
Parameterizations in the

Configuration Space and

Approximations of

Related Surfaces
by

DROR ATARIAH

Dissertation
Submitted for fulfillment of the Degree of

Doktor der Naturwissenschaften

Supervisor: Professor Dr. Günter Rote

Department of Mathematics and Computer Science
Freie Universität Berlin

May 2014

First Reviewer: Prof. Dr. Günter Rote
Second Reviewer: Prof. Dr. Carsten Lange

Date of Defense: 09.05.2014

This version of the dissertation was created using the sources that constitute
commit: #06c0fd2, 2014-05-26

To my parents, brother and wife.

ii

Zusammenfassung

Diese Arbeit betrachtet drei Themen, die alle dem berühmten Bewegungs-
planungsproblem für Roboter in der Ebene zugeordnet werden können. Beim
Arbeiten mit Robotern in der Ebene werden diese als konvexe Polygone dar-
gestellt und es wird ein dazugehöriger Konfigurationsraum betrachtet, in
welchem jeder Punkt einer eindeutigen Platzierung des Roboters in seiner
physikalischen Umgebung entspricht. Hindernisse in der Welt des Roboters
werden als dreidimensionale Festkörper im Konfigurationsraum betrachtet.
Die Vereinigung aller dieser Körper bilden den sogenannten verbotenen Kon-
figurationsraum. Jeder Punkt des verbotenen Konfigurationsraum entspricht
einer nicht realisierbaren Platzierung des Roboters zwischen den Hindernis-
sen. Der Rest des Konfigurationsraumes ist der sogenannte freie Konfigurati-
onsraum. Das Hauptinteresse liegt genau auf der Grenze zwischen dem freien
und dem verbotenen Konfigurationsraum.

Der erste Teil dieser Dissertation beinhaltet eine einfache und geome-
trisch motivierte Parametrisierung von jenen Oberflächen, die genau die
erwähnte Grenze darstellen. Durch Benutzung dieser Parametrisierung ist
es sehr einfach, unterschiedliche Visualisierungen der Grenze zu erzeugen.
Zudem können tiefe Einblicke in die Differentialgeometrie der Grenze gewon-
nen werden, wenn Standardberechnungen unter Benutzung dieser Parame-
trisierung durchgeführt werden. Diese beiden Ergebnisse tragen eindeutig
zur allgemeinen Arbeit an Bewegungsplanungsproblemen bei. Insbesondere
wird auch gezeigt, dass die Elemente der Grenze, die Kontaktpunkte zwischen
einer Kante des Roboters und einer Ecke eines Hindernisses darstellen, nicht
abwickelbare Regelflächen sind — und so eine negative Gaußsche Krümmung
aufweisen.

Die negativen gekrümmten Oberflächen, die als Teile der Grenze auf-
treten können, regten die Suche nach einer optimalen Triangulierung für
einfachere negativ gekrümmte Oberflächen an. Insbesondere werden hyper-
bolische Paraboloide (auch als Sattelfläche bekannt) betrachtet. Im zweiten
Teil der Dissertation werden interpolierende und nicht interpolierende Trian-
gulierungen von allgemeinen Satteloberflächen präsentiert. Die Optimalität
der erzeugten Triangulierung, die für die Approximation benutzt wird, ist
durch zwei Eigenschaften charakterisiert: (i) sie garantiert eine feste Fehler-
schranke und (ii) sie minimiert die Anzahl der benötigten Dreiecke um einen
gegebenen Teil der Sattelfläche zu überdecken.

Der dritte Teil der Dissertation liefert eine detaillierte Beschreibung eines
Beitrages für das 2D Arrangements Paket der COMPUTATIONAL GEOMETRY AL-
GORITHMS LIBRARY (CGAL). Hierbei wird die Berechnung von Arrangements
von begrenzten teilweise linearen Kurven (polygonale Kurven) in der Ebene
behandelt. Das ursprüngliche in der Version 4.3. enthaltene Codepaket wurde
stark verbessert. Zum einen konnte die Berechnungszeit von Arrangements
von polygonalen Kurven (im Durchschnitt) um 5 Prozent beschleunigt wer-
den. Zusätzlich ist der geänderte Code generischer und daher besser geeignet
für weitere Verallgemeinerungen. Daher wurde der verbesserte Code auch
dazu ausgewählt in die Bibliothek (CGAL) integriert zu werden und es ist
geplant, ihn in die nächste Version einzubinden. Alles in allem tragen die
Ergebnisse dieser Arbeit sowohl zur Arbeit an Bewegungsproblemen bei, als
auch zu zahlreichen allgemeineren Zwecken.

iii

Abstract

This work covers three topics that can all be linked to the celebrated
motion planning problem of planar robots. When considering a planar robot,
which is represented by a convex polygon, it is natural to study an associated
configuration space, where each point corresponds to a unique placement
of the robot in its physical world. Obstacles in the world of the robot are
represented as three-dimensional solids in the associated configuration space.
The union of these solids is the so-called forbidden space. Each point of the
forbidden space corresponds to a placement of the robot such that its interior
intersects one or more obstacles. The remainder of the configuration space
is the so-called free space. Of course, the boundary between the free and
forbidden spaces is of tremendous interest.

The first part of the dissertation provides a simple and geometrically
motivated parameterization of the surfaces that constitute the mentioned
boundary. Using this parameterization, it is easy to produce various visualiza-
tions of the boundary. Furthermore, standard computations that utilize the
parameterization yield deep understanding of the differential geometry of the
boundary. Clearly, these are two achievements that contribute to the general
study of the motion planning problem. In particular, it is also shown that the
elements of the boundary corresponding to contacts between an edge of the
robot and a vertex of an obstacle are non-developable ruled surfaces — thus
having a negative Gaussian curvature.

The negatively curved surfaces that emerge as portions of the discussed
boundary, motivated a search for an optimal triangulation of simpler neg-
atively curved surfaces. Specifically, hyperbolic paraboloids (also know as
saddles) are considered. The second part of the dissertation provides both
interpolating and non-interpolating triangulations of general saddle surfaces.
The optimality of the yielded triangulation used for the approximation is
twofold: (i) it maintains a fixed error bound, and (ii) minimizes the number
of triangles needed to cover a given portion of the saddle.

Finally, the third part of the dissertation provides a detailed account of a
contribution to the 2D Arrangements package of the COMPUTATIONAL GEOM-
ETRY ALGORITHMS LIBRARY. This part of the work considers the computation
of arrangements of bounded piecewise linear curves (polylines) in the plane.
More precisely, the initial package code, as shipped with version 4.3, was con-
siderably improved in two senses. First, the computations of arrangements
of polylines using the modified code improves execution time by about 5%
(on average). Secondly, the modified code is much more generic and suitable
for further generalizations. As a result, the improved code was accepted for
integration into the library and is scheduled to be shipped with its next release.
Together, the achievements presented in the dissertation can contribute to
the ongoing study of the motion planning problem, as well as to numerous
more general purposes.

Acknowledgments

This dissertation could not have been realized without the guidance and support
of my supervisor Günter Rote. Sometimes I felt that his intuition and deep un-
derstanding were several steps ahead of mine; luckily, Dr. Rote’s patience came
to my rescue. I am grateful for all his efforts and contributions. Accomplishing
this project would be much harder without the endless support and mentoring of
Günter M. Ziegler.

Fortunately, I have many colleagues whose help made this dissertation possible.
I am particularly thankful to Efi Fogel for introducing me to the world of program-
ming. My contribution to CGAL would have never been possible without his help.
Michael Hemmer and Eric Berberich encouraged me and helped me produce a
better code. Many thanks also to Dan Halperin and his group (in particular, to Oren
Salzman) for hosting several visits of mine in Tel-Aviv university that were extremely
fruitful. Discussions with Ramsay Dayer, Sunayana Ghosh and Mathijs Wintraecken
were illuminating and helpful. I received generous support from the wonderful
community of the STACKEXCHANGE network in general, and the members of TEX.SE
in particular. Finally, I would like to thank my fellow group members in the Free
university of Berlin.

I owe my deepest gratitude to Michael Stark who shared with me his priceless
experience and provided me with mentoring and spiritual support.

I would like to express my gratitude to the Berlin Mathematical School and
especially to its managing director Nadja Wisniewski for the administrative and
financial support. Furthermore, this work is part of the project Computational
Geometric Learning. The project CG Learning acknowledges the financial support
of the Future and Emerging Technologies (FET) program within the Seventh Frame-
work Program for Research of the European Commission, under FET-Open grant
number 255827. In addition, this research was supported by the DFG Collaborative
Research Center TRR 109, Discretization in Geometry and Dynamics.

Last but definitely not least, my family deserves special thanks: My parents and
the younger brother who were understanding and patient; my sons who suffered
bravely. Finally, above all, I am grateful to my wife who, by all means, stood by my
side and provided me all one can ask for when writing a dissertation.

http://www.cgal.org

Contents

Acknowledgments v

Nomenclature ix

1 Introduction 1

2 Parameterization of Contact Surfaces 7
2.1 Introduction . 7
2.2 Rotating the Robot . 14
2.3 Parameterizing Contact Surfaces 15
2.4 Rational Parameterization . 24
2.5 Differential Geometry of Contact Surfaces 25
2.6 Conclusion . 33
2.A Angle Range Analysis Using Normals 35
2.B Differential Geometry of V-E Contact Surfaces 38

3 Optimal Triangulation of Hyperbolic Paraboloids 41
3.1 Introduction . 41
3.2 Remarks on Conic Sections . 44
3.3 Remarks on Quadratic Surfaces . 47
3.4 Vertical Distance . 48
3.5 Local Interpolating Triangulation of Saddle Surfaces 53
3.6 Non-interpolating Triangulation 74
3.7 Conclusion . 81
3.A Explicit Computation of the Angles of T1(ξ) 84
3.B Expression for the Coordinates of T i

?(ξ,α) 85
3.C Symbolic Computations Transcript 85

4 Revising Computation of Arrangement of Polylines 117
4.1 Background and Motivation . 117
4.2 Existing Implementation . 120
4.3 Revising the Implementation . 121

vii

4.4 Testing the Code and Benchmark 128
4.5 Summary . 129
4.6 Future Work . 129
4.A Code for Benchmark . 132
4.B Summary of benchmark tests . 132

5 Conclusion 135

Bibliography 143

Index 147

Nomenclature

Tp S The tangent to the surface S at p, page 29

TS(u, v) The tangent to the parameterized surface S at S(u, v), page 29

ϕ Golden Ratio, page 56

q A configuration point in C , page 10

〈·, ·〉 Inner/dot product, page 26

Pλ Pseudo-Euclidean transformation in R2, page 78

int The interior of a set, page 12

∂ The boundary of a set, page 12

Mτ A rational rotation matrix , see equation (2.5), page 11

Rα Standard (counterclockwise) rotation matrix, page 11

Np S The normal to the surface S at the point p ∈ S, page 25

NS(u, v) The normal to the (parameterized) surface S at the point S(u, v), page 26

pz The z coordinate of p ∈R3. Similarly px and p y , page 49

SE(n) Special Euclidean group, page 12

`pq The line segment connecting p and q in space, page 50

~nOk

j The inward normal to the edge EOk

i , page 10

Ok The k-th obstacle in W , page 10

EOk

j The j -th edge of the k-th obstacle, page 10

A Robot; i.e. a convex planar polygon, page 9

~n A
i The inward normal to the edge E A

i of a robot A, page 10

x

E A
i The i -th edge of A, page 10

R0 The reference point of the robot A, page 9

ai The i -th vertex of the robot A and we have ai = ri (cosαi , sinαi), page 9

Cforb The forbidden space, page 11

Cfree The free space, page 11

C The configuration space, page 10

W The workspace, page 9

(T, T̂) T̂ is the lifting of a planar triangle T to a saddle S, page 60

1 Introduction

If one would like to turn a robotic vacuum cleaner into a messenger then he or
she would have to teach the robot three things. First, the robovac should learn the
layout of its world (which we call workspace); that is, obtain a description of the
locations of walls, passages, pieces of furniture etc. (which we call obstacles). Next,
it should be able to decide whether it can get from its current position (source) to
some given destination (target). Naturally, this question has a positive answer if
there exists at least one free path in the workspace from the current source to the
provided target. Here, free path means that along the whole path the robot should
not collide with any obstacle that can be found in the workspace. Finally, if the
answer to the posed decision problem is positive, the robot should also be able to
find such a free path. Together, these three tasks are often called motion planning
problem, or the piano movers problem. Naturally, the motion planning problem is
well established and draws the attention of scholars for at least forty years.

A simple model of the problem can be formulated by assuming that the robot is
a convex polygon in the plane, while certain regions of the plane are considered as
obstacles. In Figure 1.1 the robot (in green) is shown in four different placements,
and the room and obstacles shown in red. Furthermore, let us assume that the robot
has three degrees of freedom, namely, it is free to translate (two degrees) and rotate
(third degree) in the plane. In this model and the assumptions given above, the
problem involves the motion of a polygon that clearly has non-zero area. It is very
common to analyze this model in terms of the so-called configuration space. Each
point of the configuration space corresponds to a unique placement of the robot
inside the workspace. The planar obstacles are represented as three-dimensional
solids — configuration points of these solids correspond to placements where the
interiors of the robot and one or more obstacles intersect. The advantage of this
model is that the initial problem reduces to the motion of a point in space. The
motion planning problem has been addressed by many researchers; let us mention
the classical works of Schwartz and Sharir [37] and the probabilistic roadmap (PRM)
[21], as well as the recent Motion planning via Manifold Samples [36] approach.

In our discussion, we assume that the robot acquired a full description of its
workspace, and concentrate on issues related to the stages of decision making and

1. INTRODUCTION

Figure 1.1: An example of a messenger robot in its workspace

free path finding. The configuration space is partitioned into two subsets. The free
part contains configuration points that correspond to free placements of the robot
such that its interior does not intersect any obstacles. The second part, so-called
forbidden space, is the complement of the free space. It is clear that the robot
cannot move from a free pose to a forbidden one without its representing point
in the configuration space crossing the boundary between the free and forbidden
spaces. This is why this boundary plays a crucial role. The first problem considered
in this work is the study of the geometry of this boundary in the configuration space.
To this end, we derive a parameterization of the various elements that constitute
this boundary. Using this parameterization, we can achieve two objectives. First,
we can easily visualize the boundary between the free and forbidden parts of the
configuration space. This visualization provides a view inside the configuration
space and serves as an important educational tool. Furthermore, once this parame-
terization is formalized, it is straightforward to describe the differential geometrical
properties of the boundary. These two aspects taken together provide a deeper
understanding of the geometrical structure of the configuration space.

When the robot moves in its workspace, it can touch obstacles. We distinguish
between four types of touching (also called contacts): (i) a vertex of the robot slides
on an edge of an obstacle, (ii) an edge of the robot slides on a vertex of an obstacle,
(iii) a vertex of the robot touches a vertex of an obstacle and finally (iv) an edge of
the robot overlaps an edge of an obstacle. Obviously, these types are not mutually
exclusive, and the robot can maintain several contact types with one or more
obstacles simultaneously. These contact types are strongly related to the properties
of the boundary between the free and forbidden parts of the configuration space. In
particular, the vertex-edge and edge-vertex types correspond to two-dimensional
elements of the boundary, which we call contact surfaces, which are “glued” together
by one-dimensional elements corresponding to the vertex-vertex and edge-edge
contact types.

Once a piecewise smooth representation of the boundary between the free
and forbidden spaces is obtained, using the parameterization that we discussed
before, it is natural to consider its discretization. Here our interest focuses on the
approximation of the boundary using a triangulated mesh. In particular, we con-
sider the two-dimensional elements of the boundary, namely, the contact surfaces.

2

Figure 1.2: An example of a generic
saddle surface.

Figure 1.3: An interpolating approxi-
mation of a general saddle, which is a
lifting of a planar Delaunay triangula-
tion.

First, we observe that the Gaussian curvature of the contact surfaces of the first
type, namely, those that correspond to vertex-edge contacts, vanishes. That is,
surfaces of this type are developable. The surfaces of the second type, those that
correspond to edge-vertex contacts, are more interesting from a geometrical point
of view since their Gaussian curvature is negative everywhere. On the one hand,
intuitively speaking, the first observation means that the contact surfaces of the
first type are locally flat like the Euclidean plane. On the other hand, the surfaces of
the second type, namely, those that correspond to edge-vertex contacts, are locally
saddle-like. A bit more precisely, if p ∈ S where S is a smooth and negatively curved
surface, then the second order approximation of the Monge patch centered at p is a
hyperbolic paraboloid, also known as a saddle. An example of such a saddle surface
is depicted in Figure 1.2. A rigorous study of the Gaussian curvature and related
topics can be found in any standard textbook on differential geometry like [12, 23].

This leads to the second part of this dissertation, namely, optimal approxi-
mation of saddle surfaces. On a broader level, optimal approximations of smooth
surfaces in general and saddle surfaces in particular are of interest in their own right.
In relation to the motion planning problem, the discretization of contact surfaces
that correspond to edge-vertex contacts can benefit from a good approximation
of saddle surfaces. As in the case of the first topic of the work, the approximation
of saddle surfaces has also been intensively studied; for example, see Pottmann
et al. [34]. The significant contribution presented here is an improvement of the
approximation by considering non-interpolating triangulation.

Let us recall that a saddle surface S, as depicted in Figure 1.2, is given, up to
rotations and translations, by

S =
{(

x, y, z
)

: z = x2

a2 − y2

b2

}
.

3

1. INTRODUCTION

x

f (x)

g (x)

d
is

t V
(F

,G
)

Figure 1.4: Illustration of the vertical distance in the plane.

A naive, interpolating, approximation of S using a triangulated mesh can be ob-
tained as follows. First obtain a set P of points in the plane (for example randomly)
and triangulate the point set (for example using the Delaunay triangulation). Next,
lift the points in P to the saddle S. That is, given a point p ∈ P set the point

P = (
px , p y ,F (px , p y)

)
to be the lifting of p to S, where F (x, y) = x2

a2 − y2

b2 and px , p y

are the x and y coordinates of p, respectively. Finally, connect two lifted points P
and Q only if their preimages p and q are connected in the planar triangulation.
An example of this discretization is illustrated in Figure 1.3. In this case, all the
vertices of the yielded mesh are located on the surface. It is natural to expect that
this approach can be improved.

Let us formulate some criteria, to make “improvement” more precise. First,
let us formulate an error criterion, which is always necessary when considering
approximations. To this end, we consider the vertical distance that we loosely define
below. Intuitively, the vertical distance between two surfaces is the maximal length
of a vertical line segment that connects point on the surfaces. Let us demonstrate
this notion in the plane. Let f , g : D →R, where D ⊂R2, be two smooth functions
and let F and G be the corresponding graphs in the plane. Then distV (F,G) =
maxx∈D | f (x)−g (x)| as illustrated in Figure 1.4. The notion can be easily generalized
for the case of surfaces, as we do in this work. We can now formulate the first
criterion that we use when evaluating an approximation. In particular, given some
ε> 0 we want all triangles T̂ in the triangulation T to satisfy distV

(
S, T̂

)≤ ε, where
S is the saddle surface. This criterion can be thought of as the correctness of the
approximation.

Next, we want to improve the efficiency of the approximation. In particular,
given some fixed ε> 0, we want to use as few triangles as possible while maintaining
the correctness set by ε. For example, let T and T ′ be two triangulations that
approximate a saddle S and assume that distV

(
S, T̂

)= distV
(
S, T̂ ′)≤ ε for all T̂ ∈T

and T̂ ′ ∈ T ′. Then we say that T is more efficient than T ′ if it consists of less
triangles. Obviously, the number of triangles in T equals the number of triangles
in its vertical projection to the x y-plane. Finally, since the number of triangles
is inversely proportional to their area, we can improve the efficiency of T by
increasing the areas of the corresponding planar triangles.

These two criteria can be roughly formulated as the following problem. Let
D ⊂R2 be some domain in the plane. Find a triangulation T of the domain D such

4

that for all T ∈T its lifting to the saddle, denoted by T̂ , satisfies

distV
(
S, T̂

)≤ ε.

Then, optimize the areas of the triangles that constitute T such that the vertical
distance is maintained fixed. We can now consider a third criterion — the quality of
the triangles that constitute the triangulation. More precisely, we want to improve
the shape of the triangles that the triangulation comprises. The shape of a triangle
can be improved in numerous ways; we choose to consider the maximization of
the minimal angle.

We can now state the problem that is addressed in this work. Given a saddle
surface S, defined over a finite domain, and an error bound ε > 0, we look for a
planar triangulation T such that distV

(
S, T̂

) ≤ ε where T̂ is the lifting of T ∈ T

to the saddle S. Furthermore, if T ′ is another planar triangulation such that the
liftings of all its triangles have an ε vertical distance to S, then we show that (i) the
number of triangles in T is smaller or equal than the number of triangles in T ′. In
addition, (ii) If α and α′ are the minimal angles over all the triangles in T and T ′,
respectively, thenα>α′. So far, we have considered an interpolating approximation
of the saddle S. Next, we show that by allowing a non-interpolating triangulation of
S, an improved approximation of saddles can be found. In particular, given a fixed
error bound ε> 0, we find another planar triangulation T ? such that for all T ∈T ?

we have distV
(
S, T̂

)≤ ε, where T̂ is a special vertical lifting of T as introduced in
the work. Furthermore, the areas of the triangles in the improved triangulation T ?

are larger than the areas of the triangles obtained in the interpolating case.
The last part of the dissertation describes the contribution to the 2D Arrange-

ments package of the COMPUTATIONAL GEOMETRY ALGORITHMS LIBRARY (CGAL).1

Let us first briefly recall what an arrangement is. For the sake of simplicity let us
consider the two-dimensional case. For a finite collection of planar geometric
objects S, the arrangement A (S) is the subdivision of the plane into cells that are
induced by the objects in S. Figure 1.5 depicts an example of an arrangement
that is induced by three ellipses. In this example, the arrangement partitions the
plane into thirteen bounded cells and one unbounded cell. Note that the notion
of arrangement is well defined also in arbitrary dimensions. Over the past few
decades, arrangements and the computation of arrangements were deeply studied.
Fogel et al. [16], for example, provide further details and references.

The notion of arrangements is extremely useful in various fields. Of special
interest, in our case, we note its role in the realm of robot motion. For example,
as Fogel et al. [17] discuss, computations related to arrangement can solve the
motion planning problem in the case of a translating robot. Thus, it comes as
no surprise that while working on the other topics covered by the dissertation,
the arrangement package drew some attention. In particular, the computation
of arrangements of families of piecewise linear curves (which we call polylines)
was considered. Version 4.3 of CGAL is shipped with an implementation that can

1www.cgal.org

5

www.cgal.org

1. INTRODUCTION

Figure 1.5: Simple example of an arrangement.

compute the arrangement of a family of bounded polylines in the plane. The
2D Arrangements package supports the computation of arrangements of families
of linear objects (line segments, rays and unbounded lines); however, it does not
allow the computation of arrangements of families of unbounded polylines.

Generalizing the implementation of 2D Arrangements, which would enable
the computation of arrangements of unbounded polylines was set as the goal of
this part of the work. Unfortunately, the code that is delivered with version 4.3 of
CGAL introduced several hurdles that obstructed the fulfillment of this goal within
the scope of this work. Nevertheless, a modest contribution to 2D Arrangements
was successful. The original code that handles bounded polylines was improved.
First, the execution time of a computation of an arrangement of bounded polylines
was reduced by 5% on average. Secondly, the updated code introduces better
programming style on the one hand, and more generic implementation on the
other hand. Hopefully, the second part of the contribution has paved the way
towards the accomplishment of the ultimate goal.

Outline. Apart from this introduction, the dissertation consists of four chapters.
The second chapter introduces in detail the motion planning problem and the
related configuration space. Then, it derives the parameterization of the contact
surfaces and studies their geometrical properties. In the third chapter we discuss
the optimal approximation of the saddle surfaces. In the fourth chapter, we discuss
the contribution made to the Arrangements on Surface package of CGAL. Finally,
we conclude the dissertation in the fifth chapter.

6

2 Parameterization of
Contact Surfaces

A summary of this chapter can be found
in [2]. The accompanying technical
report [1] gets into the details; this
chapter is mostly based on these two
publications.

D.A.

2.1 Introduction

The piano movers problem is about four decades old [37, 32] and studied intensively
ever since. A fundamental part of this study is the configuration space, which is
associated to the workspace at hand. A workspace that consists of a planar polyg-
onal convex robot, which is free to rotate and translate, together with polygonal
obstacles give rise to a configuration space. Each point in the configuration space
corresponds to a unique placement or pose of the robot in its workspace, and vice
versa, that is, every pose of the robot in the workspace corresponds to a unique
configuration point. The presence of obstacles in the workspace translates to the
partition of the configuration space into two parts, namely, the free and forbidden
spaces. Configuration points in the forbidden part correspond to poses in which
the interior of the robot intersects the interior of one or more obstacles.

Most studies set the solution of the motion planning problem as the primary
goal and thus focus mainly on algorithmical aspects. Thus, the related configura-
tion space was hardly studied from a geometrical point of view. In this work we
focus on the geometrical properties of the configuration space, which is associated
to the piano movers problem. To that end, we derive in Section 2.3 an explicit
parameterization of the boundary of the forbidden space. Better understanding
of this boundary can contribute, for example, to the general study of the motion
planning problem. In turn, using this parameterization we study, in Section 2.5, the
geometrical properties of this boundary.

2. PARAMETERIZATION OF CONTACT SURFACES

In terms of visualization, most of the illustrations of the configuration space
that can be found in the literature are rather simple. It is well known that for a
robot that can only translate the boundary of the forbidden space is polygonal and
can be computed using Minkowski sums. Thus, most of the visualizations slice
the configuration space with horizontal planes. Each slice corresponds to a fixed
rotation of the robot and the boundary can be computed using Minkowski sums.
Finally, stacking these slices yields a discrete visualization of the obstacles as they
appear in the configuration space [24]. Using the presented parameterization it is
easy to visualize the boundary of the forbidden space, as can be seen in Figure 2.10
on page 23 and in [3].

Holonomic vs. non-holonomic. A robot for which any path in the configuration
space is a valid motion in the workspace (in the absence of obstacles) is called
omnidirectional robot or holonomic. On the other hand, if the robot is subject
to velocity constraints, then both the constraints and the robot are called non-
holonomic. In books like [25, 13] and [38, § 7.3.1] further details can be found.
Xidias et al. [47] describes a method to tackle the motion planning problem, which
is designed for both holonomic and non-holonomic robot. In this work we consider
only the holonomic case, i.e. the controllable degrees of freedom equal the total
degrees of freedom.

Previous work. The notion of configuration space was used for the first time in
the seminal work of Lozano-Pérez and Wesley [27]. Surveys like [19, 46] can provide
an overview at least on early related works. However, as we already pointed out, the
literature aims mainly at the motion planning problem and hardly considers the
boundary of the forbidden space per se, let alone parameterizing it or studying its
geometrical properties.

Two interesting examples are [8, 30]. Both attempt to solve the motion planning
problem itself, although they provide, as a byproduct, some idea on the geometrical
nature of the boundary of the forbidden space. Yet, neither of them provide a simple,
concise and geometrically driven representation of the various elements of the
boundary. Another interesting example is the work presented by Varadhan et al. [44]
where the boundary between the forbidden and the free spaces is approximated.
The approximation obtained is guaranteed to be topologically correct and within
some prescribed Hausdorff distance from the actual boundary’s surface. Again,
this work does not provide any geometrical insight on the nature of neither the
contact surfaces nor their geometry. In his work, Brost [11] obtains both geometrical
and topological information on the configuration space. Yet again, the obtained
description is not straightforward.

The literature in terms of visualization of the configuration space is rather
limited. Based on the parameterization presented in this paper Atariah and Rote
[3] presented a scientific video that visualizes the configuration space of a planar
polygonal robot. The visualization presented in [39] gives another glimpse into

8

2.1. Introduction

x

y

a1
a2

A(0)

a3 a4

~n A
4

α3

r 3

R0

a1

E A
1

a2

A(q)

a3

a4

θ ρ1

R0

~r

b1
1

b1
2

b1
3

O1 ω1

b2
1

b2
2

b2
3b2

4

O2

Figure 2.1: Workspace example with the robot A(0) in its rest position (dark
green) and in a configuration resulting of a translation by a vector ~r and rotation
in angle θ (light green), that is A(q) where q = (~r ,θ). Note that for A(q) the local
frame (in blue) does not align with the one of the workspace.

a configuration space. In this case the boundaries of the robot and the obstacles
comprise line segments and circular arcs.

Configuration spaces were considered also in slightly different contexts. For
example, Bajaj and Kim [4] consider the case of a robot with curved boundary
that translates amid similar obstacles. The configuration space can naturally be
considered as a group; see Remark 2.2 on page 12. Lysenko et al. [28] addressed
the motion planning problem and other related problems as well using tools from
group morphology. Contact surfaces are also discussed in [41].

Definitions and Notations. In this section we describe all the notations and no-
tions that will be used throughout the chapter. Further details can be found in
standard textbooks like [38, 26, 13, 25]. In addition refer to Figure 2.1 for illustrations
of the various definitions.

The robot. A robot A is a convex planar polygon with n vertices denoted by
{ai }n

i=1; we assume that they are given in counterclockwise order. Throughout
the chapter, we follow the convention that an+1 = a1 and a0 = an . The robot can
translates and rotates in a workspace scattered with polygonal (convex) obstacles.
The workspace is denoted by W and we take it to be W = R2. The reference point
of the robot is denoted by R0, and we assume that in the rest position it is at the
origin. Furthermore, we assume that the local frame of the robot aligns with the
one of the workspace when in the rest position. The vertices of the robot are either

9

2. PARAMETERIZATION OF CONTACT SURFACES

x

y

a1

A

a2

a3

Figure 2.2: An example of a triangular robot whose vertices cannot be both
counterclockwise ordered and in increasing angular order.

given with Cartesian coordinates, or with polar coordinates. For the vertex ai we
use the following notation ai = ri (cosαi , sinαi) where ri := ‖ai‖ and αi denotes
the angle with respect to the local frame of the robot. Finally, we assume that the
vertices are in an increasing angular order, that is 0 ≤α1 ≤ . . . ≤αn < 2π. The two
assumptions, on the order of the vertices of the robot and the monotonicity of their
angles, can lead to inconsistencies, as depicted in Figure 2.2. To avoid this, we
assume, in addition, that the reference point lies in the interior or on the boundary
of A. Finally, we denote by ρi the internal angle corresponding to the i -th vertex.

Obstacle(s). Let {Ok }m
k=1 be m obstacles in the workspace. The vertices of Ok

for some k are given in counterclockwise order, and are denoted by {bk
j }. We follow

the same convention on the vertices of the obstacles, as we had for those of the
robot. Finally, the interior angle at the j -th vertex will be denoted by ωk

j . If the
context introduces no confusion, then we omit the index k. We adopt the same
convention regarding the cyclic ordering of the vertices as we formalized for the
vertices of the robot.

Edges and their normals. An edge (vector) ai ai+1 of the robot connecting ai

to ai+1 is denoted by E A
i ; that is E A

i = ai+1 −ai . Similarly, the j -th edge (vector) of

the obstacle Ok connecting bk
j to bk

j+1 is EOk

j . The (inward) normals of the edges

E A
i and EOk

i are simply their 90◦ degrees counterclockwise rotation and denoted by

~n A
i and ~nOk

j , respectively. Note that according to this definition, the normals are
not necessarily unit vectors.

Configuration space and poses. We let C denote the configuration space of
the robot A in the workspace W that is scattered with the obstacles {Ok }. Each
configuration point, or configuration for short, q ∈ C , corresponds to a unique
placement, denoted by A(q), of the robot in the workspace and vice versa. In other
words, the placement A(q) is the portion of the workspace that is covered by A
when it assumes the configuration q. In this work we may refer to a placement as
either a pose or even a configuration, when there is no risk of confusion. We say
that a configuration point q, or the corresponding placement A(q), is forbidden,
if A(q)∩O 6= ; for some obstacle O in the set of obstacles {OK }. The collection of

10

2.1. Introduction

all forbidden configuration points is called the forbidden space and it is denoted
by Cforb. Its complement is the free space, which is denoted by Cfree. Finally,
R0(q), ai (q),E A

i (q) and ~n A
i (q) denote respectively the position, in the workspace, of

the reference point, i -th vertex, i -th edge or i -th normal of the robot.
For a configuration point q = (~r ,θ) we have

R0(q) =~r +R0

E A
i (q) = ai+1(q)−ai (q)

~n A
i (q) = R

π
2
(
E A

i (q)
)

where~r = (
x, y

)
is the translation component of the configuration, θ is the rota-

tional component and Rα is the standard (counterclockwise) rotation matrix (cf.
Figure 2.1). In order to express ai (q) for an arbitrary configuration q we have to
choose a model of the configuration space. In this chapter we consider two possible
models

C geom = {
(x, y,θ) : (x, y) ∈R2,θ ∈ [0,2π)

}
(2.1)

C rat = {
(x, y,τ) : (x, y) ∈R2,τ ∈R ∪ {∞}

}
(2.2)

that we call the geometrical and rational models, respectively. When no confusion
can arise, we simply write C to denote the configuration space. Note that C geom =
R2 ×S1 and C rat =R2 ×RP1. These models are related by τ= tan θ

2 .
For q = (~r ,θ) ∈C geom we have

ai (q) =~r +Rθai (0) =~r +Rθai . (2.3)

On the other hand, given a configuration point q′ = (~r ,τ) ∈C rat with τ ∈R∪ {∞} we
have

ai (q′) =~r +Mτai (2.4)

where Mτ is the so-called rational rotation matrix given by

Mτ = 1

1+τ2

(
1−τ2 −2τ

2τ 1−τ2

)
. (2.5)

Note that since limτ→±∞ Mτ = Rπ we can safely set M∞ = Rπ.
Before we continue, let us make two remarks.

Remark 2.1. When using the rational representation of the configuration space
and taking rational coordinates for the translation vector~r and letting τ ∈Q, it is
possible to establish exact rational computations. On the other hand, the geomet-
rical representation is of more use when one is trying to visualize elements of the
configuration space. This is due to the fact that the rotation component in C geom

is bounded.

11

2. PARAMETERIZATION OF CONTACT SURFACES

Remark 2.2 (The Group Structure). The configuration space in our case, namely,
the one that corresponds to a planar robot, which is free to rotate and translate,
is homeomorphic to the special Euclidean group SE(2). Indeed, the following
homeomorphisms hold

SE(2) ∼=R2 ×S1 ∼=R2 ×RP1.

See [26, §4.2] for further details.

Contacts and the Boundary of the Forbidden Space. For a set S we denote by ∂S
and intS the boundary and the interior of S, respectively. We say that A(q) touches
or is in contact with an obstacle O for a configuration q if

∂A(q)∩∂O 6= ; and int(A(q))∩ intO =;.

Note that A(q) touches O and its interior does not intersect the interior of any other
obstacle in the workspace if and only if q ∈ ∂Cforb [26, §4.3]. If only

∂A(q)∩∂O 6= ;,

and the interiors of the robot and the obstacle either intersect or not, then we say
that A(q) pseudo touches or is in pseudo contact with the obstacle O. For illustration,
see the contact between O2 and A(q) in Figure 2.3. If a configuration q corresponds
to a pseudo contact but not to a contact, then we clearly have that q ∈Cforb.

For a configuration q, such that the A pseudo touches or just touches an obsta-
cle O, one or more of the following contact types can hold:

Name Notation Definition
Vertex-Edge (vi -e j) ai (q)∩ intEO

j 6= ;
Edge-Vertex (ei -v j) intE A

i (q)∩b j 6= ;
Vertex-Vertex (vi -v j) ai (q) = b j

Edge-Edge (ei -e j) |intE A
j (q)∩ intEO

j | > 1

Note that the contact type alone does not imply whether the interiors of the robot
and the obstacle intersect or not. Note, in addition, that a robot can maintain
various (pseudo) contacts with the same obstacle simultaneously. In the presence
of more than one obstacle, then it can maintain multiple contacts as well. The fol-
lowing definitions refer to portions of Cforb that maintain a fixed (pseudo) contact
with a given obstacle.

Definition 2.1 (Contact Surface). The set of all configuration points that corre-
spond to a pseudo contact between a vertex (or an edge) of the robot and a vertex
(or an edge) of an obstacle is called a contact surface.

Note that a contact surface can be decomposed into two sub-surfaces; one that
is contained in the interior of Cforb and the second one in ∂Cforb. Indeed, this is
true, because a contact surface comprises configuration points that correspond
to either pseudo contacts or contacts. The following definition focuses on the
configurations that realize contacts.

12

2.1. Introduction

b1
1

b1
2

b1
3

O1

b2
1

b2
2

b2
3

O2

b3
1

b3
2

b3
3

O3

a1

a2

a3 a4

A(q)

Figure 2.3: In this example, the configuration q corresponds to a (v2-e3) contact
with O1 and an (e4-v3) pseudo contact with O2. In addition, with O3 the robot
maintains (e4-v2), (e4-v1) and (e4-e1) contacts simultaneously. This example
demonstrates that q belongs to four contact patches and to a contact surface.

Definition 2.2 (Contact Patch). The set of all configuration points that correspond
to a contact between a vertex (or an edge) of the robot and a vertex (or an edge) of
an obstacle is called a contact patch.

Every contact between a robot and an obstacle is also a pseudo contact, thus
we have that each contact patch is a subset of a contact surface. Furthermore,
it is a subset of ∂Cforb. In addition, if the workspace contains a single convex
obstacle, then the union of all contact patches is the boundary of the forbidden
space. Finally, a contact surface that maintains either a (v-e) or an (e-v) contact is
of dimension two, whereas a contact surface that maintains either a (v-v) contact
or an (e-e) contact is of dimension one. This means that the boundary ∂Cforb is a
union of contact patches of dimension two that are “glued” together with contact
patches of dimension one. In Figure 2.3 an example of a pose that maintains various
contact types is illustrated. Finally, a single obstacle is represented as a pillar-like
object; an example is depicted in Figure 2.10 on page 23. The portion of C that is
bounded inside this pillar-like object is the forbidden space, which corresponds to
the considered obstacle. If the workspace contains more then one obstacle, then
each one of them contribute another pillar-like object in the configuration space.
The union of the interiors of the pillars is the forbidden space.

In this chapter we will formulate an explicit parameterization of the contact
surfaces depending on the properties of the robot and the obstacles. Furthermore,
we will find a subset of the parameter domain, of each contact surface that corre-
sponds to the respective contact patch. Thus, we will be able to parameterize the
whole boundary of the forbidden space.

13

2. PARAMETERIZATION OF CONTACT SURFACES

R0(0) a = P

r
a

Figure 2.4: Rotating the robot around a fixed point on its boundary

2.2 Rotating the Robot

Since the robot A that we consider is holonomic, every point P ∈ W can be a
center of rotation of the robot. In particular, given a configuration point q ∈C , the
robot can rotate about every point in the boundary ∂A(q) of the robot. This kind of
motion, which is illustrated in Figure 2.4, is the corner stone of the parameterization
that we formalize in this work.

Let us, for the time being, ignore all obstacles in the workspace and assume that
A can freely move in it. We set a point P ∈W and consider a point a , which is given
with respect to the local frame of the robot when it is in its rest position. Obviously,
the point a can well be in either the interior, or on the boundary of the robot. For
reference, see the example in Figure 2.4. According to the notations standards that
we use, a = a(0), a(q) denote the position of the marked point when the robot is
in either the rest position or in some pose corresponding to a configuration q. We
parameterize the set of configuration points in which the marked point a is fixed to
the point P . More precisely, we want to parameterize the following set

Pa = {
q ∈C geom : a(q) = P

}
. (2.6)

Let us stress that the model of the configuration space that we consider here is the
geometric one. We will see in details, in Section 2.4, a similar parameterization that
has to be used when C rat is the model of the configuration space. Since the robot
is rigid the locus {R0(q)}q∈Pa is a circle in the workspace with center P and radius
ra = ‖R0 −a‖ (cf. Figure 2.4). For χ ∈ [0,2π), this circle is parameterized by

P + ra

(
cosχ
sinχ

)
(2.7)

Based on this observation, we can prove the following lemma.

Lemma 2.3. Let P ∈W be a point in the workspace. Furthermore, let

a = ra

(
cosαa

sinαa

)

14

2.3. Parameterizing Contact Surfaces

be a point that is given with respect to the local frame of the robot when it is in its
rest position. Then, the set Pa , as defined in Equation (2.6), is parameterized by

qa(φ) =
(
~ra (φ)
θa (φ)

)
=

(
P −Rφa

φ

)
(2.8)

for φ ∈ [0,2π). That is q ∈ Pa if and only if q = qa (φ) for some φ ∈ [0,2π).

Proof. On the one hand, we have

a(qa(φ)) =~ra (φ)+Rθa (φ)a

= P −Rφa +Rφa = P

This shows, that for every φ, the point a(qa (φ)) is fixed to P .

Conversely, given q = (~r ,θ) ∈ Pa we have

P = a(q) =~r +Rθa

Thus,~r = P −Rθa . Finally, for φ= θ we have that q = qa(φ).

Note that for φ = 0 the parameterization given in Equation (2.8) is merely a
translation. In other words, the local frame that is assigned to the robot for qa(0) is
aligned with the global frame of the workspace. Finally, note that Equation (2.8) is a
parameterization of a helix in the configuration space. We conclude this section
with the following remark.

Remark 2.3 (Covering C -Space with Helices). Instead of taking a ∈ ∂A, we can
generalize the idea and consider an arbitrary linear combination of the vertices
of the robot, a =∑n

i=1λi ai , and some point P ∈W . The set of configurations that
correspond to a rotation of the robot such that a is fixed to P is again a helix. As
a matter of fact, every configuration point q ∈ C is contained in infinitely many
helices of this form.1

2.3 Parameterizing Contact Surfaces

In this section we consider the robot A and one convex obstacle O. Later, an
arbitrary obstacle can be decomposed into convex subsets and each sub-obstacle
can be treated in a similar way. Given a (pseudo) contact type of A and O we
will derive an explicit parameterization of the corresponding contact surfaces and
patches.

1This remark has been contributed by S. Ghosh.

15

2. PARAMETERIZATION OF CONTACT SURFACES

Figure 2.5: Example of a generic (v-e) contact surface in C -space. The black
curves are helices that correspond to S(t0,φ) for t0 ∈ {0, 1

4 , 1
2 , 3

4 ,1}. The yellow lines
are the rulings of the surface; corresponding to fixed φ and varying t ∈ [0,1].

2.3.1 Vertex-Edge Contact

A vertex-edge contact occurs when a vertex ai of the robot lies in the interior of
an edge EO

j of the obstacle in a free manner, i.e. such that the interiors do not
intersect (see O1 and A(q) in Figure 2.3 for an example). In this section, based on
the parameterization obtained in Section 2.2, we will provide an explicit parameter-
ization of the contact surface and the contact patch in the configuration space that
correspond to the prescribed (vi -e j) pseudo contact and contact.

Let P (t) = (1−t)b j +tb j+1 be an arbitrary point in the interior of EO
j . For t ∈ (0,1)

and φ ∈ [0,2π) the configurations yielding the poses where ai is fixed to P (t) and
rotating about it, are derived from Equation (2.8) by replacing P with P (t) and
setting a = ai

S(t ,φ) =
(
P (t)−Rφai

φ

)
=

(
b j −Rφai

φ

)
+ t

(
b j+1 −b j

0

)
=c(φ)+ t~r (φ)

(2.9)

Clearly, this surface is a ruled surface with directrix c(φ) and~r (φ) 6= 0 as the vector
field. Note that since d

dφ~r (φ) = 0 we have that S is a cylindrical ruled surface

and thus developable. Note that for every t ′ ∈ (0,1) we have that S(t ′,φ) is a helix.
Furthermore, for (0,1) 3 t ′′ 6= t ′ the helix S(t ′′,φ) is congruent to S(t ′,φ). Finally, for
t ∈ {0,1} the parameterization reduces to two helices, which correspond to the two
pseudo contacts (vi -v j) and (vi -v j+1), respectively (cf. Section 2.3.3). Clearly, as φ
varies in the interval [0,2π), the configuration points on S represent both free and
forbidden contact. In Figure 2.5, such a surface is illustrated.

Remark 2.4. If we fix a vertex ai of the robot and generate all possible vertex-edge
contact surfaces with all edges of the obstacle, then helices contained in each of

16

2.3. Parameterizing Contact Surfaces

b j

b j+1

P (t)

−~nO
j

ρi

~n A
i−1

~n A
iai

ai−1

ai+1

−~nO
j

~n A
i−1

~n A
i

Figure 2.6: Generic setting of a (v-e) contact and the corresponding arrangement
of the edge normals. Robot in green, and obstacle in red.

these contact surfaces are congruent copies of each other. Note that if the obstacles
are regular polygons then for a fixed vertex of the robot the contact surfaces are
just congruent copies of each other. If, in addition, the robot is a regular polygon as
well, then all the vertex-edge contact surfaces are congruent copies of each other.2

Our next goal is to find a sub-domain Φ⊂ [0,2π) such that S(t ,φ)|φ∈Φ will be
the contact patch that is contained in S. In Section 2.3.1.1 we analyze the domain
[0,2π) of φ and find the sub-domain Φ. Section 2.A.1 provide a similar analysis,
using a different technique; this alternative approach has some limitations and
advantages, which are discussed.

2.3.1.1 Vertex Edge Angle Range Analysis

By now, we are given two indices i , j we derived the parameterization of the contact
surface that corresponds to the (vi -e j) contact type. In particular, the configuration
points on S correspond to all pseudo contacts between ai and EO

j . Let S be this

surface, as given in Equation (2.9). Our next goal is to find a contact patch S′ ⊂ S ∈C ,
such that for all q ∈ S′ we will have that ai (q) touches the edge of the obstacle.

In particular, for each t0 ∈ (0,1) we have to find a sub-domainΦ⊂ [0,2π) such
that every point q ∈ S(t0,φ) |φ∈Φ will yield a contact. Since we assume that both the
robot and the obstacle are convex, the sub-domainΦ is independent of t0. This can
be seen in Figures 2.3 and 2.6. For some fixed t0 ∈ (0,1) let qi (φ) = S(t0,φ) be a helix
in S, which correspond to the pseudo contact between the vertex ai and the point
P = P (t0) in the interior of the edge EO

j . Note that ai (qi (φ)) = P for all φ. Finally,
the sub-domainΦ can be determined by finding two values:

• φmin: The angle for which ai+1(qi (φmin)) lies on the line containing the edge
EO

j and ai−1(qi (φmin)) lies to the right of this edge.

• φrange: The range of rotation that maintains the contact of ai with the point
P . In practice this means that we want to have that ai−1((qi (φmin +φrange))

2This observation has been contributed by S. Ghosh.

17

2. PARAMETERIZATION OF CONTACT SURFACES

will lie on the line containing EO
j such that ai+1(qi (φmin +φrange)) will lie to

its right. See Figure 2.6 for an illustration of the setting we consider.

Let φmax =φmin +φrange and define

Φ=
{

[φmin,φmax] if φmax < 2π

[φmin,2π)∪ [0,φmax −2π] if φmax ≥ 2π
(2.10)

In turn, for all φ ∈Φ we have ai (qi (φ)) = P . Conversely, if for some configuration
q there is a contact between ai and the point P on the edge EO

j , then there exists
some φ0 ∈Φ such that q = qi (φ0). Note thatΦ as defined above is maximal only if
P is an interior point of EO

j . Otherwise, the sub-domainΦ is larger. This, however,
is the case of vertex-vertex contact that we consider in Section 2.3.3.

We now compute the values of φmin and φrange. The latter is straightforward to
find, and depends on the interior angle at the vertex ai of A, namely,

φrange =π−ρi .

Computing φmin. We want to find φ such that for qi (φ) ∈ C the following will
hold:

P −‖E A
i ‖

EO
j

‖EO
j ‖

= ai+1(qi (φ)),

where EO
j is consider as the vector from b j to b j+1 and ‖ ·‖ denotes the length of an

edge. Solving this equation for φ is equivalent to solving

−‖E A
i ‖

EO
j

‖EO
j ‖

= M · (x, y
)T ,

where x = cosφ, y = sinφ and

M =
(
E A

i ,R
π
2 ·E A

i

)T
. (2.11)

Since det M = ‖E A
i ‖2 6= 0, this system has a unique solution, denoted by

(
x0, y0

)T .
We define {φi }4

i=1 as follows

{φ1,φ2} =arccos(x0)∩ [0,2π)

{φ3,φ4} =arcsin(y0)∩ [0,2π)

Note that since
(
x0, y0

)
is a unit vector, we have that {φ1,φ2}∩ {φ3,φ4} contains

exactly one element. As φmin should lie in [0,2π), it satisfies

φmin = {φ1,φ2}∩ {φ3,φ4}.

For any combination of signs of x0 and y0 Table 2.1 suggests in which interval φmin

is, and using the definition of the φi ’s it can be easily found. Finally, the red patches
in Figure 2.10 on page 23 correspond to all possible vertex-edge contacts between
triangular robot and obstacle.

18

2.3. Parameterizing Contact Surfaces

x0 y0 φmin ∈
≥ 0 ≥ 0 [0, π2]
< 0 ≥ 0 [π2 ,π]
< 0 < 0 [π, 3π

2]
≥ 0 < 0 [3π

2 ,2π]

Table 2.1: The interval containing φmin, depending on signs of x0 and y0 for the
vertex-edge and edge-vertex contact types.

2.3.1.2 On the Exactness

From the practical point of view, it is important to point that the evaluation of
φmin involves trigonometric functions, thus it cannot be expressed in an exact
manner. In particular, the matrix M in Equation (2.11) involves the trigonometric
functions as well, and thus cannot be represented in an exact manner. In turn,
this means that x0 and y0 above cannot be computed exactly in the first place. In
Section 2.A.1 we find the sub-domainΦwithout using trigonometrical functions,
and thus it is represented exactly. However, this comes with a price; in order to
exploit this advantage, one has to impose the restriction that all the vertices of the
robot should lie on a circle of some fixed radius. This, obviously, is a very restrictive
assumption. Finally, since we consider C geom as the model of the configuration
space, the rotation of the robot as discussed in Section 2.2 cannot yield exact
representations. In turn, indeed, the parameterization of the contact surface and
patch itself, given in Equation (2.9), involves the trigonometric functions and thus
cannot be computed in an exact manner.

2.3.2 Edge-Vertex Contact

Recall that Equation (2.8) parameterizes a rotation of the robot around a point P
such that a boundary point a ∈ ∂A is fixed to P . For any t ∈ (0,1) we let

ai ,t = (1− t)ai + t ai+1 (2.12)

denote the point on the edge E A
i of the robot which is to be in pseudo contact with

b j . Next, in Equation (2.8), we replace P with b j and a with ai ,t and obtain

S(t ,φ) =
(
b j −Rφai ,t

φ

)
=

(
b j −Rφai

φ

)
+ t

(−Rφ ·E A
i

0

)
=c(φ)+ t~r (φ).

(2.13)

for t ∈ (0,1) and φ ∈ [0,2π). S(t ,φ) is the contact surface corresponding to the
(ei -v j) pseudo contact. Again, like the parameterization in Equation (2.9), we

19

2. PARAMETERIZATION OF CONTACT SURFACES

ai

ai+1

ai ,t
~n A

i

(1− t)‖E A
i ‖

ω j

−~nO
j−1

−~nO
j

b j

b j−1

b j+1

Figure 2.7: Generic setting of an (e-v) contact and the corresponding arrangement
of the edge normals.

obtain a ruled surface. We study its geometry further in Section 2.5.1. We stress that
configuration points on this surface lie both in ∂Cforb and in the interior of Cforb,
since this is a contact surface.

In order to find the contact patch, which is contained in S, as before, we have to
find a sub-domainΦ⊂ [0,2π) for which S(t ,φ)|φ∈Φ is a collection of configuration
points that corresponds to contacts and not to pseudo contacts. Again, as can be
seen in Figure 2.7, the sub-domain Φ does not depend on t .

Remark 2.5. In contrast to the case of (v-e) (pseudo) contacts, here in the edge-
vertex case we have that each contact surfaces is a collection of helices that are
not congruent since their radii depend on ai ,t . This suggests, as we establish in
Section 2.5.1, that the (e-v) contact surfaces are not developable.

Edge-Vertex Angle Range Analysis. Next, we find a sub-domain Φ⊂ [0,2π) such
that S(t ,φ)|φ∈Φ is the contact patch, which is contained in the contact surface S.
Like before, we provide two methods; one general that involves computations of
trigonometric functions and thus inexact. The other, discussed in Section 2.A.2, is
more accurate but at the same time more restrictive. Let us start with the general
approach. To that end, we compute φmin,φrange and φmax =φmin +φrange and we
set Φ as defined in Equation (2.10). As φmin and φrange depend only on the indices
i and j but not on t , we fix some t0 ∈ (0,1) and let qi (φ) = S(t0,φ). In this case,
we have that ai+1(qi (φmin)) has to lie on the line containing EO

j−1, such that the
interiors of the robot and the obstacle do not intersect. Similarly, ai (qi (φmax)) has
to lie on the line segment containing EO

j (cf. Figure 2.7). Clearly, we have that

φrange =π−ω j .

It is left to find the value of φmin.

20

2.3. Parameterizing Contact Surfaces

Computing φmin. In the case of (e-v) contact, the minimal angle of rotation
φmin is the one for which the following will hold

ai+1(qi (φ))−b j ∥ b j −b j−1

ai ,t0 (qi (φ)) = b j

}
(2.14)

See Figure 2.7 for reference. First note that

∀q ∈C ‖ai+1(q)−ai ,t (q)‖ = (1− t)‖E A
i ‖.

Thus, in order to find φ such that the conditions in (2.14) will hold we have to solve
the following equation

b j − (1− t0)‖E A
i ‖

EO
j−1

‖EO
j−1‖

= ai+1(qi (φ)),

with φ as the unknown. Like in the previous computation of φmin, the last equation
can be rewritten as

(t0 −1)‖E A
i ‖

EO
j−1

‖EO
j−1‖

= M · (x, y
)T

with x = cosφ, y = sinφ and

M =
(
ai+1 −ai ,t0 ,R

π
2 · (ai+1 −ai ,t0)

)T
, (2.15)

similarly to the matrix in Equation (2.11). Since det M = (1− t0)2 ‖E A
i ‖2 6= 0, the

system above has a unique solution, namely,

(x0, y0)T = (t0 −1)
‖E A

i ‖
‖EO

j−1‖
M−1 ·EO

j−1.

Note that since the matrix in Equation (2.15) contains trigonometric function and
the solutions x0, y0 are obtained using inverse trigonometric functions, the values
that we compute for φmin using this method cannot be represented exactly. In
Section 2.A.2 we present a method, analogous to the one shown in Section 2.A.1,
that can yield exact representation of Φ. Similarly to the case of the vertex-edge
contact, due to the model of the configuration space in use and to the trigonometric
nature of the computations, the contact surfaces (or patches) also in the case of
edge-vertex contacts cannot be represented exactly. Finally, we refer to Figure 2.10
on page 23, where the green patches correspond to the edge-vertex contacts.

2.3.3 Vertex-Vertex and Edge-Edge Contacts

Motions of the robot that maintain either a vertex-edge or an edge-vertex contact
have two degrees of freedom. In the previous sections we parameterized these mo-
tions, and, indeed, the developed parameterization yielded contact surfaces (and

21

2. PARAMETERIZATION OF CONTACT SURFACES

ω j

b j b j+1

b j−1

ρi

ai+1ai−1

ai

A(C (φmin))

2π−ω j −ρi

Figure 2.8: Illustration of a vertex-vertex contact with C (·) and φmin as defined
in Section 2.3.3.1.

patches) of dimension two. In order to complete the picture we have to consider the
configurations that correspond to vertex-vertex and edge-edge (pseudo) contacts.
Motions maintaining these contacts have only one degree of freedom. We recall
that the boundaries of the two-dimensional contact patches that we derived are
exactly the one-dimensional contact patches. Indeed, we use the parameterization
that we obtained and express explicitly the parameterizations of the vertex-vertex
and edge-edge contacts.

2.3.3.1 Vertex-Vertex Contact

For two indices i and j , the corresponding (vi -v j) pseudo contact is parameterized
by

C (φ) = S(0,φ)

forφ ∈ [0,2π) and S(·, ·) as given in Equation (2.9). Note that forφ ∈ [0,2π) we obtain
a contact surface (actually a single helix), since it corresponds to (vi -v j) pseudo
contacts that are not contacts. In order to find the interval Φ, which correspond
to the (v-v) contacts alone, we compute φmin that corresponds to the (vi -e j−1)
contact. For the pose that corresponds to C (φmin) we have that ai coincides with
b j , ai+1 lies on the line containing EO

j−1 and ai−1 lies to the right of this edge. See
Figure 2.8 for an illustration. ForΦ as defined in Equation (2.10) on page 18 with
φmax =φmin +2π−ω j −ρi we get the sub-helical-arc C (φ)|φ∈Φ that corresponds to
the (v-v) contacts alone.

2.3.3.2 Edge-Edge Contact

Parameterizing the configurations that correspond to an (ei -e j) contact can be
again obtained using the parameterization of the corresponding (vi -e j) contact.
Let us set

C (t) = S(t ,φmin)

where S(·, ·) is given in Equation (2.9) on page 16 and φmin is the one defined in
Section 2.3.1.1. In this case we have that C (0) corresponds to a (vi -v j) contact

22

2.3. Parameterizing Contact Surfaces

b j+2

b j+1b j

b j−1

A(C (0))
ai+2

ai+1 ai

ai−1
A(C (1))

ai+2

ai+1 ai

ai−1

Figure 2.9: Setting of an edge-edge contact where C (·) is given in Section 2.3.3.2.

Figure 2.10: An example of all possible contact patches for a given robot and
one obstacle in C . In red and green are the (v-e) and (e-v) contact patches,
respectively. The blue helical arcs correspond to (v-v) contacts and the yellow
(straight) line segments correspond to (e-e) contacts.

and C (1) corresponds to a (vi -v j+1) contact. In both cases ai+1 lies on the line
containing EO

j . In Figure 2.9 note that for t ∈ [0,1) we do not obtain the whole (ei -e j)

contact. If we take t ∈
(
0,1+ ‖E A

i ‖
‖EO

j ‖

)
, then the whole (ei -e j) contact is obtained; in

particular for t = 0 the vertex ai coincides with b j and for t = 1+ ‖E A
i ‖

‖EO
j ‖

the vertex

ai+1 coincides with b j+1.

2.3.4 Conclusion

In this section we derived, based on the fundamental motion described in Sec-
tion 2.2, the parameterization of all the elements of the boundary of the forbidden
space, which correspond to a single obstacle. Each obstacle in the workspace
contributes a pillar-like object, similar to the one depicted in Figure 2.10. Given
an obstacle O, the portion of C bounded “inside” the corresponding pillar-like
object is the forbidden space related to O. The portion of the configuration space
bounded inside all the pillars, is the forbidden space.

We will conclude the section by noting that most of the patches that we visualize
in Figure 2.10 are bounded from all sides by contact patches of dimension one. How-

23

2. PARAMETERIZATION OF CONTACT SURFACES

ever, some of them do not; this is due to the fact that we visualize C geom ∼=R2 ×S1.
Cases where we had to splitΦ (cf. Equation (2.10) on page 18) into two connected
components correspond to contact patches that are visualized as disconnected.
This is obviously merely an artifact of the visualization, as we have to restrict our-
selves to a Euclidean space.

2.4 Rational Parameterization

So far, in our discussion, we considered C geom as the model of the configuration
space. In other words, we used R2 ×S1 to model the configuration space C , such
that the first two coordinates correspond to the translation component of the con-
figuration points and the third coordinate corresponds to the angle of a rotation.
That representation, of the configuration space, provides a strong and direct geo-
metrical intuition, which can be utilized for visualization purposes as we saw earlier.
However, this representation introduces one prominent drawback. Namely, even if
the coordinates of the vertices of the robot can be represented exactly, the contact
surfaces that we derive cannot be represented exactly as their parameterization,
cf. Equations (2.8), (2.9) and (2.13), involves trigonometric functions. This fact
means, for example, that intersecting a contact patch with a line segment in the
configuration space cannot yield exact results when the geometrical model C geom

is in use.
By switching to C rat as the model of the configuration space, we can overcome

this problem, and obtain a rational-based parameterization of the contact surfaces
and patches. In other words, we can parameterize the contact surfaces using
rational functions. Recall that given a configuration point q = (~r ,θ) ∈C geom with
θ ∈ [0,2π) we have that

ai (q) =~r +Rθai

=~r +Mτai = ai (q′)

where q′ = (~r ,τ) ∈C rat, Mτ is the rational rotation matrix and

(−∞,∞] 3 τ= τ(θ) =
{

tan θ
2 if θ 6=π

∞ otherwise
(2.16)

Similarly to the study in the case where we used C geom, we obtain a parameter-
ization in C rat of a rotation of the robot A such that a ∈ ∂A is fixed to a point P in
the workspace that is given by

ka(ψ) = (~ra (ψ),τa (ψ)) (2.17)

with~ra (ψ) = P −Mψa and τa (ψ) =ψ. Finally, by either letting P = P (t) = (1− t)b j +
tb j+1 vary along an edge of the obstacle or letting a = ai ,t = (1− t)ai + t ai+1 vary

24

2.5. Differential Geometry of Contact Surfaces

along an edge of the robot, we obtain two rational parameterizations

S(t ,ψ) =
(
P (t)−Mψai

ψ

)
(2.18)

S(t ,ψ) =
(
b j −Mψai ,t

ψ

)
(2.19)

with ψ ∈ (−∞,∞] and t ∈ (0,1) of the (vi -e j) and (ei -v j) contact surfaces, respec-
tively.

Next, we want to find a sub-domain Ψ⊂ (−∞,∞] that will correspond to the
contact patches in the configuration space. To that end, let φmin and φmax be the
angels that correspond to either a vertex-edge or edge-vertex case as discussed in
Section 2.3.1 and Section 2.3.2, respectively. Using Equation (2.16) we can find the
corresponding ψmin and ψmax. In turn, Ψ can be defined as follows:

Ψ=
{

[ψmin,ψmax] if 0 ≤φmin,φmax ≤π∨π<φmin,φmax < 3π

[ψmin,∞]∪ (−∞,ψmax] if φmin ∈ [0,π]∧φmax ∈ (π,2π)

Finally, in a similar approach to the one taken when considering the geometrical
model of the configuration space, the missing one-dimensional contact patches
can be easily determined.

2.5 Differential Geometry of Contact Surfaces

Once one obtains the parameterization of the contact surfaces and patches, it is
natural and interesting to study their geometric properties. Better understanding of
these properties can be of help in the future to study further the configuration space
in general and in the context of the motion planning problem in particular. For
example, establishing a discretization of the contact surfaces and patches can prove
to be useful. We first, in Section 2.5.1, consider the surfaces and patches embedded
in C geom and later, in Section 2.5.2, we study the geometry of the boundary of the
forbidden space when it is embedded in C rat.

2.5.1 Geometrical Model

For a single obstacle O, the union of the corresponding contact patches consti-
tute the boundary between the free and forbidden space. In other words, for a
configuration point q ∈ S, for some contact patch S, we have that A(q) touches
the obstacle O. Let q1(ε) and q2(ε) be the intersection points of the normal line
q+ tNqS, with t ∈R, and the sphere of radius ε> 0 centered at q. Then, there exists
some small ε0 > 0 such that either q1(ε0) ∈ Cfree and q2(ε0) ∈ Cforb or vice versa.
Here NqS denotes the normal to the surface S at the point q ∈ S. Recall, that for

a surface S(t ,φ), its unit normal is given by
∂t S×∂φS

‖∂t S×∂φS‖ , where ∂t S and ∂φS are the

25

2. PARAMETERIZATION OF CONTACT SURFACES

partial derivatives of S. We however, for the sake of simplicity of the expressions,
consider here

NS(t ,φ) = ∂t S ×∂φS

without normalization. The following two lemmas can be directly proved.

Lemma 2.4 (Vertex-edge case). If S(t ,φ) is a vertex-edge contact patch, then we
have

NS(t ,φ) =−
(

~nO
j

〈EO
j ,Rφai 〉

)

Lemma 2.5 (Edge-vertex case). If S(t ,φ) is a edge-vertex contact patch, then we
have

NS(t ,φ) =
(
R

π
2 +φ(ai+1 −ai)

〈ai ,t , ai+1 −ai 〉

)
=

(
Rφ~n A

i
〈ai ,t ,E A

i 〉
)

Note that in both cases the normals point towards the free portion of the con-
figuration space. More precisely, if the workspace contains only one obstacle, then
the configuration point

S(t ,φ)+εNS(t ,φ),

for all ε > 0, is in Cfree. The information on the normals of the contact patches
can be helpful when one studies the configuration space and address the motion
planning problem (cf. [44, 43]).

As we saw in Section 2.3.1, the contact surfaces that correspond to (v-e) contacts
are rather simple, namely, developable surfaces. Therefore their geometry is rather
simple as well – we thus leave their study to Appendix 2.B. Thus, in the remaining of
this section we will study the geometrical properties of the (ei -v j) contact surfaces.
For the sake of simplicity we assume that P = b j is at the origin. As before, let us
assume that R0(0) is at the origin as well. For t ∈ (0,1) and φ ∈ [0,2π) and using
Equation (2.13) the contact surface is given by

S(t ,φ) =
(−Rφai ,t

φ

)
=

(−Rφai

φ

)
+ t

(−Rφ ·E A
i

0

)
= c(φ)+ t~r (φ)

where ai ,t = (1− t)ai + t ai+1 as before. Note that~r (φ), d
dφ~r (φ) 6= 0; this means that

the (ei -v j) contact surface is a non-cylindrical ruled surface [12].

26

2.5. Differential Geometry of Contact Surfaces

We start our study of the geometrical properties of the contact surface by com-
puting its first (denoted E ,F,G) and second (denoted e, f , g) fundamental forms.

E = ‖ai −ai+1‖2 e = 0

F = det(ai , ai+1) f =−‖ai −ai+1‖2

ν

G = 1+‖ai ,t‖2 g =−det(ai , ai+1)

ν

where ν= ν(t) =
p

EG −F 2. It is easy to verify that ν 6= 0 for all t ∈ R, and thus, all
expressions are well defined.

Gaussian and mean curvatures. Next, we can easily express the Gaussian curva-
ture

K (t) = K (t ,φ) = eg − f 2

EG −F 2

=− ‖ai −ai+1‖4

ν4 =−E 2

ν4

(2.20)

Note that the Gaussian curvature depends only on t (and not on φ) as ν depends
on t , that is the point of contact along E A

i . Similarly, the mean curvature is given by

H(t) = H(t ,φ) =eG −2 f F + g E

2(EG −F 2)

=‖ai −ai+1‖2 det(ai , ai+1)

2ν3 = EF

2ν3

(2.21)

The mean curvature only depends on t , similarly to the case of the Gaussian curva-
ture. Furthermore, if the two vertices, ai and ai+1, considered as vectors with bases
at the origin, are linearly dependent, then the mean curvature vanishes; thus the
surface is a minimal surface. This yield the following lemma.

Lemma 2.6. If the line through E A
i (0) contains the reference point R0(0), then the

corresponding (ei -v j) contact surface is a minimal surface.

Extrema of curvatures and the striction curve. Both d
d t K and d

d t H vanish for
the same single value of t , as can be easily verified, and it is given by

t? = 〈ai , ai −ai+1〉
E

.

We recall that the striction curve of a ruled surface can be characterized as the
locus of points where the Gaussian curvature attains its extremum [35]. Since
limt→±∞ K (t) = 0 and K (t) 6= 0 for all t , we have that K (t?) is a global extremum of
the Gaussian curvature. Thus we have that the curve S(t?,φ) is the striction curve
of the contact surface.3 Next, we can state the following theorem.

3The striction curve can also be computed directly, following, for example, the definitions given
in [12].

27

2. PARAMETERIZATION OF CONTACT SURFACES

(a) Striction curve is on the patch. (b) Striction curve is off the patch.

Figure 2.11: Two examples of an (e-v) contact surface. The green arrows are
the asymptotic directions and the red ones are the principal curvature directions
for some points on the striction curve. In solid blue is the striction curve.

Theorem 2.7. For any edge-vertex contact surface the extremum of the Gaussian
curvature is

sup
t∈R

|K (t)| = 1

and independent of the properties of the robot.

Proof. Since supt∈R |K (t)| = |K (t?)|, it is enough to compute K (t?). To that end, it
is sufficient to show that ν(t?)2 = E ; we omit the tedious verification.

It is easy to verify that the point at? = (1− t?)ai + t?ai+1 ∈ ` is the closest point
to the origin among all the points on the line ` that contains E A

i . Thus, it is easy to
see that t? may not lie in the interval [0,1]. That is, the striction curve of the (e-v)
contact surface is not necessarily contained in the surface itself. See for example
Figures 2.11(a) and 2.11(b).

We conclude this paragraph, with the following observation. In contrast to
the Gaussian curvature, the extremum of the mean curvature depends on the
properties of the robot. In particular, we have the following

sup
t∈R

H(t) = H(t?) = d

2
,

where d is the distance of ` from the origin and is given by

d = det(ai , ai+1)

‖ai+1 −ai‖
= Fp

E
.

28

2.5. Differential Geometry of Contact Surfaces

The normal curvature and friends. Next, we compute the normal curvature of
the surface, denoted by κN . In general, for a given unit tangent vector ε ∈ TqS, the
normal curvature in its direction is given by κN (ε) = I I (ε,ε), where I I (·, ·) denotes
the second fundamental form. The first step we take is to set an orthonormal
coordinate system in the tangent space TqS. Let

E1 =
1p
E

∂S

∂t

E2 =
1√

E(EG −F 2)

(
E
∂S

∂φ
−F

∂S

∂t

) (2.22)

be an orthonormal frame in TqS. Note that E1 points in the direction of the ruling
of the ruled surface S. Next, for each point q ∈ S and given some angle ξ we obtain
a unit tangent vector

ε(ξ) = E1 ·cosξ+E2 · sinξ

in TqS. For the sake of completeness, let us note that ε(ξ) can be expressed in terms
of the standard coordinate system {∂S

∂t , ∂S
∂φ } as:

ε(ξ) =
(p

EG −F 2 cosξ−F sinξp
EG −F 2

p
E

)
∂S

∂t
+

p
E sinξp

EG −F 2

∂S

∂φ
.

Therefore, the normal curvature at q ∈ S(t ,φ) in direction ξ, with respect to the
orthonormal coordinate system of the tangent plane Tp S, is given by [18]

κN (ξ) = E sinξ(F sinξ−2νcosξ)

ν3 . (2.23)

Recall that ν depends on t and does not vanish for all t ∈ R, and therefore Equa-
tion (2.23) is well defined. It is easy to note that the normal curvature depends only
on the direction in the tangent plane, given by ξ, and the position on the ruling
given by t .

Singularities and Extrema of the Normal Curvature. Next, we want to find
the asymptotic directions and the principal curvature directions of the contact sur-
face. In other words we want to find the values of ξ for which the normal curvature
either vanishes or attains an extremum. Furthermore, we find the extrema values
of the normal curvature, that is, expressions of the principal curvatures.

As the rulings on the surface are straight lines, the normal curvature in their
directions should vanish, and indeed for ξ ∈ {0,π} the normal curvature vanishes.
The other direction where it vanishes corresponds to

ξ= arctan
2ν

det(ai , ai+1)
= arctan

2ν

F
(2.24)

That is, ε(0) and ε(arctan 2ν
F) point in the asymptotic directions of the surface. The

green arrows in Figure 2.11 point in the directions where the normal curvature
vanishes. Note, that one of the arrows in each figure is parallel to the ruling’s
direction.

29

2. PARAMETERIZATION OF CONTACT SURFACES

Remark 2.6. Note that if S is a minimal surface (and thus also a helicoid), then the
denominator in Equation (2.24) vanishes. Thus, we have that the second direction
for which the normal curvature vanishes corresponds to ξ = π/2. This coincide
with the fact that for the helicoid the asymptotic directions are orthogonal [20].

We now want to find the principal curvature directions and to that end we have
to derive κN (ξ) with respect to ξ. This yields

∂

∂ξ
κN (ξ) = 2E

ν3 (F sinξcosξ−νcos2ξ).

In turn, it can be verified that that for

ξ1 =
1

2
arctan

2ν

F

the normal curvature attains an extremum. Since the principal curvature directions
are orthogonal, we have that it attains its other extremum for ξ2 = ξ1 + π

2 . In
Figure 2.11 the red arrows point in the principal curvature directions. Finally, the
principal curvatures are

κ1 = κN (ξ1) , κ2 = κN (ξ2) (2.25)

We can simplify the expressions of the principal curvatures as follow

κ1 =− 2E

ν
(
F +

p
F 2 +4ν2

)
κ2 =

E(F +
p

F 2 +4ν2)

2ν3 .

One can easily verify that K = κ1κ2 as in Equation (2.20) and H = κ1+κ2
2 as in

Equation (2.21).

Remark 2.7. The principal curvatures could have been computed directly using
formulas that base on the fundamental forms. We took a longer path as we wanted
to obtain expressions for the principal curvature directions as well.

More general Point of View. In Section 2.3.2 we derived a parameterization of an
(e-v) contact surface. We can assume, without loss of generality, that the edge E A

i ,
when in the rest position, is horizontal and at distance d from the origin. Let ` be
the line that contains the edge. Furthermore, let at = (t ,d) be a varying point on
the line `. Using this more general point of view, we can show that the properties of
the contact surface depend on the distance of the edge of the robot from the origin.
For an illustration see Figure 2.12. In Equation (2.8) we can replace a with at , and
set P = (0,0), thus yielding the following parameterization in C

S(t ,φ) =
(−Rφat

φ

)
(2.26)

30

2.5. Differential Geometry of Contact Surfaces

E A
i` aiai+1 at = (t ,d)

(0,0)

d
~r

Figure 2.12: An infinite edge with a vertex at on it in solid and its translated
and rotated pose where at coincides with the origin.

Figure 2.13: An example of a general edge-vertex contact surface for d = 0.5.

withφ ∈ [0,2π) and t ∈R. In Figure 2.13 an example of such generalized edge-vertex
contact surface is plotted.

We conclude this section with the study of the geometry of the general contact
surface that we introduced in Equation (2.26). In particular, we derive expressions
of the Gaussian, mean and normal curvatures, as well as the principal curvatures
directions and their magnitudes. For a fixed distance d we have the following
expressions

K =− 1

(1+ t 2)2

H =− d

2
√

(1+ t 2)3
,

for the Gaussian and mean curvatures, respectively. As before, the normal curvature
in the direction of a unit tangent vector ε(ξ) is

κN =− sinξ(2
p

1+ t 2 cosξ+d sinξ)√
(1+ t 2)3

where ξ parameterizes the direction in the tangent space of the unit vector ε(ξ).
It comes as no surprise that all the curvatures depends only on t . In terms of
the motion of the robot, it means that the curvatures of an (e-v) contact surface
depends only on the position of at on the line `, and not on the angle that the
line forms with respect to the x-axis. When thinking of the origin as a vertex of an

31

2. PARAMETERIZATION OF CONTACT SURFACES

obstacle, then the above means that the curvature depends only on the point of
contact on the edge of the robot and not on the angle of the contact. Furthermore,
the Gaussian curvature does not even depend on the distance of the edge from the
origin; i.e. it does not depend on the properties of the robot. Note that for d = 0
the mean curvature vanishes; that is, the corresponding surface is a minimal one.
Recall that d = 0 means that the general edge is passing through the origin and this
coincides with the result of Lemma 2.6.

We have that the normal curvature vanishes for

ξ0 = 0 , ξ1 = arctan

(
−2

p
1+ t 2

d

)
.

and its derivative with respect to ξ vanishes for

ξ2 =
1

2
ξ1 , ξ3 =

1

2
ξ1 +

π

2
.

Therefore at the point S(t ,φ) ∈ S, the vectors ε(ξ0) and ε(ξ1) point in the asymptotic
directions and ε(ξ2), ε(ξ3) point in the principal curvature directions. Finally, the
principal curvatures are

κ1 = κN (ξ2) =−d +
p

4+d 2 +4t 2

2
(
1+ t 2

)3/2

κ2 = κN (ξ3) =− d +
p

4+d 2 +4t 2

2
(
1+ t 2

)3/2

Let us conclude by pointing out that both the Gaussian and the mean curvatures
attain their extrema for t = 0. For the Gaussian curvature we have that its extremum
is −1 and the extremum of the mean curvature is d

2 . The striction curve of the
general edge-vertex contact surface is attained when fixing t = 0 where the point at

with t = 0 is the closest point of the line ` to the origin. All these results coincide
with previous discussions in this section.

2.5.2 Rational Model

In this section we will derive expression of the Gaussian and mean curvatures
of edge-vertex contact surfaces that arise when using the rational model for the
configuration space. The case of vertex-edge contact is simpler and for the sake of
brevity is omitted.

From Equation (2.19) we have that a general edge-vertex contact surface is
given by

S(t ,ψ) =
(
b j −Mψ ·ai ,t

ψ

)
when modeling the configuration space using the rational model. It is easily shown
that the partial derivatives are given by

∂S

∂t
=

(−Mψ · (ai+1 −ai)
0

)
,

∂S

∂ψ
=

(
− d

dψMψ ·ai ,t

1

)

32

2.6. Conclusion

In turn, the fundamental forms are given by

E = ‖ai −ai+1‖2 e = 0

F = 2

1+ψ2 det(ai , ai+1) f =− 2

1+ψ2

‖ai −ai+1‖2

ν

G = 1+ 4

(1+ψ2)2 ‖ai ,t‖2 g =− 4

(1+ψ2)2

det(ai , ai+1)+ψ〈ai −ai+1, ai ,t 〉
ν

Here, ν = ν(t ,ψ) =
p

EG −F 2. Note that in contrast to the case discussed in Sec-
tion 2.5.1, here ν depends on both t and ψ. Now, using the standard formulas for
the Gaussian and mean curvatures, we can obtain the following expressions:

K (t ,ψ) =− 4

(1+ψ2)2

E 2

ν4

H(t ,ψ) = 2E

(1+ψ2)ν3

(
1

2
F − ψ

1+ψ2
〈ai −ai+1, ai ,t 〉

)
In this case, when using the rational model, both curvatures depend on both pa-
rameters (cf. Equations (2.20) and (2.21) when using the geometric model). Note
that

lim
t→±∞K (t ,ψ) = lim

ψ→±∞K (t ,ψ) = 0

lim
t→±∞H(t ,ψ) = lim

ψ→±∞H(t ,ψ) = 0

2.6 Conclusion

In this chapter we discussed prominent aspects of the geometry of contact surfaces
in the configuration space that arises when a planar convex polygon is free to trans-
late and rotate amid planar polygonal obstacles. We considered two models of the
configuration space, namely, the geometrical one, which is more intuitive, and the
rational one, which is more suitable when machine-precision is needed. We started
the discussion by providing explicit and concise parameterizations for the surfaces
that correspond to vertex-edge and edge-vertex contacts. Once the parameteriza-
tions were formulated we carried out standard differential geometry computations
and derived compact expressions of important notions like the Gaussian and mean
curvatures, principal curvatures and principal curvature directions, etc.

Application. Using the parameterization described in this chapter we produced
a short video [3], which visualizes the configuration space of a convex polygonal
robot that moves amid convex polygonal obstacles in the plane. The video serves
as an educational tool when studying the notion of configuration space.

Future work. The computations of the contact patches heavily rely on the as-
sumption that the robot A is convex. Eliminating this restriction is of interest.

33

2. PARAMETERIZATION OF CONTACT SURFACES

Other interesting extensions of the parameterization would be to consider a robot
with a boundary that consists of non-linear edges; for example circular arcs (cf.
[30]).

Once the contact surfaces and patches can be explicitly parameterized, it is nat-
ural to consider their discretizations. An approximated version of the configuration
space can be used to address the general problem of motion planning. Further-
more, given either the smooth or discrete representations of the contact surfaces or
patches, it is possible to study their mutual intersections and their intersections
with other elements in the configuration space, as done for example in [36]. This
study can be of help in the investigation of the arrangement of the contact surfaces
in the configuration space.

Note that the vertex-edge contact surface, see Equation (2.13), reduces to a
vertical plane if ai is at the origin; or in other words, if the robot’s vertex under
consideration coincides with the reference point, which is assumed to be at the
origin. Furthermore, the edge-vertex contact surface reduces to a minimal surface
if the reference point lies on the line containing the edge of the robot; in particular,
if the reference point coincides with one of the vertices of the edge. On the other
hand, the reference point can be chosen arbitrarily. These observations suggest
that by perturbing the reference point one could reduce the geometrical complexity
of the contact surfaces. However, for each such choice of the reference point
there corresponds a configuration space. Given a contact type, one can set the
reference point such that the corresponding contact surface would be as simple as
possible. The problem in this case is that one has to deal with many copies of the
configuration space and understand how are they related.

34

2.A. Angle Range Analysis Using Normals

2.A Angle Range Analysis Using Normals

In Section 2.3, given a contact type, we first parameterized the corresponding
contact surface. Then, we found a sub-domain Φ for the parameter φ such that
S(t ,φ)|φ∈Φ for t ∈ (0,1) yielded the corresponding contact patch. As we stressed, the
described computations cannot yield an exact representation of Φ. In this section,
we pose further assumptions on the setting of the robot, and in turn we will be
able to find the desired sub-domain without involving trigonometric functions.
Thus, providing an exact representation ofΦ. We discuss in this section both the
vertex-edge and edge-vertex cases.

2.A.1 Vertex-Edge Case

Let i , j be two indices and consider the contact type (vi -e j) and let S(t ,φ) be the
corresponding contact surface as given in Equation (2.9) on page 16 with t ∈ (0,1)
and φ ∈ [0,2π). We want to find Φ⊂ [0,2π) such that for all φ ∈Φ we will have that
A(qai (φ)) touches EO

j . As we already saw, the sub-domainΦ does not depend on the

point of contact on the edge EO
j of the obstacle. Thus, for some fixed t0 ∈ (0,1) let

qi (φ) = S(t0,φ) be the helix that is contained in S and that corresponds to a pseudo
contact between ai and the point

P = P (t0) = (1− t0)b j + t0b j+1

on the edge EO
j of the obstacle O. We will findΦ for this single helix. More explicitly,

for every φ we have that ai (qi (φ)) pseudo touches the fixed point P on the edge EO
j .

We want to find the values of φ for which ai (qi (φ)) will touch P .
In order to obtain the bounds on the angleφ for which ai (qi (φ)) merely touches

P , we have to check the angles between the (inward) normals ~n A
i ,~n A

i−1 of the robot
and ~nO

j of the obstacle; cf. Figure 2.6 on page 17. As both the robot and the
obstacle are convex and we assume a counterclockwise order of their vertices, we
can establish the following observation.

Observation 2.8. The vertex ai (qi (φ) touches the point P ∈ EO
j if and only if when

traversing the circle of direction counterclockwise then the normals are ordered as
follow ~n A

j−1, −~nO
j and ~n A

j .

The condition in the observation can be expressed as the following system of
inequalities:  det

(
~n A

i−1(qi (φ)),−~nO
j

)
≥ 0

det
(
−~nO

j ,~n A
i (qi (φ))

)
≥ 0

(2.27)

Recall that det(u, v) denotes the determinant of the 2× 2 matrix formed by the
two vectors u and v . Note that u, v need not be of unit length as we are merely
interested in the sign of the determinant. This systems means that ~n A

i−1(qi (φ)) and
−~nO

j form a right-turn and the normal −~nO
j forms a right-turn with the normal

~n A
i (qi (φ)) as well (see Figure 2.6).

35

2. PARAMETERIZATION OF CONTACT SURFACES

For each φ ∈ [0,2π) we have, using Equation (2.3), the following

ai±1(qi (φ)) = P −Rφai +Rφai±1.

In turn, the edge normals of the robot satisfy

~n A
i−1(qi (φ)) =R

π
2 (ai (qi (φ))−ai−1(qi (φ))

~n A
i (qi (φ)) =R

π
2 (ai+1(qi (φ))−ai (qi (φ))

Since the normal −~nO
j is stationary, and does not depend on the configuration

space we refer to it as a constant vector, given by −~nO
j = (

cosβ j , sinβ j
)

for some
fixed β j ∈ [0,2π). The system of inequalities from Equation (2.27) reduces to the
following system{

ri−1 cos
(
φ+αi−1 −β j

)− ri cos(φ+αi −β j) ≥ 0

− ri cos(φ+αi −β j)+ ri+1 cos(φ+αi+1 −β j) ≥ 0
(2.28)

Although we obtained here a rather compact system of inequalities, it is, in
general, hard to analytically reduce it further, and obtain the desired domain for φ.
However, assuming r j = const for all j ’s, that is all the vertices of the robot lie on
a circle of a fixed radius, we can use the cosine difference formula and reduce the
system of inequalities further to obtain

sin

(
2φ−2β j +αi−1 +αi

2

)
sin

(αi−1 −αi

2

)
≤ 0

sin

(
2φ−2β j +αi+1 +αi

2

)
sin

(αi+1 −αi

2

)
≤ 0

(2.29)

In this last system of inequalities both

sin
(αi−1 −αi

2

)
and sin

(αi+1 −αi

2

)
depend only on the properties of the robot and their sign can be easily found.
Indeed, for 1 < i < n we have that 0 ≤ αi−1 ≤ αi < 2π and in turn sin αi−1−αi

2 ≤ 0.
On the other hand, since 0 <αi ≤αi+1 < 2π we have that sin αi+1−αi

2 ≥ 0. Thus, the
inequality in (2.29) holds if φ satisfies the following constraints.

Condition 2.9 (1 < i < n).
β j −

αi−1 +αi

2
≤φ≤π+β j −

αi−1 +ai

2

π+β j −
αi+1 +αi

2
≤φ≤ 2π+β j −

αi+1 +αi

2

36

2.A. Angle Range Analysis Using Normals

The cases i = 1 and i = n have to be treated separately. That is, depending
on the signs of sin αi−1−αi

2 and sin αi+1−αi
2 the inequalities can be reduced into a

condition similar to the one obtained for 1 < i < n.

Let us stress again that the compact and exact representation of the range of
φ as described in Condition 2.9 is valid only if the three vertices ai−1, ai and ai+1

of the robot have the same distance from the reference point. In order to obtain a
complete description of the contact patches using this approach, all the vertices of
the robot have to lie on a circle of some fixed radius. If the vertices do not lie on a
circle, then the approach described in Section 2.3.1 can be used.

Before ending this section, let us consider Equation (2.28) again. The condition
that we posed in order to solve that system, namely, r j = const for all j ’s, is very
restrictive. Note, that for a given (vi -e j) contact it is enough to assume that ri−1 =
ri = ri+1. Or, in other words, we can assume that ai−1, ai and ai+1 lie on a circle
centered at R0. However, since the reference point can be chosen arbitrarily, we can
set it at the center of the circle defined by ai−1, ai and ai+1. The problem with this
approach is that the configuration space depends on the choice of the reference
point. Differently said, this approach yields a domain of φ that depends on the
specially chosen reference point. Applying this approach to a different contacts
yields a domain of φ that will be correct only for the corresponding configuration
space.

2.A.2 Angle Range Analysis Using Normals - Edge-Vertex

Next, let us introduce an obstacle O and we rotate the robot A such that its boundary
point ai ,t = (1− t)ai +ai+1 is fixed to the obstacle’s vertex b j . We will now find the
range of φ for which this pseudo contact is merely a contact. Formally, for some
fixed t0 this means that we will find the φ’s for which qi (φ) = S(t0,φ) is in Cfree and
S(·, ·) is the surface defined in Equation (2.13) on page 19. Like before, due to the
consistent ordering of the vertices and the convexity of the objects the desired free
configuration is obtained when ~n A

i is between −~nO
j−1 and −~nO

j . Equivalently, when

−~nO
j−1 forms a right-turn with ~n A

i and ~n A
i forms another right-turn with −~nO

j (see

Figure 2.7 on page 20). Thus, in order to maintain a contact between E A
i and the

vertex b j of the obstacle, the angle parameter φ has satisfy the following system of
inequalities:  det

(
−~nO

j−1,~n A
i (qi (φ))

)
≥ 0

det
(
~n A

i (qi (φ)),−~nO
j

)
≥ 0

For the sake of simplicity, we assume that −~nO
j−1 = (

cosβ j−1, sinβ j−1
)

and

−~nO
j = (

cosβ j , sinβ j
)

for some fixed β j−1 and β j . In addition, we have that

~n A
i (qi (φ) = Rφ+ π

2 · (ai+1 −ai).

37

2. PARAMETERIZATION OF CONTACT SURFACES

In turn, the system of inequalities reduces to{
ri cos(αi −β j−1 +φ)− ri+1 cos(αi+1 −β j−1 +φ) ≥ 0

− ri cos(αi −β j +φ)+ ri+1 cos(αi+1 −β j +φ) ≥ 0

Next, assuming that ri = ri+1 > 0, the last system of inequalities reduces to:
sin(φ−β j−1 +

αi +αi+1

2
)sin

αi −αi+1

2
≤ 0

sin(φ−β j +
αi +αi+1

2
)sin

αi+1 −αi

2
≤ 0

Depending on i , the signs of sin αi−αi+1
2 and sin αi+1−αi

2 can be determined. In turn,
the system of inequalities can be reduced and an expression for the range of φ can
be obtained in a similar way to the one detailed in Section 2.A.1.

2.B Differential Geometry of V-E Contact Surfaces

In general a vertex-edge contact surface is given by the parameterization in Equa-
tion (2.9) on page 16. One can easily compute the first fundamental forms of this
surface, namely,

E = ‖EO
j ‖2

F =−〈EO
j ,Rφ+ π

2 ai 〉
G = 1+‖ai‖2

(2.30)

Next, the surface normal is given by

NS(t ,φ) = 1√
‖b j+1 −b j‖2 +〈cosφai + sinφR

π
2 ai ,b j+1 −b j 〉(

R− π
2 (b j+1 −b j)

−〈cosφai + sinφR
π
2 ai ,b j+1 −b j 〉

)
In turn, we can find expressions of the second fundamental forms, namely,

e = 0

f = 0

g =
〈cosφR

π
2 ai − sinφai ,EO

j 〉√
‖EO

j ‖2 +〈cosφai + sinφR
π
2 ai ,EO

j 〉
2

(2.31)

It is now easy, using the formula given in Equation (2.20) on page 27, to verify
that the Gaussian curvature of a vertex-edge contact surface vanishes; that is such
a surface is developable. One can next use the standard formula of the mean
curvature, as can be found in Equation (2.21). The resulting expression is rather

38

2.B. Differential Geometry of V-E Contact Surfaces

complicated, and of little interest, however, its numerator can be expressed as
follows

‖EO
j ‖2 〈EO

j ,Rφ+ π
2 ai 〉 .

Since the edges of the obstacles are not degenerated, we can conclude that the
mean curvature is identically zero if and only if ai =~0. In this case, it is easily seen,
from the parameterization of the contact surface directly, that the surface is a plane.

39

3 Optimal Triangulation of
Hyperbolic Paraboloids

3.1 Introduction

In this chapter we consider the problem of local triangulation of hyperbolic pa-
raboloid surfaces. These surfaces are given by

{(
x, y, z

)
: z = F (x, y)

}
, where F (x, y)

is a bivariate polynomial as given in Equation (3.2) that satisfies the conditions
expressed in (3.3). By “local” we mean that given an arbitrary point on such a
surface, our goal is to find a corresponding collection T of triangles that forms a
triangulation that is homeomorphic to a neighborhood of the given point. In order
to turn this problem into a well-posed one, we have to impose further restrictions
on the desired family T . In particular, we establish a local triangulation of such
surfaces that is optimal in two senses. First, we look for optimality with respect to
the so-called vertical distance criterion. To that end, let f : D →R be a piecewise
linear function that defines T , where D ⊂R2 is its domain. Given some ε> 0 we
demand that

max
(x,y)∈D

|F (x, y)− f (x, y)| ≤ ε.

In other words, the vertical distance (cf. Section 3.4) between each triangle T ∈T

and the surface has to be bounded by ε. In addition, we want to minimize the
number of triangle in D that T comprises while maintaining the first constraint.
Note that this number is inversely proportional to the area of the triangles in T .
Thus, in other words, we want to maximize the area of the triangles in T . Together,
these two constraints form a well-posed problem that we study in this chapter.
Furthermore, we shall consider both an interpolating triangulation and a non-
interpolating one. In particular, the vertices of the triangles that constitute T could
either lie on the saddle surface, and form an interpolating triangulation. Or, the
vertices could lie in space, thus forming a non-interpolating triangulation. Note,
that in either of the cases we still want to maintain the two conditions, namely,
optimality with respect to the vertical distance and maximization of the area of the
triangles.

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

Motivation. The original motivation of this work is the piecewise linear approxi-
mation of a negatively curved smooth surface in three dimensions, with respect to
the Hausdorff distance. We would like to find an approximation with the minimum
number of triangular patches for a given error bound, or minimize the error subject
to a bound on the number of triangles. As a secondary criterion, we might consider
the shape of the triangles we are using.

Locally, around a surface point p, a smooth surface can be approximated (up to
second order) as the graph of a quadratic function. This is achieved by translating p
to the origin, rotating the coordinate system to make the tangent plane horizontal,
and a second order Taylor expansion.

In particular, an arbitrary point p on a smooth surface S has a unit normal Np S
defined. Applying an appropriate Euclidean motion, T , on the space will yield
a surface S̃ such that T (p) will be at the origin and the corresponding normal,
NT (p)S̃ will point in a vertical direction. The map T consists of a translation
component T1 for which T1(x) = x −p for all x ∈R3. The second part, is a rotation,
T2, which maps the normal NT1(p)T1(S) to a vertical pointing normal ± (0,0,1).

This means that when considering a local approximation of a smooth surface
S around a point p ∈ S, it is safe to assume that p is at the origin, the tangent
plane at p is horizontal and its intrinsic neighborhood in S is a graph of a bivariate
function. More explicitly, this means that there exists a domain D ⊂ R2 and a
function F1 : D → R, such that the graph of F1 over the domain D coincides with
the surface S. Note that the smoothness of the surface S implies the smoothness of
the function F1. Therefore, we can use the Taylor expansion up to the second order
terms of F1, and obtain a quadratic approximating function F : U → R, for some
neighborhood U ⊂ D , of the function F1. In particular, this approximating function
is a quadratic function of the following form

F (x, y) = a1x2 +2a2x y +a3 y2. (3.1)

Note that F has no linear terms since the normal at the origin is aligned with the
vertical direction. Furthermore, it has no constant term, since it satisfies F (0,0) = 0.
The quadratic surface z = F (x, y) yields a second order approximation of the surface
S in a neighborhood of the origin. Finally, a local approximation of the graph of
a quadratic function in two variables can be transformed, using the inverse of
the transformation T , into a local approximation around an arbitrary point of a
smooth surface.

Since the tangent plane to a quadratic surface, as above, at the origin is horizon-
tal, the distance to the closest point on an approximating piecewise linear surface
(which determines the Hausdorff distance) is close to vertical. In fact, the vertical
distance between the graph of z = F (x, y) and an approximating surface is always
an upper bound for the Hausdorff distance. The quality of this approximation
depends on the normal to the surface at the point of interest. We shall use the
tangent plane at the origin to approximate the surface in a neighborhood of this
point. Therefore, our investigations provide a good local model for the original
approximation problem.

42

3.1. Introduction

The choice of the vertical distance as a distance measure has a crucial advantage.
With respect to vertical distance approximation, all points of a quadratic surface z =
F (x, y) look equal, in the follow sense: For every two points p and q on the surface,
there is an affine transformation that (i) maps p to q , (ii) maps the surface to itself,
(iii) maps vertical lines vertical to vertical lines, and (iv) leaves vertical distances
unchanged. This is further discussed in Section 3.4. Therefore, analysing the local
situation around one point, the origin, is sufficient to analyze the whole surface. As
a result, in the case of an interpolating approximation we are able to completely
characterize the optimal triangulations of quadratic surfaces defined over the whole
plane D = R2. Here we mean optimality with respect to the error. Furthermore,
in this work we consider a non-interpolating scheme for the triangulation, which
yields an improvement of the interpolating one. More precisely, by allowing the
vertices of the triangles to lie in space, we can obtain larger triangles, while still
maintaining the vertical distance constraint.

It turns out that there is a one-parameter family of optimal triangulations;
this is in addition to two parameters for translating the mesh in the plane, which
does not change the (planar) shape of the triangles (see Lemma 3.9 on page 60).
Of course, this result cannot be applied directly to a triangulation over a domain
D, but it is relevant as a local result, when the boundary of D is far away. The
freedom of choosing one shape parameter could be used to facilitate the adaptation
and grading of the triangulation over a larger surface area with varying curvature
parameters. This will, however, be left for future work. We also investigate the
choice of the parameter that yields the optimal shape of the triangles, in the sense
of maximizing the smallest angle in the plane projection (See Section 3.5.1).

The optimization problem that we pose is to use the smallest number of trian-
gles for a given bound ε on the vertical approximation error. Since the number of
triangles for triangulating a domain is inversely proportional to the average area of
a triangle, the problem boils down to finding the largest-area triangle subject to the
error constraint. This triangle and its reflected copy can be used to tile the plane.
Since the situation is invariant under rigid motions in the plane (as aforementioned
and described in more detail in Section 3.5.1 below), this triangular mesh will give
an optimal triangulation of the whole surface, defined over R2, in terms of the
number of triangles per area.

Previous work. The study of approximation and triangulation of surfaces in gen-
eral is a fundamental research topic in fields like computer graphics, computational
geometry, etc. Thus, it comes as no surprise that the approximation and triangu-
lation of saddle surfaces was addressed in the past. In this section we survey the
literature and focus on works that provide theoretical results with respect to the
quality of the yielded approximation.

A general approximation framework is the so-called data depended triangu-
lation. Here data points are sampled from the domain Rd together with their
corresponding values. Then a triangulation of the data points is found such that the

43

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

corresponding triangulation of the hypersurface is optimal with respect to a given
criteria. In two dimensions, Dyn et al. [15] provided an algorithm that triangulates
the data points depending on their corresponding data values. Melissaratos [29]
applied the same framework to the (convex) case of hyper-paraboloids and proved
that the Delaunay triangulation (of the data points) is the optimal triangulation
with respect to the Lp norm. Desnoguès and Devillers [14] provided a locally opti-
mal triangulation of the hyperbolic paraboloid with respect to the L2 norm. The
work of Pottmann et al. [34] treats all possible quadratic functions and considers
the L∞ norm as the error criterion. Pottmann et al. conjecture that interpolating
approximation is mandatory for an optimal piecewise linear approximation; in
Section 3.6 we invalidate this conjecture. In contrast to Pottmann et al., in the
presented work we employ a strong geometric intuition, which yields, nevertheless,
similar results.

Outline of the Chapter. In Sections 3.2 to 3.4 we introduce the fundamental no-
tions that we shall consider in this chapter. In particular we review some elementary
notions and properties of conic sections and quadratic surfaces. Furthermore, we
present in details the notion of vertical distance that we use as the fundamental
criteria of our approximation. The core of the chapter can be found in Section 3.5
where we first introduce the local approximation of a simple saddle is first estab-
lished. The discussion is followed by the local approximation of the canonical and
general saddles as well. In Section 3.6 we allow a non-interpolating triangulation,
which results in an improved error. Discussion and conclusions can be found in
Section 3.7.

3.2 Remarks on Conic Sections

In this section we recall some notations and fundamental facts related to conic
sections; that is, planar curves that are the zero sets of the form F (x, y) = 0 for some
bivariate polynomial

F (x, y) = a11x2 +2a12x y +a22 y2 +2a13x +2a23 y +a33. (3.2)

In this paper, we are mainly interested in the case of hyperbolic conic sections
(called hyperbolas for short), which are those that correspond to polynomials whose
coefficients satisfy the following conditions

D =
∣∣∣∣a11 a12

a12 a22

∣∣∣∣< 0 , A =
∣∣∣∣∣∣
a11 a12 a13

a12 a22 a23

a13 a23 a33

∣∣∣∣∣∣ 6= 0. (3.3)

Each hyperbola has two asymptotes that intersect at a point called the center of the
hyperbola. The coordinates of the center,

(
xc , yc

)
, of a generic hyperbola are given

by

xc =− 1

D

∣∣∣∣a13 a12

a23 a22

∣∣∣∣ , yc =− 1

D

∣∣∣∣a11 a13

a12 a23

∣∣∣∣ . (3.4)

44

3.2. Remarks on Conic Sections

x
2

a
2
−

y
2

b
2
=−

1
x

2
a

2
−

y
2

b
2
= 1

x 2
b 2 − y 2

a 2 = 1

x 2
b 2 − y 2

a 2 =−1

Figure 3.1: Two hyperbolas and their conjugates for some a < b.

The image of the asymptotes is the zero set of F (x, y)− A
D . Together, D and A are

invariants of the hyperbola under translations and rotations (the above notation
was inspired by [22]).

A principal case of hyperbolas is the canonical hyperbola. Two constants a,b
can define two canonical hyperbolas as follows

x2

a2 − y2

b2 =±1, (3.5)

which are said to be conjugated. The first one is east-west opened, and the second
one is north-south opened. Interchanging the roles of a and b yields a π

2 -rotated
pair of hyperbolas; see Figure 3.1 for an example. For a = b, the corresponding
hyperbolas are called rectangular. Finally, taking a = b =

p
2 and rotating the

hyperbolas by 45◦ yields two so-called simple hyperbolas, which are the zero set of
x y =±1. Note that every generic hyperbola can be transformed into a simple one
using an affine transformation.

We shall now study in details how to transform a generic hyperbola h to a
canonical one. Let h be the hyperbola which is the zero set of the polynomial given
in Equation (3.2), such that its coefficients satisfy the conditions given in (3.3). First,
we apply a translation transformation T1 :R2 →R2 given by

T1
(
x, y

) 7→ (
x +xc

y + yc

)
. (3.6)

We let h′ =T1(h) be the image of hunder the translation T1. The resulting hyperbola
h′ is congruent to h and centered at the origin.

It is left to rotate h′ so its symmetry axes will align with the x and y-axes. Let
Φ be an angle between the positive x axis and either of the axes of symmetry of
the hyperbola h′. A rotation of h′ about the origin in an angle Φ yields a canonical
hyperbola. Note that the resulting hyperbola might be either east-west or north-
south opened depending on the choosing ofΦ and the orientation of the rotation.

45

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

We set T2 :R2 7→R2 to be this rotation, defined as follows:

T2
(
x, y

) 7→ (
cosΦ −sinΦ
sinΦ cosΦ

)
·
(

x
y

)
. (3.7)

Then, h′′ = T2(h′) is a canonical hyperbola that is congruent to h. Next we find
expressions for cosΦ and sinΦ. Note that [22]

tan2Φ= 2a12

a11 −a22
= 2tanΦ

1− tan2Φ
. (3.8)

Thus, we have that

tanΦ=
a22 −a11 ±

√
(a11 −a22)2 +4a2

12

2a12
.

If a12 = 0, then we have that h is aligned with the coordinate axes in the first place,
and thus T2 is the identity transformation. Thus, we can safely assume that a12 6= 0.
We can now choose one value for tanΦ

tanΦ=
a22 −a11 +

√
(a11 −a22)2 +4a2

12

2a12
. (3.9)

Choosing the other possible value for tanΦ would yield a 90◦ rotated hyperbola.
Since Φ ∉ {0,π}, we can, using elementary trigonometry, obtain the following ex-
pressions for sinΦ and cosΦ:

sinΦ= tanΦp
1+ tan2Φ

, cosΦ= 1p
1+ tan2Φ

,

that can be explicitly expressed as follow:

sinΦ=
a22 −a11 +

√
4a2

12 + (a11 −a22)2√
4a2

12 +
(
a22 −a11 +

√
4a2

12 + (a11 −a22)2
)2

cosΦ= 2a12√
4a2

12 +
(
a22 −a11 +

√
4a2

12 + (a11 −a22)2
)2

(3.10)

Figure 3.2 illustrates the various steps and the following lemma summarizes the
discussion.

Lemma 3.1. Let h be an arbitrary, non-degenerated, hyperbola as in Equation (3.2)
where its coefficients satisfy the conditions expressed in (3.3). In addition, let

(
xc , yc

)
be the coordinates of the center of h (cf. Equation (3.4)). Furthermore, let T1 be
a translation as defined in Equation (3.6) and T2 be a rotation as given in Equa-
tion (3.7) were sinΦ and cosΦ are as given in Equation (3.10). Then

h̃=T2 (T1 (h))

46

3.3. Remarks on Quadratic Surfaces

x

y

translate
x

y

rotate
x

y

Figure 3.2: On the left a generic hyperbola h. At the middle the same hyperbola
centered at the origin, namely, T1(h). Finally, on the right, a canonical hyperbola
h̃ that is congruent to h.

is a canonical hyperbola given by the zero set of the bivariate polynomial

F̃ (x, y) = ax2 +by2 −1,

such that a ·b < 0.

Proof. Direct computation yields that T2 (T2 (h)) is a canonical hyperbola, which
is the zero set of the following bivariate polynomial

F̄ (x, y) = āx2 + b̄y2 + c̄

with c̄ = A
D 6= 0. Thus we can obtain the representation in the statement of the

lemma.

3.3 Remarks on Quadratic Surfaces

As we saw in Section 3.1, a key ingredient in the local approximation of smooth
surfaces is the study of quadratic surfaces. In particular we are interested in the
quadratic surfaces z = F (x, y) where F (x, y) is a bivariate polynomial of degree
two as given in Equation (3.1). The quadratic surface z = F (x, y) can be brought
into one of four normal forms, by a linear transformation of the (x, y)-plane and a
scaling of the z-axis:

z = 0 (3.11)

z = x2 (3.12)

z = x2 + y2 (3.13)

z = x2 − y2 (3.14)

These transformations do not change the approximation problem. We ignore
the cases with zero Gaussian curvature: case (3.12), the parabolic cylinder, and

47

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

case (3.11). The convex case (3.13) is well-known [34]: optimal triangulations are
formed by regular triangles. Since these can be rotated, it comes as no surprise that
there is a one-parameter family of optimal triangles. We concentrate in this work
on the non-convex case of a saddle surface, case (3.14), namely, where the Gaussian
curvature is negative.

The most general quadratic surface is z = F (x, y) where F (x, y) is a bivariate
polynomial as in Equation (3.2). If, in addition, the coefficients of the polynomial
satisfy the conditions given in (3.3) then the resulting surface is a general saddle,
which is also called hyperbolic paraboloid; we use both names interchangeably. If
a11, a22 6= 0 and otherwise ai j = 0, then we call the surface a canonical saddle and it
is given explicitly as the set{(

x, y, z
)

: z = ax2 +by2 and ab < 0
}

.

A canonical saddle for which a11 = a22 is called rectangular saddle. Finally, if
a12 = 1/2 and otherwise ai j = 0 we call the surface a simple saddle and it is given by{(

x, y, z
)

: z = x y
}

.

Note that a 45◦ rotation of a simple saddle around the origin yields a canonical
saddle.

For each fixed z0, we obtain a hyperbola by intersecting the saddle surface
with a plane at height z0. The centers of all hyperbolas, which are generated in
this way, lie on a common vertical line. The intersection point of the locus of the
centers and the surface S is called the center of the hyperbolic paraboloid and its
coordinates are

(
xc , yc ,h

)
where xc and yc are the centers of the various hyperbolas

(cf. Equation (3.4)). In addition the height of the surface S is h = F (xc , yc) = A
D

where A and D are as given in (3.3).

Remark 3.1 (Hyperbolas and their conjugates and asymptotes). Note that the
hyperbola that is the intersection of a saddle S and the plane at h + z0 is conjugate
to the one obtained by the intersection of S and the plane at height h − z0. In turn,
for an arbitrary hyperbola, which is the zero set of F (x, y) = 0, it is easy to see that
its conjugate is given by the zero set F (x, y)−2 A

D = 0. Finally, the intersection curve
of the general saddle and a horizontal plane at height z = h yields a degenerated
hyperbola; namely, straight lines, which are the asymptotes of the hyperbolas that
correspond to the saddle. Figure 3.3 illustrates notions mentioned in this section
and remark.

3.4 Vertical Distance

The vertical distance that was briefly introduced in the introduction and is to be
discussed in this section, is nothing but the L∞ norm. However, in this work we
emphasize the geometrical nature of the approximation problem and its solution,
thus we favor the notion “vertical distance”, which is more intuitive. Although,

48

3.4. Vertical Distance

Figure 3.3: A generic saddle surface. The upper plane is passing through the
surface’s center, and the center is the intersection of the black lines, which are
the asymptotes of all hyperbolas associated with the surface. The solid green
and blue curves are two hyperbolas and the corresponding dashed curves are their
conjugates.

in general, the Hausdorff distance is more suitable for evaluating the quality of
approximations we consider the vertical distance due to its nice properties in the
context of our discussion. Furthermore, the vertical distance provides (locally) an
upper bound on the Hausdorff distance. The definition of the vertical distance is
designed to measure the maximal vertical distance between a graph of a function
f : R2 →R and various geometric objects.

Definition 3.2 (Vertical Distance). Let D1,D2 ⊂ R2 be two intersecting domains
and let f : D1 →R and g : D2 →R be two functions. The vertical distance between
f and g is

distV
(

f , g
)= sup

(x,y)∈D1∩D2

| f (x, y)− g (x, y)|.

More generally, for two sets S1,S2 ⊂R3 we let distV (S1,S2) be the supremum of
the vertical distance between s1 ∈ S1 and s2 ∈ S2 such that s1 and s2 have the same
(x, y)-coordinates. In practice we consider a function f , which is defined over the
whole plane R2, and g can be either a point, line or line segment, piecewise linear
surface patch, another function over R2 etc. In the context at hand, we let f be a
bivariate polynomial, and g is either a line segment connecting two points in space
or a piecewise linear surface. It follows naturally, that given two points p, q ∈ R3,
which lie on the same vertical line, we have

distV
(
p, q

)= |pz −q z |,

where pz and q z are the z-coordinates of p and q , respectively.1

Given a general quadratic surface S, which is the graph of a bivariate polynomial
of degree at most two, we like to compute the vertical distance between a line

1Similarly, px and p y are used to denote the x and y coordinates of p, respectively.

49

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

Figure 3.4: The red segment realizes the vertical distance between a line segment
that interpolates points on a simple saddle and the saddle itself. The intersection
curve between the vertical plane and the saddle is a parabola.

segment connecting two points p, q ∈ S and the surface itself. Since
(
x, y,F (x, y)

) ∈
S for every

(
x, y

) ∈ R2, we have that distV
(
p,S

)
is finite for all p in space, and in

particular it is equal to the (Euclidean) distance from p to its vertical projection on
S.

Lemma 3.3. Let S be a quadratic surface S = {(
x, y, z

)
: z = F (x, y)

}
, where F (x, y)

is a bivariate polynomial as in Equation (3.2). Furthermore, let p, q be two points on
S and let `pq be the line segment connecting them. Then

distV
(
`pq ,S

)= 1

4

∣∣∣a11∆
2
x +2a12∆x∆y +a22∆

2
y

∣∣∣ ,

where ∆x = px −q x and ∆y = p y −q y . Furthermore, the vertical distance between
`pq and S is attained at the mid-point of the line segment.

Proof. Let `(t) = (1− t)p + t q be a parameterization of `pq , then for all t ∈ [0,1] we
have

distV (`(t),S) = |`(t)z −F (`(t)x ,`(t)y)|
= |t (1− t)| ·

∣∣a11(∆x)2 +2a12(∆x)(∆y)+a22(∆y)2
∣∣

Given t ∈ [0,1], we have that this functional attains its maximum at t = 1
2 , and this

proves the lemma. Figure 3.4 illustrates the case discussed in this lemma.

The last lemma shows that the vertical distance between a line segment in-
terpolating two points on a quadratic surface and the surface itself depends only
on relative position of the vertical projections of the points to the plane. In addi-
tion, the quadratic surfaces have a more general property with respect to vertical
distance, which is stated in the following lemma.

Lemma 3.4. For every point p ∈ S, where S = {(
x, y, z

)
: z = F (x, y)

}
, there exists an

affine transformation Tp :R3 →R3 given by

Tp (x, y, z) 7→
 x +u

y + v
z +ax +by + c

 ,

50

3.4. Vertical Distance

which satisfies the following. First, it maps the point p to the origin. In addition,
it maps S to a quadratic surface S̃, which is the graph of a polynomial of the form
F̃ (x, y) = a11x2 +2a12x y +a22 y2. Finally, for any pair of points q,r ∈R3, which lie
on a vertical line, we have

distV
(
q,r

)= distV
(
Tp (q),Tp (r)

)
.

Proof. Let p = (
ξ,η,F (ξ,η)

) ∈ S be a point on the given general saddle. Next, set the
parameters u, v, a,b and c in the desired transformation Tp , as follows:

u =−ξ a =−2(a13 +a11ξ+a12η)

v =−η b =−2(a23 +a12ξ+a22η)

c = a11ξ
2 +a22η

2 +2a12ξη−a33

where ai j are the coefficients of the polynomial F (x, y). We can now verify directly
that Tp (p) = (0,0,0). Furthermore, a general point q = (

x, y,F (x, y)
) ∈ S is mapped

to

Tp (q) =
 x −ξ

y −η
a11(x −ξ)2 +2a12(x −ξ)(y −η)+a22(y −η)2

 .

This shows that Tp maps S to a quadratic surface S̃, which is given by the poly-
nomial F̃ (x, y) = a11x2 + 2a12x y + a22 y2. Note that the tangent plane TTp (p)S̃ is
horizontal. Finally, the vertical distance is invariant under Tp for points in R3 that
lie on the same vertical line.

In other words, this lemma formalizes explicitly the vague statement from the
introduction, that all points of a quadratic surface “look equal”. Furthermore, this
last lemma assures that we can consider, without loss of generality, the canonical
saddle surfaces with center at the origin when we investigate the vertical distance.
Finally, in Figure 3.5 the effect of the map T is visualized; a given (red) arbitrary
saddle along with a (blue) point on it is mapped to a (green) saddle such that
the given point is mapped to the origin, and its tangent plane is horizontal. We
conclude this section and establish the relation between the vertical distance and
the Hausdorff distance.

Lemma 3.5 (Bounding the Hausdorff distance). Let A,B ⊂R3 be two sets such that
their projection to the plane is identical. Then the following holds

distH (A,B) ≤ distV (A,B)

where distH (A,B) is the Hausdorff distance between the two sets.

51

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

Figure 3.5: In red, a general quadratic surface S is given and an arbitrary point
p ∈ S is marked in blue. In green the transformed surface S̃ (cf. Lemma 3.4) is
plotted, with a black point at the origin, which is the image of p.

h

vx

y

Figure 3.6: The vertical and Hausdorff distances between two parallel lines
illustrate that the former can be arbitrarily large, depending on the slope, while
the latter is fixed.

Proof. Recall that distH (A,B) = max{dist(A,B) ,dist(B , A)} where dist(A,B) is the
distance from the set A to the set B , that is

dist(A,B) = sup
a∈A

dist(a,B) .

But, for all a ∈ A we have dist(a,B) ≤ dist(a,πB (a)) where πB (a) is the vertical
projection of a on B . In turn, dist(a,πB (a)) ≤ distV (A,B) for all a ∈ A, which means
that dist(A,B) ≤ distV (A,B). Similar argument holds also for the distance dist(B , A)
from B to A.

Note that this bound can be arbitrarily bad. For example, consider two parallel
planes with distance ε > 0 between them. In this case the Hausdorff distance is
fixed and the vertical distance can be arbitrarily big depending on the normals
of the planes. In Figure 3.6 this idea is illustrated in a two-dimensional example.
Nevertheless, at least locally, the vertical distance can still serve as a criteria to
measure the quality of a local approximation.

52

3.5. Local Interpolating Triangulation of Saddle Surfaces

3.5 Local Interpolating Triangulation of Saddle Surfaces

In this section we develop an optimal local approximation of saddle surfaces with
respect to the vertical distance. The approximation derived here is similar to the
one obtained by Pottmann et al. [34]; the approach we take, however, is more
geometrical and intuitive. Here, the meaning of optimality is twofold. On the one
hand, given a tolerance constant ε> 0, we assert that the piecewise linear patch T ,
which approximates the neighborhood of a point p ∈ S, maintains distV (S,T) ≤ ε
for all T ∈T . On the other hand, each triangle in T is maximal; that is, if T ∈T

is bigger, then the vertical distance will increase and if it is smaller the distance
could decrease. We will first, in Section 3.5.1, provide an optimal triangulation
of the simple saddle. Then, in Section 3.5.2, we generalize the result and provide
an optimal triangulation of a canonical saddle, which can be used to obtain an
approximation of a general saddle as well.

3.5.1 Simple Saddle

In this section we want to obtain a triangulation of a neighborhood of an arbitrary
point located on a simple saddle surface

S = {
(x, y, z) ∈R3 : z = x y

}
. (3.15)

The obtained triangulation should be topologically correct, that is homeomorphic
to a disc. Furthermore, we want to assure that the maximal vertical distance
between the triangulation and the surface will be fixed.

Vertical Distance to a Triangle. By Lemma 3.3 we have that the maximal vertical
distance between the line segment `pq connecting two points p, q ∈ S and the
surface S itself is given by

distV
(
S,`pq

)= 1

4
·
∣∣v x v y

∣∣ ,

where~v = (v x , v y , v z) = p−q is the vector from q to p. Recall that the simple saddle
is a ruled surface, and in turn if p and q lie on a ruling, then the vertical distance
from the line connecting them to S vanishes. Finally, recall, the maximal vertical
distance is attained at the midpoint of `pq .

Let us now consider the case of a triangle with vertices p0, p1, p2 ∈ S, denoted
by T =4p0p1p2, for which we want to compute the vertical distance to S, denoted
by distV (S,T).

Lemma 3.6. Given three points p0, p1, p2 ∈ S, where S is a simple saddle surface,
then distV (S,T) is attained for a point p ∈ T which is a midpoint of one of the
triangle’s edges.

53

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

Proof. Let p be an interior point of T and p ′ =π(p) ∈ S be it vertical projection on
S. Since S is a saddle surface it bends at p ′ both towards the triangle T and away
from it. Therefore there exists a point p ′′ ∈ S in a neighborhood of p ′ such that

‖π−1(p ′′)−p ′′‖ > ‖p −π(p)‖,

where π−1(p ′′) is the vertical projection of p ′′ ∈ S back to the triangle T . Therefore,
the point p ∈ T for which the vertical distance is attained cannot be an interior
point of T . Thus, it has to lie on an edge of T , and in turn (cf. Lemma 3.3) it has to
be a midpoint of one of the edges of T .

Together, Lemmas 3.3 and 3.6 establish the following lemma.

Lemma 3.7. Let S = {(
x, y, z

) ∈R3 : z = x y
}

be a simple saddle. If a triangle T with
three vertices p0, p1, p2 ∈ S is given, then the vertical distance distV (S,T) is given by

distV (S,T) = max
i∈Z3

1

4

∣∣ex
i e y

i

∣∣ ,

where~ei = pi+1 mod 3 −pi for i ∈Z3.

This last lemma can be used to characterize the triangles with vertices on a
simple saddle that maintain a prescribed vertical distance. In particular, given a
point p0 ∈ S we use this lemma to find two more points p1, p2 ∈ S such that the
triangle T =4p0p1p2 will satisfy

distV (S,T) ≤ ε

for some given ε> 0. Let us denote the triangle’s edge vectors by~ei = pi+1 mod 3−pi

(cf. Figure 3.7). For the distance bound to hold, as we saw in Lemma 3.7, the edge
vectors have to satisfy

|ex
i e y

i | ≤ 4ε (3.16)

for all i ∈ {0,1,2}, where~ei =
(
ex

i ,e y
i ,ez

i

)
. The geometrical interpretation of this last

condition is that the heads of the projections of the edge vectors to the plane should
lie inside the region

R = {(
x, y

) ∈R2 : |x y | ≤ 4ε
}

,

or on its boundary. The region R is the one bounded by the solid hyperbolas
in Figure 3.8. This means that in order to bound the vertical distance between
a triangle with vertices lying on a simple saddle surface and the surface itself,
we have to consider the planar problem of arranging three edge vectors, which
realize a triangle in the plane. The heads of the vectors should be contained in a
region bounded by a hyperbola and its conjugate. Since we are interested in the
arrangement of the edge vectors we can assume that p0 is at the origin. This can
also be seen by recalling Lemma 3.4.

Let us now consider the planar problem that we discussed. We say that a planar
triangle T with vertices p0, p1, p2 is a valid triangle if its edge vectors satisfy the

54

3.5. Local Interpolating Triangulation of Saddle Surfaces

a0

a1

a2

e0

e1

e2

α0

α1

α2

Figure 3.7: Triangle with its
edge vectors.

x

y

|xy | =
4ε

T4(ξ)

~e 0

~e 1

~e
2

p2,1

p2,2

p2,3

p2,4

p2,5

p2,6

p0

p1 = (ξ, 4ε
ξ)

Figure 3.8: The region where the third vertex
p2 of a valid triangle can be placed is shaded in
blue.

inequality in (3.16). Since we are only interested in the properties of the edge
vectors, we have that valid triangles are invariant under translations. Thus, we can
assume, without loss of generality, that p0 is at the origin. For a planar triangle T
with p0 at the origin, we have that its edge vectors are given by:

~e0 =
(
p1

x , p1
y)

~e1 =
(
p2

x −p1
x , p2

y −p1
y)

~e2 =−(
p2

x , p2
y)

Thus, T is a valid triangle if the following system of inequalities is satisfied:
|px

1 p y
1 | ≤ 4ε

|(p2
x −p1

x)(p2
y −p1

y)| ≤ 4ε

|p2
x p2

y | ≤ 4ε

Clearly, this set of conditions is too vague and we have to impose further conditions
in order to narrow down the family of valid triangles.

Maximize the Area of a Valid Triangle. Recall that ultimately we want to lift the
valid triangles back to the simple saddle in order to obtain an optimal local trian-
gulation. As we discussed, triangles of largest area are desired. Therefore, the first
step is to optimize the area of the valid triangles. Let T be a valid triangle with p0 at
the origin. As we want to maximize the area of T , we can assume that at least one
of its edge vectors satisfies Equation (3.16) as an equality, because otherwise the
triangle can be scaled up and in turn increase its ares. Without loss of generality we
assume that this edge is the edge~e0, or equivalently, |p1

x p1
y | = 4ε. Let us set

p1 =
(
ξ,

4ε

ξ

)
, ξ> 0 (3.17)

55

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

Symmetrically, as the branches of the hyperbola are symmetric with respect to

the axes, we could also set p1 to be either
(
−ξ,−4ε

ξ

)
or

(
±ξ,∓4ε

ξ

)
. As long as the

case under consideration is the one of the simple saddle, all these possibilities are
(almost) the same. However, once the hyperbolas are not symmetric we should
pay attention to the way we choose the branch on which p1 is to be located. See
Remark 3.2 on page 60 for further details and what is meant by “almost”.

We now have to find where to put p2 in order to maximize the area. The feasible
region where p2 can be located is given by the following two inequalities{

|p2
x p2

y | ≤ 4ε

|(p2
x −p1

x)(p2
y −p1

y)| ≤ 4ε

This is the region bounded by the intersection of a hyperbola, its translated copy
and their conjugates, as seen in Figure 3.8. The area of the triangle T is proportional
to the distance between p2 and the line through p0 and p1. This distance can only
be maximized if p2 is located on an intersection of two hyperbolas; otherwise,
if p2 lies in the interior of the intersection region or on the boundary of a single
hyperbola, it cannot be optimal, since the region is concave. Finally, p2

x and p2
y

should therefore satisfy the following system of equations{ |p2
x p2

y | = 4ε
|(p2

x −ξ)(p2
y − 4ε

ξ)| = 4ε

Making a case distinction for the absolute value leads to four different systems of
two quadratic equations. Since the quadratic terms match, each system has two
solutions, which leads to a total of eight solutions. Two solutions are imaginary,
and there are six real solutions:

p2,1 =
(
−ϕξ,

1

ϕ

4ε

ξ

)
p2,2 =

(
− 1

ϕ
ξ,ϕ

4ε

ξ

)
p2,3 =

(
1

ϕ2 ξ,ϕ2 4ε

ξ

)
p2,4 =

(
1

ϕ
ξ,−ϕ4ε

ξ

)
p2,5 =

(
ϕξ,− 1

ϕ

4ε

ξ

)
p2,6 =

(
ϕ2ξ,

1

ϕ2

4ε

ξ

) (3.18)

where ϕ= (1+
p

5)/2 is the golden ratio.
For ε> 0 and ξ ∈R\{0} this yields six one-parameter families of triangles, which

we denote by Ti (ξ) = 4p0p1p2,i . See Figure 3.9 for an illustration of some area
optimal planar triangles. Note that the triple of planar points

{
p2,1, p2,2, p2,3

}
is

colinear and similarly, the triple
{

p2,4, p2,5, p2,6
}

is colinear as well. Finally the lines
containing the triples above are parallel to~e0 (cf. Figure 3.8). Therefore, the areas
of the triangles {Ti (ξ)}6

i=1 are all equal to 2ε
p

5 independently of ξ. These triangles
are all, by the construction, valid triangles of maximal area, that is, all their edge
vectors satisfy Equation (3.16) as an equality. For example, T4(ξ) is illustrated in
Figure 3.8 along with all the other elements that we discussed. Before we continue,
we note that for all ξ the following congruences hold

T1(ξ) ∼= T6(ξ), T2(ξ) ∼= T5(ξ), T3(ξ) ∼= T4(ξ). (3.19)

This can be shown by computing the lengths of the triangles’ edges.

56

3.5. Local Interpolating Triangulation of Saddle Surfaces

x

y

Figure 3.9: In red, green and blue samples of the optimal planar trinagles T1,T4

and T3 for several values of ξ, respectively. All have one vertex at the origin and
the other two located on the hyperbola |x y | = 4ε.

Optimize the Shape of the Valid Triangles. By now, we have six one-parameter
families of valid triangles such that all have a maximal area. We can impose yet
another restriction on these families that will yield better shaped triangles on the
one hand and will narrow the set of candidates triangles further on the other hand.
In particular, our next step is to optimize the quality of the valid triangles Ti (ξ)’s.
The literature is rich with quality measures of triangles; see, for example, [31]. We
consider in this work one of the simplest measures, namely, the smallest angle.
More precisely, our goal is to maximize the smallest angle of the valid triangles
Ti (ξ)’s. Due to the congruence relation, expressed in Equation (3.19), it is enough
to maximize the minimal angles of the first three families. Let us compute the case
for i = 1 in detail; the other cases can be handled in a similar way.

Let us now consider the triangle T1(ξ), and find for which value of ξ the minimal
angle is maximized, given that its vertices are p0, p1 and p2,1 as defined previously
in Equations (3.17) and (3.18). Let α0(ξ),α1(ξ) and α2(ξ) be the angle functions
corresponding to the vertices p0, p1 and p21 of T1(ξ), respectively. These functions
are plotted in Figure 3.10 and their explicit expressions are given in Appendix 3.A.
Let ξc

0,ξc
1,ξc

2 and ξc
3 be the values of ξ for which the three functions intersect. One

can easily verify that the minimal angle, namely, the lower envelope of the three
functions, is maximized for

ξ0 =
2

ϕ

p
ε,

which equals to ξc
2 and lies between ξc

1 and ξc
3. In Appendix 3.A detailed computa-

tions can be found. Note that ξ0 depends on ε. By symmetry we obtain that T1(±ξ0)
are valid triangles of maximal area and with the minimal angle maximized. By the
congruency of the triangles Ti (ξ), we obtain that T6(±ξ0) are optimal triangles as
well.

Similarly, we can easily find that for ξ1 = 2ϕ
p
εwe have that T3(±ξ1) and T4(±ξ1)

57

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

ξc
0 ξc

1 ξc
2 ξc

3

α0(ξ)

α1(ξ)

α2(ξ)

ξ

A
n

gl
e

Figure 3.10: Plot of the three angle functions of the triangle T1(ξ), all depending
on ξ.

are the optimal triangles we are looking for, once ε is given.2 Finally, for every ε> 0,
the following six triangles

T opt
1 = T1

(
2

ϕ

p
ε

)
T opt

2 = T1

(
− 2

ϕ

p
ε

)
T opt

3 = T3
(
2ϕ

p
ε
)

T opt
4 = T3

(−2ϕ
p
ε
)

T opt
5 = T4

(
2ϕ

p
ε
)

T opt
6 = T4

(−2ϕ
p
ε
) (3.20)

triangulate a neighborhood of the origin in the (x, y)-plane, as can be seen in the
lower right part of Figure 3.12. Direct evaluation shows that all these triangles are
isosceles with one edge of length 2

p
2ε and the two other of length 2

p
3ε each. In

addition the minimal angle equals arccos 2
3 = π

c where c ≈ 3.735.
If we were to take the conjugate choice of p1 in Equation (3.17), then the trian-

gles obtained in Equation (3.20) would provide a triangulation of a neighborhood
of the origin rotated by 90◦. Figure 3.11 illustrates the effect of this alternation. In
general, any triangle, together with its negative mirror image, can be used to tile
the plane. But, up to translations, there are just two tilings with optimal shape: the
one given in Figure 3.12 bottom right, and the one shown in Figure 3.11, which is a
reflection at the x-axis of the first one.3 We will see in Section 3.5.2 that once the
hyperbolas (or the corresponding saddles) are not simple, the two possibilities are
no longer equally optimal. See Figures 3.25 and 3.26 for an example.

Local Triangulation of Simple Saddle. We are now ready to generate a triangula-
tion of a neighborhoods of an arbitrary point p given on a simple saddle surface S,

2Note that similar computation can show that the families T2(±ξ2) and T5(±ξ2) attain an optimal
shape for ξ2 = 2

p
ε. However, as can be seen in Figure 3.12 they do not contribute to the triangulation,

and thus we discard them.
3Instead of this reflection we could either reflect with respect to the y-axis, or rotation by 90◦.

Either transformation can be used.

58

3.5. Local Interpolating Triangulation of Saddle Surfaces

Figure 3.11: Planar optimal triangles of the conjugate case, namely, choosing p1

initially on a different branch. Compare to the case depicted in the lower right
corner of Figure 3.12.

T1(ξ0)

T1(−ξ0)
T
6 (ξ

0)
T6(−ξ

0)

T2 (ξ2)
T2(−ξ2)

T
5 (ξ

2)

T
5(
−ξ

2)

T
3 (ξ

1)

T3(−ξ
1)

T
4(ξ1)

T 4
(−
ξ 1

)

T
opt

1
(ε)

T
opt

2
(ε)

T opt3
(ε)

Topt 4
(ε

)

T
o

p
t

5
(ε)

T
o

p
t

6
(ε

)

Figure 3.12: The best shaped triangles (up to translations) that satisfy the
condition (3.16). On the lower right corner a fundamental domain for tiling the
plane is shown. Note that T3(±ξ1) = T6(±ξ0)

59

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

as given in Equation (3.15) on page 53. In particular, we want to obtain a triangu-
lation that is optimal in the following sense. First, and most important, it should
meet a prescribed maximal vertical distance. More explicitly, for a given ε> 0, the
maximal vertical distance for all the triangles T ∈T to the surface S, where T is
the collection of triangles in the triangulation, has to satisfy

distV (S,T) ≤ ε ∀T ∈T . (3.21)

In addition, we want the triangulation to be both efficient and nice. By efficient
triangulation we refer to a triangulation where few triangles cover large area, while
still maintaining the maximal vertical distance optimality as expressed in Equa-
tion (3.21). In addition, a triangulation is nicely shaped if the smallest angles of
all the triangles that constitute the triangulation are as large as possible while still
meeting the optimality of the vertical distance.

As we saw in Lemma 3.7, for a triangle with vertices on S, the vertical distance
depends on its projection to the (x, y)-plane. In Equation (3.20) we characterized
the planar triangles that satisfy, given some ε> 0, the edge vectors condition and
have maximal area and optimal (planar) shape. Furthermore, for a given ε> 0, all
the edges of the triangles in {T opt

i }6
i=1 satisfy an equality in (3.16). Note that this also

hold for any translated copy of the family. We use this family of triangles in order to
obtain a local triangulation that will satisfy the desired properties aforementioned.

Notation 3.8 (Lifting a triangle). Given a planar triangle T and a saddle S, we
denote by T̂ the vertical lifting of T to S. In particular

T̂ = conv{π(ai)}2
i=0,

where π(ai) is the vertical lifting of the vertex ai of T to the saddle S.

Lemma 3.9. Let S be a simple saddle and ε> 0. In addition let T opt
i (~v) be a ~v ∈R2

translation of T opt
i . Then, the collection T = {T̂ opt

i (~v)} is an interpolating trian-
gulation of a neighborhood of the point (~v x ,~v y ,~v x~v y) on S, with maximal vertical

distance equals ε. That is, for all i , distV

(
T̂ opt

i (~v),S
)
= ε.

Proof. Direct computation proves that all the edge vectors of all the triangles in T

satisfy
|ex

i e y
i | = 4ε,

and thus by Lemma 3.7 we have distV

(
S, T̂ opt

i (~v)
)
= ε for all i ∈ {1,2, . . . ,6}.

Remark 3.2. In Equation (3.17) we set p1 =
(
ξ, 4ε

ξ

)
. As pointed out already, setting

p1 =
(
−ξ,− ε

ξ

)
yields the same triangulation. Both cases produce the same triangles,

which can be found in Figure 3.12. However, when choosing p1 =
(
±ξ,∓ ε

ξ

)
we can

obtain a triangulation of the conjugate hyperbolas, as can be seen in Figure 3.11.
The resulting triangulation of the saddle in this case is a conjugate version as well.

60

3.5. Local Interpolating Triangulation of Saddle Surfaces

Figure 3.13: An example of a triangu-
lation of a simple saddle surface with op-
timal shaped triangles of maximal area.

Figure 3.14: A triangulation that is
conjugate to the one in Figure 3.13,
which results from different choice of
p1.

In Figures 3.13 and 3.14 we can see two triangulations of S, corresponding to the
first and second choice of p1. In the first case each lifted triangle has two edges
above S and one edge below. On the other hand, in the conjugate case each triangle
has two edges below S and one above. However, when the saddle at hand is not
simple, the choosing of p1 has a bigger role as can be seen in Figures 3.25 and 3.26
where one choice yields larger smallest angles than the other one. We address this
subtle issue later in Section 3.5.2.

On the Angles of the Optimal Triangulation. Once the planar triangles are lifted
to the saddle surface, not all of them are kept isosceles anymore. In particular, when(
ν,µ

) = (0,0), that is no translation is involved, T̂ opt
3 and T̂ opt

4 are both isosceles
with minimal angles equal to

arccos

(
2+4ε

3+4ε

)
.

The other four triangles are all congruent with a minimal angle that equals

arccos

(
2(1+4ε)p

(3+4ε)(3+16ε)

)
.

In both cases, the minimal angles is given by a decreasing function, and thus the
smaller ε is the bigger the minimal angle is. Note that as ε→ 0 both smallest angles
converge to arccos 2

3 = π
c for c ≈ 3.735, which is the same smallest angle value that

we obtained in the planar case.
Furthermore, once translation takes place, that is when trying to triangulate a

neighborhood of an arbitrary point (ν,µ,νµ) ∈ S, then the minimal angle decreases
whenever the magnitude of the translation (ν,µ) ∈R2 increases.

Covered Area. In this paragraph we consider the area of the approximating trian-
gles and the corresponding surface patches. First, when considering a triangulation

61

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

0 1 2 3

0

20

40

ε

A
re

a
Surface patch
Lifted triangle

(a) Cases correspond to T
opt
i (ε) such that i ∈

{1,2,5,6}.

0 1 2 3

0

20

40

ε

A
re

a

Surface patch
Lifted triangle

(b) Cases correspond to T
opt
i (ε) for i ∈ {3,4}.

Figure 3.15: The surface area of a patch of the simple saddle (in red) compared
to the area of the approximating triangle (in blue) as functions of ε. Horizontal
axis represents ε ∈ [0,3] and the vertical axes is the area.

of a neighborhood of the origin, namely, the case where no translation is applied, a
direct computation of the area of the optimal triangles T̂ opt

i yields that

area(T̂ opt
3) = area(T̂ opt

4) = 2ε
p

5+8ε, (3.22)

and otherwise

area(T̂ opt
i) = 2ε

p
5+28ε (3.23)

for i ∈ {1,2,5,6}. In this case, we can provide a numerical approximation of the
area of the simple saddle itself that corresponds to an optimal triangle T opt

i . As
we can see in Figure 3.15 in both case the area of the approximating triangle (in
green) converges to the are of the corresponding surface patch (in red). An analytic
expression of the area of the surface patch is not provided, and thus the convergence
rate cannot be analyzed.

On the other hand, we can consider the case where we allow translations of
the planar optimal triangles before lifting them to the simple saddle. This case
corresponds to the local triangulation of an arbitrary point of S. As before, let
T opt

i (~v) be a translation of T opt
i by a vector ~v ∈R2 and let T̂ opt

i (~v) be its lifting. In
this case, we have that

area(T̂ opt
i (~v)) ≥ 2ε

p
5 ∀~v ∈R2.

In particular, for each i ∈ {1, . . . ,6} there exists ~vi ∈ R2 such that area(T̂ opt
i (~vi)) =

2ε
p

5. Recall that this is the area of the planar optimal triangles. Furthermore, the
area of T̂ opt

i (~v) increases depending on the distance of ~v from ~vi .

62

3.5. Local Interpolating Triangulation of Saddle Surfaces

Gaussian Curvature. Given a point p ∈ S, then one can directly compute the
Gaussian curvature K (p) at p

K (p) =− 1

(1+x2 + y2)2 .

In addition, let Tp be the optimal triangulation obtained in Lemma 3.9, then we
can compute the discrete Gaussian curvature at p. In [33, 40] the (total) Gaussian
curvature is defined as follows:

Kp = 2π−
∑

T∈Tp

αT (p)

where αT (p) is the inner angle of the triangle T at the common vertex p. In our
case, if p is at the origin, then we can find an explicit expression of Kp , namely,

Kp = 2π−2arccos

(
2+4ε

3+4ε

)
−4arccos

(p
2ε(1−4ε)p

ε(1+2ε)
p
ε(3+4ε)

)
.

However, it turns out that limε→0 Kp = 0 and it does not converge to the correct
value of the Gaussian curvature of the simple saddle at the origin.

Alternatively, one can consider the definition of a discrete Gaussian curvature
as given by [9, 10], namely,

Kp = 3

A(p)

(
2π−

∑
T∈Tp

αT (p)

)
,

where A(p) is the total area of the triangles in the discrete patch Tp . Using the
expressions of the areas of the triangulating triangles (Equations (3.22) and (3.23))
we can obtain a new expression for the discrete Gaussian curvature. This time it is
easy to show that for p at the origin limε→0 Kp =−1, and indeed converges to the
Gaussian curvature of the smooth surface.

From Local to Global Triangulation. As we saw, the local planar triangulation
we obtained is invariant under translations. Therefore, we can first tesselate the
plane with optimal hexagon, similar to those found in Figure 3.12, and then lift
the tessellation to the saddle S. For the simple saddle surface case studied in this
section, the planar tessellation can be found in Figure 3.16, and the corresponding
surface triangulation is plotted in Figure 3.17. All the triangles in this triangulation
maintain a fixed maximal vertical distance throughout the domain, but the shape
of the triangles themselves degenerates depending on their remoteness from the
origin.

3.5.2 Canonical Saddle

Our next task is to generalize the results that we obtained for the simple saddle
and generate and optimal approximation of a canonical saddle. Without loss of

63

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

Figure 3.16: A tessellation of the
plane with optimal planar triangles,
which correspond to a simple saddle
surface.

Figure 3.17: The triangles from the
tessellation in Figure 3.16 lifted to the
simple saddle itself.

generality, we recall (cf. Section 3.3) that a canonical saddle is

S = {(
x, y, z

)
: z = ax2 −by2 }

,

such that a · b > 0. For the sake of simplicity, we can assume, without loss of
generality, that a = 1 and b > 0. We start the discussion in a similar approach to
the one employed in Section 3.5.1. Given a generic planar triangle T our goal is to
maximize its area while maintaining the vertical distance constraint, namely,

distV
(
S, T̂

)≤ ε,

where T̂ is the lifting of T to the canonical saddle S and ε > 0. First, recall from
the discussion on the vertical distance (cf. Section 3.4), that it is invariant under
translations of T in the plane. Therefore, we can assume that one of the vertices of
T is at the origin. Indeed, we denote the vertices of T by

p0 = (0,0) p1 = (x1, y1) p2 = (x2, y2).

In addition, like in the simple case, the vertical distance cannot be attained at an
interior point of T̂ . Thus, we can use Lemma 3.3 and we have to solve the following
system: 

1

4
|x2

1 −by2
1 | = ε

1

4
|(x1 −x2)2 −b(y1 − y2)2| = ε

1

4
|x2

2 −by2
2 | = ε

(3.24)

From the first equation we have that p1 can either be located on the hyperbola
h given by x2 −by2 = 4ε, or on its conjugate counterpart, namely, x2 −by2 =−4ε,
which is denoted by h′. In Figure 3.18 the former hyperbola is plotted in red and

64

3.5. Local Interpolating Triangulation of Saddle Surfaces

h

h′

Figure 3.18: An example of the hyper-
bolas h and h′.

p0

p1 = q1

p2 = q2

T

q0
T ′

Figure 3.19: A triangle T and its point
reflection T ′ with respect to the mid-
point of the segment connecting p1 and
p2.

the latter in blue. We first treat the former case, namely, assume that p1 lies on h.
From the first equation in (3.24) we have that

x1 =±
√

by2
1 +4ε

for all y1 ∈R. Without loss of generality we can choose p1 to lie on the right branch
of h, that is p1 =

(
ξ,η

)
where ξ=

√
bη2 +4ε and η ∈R. Given this parameterization

of p1, we can now, using the second and third equations in (3.24), find expressions
for x2 and y2 as functions of η. Indeed

p21 =
(
−ξ2 +

p
5bξη

2ξ
,
−bη+

p
5bξ

2b

)

p22 =
(

3ξ2 +
p

5bξη

2ξ
,

3bη+
p

5bξ

2b

)

p23 =
(
ξ2 +

p
5bξη

2ξ
,

bη+
p

5bξ

2b

)

p24 =
(
ξ2 −

p
5bξη

2ξ
,

bη−
p

5bξ

2b

)

p25 =
(
−ξ

2 +
p

5bξη

2ξ
,−bη+

p
5bξ

2b

)

p26 =
(

3ξ2 −
p

5bξη

2ξ
,

3bη−
p

5bξ

2b

)

In other words, similarly to the case of the simple saddle, we obtain six one-
parameter families of triangles, which we denote by Ti (η) = 4p0p1p2i . For all
i ∈ {1, . . . ,6} we have that the area of Ti (η) equals

p
5/bε, independently from η. In

Figure 3.20 the triangles Ti (η)’s are plotted for some fixed value of η. It is easy to
verify that if T̂i (η) is the lifting of Ti (η) to the canonical saddle S, then we have
distV

(
S, T̂i (η)

)= ε for all i and for all η ∈R.

65

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

p0

p1

p21

p22
p23

p24
p25

p26

Figure 3.20: Six area maximal triangles obtained for a canonical case z = x2−by2.
All the triangles are parameterized by the y-value of p1, which is located on the
hyperbola x2 −by2 = 4ε. Note that the dashed hyperbolas are centered at p1.

Before we continue, let us point out that the vertical distance is invariant under
point reflections of the corresponding planar triangles. More explicitly, let T̂ be an
arbitrary triangle with vertices on some saddle and let T be its projection to the
x y-plane. If T ′ is a point reflection of T with respect to the midpoint of one of its
edges, then

distV
(
S, T̂

)= distV
(
S, T̂ ′)

where T̂ ′ is the lifting of the triangle T ′ to the same arbitrary saddle. The following
lemma proves this.

Lemma 3.10. Let T and T ′ be two planar triangles, such that the latter is a point
reflection of the former with respect to the midpoint of one of its edges. Then,

distV
(
S, T̂

)= distV
(
S, T̂ ′) ,

where T̂ and T̂ ′ are the liftings of T and T ′ to some saddle S, respectively.

Proof. Let T be a planar triangle with vertices p0, p1 and p2. Furthermore, let T̂ be
the lifting of T to the saddle S. Since S is a saddle, we have that the vertical distance
distV

(
S, T̂

)
is attained on the boundary of the triangle. Thus, by Lemma 3.3, we

have that distV
(
S, T̂

)= maxi , j distV
(
S,`p̂i p̂ j

)
, such that 0 ≤ i < j ≤ 2 and p̂i and p̂ j

are the vertices of T̂ . Without loss of generality, let T ′ be the point reflection of T
with respect to the midpoint of the edge connecting p1 and p2 (cf. Figure 3.19).
In particular, the vertices of T ′ are q0, q1 and q2 such that q1 = p1, q2 = p2 and
q0 = p2 +p1 −p0. We have that

distV
(
S,`p̂0p̂1

)= distV
(
S,`q̂0 q̂2

)
distV

(
S,`p̂1p̂2

)= distV
(
S,`q̂1 q̂2

)
distV

(
S,`p̂0p̂2

)= distV
(
S,`q̂0 q̂1

)
since p2 −q0 = p0 −p1 and p1 −q0 = p0 −p2. Thus the lemma is proved.

66

3.5. Local Interpolating Triangulation of Saddle Surfaces

h

α0

α2

α1

p22

p0

p1 = (ξ,η)

T (η)

Figure 3.21: The triangle T2(η), which we denote by T (η), plotted for various
values of η.

We can conclude that the vertical distance is invariant under translations in
the x y-plane and point reflections. Therefore, for some fixed η and i ∈ {1, . . . ,6},
the triangle Ti (η) and its translations and point reflections (with respect to the
midpoints of its edges) can be used to tile the plane. Lifting this tiling to the
canonical saddle yields an approximation of the surface for which the maximal
vertical distance equals ε. We now observe (cf. Figure 3.20) that it is sufficient to
consider only one one-parameter family of triangles. We first note that T4(η) is a
point reflection of T3(η) with respect to the midpoint of the line connecting p0 and
p1. Moreover, T3(η) is a point reflection with respect to the midpoint of a triangle
that has two vertices on h′ and is treated later; thus we can, at this point, ignore
these two families (cf. Remark 3.4 on page 70). Furthermore, T1(η) and T5(η) are
point reflections, with respect to the midpoint of the line segment p0p1, of T6(η)
and T2(η), respectively. In addition, if

η2 =
1

2

(
3η1 −

p
5

√
η2

1 +
4ε

b

)
,

then T2(η2) = T6(η1) for all η1 ∈ R. Therefore, we can, without loss of generality,
focus on T2(η), which we denote by T (η). The last step to take, is to optimize the
shape of T (η), and obtain an optimal approximation of the canonical saddle, similar
to the one we obtained in Section 3.5.1. Once again, given two triangles, then we
say that the shape of the first is better than the shape of the second if the minimal
angle of the first is larger than the minimal angle of the second.

Let α0(η),α1(η) and α2(η) be the functions of the angles of T (η) at the vertices
p0, p1 and p22, respectively. See, for reference, Figure 3.21 where T (η) is plotted for

67

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

several values of η. By their definition, the angle functions are smooth. In the next
lemma we establish four properties of the angle function.

Lemma 3.11. The angle function α0(η),α1(η) and α2(η) of the parameterized trian-
gle T (η) satisfy the following properties.

Property 1: The following limits hold:

lim
η→±∞α0(η) = 0

lim
η→−∞α1(η) = lim

η→∞α2(η) = 0

lim
η→∞α1(η) = lim

η→−∞α2(η) =π

Property 2: The functions α1(η) and α2(η) are monotonically increasing and de-
creasing, respectively.

Property 3: α0(η) has a global maximum for η0 =−pε/b.

Property 4: Finally, α1(η0) =α2(η0).

Proof. The slopes of the edges of T (η) as a function of η are given by (see cell
In[30] in Appendix 3.C):

η√
bη2 +4ε

b2η3 +4bηε+3
p

5ε
√

b
(
bη2 +4ε

)
b
√

bη2 +4ε
(
bη2 +9ε

)
b2η3 +4bηε−

p
5ε

√
b

(
bη2 +4ε

)
b

(
bη2 −ε)√bη2 +4ε

It is easy to verify that for η→∞ all the limits of all the slopes is 1p
b

, which is also the

slope of the asymptote of the hyperbola. Therefore we have that limη→∞α1(η) =π.
In turn, for η→∞ we have that the limit of the other two angle functions is zero.
Similarly, it is easy to show the case where η→−∞. This proves the first property.

When η traverses the interval (−∞,∞), the edge from p0 to p1 turns left and
the edge from p1 to p22 turns right when observed from p1. Therefore, the angle
function α1(η) is monotonically increasing. Similar argument shows that α2(η) is
monotonically decreasing. This establishes the second property.

Direct computation yields that the derivative of α0(η) has a single critical value

η0 =−
√

ε
b . In particular, α′

0(η0) = 0 and the second derivative satisfies α′′
0(η0) < 0;

see cell In[34] in Appendix 3.C. Thus, α0(η) has, indeed, a global maximum for η0.
Finally, it is easy to verify the last property.

68

3.5. Local Interpolating Triangulation of Saddle Surfaces

(a) b > 1 (b) 0 < b < 1

Figure 3.22: Optimal triangulation of the neighborhood of the origin using copies
of T from Equation (3.25). Note that each of the red triangles has two vertices
on h.

Remark 3.3. The proof of the last lemma can be verified easily using symbolic
computations, as we present in Appendix 3.C. However, as proposed by G. Rote,
one can obtain a more elegant parameterization of the triangle in question. Using
this parameterization the complexity of the computations reduces significantly.

Finally, let α = min{α0(η0),α1(η0)} be the minimal angle of T (η0). Given the
properties above, for all η 6= η0 we have that the minimal angle of the corresponding
T (η) is smaller than α. Therefore we can state the following:

Claim. The triangle T = T (η0) for η0 = −pε/b is of optimal shape among all the
triangles in the one-parameter family of triangles T (η). In particular

T = conv

{
(0,0) ,

(p
5ε,−

√
ε

b

)
,

(p
5ε,

√
ε

b

)}
(3.25)

It is interesting to point that for b = 3/5 the triangle T is equilateral. Finally, we
can triangulate the neighborhood of the origin using T and its point reflections
(with respect to the midpoints of its edges) and translations; as can be seen in
Figure 3.22. In turn, we can lift this local triangulation to the given canonical saddle
and obtain a triangulation. Next, we have to treat the case where p1 is on the
conjugate hyperbola, namely, cf. h′ in Figure 3.18.

We now assume that p1 is on the upper hyperbola h′, and thus, from the first
equation in (3.24), can without loss of generality be parameterized by its x-value as
follow

p1(ξ) =
ξ,

√
ξ2 +4ε

b

 .

69

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

As before, next we obtain six one-parameter families of triangles T ′
i (ξ), i ∈ {1, . . . ,6},

such that all have the same area and for which

distV
(
S, T̂ ′

i (ξ)
)= ε

where T̂ ′
i (ξ) is the lifting of T ′

i (ξ) to the canonical saddle S. Once again, the area of
the triangles is

p
5/bε, like in the previous case. We can now choose, without loss of

generality, one of the families. For the sake of convenience, we choose a family for
which p1 and p2 lie on the hyperbola h′. In particular, we set T ′(ξ) to be the triangle
with vertices 

(0,0) ,

ξ,

√
ξ2 +4ε

b

 ,

1

2

(
3ξ−

√
5(ξ2 +4ε)

)
,−

p
5bξ−3

√
b

(
ξ2 +4ε

)
2b




Similarly to the case where p1 is located on h, we want to maximize the minimal
angle; in other words find the value of ξ for which the minimal angle of T ′(ξ) is
maximized. Again, we can determine that the for ξ0 = p

ε the minimal angle is
maximized. Once again, the resulting triangle is an isosceles. Let us set T ′ = T ′(ξ0),
which is explicitly given by

T ′ = conv

{
(0,0) ,

(
p
ε,

√
5ε

b

)
,

(
−pε,

√
5ε

b

)}
(3.26)

Note that in this case, for b = 5/3 the corresponding triangle is equilateral.

Remark 3.4 (Relation between the cases). We considered here two cases depending
on the initial choice of p1. In particular, p1 can lie either on h or on h′. In the first
case, cf. Figure 3.20, we parameterize six families of triangles and we denoted them
by Ti (η). Similarly, in the second case we obtain six one-parameter families of
triangles as well, and we denote them by T c

i (ξ). The details on the second case can
be found in Appendix 3.C. One can verify that if

η= 1

2

(p
5ξp
b

−
√

b(ξ2 +4ε)

b

)
,

then T3(η) = T c
5 (ξ) for ξ ∈R.4

The Role of the parameter b. By now, given a canonical saddle S of the form
z = x2 −by2 for some b > 0, we obtained two optimal triangles T and T ′ as can
be found in Equations (3.25) and (3.26), respectively. Either of the triangles can

4 For reference, in Appendix 3.C, Ti (η) and T c
i (ξ) are named optTs and conjOptTs, respectively.

70

3.5. Local Interpolating Triangulation of Saddle Surfaces

(a) b > 1 (b) 0 < b < 1

Figure 3.23: Similar triangulation as the one obtained in Figure 3.22, only here
T ′ from Equation (3.26) is used. Note that here the each of the red triangles has
two vertices on h′.

be used to generate an approximation of the saddle S. Furthermore, the areas of
the triangles is the same, and thus, in this perspective, the two possibilities are
equally good. However, as can be seen in Figures 3.22 and 3.23, depending on the
parameter b, the quality of the triangles changes. In particular, the images suggest
that for 0 < b < 1 the triangle T has to be chosen, and if b > 1 then it should be
T ′. The following lemma establishes the above observation and summarizes the
discussion.

Lemma 3.12. Let S be a saddle surface given by z = x2 −by2, with b > 0 and let
ε> 0. Set

T † =
{

T if 0 < b < 1

T ′ if b ≥ 1

where T and T ′ are given in Equations (3.25) and (3.26), respectively. In addition,
let T̂ † be the lifting of T † to the saddle S. Finally, let τ and τ̂ be an arbitrary planar
triangle and its lifting to S, respectively. Then the following hold:

1. distV
(
S, T̂ †

)= ε.

2. If distV (S, τ̂) = ε, then the area of τ is bounded from above by the area of T †.

3. If distV (S, τ̂) = ε and area(τ) = area(T †), then the minimal angle of τ is
bounded from above by the the minimal angle of T †.

Proof. Let us first verify that the construction indeed yields distV
(
S, T̂ †

) = ε. To
that end, we have to compute the vertical distance between the edges of T̂ † and
S. This is directly done, by considering the vertices of the planar triangles T from
Equation (3.25) and T ′ from Equation (3.26) and verifying the vertical distance
using Lemma 3.3.

71

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

0 3/5 1 5/3 ∞
0

π

θH
T

θB
T

θH
T ′

θB
T ′

b

A
n

gl
e

Figure 3.24: The angles of the triangles T and T ′ as functions of the parameter
b. Note that for b = 3/5 the triangle T is equilateral, and for b = 5/3 the triangle T ′

is equilateral.

The second part of the lemma is guaranteed by the construction of the planar
triangles T and T ′. It is left to prove the third part. To that end, we have to consider
the angles of the triangles T and T ′. In particular, we have to show that the minimal
angle of T is larger then the minimal angle of T ′ if 0 < b < 1 and vice versa for b ≥ 1.

Indeed, a direct computation yields that the head and base angles of T are

θH
T = arccos

(
5b −1

1+5b

)
and θB

T = arccos

(
1p

1+5b

)
,

respectively. Similarly, the head and base angles of T ′ are

θH
T ′ = arccos

(
5−b

5+b

)
and θB

T ′ = arccos

√
b

5+b

 ,

respectively. In Figure 3.24 these angles are plotted as functions of b. An elementary
analysis of these functions establishes the third part of the lemma.

We can conclude, that using the triangle T † we can obtain the desired trian-
gulation of a corresponding saddle surface, which is given by z = x2 −by2 with
b > 0. More precisely, using translations and point reflections of T † we can obtain a
triangulation of some domain D ⊂R2. In turn, we can lift this planar triangulation
to the given saddle and obtain an optimal approximation of the surface.

Relation to the simple case. Next we want to establish two relations between the
canonical case discussed in this section and the simple one that we discussed in
Section 3.5.1. In particular, we discuss how one can derive an optimal approxima-
tion of the simple saddle from the canonical one and vice versa. The first direction
is obvious; the case of the simple saddle is a special case of the canonical one. In
particular, for b = 1 the saddle S is a rotation of the simple saddle. Indeed, in this
case, we have that the minimal angles of T and T ′ are the same (cf. Figure 3.24),

72

3.5. Local Interpolating Triangulation of Saddle Surfaces

and thus they are equally good for the sake of an optimal approximation. In other
words, the two triangulation that we discuss in Remark 3.2 on 60 are nothing but
rotated images of T and T ′ from the current section.

The second relation, however, is less trivial. In Remark 3.2 we discuss two
possible triangulations of the simple saddle that can be obtained. One when setting

initially p1 =
(
ξ, 4ε

ξ

)
and the second when setting p1 =

(
ξ,−4ε

ξ

)
. Let TS̄ and T ′

S̄
be one

of the triangles that we obtain in the first and second choices (when considering
the simple saddle), respectively. Furthermore, let T̂S̄ and T̂ ′

S̄
be their liftings to

the simple saddle, which we denote here by S̄ = {(
x, y, z

)
: z = x y

}
. In addition, let

us denote two transformations. First, let R : R3 → R3 be a π/4 clockwise rotation
around the z-axis. Then, R(S̄) = {(

x, y, z
)

: z = 1
2 x2 − 1

2 y2
}

is a rectangular saddle.
Secondly,

S =A (R(S̄)) = {(
x, y, z

)
: z = x2 −by2 }

,

where A : R3 →R3 is an anisotropic map that is given by

(
x, y, z

) 7→ (
1p
2

x,
1p
2b

y, z

)
.

In other words, using the maps R and S , we can transform the simple saddle
S̄ to a canonical one of the form we discuss in this section. Note that R and S

are strongly related to the maps discussed in Section 3.2. Finally, one can easily
verify that T̂ =A (R(T̂S̄)) and T̂ ′ =A (R(T̂ ′

S̄
)), where T̂ and T̂ ′ are the liftings to the

canonical surface S of the triangle T that is defined in Equation (3.25) and T ′ from
Equation (3.26), respectively.

The second relation shows that it is possible to use the triangles that we ob-
tained in the case of the simple saddle for the sake of optimal triangulation of a
canonical saddle. However, this is not straightforward and one has to be careful.
Although both possible triangulations in the simple case are equally good, due to
the symmetry of the simple saddle, it is no longer the case when they are trans-
formed to the canonical saddle. Thus, when using the maps A and R one has
to choose carefully, depending on the properties of the canonical saddle at hand,
the triangulation from the simple case. Given the correct choice, the composition
of the maps mentioned above maps optimal triangles to optimal triangles; here
optimality stands both for the error bound and the shape of the triangles. This
observation is surprising since the composition of the maps changes the shape of
the triangles.

The conjugate case and General Saddles. In this section we handled merely the
saddle which is given by z = x2−by2, such that b > 0. The conjugate surface, which
is given by z =−x2 +by2, can be approximated using the same triangles T and T ′;
one simply has to lift them to the conjugate surface. Note that lifting a 90◦ rotation
of either T or T ′ around the origin yields an approximation of the surface that is
given by z = bx2 − y .

73

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

Finally, let us briefly outline how to obtain an optimal triangulation of a generic
saddle which is given by z = αx2 −βy2 such that α ·β > 0 and given some fixed
ε′ > 0. Let us set ε= ε′/α and b = β/α; assume that 0 < b < 1. Let us now obtain the
planar triangle T from Equation (3.25). In particular we have the following planar
triangle

Θ= conv

{
(0,0) ,

(√
5ε

α
,−

√
ε

β

)
,

(√
5ε

α
,

√
ε

β

)}
(3.27)

Let us lift this triangle to the saddle z = x2−by2 and obtain Θ̂ that attains a maximal
vertical distance ε to the saddle. The map Sα : R3 →R3 given by

Sα(
(
x, y, z

)
) = (

x, y,αz
)

,

maps the vertices of Θ̂ to the generic canonical saddle z =αx2 −βy2. In particular,
we have

Sα

(
Θ̂

)= conv

{
(0,0,0) ,

(√
5ε

α
,−

√
ε

β
,4ε

)
,

(√
5ε

α
,

√
ε

β
,4ε

)}
.

It is easy to verify that the maximal vertical distance between Sα

(
Θ̂

)
and the generic

canonical saddle we started with equals ε′. Naturally, if b > 1, then we should obtain
Θ as derived from T ′ in Equation (3.26) as discussed in Lemma 3.12. This concludes
the discussion on the optimal (interpolating) triangulation of canonical saddles.

Remark 3.5 (Approximate General Saddles). We end the discussion by pointing
that a general saddle can be obtained by first rotating a canonical saddle and then
translating it in space. Thus, one can use the triangulation that we obtain in this
section also for the approximation of general saddles. In Figure 3.25 an example of
the local, optimal and interpolating approximation of a general saddle surface is
plotted. Note that in the plotted example, the center of the triangulation is not the
origin. In contrast, in Figure 3.26 we plot the triangulation that is obtained when
using the conjugate planar triangulation. In particular, compare the quality of the
planar triangles in both cases.

3.6 Non-interpolating Triangulation

In this section we improve the local triangulation that we obtained in Section 3.5.
While the approach described in the former section yields triangles that interpolate
the smooth saddle, in this section we will allow non-interpolating triangles. By
doing so, we increase the freedom to choose the approximating triangles. This, in
turn, yields an improvement of the approximation. The improved triangulation
presented in this section invalidates the conjecture of Pottmann et al. [34] that we
discussed in the introduction. For the sake of simplicity, we consider in this section
the simple saddle.

74

3.6. Non-interpolating Triangulation

Figure 3.25: An optimal planar triangulation together with its lifting to a general
saddle surfaces. In this example, p0 is not at the origin and a translation of the
planar triangulation is applied. As a result, the central vertex of the approximating
patch, denoted by p̂0, is not at the origin.

Figure 3.26: Approximation of the same saddle as in Figure 3.25 using the
conjugate planar triangles.

75

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

We follow a similar path as the one we took in Section 3.5.1. Our goal is to find
a planar triangle T? with vertices p0, p1 and p2 such that

distV
(
S, T̂?

)≤ ε,

where T̂? is the lifting of T? to the offset saddle

Sα = {(
x, y, z

)
: z = x y +α}

(3.28)

for α > 0. Note that for α > ε we have that distV
(
S, T̂?

) > ε. Thus, we can safely
assume that ε≥α≥ 0. Similarly to Lemma 3.3, let `i (t) be a parameterization of
the i -th edge of T̂?. In turn, it is easy to find the vertical distance from `i (t) to S
parameterized by t ∈ [0,1]. It is easy to establish that the extrema of the vertical
distance functions are attained either at the midpoints or the endpoints of the
edges. Note that at the endpoints the vertical distance from an edge to the surface
is α. Therefore, since we want to bound the distance by ε and we assume that ε≥α
we have for i ∈ {0,1,2}

distV (S,`i) =
∣∣∣∣1

4
(px

i −px
k)(p y

i −p y
k)+α

∣∣∣∣ s.t. k = i +1 mod 3 (3.29)

From this, we can derive the following lemma.

Lemma 3.13 (Translation Invariant). Given a planar triangle T with vertices p0, p1

and p2 and another triangle T ′, which is a translation of T by a vector ~v, we have
that

distV
(
S, T̂

)= distV
(
S, T̂ ′) ,

where T̂ and T̂ ′ are the liftings of T and T ′ to the offset saddle Sα, respectively.

Proof. Similarly to Equation (3.29), for all i ∈ {0,1,2} we have that

distV (S,`i) =
∣∣∣∣1

4
(px

i −px
k)(p y

i −p y
k)+α

∣∣∣∣
=

∣∣∣∣1

4

(
(px

i + v x)− (px
k + v x)

)(
(p y

i + v y)− (p y
k + v y)

)+α∣∣∣∣
= distV

(
S,`′i

)
.

Here `i and `′i are the i -th edges of T̂ and T̂ ′, respectively. Therefore we have,

distV
(
S, T̂

)= max
i∈{0,1,2}

distV (S,`i)

= max
i∈{0,1,2}

distV
(
S,`′i

) = distV
(
S, T̂ ′) .

This concludes the proof.

In turn, we can assume, without loss of generality, that p0 is at the origin.
It is our next goal to determine the locations for the vertices p1 and p2, such
that distV (S,`i) ≤ ε and the area of the corresponding planar triangle T? will be
maximal.

76

3.6. Non-interpolating Triangulation

Theorem 3.14. Let ε> 0 be fixed and set T? ⊂R2 to be the triangle with the following
vertices:

p0 = (0,0)

p1 = 2
p
ε

(
1+ 1p

3
,1− 1p

3

)
p2 = 2

p
ε

(
1− 1p

3
,1+ 1p

3

)
If T̂? is the lifting of the triangle T? to the offset saddle Sα0 for α0 = ε

3 , then the
following hold

1. Vertical distance: distV
(
S, T̂?

)= ε
2. Area of projection to the plane: area(T?) = 8εp

3
≈ 4.6188ε

Proof. Plugging in the coordinates of T? into the expressions for the verticals dis-
tances from the edges of T̂? to the simple saddle, cf. Equation (3.29), yields directly
that distV

(
S, T̂?

)= ε. Similarly, direct evaluation yields the area of T?.

Before discussing the technical details that yields the “right” coordinates in
the last theorem, we discuss its significance. Recall that in Section 3.5.1, where
we considered the interpolating approximation of a simple saddle, we obtained
that the area of the planar projection of the approximating triangles is 2

p
5ε ≈

4.4721ε and smaller than area(T?). Thus, the triangle T? defined in Theorem 3.14
allows us to use fewer triangles in order to approximate a simple saddle and, in the
meanwhile, maintain the same vertical distance, namely, ε. This result presents a
counterexample to the conjecture presented in [34].

Next we discuss the finding of the coordinates p1 and p2 as given in Theo-
rem 3.14. As we want to maximize the area of the triangle T?, we have to solve the
following system of equations

∣∣∣∣1

4
px

1 p y
1 +α

∣∣∣∣= ε∣∣∣∣1

4
(px

1 −px
2)(p y

1 −p y
2)+α

∣∣∣∣= ε∣∣∣∣1

4
px

2 p y
2 +α

∣∣∣∣= ε
(3.30)

which is derived from Equation (3.29). Let us assume that p1 lies in the first quad-
rant; thus, by setting px

1 = ξ we can obtain from the first equation above the follow-
ing parameterization

p1(ξ,α) =
(
ξ,

4(ε−α)

ξ

)
, (3.31)

for ξ> 0 and ε≥α≥ 0. Next, from the last two equations, we obtain six possible
(real) solutions for p2, all parameterized by ξ and α as well. Let us denote the
resulting triangles by T i

?(ξ,α) for i ∈ {1, . . . ,6}. For the sake of brevity, the explicit

77

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

p0

p1

p11

p22

p23

p24

p25

p26

Figure 3.27: Generic setting of the family T i
?(ξ,α) for some fixed parameters,

such that α> 0.

expressions of the third coordinates can be found in Appendix 3.B. A generic in-
stance, for some fixed parameters ε,α and ξ, is illustrated in Figure 3.27. It is easy
to verify, using the explicit coordinates of the vertices p2i , that the lines p23p24,
p25p26 and p0p1 are all parallel. Thus the corresponding triangles have the same
area, which is, since we assume that α > 0, larger than the area of T 1

?(ξ,α) and
T 2
?(ξ,α). In addition we note that the areas of all the triangles depend only on ε

and α, but not on ξ. Finally, the vertical distance between T̂ i
?(ξ,α) and the simple

saddle is fixed ε. Lemmas 3.13 and 3.15 show that the vertical distance is invariant
under translations and point reflections of the planar triangles, even when they
are lifted to an offset saddle. Thus, we can use one triangle together with its point
reflections (with respect to the midpoints of its edges) and translations to form a
local triangulation. Therefore we can choose, without loss of generality, one of the
four largest triangles. Let T?(ξ,α) denote T 5

?(ξ,α). As the area of T?(ξ,α) does not
depend on ξ, our next goal is to eliminate this parameter.

Indeed, by employing the so-called pseudo-Euclidean transformation, we can
optimize the shape of T?(ξ,α) and eliminate the parameter ξ. A map Pλ : R2 →R2

given by

Pλ

(
x, y

) 7→ (
λx,

1

λ
y

)
(3.32)

where λ> 0 is called pseudo-Euclidean transformation. In Figure 3.28 the effect of
such transformations is illustrated. Note that if one of the vertices of a triangle T
is at the origin and the other two lie on the same hyperbola, then all images of T
under pseudo-Euclidean transformations lie on that hyperbola. Furthermore, in

this case, we have also that distV
(
S, T̂

)= distV

(
S, àPλ(T)

)
, such that T̂ and àPλ(T)

are the liftings of the triangles T and Pλ(T), respectively, to Sα, for all parameters
λ. Finally, It is easy to verify that area(T) = area(Pλ(T)) for all planar triangles.

Since one vertex of T?(ξ,α) is at the origin and the other two lie on the same
hyperbola, we have that all triangles Pλ(T?(ξ,α)) are of the same area and maintain

78

3.6. Non-interpolating Triangulation

p0

p1

p2

p1

p2

p1

p2

p1

p2

Figure 3.28: A triangle (in blue) and its three images under different pseudo-
Euclidean transformations.

the same fixed vertical distance when lifted to Sα. Therefore, we can assume that
T?(ξ,α) is symmetric with respect to the line y = x. In particular, for

ξ0 =
p

2
√

3ε−α+
√

(5ε−3α)(α+ε)

we have that T?(ξ0,α) is such a triangle (cf. Figure 3.29).
We can now easily find that the area of T?(ξ0,α) satisfies

area(T?(ξ0,α)) = 2
√

(5ε−3α)(α+ε).

In turn, for α0 = ε
3 we have that the area of T?(ξ0,α) is maximized. Note that

T?(ξ0,α0) is the same triangle as T? from the statement of Theorem 3.14.

Remark 3.6. The triangle T? is equilateral. In the case of a simple hyperbolic parab-
oloid we obtain that optimal interpolating triangles are equilaterals (cf. [34]). In
the case at hand, of a simple hyperbolic paraboloid we obtain, again, optimality for
equilateral triangles, however this time the yielded approximation is not interpolat-
ing the smooth surface. Furthermore, it is easy to verify that the triangle T?(ξ0,0)
is identical to T opt

3 (ε) from Equation (3.20). As expected, in this case, where α= 0,
T?(ξ0,0) has to be lifted to S0 = S. In other words the discussion in Section 3.5.1 is
merely a special case with α= 0 of the current one.

If we want to use T? as a building block for the approximation of the simple
saddle S, we miss one more element. Namely, we have to verify that the vertical
distance is invariant under point reflections of triangles also in the case where the
triangles are lifted to an offset saddle (cf. Lemma 3.10).

Lemma 3.15 (Reflection Invariant). Let T be a planar triangle with vertices p0, p1

and p2, and let T ′ be its point reflection with respect to the midpoint of one of its
edges. Then, we have that

distV
(
S, T̂

)= distV
(
S, T̂ ′) ,

where T̂ and T̂ ′ are the liftings of T and T ′ to the offset saddle Sα, respectively.

79

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

p0

p1

p2

T?

y = 4(ε−α0)
x

Figure 3.29: The triangle T? from Theorem 3.14 along with five of its images
under translations and point reflections. Together, the six triangles form a local
triangulation of a neighborhood of the origin. Lifting them to the offset saddle
Sα0 yields a local non-interpolating approximation of the simple saddle S, which
maintain a vertical distance equals ε.

Proof. Without loss of generality, let T ′ be the point reflection of T with respect
to the midpoint of the edge connecting p1 and p2 (cf. Figure 3.19). In particular,
the new vertex of T ′, denoted by q0, is given by q0 = p2 +p1 −p0. In turn, from
Equation (3.29), we have that

distV
(
S,`′0

)= distV (S,`2)

distV
(
S,`′1

)= distV (S,`1)

distV
(
S,`′2

)= distV (S,`0)

Thus we have distV
(
S, T̂

)= distV
(
S, T̂ ′).

Finally, using Lemmas 3.13 and 3.15 we can triangulate a neighborhood of
the origin, as depicted in Figure 3.29. Lifting the obtained triangles to Sα0 yields
a local approximation of the simple saddle S. Furthermore, by applying further
translations and point reflections, we can obtain a triangulation of R2, which yields,
when lifted to Sα0 , a global and non-interpolating approximation T of the simple
saddle S. For all triangles T ∈T we have distV (S,T) = ε.

The Case Where α < 0. So far we considered the case where α ≥ 0 and smaller
than ε. We now review the case where α < 0. In this case (cf. Figure 3.30), the
triangles T 1

?(ξ,α) and T 2
?(ξ,α) are of largest area among all six possible triangles. In

particular, their areas are given by

2
√

(ε−α)(3α+5ε)

as functions ofα. Furthermore, it is easy to verify that this functions attains a global
extremum for

α−
0 =−ε

3
.

80

3.7. Conclusion

p0

p1

p21

p22

p23

p24

p25

p26

T −
?

Figure 3.30: The family T i
?(ξ−0 ,α−

0) of
triangles, such that α< 0. Note that the
triangles that correspond to the vertices
p21 and p22 are equilateral triangles.

p0

p1

p21

p22

T −
?

Figure 3.31: A triangulation of a
neighborhood of the origin generated
by T −

? . Lifting this planar triangula-
tion to the offset saddle Sα−

0
yields an

optimal non-interpolating approxima-
tion of the simple saddle.

In this case, it follows that the area of the planar triangles is 8εp
3

, like in the case of

α> 0 that we discuss in Theorem 3.14. Finally, for

ξ−0 = 4

√
ε

3

we have that the triangles are equilaterals. Without loss of generality, we set (cf.
Figure 3.30)

T −
? = T 2

?(ξ−0 ,α−
0),

and it is easy to verify that distV
(
S, T̂ −

?

)= εwhere T̂ −
? is the lifting of T −

? to the offset
saddle Sα−

0
. We can now tile the plane using translations and point reflections of

T −
? ; see Figure 3.31 and compare to Figure 3.29. In turn, lifting the tiling to the

offset saddle Sα−
0

yields and optimal non-interpolating approximation of the simple
saddle.

We conclude this paragraph by considering the rotation of T?, which is defined
in Theorem 3.14. Let T ′

? be a rotation of T? by 90◦ around the origin. Next, we can
verify that

distV
(
S, T̂ ′

?

)= ε,

where T̂ ′
? is the lifting of T ′

? to the offset saddle Sα−
0

.

3.7 Conclusion

In this chapter we considered the problem of approximating a saddle surfaces. In
particular, we found a triangular mesh that approximates a given saddle surface

81

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

with respect to the so-called vertical distance (cf. Section 3.4), which served as the
error measure. As a matter of fact, we derived two possible meshes. The first has its
vertices lying on the surface; this is what we call an interpolating approximation
— this case is discussed in Section 3.5. The second mesh has its vertices lying on
a saddle which is an offset of the given surface. In particular, in this latter case,
the vertices of the mesh do not lie on the given saddle surface, and thus yield
a non-interpolating approximation. In Section 3.6 we discussed this case while
considering the simple saddle.

Furthermore, we showed that the obtained approximations are optimal in the
following sense. First, let us focus on the interpolating case. Let S be a general sur-
face, given by

{(
x, y, z

)
: z =αx2 −βy2

}
. In addition, let T be some planar triangle

such that distV
(
S, T̂

)≤ ε, where T̂ is a lifting of T to the saddle surface S and ε> 0.
Then, we established that

area(T) ≤ ε
√

5

αβ
= area(Θ),

where Θ is given in Equation (3.27).5 Moreover, if area(T) = area(Θ), then the
minimal angle of T is bounded from above by the minimal angle of Θ.

When considering the non-interpolating case, we have a similar notion of
optimality. Let S be a simple saddle and Sα be an α-offset of S for some α > 0.
Again, let T be an arbitrary planar triangle and T̂ be its lifting to Sα. Thus, if
distV

(
S, T̂

)≤ ε for some ε> 0, then

area(T) ≤ 8εp
3
= area(T?),

where T? is defined in Theorem 3.14. Furthermore, since T? is an equilateral
triangle, we have that the minimal angle of T is at most as large as the (minimal)
angle of T?.

Let us conclude this short summary with the following observation. If ` is an
edge of an optimal triangle, then it can never be contained in a ruling of the saddle
(in the interpolating case) nor can its projection to the saddle be contained in a
ruling in the non-interpolating case. In addition, the triangles do align with the
principal curvature directions of the saddle. More precisely, if we consider the
neighborhood of the origin and focus on a triangle that has two vertices on the
same hyperbola, then this edge points in one principal curvature direction and its
90◦ rotation points in the second one. For reference see Figures 3.11, 3.12, 3.22, 3.23
and 3.29.

Future work. In this chapter two interesting issues were left untreated. First,
let us stress that the optimal approximations yielded in this chapter are of local

5 The triangleΘ in Equation (3.27) is defined under the assumption that 0 < β/α< 1. If β/α> 1, then
we have to define Θ by taking T ′ from Equation (3.26). However, regardless of α and β, the area of Θ
is constant.

82

3.7. Conclusion

nature. In particular, if T is an optimal triangle obtained in this chapter and T~v is
a translated copy of T by a vector ~v ∈ R2, then the lifted triangle T̂~v degenerates
(w.r.t. the minimal angle of the triangle) depending on the magnitude of ~v while
still maintaining the same vertical distance from the saddle surface. However, as we
discussed in Section 3.4, the vertical distance is no longer a good upper bounded
on the Hausdorff distance once T is translated away from the origin. Therefore, it
is interesting to obtain several (optimal) local approximation of a saddle, centered
at different points of the saddle, and glue them together into one approximating
mesh. To that end it is worthy to mention the work of Bertram et al. [7], where they
considered the stitching of local triangulations into a global one. In addition, one
should keep in mind that the optimal triangles presented in this dissertation are
members of one-parameter families of triangles. This parameter could be useful
when addressing the issue we present here.

The second interesting issue deals with the non-interpolating case. In this
chapter we considered a single lifting scheme; each vertex of a planar triangle is
vertically lifted either to a given saddle surface or to an offset of the given saddle.
Other lifting schemes were not considered, thus it is left open whether one can
obtain an improved triangulation by considering some different lifting.

83

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

3.A Explicit Computation of the Angles of T1(ξ)

When optimizing the shape of the planar triangles, in the case of the simple saddle,
in Section 3.5.1, we analyze the angle functions of the triangle T1(ξ) as functions
of ξ. For the sake of fluent reading, the expressions are presented in this appendix.
First, we obtain the functions of the three angles of the triangle as follow:

α0(ξ) =arccos

 32ε2 − (3+
p

5)ξ4

p
2
√

(16ε2 +ξ4)(32ε2 + (7+3
p

5)ξ4)


α1(ξ) =arccos

 8(
p

5−1)ε2 + (2+
p

5)ξ4√
(16ε2 +ξ4)(8(3−

p
5)ε2 + (9+4

p
5)ξ4)


α2(ξ) =arccos

 16(1−
p

5)ε2 + (11+5
p

5)ξ4√
512(3−

p
5)ε4 +96(7+3

p
5)ε2ξ4 +2(123+55

p
5)ξ8

 .

In Figure 3.10 the angle functions of T1(ξ) are plotted, as functions of ξ.6 Next we
can easily find the ξ values of the intersections between all functions. In particular,
α0(ξ) and α1(ξ) intersect for

ξc
0 = 0

ξc
1 = 2

√p
5−2

p
ε≈ 0.971737

p
ε

Similarly, α0(ξ) and α2(ξ) intersect for

ξc
2 =

2

ϕ

p
ε≈ 1.23607

p
ε.

Finally, α1(ξ) and α2(ξ) intersect for

ξc
3 =

√
2
(p

5−1
)p
ε≈ 1.5723

p
ε.

Since the functions are continuous, in each interval [ξc
i ,ξc

i+1), for i ∈ {0,1,2,3}, we
can determine which function is the minimal.7 Thus, we can determine the lower
envelope and in particular find that its maximum in the interval [0,∞) is attained
for α1(ξ0) where ξ0 = ξc

2 = 2
ϕ

p
ε; cf. Figure 3.10. Therefore, the triangle T1(ξ0) has

the maximal minimal angle in the one-parameter family T1(ξ).

6In the illustrated example we chose fixed ε= 1.
7Here we let ξc

4 =∞.

84

3.B. Expression for the Coordinates of T i
?(ξ,α)

3.B Expression for the Coordinates of T i
?(ξ,α)

In this section we provide the expressions for the coordinates of the triangles
T i
?(ξ,α), which were derived in Section 3.6. For the sake of completeness, recall

that p0 = (0,0) and

p1(ξ,α) =
(
ξ,−4(ε−α)

ξ

)
.

Let p2i (ξ,α) denote the third vertex of T i
?(ξ,α); in particular, the solutions of the

last two equations in Equation (3.30) yield

p21(ξ,α) =
(

ξ(α−ε−p(ε−α)(5ε+3α))
2(α−ε)

−2(α−ε+p(ε−α)(5ε+3α))
ξ

)

p22(ξ,α) =
(

ξ(α−ε+p(ε−α)(5ε+3α))
2(α−ε)

−2(α−ε−p(ε−α)(5ε+3α))
ξ

)

p23(ξ,α) =
(

ξ(α−3ε−p(ε+α)(5ε−3α))
2(α−ε)

−2(α−3ε+p(ε+α)(5ε−3α))
ξ

)

p24(ξ,α) =
(

ξ(α+ε−p(ε+α)(5ε−3α))
2(α−ε)

−2(α+ε+p(ε+α)(5ε−3α))
ξ

)

p25(ξ,α) =
(

ξ(α−3ε+p(ε+α)(5ε−3α))
2(α−ε)

−2(α−3ε−p(ε+α)(5ε−3α))
ξ

)

p26(ξ,α) =
(

ξ(α+ε+p(ε+α)(5ε−3α))
2(α−ε)

−2(α+ε−p(ε+α)(5ε−3α))
ξ

)

3.C Symbolic Computations Transcript

In this appendix the transcript of the symbolic computations related to the case
of the canonical saddle can be found. The computations were carried out using
Mathematica.

85

Optimal (Local)
Interpolatin1g
Approximation of
Canonical Saddle
Surfaces

In this notebook we consider a canonical saddle surface of the form:

z = x2 - by2

such that b>0.

Let us define the functions that describe the surface, parameterized by the
parameter b.

In[1]:= ClearAll@F, conjFD
F@x_, y_D := x^2 - b y^2;
F@p_ ê; Length@pD ã 2D := F@p@@1DD, p@@2DDD;
conjF@x_, y_D := -F@x, yD;
conjF@p_ ê; Length@pD ã 2D := conjF@p@@1DD, p@@2DDD;

A generic planar triangle, with one vertex at the origin, which we will optimize.

In[6]:= ClearAll@tD
t = 880, 0<, 8x1, y1<, 8x2, y2<<;

We shall use the following for plots of triangles in the plane.

In[8]:= ClearAll@colorsD
colors = 8Red, Green, Blue, Darker@RedD,

Darker@GreenD, Darker@BlueD<;

Under the above assumptions, we have that the hyperbola that corresponds to
F(x,y)=1 is east-west open (in red) and its conjugate is north-south open (in blue)

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

86

In[10]:= Block@8b = .5, bnd = 4<,
Show@
ContourPlot@F@x, yD == 1, 8x, -bnd, bnd<,
8y, -bnd, bnd<, ContourStyle -> RedD,

ContourPlot@conjF@x, yD == 1, 8x, -bnd, bnd<,
8y, -bnd, bnd<, ContourStyle -> BlueD,

ImageSize Ø 300, Frame Ø False, Axes Ø True,
PlotLabel Ø "The corresponding hyperbolas"D

D

Out[10]=
-4 -2 2 4

-4

-2

2

4
The corresponding hyperbolas

We treat two cases, namely where p1 = Hx1, y1L is located.

Red case:
ü Parameterize the vertices and obtain parameterized

planar triangles

Here we assume that p1is located on the red hyperbola.

In[11]:= $Assumptions = b > 0 && x1 œ Reals && y1 œ Reals && e > 0;

3.C. Symbolic Computations Transcript

87

Find the relation between x1 and y1.

In[12]:= ClearAll@p1RuleD
p1Rule = Solve@1ê4 F@t@@2DDD == e, x1D

Out[13]= ::x1 Ø - b y12 + 4 e >, :x1 Ø b y12 + 4 e >>

Without loss of generality we can choosex1to be positive.

In[14]:= p1Rule = p1Rule@@2DD;

Find the relation between x2 and y2. Note that two solutions are imaginary!
Pick the real solutions.

In[15]:= ClearAll@p2RuleD;
p2Rule =
Solve@1ê4 Abs@F@t@@3DDDD == e &&

1ê4 Abs@F@t@@3DD - t@@2DD ê. p1RuleDD == e,
8x2, y2<D êê Simplify

p2Rule = p2Rule@@3 ;; 8DD;
H*Verify in the output of the previous line
which entries are real!*L

Out[16]= ::x2 Ø
b y12 + 4 e + 3 y1 -b Ib y12 + 4 eM

2 b y12 + 4 e

,

y2 Ø
b y1 + 3 -b Ib y12 + 4 eM

2 b
>,

:x2 Ø
b y12 + 4 e - Â 3 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

y2 Ø
b y1 - Â 3 b Ib y12 + 4 eM

2 b
>,

:x2 Ø
-b y12 - 4 e + 5 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

y2 Ø
-b y1 + 5 b Ib y12 + 4 eM

2 b
>,

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

88

Out[16]=

:x2 Ø
3 b y12 + 12 e + 5 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

y2 Ø
3 b y1 + 5 b Ib y12 + 4 eM

2 b
>,

:x2 Ø
b y12 + 4 e + 5 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

y2 Ø
b y1 + 5 b Ib y12 + 4 eM

2 b
>,

:x2 Ø
b y12 + 4 e - 5 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

y2 Ø
b y1 - 5 b Ib y12 + 4 eM

2 b
>,

:x2 Ø -
b y12 + 4 e + 5 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

y2 Ø -
b y1 + 5 b Ib y12 + 4 eM

2 b
>,

:x2 Ø
3 b y12 + 12 e - 5 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

y2 Ø
3 b y1 - 5 b Ib y12 + 4 eM

2 b
>>

Six one-parameter families of triangles

In[18]:= tOpts = t ê. p1Rule ê. p2Rule;

All having the same area:

3.C. Symbolic Computations Transcript

89

In[19]:= 1ê2 Abs@Det@Ò@@2 ;; 3DDDD & êü tOpts êê
FullSimplify êê DeleteDuplicates

Out[19]= :
5 e

b
>

Visualize the six one-parameter families of triangles

In[20]:= Manipulate@
Block@8e = 0.4, y1 = y10, b = 2, bnd = 2.5<,
Show@
ContourPlot@Abs@F@x, yDD == 4 e, 8x, -bnd, bnd<,
8y, -bnd, bnd<D,

ContourPlot@
Abs@F@8x, y< - H8x1, y1< ê. p1RuleLDD == 4 e,
8x, -5, 5<, 8y, -4, 4<,
ContourStyle -> 8Red, Dashed<D,

Graphics@MapThread@List,
8colors, Polygon@ÒD & êü tOpts<DD,

Graphics@
8Dotted,
Line@8tOpts@@1DD@@3DD, tOpts@@3DD@@3DD,

tOpts@@2DD@@3DD<D<D,
Graphics@
8Dotted,
Line@8tOpts@@5DD@@3DD, tOpts@@4DD@@3DD,

tOpts@@6DD@@3DD<D<D,
H*Locus of the mid points of the base of
the green triangle*L

ParametricPlot@
8H5 b y^2 + 20 e + Sqrt@5D y Sqrt@b Hb y^2 + 4 eLDLê

H4 Sqrt@b y^2 + 4 eD 5 yLê4 +
1ê4 Sqrt@5D Sqrt@y^2 + H4 eLêbD<, 8y, -3, 3<,

PlotStyle -> 8Dotted, Magenta<D,
Axes -> True, Frame -> False, ImageSize Ø 200

DD,
88y10, 0.25, "y1"<, -2, 1<

D

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

90

Out[20]=

y1

-2 -1 1 2

-2

-1

1

2

Verify collinearity of the vertices connected with dashed lines in the image
above

In[21]:= 8Det@8Append@tOpts@@1DD@@3DD, 1D,
Append@tOpts@@2DD@@3DD, 1D,
Append@tOpts@@3DD@@3DD, 1D<D,

Det@8Append@tOpts@@4DD@@3DD, 1D,
Append@tOpts@@5DD@@3DD, 1D,
Append@tOpts@@6DD@@3DD, 1D<D< êê FullSimplify

Out[21]= 80, 0<

ü Study a single one-parameter family of triangles

Select a single one-parameter family of triangles (which has two vertices on
the same hyperbola)

3.C. Symbolic Computations Transcript

91

In[22]:= tCandidate = tOpts@@2DD

Out[22]= :80, 0<, : b y12 + 4 e , y1>,

:
3 b y12 + 12 e + 5 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

3 b y1 + 5 b Ib y12 + 4 eM

2 b
>>

Find for which value of y1the selected triangle is symmetric with respect to the
x-axis

In[23]:= tSymmetryRule =
Simplify@

Solve@
tCandidate@@2DD@@2DD == -tCandidate@@3DD@@2DD &&
tCandidate@@2DD@@1DD == tCandidate@@3DD@@1DD,

y1, RealsDD êê Flatten

Out[23]= :y1 Ø -
e

b
>

In order to optimize its shape we next study the angles of the selected triangle

In[24]:= tCandidateEdges =
tCandidate - RotateLeft@tCandidateD;

tCandidateCosAngles = 8
Dot@-tCandidateEdges@@1DD, tCandidateEdges@@3DDDê
HNorm@tCandidateEdges@@1DDD

Norm@tCandidateEdges@@3DDDL,
Dot@tCandidateEdges@@1DD,

-tCandidateEdges@@2DDDê
HNorm@tCandidateEdges@@1DDD

Norm@tCandidateEdges@@2DDDL,
Dot@tCandidateEdges@@2DD,

-tCandidateEdges@@3DDDê
HNorm@tCandidateEdges@@2DDD

Norm@tCandidateEdges@@3DDDL< êê
FullSimplify;

tCandidateAngles = ArcCos@tCandidateCosAnglesD;

For fixed values of e and b the angle functions are parameterized by y1. We
plot the angles depending on the value of b

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

92

In[27]:= Manipulate@
Block@
8e = 1, functions = tCandidateAngles ê. b Ø b0<,
Show@
Plot@functions, 8y1, -5, 5<D,
Graphics@
8Dashed,
Line@88y1, 0<, 8y1, 2<< ê. tSymmetryRule ê.

b Ø b0D<D,
PlotLabel Ø "The angle functions",
ImageSize Ø 200

D
D, 88b0, 3ê5, "b"<, 0, 2<D

Out[27]=

b

-4 -2 2 4

0.5

1.0

1.5

2.0

2.5

3.0
The angle functions

Compute the behavior of the angle functions for y1 Ø ±¶.

In[28]:= ArcCos@Limit@Ò, y1 -> InfinityD & êü
tCandidateCosAnglesD êê FullSimplify

ArcCos@Limit@Ò, y1 -> -InfinityD & êü
tCandidateCosAnglesD êê FullSimplify

Out[28]= 80, p, 0<

Out[29]= 80, 0, p<

Another approach, to establish the limits, is to consider the slopes of the edges
of the candidate triangle

3.C. Symbolic Computations Transcript

93

In[30]:= tCandidateEdgeSlopes =

TableBFullSimplifyB
tCandidateEdges@@iDD@@2DD

tCandidateEdges@@iDD@@1DD
F,

8i, 3<F

Out[30]= :
y1

b y12 + 4 e

,
b2 y13 + 4 b y1 e - 5 e b Ib y12 + 4 eM

b Ib y12 - eM b y12 + 4 e

,

b2 y13 + 4 b y1 e + 3 5 e b Ib y12 + 4 eM

b b y12 + 4 e Ib y12 + 9 eM

>

In[31]:= Table@Limit@tCandidateEdgeSlopes@@iDD,
y1 Ø InfinityD, 8i, 3<D

Table@Limit@tCandidateEdgeSlopes@@iDD,
y1 Ø -InfinityD, 8i, 3<D

Out[31]= :
1

b
,

1

b
,

1

b
>

Out[32]= :-
1

b
, -

1

b
, -

1

b
>

Verify that the first angle function (colored in BLUE) has a global maximum.

In[33]:= D@tCandidateAngles@@1DD, y1D êê FullSimplify

Out[33]= -J4 H1 + bL e J5 b y12 + 10 e + 3 5 y1 b Ib y12 + 4 eM NNì

K b y12 + 4 e IH1 + bL y12 + 4 eM

J7 b2 y12 + 10 e + 3 5 y1 b Ib y12 + 4 eM +

b J7 y12 + 18 e + 3 5 y1 b Ib y12 + 4 eM NNO

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

94

In[34]:= D@tCandidateAngles@@1DD, y1D êê FullSimplify
FullSimplify@Solve@% ã 0, y1, RealsDD
FullSimplify@D@tCandidateAngles@@1DD, 8y1, 2<D ê.

%D

Out[34]= -J4 H1 + bL e J5 b y12 + 10 e + 3 5 y1 b Ib y12 + 4 eM NNì

K b y12 + 4 e IH1 + bL y12 + 4 eM

J7 b2 y12 + 10 e + 3 5 y1 b Ib y12 + 4 eM +

b J7 y12 + 18 e + 3 5 y1 b Ib y12 + 4 eM NNO

Out[35]= ::y1 Ø -
e

b
>>

Out[36]= :- 16 b H1 + bL b e + 20 b3 e + 150 b5 e +

500 b7 e + 625 b9 e ì I 5 H1 + 5 bL6 e3ê2M>

Indeed, for y1 = - e

b
the derivative vanishes and the second order derivative

is negative. Thus, the first angle function has a global maximum at y1 = - e

b
.

Next, we verify that the second angle function is monotonically increasing:

In[37]:= D@tCandidateAngles@@2DD, y1D êê FullSimplify;
Reduce@% > 0, y1D êê FullSimplify

Out[38]= True

Finally, we verify that the third angle function is monotonically decreasing.
For the sake of simplicity of the computation, we consider the third angle as
the complement of the first two.

In[39]:= D@p - tCandidateAngles@@1DD - tCandidateAngles@@2DD,
y1D êê FullSimplify;

Simplify@
Reduce@% < 0 && b > 0 && x1 œ Reals && y1 œ Reals && e > 0,
y1DD

Out[40]= True

It is now clear the the symmetric triangle is of optimal shape, as its minimal
angle is maximized in the chosen one-parameter family.

3.C. Symbolic Computations Transcript

95

It is now clear the the symmetric triangle is of optimal shape, as its minimal
angle is maximized in the chosen one-parameter family.

In[41]:= tSymmetric = tCandidate ê. tSymmetryRule êê
FullSimplify

Out[41]= :80, 0<, : 5 e , -
e

b
>, : 5 e ,

e

b
>>

When is it equilateral?

In[42]:= Solve@b > 0 && Norm@tSymmetric@@2DDD ã
Norm@tSymmetric@@2DD - tSymmetric@@3DDD, bD êê

FullSimplify êê Flatten

Out[42]= :b Ø
3

5
>

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

96

In[43]:= Block@8e = 1, x1 = 1, b = 2<,
Show@
ContourPlot@Abs@F@x, yDD == 4 e, 8x, -4, 4<,
8y, -4, 4<D,

Graphics@8Red, Polygon@tSymmetricD<D,
Graphics@8Blue, Polygon@

880, 0<, tSymmetric@@2DD,
tSymmetric@@3DD + tSymmetric@@1DD -
tSymmetric@@3DD + tSymmetric@@2DD -
tSymmetric@@3DD<

D<D,
Graphics@8Green, Polygon@

880, 0<, tSymmetric@@3DD,
tSymmetric@@2DD + tSymmetric@@1DD -
tSymmetric@@2DD + tSymmetric@@3DD -
tSymmetric@@2DD<

D<D,
Frame -> False, Axes -> True,
AxesStyle -> Arrowheads@0.05D,
PlotLabel Ø
"Use the optimal triangles in the plane",

ImageSize Ø 200
DD

Out[43]=
-4 -2 2

-4

-2

2

Use the optimal triangles in the plane

ü Verify

Finally, let us verify that when lifting the triangles to the saddle surface, they
indeed maintain a maximal vertical distance which equals e

3.C. Symbolic Computations Transcript

97

In[44]:= tSymmetricLifted =
Append@Ò, F@Ò@@1DD, Ò@@2DDDD & êü tSymmetric êê
FullSimplify

Out[44]= :80, 0, 0<, : 5 e , -
e

b
, 4 e>, : 5 e ,

e

b
, 4 e>>

Parameterize the edges of the lifted triangle

In[45]:= tSymmetricLiftedEdges =
H1 - lL tSymmetricLifted +

l RotateLeft@tSymmetricLiftedD êê FullSimplify

Out[45]= :: 5 e l, -
e

b
l, 4 e l>,

: 5 e ,
e

b
H-1 + 2 lL, 4 e>,

:- 5 e H-1 + lL, -
e

b
H-1 + lL, -4 e H-1 + lL>>

Define the vertical distance functions from the triangle’s edges to the saddle
surface

In[46]:= tSymmetricLiftedVdistsFuncs =
F@Ò@@1DD, Ò@@2DDD - Ò@@3DD & êü

tSymmetricLiftedEdges êê FullSimplify

Out[46]= 84 e H-1 + lL l, -4 e H-1 + lL l, 4 e H-1 + lL l<

Find the critical value of the vertical distance functions

In[47]:= Solve@D@tSymmetricLiftedVdistsFuncs, lD == 0,
lD

Out[47]= ::l Ø
1

2
>>

Evaluate the vertical distance (up to +/- sign)

In[48]:= tSymmetricLiftedVdistsFuncs ê. l -> 1ê2 êê
FullSimplify

Out[48]= 8-e, e, -e<

Blue case:

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

98

Blue case:
ü Parameterize the vertices and obtain parameterized

planar triangles

Like before only this time p1will be located on the conjugate hyperbola

In[49]:= ClearAll@conjP1RuleD;
conjP1Rule = Solve@1ê4 F@t@@2DDD ã -e, y1D
conjP1Rule = conjP1Rule@@2DD;

Out[50]= ::y1 Ø -
x12 + 4 e

b
>, :y1 Ø

x12 + 4 e

b
>>

In turn, find the functions for the coordinates of p2

In[52]:= ClearAll@conjP2RuleD;
conjP2Rule =
Solve@1ê4 Abs@F@t@@3DDDD == e &&

1ê4 Abs@F@t@@3DD - t@@2DDDD == e, 8x2, y2<D êê
Simplify

conjP2Rule =
Assuming@x1 > 0,
FullSimplify@conjP2Rule@@3 ;; 8DDDD;

H*Verify in the output of the previous line
which entries are real!*L

Out[53]= ::x2 Ø Jx14 - b x12 y12 +

y1 b Ix12 - b y12M Ix12 - b y12 + 16 eM Abs@x1DNí

I2 Ix13 - b x1 y12MM, y2 Ø

x12 y1 - b y13 +
Ix12-b y12M Ix12-b y12+16 eM

b
Abs@x1D

2 Ix12 - b y12M
>,

:x2 Ø Jx14 - b x12 y12 -

y1 b Ix12 - b y12M Ix12 - b y12 + 16 eM Abs@x1DNí

I2 Ix13 - b x1 y12MM, y2 Ø

>

3.C. Symbolic Computations Transcript

99

Out[53]=

-

-x12 y1 + b y13 +
Ix12-b y12M Ix12-b y12+16 eM

b
Abs@x1D

2 Ix12 - b y12M
>

, :x2 Ø Jx14 - b x12 y12 +

y1 b Ix12 - b y12M Ix12 - b y12 - 16 eM Abs@x1DNí

I2 Ix13 - b x1 y12MM, y2 Ø

x12 y1 - b y13 +
Ix12-b y12M Ix12-b y12-16 eM

b
Abs@x1D

2 Ix12 - b y12M
>,

:x2 Ø Jx14 - b x12 y12 -

y1 b Ix12 - b y12M Ix12 - b y12 - 16 eM Abs@x1DNí

I2 Ix13 - b x1 y12MM, y2 Ø

-

-x12 y1 + b y13 +
Ix12-b y12M Ix12-b y12-16 eM

b
Abs@x1D

2 Ix12 - b y12M
>

, :x2 Ø Jx14 - b x12 y12 + 8 x12 e + y1

b Ix14 - 2 b x12 y12 + b2 y14 + 64 e2M Abs@x1DNí

I2 x13 - 2 b x1 y12M, y2 Ø Jb y1 Ix12 - b y12 + 8 eM +

b Ix14 - 2 b x12 y12 + b2 y14 + 64 e2M Abs@x1DNí

I2 b Ix12 - b y12MM>,

:x2 Ø Jx14 - b x12 y12 - 8 x12 e + y1

b Ix14 - 2 b x12 y12 + b2 y14 + 64 e2M Abs@x1DNí

I2 x13 - 2 b x1 y12M, y2 Ø Jb y1 Ix12 - b y12 - 8 eM +

b Ix14 - 2 b x12 y12 + b2 y14 + 64 e2M Abs@x1DNí

I2 b Ix12 - b y12MM>,

:x2 Ø Jx14 - b x12 y12 + 8 x12 e - y1

b Ix14 - 2 b x12 y12 + b2 y14 + 64 e2M Abs@x1DNí

,

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

100

Out[53]=

I2 x13 - 2 b x1 y12M, y2 Ø Jb y1 Ix12 - b y12 + 8 eM -

b Ix14 - 2 b x12 y12 + b2 y14 + 64 e2M Abs@x1DNí

I2 b Ix12 - b y12MM>,

:x2 Ø Jx14 - b x12 y12 - 8 x12 e - y1

b Ix14 - 2 b x12 y12 + b2 y14 + 64 e2M Abs@x1DNí

I2 x13 - 2 b x1 y12M, y2 Ø Jb y1 I-x12 + b y12 + 8 eM +

b Ix14 - 2 b x12 y12 + b2 y14 + 64 e2M Abs@x1DNí

I2 b I-x12 + b y12MM>>

Given the functions of the coordinates of p1 and p2 we can obtain, again, six
one-parameter families of triangles

In[55]:= ClearAll@conjTOptsD;
conjTOpts = t ê. conjP2Rule ê. conjP1Rule êê

FullSimplify;

All have the same area (which in turn equals to the area of the triangles in the
RED case)

In[57]:= 1ê2 Abs@Det@Ò@@2 ;; 3DDDD & êü conjTOpts êê
FullSimplify êê DeleteDuplicates

Out[57]= :
5 e

b
>

Visualize generic triangles

3.C. Symbolic Computations Transcript

101

In[58]:= Manipulate@
Block@8e = 0.4, x1 = x10, b = 2, bnd = 2.5<,
Show@
ContourPlot@Abs@F@x, yDD == 4 e, 8x, -bnd, bnd<,
8y, -bnd, bnd<D,

ContourPlot@
Abs@F@8x, y< - H8x1, y1< ê. conjP1RuleLDD == 4 e,
8x, -5, 5<, 8y, -4, 4<,
ContourStyle -> 8Red, Dashed<D,

Graphics@MapThread@List,
8colors, Polygon@ÒD & êü conjTOpts<DD,

H*Graphics@Polygon@tOpts@@2DDDD,*L
Graphics@
8Dotted,
Line@8conjTOpts@@5DD@@3DD,

conjTOpts@@2DD@@3DD,
conjTOpts@@6DD@@3DD<D<D,

Graphics@
8Dotted,
Line@8conjTOpts@@4DD@@3DD,

conjTOpts@@1DD@@3DD,
conjTOpts@@3DD@@3DD<D<D,

H*Locus of the mid points of the base of
the green triangle*L

ParametricPlot@
8H5 b y^2 + 20 e + Sqrt@5D y Sqrt@b Hb y^2 + 4 eLDLê

H4 Sqrt@b y^2 + 4 eD 5 yLê4 +
1ê4 Sqrt@5D Sqrt@y^2 + H4 eLêbD<, 8y, -3, 3<,

PlotStyle -> 8Dotted, Magenta<D,
PlotLabel Ø
"One-parameter families of triangles in

the conjugate case",
Axes -> True, Frame -> False, ImageSize Ø 200

DD,
88x10, 0.25, "x1"<, -2, 1<

D

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

102

Out[58]=

x1

-2 -1 1 2

-2

-1

1

2

One-parameter families of triangles in the conjugate case

Verify collinearity:

In[59]:= 8Det@8Append@conjTOpts@@1DD@@3DD, 1D,
Append@conjTOpts@@4DD@@3DD, 1D,
Append@conjTOpts@@3DD@@3DD, 1D<D,

Det@8Append@conjTOpts@@6DD@@3DD, 1D,
Append@conjTOpts@@2DD@@3DD, 1D,
Append@conjTOpts@@5DD@@3DD, 1D<D< êê

FullSimplify

Out[59]= 80, 0<

ü Study a single one-parameter family of triangles

Let us pick the red (4th) one-parameter family of triangles

3.C. Symbolic Computations Transcript

103

In[60]:= ClearAll@conjTCandidateD;
conjTCandidate = conjTOpts@@4DD

Out[61]= :80, 0<, :x1,
x12 + 4 e

b
>, :

1

2
3 x1 - 5 x12 + 4 e ,

-
5 b x1 - 3 b Ix12 + 4 eM

2 b
>>

and determine for which value of x1is it symmetric with respect to the y-axis

In[62]:= ClearAll@conjTSymmetryRuleD;
conjTSymmetryRule =
Simplify@

Solve@
conjTCandidate@@2DD@@2DD ==

conjTCandidate@@3DD@@2DD &&
conjTCandidate@@2DD@@1DD ã
-conjTCandidate@@3DD@@1DD, x1, RealsDD êê

Flatten

Out[63]= 9x1 Ø e =

Again, in order to find the family member of optimal shape we have to
consider the angles of the triangles in the family:

In[64]:= conjTCandidateEdges =
conjTCandidate - RotateLeft@conjTCandidateD;

conjTCandidateCosAngles = 8
Dot@-conjTCandidateEdges@@1DD,

conjTCandidateEdges@@3DDDê
HNorm@conjTCandidateEdges@@1DDD

Norm@conjTCandidateEdges@@3DDDL,
Dot@conjTCandidateEdges@@1DD,

-conjTCandidateEdges@@2DDDê
HNorm@conjTCandidateEdges@@1DDD

Norm@conjTCandidateEdges@@2DDDL,
Dot@conjTCandidateEdges@@2DD,

-conjTCandidateEdges@@3DDDê
HNorm@conjTCandidateEdges@@2DDD

Norm@conjTCandidateEdges@@3DDDL< êê
FullSimplify;

conjTCandidateAngles =
ArcCos@conjTCandidateCosAnglesD;

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

104

The angle are functions of x1and are parameterized by b

In[67]:= Manipulate@
Block@
8e = 1, functions =

conjTCandidateAngles ê. b Ø b0<,
Show@
Plot@functions, 8x1, -5, 5<D,
Graphics@
8Dashed,
Line@88x1, 0<, 8x1, 2<< ê. conjTSymmetryRule ê.

b Ø b0D<D,
ImageSize Ø 200

D
D, 88b0, 5ê3<, 0, 2<D

Out[67]=

b0

-4 -2 2 4

0.5

1.0

1.5

2.0

2.5

3.0

Study the behavior of the angle functions at +¶ and -¶

In[68]:= ArcCos@Limit@Ò, x1 -> InfinityD & êü
conjTCandidateCosAnglesD êê FullSimplify

ArcCos@Limit@Ò, x1 -> -InfinityD & êü
conjTCandidateCosAnglesD êê FullSimplify

Out[68]= 80, 0, p<

Out[69]= 80, p, 0<

Verify the global maximum of the first angle function

3.C. Symbolic Computations Transcript

105

In[70]:= D@conjTCandidateAngles@@1DD, x1D êê FullSimplify;
Solve@% ã 0, x1, RealsD êê FullSimplify
D@conjTCandidateAngles@@1DD, 8x1, 2<D ê. % êê
FullSimplify

Out[71]= 99x1 Ø e ==

Out[72]= :-
16 b H1 + bL

5 H5 + bL2 e
>

Next, verify that the second function is monotonically decreasing

In[73]:= D@conjTCandidateAngles@@2DD, x1D êê FullSimplify;
Reduce@% < 0, x1D êê FullSimplify

Out[74]= True

And finally, verify that the third angle function is monotonically increasing

In[75]:= D@p - conjTCandidateAngles@@1DD -
conjTCandidateAngles@@2DD, x1D êê Simplify;

Simplify@Reduce@% > 0 && b > 0 && e > 0, x1DD

Out[76]= True

We can now set the symmetric triangle

In[77]:= conjTSymmetric =
conjTCandidate ê. conjTSymmetryRule êê FullSimplify

Out[77]= :80, 0<, : e , 5
e

b
>, :- e ,

5 e

b e
>>

and find when is it equilateral?

In[78]:= Reduce@
Norm@conjTSymmetric@@2DDD ã

Norm@conjTSymmetric@@2DD -
conjTSymmetric@@3DDD && e > 0 && b > 0, bD

Out[78]= e > 0 && b ã
5

3

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

106

In[79]:= Block@8e = 1, x1 = 1, b = 2<,
Show@
ContourPlot@Abs@F@x, yDD == 4 e, 8x, -4, 4<,
8y, -4, 4<D,

Graphics@8Red, Polygon@conjTSymmetricD<D,
Graphics@8Blue, Polygon@

880, 0<, conjTSymmetric@@2DD,
conjTSymmetric@@3DD + conjTSymmetric@@1DD -
conjTSymmetric@@3DD + conjTSymmetric@@2DD -
conjTSymmetric@@3DD<

D<D,
Graphics@8Green, Polygon@

880, 0<, conjTSymmetric@@3DD,
conjTSymmetric@@2DD + conjTSymmetric@@1DD -
conjTSymmetric@@2DD + conjTSymmetric@@3DD -
conjTSymmetric@@2DD<

D<D,
Frame -> False, Axes -> True,
AxesStyle -> Arrowheads@0.05D, ImageSize Ø 200

DD

Out[79]=
-4 -2 2

-4

-2

2

ü Verify

Like before, verify that the lifting of the symmetric triangle yields an e
maximal vertical distance

3.C. Symbolic Computations Transcript

107

In[80]:= conjTSymmetricLifted =
Append@Ò, F@Ò@@1DD, Ò@@2DDDD & êü conjTSymmetric êê
FullSimplify

Out[80]= :80, 0, 0<, : e , 5
e

b
, -4 e>, :- e ,

5 e

b e
, -4 e>>

In[81]:= conjTSymmetricLiftedEdges =
H1 - lL conjTSymmetricLifted +

l RotateLeft@conjTSymmetricLiftedD êê
FullSimplify

Out[81]= :: e l, 5
e

b
l, -4 e l>,

: e H1 - 2 lL,
5 e

b e
, -4 e>,

: e H-1 + lL, -
5 e H-1 + lL

b e
, 4 e H-1 + lL>>

In[82]:= conjTSymmetricLiftedVdistsFuncs =
F@Ò@@1DD, Ò@@2DDD - Ò@@3DD & êü

conjTSymmetricLiftedEdges êê FullSimplify

Out[82]= 8-4 e H-1 + lL l, 4 e H-1 + lL l, -4 e H-1 + lL l<

In[83]:= Solve@D@conjTSymmetricLiftedVdistsFuncs, lD == 0,
lD

Out[83]= ::l Ø
1

2
>>

In[84]:= conjTSymmetricLiftedVdistsFuncs ê. l -> 1ê2 êê
FullSimplify

Out[84]= 8e, -e, e<

Red or Blue?
Recall that the two triangles from the previous two sections are:

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

108

In[85]:= tSymmetric
conjTSymmetric

Out[85]= :80, 0<, : 5 e , -
e

b
>, : 5 e ,

e

b
>>

Out[86]= :80, 0<, : e , 5
e

b
>, :- e ,

5 e

b e
>>

and their angles are given by

In[87]:= tAngles = 8
ArcCos@Dot@tSymmetric@@2DD - tSymmetric@@1DD,

tSymmetric@@3DD - tSymmetric@@1DDDê
HNorm@tSymmetric@@2DD - tSymmetric@@1DDD

Norm@tSymmetric@@3DD - tSymmetric@@1DDDLD,
ArcCos@
Dot@tSymmetric@@1DD - tSymmetric@@2DD,

tSymmetric@@3DD - tSymmetric@@2DDDê
HNorm@tSymmetric@@1DD - tSymmetric@@2DDD

Norm@tSymmetric@@3DD - tSymmetric@@2DDDLD
< êê Simplify

Limit@%, b Ø InfinityD

Out[87]= :ArcCosB
-1 + 5 b

1 + 5 b
F, ArcCosB

1

1 + 5 b
F>

Out[88]= :0,
p

2
>

3.C. Symbolic Computations Transcript

109

In[89]:= conjTAngles = 8
ArcCos@
Dot@conjTSymmetric@@2DD - conjTSymmetric@@1DD,

conjTSymmetric@@3DD - conjTSymmetric@@1DDDê
HNorm@conjTSymmetric@@2DD -

conjTSymmetric@@1DDD
Norm@conjTSymmetric@@3DD -

conjTSymmetric@@1DDDLD,
ArcCos@
Dot@conjTSymmetric@@1DD - conjTSymmetric@@2DD,

conjTSymmetric@@3DD - conjTSymmetric@@2DDDê
HNorm@conjTSymmetric@@1DD -

conjTSymmetric@@2DDD
Norm@conjTSymmetric@@3DD -

conjTSymmetric@@2DDDLD
< êê Simplify

Limit@%, b Ø InfinityD

Out[89]= :ArcCosB
5 - b

5 + b
F, ArcCosB

b

5 + b
F>

Out[90]= 8p, 0<

as functions of b.

In[91]:= Show@
Plot@Ò, 8b, 0, 10<,

PlotStyle Ø 8Red, 8Darker@RedD, Dashed<,
Blue, 8Darker@BlueD, Dashed<<D &@

Join@tAngles, conjTAnglesDD,
Graphics@Line@881, 0<, 81, p<<DD,
ImageSize Ø 200

D

Out[91]=

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

First, verify that behavior of the functions.

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

110

In[92]:= Reduce@D@tAngles@@1DD, bD < 0, bD êê Simplify
Reduce@D@tAngles@@2DD, bD > 0, bD êê Simplify
Reduce@D@conjTAngles@@1DD, bD > 0, bD êê Simplify
Reduce@D@conjTAngles@@2DD, bD < 0, bD êê Simplify

Out[92]= True

Out[93]= True

Out[94]= True

Out[95]= True

For 0§b§1 the first angle of the conjugate triangle is the minimal one:

In[96]:= Solve@Cos@tAngles@@1DDD ã Cos@conjTAngles@@1DDD &&
b ¥ 0, bD

Solve@Cos@tAngles@@2DDD ã Cos@conjTAngles@@1DDD &&
b ¥ 0, bD

Solve@
Cos@conjTAngles@@2DDD ã Cos@conjTAngles@@1DDD &&
b ¥ 0, bD

Out[96]= 88b Ø 1<<

Out[97]= 88b Ø 0<, 8b Ø 3<<

Out[98]= ::b Ø
5

3
>>

Indeed, this function does not intersect any other function in the interior of the
interior of the interval.
For b>1 the first angle function of the original triangle is the minimal.

3.C. Symbolic Computations Transcript

111

Relation Between the Red and Blue
In[99]:= T = tOpts@@3DD

conjT = conjTOpts@@5DD

Out[99]= :80, 0<, : b y12 + 4 e , y1>,

:
b y12 + 4 e + 5 y1 b Ib y12 + 4 eM

2 b y12 + 4 e

,

b y1 + 5 b Ib y12 + 4 eM

2 b
>>

Out[100]= :80, 0<, :x1,
x12 + 4 e

b
>,

:
1

2
-x1 + 5 x12 + 4 e ,

5 b x1 - b Ix12 + 4 eM

2 b
>>

In[101]:= redBlueRule =
Solve@T@@3DD ã conjT@@2DD && T@@2DD ã conjT@@3DD,

y1D@@1DD@@1DD

Out[101]= y1 Ø
1

2

5 x1

b
-

b Ix12 + 4 eM

b

In[102]:= FullSimplify@HT@@2DD - conjT@@3DDL ê. redBlueRuleD

Out[102]= :
1

2
x1 - 5 x12 + 4 e +

6 x12 + 20 e - 2 5 x1 x12 + 4 e , 0>

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

112

In[103]:= FullSimplifyB x1 - 5 x12 + 4 e
2
-

6 x12 + 20 e - 2 5 x1 x12 + 4 e F

Out[103]= 0

General Canonical Saddle
Here we show how to obtain an optimal triangulation of a generic canonical
saddle from the one we obtained which corresponds to a saddle of the form
z = x2 - by2.

In[104]:= base2general@x_, y_, z_D := 8x, y, a z<;
base2general@p_D :=

base2general@p@@1DD, p@@2DD, p@@3DDD ê;
Length@pD ã 3;

Let SGbe a generic canonical saddle given by z = ax2 - by2 and set b = b

a
. Then

z
a
= x2 - b y2 is a canonical saddle as we studied which is only scaled in the z-

direction. Next, consider the symmetric triangle:

In[106]:= tBase = tSymmetric ê. e Ø
e

a
ê. b Ø

b

a

Out[106]= :80, 0<, : 5
e

a
, -

e

b
>, : 5

e

a
,

e

b
>>

In[107]:= tBaseLifted = AppendBÒ, Ò@@1DD2 -
b

a
Ò@@2DD2F & êü tBase

Out[107]= :80, 0, 0<, : 5
e

a
, -

e

b
,
4 e

a
>,

: 5
e

a
,

e

b
,
4 e

a
>>

3.C. Symbolic Computations Transcript

113

In[108]:= tBaseLiftedEdges =
H1 - lL tBaseLifted + l RotateLeft@tBaseLiftedD êê
FullSimplify

Out[108]= :: 5
e

a
l, -

e

b
l,

4 e l

a
>,

: 5
e

a
,

e

b
H-1 + 2 lL,

4 e

a
>,

:- 5
e

a
H-1 + lL, -

e

b
H-1 + lL, -

4 e H-1 + lL

a
>>

In[109]:= tBaseLiftedDistFuncs =

Ò@@1DD2 -
b

a
Ò@@2DD2 - Ò@@3DD & êü tBaseLiftedEdges êê

FullSimplify

Out[109]= :
4 e H-1 + lL l

a
, -

4 e H-1 + lL l

a
,
4 e H-1 + lL l

a
>

In[110]:= Solve@D@tBaseLiftedDistFuncs, lD ã 0, lD

Out[110]= ::l Ø
1

2
>>

In[111]:= tBaseLiftedDistFuncs ê. l Ø 1ê2

Out[111]= :-
e

a
,

e

a
, -

e

a
>

In[112]:= tGenericLifted = base2general@ÒD & êü tBaseLifted

Out[112]= :80, 0, 0<, : 5
e

a
, -

e

b
, 4 e>,

: 5
e

a
,

e

b
, 4 e>>

In[113]:= a Ò@@1DD2 - b Ò@@2DD2 ã Ò@@3DD & êü tGenericLifted

Out[113]= 8True, True, True<

3. OPTIMAL TRIANGULATION OF HYPERBOLIC PARABOLOIDS

114

In[114]:= tGenericLiftedEdges =
H1 - lL tGenericLifted + l RotateLeft@tGenericLiftedD

Out[114]= :: 5
e

a
l, -

e

b
l, 4 e l>,

: 5
e

a
H1 - lL + 5

e

a
l,

-
e

b
H1 - lL +

e

b
l, 4 e H1 - lL + 4 e l>,

: 5
e

a
H1 - lL,

e

b
H1 - lL, 4 e H1 - lL>>

In[115]:= tGenericLiftedDistFuncs =

a Ò@@1DD2 - b Ò@@2DD2 - Ò@@3DD & êü tGenericLiftedEdges

Out[115]= :-4 e l + 4 e l2,

-4 e H1 - lL - 4 e l + a 5
e

a
H1 - lL + 5

e

a
l

2

-

b -
e

b
H1 - lL +

e

b
l

2

, -4 e H1 - lL + 4 e H1 - lL2>

In[116]:= Solve@D@tGenericLiftedDistFuncs, lD ã 0, lD

Out[116]= ::l Ø
1

2
>>

In[117]:= tGenericLiftedDistFuncs ê. l Ø
1

2

Out[117]= 8-e, e, -e<

3.C. Symbolic Computations Transcript

115

4
Revising Computation of
Arrangement of
Polylines

4.1 Background and Motivation

The Computational Geometry Algorithms Library (CGAL1) aims at providing easy
access to efficient and reliable geometric algorithms in the from of a C++ library.
One of the oldest packages shipped as part of CGAL is the 2D Arrangements package.
This package supports the robust construction and maintenance of arrangements
of curves embedded on certain orientable two-dimensional parametric surfaces in
three-dimensional space[45, 17, 5, 6], and robust operations on them, e.g., overlay
computation.2

The implementation of the various algorithms that construct and manipulate
arrangements is generic, as it is independent on the type of curves and embedding
surface they handle. All steps of the algorithms are enabled by a minimal set of
geometric primitives, such as comparing two points on the embedding surface
in parametric lexicographic order and computing intersection points. Each set
of primitives that handle a particular family of curves are gathered in a dedicated
module called geometry-traits. Different geometry-traits modules are provided in
the 2D Arrangements package to handle various families of curves.

Before we continue let us introduce some definitions and notions that we use
throughout the chapter. A parametric planar curve is a piecewise continuous map
C (t) : I → R2, where I is an interval. Without loss of generality, I can be close
or open-close or open unit interval. Next, an n-tuple of curves (si)n

i=1 is called a
polycurve; see Figure 4.2. Each curve si is called a segment, and in particular, a
polycurve is also a curve. The endpoints of the constituting segments (if they exist)
are called the vertices of the polycurve. Note that both a curve and a polycurve can
be disconnected. In addition, two different permutations of the segments yields
two different polycurves that have the same (geometrical) image. An unbounded

1www.cgal.org
2Arrangements on surfaces are supported in CGAL as of version 3.4, albeit not documented yet.

www.cgal.org

4. REVISING COMPUTATION OF ARRANGEMENT OF POLYLINES

p1

s2

p2

s3

p3

s4

p4
s1

Figure 4.1: An unbounded (x-monotone) polyline P that consists of four segments
and four vertices. In this example s1 is a ray.

polyline is a polycurve such that all its segments are linear; namely, each si is either
a line or a ray or a bounded (linear) segment.3 Finally, if all the segments of an
unbounded polyline are bounded (i.e. finite), then we call it a bounded polyline. In
cases where there is no risk of confusion, we simply use the term polyline. A special
kind of curves are the so-called x-monotone curves defined next.

Definition 4.1 (x-monotone curve). In the context of the 2D Arrangements package,
a parametric curve C (t) = (X (t),Y (t)), where X (t),Y (t) : I → R, is x-monotone if
the following hold

• C (t) is continuous and injective.

• For 0 ≤ t1 < t2 ≤ 1 we have that C (t1) is lexicographically smaller than C (t2).

• If X (t1) = X (t2) = q for some 0 ≤ t1 < t2 ≤ 1, then X (t) = q for all t ∈ I . In this
case we have that C (t) is a vertical x-monotone curve.

In practice, the 2D Arrangements package computes the arrangements of x-
monotone curves. When a general curve is inserted into an arrangement, it is first
decomposed into x-monotone sub-curves. Note that when a general polycurve is
decomposed then the generated x-monotone sub-curves are not necessarily the
segments that constitute the given polycurve. A polyline P that is also x-monotone
is called x-monotone polyline. An x-monotone polyline can comprise either a single
line, or any number of bounded segments and at most two rays; see Figure 4.1.

The Arr_polyline_traits_2<SegmentTraits> traits class is a prominent compo-
nent of the package, which computes the arrangement of (bounded) polylines in
the plane. This traits class, in its current implementation as can be found in version
4.3, relies on the Arr_segment_traits_2<Kernel> traits class, which handles the
case of an arrangement of bounded line segments. The package also supports
the computations of arrangements of linear objects (namely, lines, rays and line
segments), using the Arr_linear_traits_2<Kernel> traits class. However, it is not
possible to compute the arrangement of unbounded polylines. The ultimate goal of

3Be careful not to confuse between a segment of a polyline and a linear (bounded) segment.

118

4.1. Background and Motivation

this work was to extend the package and provide support for the computation of an
arrangement of unbounded polylines.

A natural approach to achieve this goal would be to rely on the Arr_linear_-
traits_2<K> traits class and generalize the existing traits class, which handles
bounded polylines, so it could support unbounded ones as well. Unfortunately, the
implementation of the computation of arrangement of polylines shipped with ver-
sion 4.3 of CGAL has some limitations. For example, it is only possible to construct
a polyline by providing a range of points as the input. In turn, the constructed
polyline is the concatenation of the input points and it has an orientation deter-
mined by the order they are given.4 Another deficiency lies in the iteration over
the elements of an existing polyline; currently the user can only iterate over its
vertices. Finally, the existing code is several years old and fails to meet nowadays
standards of CGAL. These limitations, among others, make it difficult to generalize
the functionality of the traits class directly — for example in order to enable the
computation of an arrangement of unbounded polylines. Let us demonstrate one
of the possible issues. A priori, it is impossible to define an unbounded polyline
given merely a sequence of points. One cannot construct, without further details,
the first and last segments of such a polyline.

Due to the aforementioned limitations, it turned out that the polylines traits
class had to be first revised, before it could be generalized. Unfortunately, due to the
lack of time and resources, the ultimate goal, namely implementing the support for
computation of arrangements of unbounded polylines, was not accomplished and
only the code upgrading was successful. This upgrade lays the foundation for future
generalization of the class. In addition, by following an advanced coding style, as
we discuss below, we also manage to introduce an improvement of at most 6.77%
in the performance of arrangements of polylines (see Table 4.2 in Appendix 4.B
for details). This chapter summarizes the contribution to the 2D Arrangements
package of CGAL. Throughout the chapter we employ the typesetting conventions
that are described in Table 4.1. Furthermore, the implementation that can be found
in version 4.3 is referred to as the current implementation. The implementation
that is the result of this work is referred to as the upgraded implementation and it is
expected to be part of the next public release (of version 4.4).

Motivation. One obvious motivation is extending the 2D Arrangements package
and allowing the treatment of more general families of polylines (or polycurves).
Another motivation is to carry out a benchmark suggested by Dan Halperin as we
describe next. In order to utilize the work of Salzman [36] one has to be able to com-
pute the arrangement of rational curves. Here, rational curves are the zero sets of
rational functions with two variables in the plane. To this end, the 2D Arrangements
package includes a traits class that handles rational curves in the plane and enables
the construction of arrangements induced by such curves; it was developed by

4By orientation here we refer to a notion of direction of both the constituting segments and in
turn the polyline itself.

119

4. REVISING COMPUTATION OF ARRANGEMENT OF POLYLINES

Typeface Meaning
foo.bar file name

ConceptName concept (note the capitalization and the absence of space)
Model_name model
Some_type type
My_functor function object (also known as functor)

Table 4.1: Typesetting conventions

Oren Salzman and Michael Hemmer. Obviously, the biggest advantage of this traits
class is the proven correctness of its output. On the other hand, in some cases, the
computational overload introduced by the need of sophisticated number types can
result in lengthy running time. It was proposed by Dan Halperin to investigate this
issue, and in particular compare two ways for the computation of the arrangement
of rational curves. One computation should simply use the dedicated traits class.
The second, on the other hand, should practice an approximation approach. That
is, first provide a piecewise linear (PL) approximation of the rational curves, and
then compute the arrangement of the approximating PL curves using the gener-
alized Arr_polyline_traits_2<SegmentTraits> traits class. Since rational curves
are unbounded, the computation of an arrangement of unbounded polylines is
mandatory in order to practice the second approach.

These kinds of generalizations are natural given the parameterized nature of
CGAL. In particular, Arr_polyline_traits_2<SegmentTraits> is parameterized
with the template parameter SegmentTraits.5 In the existing implementation it
is only possible to instantiate Arr_polyline_traits_2<ST> with an instance of
either Arr_segment_traits_2<Kernel> or Arr_non_caching_segment_traits_-
2<Kernel>. Thus, allowing merely the computation of arrangements of families
of bounded polylines. By generalizing the code of Arr_polyline_traits_2<ST>,
it is desired to allow its instantiation with models of SegmentTraits that are not
necessarily bounded linear segments. For example, use Arr_circular_arcs_traits_2
traits class as the segment traits. This will allow the computation of an arrangement
of piecewise-circular-arcs curves in the plane. More generally, Arr_polyline_traits_-
2<SegmentTraits> can be the building block of a more general traits class that will
handle polycurves. Here, given a class of planar curves, a polycurves is a curve such
that each of its segments is a planar curve from the given class.

4.2 Existing Implementation

In this section we provide an overview on the current implementation related to the
computation of arrangements of polylines. A general introduction to CGAL can be
found in [42] and detailed reference to the 2D Arrangements package can be found

5For the sake of brevity we occasionally write ST instead of SegmentTraits.

120

4.3. Revising the Implementation

in [17]. CGAL follows the generic programming paradigm; one of the fundamental
building blocks of the implementation is the set of the various traits classes. In this
chapter we mainly consider two class templates

• Arr_segment_traits_2<Kernel>, and
• Arr_polyline_traits_2<SegmentTraits>.

The first class template is parameterized by a geometric kernel; namely, when
Arr_segment_traits_2<Kernel> is instantiated, the template parameter Kernel, or
simply K for short, is substituted with a type that must model the concept Kernel of
CGAL. The class template Arr_segment_traits_2<K> itself models the concepts

• ArrangementTraits_2,
• ArrangementLandmarkTraits_2 and
• ArrangementDirectionalXMonotoneTraits_2.

Note that the class template Arr_non_caching_segment_traits_2 is also a geome-
try traits class that supports planar segments in the plane. It posses characteristics
different than the Arr_segment_traits_2, but syntactically, they are exchangeable.

When the second class, Arr_polyline_traits_2<ST>, is instantiated, the tem-
plate parameter ST has to be substituted with a type that models the concept
ArrangementTraits_2 and can handle line segments. The class template Arr_-
polyline_traits_2<SegmentTraits> itself currently models the following concepts:

• ArrangementTraits_2
• ArrangementLandmarkTraits_2

Its implementation can be found in Arr_polyline_traits_2.h . In the current
implementation users can substitute the template parameter with Arr_segment_-
traits_2<K>. Since Arr_polyline_traits_2<ST> models the concept Arrange-
mentTraits_2, it has two nested types, namely Curve_2 and X_monotone_curve_-
2, which we denote by Polyline and X-Polyline, respectively.6 These types are
used to represent polylines and x-monotone polylines, respectively. Similarly, the
template parameter Arr_segment_traits_2<K> has two nested types Curve_2
and X_monotone_curve_2, which are used to represent bounded line segments.
However, since a bounded line segment is always x-monotone, in this case the
two types are virtually the same, and we denote an object of either by Segment.
In summary, a general bounded polyline can be represented as an object of type
Polyline and its segments are all objects of type Segment. Arr_polyline_traits_-
2<SegmentTraits>, together with its nested curve types, is the component of the
2D Arrangements package of CGAL that handles the construction and computa-
tions of arrangements of polylines. The actual implementations of Polyline and
X-Polyline can be found in Polyline_2.h .

4.3 Revising the Implementation

Next, we study in depth the various issues that the current implementation exhibits.
In particular, we discuss non-optimal implementation details, design problems and

6In addition, it has also the nested type Point_2.

121

4. REVISING COMPUTATION OF ARRANGEMENT OF POLYLINES

p1

s1

p2

s2

p3

s4

p4

p5

Figure 4.2: A bounded and disconnected polycurve that comprises three segments.
Note that its first segment is not x-monotone.

limitation that they yield. Furthermore, we describe the measures taken to correct
and improve the implementation. One of the fundamental flaws in the design
of the existing implementation is the lack of separation between the geometric
types and their traits classes. Thus, all cases where functors from traits classes
were used inside Polyline and X-Polyline were removed. In addition, in order
to simplify the package, we defined default segment traits and kernel to be used
for the computation of arrangements of polylines in case the user does not specify
either of them (see Section 4.5).

4.3.1 Non x-monotone Segments

The current implementation assumes, as aforementioned, that the types Curve_2
and X_monotone_curve_2 nested in the traits class that substitutes the template
parameter SegmentTraits are the same. This assumption obviously holds when
the parameter in use is the class template Arr_segment_traits_2<K>. However,
having in mind the possibility of allowing the construction of polycurves, this
assumption no longer holds (see, for example Figure 4.2, where the segment s1 is
not x-monotone). The first step towards this generalization is to make the following
distinction: The segments of Polyline can be either SegmentTraits::Curve_-
2 or SegmentTraits::X_monotone_curve_2, but the segments of X-Polyline
can only be of the latter type. This reflects the idea that a general polycurve can
comprise general curves as its segments and an x-monotone polycurve can only
comprise x-monotone curves.

4.3.2 Construction of the Constituting Segments

It is important to note that in general the construction of either an x-monotone seg-
ment or general one is not necessarily well defined given its endpoints; for example,
consider a circular arc. On the other hand, line segments are well-defined given
their endpoints. Indeed, the current implementation exploits this fact. Once the
segments provided by SegmentTraits cannot be constructed given their endpoints,

122

4.3. Revising the Implementation

the functor Make_x_monotone_2 will break (cf. Section 4.3.4). This issue was not
addressed in the presented work, and is left open.

4.3.3 Construction of Polylines

It is safe to say that a fundamental hurdle that the current implementation intro-
duces, when one is after its generalization, is the construction of the geometric
objects Polyline and X-Polyline nested in Arr_polyline_traits_2<ST>. The
current implementation relies on their vertices and it is only possible to construct
them from a given range of points. This, obviously, introduces a substantial limi-
tation on the possible extensions of the class. For example, one cannot construct
an unbounded polyline given a range of points. A far more natural construction
should rely on the segments that constitute the Polyline or X-Polyline.

The construction issue was addressed as follows. First, the construction of
Polyline and X-Polyline was altered, so it can only obtain a range of Segments
as an input. Secondly, two construction functors were defined in the corresponding
traits class, Arr_polyline_traits_2<ST>, namely,

• Construct_curve_2, and
• Construct_x_monotone_curve_2.

The signatures of operator() of the first functor are:7

Curve_2 operator()(const Point_2& p, const Point_2& q) const
Curve_2 operator()(const Segment_2& seg) const
Curve_2 operator()(ForwardIterator begin,

ForwardIterator end) const

In the first case, the resulting polyline is the segment defined by the two end
points.8 Similarly, the second case yields a polyline, which consists of only one
given segment. In this case, if the segments that SegmentTraits can represent
are not necessarily x-monotone, then, a priori, the segment that the resulting
polyline comprises can be either x-monotone or not. The third overload is the
most important one; its input is a range of either points or (general) segments. In
the former case, the segments of the constructed polyline connects consecutive
points in the range. Here again we employ the assumption that the segments are
uniquely defined by their endpoints. The latter case, exhibit an interesting behavior.
Since the segments in the input, in general, are not necessarily x-monotone, it is
impossible to assert that the constructed polyline will be connected, let alone well
oriented (cf. Section 4.3.4). As a matter of fact, we cannot determine the endpoints
of a curve that is not x-monotone. This is because the concept of the functors
Construct_min_vertex_2 and Construct_max_vertex_2 can only handle, by their
definition, x-monotone curves.

7In C++, a class that overloads its function call operator, by defining an operator() member
function, is called a function object or functor.

8Note that in this case the assumption that a segment can be uniquely constructed given its two
endpoints is used.

123

4. REVISING COMPUTATION OF ARRANGEMENT OF POLYLINES

Similar overloads of operator() were implemented also for the construction
of X-Polyline in Construct_x_monotone_curve_2. They differ in two senses.
First, obviously, their return value is X-Polyline instead of Polyline. The second
difference is that input segments have to be instances of ST::X_monotone_curve_-
2 instead of ST::Curve_2. Therefore, it is possible to assert that the constructed
x-monotone polyline will be connected and well oriented.

Let us conclude with few remarks. First, although, as we just saw, the con-
struction of disconnected polylines is possible, they are in practice useless and
their arrangement cannot be computed. Therefore, it is the responsibility of the
user to verify that constructed general, i.e. not necessarily x-monotone, polylines
are continuous. Secondly, the construction of degenerated polylines is no longer
supported.9 This change has no significant ramifications since neither of the avail-
able traits classes, which could substitute the template parameter SegmentTraits,
support the construction of degenerated segments. Lastly, the user should be
encouraged to use the construction functors from Arr_polyline_traits_2<ST>
and not the direct constructor of the corresponding types. The reason for that is
that these functors preform validity tests of the input. In particular, they verify
(when possible) that the input yields a valid concatenation of segments and an
x-monotone polyline when applicable.

4.3.4 Well Oriented Polylines

Internally, the 2D Arrangements package compute the arrangement of x-monotone
curves. Namely, when it has to process a curve that is not x-monotone, it first
breaks the curve into x-monotone pieces. This is done using the functor Make_-
x_monotone_2 that is defined in the concept ArrangementTraits_2. Although it is
clear from a mathematical point of view, that an x-monotone polyline is nothing but
a set of segments that concatenate well (see Figures 4.3(a) and 4.3(b)), it is valuable
to store them in some consistent way. Following this motivation, indeed, the
curve type nested in the segments traits class, Segment, has the member functions
source() and target(). These member functions provide a notion of a direction
of a segment; i.e. a segment s is directed (or oriented) from its s.source() to
its s.target(). Note that these functions are not defined in any of the concepts
that Arr_segment_traits_2<K> models. This fact poses no problem, as long as
these functions are used solely by the corresponding traits class. However, the
implementation of Polyline and X-Polyline uses these functions in order to
provide a consistent, lexicographically increasing, storing of x-monotone polylines.
This obviously contradicts the generic programming paradigm; Arr_polyline_-
traits_2<K>, and its nested types, may only rely on the functionality provided by
the concepts that SegmentTraits has to model — see Section 4.2.

However, since the notion of direction of x-monotone polylines is desirable
the followings solution was implemented. First, let us we recall that the concept

9We say that a polyline is degenerated if it has one or more segments of length zero.

124

4.3. Revising the Implementation

(a) Non-oriented (b) Ill-oriented (c) A well-oriented poly-
line (right-to-left)

Figure 4.3: General x-monotone polyline

ArrangementDirectionalXMonotoneTraits_2 provides two functors:

• Compare_endpoints_xy_2 and

• Construct_opposite_2.

Together with the functors

• Construct_min_vertex_2 and

• Construct_max_vertex_2,

which are provided by the concept ArrangementBasicTraits_2, it is possible to im-
plement the notion of a direction of an x-monotone curve. In particular, since Arr_-
segment_traits_2<K>models both concepts, we can replace the calls to source()
and target() by combinations of the functors aforementioned. For example, if
comparing the end points of a segment s yields SMALLER, then s.source() can be
constructed using the Construct_min_vertex_2 functor.

When imposing the requirement that the template parameter SegmentTraits
should be a model of ArrangementDirectionalXMonotoneTraits_2 as well we guar-
antee that the constituting x-monotone segments will be oriented. In turn we can
implement the notion of a well-oriented x-monotone polyline. In particular an
x-monotone polyline is well-oriented if the target of its i -th segment is the source of
its i +1-th segment. Note that in the original implementation an x-monotone poly-
line could only be stored in an increasing lexicographical order, i.e. well-oriented
from left-to-right. Now the x-monotone polylines have to be merely well-oriented
and thus in turn allow more generality. See Figure 4.3(c) for an example. Since most
of the functors of Arr_polyline_traits_2<ST> assumed that x-monotone polylines
are directed from left-to-right, many adaptions had to be made to the code once
this invariant was removed. One prominent example is the functor Intersect_2,
that, according to its concept definition, has to return the objects of the intersection
in an ascending x y-lexicographical order.

Remark 4.1. Note that the discussion in this section treated x-monotone polylines
alone. It has no effect on the general polylines, and in particular Polyline can be
ill-oriented or even discontinuous as we already mentioned.

125

4. REVISING COMPUTATION OF ARRANGEMENT OF POLYLINES

Finally, once posing the condition that SegmentTraits has to be a model of
ArrangementDirectionalXMonotoneTraits_2 it is easy to assert that Arr_polyline_-
traits_2<ST> will model this concept as well. Indeed, it is rather straight forward
to implement the missing two functors that are needed according to the definition
of this concept.

4.3.5 Iteration Over Polylines

A fundamental part of the generic programming paradigm is the use of iterators.
Thus, it comes as no surprise that CGAL implements iterators of various kinds.
In turn an iterator over the vertices of an existing Polyline or X-Polyline is
implemented in the current implementation in order to inspect the polylines. But
the behavior of such an iterator is not always well defined; for example, when the
polyline has no first (or last) vertex, like in the case of an unbounded polyline.
Therefore, the iterators over the vertices that are currently defined for Polyline
and X-Polyline were replaced with iterators over the segments of the polyline.
Note that the previously provided iterators were implemented manually. However,
internally a Polyline holds the segments in a standard container.10 Thus, in turn,
iterating over the segments of a polyline can be done by simply using the iterators
provided by the container. This approach is obviously simpler and more robust.
Furthermore, this natural iterator can be used regardless whether the polyline is
bounded or not.

4.3.6 Augmentation of Polylines

Augmenting an existing polyline is natural and necessary, thus available in the
existing implementation. However, this implementation is limiting on the on hand
and introduces bad style on the other. More precisely, it considers the vertices
of a polyline as its building blocks, rather then its segments. Thus, it supports
the insertion of a vertex at “the end” of an existing polyline. However, in general,
finding “the end” of a general polyline might not be possible; for example if the last
segment is an unbounded ray. Therefore, for example, it is not possible using the
original implementation to augment a Polyline that contains a ray. In addition,
the augmenting was implemented as a member functions of the classes Polyline
and X-Polyline. This approach does not meet the modern design pattern of
CGAL.

The issues mentioned were solved by introducing a new functor Push_back_2
in Arr_polyline_traits_2<ST>. In Code snippet 1 we list all signatures of the
overloads of operator() of this functor. Note that an X-Polyline can only be
augmented by an x-monotone segment while a general polyline can obviously be
augmented by a general segment. In the first case in Code snippet 1 a new Segment
that connects the free point of the last segment of Polyline and the given point will

10Here by “standard container” we refer to one of the implementations of containers as provided
by the STANDARD TEMPLATE LIBRARY.

126

4.3. Revising the Implementation

void operator()(Curve_2& cv, const Point_2& p) const
void operator()(Curve_2& cv, const Segment_2& seg) const
void operator()(X_monotone_curve_2& xcv,

const Point_2& p) const
void operator()(X_monotone_curve_2& xcv,

const X_monotone_segment_2& seg) const

Code Snippet 1: The signatures of the various overloads of operator() in the func-
tor Push_back_2. Here Curve_2 and X_monotone_curve_2 are Polyline and
X-Polyline, respectively. Similarly, Segment_2 and X_monotone_segment_2 are
instances of SegmentTraits::Curve_2 and SegmentTraits::X_monotone_-
curve_2, respectively.

be added. On the other hand, in the second case, since the input polyline is general,
the given segment is simply appended; this can result in a disconnected polyline.
The result in the last two cases is more structured and yields an x-monotone
polyline as the output. For the sake of safety and robustness, the code validates
the input in the case of an X-Polyline, and makes sure that the resulting polyline
is indeed an x-monotone one. Finally, in order to improve the usability of the
traits class, a counterpart functor, Push_front_2, was implemented. In contrast to
Push_back_2, this second functor inserts a point (and the corresponding segment)
or a segment at the front of an existing polyline.

Remark 4.2. Let s be the last segment of some input polyline. Note that in the first
overload in Code snippet 1 the given polyline is not necessarily x-monotone. Thus,
s can either be x-monotone or not. In the latter case it is impossible to determine
the endpoints of s, let alone its free vertex. Therefore, in general it is impossible to
append a vertex at the end of a general polyline. However, currently the template
parameter SegmentTraits can be replaced by classes that represent x-monotone
segments alone. Due to this fact we can assume that s is x-monotone and in
turn safely augment the polyline. Nevertheless, this is a tricky issue that has to be
addressed. One way to tackle this problem is to check, using meta-programming
whether the class that substitutes the template parameter distinguishes between
x-monotone curves or not. In case it does distinguish the discussed overload of the
operator() of the functor Push_back_2 should be disabled. Otherwise, it can be
kept as it is in the upgraded implementation.

4.3.7 Bug Fix in the Location Functions

Due to the lifting of the left-to-right invariant of the x-monotone polylines, the
functions locate() and locate_side() had to be corrected.11 During the cor-
rection a bug was found in the original implementation. Note that, by its defi-

11In the current implementation these functions are called _locate() and _locate_side()
(note the additional underscore).

127

4. REVISING COMPUTATION OF ARRANGEMENT OF POLYLINES

nition, _locate(seg_tr,c,p) should return the index of a segment of the poly-
line c that contains the point p in its x-range. Similarly, _locate_side(seg_-
tr,c,q,bool) should return the index of the segment of the polyline c that is de-
fined to the left (or to the right) of the query point p if bool=TRUE (if bool=FALSE).
Set p0 = (−1,0), p1 = (0,0) and p2 = (1,0) and let c be the x-monotone polyline that
connects them. Next, let q = (0,1) be the query point.

e0 e1

p0 p1 p2

q

In the original implementation _locate(seg_tr,c,q) would return the (correct)
index i = 0. Then, if we invoke _locate_side(seg_tr, c, q, true) the re-
turned value would be i = 0, although it should be i = 1, since e1 is to the right of q .
This happens because neither of the following tests

if (equal(segment_traits_2()->
construct_min_vertex_2_object()(cv[i]), q))

if (equal(segment_traits_2()->
construct_max_vertex_2_object()(cv[i]), q))

returns true. Note that both functions should return the index of the segment that
contains the query point in its x-range. The bug described above was fixed, and the
implementation of the two functions was improved.

4.4 Testing the Code and Benchmark

In order to test the correctness of the code two steps were taken. First, the test suite
was executed on the upgraded implementation. This step is crucial as it validates
the output of the code in degenerated and pathological cases. However, the test
suite of the arrangement of polylines presented two problems. First, it did not
test cases where X-Polylines were directed from right-to-left. Secondly, it turned
out that the tests were not exhaustive enough and some cases were left untested
in the original test suite. Therefore, the test suite was revised and updated so it
will consider all the possible cases that involve Polylines and X-Polylines (such
that the latter could be directed either from left-to-right or from right-to-left). For
example, originally there were only 63 testings of the functor Intersect_2 and
now there are about 1700 of them. Similarly, we now have 692 test cases for the
functors Are_mergeable_2 and Merge_2 versus only 11 cases in the original test
suite.

The second step was computing the arrangement of a polyline that is con-
structed from a random range of points. The arrangement of sets of randomly
generated points were computed twice; once with the original code and once with
the upgraded one. This step achieved two goals. First, by comparing the result-
ing arrangement it was possible to confirm the correctness of the computations.

128

4.5. Summary

Secondly, and equally important, this test benchmarked the performances of the
two implementations. Table 4.2 in Appendix 4.B summarizes the results of the
benchmarks. Given the results, it is clear that the new code does not impair the
performance of the package. The benchmark showed that the usage of advanced
coding resulted in an improvement of 4.8% on average in the time needed for the
computations. The code that can be found in Appendix 4.A was used for the bench-
mark. Note that this code uses the deprecated construction of polylines — this was
done in order to run the same benchmark both on the original implementation
and on the upgraded one.

4.5 Summary

Let us summarize the most important changes that the upgraded code introduces.
First, it is now possible to instantiate Arr_polyline_traits_2<ST> without specify-
ing the SegmentTraits. If the template parameter is not provided then, by default,
the Arr_segment_traits_2<K> is used with the kernel Exact_predicates_exact_-
constructions_kernel. Secondly, polylines (and x-monotone polylines) can and
should be constructed using the construction functors that are now provided in the
traits class. Furthermore, x-monotone polylines can now be directed either from
left-to-right or from right-to-left. Thirdly, one can now iterate over the segments
that constitute a polyline instead of iterating over its vertices.

4.6 Future Work

There are two interesting directions for the generalization of the polyline traits
class. First, the original goal of this work, namely, computation of the arrangement
of unbounded polylines. The second direction, which is even more general, is to
implement a traits class for polycurves. It is probably best to base this traits class
on the upgraded implementation. Due to time constraints the initial goal has not
been completely accomplished. Fortunately however, the code in its new state is
much more suitable for further development in the directions mentioned above.
The ultimate goal would be to have a class that can compute the arrangement of
general, not necessarily bounded, polycurves. In the remaining of the section some
useful hints and ideas that could be useful when addressing either of the goals
above are provided.

Unbounded Polylines. A fundamental missing step towards the computation of
an arrangement of unbounded polylines is modeling the concept Arrangement-
OpenBoundaryTraits_2. The functors provided by this concept returns all the
needed information about the behavior of the curves near the boundaries.

Polycurves. A significant obstacle in this direction is that the code still assumes
that any segment can be uniquely defined given two end points. This condition

129

4. REVISING COMPUTATION OF ARRANGEMENT OF POLYLINES

is satisfied for geodesics on a unit sphere, but not for circular arcs for instance.
Thus, it might be possible to compute the arrangement of poly-geodesics on a
sphere without removing this assumption. However, in general, it is probably a
good practice to remove this assumption and treat polycurves only through their
constituting segments.

Some General Remarks. Finally, during the work on this project it was easy to
map several issues that have to be addressed. These issues vary from pure techni-
calities that have to be addressed to issues that involve design decisions that have
to be taken.

• The dependency of the output of Make_x_monotone_2 on the input. Let us
start with the example of a triangle given by the vertices p1 = (0,1), p2 = (−1,0)
and p3 = (1,0). The triangle can be considered as a (closed) polyline given
by the 4-tuple

(
p1, p2, p3, p1

)
or by the tuple

(
p2, p3, p1, p2

)
. In the former

case, the functor Make_x_monotone_2 breaks the polyline into the three
segments that constitute the triangle. In the latter case, the functor breaks
the polyline into two segments, namely,

(
p2, p3

)
and

(
p3, p1, p2

)
. Therefore,

computing the arrangement of this single polyline (i.e. triangle) yields either
three vertices and edges and two faces in the latter case or two vertices
edges and faces in the former. Note that the number of faces is correct in
both cases, but otherwise, the output is different. It is also important to
point that since the package computes the arrangements of x-monotone
curves, the arrangement of a simple closed curve will always yield at least
two vertices corresponding to the leftmost and rightmost points of the curve.
It is desirable that the output of the functor will be the set of maximally
x-monotone polylines.

• Augmenting a non x-monotone polyline. See Remark 4.2 for further details.

• On the merging of curves. The functor AreMergeable_2 determines, accord-
ing to its definition, when two x-monotone polylines are mergable:

“(two x-monotone curves) xc1 and xc2 are mergeable if their
underlying curves are identical, they share a common endpoint,
and they do not bend to form a non- x-monotone curve.”

Taken from [42]

This definition is rather restrictive and rules out curves that intuitively speak-
ing should be mergeable. For example, the case of overlapping curves is not
considered mergeable according to this definition. In turn, the current im-
plementation of Merge_2 deals merely with concatenation of X-Polyline’s.
A priori, allowing the merging of overlapping curves can save redundant
computations. It is therefore recommended to revise the definitions of the

130

4.6. Future Work

concepts AreMergeable_2 and Merge_2. This kind of change potentially in-
fluences all elements of 2D Arrangements package, and the implementations
of all models of these functors will have to be revised.

131

4. REVISING COMPUTATION OF ARRANGEMENT OF POLYLINES

4.A Code for Benchmark

Following is the code that was used to benchmark the upgrade of the code for the
computation of an arrangement of polylines in the plane. The code can also be
found in the file bench_random_arr_polylines.cpp .

#include <list>
#include <boost/timer.hpp>
#include <boost/lexical_cast.hpp>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_polyline_traits_2.h>
#include <CGAL/Arrangement_2.h>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Segment_traits_2;
typedef CGAL::Arr_polyline_traits_2<Segment_traits_2> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Segment_traits_2::Curve_2 Segment_2;
typedef Traits_2::Curve_2 Polyline_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main(int argc, char* argv[])
{

if (argc < 2) {
std::cout << "Usage: " << argv[0] << " <number of points> [seed]"
<< std::endl;
return -1;

}
unsigned int number_of_points(boost::lexical_cast<unsigned int>(argv[1]));
std::list<Point_2> pts;
unsigned int seed;
if (argc == 3) {

seed = boost::lexical_cast<unsigned int>(argv[2]);
CGAL::Random rnd(seed);
CGAL::Random_points_in_square_2<Point_2> g(10, rnd);
for (unsigned int i = 1; i < number_of_points; ++i) pts.push_back(*g++);

}
else {

CGAL::Random rnd;
seed = rnd.get_seed();
CGAL::Random_points_in_square_2<Point_2> g(10, rnd);
for (unsigned int i = 1; i < number_of_points; ++i) pts.push_back(*g++);

}
std::cout << "Seed to be used: " << seed << std::endl;
Polyline_2 poly(pts.begin(), pts.end());
Arrangement_2 arr;
boost::timer timer;
insert(arr, poly);
double secs = timer.elapsed();

std::cout << "Arrangement computation took: " << secs << std::endl;
std::cout << "The arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}

4.B Summary of benchmark tests

132

4.B. Summary of benchmark tests

Se
ed

N
V

E
F

T
im

er
(U

)
T

im
er

(I
)

C
h

an
ge

in
%

M
ea

n
ch

an
ge

in
%

13
68

34
70

36
50

32
6

61
5

29
1

0.
01

70
41

0.
01

73
89

2.
00

12
65

2
13

68
34

70
50

50
25

9
48

5
22

8
0.

01
39

91
0.

01
42

3
1.

67
95

50
2

13
68

34
70

62
50

25
4

47
1

21
9

0.
01

35
94

0.
01

40
35

3.
14

21
44

6
2.

27
43

2
13

68
34

71
41

50
0

29
35

7
58

37
8

29
02

3
1.

50
94

5
1.

65
58

7
8.

84
24

81
6

13
68

34
71

65
50

0
26

39
5

52
46

4
26

07
1

1.
36

53
7

1.
44

33
1

5.
40

00
87

3
13

68
34

71
84

50
0

27
59

2
54

84
7

27
25

7
1.

42
48

1.
50

63
7

5.
41

50
04

3
6.

55
25

24
4

13
68

34
72

14
10

00
11

72
52

23
38

48
11

65
98

6.
13

62
4

6.
39

28
3

4.
01

37
15

4
13

68
34

72
67

10
00

11
52

55
22

98
44

11
45

91
6.

05
12

9
6.

32
78

9
4.

37
11

25
3

13
68

34
73

20
10

00
12

29
11

24
51

55
12

22
46

6.
41

93
9

6.
78

41
6

5.
37

67
89

5
4.

58
72

10
1

13
71

45
36

03
20

00
45

37
85

90
62

18
45

24
35

24
.2

01
9

25
.3

59
8

4.
56

58
87

7
13

71
45

36
61

20
00

47
27

34
94

41
22

47
13

90
25

.1
66

5
26

.2
02

8
3.

95
49

20
8

13
71

45
37

08
20

00
45

03
77

89
93

97
44

90
22

23
.8

50
2

24
.9

69
3

4.
48

19
03

8
4.

33
42

37
4

13
71

45
37

52
25

00
71

00
89

14
18

55
6

70
84

69
37

.8
68

4
39

.9
53

7
5.

21
92

91
3

13
71

45
38

14
25

00
73

98
11

14
77

94
0

73
81

31
39

.4
88

3
41

.7
42

1
5.

39
93

45
0

13
71

45
39

26
25

00
73

04
82

14
59

27
2

72
87

92
40

.0
59

3
40

.8
85

8
2.

02
14

84
2

4.
21

33
73

5
13

71
45

39
96

30
00

10
41

70
5

20
81

42
2

10
39

71
9

56
.5

58
3

60
.2

63
9

6.
14

89
54

8
13

71
45

40
74

30
00

10
24

10
4

20
46

20
2

10
22

10
0

55
.2

77
1

61
.2

11
5

9.
69

49
10

3
13

71
45

41
44

30
00

10
11

43
4

20
20

91
2

10
09

48
0

54
.5

03
4

57
.0

53
5

4.
46

96
64

4
6.

77
11

76
5

Ta
bl

e
4.

2:
Be

nc
hm

ar
k
re
su
lts
.
“S

ee
d”

is
th
e
se
ed

us
ed

fo
rt

he
ra
nd

om
ge
ne
ra
tio

n
of

th
e
ve
rt
ice

s.
“N

”
is
th
e
nu

m
be
ro

fr
an
do

m
sa
m
pl
es
.
“V

,E
,F
”
ar
e
th
e
nu

m
be
ro

fv
er
tic

es
,e

dg
es

an
d
fa
ce
s
in

th
e
ge
ne
ra
te
d
ar
ra
ng

em
en
t,
re
sp
ec
tiv

ely
.
“T

im
e
(U

)”
is
th
e
ru
nn

in
g

tim
e
us
in
g
th
e
up

gr
ad
ed

co
de

an
d
“T

im
er

(I)
”
is
th
e
ru
nn

in
g
tim

e
wh

en
us
in
g
th
e
co
de

sh
ip
pe
d
wi
th

ve
rs
io
n
4.
3

133

5 Conclusion

This dissertation consists of three principal topics: First, (i) the parameterization
of contact surfaces. Secondly, (ii) optimal approximation of saddle surfaces, and
finally (iii) improvement of the implementation that compute arrangements of
polylines in CGAL. The first part of this chapter summarizes the work and its second
part discusses possible future directions of research.

Summary. The three principal issues treated in this dissertation, which we men-
tioned above, are all related, one way or another, to the celebrated motion planning
problem. The motion planning problem itself is not addressed in the presented
work, rather we consider derived issues whose solutions are of general interest and
can contribute to the study of the problem. In Chapter 2 we consider the bound-
ary between the free and forbidden spaces in the configuration space of a planar
convex polygonal robot. More precisely, we formulate a concise and geometrically
motivated parameterization of this boundary. Let us first define the model that we
consider. A physical robot is modeled as a convex polygon in the plane, which we
denote by A, that is free to rotate and translate amid polygonal obstacles that are
scattered in its workspace. In particular, the robot has three degrees of freedom;
two degrees determine the translation component of a placement and one degree
determines its rotational component. We assume that the description of the robot
is known; in particular, its vertices, denoted by {ai }n

i=1, are given (in a counterclock-
wise order) with respect to a local frame centered at the so-called reference point,
which is denoted by R0. Furthermore, we say that the robot is in its rest position if
R0 is at the origin of the workspace and the local frame of the robot aligns with the
global one of the workspace. In Figure 2.1 on page 9 the model is illustrated and the
robot is plotted in its rest position and in some arbitrary placement. A displacement
of the robot from its rest position to some placement in the workspace is deter-
mined by a translation vector~r ∈R2 and a scalar θ that corresponds to the rotation
of the robot around its reference point. The pair q = (~r ,θ) is called a configuration
point and the collection of all configuration points is the so-called configuration
space that we denote by C . It is easy to see that there exists a bijection between

5. CONCLUSION

configuration points in C and placements of the robot in the workspace. For a
configuration point q, we denote with A(q) its corresponding placement of the
robot.

Next, we consider the obstacles that are scattered in the workspace of the robot.
Once again, we assume that their descriptions are given. In general, given a source
and a target placements of the robot, the motion planning problem has to solve
two questions. First, it has to be determined whether a free path from the source to
the target exists. In this context, a path is a continuous curve in the configuration
space, such that the placements that correspond to its endpoints are the given
source and target. A path c ⊂ C is free if for all configuration points q ∈ c of the
path, the corresponding placement A(q) is free, namely, A(q) does not encroach
any obstacle. Secondly, if it is determined that a free path exists, then the next task
is to construct one.

Clearly, once obstacles are scattered in the workspace there are configuration
points that correspond to placements in which the robot intersects one or more
obstacles. The collection of such points is called the forbidden space and its comple-
ment is the free space. Note that a path between given source and target placements
is free if and only if it is fully contained in the free space. A path in the configuration
space between a configuration point that corresponds to a free placement of the
robot and a point that corresponds to a forbidden placement must intersect the
boundary between the free and forbidden spaces. In this work we consider this
boundary and formulate a parameterization of its components.

We say, in this summary, that A(q) touches an obstacle if their boundaries (and
possibly also their interiors) intersect.1 Note that if q belongs to the boundary
between the free and forbidden spaces, then A(q) touches an obstacle. Let O be a
convex polygonal obstacle with vertices {b j }m

j=1 given in a counterclockwise order
(see Figure 2.1 for reference). Let b j and b j+1 be two consecutive vertices of the
obstacle and let ai be a vertex of the robot. Then, for all t ∈ [0,1] and φ ∈ [0,2π) we
have that the configuration point

S
EO

j
ai

(t ,φ) =
(
(1− t)b j + tb j+1 −Rφai

φ

)
∈C

corresponds to a contact of A and O, such that the vertex ai of the robot lies on
the edge of the obstacle that connects b j and b j+1, which is denoted by EO

j ; cf.
Figure 5.1. See Equation (2.9) and Section 2.3.1 for further details. Similarly, if
ai and ai+1 are two consecutive vertices of A and b j is a vertex of O, then for all
t ∈ [0,1] and φ ∈ [0,2π), we have that the configuration point

S
b j

E A
i

(t ,φ) =
(
b j −Rφ · ((1− t)ai + t ai+1)

φ

)
∈C

corresponds to a contact of A and O such that the edge from ai to ai+1 of the
robot, denoted by E A

i , contains the vertex b j of the obstacle (cf. Equation (2.13)

1More precisely, as discussed in Section 2.1, we distinguish between contacts and pseudo contacts.

136

b1
1b1

2

b1
3

b1
4

a1

a2

a3

Figure 5.1: Example of a vertex-edge and an edge-vertex contact types. The
vertex a1 of the robot maintains a vertex-edge contact with the right obstacle and
the edge from a2 to a3 of the robot maintains an edge-vertex contact with the
left obstacle. Bare in mind that the obstacles are stationary.

and Figure 5.1). The complete discussion in this case can be found in Section 2.3.2.
Clearly, when the robot maintains either of these two possible contacts it has two
degrees of freedom (as can be seen in Figure 5.1), and in turn the corresponding
geometric objects in the configuration space are surfaces. This observation, obvi-
ously, coincides with the parameterizations formulated above. Note that one can
consider one-dimensional contacts, where a vertex of the robot touches a vertex of
the obstacle, or an edge of A and an edge of O overlap; these cases are discussed in
Section 2.3.3 but omitted in this summary.

It is easy to see that a configuration point that lies on the surfaces parameterized
above can belong either to the free space or to the forbidden one. The boundary
between the free and forbidden spaces is a union of subsets of the two (and one)-
dimensional surfaces (and curves) that we parameterize. In the respective sections
we determine these subsets by finding the corresponding subsets in the parameter
domains of the surfaces (and curves). This discussion yields a complete descrip-
tion of the boundary as we illustrate in Figure 2.10 on page 23. In addition, this
parameterization allows us to produce visualizations of the configuration space;
see [3] for an example.

Using the parameterization that we formalize, it is easy to study the differential
geometry of the boundary under discussion. This is done in details in Section 2.5.
Let us mention here two key outcomes of this discussion. First, the surfaces that
correspond to both vertex-edge and edge-vertex contacts are ruled surfaces. Sec-
ondly, the Gaussian curvature of the former is zero everywhere and of the latter is
negative. This last result leads us to the second part of the work, Chapter 3, where
we consider optimal approximations of saddle surfaces.

It is easy to show that the second order approximation of a smooth negatively
curved surface is the so-called saddle surface. This is briefly discussed in the in-
troduction (Chapter 1) and in Section 3.1. More details can be found in standard
textbooks on differential geometry like [12, 23]. Therefore, studying approximations
of saddle surfaces could be helpful when addressing the problem of approxima-
tion and discretization of contact surfaces of the second type, namely, those that

137

5. CONCLUSION

correspond to edge-vertex contacts of a robot and an obstacle.
In what follows, S is a generic saddle that is given, up to translations and

rotations, by

S =
{(

x, y, z
)

: z = x2

a2 − y2

b2

}
.

Let D ⊂ R2 be some closed domain, over which the saddle S is defined. One can
naively obtain an approximation of S over D by first triangulating its domain and
then lifting this triangulation.2 The obtained triangulation can be considered as
an approximation of S. An approximation obtained using this approach is most
likely useless. In any case, when dealing with approximations, we have to set an
error measure. Probably the most crucial and integral element of an approximation
problem is the error measure; namely, a criterion that allows the evaluation of the
correctness of the yielded approximations. In this work we consider the so-called
vertical distance (see Section 3.4).

Intuitively, the vertical distance between two graphs that are defined over the
same domain is the maximal vertical distance between corresponding points. When
considering the approximation of saddle surfaces, this error measure has two
advantages, First, it is simple to handle. Secondly, the vertical distance between
a line segment and a saddle is invariant under translations of the segment. More
precisely, if ` and `′ are two planar line segments such that one is the translation of
the other, then

distV
(
S, ˆ̀

)= distV
(
S, ˆ̀′) ,

where distV (S, ·) is the vertical distance from the saddle S to some other geometric
object and ˆ̀, ˆ̀′ are the liftings of ` and `′ to the saddle, respectively. Finally, let us
point that the vertical distance is an upper bound on the Hausdorff distance.

Next, we show that for two planar triangles T and T ′ such that one is a transla-
tion of the other, we have that

distV
(
S, T̂

)= distV
(
S, T̂ ′)

where T̂ and T̂ ′ are the liftings of T and T ′ to the saddle, respectively. Same property
holds also if T ′ is a point reflection of T with respect to one of the midpoints
of its edges. In this work, given some ε > 0, we find a planar triangle T with
distV

(
S, T̂

) = ε. We can then tessellate the plane with copies of T and obtain a
triangulation of S. Let T be the collection of these triangles, and let T̂ be its lifting
to S.

Our next objective is to optimize the yielded triangulation T̂ . In particular,
we increase the area of the corresponding planar triangles, while maintaining the
same prescribed ε> 0 vertical distance. Indeed, we find a one-parameter family of
triangles, denoted by T (ξ), such that the vertical distance between the saddle and
T̂ (ξ) is ε, where T̂ (ξ) is the lifting of T (ξ) to the saddle S. Furthermore, we show

2Here we say that lifting of a planar triangle T to the saddle S, is the triangle T̂ such that its
vertices are the vertical liftings of the vertices of T to the given saddle.

138

that the area of the triangles in this family is fixed. Finally, we prove that if a planar
triangle T has an area larger than the area of T (ξ) then distV

(
S, T̂

)
is larger than

ε. In other words, the members of the family T (ξ) yield optimal triangulation of
the saddle S. Finally, we find the best shaped member of this family. Here, “best
shaped” refers to the triangle where the minimal angle is maximized. These results
are discussed in detail in Section 3.5.

Note that so far we considered liftings of planar triangles to the saddle S; that is,
a lifted triangle T̂ has its vertices on the saddle. This can be called an interpolating
approach. In Section 3.6 we consider non-interpolating variant. More explicitly,
given a planar triangle T , we let T̂ be a vertical lifting of T such that its vertices are
not necessarily on the saddle. By allowing this additional degree of freedom, we
show how the approximation of S can be improved. In particular, we find a planar
triangle T? such that distV

(
S, T̂?

) = ε, where T̂? is a special lifting of T?, and the
area of T? is larger than the area of T (ξ) that we discuss in the interpolating case.
Once again, using translations and point reflections of T? we obtain a tessellation
of the domain D, and in turn a non-interpolating approximation of S. This result
invalidates a conjecture made by Pottmann et al. [34].

The last part of the work, which is considered in Chapter 4, details the contri-
bution made to the 2D Arrangements package in the COMPUTATIONAL GEOMETRY

ALGORITHMS LIBRARY (CGAL). In particular, the computation of arrangements of
families of polylines was considered. The contribution of this part is twofold. First,
the running time of the computation of arrangements of families of polylines was
improved by 5% on average. Secondly, the new version of the code, which will be
shipped with the next public release of CGAL (version 4.4), is far more general and
practices higher standards of coding.

Future Work. We conclude the chapter by reviewing the most important and
interesting issues that were left untreated in this dissertation.

Parameterization in the Configuration Space. Probably the most significant
limitation of the parameterization formulated in Chapter 2, is the assumption that
the robot has to be convex. The challenge in the case of non-convex robot is to
determine the sub-domains of the parameter spaces that correspond to contact
patches.

Optimal Approximation of Saddle Surfaces. In both the interpolating ap-
proach (cf. Section 3.5) and the non-interpolating one (cf. Section 3.6) we find a
planar (optimal) triangle T and we tessellate the domain of the saddle using its
translations and point reflections. This yields a global approximation of the saddle
such that the maximal vertical distance from the lifted triangles to the saddle is
ε, for some fixed ε> 0. However, the optimality of the approximation deteriorate
for triangles that are far from the center of the saddle. For example, their minimal
angles decrease.

139

5. CONCLUSION

An interesting possible direction of research is to obtain a global approxima-
tion of the saddle that does not deteriorate. Roughly speaking, obtain many local
approximating meshes and combine them together. Let us outline a suggested
approach. Let p be an arbitrary point on a saddle surface S and let Sp be a transla-
tion and rotation of S such that p is mapped to the origin and the corresponding
tangent plane is horizontal. Let Mp be a second order approximation of Sp in a
neighborhood of the origin; in particular, Mp is again a (different) saddle surface.

Next, obtain a global approximation (centered at the origin) of the original
saddle as we discussed in this work (for example see Figure 3.17 on page 64). Set
a quality threshold and purge all triangles in the mesh that do not meet it. For
example, set a lower bound on the minimal angle of the lifted triangles and remove
from the mesh all the triangles whose minimal angle is smaller than the bound.
Let T0 be the resulting mesh and let p ∈ S be a point that is not “covered” by T0.
Now, obtain a global approximation of Mp and discard all triangles that do not
meet the quality threshold. Using translations and rotations transform the yielded
mesh back to the saddle S and denote it by T1. The meshes T0 and T1 are two local
(optimal) approximations of S around the origin and around p. The process can
now be iterated until a sequence of meshes that covers the domain of interest is
obtained. Next, obtain a single mesh T using the obtained meshes that will be a
global approximation of S. Furthermore, it is of interest to use a similar approach
and obtain optimal approximations of negatively curved surfaces.

When the non-interpolating approach was employed, we considered a single
lifting scheme of the planar triangles. Namely, we lifted the planar triangles to an
offset saddle Sα; cf. Equation (3.28). However, another interesting direction is to
consider different schemes. It is possible that different lifting schemes can yield
improved approximations. If this is not the case, it is interesting to prove that the
non-interpolating triangulation suggested in Section 3.6 is optimal.

Arrangements of Polylines in CGAL. As we discussed in Chapter 4, the initial
goal of allowing the computation of arrangements of unbounded polylines was
not accomplished. Thus, naturally, this issue is left open. Furthermore, the up-
dated code, which is a product of this work, is far more generic then the initial
version. Therefore, an even more general goal can be set: allow the computation of
arrangements of general polycurves. Further details can be found in Section 4.6.

140

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit ohne fremde Hilfe und nur mit
den angegebenen Quellen verfasst habe. Die Stellen, die ich dem Wortlaut oder
dem Sinn nach anderen Werken entnommen habe, sind durch Angabe der Quellen
kenntlich gemacht.

Berlin,

Bibliography

[1] D. Atariah, S. Ghosh, and G. Rote. On the Parameterization and the Geom-
etry of the Configuration Space of a Single Planar Robot. Tech. rep. Freie
Universität Berlin, 2013.

[2] D. Atariah, S. Ghosh, and G. Rote. “On the Parameterization and the Geome-
try of the Configuration Space of a Single Planar Robot”. In: Journal of WSCG
21.1 (2013), pp. 11–20.

[3] D. Atariah and G. Rote. “Configuration space visualization”. In: Proceedings
of the 2012 symposium on Computational Geometry. SoCG ’12. Chapel Hill,
North Carolina, USA: ACM, 2012, pp. 415–416. DOI: 10.1145/2261250.
2261313.

[4] C. Bajaj and M.-S. Kim. “Generation of Configuration Space Obstacles: Mov-
ing Algebraic Surfaces”. In: The International Journal of Robotics Research 9.1
(1990), pp. 92–112. DOI: 10.1177/027836499000900104.

[5] E. Berberich, E. Fogel, D. Halperin, M. Kerber, and O. Setter. “Arrangements
on Parametric Surfaces II: Concretizations and Applications”. In: Mathemat-
ics in Computer Science 4 (1 2010), pp. 67–91. DOI: 10.1007/s11786-010-
0043-4.

[6] E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn, and R. Wein. “Arrangements
on Parametric Surfaces I: General Framework and Infrastructure”. In: Math-
ematics in Computer Science 4 (1 2010), pp. 45–66. DOI: 10.1007/s11786-
010-0042-5.

[7] M. Bertram, J. C. Barnes, B. Hamann, K. I. Joy, H. Pottmann, and D. Wushour.
“Piecewise optimal triangulation for the approximation of scattered data in
the plane”. In: Computer Aided Geometric Design 17.8 (2000), pp. 767–787.
DOI: 10.1016/S0167-8396(00)00026-1.

[8] J.-D. Boissonnat and F. Avnaim. Polygon placement under translation and
rotation. Rapport de recherche RR-0889. INRIA, 1988. URL: http://hal.
inria.fr/inria-00075665/en/.

http://dx.doi.org/10.1145/2261250.2261313
http://dx.doi.org/10.1145/2261250.2261313
http://dx.doi.org/10.1177/027836499000900104
http://dx.doi.org/10.1007/s11786-010-0043-4
http://dx.doi.org/10.1007/s11786-010-0043-4
http://dx.doi.org/10.1007/s11786-010-0042-5
http://dx.doi.org/10.1007/s11786-010-0042-5
http://dx.doi.org/10.1016/S0167-8396(00)00026-1
http://hal.inria.fr/inria-00075665/en/
http://hal.inria.fr/inria-00075665/en/

BIBLIOGRAPHY

[9] V. Borrelli, F. Cazals, and J.-M. Morvan. “On the angular defect of triangula-
tions and the pointwise approximation of curvatures”. In: Computer Aided
Geometric Design 20.6 (2003), pp. 319–341. DOI: 10.1016/S0167-8396(03)
00077-3.

[10] V. Borrelli, F. Cazals, and J.-M. Morvan. On the angular defect of triangulations
and the pointwise approximation of curvatures. Tech. rep. RR-4590. INRIA,
Oct. 2002. URL: ftp://ftp- sop.inria.fr/abs/fcazals/papers/
LocalCurv1.pdf.

[11] R. Brost. “Computing metric and topological properties of configuration
space obstacles”. In: Proceedings of IEEE International Conference on Robotics
and Automation. Vol. 1. 1989, pp. 170–176. DOI: 10.1109/ROBOT.1989.
99985.

[12] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall,
1976.

[13] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implemen-
tations (Intelligent Robotics and Autonomous Agents series). The MIT Press,
May 2005.

[14] P. Desnoguès and O. Devillers. “A Locally Optimal Triangulation of the Hy-
perbolic Paraboloid”. In: Canadian Conference on Computational Geometry.
1995, pp. 49–54. URL: http://hal.archives-ouvertes.fr/docs/00/
41/32/29/PDF/cccg.pdf.

[15] N. Dyn, D. Levin, and S. Rippa. “Data Dependent Triangulations for Piecewise
Linear Interpolation”. In: IMA Journal of Numerical Analysis 10.1 (1990),
pp. 137–154. DOI: 10.1093/imanum/10.1.137.

[16] E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, and N. Wolpert. “Ar-
rangements”. In: Effective Computational Geometry for Curves and Surfaces.
Ed. by J.-D. Boissonnat and M. Teillaud. Mathematics and Visualization.
Springer, 2007. Chap. 1, pp. 1–66.

[17] E. Fogel, D. Halperin, and R. Wein. CGAL Arrangements and Their Applica-
tions - A Step-by-Step Guide. Vol. 7. Geometry and computing. Springer, 2012,
pp. I–XIX, 1–293. DOI: 10.1007/978-3-642-17283-0.

[18] A. Gray. Modern Differential Geometry of Curves and Surfaces. CRC Press,
1993.

[19] Y. K. Hwang and N. Ahuja. “Gross motion planning – A survey”. In: ACM Com-
put. Surv. 24.3 (Sept. 1992), pp. 219–291. DOI: 10.1145/136035.136037.

[20] S. Hyde, Z. Blum, T. Landh, S. Lidin, B. Ninham, S. Andersson, and K. Larsson.
The Language of Shape: The Role of Curvature in Condensed Matter: Physics,
Chemistry and Biology. Elsevier Science, 1996.

144

http://dx.doi.org/10.1016/S0167-8396(03)00077-3
http://dx.doi.org/10.1016/S0167-8396(03)00077-3
ftp://ftp-sop.inria.fr/abs/fcazals/papers/LocalCurv1.pdf
ftp://ftp-sop.inria.fr/abs/fcazals/papers/LocalCurv1.pdf
http://dx.doi.org/10.1109/ROBOT.1989.99985
http://dx.doi.org/10.1109/ROBOT.1989.99985
http://hal.archives-ouvertes.fr/docs/00/41/32/29/PDF/cccg.pdf
http://hal.archives-ouvertes.fr/docs/00/41/32/29/PDF/cccg.pdf
http://dx.doi.org/10.1093/imanum/10.1.137
http://dx.doi.org/10.1007/978-3-642-17283-0
http://dx.doi.org/10.1145/136035.136037

Bibliography

[21] L. Kavraki, P. Svestka, J.-c. Latombe, and M. Overmars. “Probabilistic Road-
maps for Path Planning in High-Dimensional Configuration Spaces”. In: IEEE
International Conference On Robotics And Automation. 1996, pp. 566–580.

[22] G. Korn and T. Korn. Mathematical Handbook for Scientists and Engineers:
Definitions, Theorems, and Formulas for Reference and Review. Dover Civil
and Mechanical Engineering Series. Dover Publications, 2000.

[23] W. Kühnel. Differential Geometry: Curves - Surfaces - Manifolds. American
Mathematical Society, 2005.

[24] J.-C. Latombe. Robot Motion Planning. 3rd. Kluwer Academic Publishers,
1993.

[25] J.-P. Laumond, ed. Robot Motion Planning and Control. Lectures Notes in
Control and Information Sciences. Springer, 1998.

[26] S. M. LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006. URL: http://planning.cs.uiuc.edu/.

[27] T. Lozano-Pérez and M. A. Wesley. “An algorithm for planning collision-free
paths among polyhedral obstacles”. In: Commun. ACM 22.10 (Oct. 1979),
pp. 560–570. DOI: 10.1145/359156.359164.

[28] M. Lysenko, S. Nelaturi, and V. Shapiro. “Group morphology with convolution
algebras”. In: Symposium on Solid and Physical Modeling. 2010, pp. 11–22.

[29] E. Melissaratos. Lp Optimal d Dimensional Triangulations for Piecewise Lin-
ear Interpolation: A New Result on Data dependent Triangulations. Tech. rep.
Utrech University, 1993.

[30] V. Milenkovic, E. Sacks, and S. Trac. “Robust Complete Path Planning in
the Plane”. In: Algorithmic Foundations of Robotics X. Ed. by E. Frazzoli,
T. Lozano-Perez, N. Roy, and D. Rus. Vol. 86. Springer Tracts in Advanced
Robotics. Springer Berlin Heidelberg, 2013, pp. 37–52. DOI: 10.1007/978-3-
642-36279-8_3.

[31] P. P. Pébay and T. J. Baker. “Analysis of Triangle Quality Measures”. In: Math.
Comput. 72.244 (Oct. 2003), pp. 1817–1839. DOI: 10.1090/S0025-5718-03-
01485-6.

[32] A. V. Pogorelov. Extrinsic Geometry of Convex Surfaces (Translations of mathe-
matical monographs Volume 35). American Mathematical Society, Dec. 1973.

[33] K. Polthier and M. Schmies. “Straightest geodesics on polyhedral surfaces”.
In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses. Boston, Massachusetts:
ACM, 2006, pp. 30–38. DOI: 10.1145/1185657.1185664.

[34] H. Pottmann, R. Krasauskas, B. Hamann, K. Joy, and W. Seibold. “On Piece-
wise Linear Approximation of Quadratic Functions”. In: Journal for Geometry
and Graphics 4.1 (2000), pp. 9–31.

[35] H. Pottmann and J. Wallner. Computational Line Geometry. Printed chapter
5. Springer-Verlag New York, Inc., 2001.

145

http://planning.cs.uiuc.edu/
http://dx.doi.org/10.1145/359156.359164
http://dx.doi.org/10.1007/978-3-642-36279-8_3
http://dx.doi.org/10.1007/978-3-642-36279-8_3
http://dx.doi.org/10.1090/S0025-5718-03-01485-6
http://dx.doi.org/10.1090/S0025-5718-03-01485-6
http://dx.doi.org/10.1145/1185657.1185664

BIBLIOGRAPHY

[36] O. Salzman. “Motion Planning via Manifold Samples”. MA thesis. Tel-Aviv
University, 2011.

[37] J. Schwartz and M. Sharir. “On the piano movers’ problem: I. The case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers”. In:
Communications on Pure and Applied Mathematics 36 (1983), pp. 345–398.

[38] B. Siciliano and O. Khatib, eds. Springer Handbook of Robotics. 1st ed. Sprin-
ger, June 2008.

[39] J. Stoecker and V. Milenkovic. “Interactive visualization of 3D configuration
spaces”. In: Proceedings of the twenty-ninth annual symposium on Compu-
tational geometry. SoCG ’13. Rio de Janeiro, Brazil: ACM, 2013, pp. 341–342.
DOI: 10.1145/2462356.2462358.

[40] J. Sullivan. “Curvatures of Smooth and Discrete Surfaces”. English. In: Discrete
Differential Geometry. Ed. by A. I. Bobenko, J. M. Sullivan, P. Schröder, and
G. M. Ziegler. Vol. 38. Oberwolfach Seminars. Birkhäuser Basel, 2008, pp. 175–
188. DOI: 10.1007/978-3-7643-8621-4_9.

[41] K. Tang and Y.-J. Liu. “A geometric method for determining intersection
relations between a movable convex object and a set of planar polygons”. In:
Robotics, IEEE Transactions on 20.4 (Aug. 2004), pp. 636–650. DOI: 10.1109/
TRO.2004.829479.

[42] The CGAL Project. CGAL User and Reference Manual. 4.3. CGAL Editorial
Board, 2013. URL: http://doc.cgal.org/4.3/Manual/packages.html.

[43] G. Varadhan. “Accurate sampling-based algorithms for surface extraction
and motion planning”. PhD thesis. Chapel Hill, NC, USA: University of North
Carolina at Chapel Hill, 2005.

[44] G. Varadhan, Y. J. Kim, S. Krishnan, and D. Manocha. “Topology Preserving
Approximation of Free Configuration Space”. In: International Conference on
Robotics and Automation. 2006, pp. 3041–3048.

[45] R. Wein, E. Fogel, B. Zukerman, and D. Halperin. “2D Arrangements”. In:
Cgal User and Reference Manual. 4.1. http://www.cgal.org/Manual/4.
1/doc_html/cgal_manual/packages.html#Pkg:Arrangement2. CGAL

Editorial Board, 2012.

[46] K. D. Wise and A. Bowyer. “A Survey of Global Configuration-Space Mapping
Techniques for a Single Robot in a Static Environment”. In: The Interna-
tional Journal of Robotics Research 19.8 (2000), pp. 762–779. DOI: 10.1177/
02783640022067157.

[47] E. K. Xidias, P. N. Azariadis, and N. A. Aspragathos. “Path Planning of Holo-
nomic and Non-Holonomic Robots Using Bump- Surfaces”. In: Computer-
Aided Design and Applications 5 (2008), pp. 497–507. URL: http://www.
cadanda.com/CAD_5_1-4__497-507.pdf.

146

http://dx.doi.org/10.1145/2462356.2462358
http://dx.doi.org/10.1007/978-3-7643-8621-4_9
http://dx.doi.org/10.1109/TRO.2004.829479
http://dx.doi.org/10.1109/TRO.2004.829479
http://doc.cgal.org/4.3/Manual/packages.html
http://www.cgal.org/Manual/4.1/doc_html/cgal_manual/packages.html#Pkg:Arrangement2
http://www.cgal.org/Manual/4.1/doc_html/cgal_manual/packages.html#Pkg:Arrangement2
http://dx.doi.org/10.1177/02783640022067157
http://dx.doi.org/10.1177/02783640022067157
http://www.cadanda.com/CAD_5_1-4__497-507.pdf
http://www.cadanda.com/CAD_5_1-4__497-507.pdf

Index

configuration
point, 10
space, 10

conic section, 44
hyperbolic, see hyperbola

contact
patch, 13
surface, 12

curvature
Gaussian, 27
mean, 27
normal, 29
principal, 29

curve
striction, 27

direction
asymptotic, 29

distance
Hausdorff, 49, 51
vertical, 49

frame
local, 9

holonomic, 8
hyperbola, 44

canonical, 45
center of, 44
rectangular, 45
simple, 45

hyperbolic paraboloid, see saddle

non-holonomic, 8

omnidirectional, see holonomic

parametric curve, 117
x-monotone, 118

placement, 10
polycurve, 117, 120
polyline

x-monotone, 118
bounded, 118
unbounded, 118
well-oriented, 125

pose, see placement
principal curvature

direction, 29

reference point, 9
rotation matrix

rational, 11

saddle, 48
canonical, 48
center of, 48
height of, 48
rectangular, 48
simple, 48

segment, 117
space

configuration, 1, 10
forbidden, 11
free, 11
work, 9

surface
quadratic, 42
ruled, 53

INDEX

surface normal, 26

Taylor expansion, 42
transformation

pseudo-Euclidean, 78
triangle

lift, 60
triangulation

optimal, 53

148

	Acknowledgments
	Nomenclature
	Introduction
	Parameterization of Contact Surfaces
	Introduction
	Rotating the Robot
	Parameterizing Contact Surfaces
	Vertex-Edge Contact
	Vertex Edge Angle Range Analysis
	On the Exactness

	Edge-Vertex Contact
	Vertex-Vertex and Edge-Edge Contacts
	Vertex-Vertex Contact
	Edge-Edge Contact

	Conclusion

	Rational Parameterization
	Differential Geometry of Contact Surfaces
	Geometrical Model
	Rational Model

	Conclusion
	Angle Range Analysis Using Normals
	Vertex-Edge Case
	Angle Range Analysis Using Normals - Edge-Vertex

	Differential Geometry of V-E Contact Surfaces

	Optimal Triangulation of Hyperbolic Paraboloids
	Introduction
	Remarks on Conic Sections
	Remarks on Quadratic Surfaces
	Vertical Distance
	Local Interpolating Triangulation of Saddle Surfaces
	Simple Saddle
	Canonical Saddle

	Non-interpolating Triangulation
	Conclusion
	Explicit Computation of the Angles of T1(xi)
	Expression for the Coordinates of T-star-i(xi,alpha)
	Symbolic Computations Transcript

	Revising Computation of Arrangement of Polylines
	Background and Motivation
	Existing Implementation
	Revising the Implementation
	Non x-monotone Segments
	Construction of the Constituting Segments
	Construction of Polylines
	Well Oriented Polylines
	Iteration Over Polylines
	Augmentation of Polylines
	Bug Fix in the Location Functions

	Testing the Code and Benchmark
	Summary
	Future Work
	Code for Benchmark
	Summary of benchmark tests

	Conclusion
	Bibliography
	Index

