.7773 5.63E-16 0.7773 5.63E-16 0.7506 8.09E-03 0.6995 2.34E-04 0.7773 5.63E-16 

test31 3 0.7910 3.38E-16 0.7907 4.76E-04 0.7815 3.92E-03 0.7119 1.41E-03 0.7907 5.31E-05 

test31 4 0.8324 4.45E-04 0.8312 2.18E-03 0.7939 4.03E-03 0.7476 5.64E-03 0.8320 1.90E-03 

test31 5 0.8390 2.39E-04 0.8373 2.21E-03 0.8254 1.21E-02 0.7592 1.25E-02 0.7610 3.38E-16 

test4 2 0.7136 3.38E-16 0.7135 3.52E-04 0.6772 1.19E-02 0.6414 3.17E-03 0.7136 3.38E-16 

test4 3 0.7791 3.38E-16 0.7783 1.55E-03 0.7246 1.01E-02 0.7018 3.91E-03 0.7783 3.38E-16 

test4 4 0.8161 5.63E-16 0.8150 1.89E-03 0.7876 8.63E-03 0.7314 7.55E-03 0.8158 1.86E-03 

test4 5 0.8521 1.29E-02 0.8489 9.13E-03 0.8121 1.31E-02 0.7599 1.72E-02 0.6825 3.38E-16 

test5 2 0.7352 5.63E-16 0.7352 5.63E-16 0.6912 7.95E-03 0.6621 1.26E-03 0.7352 5.63E-16 

test5 3 0.7838 3.38E-16 0.7837 1.19E-03 0.7444 6.64E-03 0.7047 3.93E-03 0.7838 3.38E-16 

test5 4 0.8165 2.77E-03 0.8157 2.55E-03 0.7878 7.86E-03 0.7342 5.53E-03 0.8161 2.18E-03 

test5 5 0.8392 3.64E-04 0.8373 5.92E-03 0.8166 9.47E-03 0.7517 1.14E-02 0.7727 4.51E-16 

 

Table 12.3. Mean and STD value of FSIM metric using Otsu by the DA, GA, KH, PSO, and RRA. 
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In Table 12.4, the results of the SSIM metric are presented. In the context of Breast thermographic 

images, a high structural similarity index indicates that the visible structures of the original image 

are likely to be passed on to the segmented image. This index is the most important for this paper 

since the objective of this contribution is to enhance the images visually for a better diagnosis. 

Similarly, to the previous indices, DA performs better than the other approaches. 

 

Image t DA GA KH PSO RRA 

test10 2 0.6625 3.38E-16 0.6625 3.38E-16 0.7210 3.39E-02 0.6621 3.33E-03 0.6625 3.38E-16 

test10 3 0.7502 1.18E-04 0.7482 3.22E-03 0.6597 8.39E-03 0.7430 1.10E-02 0.7503 4.82E-04 

test10 4 0.7776 1.13E-04 0.7756 2.33E-03 0.7274 3.30E-02 0.7776 5.01E-03 0.7756 1.56E-03 

test10 5 0.8057 5.38E-04 0.8041 2.78E-03 0.7732 1.75E-02 0.8022 5.43E-03 0.7207 2.25E-16 

test11 2 0.6845 5.63E-16 0.6845 5.63E-16 0.7302 2.59E-02 0.6838 3.42E-03 0.6845 5.63E-16 

test11 3 0.7450 5.63E-16 0.7448 1.00E-03 0.6832 6.66E-03 0.7442 3.59E-03 0.7448 5.63E-16 

test11 4 0.7664 1.95E-05 0.7553 1.65E-03 0.7405 1.43E-02 0.7553 1.74E-02 0.7551 7.33E-04 

test11 5 0.7984 8.34E-03 0.7969 2.53E-03 0.7757 1.77E-02 0.7936 8.54E-03 0.6888 2.25E-16 

test2 2 0.3558 5.63E-17 0.3558 5.63E-17 0.2443 3.56E-03 0.3524 5.79E-03 0.3558 5.63E-17 

test2 3 0.4482 1.69E-16 0.4495 7.26E-03 0.3521 1.45E-02 0.4477 2.07E-02 0.4507 4.67E-03 

test2 4 0.5628 1.93E-03 0.4749 1.19E-02 0.4592 4.31E-02 0.4753 1.61E-01 0.4752 6.36E-03 

test2 5 0.7950 1.70E-01 0.7539 1.78E-01 0.5931 1.87E-01 0.6375 1.64E-01 0.2969 1.13E-16 

test3 2 0.5400 2.25E-16 0.5391 8.84E-04 0.4493 6.34E-03 0.5389 4.18E-03 0.5389 2.25E-16 

test3 3 0.8276 0.00E+00 0.8274 2.65E-03 0.5399 1.66E-02 0.8263 9.32E-03 0.8277 5.23E-04 

test3 4 0.8565 5.04E-03 0.8566 4.67E-03 0.8279 1.41E-02 0.8543 1.07E-02 0.8570 4.22E-03 

test3 5 0.8696 5.77E-03 0.8675 7.52E-03 0.8476 1.66E-02 0.8672 1.19E-02 0.5797 1.13E-16 

test30 2 0.5842 0.00E+00 0.5842 0.00E+00 0.5879 1.91E-02 0.5835 1.55E-03 0.5842 0.00E+00 

test30 3 0.5894 3.38E-16 0.5887 8.53E-04 0.5813 8.29E-03 0.5889 3.20E-03 0.5888 3.56E-04 

test30 4 0.6245 1.13E-16 0.6220 2.36E-03 0.5936 1.54E-02 0.6206 6.88E-03 0.6207 3.20E-04 

test30 5 0.6376 1.12E-03 0.6362 3.41E-03 0.6242 9.82E-03 0.6371 3.59E-03 0.3739 2.82E-16 

test31 2 0.6520 3.38E-16 0.6520 3.38E-16 0.3776 4.31E-03 0.6513 2.30E-03 0.6520 3.38E-16 

test31 3 0.6631 4.51E-16 0.6631 2.36E-03 0.6529 3.97E-03 0.6614 6.89E-03 0.6632 2.73E-04 

test31 4 0.6849 1.05E-03 0.6827 4.48E-03 0.6603 1.07E-02 0.6838 1.15E-02 0.6842 3.08E-03 

test31 5 0.6931 5.60E-04 0.6851 4.78E-03 0.6799 1.57E-02 0.6871 1.14E-02 0.5150 2.25E-16 

test4 2 0.7591 2.25E-16 0.7591 1.44E-04 0.3161 4.65E-03 0.7407 7.69E-02 0.7591 2.25E-16 

test4 3 0.8001 3.38E-16 0.7986 2.58E-03 0.7648 5.33E-03 0.7988 8.57E-03 0.7988 3.38E-16 

test4 4 0.8164 3.38E-16 0.8133 4.56E-03 0.7993 1.67E-02 0.8152 1.62E-02 0.8159 2.27E-03 

test4 5 0.8322 5.76E-03 0.8322 5.88E-03 0.8132 2.11E-02 0.8303 1.67E-02 0.2608 5.63E-17 

test5 2 0.7334 3.38E-16 0.7321 3.38E-16 0.2639 3.02E-03 0.7321 8.16E-03 0.7321 3.38E-16 

test5 3 0.7597 3.38E-16 0.7583 3.74E-03 0.7354 5.07E-03 0.7565 1.17E-02 0.7597 3.38E-16 

test5 4 0.7756 1.11E-03 0.7727 7.66E-03 0.7568 2.14E-02 0.7732 1.60E-02 0.7717 6.23E-03 

test5 5 0.7834 8.01E-04 0.7785 1.31E-02 0.7784 2.54E-02 0.7820 2.45E-02 0.5626 1.13E-16 

 

Table 12.4. Mean and STD value of the SSIM metric using Otsu by the DA, GA, KH, PSO, and RRA 

 

To perform a qualitative analysis, Table 12.5 collect segmented images from each method to visu-

ally compare them. Regarding the evaluation made for a human expert from the results displayed 

in Table 12.5, it is possible to mention that the overall performance of the DA algorithm for 
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thresholding is more accurate to extract the regions where possible cancer lessons or an increased 

blow flow under the skin have been presented on the breast thermograms.  
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Table 12.5. Segmented images using Otsu by the DA, GA, KH, PSO, and RRA 

 

Taking as an example the image “test10” in Table 12.5, the areas depicted in red, are better de-

fined than in the results obtained for the other fours methods, such areas in the surface of the 
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breasts and the armpits frame the regions where the existence of cancer cells are likely to appear, 

or where the likelihood of appearance is higher. In the case of the image “test5”, it is possible to 

identify more accurately the risk areas, where the breast lymphatic nodes are located, the same in 

which the vasodilation changes may have occurred. 

Considering the visual thresholding results obtained for the Otsu’s Method by the Dragonfly Algo-

rithm for five classes, in general terms, it can be said that this pixel classification may help the cli-

nicians to evaluate easily the growing of a malignant lesson as well as the local vasodilation 

changes produced under the skin surface. 

12.5.2. Kapur results 

This subsection is devoted to analyzing the performance of the presented thresholding approach 

based on the DA applied to Breast Thermographic images using Kapur as the objective function.  

 

Image t DA GA KH PSO RRA 

test10 2 45,118 45,118 46,118 45,118 45,118 

test10 3 45,115,152 45,115,152 44,116,151 46,114,152 45,115,152 

test10 4 45,115,152,205 46,115,152,205 44,112,152,208 47,114,151,205 45,115,152,205 

test10 5 43,79,116,152,205 43,79,116,152,205 48,81,116,146,198 46,79,115,148,203 43,79,116,152,205 

test11 2 134,210 134,210 134,206 134,210 134,210 

test11 3 52,127,206 52,127,206 59,125,210 51,127,206 52,127,206 

test11 4 37,82,128,206 37,82,128,206 38,84,126,212 37,83,127,206 37,82,128,206 

test11 5 37,82,127,166,212 37,80,127,166,211 38,80,121,164,204 39,81,125,164,210 37,82,127,166,212 

test2 2 95,196 95,196 94,195 95,196 95,196 

test2 3 95,144,196 95,144,196 95,152,195 95,149,196 95,144,196 

test2 4 53,95,144,196 53,95,144,196 47,94,154,196 52,95,135,197 53,95,144,196 

test2 5 53,95,144,196,239 54,92,143,196,239 43,94,126,156,197 53,91,129,160,199 53,95,144,196,239 

test3 2 95,197 95,197 96,196 94,197 95,197 

test3 3 95,154,196 95,153,197 93,148,199 95,153,196 95,154,197 

test3 4 61,95,154,196 60,95,150,197 54,93,156,196 46,96,155,196 61,95,154,197 

test3 5 52,95,153,196,241 44,96,129,158,197 39,94,130,156,196 60,92,125,159,200 61,95,126,158,197 

test30 2 42,133 42,133 43,132 42,133 42,133 

test30 3 42,133,197 42,133,197 42,131,202 42,133,198 42,133,197 

test30 4 42,89,136,198 42,89,136,197 44,92,135,191 40,89,136,201 42,89,136,198 

test30 5 40,85,128,156,202 41,85,128,156,202 44,89,118,153,199 40,80,124,156,208 40,85,128,156,202 

test31 2 134,195 134,195 131,195 134,195 134,195 

test31 3 59,95,195 59,95,195 30,136,195 30,141,195 59,95,195 

test31 4 59,95,147,195 59,95,147,195 57,95,154,202 61,92,146,195 59,95,147,195 

test31 5 29,59,95,147,195 29,59,95,147,195 57,93,133,155,195 32,62,93,139,195 29,59,95,147,195 

test4 2 96,196 96,196 96,196 96,196 96,196 

test4 3 95,148,196 95,148,196 95,143,199 95,147,196 95,148,196 

test4 4 61,95,148,196 61,95,148,196 64,95,137,196 60,93,150,195 61,95,148,196 

test4 5 31,61,95,148,196 30,61,95,148,196 27,63,94,161,201 64,95,131,158,199 31,61,95,148,196 

test5 2 95,196 95,196 95,195 95,196 95,196 

test5 3 58,94,196 58,94,196 61,91,196 57,94,198 58,94,196 

test5 4 58,94,146,196 58,94,146,196 59,94,136,197 57,94,137,197 58,94,146,196 

test5 5 58,94,146,196,240 58,94,125,159,196 62,93,118,159,203 56,90,128,159,195 58,94,146,196,240 

 

Table 12.6. Thresholds obtained by DA, GA, KH, PSO, and RRA using Kapur´s method as the objective 

function. 

Table 12.6 presents the threshold values found by each algorithm which are later used to segment 

every image on the qualitative analysis. Following the same scheme as the Otsu´s subsection, the 
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quality of the thresholded images using Kapur is evaluated and compared using PSNR, FSIM, and 

SSIM. 

In Table 12.7, it can be noticed that the PSNR values reported on the DA column are better than 

the compared approaches. However, in this metric, it is easy to see that the RRA can provide com-

petitive results, especially on the image ‘test3’. 

 

Image t DA GA KH PSO RRA 

test10 2 12.1997 3.60E-15 11.9557 3.60E-15 12.1899 8.98E-03 12.1997 3.60E-15 12.1997 3.60E-15 

test10 3 16.8120 4.40E-02 16.4829 5.21E-04 16.7844 2.43E-02 16.7907 6.39E-02 16.8177 8.02E-03 

test10 4 21.5439 5.62E-02 21.1196 2.75E-03 21.4279 6.60E-02 21.4767 1.03E-01 21.5427 2.22E-02 

test10 5 25.9079 2.11E-03 25.3770 8.38E-03 25.5773 1.64E-01 25.7302 1.94E-01 25.8765 4.61E-02 

test11 2 12.6028 9.01E-15 12.3507 9.01E-15 12.5760 2.09E-02 12.6028 9.01E-15 12.6025 1.83E-03 

test11 3 17.4219 9.63E-03 17.0822 7.47E-03 17.3664 3.83E-02 17.4153 8.88E-03 17.4305 7.42E-03 

test11 4 22.2531 1.33E-04 21.8072 1.10E-03 21.9598 1.05E-01 22.2189 7.91E-02 22.2328 4.93E-02 

test11 5 26.6271 7.94E-02 26.5998 7.75E-03 26.2514 1.42E-01 26.4399 1.90E-01 26.1173 5.20E-02 

test2 2 12.2890 3.60E-15 12.0432 3.60E-15 12.2763 2.21E-02 12.2886 2.51E-03 12.2890 3.60E-15 

test2 3 17.3017 3.60E-15 16.9553 1.49E-03 17.0053 1.69E-01 17.0755 1.75E-01 17.1754 1.88E-01 

test2 4 21.5762 1.07E-01 21.1592 1.10E-02 21.2460 1.91E-01 21.3550 2.07E-01 21.5753 4.52E-02 

test2 5 25.7208 2.04E-01 25.3353 1.46E-02 25.2232 2.25E-01 25.2730 3.17E-01 25.7420 1.50E-01 

test3 2 12.4890 6.82E-02 12.2997 9.01E-15 12.5275 2.50E-02 12.4758 6.40E-02 12.5475 1.91E-02 

test3 3 17.3660 1.37E-02 17.0455 2.28E-02 17.1161 1.81E-01 17.0840 2.36E-01 17.3253 1.71E-01 

test3 4 21.6751 4.22E-02 21.2736 4.08E-02 21.4249 1.42E-01 21.4423 2.42E-01 21.6875 8.33E-02 

test3 5 25.8392 1.72E-01 25.4318 2.33E-02 25.4305 2.07E-01 25.3746 4.71E-01 25.8996 1.44E-01 

test30 2 12.1609 5.41E-15 11.9177 5.41E-15 12.1099 3.79E-02 12.1609 5.41E-15 12.1609 5.41E-15 

test30 3 17.2918 7.21E-15 16.9456 1.24E-03 17.1989 5.41E-02 17.2836 9.35E-03 17.2918 7.21E-15 

test30 4 21.8704 1.13E-02 21.4355 2.77E-03 21.6944 7.89E-02 21.8262 4.66E-02 21.8726 8.14E-03 

test30 5 26.3595 1.69E-02 25.8309 4.87E-03 25.9781 1.25E-01 26.1931 1.49E-01 26.3433 3.13E-02 

test31 2 11.9671 5.41E-15 11.7278 5.41E-15 11.9138 7.35E-02 11.9588 3.87E-02 11.9456 6.44E-02 

test31 3 16.7005 3.60E-15 16.3665 7.50E-05 16.5544 8.71E-02 16.6849 2.10E-02 16.6898 6.04E-02 

test31 4 20.8479 6.43E-02 20.6158 8.92E-02 20.6704 1.03E-01 20.7150 1.12E-01 20.9162 1.02E-01 

test31 5 25.2580 2.84E-01 24.9256 1.75E-02 24.6141 2.46E-01 24.6269 4.07E-01 25.3255 1.85E-01 

test4 2 12.2886 5.41E-15 12.0428 5.41E-15 12.2798 1.34E-02 12.2882 1.34E-03 12.2886 5.41E-15 

test4 3 17.4473 7.21E-15 17.0983 6.56E-04 17.2359 1.39E-01 17.3281 1.55E-01 17.3852 1.43E-01 

test4 4 21.8937 4.15E-02 21.4643 4.51E-03 21.5335 1.53E-01 21.7453 1.50E-01 21.8770 6.11E-02 

test4 5 26.0947 1.84E-01 25.6502 1.53E-02 25.5232 1.89E-01 25.7132 2.30E-01 26.0601 1.59E-01 

test5 2 11.7387 1.06E-02 11.5091 5.41E-15 11.7282 1.88E-02 11.7379 1.12E-02 11.7365 1.20E-02 

test5 3 16.7691 4.62E-02 16.4413 2.58E-04 16.5718 1.13E-01 16.6841 9.84E-02 16.6777 1.10E-01 

test5 4 21.3107 1.00E-01 21.0129 5.81E-02 21.0801 1.02E-01 21.1130 1.45E-01 21.3197 1.01E-01 

test5 5 25.9242 1.17E-01 25.4156 1.50E-02 25.3057 2.14E-01 25.3478 4.20E-01 25.8004 2.31E-01 

 

Table 12.7. Mean and STD values of the PSNR metric using Kapur by the DA, GA, KH, PSO, and RRA. 
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Regarding the Feature Similarity Index Metric (FSIM), the Dragonfly Algorithm can find better 

threshold values that generate output results with better features; this behavior can be seen in Ta-

ble 12.8. This table also indicates that many approaches can perform well with a small number of 

thresholds. This phenomenon suggests that as the number of thresholds increases the complexity 

of the search space also is significantly incremented.   

 

Image t DA GA KH PSO RRA 

test10 2 0.7678 3.38E-16 0.7678 3.38E-16 0.7536 2.33E-03 0.7678 3.38E-16 0.7678 3.38E-16 

test10 3 0.8068 8.04E-03 0.8054 1.75E-04 0.7913 2.14E-03 0.8060 7.76E-03 0.8067 3.38E-16 

test10 4 0.8127 5.95E-03 0.8111 5.90E-04 0.7973 2.94E-03 0.8114 9.00E-03 0.8124 8.22E-04 

test10 5 0.8063 1.77E-04 0.8042 1.07E-03 0.7911 8.22E-03 0.8045 5.91E-03 0.8040 1.56E-03 

test11 2 0.8059 2.25E-16 0.8059 2.25E-16 0.7889 2.02E-03 0.8059 2.25E-16 0.8059 2.25E-16 

test11 3 0.8348 2.07E-02 0.8069 1.63E-02 0.8185 1.42E-02 0.8264 1.67E-02 0.8067 1.64E-02 

test11 4 0.8359 3.07E-04 0.8353 6.54E-04 0.8131 7.54E-03 0.8354 3.73E-03 0.8343 2.61E-03 

test11 5 0.8436 4.39E-03 0.8402 8.11E-04 0.8193 7.52E-03 0.8408 5.27E-03 0.8421 2.68E-03 

test2 2 0.6353 0.00E+00 0.6346 0.00E+00 0.6305 1.23E-02 0.6346 4.39E-03 0.6346 0.00E+00 

test2 3 0.6679 2.25E-16 0.6459 1.68E-03 0.6615 1.76E-02 0.6464 2.40E-02 0.6599 1.91E-02 

test2 4 0.7058 1.95E-02 0.7115 1.61E-02 0.6874 2.07E-02 0.7054 2.54E-02 0.7093 1.88E-02 

test2 5 0.7424 2.91E-02 0.7293 3.52E-03 0.7190 2.31E-02 0.7380 2.85E-02 0.7328 1.82E-02 

test3 2 0.6996 3.38E-16 0.6996 3.38E-16 0.6822 3.83E-03 0.6982 2.67E-03 0.6993 2.15E-03 

test3 3 0.7182 1.33E-03 0.7107 2.15E-03 0.6945 1.13E-02 0.7117 2.07E-02 0.7164 1.45E-02 

test3 4 0.7546 1.81E-02 0.7455 1.65E-02 0.7170 2.51E-02 0.7442 2.28E-02 0.7525 1.69E-02 

test3 5 0.7777 1.84E-02 0.7679 7.33E-03 0.7428 2.13E-02 0.7736 2.18E-02 0.7705 1.36E-02 

test30 2 0.8104 0.00E+00 0.8104 0.00E+00 0.7941 3.02E-03 0.8104 0.00E+00 0.8104 0.00E+00 

test30 3 0.8425 7.89E-16 0.8424 3.61E-04 0.8267 3.71E-03 0.8422 1.11E-03 0.8425 7.89E-16 

test30 4 0.8494 1.78E-03 0.8483 7.03E-04 0.8365 5.81E-03 0.8513 4.44E-03 0.8489 1.25E-03 

test30 5 0.8686 7.61E-04 0.8674 9.30E-04 0.8449 5.89E-03 0.8622 5.18E-03 0.8680 1.33E-03 

test31 2 0.7184 1.13E-16 0.7184 1.13E-16 0.7040 7.64E-03 0.7189 3.75E-03 0.7203 6.17E-03 

test31 3 0.7517 5.63E-16 0.7517 7.18E-05 0.7325 5.69E-03 0.7511 2.23E-03 0.7517 3.46E-04 

test31 4 0.7658 2.25E-03 0.7590 1.83E-03 0.7446 1.04E-02 0.7584 1.51E-02 0.7610 4.93E-03 

test31 5 0.7911 1.27E-02 0.7873 3.00E-03 0.7644 1.96E-02 0.7818 1.65E-02 0.7908 5.77E-03 

test4 2 0.6184 0.00E+00 0.6157 0.00E+00 0.6198 1.79E-02 0.6157 9.01E-03 0.6157 0.00E+00 

test4 3 0.6686 0.00E+00 0.6263 3.90E-04 0.6551 1.47E-02 0.6264 2.03E-02 0.6419 2.68E-02 

test4 4 0.7250 1.56E-02 0.7275 4.98E-03 0.6946 2.66E-02 0.7192 2.57E-02 0.7285 1.27E-02 

test4 5 0.7482 2.14E-02 0.7354 1.84E-03 0.7277 3.22E-02 0.7399 3.82E-02 0.7379 2.30E-02 

test5 2 0.6604 6.02E-03 0.6574 3.38E-16 0.6500 8.74E-03 0.6608 6.31E-03 0.6617 6.80E-03 

test5 3 0.6837 6.14E-03 0.6825 7.80E-04 0.6885 1.88E-02 0.6939 2.23E-02 0.6987 1.45E-02 

test5 4 0.7325 1.69E-02 0.7076 9.05E-03 0.7068 1.98E-02 0.7322 2.34E-02 0.7260 1.89E-02 

test5 5 0.7685 3.24E-03 0.7628 3.85E-03 0.7469 1.76E-02 0.7606 2.97E-02 0.7666 1.14E-02 

 

Table 12.8. Mean and STD value of FSIM metric using Kapur by the DA, GA, KH, PSO, and RRA. 
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Table 12.9 presents the results of the Structural Similarity Index Measure. DA also continues out-

performing on most of the images, followed by RRA and PSO. As SSIM plays an important role 

to determinate the quality of the structures left after the segmentation process this index can help 

us to decide which method is more fitted for the segmentation of Breast Thermographic images. In 

this case, DA can be recommended to perform this task. 

 

Image t DA GA KH PSO RRA 

test10 2 0.7343 3.38E-16 0.7196 3.38E-16 0.7217 3.79E-03 0.7343 3.38E-16 0.7343 3.38E-16 

test10 3 0.7492 4.98E-03 0.7342 4.91E-05 0.7335 3.52E-03 0.7472 6.39E-03 0.7484 6.76E-16 

test10 4 0.7996 1.45E-02 0.7838 1.51E-04 0.7818 3.23E-03 0.7941 1.95E-02 0.7975 1.05E-03 

test10 5 0.7826 4.37E-04 0.7671 1.22E-03 0.7709 1.14E-02 0.7829 8.87E-03 0.7841 2.60E-03 

test11 2 0.7439 3.38E-16 0.7290 3.38E-16 0.7277 2.02E-03 0.7439 3.38E-16 0.7439 3.38E-16 

test11 3 0.7728 2.28E-02 0.7274 1.80E-02 0.7583 1.62E-02 0.7421 1.82E-02 0.7639 1.80E-02 

test11 4 0.7701 3.49E-04 0.7546 7.57E-04 0.7497 9.63E-03 0.7693 5.29E-03 0.7698 8.62E-04 

test11 5 0.7888 3.43E-03 0.7698 1.05E-03 0.7684 9.58E-03 0.7859 7.85E-03 0.7883 2.43E-03 

test2 2 0.7760 2.25E-16 0.7604 2.25E-16 0.7608 1.21E-03 0.7760 3.54E-04 0.7760 2.25E-16 

test2 3 0.8064 5.63E-16 0.7716 9.91E-04 0.7718 4.10E-02 0.7976 3.59E-02 0.7876 3.18E-02 

test2 4 0.8621 2.78E-02 0.8492 2.16E-02 0.8183 3.81E-02 0.8545 3.40E-02 0.8592 2.62E-02 

test2 5 0.8920 1.26E-02 0.8705 2.17E-03 0.8580 1.63E-02 0.8812 1.95E-02 0.8878 8.39E-03 

test3 2 0.7184 5.63E-16 0.7046 563E-16 0.7021 2.93E-03 0.177 2.26E-03 0.7190 3.21E-03 

test3 3 0.7459 9.55E-04 0.7173 1.97E-03 0.7040 3.24E-02 0.7420 4.94E-02 0.7331 3.22E-02 

test3 4 0.8160 3.45E-02 0.8032 2.49E-02 0.7663 4.07E-02 0.8059 3.68E-02 0.8054 2.72E-02 

test3 5 0.8579 9.68E-03 0.8388 5.58E-03 0.8256 2.22E-02 0.8536 1.98E-02 0.8508 9.00E-03 

test30 2 0.5407 1.13E-16 0.5299 1.13E-16 0.5314 2.16E-02 0.5407 1.13E-16 0.5407 1.13E-16 

test30 3 0.6219 3.38E-16 0.6095 3.58E-05 0.6082 3.54E-03 0.6219 9.82E-04 0.6219 3.38E-16 

test30 4 0.6303 7.06E-03 0.6162 5.76E-04 0.6250 9.34E-03 0.6348 9.02E-03 0.6324 4.96E-03 

test30 5 0.6449 1.44E-03 0.6300 9.45E-04 0.6309 7.53E-03 0.6428 5.83E-03 0.6421 2.10E-03 

test31 2 0.0886 1.41E-17 0.0650 1.41E-17 0.0870 7.49E-02 0.0737 4.40E-02 0.0663 7.39E-02 

test31 3 0.3599 1.69E-16 0.3459 1.27E-03 0.3552 5.57E-02 0.3532 2.56E-02 0.3528 3.73E-02 

test31 4 0.6447 1.31E-01 0.6149 6.08E-02 0.6132 1.07E-01 0.6054 1.09E-01 0.5277 1.02E-01 

test31 5 0.7217 8.29E-02 0.6704 4.25E-03 0.7281 7.20E-02 0.7081 6.63E-02 0.6803 4.71E-02 

test4 2 0.6750 1.13E-16 0.6596 1.13E-16 0.6701 1.11E-02 0.6731 6.19E-03 0.6731 1.13E-16 

test4 3 0.7001 2.25E-16 0.6761 1.55E-04 0.6841 2.42E-02 0.7130 2.41E-02 0.6899 2.34E-02 

test4 4 0.7823 1.38E-02 0.7668 5.69E-03 0.7354 2.76E-02 0.7713 2.27E-02 0.7806 1.11E-02 

test4 5 0.8123 1.73E-02 0.7873 2.39E-03 0.7963 2.78E-02 0.8095 2.65E-02 0.8086 1.82E-02 

test5 2 0.2454 2.49E-01 0.0687 1.41E-17 0.3425 3.09E-01 0.2103 2.61E-01 0.1928 2.81E-01 

test5 3 0.7023 8.88E-03 0.6827 2.96E-04 0.6848 3.48E-02 0.6986 2.69E-02 0.6982 2.64E-02 

test5 4 0.7487 2.38E-02 0.6993 1.24E-02 0.7200 3.01E-02 0.7394 2.62E-02 0.7483 2.74E-02 

test5 5 0.7857 3.51E-03 0.7686 2.84E-03 0.7620 1.54E-02 0.7833 2.32E-02 0.7825 5.42E-03 

 

Table 12.9. Mean and STD value of the SSIM metric using Kapur by the DA, GA, KH, PSO, and RRA 

 

 



 Chapter 12. A Multi-Level Thresholding Method for Breast Thermograms Analysis using Dragonfly Algorithm  235       

                                                                                                                  

 DA GA KH PSO RRA 

te
st

1
0
 

     

te
st

1
1
 

     

te
st

2
 

     

te
st

3
 

     

te
st

3
0
 

     

te
st

3
1
 

     

te
st

4
 

     

te
st

5
 

     

 

Table 12.10. Segmented images using Kapur by the DA, GA, KH, PSO, and RRA 

 

After the quantitative results of segmented images using Kapur, it is time for a qualitative analysis 

of the segmentation results. To visually provide an example of the performance of each algorithm, 

four thresholds are used to segment every image of the exanimated sub-set of Breast Thermo-

graphic images. Table 12.10 presents the visual comparison of the five approaches. The overall 

execution of the proposed DA-approach outperforms the other four methods according to the ex-

pert’s evaluation over the set of segmented images. Taking as an example, the results obtained for 
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the image “test2”, it can be observed that in the breast area, the enclosed regions depicted in yel-

low are better defined. These results may help the clinician to proceed with an evaluation of the 

possible pathological lesions under the skin surface. 

 

Another clear example of the good performance of the DA-based proposal it can be observed in 

the results provided by the image “test31” in Table 12.10. In such results, it can be appreciated that 

the regions depicted in red near the breast area are better defined. In this case, the clinician or a 

subsequent system could be able to identify such areas as “potential risk points” or to conduct a 

treatment tracing. 

 

  Otsu´s method Kapur´s method 

Image 

 DA vs. 

GA 

DA vs. 

KH 

DA vs. 

PSO 

DA vs. 

RRA 

DA vs. 

GA 

DA vs. 

KH 

DA vs. 

PSO 

DA vs. 

RRA 

test10 2 3.59E-01 1.04E-16 3.34E-06 1.04E-16 1.18E-01 1.53E-14 2.18E-06 2.98E-02 

test10 3 1.90E-09 2.16E-14 9.59E-14 1.68E-16 3.17E-02 5.91E-13 1.62E-09 1.72E-02 

test10 4 2.52E-14 2.18E-14 1.06E-13 2.68E-16 2.08E-10 5.92E-13 4.49E-13 2.25E-07 

test10 5 1.83E-13 8.75E-14 8.75E-14 8.41E-15 2.30E-13 4.08E-14 4.49E-14 1.60E-08 

test11 2 4.06E-01 1.04E-16 2.59E-07 1.04E-16 7.23E-02 1.53E-14 2.12E-02 3.31E-01 

test11 3 7.29E-10 1.51E-14 1.53E-14 1.04E-16 4.36E-03 1.05E-11 6.73E-07 8.00E-03 

test11 4 2.18E-14 2.18E-14 2.18E-14 1.68E-16 9.62E-11 4.08E-14 4.92E-14 2.08E-02 

test11 5 1.49E-07 1.86E-13 7.79E-11 5.14E-14 1.01E-10 1.10E-11 3.44E-07 5.75E-01 

test2 2 7.82E-02 1.04E-16 8.00E-06 1.04E-16 8.20E-02 1.50E-06 3.31E-01 1.55E-02 

test2 3 2.47E-10 1.52E-14 7.48E-13 1.04E-16 8.18E-02 1.53E-14 5.76E-14 3.90E-05 

test2 4 1.34E-13 3.02E-14 3.02E-14 4.99E-15 2.49E-03 1.87E-12 3.74E-12 1.20E-02 

test2 5 9.16E-07 2.35E-13 8.47E-09 3.03E-12 3.40E-01 1.74E-10 9.87E-09 2.11E-01 

test3 2 1.60E-01 1.04E-16 7.94E-06 1.04E-16 6.38E-06 6.91E-01 1.57E-01 2.04E-05 

test3 3 1.52E-08 1.53E-14 1.53E-14 1.04E-16 4.21E-07 3.02E-12 1.55E-11 4.99E-02 

test3 4 7.90E-13 3.02E-14 7.90E-13 3.45E-15 2.11E-02 1.94E-12 8.86E-11 1.57E-01 

test3 5 3.44E-06 3.68E-13 1.12E-08 8.19E-13 1.90E-03 7.60E-10 1.68E-07 1.74E-01 

test30 2 1.06E-02 1.04E-16 6.16E-07 1.04E-16 3.02E-.1 1.53E-14 1.04E-02 4.87E-01 

test30 3 2.08E-09 1.53E-14 2.12E-13 1.04E-16 8.17E-02 1.53E-14 7.91E-12 5.92E-02 

test30 4 1.53E-14 1.53E-14 1.53E-14 5.65E-16 4.07E-04 2.68E-13 5.48E-10 2.20E-02 

test30 5 7.72E-13 8.75E-14 3.77E-13 6.40E-15 4.34E-10 1.58E-13 9.40E-13 1.05E-03 

test31 2 5.91E-03 1.04E-16 1.96E-09 1.04E-16 1.53E-01 2.61E-07 8.18E-02 2.21E-02 

test31 3 1.55E-08 1.43E-14 2.12E-13 1.04E-16 8.18E-02 1.53E-14 8.38E-12 2.21E-02 

test31 4 1.02E-12 4.08E-14 4.08E-14 6.08E-16 3.59E-08 2.72E-10 6.29E-10 1.67E-04 

test31 5 5.37E-14 5.37E-14 5.37E-14 3.57E-15 2.76E-01 1.50E-10 4.60E-09 9.85E-01 

test4 2 1.60E-01 1.04E-16 5.77E-09 1.04E-16 4.11E-01 8.14E-11 8.17E-02 2.18E-02 

test4 3 4.06E-08 1.27E-14 7.48E-13 1.04E-16 3.31E-01 5.80E-14 2.08E-13 3.71E-04 

test4 4 1.53E-14 1.53E-14 1.53E-14 1.04E-16 3.17E-03 7.82E-14 3.32E-12 9.33E-03 

test4 5 6.09E-03 4.66E-13 3.15E-08 4.07E-12 1.73E-03 5.30E-12 3.49E-09 9.12E-03 

test5 2 3.34E-04 1.04E-16 1.04E-07 1.04E-16 5.82E-03 7.43E-04 6.17E-01 4.11E-02 

test5 3 2.49E-10 1.21E-14 5.79E-14 1.04E-16 5.92E-01 1.78E-13 1.41E-11 4.14E-07 

test5 4 7.38E-06 8.67E-14 1.38E-09 1.07E-15 1.99E-04 1.93E-11 1.22E-09 8.20E-01 

test5 5 6.93E-14 6.93E-14 6.93E-14 1.57E-14 8.23E-08 6.07E-13 6.63E-13 3.76E-05 

 

Table 12.11. p-Values of Wilcoxon´s test. 

 

12.6. Discussion 

The overall results presented in section 12.5 indicate that the DA applied to the problem of 

segmentation of Breast Thermographic images performs competitively on the evaluated dataset. 
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According to most results, DA outperforms its counterparts with a few exceptions. Since the seg-

mentation process is carried over the energy curve rather than the image histogram, contextual in-

formation is incorporated into the process. The consideration of the surrounding of a pixel gener-

ates segmented images with smaller noise levels making it suitable for segmenting thermal images.  

Since the performance of the presented approach is evaluated against four metaheuristic algo-

rithms, the Wilcoxon´s rank test was applied for a pair-wise comparison between the DA and the 

other four approaches (García et al., 2008). For this purpose, the values of the objective function 

taken from 35 independent samples are evaluated using this non-parametric significance proof. In 

this case, Wilcoxon´s test asses the differences between two related methods. The analysis is con-

ducted considering a 5% (0.05) significance level over the solution with the best objective function 

considering both Otsu and Kapur, and presents a pair-wise comparison with all the other algo-

rithms. The test was applied to each image considering the different number of thresholds evaluat-

ed.  

In the Wilcoxon analysis, it is considered a null hypothesis that there is no notable difference be-

tween the two methods (p>0.05). Conversely, it is admitted as an alternative hypothesis that there 

is an important difference between the two approaches (p<0.05). Table 12.11 presents the p-values 

computed by the Wilcoxon´s test. After a careful analysis over Table 12.11, it is evident that in the 

majority of the tests, the p-value was less against the other algorithms, which is a strong evidence 

of the better performance of the DA-based proposal. In Table 12.11, rejected hypothesis are 

marked as bold where only three experiments are not significantly different to be considered 

drawn from different distributions, these correspond to the images “test11” and “test5” employing 

Kapur’s method. Such results, match with the evidenced for the human expert regarding the visual 

results obtained with this technique. 

From the qualitative point of view, the DA-proposal performs better in most of the cases for the 

thresholding task using both Otsu’s and Kapur’s methods than the other four methods using for 

comparison. However, in the case of the proposed methodology employing Kapur’s objective 

function presents a lower performance for thresholding in 5 classes compared to the proposal using 

Otsu’s method. In general terms, the results present an effective method for framing the different 

skin cellular behavior. This finding may yield to a robust non-invasive tool, which could assist cli-

nicians to improve the current breast cancer diagnostic procedure. 

12.7. Conclusions 

 

As Thermography is becoming popular in the diagnosis of several diseases where Breast Can-

cer is one of the most common applications, new sensors are available in the market to improve 

the health-care industry. However, the incorporation of low cost and portable thermal cameras to 

the diagnosis process typically involve low-resolution images which makes difficult for the health-

care professional the visual inspection of the thermography. According to the quality of the sensor, 

the temperature differences between different tissues might not be significant enough to provide a 

clear border between two regions since the heat radiates from a warmer zone to a cooler one. To 

overcome this problem, this chaper presents a segmentation method based on the Dragonfly Algo-

rithm (DA) to divide the image into homogeneous regions with clear borders. Contrary to similar 

approaches based on the histogram of the image, the presented methods work over the energy 

curve of the image to consider spatial information of each pixel and its vicinity. The energy curve 

shares properties with the histogram of an image as both present valleys and peeks making it suit-

able for thresholding.  

 

The presented approach uses the DA to search for the best set of threshold values that separate the 

energy curve into a given number of classes. Each candidate solution is evaluated using a non-

parametric criterion as the objective function, either Otsu´s or Kapur´s. Following the quality of 
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each solution, the DA can iterate until it reaches an optimal configuration for the segmentation of a 

given thermography.  

 

To evaluate the performance of the presented methodology, four metaheuristic algorithms were 

implemented to perform the same task; two of them are classical methods such as Genetic 

Algorithms (GA) and Particle Search Optimization (PSO), while the other two are novel 

algorithms recently published, the Runner-Root Algorithm (RRA), and the Krill-Herd (KH) 

algorithm. All four methods are implemented with two variants; using Otsu, and evaluating the 

Kapur criterion as the objective function. The experiments were evaluated over a set of eight 

Breast Thermography images retrieved from the Database for Research Mastology with Infrared 

Image. The results were quantitatively analyzed by comparing the resemblance of the segmented 

image in comparison to the original using image quality metrics such as the Peak-Signal-to-Noise 

Ratio (PSNR), Structural Similarity Index Metric (SSIM), and the Feature Similarity Index Metric 

(FSIM). As metaheuristic algorithms involve stochastic operators, to validate the statistical results 

the Wilcoxon´s test is applied to determinate if the presented DA-based method is significantly 

different from the other examinated methods. Moreover, eight images were randomly chosen from 

the Thermography dataset to exanimate the segmented images qualitatively. Results indicate that 

the DA-Breast Thermography Thresholding (DA-BTT) outperforms the other implementations for 

both Otsu and Kapur variants on most metrics generating clear images with sharp borders. Alt-

hough this paper is not intended to provide a method able to diagnose breast cancer by itself, the 

DA-BTT contributes to the enhancement of thermal images to facilitate the labor of heath-

professionals in the diagnosis and monitoring of Breast Cancer and other vascular conditions as 

thermal cameras are cheaper than MRI machines and more accessible to transport. 

 

This work presents an intermediate process for analyzing breast thermograms by using a multi-

level thresholding method, which combined with a higher system may help in the cancer diagnosis 

procedure. Nevertheless, for future development of the presented method, it would be necessary to 

add a large data set combined with a clinical study, in order to evaluate the skin cell behavior 

along the time and different stages of pathologies. These circumstances may lead to achieving that 

the DA-BTT approach could provide a highly reliable clinical decision support, which aims to 

help clinicians in performing a diagnosis using breast thermography images. 

 

 



 

Chapter 13 

Conclusion 

 

 

 

 

 
This chapter aims to provide the general conclusions of the research conducted for this thesis, 

as well as to illuminate the particular assumptions of each chapter. 

 

Soft Computing, as opposed to traditional computing, deals with approximate models and gives 

solutions to complex real-life problems. Unlike Hard Computing, Soft Computing is tolerant of 

imprecision, uncertainty, partial truth, and approximations. In effect, the role model for SC is the 

human mind. 

 

Intelligent Systems, and hence SC techniques, are becoming more important as the power of com-

puter processing devices increases and their cost is reduced. Intelligent systems are required to 

make complex decisions and choose the best outcome, using complex algorithms, from many pos-

sibilities. This requires fast processing power and the large storage space that has, in recent years, 

become available to many research centers, universities, and technical colleges at a very low cost. 

 

With the power and recognition of the Internet of Things concept, the need for using SC tech-

niques and building intelligent systems has become more important than ever. Today, most SC ap-

plications can be handled efficiently by low-cost but super-fast microcontrollers. 

 

We already see the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many 

everyday domestic appliances, such as washing machines, cookers, and refrigerators. Many indus-

trial and commercial applications of SC are also in everyday use, and this is only expected to in-

crease within the next decade. 

 

The applications presented in this work were designed with the purpose of serving as technological 

tools that can then be used for the development of new devices, however, such approach was not 

further developed. Though, they have highlighted the utility of different SC methodologies in solv-

ing problems in Optimization, Computer Vision, and medicine.  

 

This research is composed of several individual projects, which employ both classical and new op-

timization algorithms.  

 

Another accomplished objective of this research was the translation of Computer Vision and med-

ical problems into optimization problems. The main intention for this was to open the topic for 

new proposals that can also present new methodologies for solving such problems.  

 

A goal of this research was the development of new evolutionary approaches for the optimization 

of complex problems; these approaches are introduced in chapters 2 and 3. After testing such ap-

proaches over a standard benchmark dataset, they have demonstrated strong capabilities to solve 

global optimization problems, as well as low-computational cost. 

 

The core of this manuscript is the application of Soft Computing to the domain of Computer Vi-

sion; chapters 4 through 10 present several approaches to solving problems in this field. In these 

chapters, it is possible to observe that the key to structuring the presented methods was the adequa-
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tion of the algorithms and the translation into optimization problems. Each of these applications 

revealed that it is necessary first to analyze the best possible combination of optimization algo-

rithms in order to fit them to a particular problem. 

 

This research also strove to expand the concepts to automated detection and diagnosis for patholo-

gies such as Leukemia and breast cancer, as presented in chapters 11 and 12. The application of 

SC techniques in medicine has gained great interest worldwide, due to the increase in these diseas-

es. 

 

Following the organization of the thesis, the particular conclusions of each chapter are presented 

below. 

Chapter 1 introduces the field of research for this work and the specific concepts of optimization 

and Soft Computing. 

 

Chapter 2 presents an Opposition-Based EMO, named OBEMO, that combines the opposition-

based learning (OBL) strategy and the standard EMO technique. The OBL is a machine intelli-

gence strategy that simultaneously considers a current estimate and its opposite value to achieve a 

fast approximation for a given candidate solution. The standard EMO is enhanced by using two 

OBL steps: the population initialization and the production of new generations. The enhanced al-

gorithm significantly reduces the required computational effort, yet avoids any detriment to the 

positive search capabilities of the original EMO algorithm. 

 

Results demonstrate that the OBEMO is as accurate as the standard EMO while requiring a shorter 

number of iterations. Likewise, it is as fast as other state-of-the-art EMO-based algorithms, such as 

HEMO (Takeuchi, 2008) and FEMO (Rocha & Fernandes, 2007), while still keeping the original 

accuracy. 

  

Although the results offer evidence that the Opposition-Based EMO method can yield good results 

for complicated optimization problems, the chapter’s aim is to show that the Opposition-Based 

Electromagnetism-like method can effectively be considered as an attractive alternative for solving 

global optimization problems. 

 

Additionally, chapter 3 describes a methodology to implement human-knowledge-based optimiza-

tion strategies. Under this approach, a conducted search strategy is modeled in the rule base of a 

Takagi-Sugeno Fuzzy inference system, so that the implemented fuzzy rules express the condi-

tions under which candidate solutions are evolved during the optimization process. 

 

All reported approaches that integrate fuzzy logic and metaheuristic techniques consider the opti-

mization capabilities of the metaheuristic algorithms for improving the performance of fuzzy sys-

tems. In the method presented here, the approach is completely different. Under this new schema, 

the fuzzy system directly conducts the search strategy during the optimization process. In this 

chapter, the main goal is to propose a methodology for emulating human search strategies in an al-

gorithmic structure. To the best of our knowledge, this is the first time that a fuzzy system is used 

as a metaheuristic algorithm. 

 

The presented methodology exhibits three important characteristics: (1) Generation: Under the 

proposed methodology, fuzzy logic provides a simple and well-known method for constructing a 

search strategy via the use of human knowledge. (2) Transparency: It generates fully interpretable 

models whose content expresses the search strategy as humans can conduct it. (3) Improvement: 

As human experts interact with an optimization process, they obtain a better understanding of suc-

cessful search strategies capable of finding optimal solutions. As a result, new rules are added so 

that their inclusion in the existing rule base improves the quality of the original search strategy.  
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Under the proposed methodology, new rules can be easily incorporated into an already existent 

system. The addition of such rules allows the capacities of the original system to be extended.  

 

To demonstrate the ability and robustness of our approach, the presented fuzzy-based algorithm 

has been experimentally evaluated with a test suite of 19 benchmark functions. To assess the per-

formance of the fuzzy-based algorithm, it has been compared to other popular optimization ap-

proaches based on evolutionary principles currently in use. The results, statistically validated, have 

confirmed that the presented algorithm outperforms its competitors for most of the test functions in 

terms of its solution quality and convergence. 

 

Additionally, chapter 4 details an image segmentator approach based on LVQ networks that con-

sider the segmentation process as a pixel classification fully based on color. The segmentator op-

erated directly upon the image pixels using the classification properties of the LVQ networks. The 

algorithm was effectively applied to the segmentation of sampled images, showing its capacity to 

satisfactorily segment color despite remarkable illumination differences in indoor and outdoor 

scenes. The results demonstrated the operation of the LVQ algorithm, which in turn is capable of 

topologically organizing the input space, thus accomplishing the segmentation process despite a 

small number of neurons.  

 

The presented system introduced two important features. First, since the LVQ algorithm works di-

rectly on the image pixels with no dynamic model or probability distribution, the execution time is 

faster than other approaches. Second, the algorithm exhibited interesting generalization properties, 

in particular considering images with changing illumination. Supplementary increases in the seg-

mentator performance might be reached if the parameter is also adapted using some kind of opti-

mization technique. 

 

Further, chapter 5 described a Block-Matching algorithm that combines Harmony Search with a 

fitness approximation mode. The approach used as potential solutions the motion vectors belong-

ing to the search window. To save computational time, the approach incorporated a fitness calcula-

tion strategy to decide which motion vectors can be estimated or actually evaluated. Guided by the 

values given by this fitness calculation strategy, the set of motion vectors are evolved using the HS 

operators so that the best possible motion vector can be identified.  

 

Since the presented algorithm does not consider any fixed search pattern during the BM process or 

any other movement assumption, a high probability for finding the true minimum (accurate motion 

vector) is expected regardless of the movement complexity contained in the sequence. Therefore, 

the chance of being trapped in local minimum is reduced in comparison to other BM algorithms.  

 

The performance of HS-BM has been compared to other existing BM algorithms by considering 

different sequences that present a great variety of formats and movement types. Experimental re-

sults demonstrate that the presented algorithm maintains the best balance between coding efficien-

cy and computational complexity. 

 

Although the experimental results indicate that the HS-BM method can yield better results on 

complicated sequences, it should be noted that the aim of this chapter is to show that the fitness 

approximation can effectively serve as an attractive alternative to evolutionary algorithms for solv-

ing complex optimization problems while demanding fewer function evaluations. 

 

Chapter 6 presents an automatic image multi-threshold approach based on Learning Automata 

(LA). The segmentation process is considered to be similar to an optimization problem. The algo-

rithm approximates the 1-D histogram of a given image using a Gaussian mixture model whose 

parameters are calculated through the LA algorithm CARLA. Each Gaussian function approximat-

ing the histogram represents a pixel class and therefore one threshold point.  
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Experimental evidence showed that the LA algorithm has an acceptable compromise between its 

convergence time and its computational cost when it is compared to the Expectation-Maximization 

(EM) method and the Levenberg-Marquardt (LM) algorithm. Additionally, the LA algorithm also 

exhibited a better performance under certain circumstances (singularities); likewise, it is well-

reported in the literature (Gupta & Sortrakul, 1998; Park & Ozeki, 2009) that the EM and the LM 

have underperformed. Finally, the results have indicated that the stochastic search accomplished 

by the LA method shows a consistent performance without regard to the initial value and a greater 

chance to reach the global minimum. 

 

Building on the above, chapter 7 presents a corner detection algorithm which models the structure 

of a potential corner in images based on a fuzzy rule set. The method is able to tolerate implicit 

imprecision and impulsive noise. Experimental evidence suggests that the fuzzy-based algorithm 

produces better results than other common methods, such as the Harris detector and the fuzzy ap-

proach proposed by Banerjee & Kundu (2008).  

 

The presented algorithm was able to successfully identify corners on images containing different 

uncertainty conditions. However, it is also sensitive to blurring; specifically, a steaming up effect 

is produced when considering a neighborhood window wider than the one previously used for 

building the fuzzy model of corners (templates). Such a fact should not be considered inconven-

ient, because the fuzzy-based algorithm is still more capable of identifying corners amid similar 

blurring levels than those of conventional algorithms. 

 

The presented detector is stable and has shown robustness to impulsive noise. This represents its 

major advantage over the Harris method, considering that impulsive noise is commonly found in 

real-time images. Moreover, the presented algorithm also exhibits a tolerance to imprecision that 

matches the performance of that of Banerjee & Kunduand. 

 

Furthermore, chapter 8 presents an algorithm for the automatic detection of circular shapes within 

complicated and noisy images with no consideration of the conventional Hough transform princi-

ples. The presented method is based on a newly developed Artificial Immune Optimization (AIO) 

technique, known as the Clonal Selection Algorithm (CSA). The approach detects the circle in 

complex images with little visual distortion despite the presence of noisy background pixels.  

 

An important feature of this method is the consideration of the circle detection problem through an 

optimization approach. Such a view enables the algorithm to detect arcs or occluded circles while 

still matching imperfect circles. This approach demonstrates that the CSA method outperforms 

both the GA (as described in Ayala-Ramirez et al., 2006) and the IRHT (as described in Lu & Tan, 

2008) within a statistically significant framework. The results obtained for the CSA regarding 

complicated and noisy images, in comparison to the GA and the IRHT methods, indicate that the 

Artificial Immune Systems can effectively serve as an attractive alternative to the evolutionary al-

gorithms previously employed to extract circular shapes from images. 

 

Chapter 9 presents a novel nature-inspired algorithm, called the States of Matter Search (SMS), for 

solving the pattern detection (PD) problem. The SMS algorithm is based on the simulation of the 

states of matter phenomenon. In SMS, individuals emulate molecules that interact with each other 

using evolutionary operations based on the physical principles of the thermal-energy motion 

mechanism. Such operations allow for the increase of the population diversity and avoid the con-

centration of particles within a local minimum. The presented approach combines the use of the 

defined operators with a control strategy that modifies the parameter setting of each operation dur-

ing the evolution process. The algorithm is devised by considering each state of matter at one dif-

ferent exploration–exploitation rate. Thus, the evolutionary process is divided into three stages that 

emulate the three states of matter: gas, liquid, and solid. At each state, molecules (individuals) ex-



 Chapter 13. Conclusion                                                                                                                                             243       

                                                                                                                  

hibit different behaviors. Beginning from the gas state (pure exploration), the algorithm modifies 

the intensities of exploration and exploitation until the solid state (pure exploitation) is reached. 

 

This method is also able to save computational time by identifying which NCC values can be 

merely estimated and which must be calculated instead. As a result, the approach is able not only 

to substantially reduce the number search positions (by using the SMS approach), but it can also 

do without the NCC evaluation for many of them. The presented method achieves the best balance 

compared to other PD algorithms, in terms of both estimation accuracy and computational cost. As 

a result, the approach can substantially reduce the number of function evaluations while preserving 

the positive search capabilities of SMS. 

 

The performance of the proposed approach has been compared to other existing PD algorithms by 

considering different images presenting a great variety of formats and complexities. Experimental 

results demonstrate the high performance of the proposed method in terms of elapsed time and 

number of NCC evaluations. 

 

In chapter 10, an automatic image multi-threshold approach based on the Artificial Bee Colony 

(ABC) algorithm is exhibited. The segmentation process is considered as an optimization problem. 

The algorithm approximates the 1-D histogram of a given image using a Gaussian mixture model 

whose parameters are calculated through the ABC algorithm. Each Gaussian function approximat-

ing the histogram represents a pixel class and therefore one threshold point.  

 

Experimental evidence shows that the ABC algorithm has an acceptable compromise between its 

convergence time and its computational cost when compared to the Expectation-Maximization 

(EM) method and the Levenberg-Marquardt (LM) algorithm. Additionally, the ABC algorithm al-

so exhibits a better performance under certain circumstances (initial conditions), regarding which 

it is well-reported in the literature (Park & Ozeki, 2009) that the EM has underperformed. Finally, 

the results have shown that the stochastic search accomplished by the ABC method shows a con-

sistent performance without regard to the initial value while still showing a greater chance to reach 

the global minimum. 

 

Chapter 11 presents an algorithm for the automatic detection of blood cell images based on the 

Differential Evolution algorithm. This approach considers the complete process as a multiple el-

lipse detection problem. It generates a sub-pixel detector which can effectively identify leukocytes 

in real images. The performance of the DE-method has been compared with other existing WBC 

detectors (the Boundary Support Vectors (BSV) approach (Wang & Chu, 2009), the Iterative Otsu 

(IO) method (Wu et al., 2006), the Wang algorithm (Wang Shitong et al., 2007a) and the Genetic 

algorithm-based (BGA) detector (Karkavitsas & Rangoussi, 2008)), considering several images 

exhibiting different complexity levels. Experimental results demonstrate the high performance of 

the proposed method in terms of detection accuracy, robustness, and stability. 

 

Finally, Chapter 12 presents an intermediate process for analyzing breast thermograms by using a 

multi-level thresholding method, which, if combined with a higher system, may help in the cancer 

diagnosis procedure. Nevertheless, for future development of the presented method, it would be 

necessary to add a large data set combined with a clinical study in order to evaluate the skin cell 

behavior across time and the different stages of pathologies. This continuation may lead to imple-

mentation of the presented approach as a highly reliable clinical decision support, which could 

help clinicians in performing a diagnosis using breast thermography images.
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