Electron Spin Resonance and Transient Photocurrent Measurements on Microcrystalline Silicon

Dissertation

zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.)

> von Thorsten Dylla

eingereicht im Fachbereich Physik der Freie Universität Berlin

> angefertigt am Forschungszentrum Jülich

> > September 2004

1st referee:Prof. M. Ch. Lux-Steiner2nd referee:Prof. W. Brewer, PhD

Date of defence: 26-Oct-2004

Kurzfassung

In der vorliegenden Arbeit wurden die elektronischen Eigenschaften von mikrokristallinen Silizium (μ c-Si:H) Dünnschichten mittels Elektronen-Spin-Resonanz (ESR), transienter Photoleitung (Time-of-Flight (TOF)) und Messung der elektrischen Leitfähigkeit untersucht. Es wurden Modelle und mögliche Erklärungsansätze hinsichtlich der Natur und der energetischen Verteilung der elektronischen Defekte als Funktion des Filmaufbaus diskutiert und deren Auswirkungen auf den elektrischen Transport erörtert. Dazu wurde μ c-Si:H mit strukturellen Eigenschaften im Bereich von hochkristallinem bis zu vollständig amorphen Schichten abgeschieden. Der Grad der Kristallinität wurde jeweils mittels Raman Spektroskopie bestimmt.

Es zeigt sich, dass die gemessenen Spindichten N_S mit dem strukturellen Aufbau der μ c-Si:H Schichten korrelierten. Während die höchsten N_S generell bei hochkristallinem Material gefunden werden, verringert sich die Spindichte mit zunehmenden amorphen Volumenanteil in den Schichten. Dies kann mit den zunehmenden Wasserstoffgehalt und der damit verbundenen Absättigung von offenen Bindungen an den Säulengrenzen erklärt werden. Ferner fungiert die zusätzlich zwischen den kristallinen Säulen eingebaute amorphe Phase als Passivierungsschicht, was zu einer effektiveren Absättigung von "dangling bond" Zuständen an der Säulengrenzen führt.

In Abhängigkeit von der Struktur der Filme, insbesondere der aktiven Oberfläche, zeigen sich deutliche reversible und irreversible nderungen im ESR-Signal als auch in der Dunkelleitfähigkeit der μ c-Si:H Schichten. Die poröse Struktur des hochkristallenen Materials begünstigt die Eindiffusion von atmosphärischen Gasen, welche sowohl den Charakter als auch die Dichte der Oberflächenzustände beeinflussen. Als wesentliche Ursache wurden zwei Prozesse identifiziert, Adsorption und Oxidation. Beide führen zu einer Zunahme der Spindichte. Bei der Adsorption konnte diese auf eine reversible nderung der db₂ Resonanz (g=2,0052) zurückgeführt werden, während die db₁ Resonanz (g=2,0043) unverändert bleibt. Mit zunehmenden amorphen Anteilen in den Schichten nimmt die Größe der durch Adsorption und Oxidation hervorgerufenen Effekte ab, was auf eine zunehmende Kompaktheit der Filme zurückgeführt werden kann. Messungen an n-dotierten μ c-Si:H Filmen wurden zur Untersuchung der Zustandsdichte in der Bandlücke benutzt und bestätigten, dass die gemessene Spindichte N_S mit der Defektdichte zusammenhängt. Die Resultate legen nahe, das für einen weiten Bereich von Strukturkompositionen die Verschiebung des Fermi-Niveaus durch die Kompensation von Zwischenbandzuständen bestimmt wird. Dies gilt für Dotierkonzentrationen kleiner als die Defektkonzentration im intrinsischen Material, während für höhere Dotierungen eine Dotiereffizienz von eins beobachtet wird. Es lässt sich folgern, das die Spindichte den Hauptteil der Zwischenbandzuständen repräsentiert ($N_S = N_{DB}$).

Die Kenntnis über Art und Dichte von Defekten ist von entscheidender Bedeutung beim Verständnis des Ladungsträgertransportes. Mittels TOF-Technik wurden pin-Dioden auf der Basis von μ c-Si:H untersucht, sowie Löcherdriftbeweglichkeiten und die zugrundeliegenden Transportmechanismen bestimmt. Trotz der sehr hohen Kristallinität der Proben zeigen temperaturabhängige Messungen, das der Löchertransport durch "Multiple Trapping" in einer exponentiellen Verteilung von Bandausläuferzuständen bestimmt ist, ein Verhalten das vorwiegend mit nichtkristallinen Materialien in Verbindung gebracht wird. Die Breite des Valenzbandausläufers konnte auf 31 meV bestimmt werden, was zu Löcherdriftbeweglichkeiten von 1-2 cm²/Vs führt. Diese Werte bestätigen das Vorhandensein von Beweglichkeitskanten für Löcher in mikrokristallinen Filmen und erweitern die Bandbreite von Materialien, für die eine anscheinend universale Bandbeweglichkeit in der Größenordnung von 1 cm²/Vs gefunden wird.

Contents

1	Intr	oductio	n	1		
2	Fundamentals					
	2.1	Structu	ural Properties of Microcrystalline Silicon	7		
	2.2	Electro	onic Density of States	9		
		2.2.1	Band-Tail States	10		
		2.2.2	Deep Defects	11		
	2.3	Charge	e Carrier Transport	14		
		2.3.1	Barrier Limited Transport	15		
		2.3.2	Dispersive Transport in Disordered Semiconductors	15		
3	Sample Preparation and Characterization					
	3.1	Charao	cterization Methods	19		
		3.1.1	Raman Spectroscopy	19		
		3.1.2	Electron Spin Resonance (ESR)	21		
		3.1.3	Electrical Conductivity	24		
		3.1.4	Transient Photocurrent Measurements (TOF)	24		
		3.1.5	Thickness Measurements	30		
	3.2	Depos	ition Technique	32		
		3.2.1	Plasma-Enhanced Chemical Vapor Deposition (PECVD) .	32		
		3.2.2	Hot-Wire Chemical Vapor Deposition (HWCVD)	33		
	3.3	Sampl	e Preparation	34		
		3.3.1	Sample Preparation for ESR and conductivity measurements	35		
		3.3.2	PIN-Diodes for Transient Photocurrent Measurements	36		
4	Intrinsic Microcrystalline Silicon					
	4.1	Ramar	n Spectroscopy	39		
	4.2	Electri	ical Conductivity	41		
	4.3	ESR S	ignals and Paramagnetic States in Intrinsic μ c-Si:H	42		
	4.4	Discus	ssion - Relation between ESR- and Structural Properties	47		
	4.5	Summ	ary	50		

5	N-T	ype Doped μ c-Si:H	51		
	5.1	Structure Characterization	51		
	5.2 Electrical Conductivity				
5.3 ESR Spectra			54		
			55		
	5.5 Conduction Band-Tail States				
	5.6	Discussion	59		
	5.7	Summary	61		
6	Reversible and Irreversible Effects in μ c-Si:H				
	6.1	Metastable Effects in μ c-Si:H	63		
		6.1.1 Influences of Sample Preparation	63		
		6.1.2 Reversible Effects in the ESR Signal	70		
		6.1.3 Reversible Effects in the Electrical Conductivity	73		
	6.2	Irreversible Oxidation Effects	75		
		6.2.1 Reversibility by Chemical Reduction	77		
		6.2.2 Charge Transfer caused by Oxidation of N-Type μ c-Si:H .	78		
	6.3	On the Origin of Instability Effects in μ c-Si:H	80		
		6.3.1 Adsorption of Atmospheric Gases	80		
		6.3.2 Irreversible Effects caused by Oxidation	84		
	6.4	Summary	84		
7	Trai	nsient Photocurrent Measurements	85		
	7.1	Electric Field Distribution	85		
	7.2	Transient Photocurrent Measurements	87		
		7.2.1 Non-Uniform Electric Field Distribution	87		
		7.2.2 Uniform Electric Field Distribution	90		
	7.3	Temperature Dependent Drift Mobility	93		
	7.4	Multiple Trapping in Exponential Band-Tails	94		
	7.5	Discussion	96		
		7.5.1 Photocurrent and Photocharge Transients	97		
		7.5.2 Hole Drift Mobilities	98		
		7.5.3 The Meaning of Multiple Trapping	99		
8	Sche	ematic Density of States	101		
9	Summary				
٨	Alex	- hraid Description of the Multiple Transing Model	107		
A	Aige	sorate Description of the Multiple Trapping Model	10/		
B	List of Samples 11				

CONTENTS

C Abbreviations, Physical Constants and Symbols	115
Bibliography	119
Publications	135
Acknowledgments	139

CONTENTS