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Abstract

Background: Cytokinin is a negative regulator of root growth, and a reduction of the cytokinin content or
signalling causes the formation a larger root system in model plants, improves their growth under drought and
nutrient limitation and causes increased accumulation of elements in the shoot. Roots are an important but
understudied target of plant breeding. Here we have therefore explored whether root enhancement by lowering
the cytokinin content can also be achieved in oilseed rape (Brassica napus L.) plants.

Results: Transgenic plants overexpressing the CKX2 gene of Arabidopsis thaliana encoding a cytokinin-degrading
cytokinin oxidase/dehydrogenase showed higher CKX activity and a strongly reduced cytokinin content. Cytokinin
deficiency led to the formation of a larger root system under different growth conditions, which was mainly due to
an increased number of lateral and adventitious roots. In contrast, shoot growth was comparable to wild type,
which caused an enhanced root-to-shoot ratio. Transgenic plants accumulated in their leaves higher concentrations
of macro- and microelements including P, Ca, Mg, S, Zn, Cu, Mo and Mn. They formed more chlorophyll under Mg-
and S-deficiency and accumulated a larger amount of Cd and Zn from contaminated medium and soil.

Conclusions: These findings demonstrate the usefulness of ectopic CKX gene expression to achieve root
enhancement in oilseed rape and underpin the functional relevance of a larger root system. Furthermore, the lack
of major developmental consequences on shoot growth in cytokinin-deficient oilseed rape indicates species-
specific differences of CKX gene and/or cytokinin action.
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Background

Cytokinins are key regulators of numerous developmental
and physiological processes [1-5]. Essential steps of their
metabolism and signal transduction have been elucidated
in Arabidopsis thaliana [reviewed by [6, 7]]. Breakdown of
cytokinins is catalyzed by the seven members of the cyto-
kinin oxidase/dehydrogenase (CKX) family. CKX genes
and proteins differ in their expression profiles, subcellular
localisations and biochemical characteristics [8, 9].

Constitutive overexpression of CKX genes in tobacco
and Arabidopsis plants resulted in plants with reduced
cytokinin content showing a compound phenotype called
the cytokinin deficiency syndrome [10, 11]. Plants show-
ing this syndrome are characterized by slow-growing,
stunted shoots with small leaves and an enhanced root
system. Consistently, mutants of cytokinin receptor genes
and other mutants of cytokinin metabolism and signalling
genes show similar phenotypic changes [12—18]. Essen-
tially, this and other work [19-22] has established cytoki-
nin as a negative regulator of root growth and branching.

Interestingly, limiting the expression of CKX genes
mainly to roots of transgenic tobacco (Nicotiana taba-
cum), Arabidopsis or barley (Hordeum vurigare) plants
enabled the production of plants with a larger root sys-
tem lacking the otherwise detrimental consequences of
cytokinin deficiency for the shoot [23-26]. These plants
were shown to be more resistant to drought stress, form
more chlorophyll under Mg- and S-limitation and to ac-
cumulate higher concentrations of several elements in
their leaves and grains. Thus targeted expression of CKX
genes is a promising tool to engineer plants with an en-
hanced root system and to explore its potential benefits.

Recently roots have come into focus for improvement of
crop plants, and it has been argued that the relevance of
the root system as a breeding target in crop plants has
been underestimated [27-31]. Analysis of various crop
plants with a modified root system architecture obtained
by genetic engineering revealed that an enhanced root sys-
tem can be advantageous under several circumstances
[reviewed in [32]]. For instance, in rice overexpression of
the PHOSPHORUS-STARVATION TOLERANCEI (PSTO
LI) gene caused increased root biomass and enhanced
grain yield by more than 60% under phosphate-deprived
conditions [33]. Expression of the DEEPER ROOTINGI
(DROI) gene in a shallow-rooting rice variety (IR64) cau
sed an increase in root growth angle, which resulted in a
steep-deep root architecture enabling the plants to achieve
higher yields under drought conditions [34].

Here we have tested whether the function of cytokinin
as a negative regulator of root development also holds
true in oilseed rape (Brassica napus L.), which is an im-
portant oil-producing crop plant closely related to Ara-
bidopsis. B. napus (2n =38, AACC) has a recently (~
7500 years ago) formed allotetraploid genome resulting
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from a hybridization event of the B. rapa (2n =20, AA)
and B. oleracea (2n =18, CC) genomes [35]. Based on
the comparative genomic analysis, it was estimated that
approximately 90.3 and 71.4% of the genomic compo-
nents of the B. rapa and B. oleracea genomes were con-
served in B. napus [36].

In the genome of B. napus a large number of cytokinin
metabolism and signalling genes was identified. Among
others, there are 26 cytokinin-synthesizing IPT and 23
CKX genes, which are differentially expressed [37, 38] as
compared to nine IPT and seven CKX genes in Arabi-
dopsis. The fact that a large number of cytokinin genes
have been retained in the Brassica genome suggests that
the hormone exerts numerous distinct functions in this
species. In addition, mapping studies in B. rapa and B.
napus revealed that members of the CKX gene family
and cytokinin signalling genes are linked to yield-related
loci which are of potential use for breeding in Brassica
species [36, 39-41]. Consistently, certain combinations
of CKX gene mutations have led to a yield increase in
Arabidopsis [42]. Here we show that the overexpression
of the Arabidopsis CKX2 gene in oilseed rape causes
root enhancement in the absence of a strong impact on
shoot development. The cytokinin-deficient plants accu-
mulate higher concentrations of different elements in
their leaves, form more chlorophyll under Mg- and
S-deficiency and have an improved phytoremediation
capacity. Thus, the concept of root enhancement by ec-
topic CKX gene expression is extended to an important
crop species.

Results

Generation of cytokinin-deficient oilseed rape plants

In order to study the consequences of a constitutively
reduced cytokinin content in oilseed rape, we attempted
to obtain plants expressing two prototypic CKX genes of
Arabidopsis thaliana, CKX1 and CKX2, under the con-
trol of the 35S promoter [10]. Overexpression of both
genes causes strongly enhanced root growth in the
model plants tobacco and Arabidopsis. However, CKX1
overexpression leads to a dramatic reduction of shoot
growth, while CKX2 overexpression causes only a mod-
erate reduction of shoot growth [10, 11].

Attempts to obtain 35S5:CKX1 transgenic plants of oil-
seed rape failed repeatedly indicating that the gene prod-
uct activity interferes strongly with the regeneration
process which requires cytokinin. In contrast, thirteen
independent transformants displaying a similar pheno-
type were obtained for the 355:CKX2 gene. CKX activity
was tested in seedlings of five of these lines and all
showed a strongly enhanced CKX activity (> 60 pmol iP
mg ' protein s™!) as compared to wild-type seedlings
(0.3 +0.08 pmol iP mg ' protein s ') (Fig. 1). Further
characterization was carried out with homozygote
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Fig. 1 355:CKX2 transgenic B. napus plants displayed increased cytokinin oxidase/dehydrogenase enzyme (CKX) activity. For each genotype three
independent biological replicates of three pooled 8-day-old seedlings cultivated in vitro were analysed. Data represent mean values + SD.
Student's t-test was used to calculate the significance of differences between transgenic lines and wild type. *** p <0.001

progeny obtained by self-fertilization from three inde-
pendent lines, 355:CKX2-1, 355:CKX2—4 and 35S:CKX2
-13.

Analysis of the cytokinin concentration in root, shoots
or whole 8-d-old seedlings of these transgenic lines re-
vealed a low (below 1pmolg FW™') cytokinin concen-
tration in wild-type seedlings, which is about one order
of magnitude lower than in Arabidopsis. In the trans-
genic lines, the concentration of different cytokinin me-
tabolites was reduced to a similar extent (Table 1 and
Additional file 1: Table S1). Among the iP-type cytoki-
nins, the only significant and consistent change was a re-
duction of isopentenyl-9-N-glucoside (iP9G) in roots to
14-23% of the wild-type concentration. All other iP-type
metabolites were below the detection limit or not signifi-
cantly altered. The concentration of the biologically ac-
tive trans-zeatin (¢Z), was in most tissues and transgenic
lines lowered to about 30-50% of the concentration in
wild type. Similar reductions were noted for ¢Z riboside,
glucoside and monophosphate (Table 1). In contrast, the
concentration of several cis-zeatin (cZ)-type cytokinins
(¢Z and cis-zeatin 9-glucoside, ¢Z9G) was not altered
significantly in the 355:CKX2 lines. An exception is a 2—
4.5-fold increase of ¢Z5’-RMP in roots of all three trans-
genic lines. This unexpected increase may reflect a
homeostatic mechanism that activates the synthesis of
¢Z-type cytokinin in response to the lowered concentra-
tion of iP-and tZ-type cytokinins. Similar changes and
cytokinin metabolite differences were measured in

14-d-old seedlings (Additional file 1: Table S1). Taken
together, overexpression of the CKX2 gene caused a
strong increase of CKX activity and a significant de-
crease of the cytokinin content.

Cytokinin-deficiency causes enhanced root growth

Next, we investigated whether the altered cytokinin con-
tent influences the root or shoot development of oilseed
rape. The root architecture was analysed from plants
grown under different growth conditions, namely in vitro,
in a hydroponic system or in soil. The length of the pri-
mary root of 6-day-old seedlings grown in vitro differed
between wild type and the transgenic lines (Fig. 2 a). Two
of the transgenic lines (35S:CKX2-1 and 35S:CKX2-13)
showed a significant 25-35% increase of their primary
root length compared to wild type (Fig. 2a). About twice
as many lateral roots (LR) were formed in all three trans-
genic lines compared to wild type (Fig. 2 b). This increase
in LR number resulted in a strong increase of LR density
(70-100%) in the transgenic lines (Fig. 2 ¢, d). Further-
more, under in vitro growth conditions the number of ad-
ventitious roots was also increased by about 40-50% in
the transgenic plants compared to wild type (Fig. 2 d).

We then analysed the root system size of plants grown
in a hydroponic system (Fig. 3 a). Visual inspection of
five-week-old plants indicated that the primary root
lengths of transgenic lines were not increased under
these conditions. However, the root mass of transgenic
lines was more voluminous suggesting that their number
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Table 1 Cytokinin content of 8-d-old Brassica napus seedlings overexpressing the CKX2 gene. The concentration of cytokinin
metabolites was measured in root, shoot and whole seedlings of the lines 355:CKX2-1, 355:CKX2-4, 355.CKX2-13, and wild type. The
cytokinin metabolite concentrations detected in the transgenic lines are shown as percent of those found in wild type. Absolute
values and statistical analysis are shown in Additional file 1: Table S1. Percentage printed in bold indicates statistically significant
differences (p < 0.05) as compared to wild type calculated by Student's t-test

355:CKX2-1 355:CKX2-4 355:CKX2-13
Root Shoot Seedling Root Shoot Seedling Root Shoot Seedling
iP-type
iP nd 188 42 nd 173 42 247 nd 52
iPR nd nd nd nd 83 279 80 180 192
iP9G 23 nd 45 20 nd nd 14 nd 40
iPRS'MP 162 89 58 100 160 128 101 179 94
tZ-type
tZ 31 nd 58 31 nd 140 37 22 45
tZR 50 42 32 83 35 45 79 59 31
tZ9G 69 nd 10 28 nd 28 27 nd 7
tZOG na 33 40 na 28 27 na nd nd
tZR5'MP 78 63 22 108 22 23 76 21 29
cZ-type
cZ 38 63 51 30 33 57 26 35 55
cZR 116 91 59 109 94 87 92 105 99
cZ9G 90 93 124 76 86 159 79 82 98
cZ0G 60 nd 90 71 nd nd 153 nd nd
cZR5'MP 290 57 9% 191 94 173 475 107 106

Abbreviations: tZ trans-zeatin, tZR tZ riboside, tZ9G tZ 9-N-glucoside, tZOG tZ O-glucoside, tZR5'MP tZR 5'-monophosphate, tZROG tZR O-glucoside, cZ cis-zeatin, cZR
cZ riboside, cZ9G cZ 9-N-glucoside, cZOG cZ O-glucoside, cZR5'MP cZR 5'-mono phosphate, iP N6-(A2-isopentenyl)adenine, iPR iP riboside, iP9G iP 9-N-glucoside,
iPR5'MP iPR 5"-monophosphate, nd concentration below the detection limit, na not applicable due to a concentration below detection limit in wild type

of primary and secondary lateral roots was increased
compared to wild type (Fig. 3 a). The dry weight of roots
of 355:CKX2 lines was increased up to 50% in compari-
son to wild type (Fig. 3 b). In contrast, the shoot dry
mass was comparable between wild type and the trans-
genic lines (Fig. 3 c). This differential growth increased
the root-to-shoot biomass ratio by 25-46% in the trans-
genic lines compared to wild-type plants (Fig. 3 d).
Visual inspection of soil-grown plants also confirmed
the formation of a larger root system in the transgenic
lines compared to wild type (Fig. 4 a, b). In contrast, gen-
erally only very minor developmental changes were noted
in the shoots of the transgenic lines. 84 DAG plant height
(Fig. 4 a, c) and shoot fresh weight (Fig. 4 d) of transgenic
plants was similar compared to wild type. However, during
vegetative development the lateral buds in the leaf axils of
transgenic plants produced two to three small leaves, in
contrast to the lateral buds of wild type, which remained
completely inhibited (Fig. 4 a). Further, total yield (Fig. 4
e) and 100-seed weight (Fig. 4 f) of two lines were com-
pared to wild-type plants. In one of the lines the total seed
yield was similar to wild type while a reduction of of 38%
was found in the second line. The 100-seed weight was
unchanged in both transgenic lines. Taken together,

358:CKX2 transgenic B. napus plants formed an increased
root system but showed generally no major anomalies of
their shoot development.

CKX transgenic plants accumulate higher element
concentrations in their leaves

Previous work with CKX transgenic Arabidopsis and bar-
ley plants has shown that root enhancement may cause
the accumulation of enhanced concentrations of different
elements in leaves [23, 25]. In order to analyse whether
this is also the case in CKX transgenic oilseed rape, we
measured the leaf element concentration in one-month-
old plants. Similar to Arabidopsis, the transgenic oilseed
rape lines accumulated higher concentrations than wild
type of most of the quantified elements that are quantified
when compared to wild-type plants (Fig. 5 and Additional
file 2: Table S2). For example, all the five macroelements
that were quantified were present in higher concentration
in transgenic plants. These included phosphorus (plus 13
and 16% in the two lines), calcium (plus 41 and 56%), sul-
fur (plus 42 and 75%), and magnesium (plus 29 and 32%)
(Fig. 5 b, ¢ and Additional file 2: Table S2). Similarly, the
concentration of the essential microelements zinc (plus 26
and 32%), copper (plus 29 and 28%), molybdenum (plus
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Fig. 2 355:CKX2 transgenic B. napus lines have an increased root system. a Primary root length, (b) number of lateral roots, (c) lateral root density,
and (d) number of adventitious roots of seedlings (6 DAG) cultured in vitro on vertical plates on half strength MS medium. Data represent mean
values + SEM (n = 15). Two-tailed Student's t-test was performed to calculate the significance of differences between transgenic lines and wild

74 and 130%) and manganese (15 and 20%) was also sig-
nificantly increased in these lines (Fig. 5 b and c). Only the
concentration of iron was reduced by 18 and 11% in these
lines as compared to wild type (Fig. 5b and Additional file
2: Table S2). These results indicate that also in oilseed
rape plants an increased root system caused by cytokinin-
deficiency enhances the uptake of mineral elements from
the soil and their transport to the above-ground part.

The chlorophyll concentration of CKX transgenic plants is
enhanced under Mg- and S-deficiency

Next, we studied whether the increased root system of
transgenic B. napus lines has any physiological relevance
under nutrient-limiting conditions. It is known that
cytokinin influences biosynthesis and concentration of

chlorophyll as well as photosynthesis [43, 44]. Further, it
was shown for tobacco that an enhanced root system
resulting from cytokinin- deficiency might be advanta-
geous for growth under Mg- and S-limiting conditions
[23]. Being the central element in chlorophyll, Mg is an
essential component of the photosynthetic apparatus
[45]. In case of sulphur (S), Brassicaceae are known as
high S-demanding plants compared to other crop plants
[46]. Oilseed rape is particularly sensitive to S-deficiency,
which reduces both seed quality [47] and yield [48]. Both
Mg- and S-deficiency cause a strong decrease in leaf
chlorophyll concentration [49, 50]. Therefore, the leaf
chlorophyll concentration of transgenic B. napus and
wild-type plants grown under suboptimal concentrations
of Mg or S were compared (Fig. 6).
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Under Mg-limiting conditions, shoot fresh weight of
wild-type and transgenic plants was reduced to a similar
extent (about 18-20%) compared to standard conditions
(Fig. 6 a). Under S-deficiency, shoot growth was strongly
reduced in both genotypes but the shoot weight of trans-
genic plants was even lowered by about 20% more than
in wild-type plants (ie. reduced by 70-72% in the
former and by 53% in the latter) (Fig. 6 a). The symp-
toms of Mg-limitation such as interveinal chlorosis on
older lower leaves with a marbling effect were shown by
both genotypes (data not shown). Quantification of the
chlorophyll concentration of older leaves (leaf 5, 6 and
7) revealed that with saturating Mg concentrations
(1500 pM) in the medium the chlorophyll concentration
was similar in different leaves of wild type and the trans-
genic lines with a somewhat lower concentration in the
5th leaf of the latter (Fig. 6 b). Under Mg-limitation
(30 uM) all leaves of transgenic lines showed a signifi-
cantly higher chlorophyll concentration than leaves of
wild type. This difference was larger in the oldest leaf
(7th leaf; ca. 25—-33% more chlorophyll) than in younger
leaves (Fig. 6 b).

Under S-deficient conditions (0 pM S) plants of both ge-
notypes showed diffuse yellowing of their youngest leaves
(data not shown). Transgenic plants showed a significantly

higher chlorophyll concentration in the youngest leaves
(3rd and 5th leaf, up to 25% more chlorophyll) compared
to wild type (Fig. 6 c). Together, these results are consist-
ent with previous results obtained with CKX transgenic
tobacco plants [23].

Cytokinin-deficient plants accumulate higher amounts of
cd and Zn from contaminated substrates

Plants with a highly branched root system accessing a
large soil volume are ideal candidates for phytoremedia-
tion strategies. It has been shown before that an extensive
root system of plants may lead to an enhanced uptake of
heavy metals or increased rhizodegradation of xenobiotics
from contaminated soil [51-54]. To explore whether the
larger root system of CKX transgenic oilseed rape provides
in this respect any advantage compared to the near-iso-
genic wild type, we compared growth and accumulation
of the heavy metals cadmium (Cd) and zinc (Zn) in
wild-type and transgenic plants. Plants were grown either
in a hydroponic system containing medium supplemented
with 5 pM Cd and 50 uM Zn or in soil containing 10 mg
kg™' Cd and 1100 mg kg * Zn. The shoot biomass of the
transgenic lines and wild type were similar both in stand-
ard and metal-containing medium or soil (data not
shown). Transgenic B. napus plants grown in the
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hydroponic system accumulated up to 80 and 120% more
Cd and Zn in their shoots compared to wild-type plants
(Fig. 7 a). Also, soil-grown CKX transgenic plants accumu-
lated higher concentration of these elements, however the
difference to wild type was lower, i.e. 25% for Cd and 6%
for Zn (Fig. 7 b).

Discussion

This work has shown that ectopic expression of CKX
genes might be used to construct oilseed rape plants with
a larger root system, reported the phenotypic changes this
causes and revealed a number of interesting facts about
the action of cytokinin in this species.

We extended the concept of achieving root enhance-
ment through ectopic expression of a CKX gene, which
had been shown previously in model plants [23-26].
Curiously, the 355:CKX2 plants studied here originated
from a pilot study aiming to test different prototypic
CKX genes in B. napus. The finding that CKX2 overex-
pressing oilseed rape show only very minor phenotypic
effects in the shoot was unexpected as 355:CKX2 trans-
genic tobacco and Arabidopsis plants do show a reduced
shoot growth although less strongly than plants express-
ing 35S:CKX1 [10, 11]. Another difference compared to
these other species has been that several attempts to

generate transgenic oilseed rape plants expressing
35S8:CKX1 failed, which indicates that its expression
strongly interferes with shoot formation during the gen-
eration of transgenic plants [see [55—58] for the negative
impact of CKX activity on plant regeneration]. The
CKX1 and CKX2 proteins show different subcellular
localisations and biochemical characteristics. A tagged
CKX1 protein was detected predominantly in the endo-
plasmic reticulum [59] while a CKX2-GFP fusion pro-
tein was located in the ER but moved possibly also to
the apoplastic space [11, 60]; for review see [61]. The
CKX1 protein preferred cytokinin ribosides and N°-glu-
cosides as substrates, while iP and iPR where preferred
by CKX2 [9]. Together this suggests that these two CKX
proteins degrade distinct cellular cytokinin pools. The
data reported here indicate that the cytokinin pool ac-
cessible to CKX2 does not play an important role for
shoot development in B. napus, while it is relevant to
regulate root system architecture and size. In contrast,
the cytokinin pool accessible to CKX1 is apparently im-
portant for plant regeneration and presumably also for
later shoot development. In addition, it could be that
cytokinin activities have different threshold values in
roots and shoots, which is indicated by the higher sensi-
tivity of roots in cytokinin bioassays as compared to



Nehnevajova et al. BMC Plant Biology

(2019) 19:83

Page 8 of 15

2

358:CK.
ETE S
[

— [ N W W
wn [=] wn (=N

Element concentration [mg g' DW] &
S

(=] (=] [TV
)

S
(=1

o
(=}

S

Element concentration [ug g’ DW]
)
S

'S
S

B Ca Co Cu Fe

Ca
*k
Zn

sk FEK

/|

WT _#4 #13
358:CKX2

257

20+

i
1

K Mg Mn Mo Na P

50%
S
ok ok
B
Cu
kK *k

0
WT _#4 #13

355:CKX2

100% 150%

3.57
3.01
2.51
2.01

1.0
0.51

Mg

4k ok

Mo

*kok

04
WT _#4 #13

358:CKX2

Fig. 5 Transgenic B. napus plants have an enhanced mineral
element concentration in their leaves. a Growth habit of one-
month-old 355:CKX2 transgenic B. napus lines grown on unfertilized
soils supplemented with nutrient solution. b Heat map showing that
35S:CKX2 transgenic plants accumulate higher element
concentrations as wild type. Mineral element concentration in wild
type was set to 100%. The heat map was generated using
Multiexperiment Viewer v4.9. ¢ Concentration of selected macro-
and microelements in leaves of wild type (WT) and transgenic lines.
Quantification of mineral elements was done in one-month-old soil-
grown plants as described in Materials and methods. Four biological
replicates for each genotype were analyzed. Each biological replicate
contained leaves from two plants. Data shown in (c) represent mean
values + SD. The statistical significance of differences compared to
wild type was calculated using two-tailed Student's t-test (* p < 0.05;
** p<001; *** p<0.001)

shoots. Finally, the larger root system may provide more
favourable conditions for shoot growth, thus partly com-
pensating for the negative effect of cytokinin deficiency.
Notably, transgenic expression of a cytokinin synthesis
gene in oilseed rape altered shoot traits [62, 63] docu-
menting the responsiveness of the oilseed rape shoot to
the hormone. The distinct action of different cytokinin
pools and CKX enzymes is relevant to design future ap-
proaches to modulate the cytokinin status in oilseed
rape.

Another interesting finding has been that the total
cytokinin content of B. napus seedlings is about one
order of magnitude lower than in Arabidopsis [see 11,
23, 64, 65 for comparison) but the relative reduction in
cytokinin content achieved in both species by systemic
CKX2 expression appears to be similar. For example,
the tZR and tZRMP concentration was about twenty
times higher in seedlings of Arabidopsis thaliana but
also lowered to about 30% of the wild-type level in
35S8:CKX2 transgenic seedlings [11, 23, 64]. Another
notable difference concerns the relative abundance of
N- and O-glucosides in B. napus and Arabidopsis seed-
lings. For example, £Z9G was below the detection level
in B. napus, whereas in Arabidopsis it was present in
high concentration [23, 64, 65]. In contrast, the concen-
tration of ¢Z9G and ¢ZOG was similar (i.e. in the range
of 1 pmol g™ ' FW) in Arabidopsis and oilseed rapeseed
seedlings and the concentration was in both species not
lowered by overexpression of CKX2. These data docu-
ment that the cytokinin concentration and metabolite
profile even of relatively closely related species can dif-
fer significantly. It will be interesting to study whether
this is reflected by changes in cytokinin sensitivity and
output of the signaling system.

As a consequence of cytokinin-deficiency, the root
system of transgenic B. napus lines was increased sig-
nificantly compared to wild type under all tested
growth conditions (Fig. 2, Fig. 3 and Fig. 4). This in-
crease was mainly attributed to the strongly increased
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Fig. 6 Shoot growth and leaf chlorophyll content of 355:CKX2
transgenic B. napus lines grown under Mg?* and SO4° limitation. a
Shoot biomass (fresh weight) of transgenic plants grown on a
perlite substrate supplemented with Hoagland nutrient solution
containing different concentrations of Mg®* and SO, b, ¢ Leaf
chlorophyll concentration of plants grown under Mg?* (b) or SO,°~
() limitation. SPAD readings were taken on plants that were
exposed to the indicated nutrients regimes for 3 weeks and shoot
fresh weight was determined after 5 weeks. Data in (a), (b) and (c)
represent mean values + SD (n = 18). Student’s t-test was used to
compare the significance of differences between transgenic lines
and the wild type. * p < 0.05; ** p < 0.01; *** p < 0.001

formation of lateral roots, which had almost doubled.
The about two-fold reduction of the distance between
newly formed lateral roots was larger than in tobacco
and Arabidopsis where it is in the range of 30—-50% [22,
23, 66]. One might conclude that cytokinin acts as a
positional cue in lateral root formation in B. napus as it
does in Arabidopsis [66]. Consistently, the B. napus
Irnl mutant, which is insensitive to exogenous cytoki-
nins forms also more lateral roots compared to wild
type [67]. Further, CKX2 transgenic B. napus plants
showed an increased formation of adventitious roots
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similar to other species with a reduced cytokinin status
[11, 14, 68, 69]. However, in contrast to the strong ef-
fect of cytokinin deficiency on lateral root and adventi-
tious root formation, the impact of cytokinin deficiency
on elongation of the primary root was only weak [10,
11, 23]. This is consistent with different dose-response
curves for the impact of cytokinin on different root
traits. For example, also in Arabidopsis primary root
elongation is less sensitive to changes in cytokinin than
lateral root formation [22, 66].

An interesting similarity between Arabidopsis and oil-
seed rape plants with an increased root system was the
increased concentration of the same mineral elements
(P, Ca, Mg, S, Zn, Cu and Mo) in their leaves [23]. Like-
wise, the leaf iron concentration was decreased by 30%
in Arabidopsis [23] and by 11-18% in oilseed rape (Fig.
5). It is conceivable that the increased root system of the
transgenic lines explores a larger soil volume and thus
has access to a larger nutrient reservoir. However, as the
concentration of elements is not always changed in the
same way or to a similar extent, there must be other fac-
tors influencing the observed changes. It has been
shown that altered expression of specific transporter
genes as a consequence of the lowered cytokinin con-
centration might contribute to a more efficient (or in
case of Fe less efficient) uptake of elements from the soil
and/or their transport to the above-ground parts. For
Arabidopsis, an increased expression of genes encoding sul-
fate, phosphate, Mn, and Zn transporter was reported for
cytokinin-deficient genotypes [23]. Furthermore, recent
work has revealed that cytokinin regulates the formation of
passage cells in the root endodermis to enable uptake
across an otherwise impermeable barrier [70]. It could be
that an altered passage cell number in cytokinin-deficient
roots is one more cause for the enhanced element concen-
trations in the shoots of these plants.

Leaves of transgenic Brassica plants were enriched
with important dietary elements (Ca, Mg, Zn) indicating
that root enhancement has a potential to biofortify
plants of the genus Brassica and other crop plants. The
lack of nutrients such as Ca, Mg and Zn in the diet can
cause serious health problems and increasing the con-
centration of elements in crop plants is an explicit goal
of breeding efforts [71, 72]. Leaves of Brassica crops are
important for human nutrition as this genus includes
vegetables such as Brassica rapa (Chinese cabbage, pak
choi and turnip) and Brassica oleracea (broccoli, cab-
bage and cauliflower). Thus, efforts have been made to
biofortify these plants with mineral elements that are
often lacking in human diets [72]. For example, in Bras-
sica oleracea QTLs associated with shoot Ca and Mg
concentration were identified in order to breed Brassica
plants with higher shoot Ca and Mg concentration to
improve human dietary intakes [73].
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The higher concentration of Mg and S in leaves of
358:CKX2 transgenic B. napus plants might be the rea-
son why these plants showed a significantly higher
chlorophyll concentration (up to 25-30% more chloro-
phyll) in leaves under Mg- and S-limitation conditions
(Fig. 6 b and c). This is interesting as soils deficient in
mineral nutrients are one of the main reasons for poor
crop yield and seed quality. Particularly S-deficiency has
been recognized as a constraint to sustainable crop pro-
duction in many parts of the world including Europe
[74]. Oilseed rape being a high S-demanding crop is sen-
sitive to S-deficiency. S-deficiency in oilseed rape leads
to reduced growth, leaves become chlorotic and show
reduced photosynthetic activity [49]. It was shown in B.
juncea and B. campestris that high S-fertilization in-
creases the levels of Rubisco, chlorophyll, and total pro-
tein content in fully expanded upper leaves, which
implies a better photosynthetic activity in comparison
with plants grown without S [50]. Together it suggests
that increase of chlorophyll concentration is a way for
coping with S-deficiency in the soil and sustain better
growth. However, this was not the case in 35S:CKX2
transgenic plants under the growth conditions studied
here, which indicates that other factors became limiting
for shoot growth. For example, it could be that the re-
duced cytokinin concentration in shoots becomes a lim-
iting factor. Indeed, transgenic tobacco plants with a
root-specific reduction of cytokinin also formed more
chlorophyll under Mg- and S-limitation but lacked the
growth depression noted for 35S:CKX2 B. napus under
these conditions [23].

Phytoremediation is considered as the cheapest and sus-
tainable technology for cleaning up contaminated soil. In
case of heavy metal contamination, phytoextraction in
which plants accumulate heavy metals in their above-
ground organs is regarded as most suitable technique. In
recent years, Brassica species have been used for phytoex-
traction because of their inherent capability to hyperaccu-
mulate metals [75, 76]. It has been shown before that
cytokinin deficiency mediated increase of root system
size can accumulate higher concentrations of mineral
elements efficiently in their above-ground parts [23].
In the present study we showed that 35S:CKX2 trans-
genic B. napus plants accumulate up to two-fold
more Cd and Zn in their shoots when grown in
hydroponics or in a contaminated soil (Fig. 7) sug-
gesting that use of plants with an enhanced root sys-
tem might be an option to improve phytoremediation
strategies. Importanly, Cd and other heavy metals do
not accumulate to high concentrations in the edible
oil of oil crops including oil seed rape [77]. Moreover,
the oil obtained from B. napus plants grown on con-
taminated soils can be used as a source of biodiesel
production [78].
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Conclusions

In sum, the consequences of the overexpression of the
CKX2 gene in oilseed rape have demonstrated the func-
tion for cytokinin as a negative regulator of root growth
in this species. This, together with the finding that the
consequences of CKX gene expression can be limited
mainly to the root [23, 27, 79] underpins the potential of
a targeted decrease of the root cytokinin to achieve an
improved performance of crop plants under nutrient or
drought stress conditions. These results are of interest
as in recent years the role of the root system for plant
productivity has gained more importance. It has been ar-
gued that root-related traits have been understudied and
should obtain more attention in order to face the future
global need of increased food production [29, 32]. Sev-
eral studies using transgenic approaches to modify root
traits including root growth showed that this can be
beneficial for plant health and stress resistance [32-34,
80—-84]. The ectopic expression of CKX genes provides
one additional option for altering the root system in a
targeted fashion.

Methods

Plant material and growth conditions

Brassica napus L. cv. Kristina was used in this study.
Homozygous 355:CKX2-1, 355:CKX2—-4 and 35S:CKX2-
13 lines representing independent transformants were
used in all experiments. Plants were cultured in vitro on
MS medium under 16-h-light/8-h-dark cycles at 20 °C or
were grown in a glasshouse with16-h-light/8-h-dark cy-
cles at 22°C and 18 °C.

Oilseed rape transformation

The 35S:CKX1 and 35S:CKX2 genes combined with a
hygromycin resistance gene as selectable marker were
described previously [10]. Oilseed rape seeds were
surface-sterilized with a mixture of 1.2% sodium
hypochlorite and 1% Triton X-100 for 15min and
then with 70% ethanol for 1min. The seeds were
washed twice with sterile distilled water and germi-
nated on agar-solidified half-strength MS medium
[85]. Hypocotyl explants were excised from 7-d-old
seedlings, cut into 5-7 mm long segments and trans-
formed wusing Agrobacterium tumefaciens strain
GV3101 harboring 35S:CKX1 or 35S:CKX2 as de-
scribed by De Block et al. [86].

Determination of CKX enzyme activity

Oilseed rape seedlings were cultured for 8 days in vitro
on half strength MS medium solidified with 1% phytagel.
Three seedlings were pooled and powdered in liquid ni-
trogen using a hand mortar. Three replicates each con-
sisting of three pooled seedlings were analyzed for each
line. The extraction method for the CKX2 enzyme and
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spectrophotometric measurement of enzyme activity was
performed according to Galuszka et al. [9].

Analysis of the cytokinin concentration

Cytokinin concentrations were measured in seedlings
cultivated under the same in vitro conditions and har-
vested in the same way as plants used for analysis of
CKX enzyme activity. 100-200 mg of roots and shoots
were pooled separately for each sample and three inde-
pendent biological replicates were analysed for each
genotype and tissue. Extraction, purification and quanti-
fication of cytokinins by ultra-performance liquid chro
matography-electrospray tandem mass spectrometry was
performed according to the method described by Novak
et al. [87], including modifications described in Novdk et
al. [88].

In vitro root growth assay

Oilseed rape seeds were germinated on half-strength MS
medium solidified with 1% phytagel in vitro on vertically
positioned plates. The length of primary root and num-
ber of emerged lateral and adventitious roots was scored
under a stereomicroscope at six days after germination
(DAG).

Morphometric analyses of plants grown in hydroponic
culture

Seeds of three transgenic lines (35S:CKX2-1; -4 -
13) and wild type were germinated and cultivated for
three weeks in vitro on G1 medium [89] in WECK®
glass vessels. Afterwards, primary root length and for-
mation of lateral roots was assessed and seedlings
were inserted in perforated plastic plates placed on
101 vessels (ten seedlings per genotype in each vessel)
filled with 91 of 1/10-strength Hoagland medium
modified as described [90]: 0.4mM Ca(NO3),; 0.2
mM MgSO4 0.1 mM KH,PO4; 0.5mM KNOj; 0.01
mM Na(FeEDTA); 10.01 upM H3BO3; 2pM MnSOy;
02uM CuSO4 02pM ZnSO4 0.1puM  NayMoOy
20 uM NaCl. MES (2-(N-morpholino) ethanesulphonic
acid) buffer was added to a final concentration of 2
mM and the solution was adjusted to pH 6.0 with 1
M KOH. The pH was measured at regular intervals
during the experiment and did not vary more than
0.2 pH units. The nutrient solution was replaced
twice a week. After 14 days, shoots and roots were
harvested separately and their dry mass determined.
To expose oilseed rape lines to Cd and Zn, 5uM
CdCl, or 50 puM Zn (as ZnSO,) was added after one
week of cultivation in standard 1/10 Hoagland
medium. Plants were cultured for two further weeks,
Hoagland solution containing Cd or Zn was replaced
twice a week.
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Morphometric analyses of soil-grown plants

Transgenic Brassica lines and wild type were grown in
pots in a greenhouse for either 8 or 12 weeks. Quantita-
tive growth parameters were obtained from ten individ-
uals of three independent transgenic clones and wild
type. To explore accumulation of heavy metals, ten seed-
lings of each line were cultivated for six weeks on a sew-
age sludge contaminated soil. Sewage sludge (pH 6.3)
was kindly provided by BioPlanta GmbH (Leipzig,
Germany) from the sludge deposit Schladitz (Germany)
and contained 10 mgkg ' Cd and 1110 mgkg ' Zn.

To measure the influence of different Mg concentra-
tions on leaf chlorophyll concentration seeds were germi-
nated in pots filled with perlite (Knauf Perlite GmbH,
Dortmund, Germany) and grown in 1/10-strength modi-
fied Hoagland nutrient solution in the greenhouse. After
two weeks plantlets (9 plants per genotype and treatment)
were transferred to new pots filled with perlite and modi-
fied nutrient solution and grown for three further weeks.
Control plants were fed with 1/10-strength Hoagland so-
lution (1500 uM MgSQ,), whereas plants cultivated under
Mg deficiency were grown in a solution, which contained
sub-optimal Mg-concentration (30 pM  MgSO,) or
S-deficiency (0 pM MgSO,). During the Mg-limitation
study, MgSO, in the medium was replaced by K,SO, in
order to maintain a constant anion/cation balance to avoid
sulphur deficiency. In the S-deficiency study MgSO, was
compensated with an equivalent concentration of MgCl,
to avoid Mg-deficiency.

Analysis of leaf element concentration

Seeds of two independent transgenic lines (35S:CKX2—4
and 35S-CKX2-13) and wild type were germinated on fil-
ter paper in vitro. Three DAG, seedlings were transferred
to the greenhouse into an unfertilized (type-0) soil sup-
plied by the company Einheitserde (Sinntal-Altengronau,
Germany). Composition of unfertilized soil was tested and
certified by Institut Koldingen GmbH (Sarstedt, Germany)
as described by Drechsler et al. [91]. Plants were grown
further for four weeks by supplementing equal amounts of
fertilizer solution every two or three days depending on
soil moisture. The fertilizer solution was based on the
composition of 0.5x MS medium containing 10 mM
KNO; 10mM NaH,PO4 1mM MgSO4 1mM CaCly,
50uM Na-Fe-EDTA, 50puM H3BO;, 50uM MnSO,,
185uM ZnSO4 50nM CuSO4 50nM CoCly, 0.5 uM
NaMoO, and 2mM MES. The solution was adjusted to
pH 5.7 with 1 M KOH. Leaf samples from one-month-old
plants were dried for 72h at 65°C, equal amount were
weighed into polytetrafluoroethylene tubes and digested
with a HNOj3 + HyO, mixture in a pressurized microwave
digestion system (UltraCLAVE IV from MLS GmbH,
Leutkirch, Germany). The concentrations of macro- and
microelements were analyzed by inductively-coupled
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plasma optical emission spectrometry (ICP-OES iCAP
6500 dual OES spectrometer, Thermo Fischer Scientific,
Waltham, U.S.A.) with certified standards reference mate-
rials as control.

Analysis of the cadmium and zinc concentrations in
plants grown on contaminated substrate

After two weeks of growth in Cd- or Zn-containing
medium or six weeks on sewage sludge contaminated
soil plants were harvested and separated into shoots and
roots. The plant material was dried at 80°C for 48 h
until a constant dry mass (DM) was reached. Samples
for metal analyses were ground by an ultra-centrifugal
mill (Retsch ZM 1) and passed through a 500 um stain-
less mesh screen. Samples (250 mg DM) were digested
with a HNOj3 + H,O, mixture by using a microwave di-
gestion unit (MLS 1200 Mega). The concentrations of
metals (Cd and Zn) were determined by flame atomic
absorption spectrometry (FAAS) (Perkin Elmer 1100 B)
as described [92, 93]. Certified reference material (Cab-
bage BCR-679) and two in-house standards from the
European Environment Institute (Ispra, Italy) (mallow
TP-29, tobacco TP-27; (https://ec.europa.eu/jrc/en/refer-
ence-materials) were included in each set of measure-
ment for quality control.

Chlorophyll measurement

Chlorophyll was determined by a SPAD-502 chlorophyll
meter (Spectrum Technologies, Inc. Plainfield, Illinois,
USA) after three weeks of growth under Mg- or
S-deficiency. Two independent readings were taken in
the middle part of each indicated leaf blade of nine indi-
vidual plants per genotype, avoiding to place the chloro-
phyll meter over major leaf veins.

Additional files

Additional file 1: Table S1. Cytokinin concentration in Brassica napus
seedlings overexpressing the CKX2 gene. The table represents the complete
data set, which is supplementary to Table 1. The table shows the mean
cytokinin content in 1 g of extracted tissue in pmol g~ ' FW. + SD (n = 3).
Significance of differences compared to wild type (WT) was calculated using
Student’s t-test (* p £ 0.05; ** p £0.071; ** p < 0.001). LOD, limit of detection.
NA, not applicable because two out of three biological replicates of this
genotype have values below LOD. (DOC 175 kb)

Additional file 2: Table S2. Leaf element concentration in leaves of
one-month-old Brassica napus plants overexpressing the CKX2 gene. The
table represents the complete data set, which is supplementary to Fig. 5.
The table shows the mean element content in 1 g of extracted tissue in
mgg ' DWorug g ' DW=+SD (n=4 for each data point). Fach bio-
logical replicates contains pooled leaf samples of two independent
plants. Data were compared using Student’s t-test (* p < 0.05; ** p < 0.071;
*** p<0.001). DW, dry weight. (DOC 46 kb)
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