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Summary

Bayesian empirical macroeconomic models are excellent tools for prediction and struc-
tural analysis. The use of a prior distribution facilitates model averaging, allows for
structural identification of multiple time series models and makes estimation of high-
dimensional models feasible. However, prior distributions need to be chosen carefully
in order to accurately reflect the researcher’s beliefs before looking at the data. I exem-
plify how to do so in this thesis by employing model averaging techniques in Bayesian
spirit, by developing tools to express priors for structural vector-autoregressive models,
and by showing a new approach to identify the impact of variations in uncertainty in
a data-intensive environment.

In the first chapter, which is based on joint work with Tigran Poghosyan, we use
an Early Warning System (EWS) to recover leading indicators of fiscal distress events.
In particular, we use Extreme Bounds Analysis (EBA), a model averaging approach
introduced by Leamer (1985) and popularised by Sala-i Martin (1997), to assess the
robustness of leading indicators for fiscal distress across different models. We find
that both fiscal and non-fiscal leading indicators are robust predictors of fiscal distress
events. In a second step we assess the forecasting performance of an EWS based on
the most robust leading indicators. We find that it offers a gain in predictive power
compared to a baseline model which is based on fiscal leading indicators only. Lastly,
we assess the robustness of these results across various model specifications, subsamples
and estimation strategies.

In the second chapter, which is based on joint work with Michele Piffer, we propose
a new approach to express prior beliefs on the impulse responses of structural vector
auto-regressive (SVAR) models. This approach does not restrict the family of prior
distributions to a set that is technically convenient. Rather, it combines extensive
flexibility in the choice of priors with an efficient importance sampler to explore the
posterior distribution. We compare our new posterior sampler to a computationally
more demanding generic sampler and confirm that we recover the shape of the posterior.
We illustrate the approach using artificial data and in an application of sign restrictions
to identify oil market shocks. We show that posterior inference is sharpened compared
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Summary

to the traditional approach of imposing sign restrictions and that oil supply shocks
play a major role in driving oil price dynamics.

In the third chapter I investigate the effects of uncertainty shocks in the spirit of
Bloom (2009) using a newly developed Bayesian Proxy Factor-augmented VAR (BP-
FAVAR) model. This model combines a large information set with an identification
scheme based on external instruments, thereby jointly addressing informational defi-
ciency issues and non-credible identification assumptions. I propose a new sampling
algorithm exploiting the state-space representation of the model. I find that uncer-
tainty shocks have adverse effects on the real economy and are deflationary in the
short run. To recover the dynamic causal effects, the identification scheme is crucial.
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Zusammenfassung

Bayesianische Modelle sind exzellent für die Prognose und strukturelle Analyse von
makroökonomischen Zusammenhängen geeignet. A-priori-Verteilungen, die in diesem
Rahmen verwendet werden, erleichtern die Anwendung von Modellmittlungsverfahren,
erlauben die Identifizierung von kausalen Effekten in multiplen Zeitreihenmodellen und
sie ermöglichen die Schätzung von hoch-dimensionalen Modellen. Bei der Auswahl
dieser a-priori-Verteilungen muss der Forscher jedoch darauf achten, dass sie seine Ein-
schätzungen hinsichtlich der Modellparameter vor Betrachtung der Daten angemessen
reflektieren. Darüber hinaus muss diese Spezifizierung eine nachvollziehbare und flex-
ible Implementierung des Schätzverfahrens ermöglichen. In dieser Dissertation illus-
triere ich die Verwendung von Bayesianischen Schätzverfahren im Rahmen von Mod-
ellmittlungsverfahren, vektor-autoregressiven Modellen und einem hoch-dimensionalen
Ansatz zur Identifizierung von Unsicherheitsschocks.

Im ersten Kapitel, das auf einer gemeinsamen Arbeit mit Tigran Poghosyan basiert,
verwenden wir ein Frühwarnsystem (EWS), um Indikatoren zu ermitteln, die gute
Prognoseeigenschaften für Fiskalkrisen haben. Insbesondere prüfen wir die Robus-
theit dieser Indikatoren, indem wir die Extreme Bounds Analysis (EBA) verwenden,
ein Modellmittlungsverfahren, das in einer bayesianischen Version von Leamer (1985)
eingeführt und von Sala-i Martin (1997) popularisiert wurde. Wir zeigen, dass sowohl
fiskalische als auch nicht-fiskalische Indikatoren robuste Warnsignale für Fiskalkrisen
beinhalten. In einem zweiten Schritt bewerten wir die Prognosegüte eines EWS, das
auf den robustesten Frühindikatoren basiert. Wir stellen fest, dass es, verglichen mit
einem Basismodell, das nur auf fiskalischen Frühindikatoren basiert, eine höhere Prog-
nosegüte hat. Im Anschluss bewerten wir die Robustheit dieser Ergebnisse für ver-
schiedene Modellspezifikationen, Teilproben und Schätzstrategien.

Im zweiten Kapitel, das auf einer gemeinsamen Arbeit mit Michele Piffer basiert,
entwickeln wir eine neue Methode, um a-priori-Verteilungen über die Impulsantworten
von strukturellen vektor-autoregressiven (SVAR) Modellen auszudrücken. Diese neue
Methode unterscheidet sich von traditionellen Ansätzen dahingehend, dass die zur
Verfügung stehenden a-priori-Verteilungen nicht auf eine Teilfamilie beschränkt sind,
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Zusammenfassung

die technisch leicht zu implementieren ist. Somit kann der Forscher flexibel seine Ein-
schätzungen über die wahrscheinlichen Effekte von strukturellen Schocks in das Modell
inkorporieren. Der Schätzalgorithmus ist aufgrund der Verwendung eines neuen impor-
tance samplers effizient und unkompliziert zu implementieren. Wir vergleichen unseren
importance sampler mit einem rechenintensiveren generischen sampler und bestätigen,
dass wir korrekt aus der a-posteriori Verteilung ziehen. In einem zweiten Schritt veran-
schaulichen wir unseren Ansatz anhand einer Anwendung von Vorzeichenrestriktionen
zur Identifikation von strukturellen Schocks auf dem Ölmarkt. Wir zeigen, dass die
a-posteriori-Verteilung aus unserem Ansatz gegenüber dem traditionellen Ansatz eine
geringere Varianz aufweist und dass Ölangebotsschocks eine wichtige Rolle für die Dy-
namik des Ölpreises spielen.

Im dritten Kapitel untersuche ich die Auswirkungen von Unsicherheitsschocks im
Sinne von Bloom (2009) anhand eines neu entwickelten Bayesianischen Proxy-Faktor-
VAR-Modells (BP-FAVAR). Dieses Modell basiert auf einer großen Anzahl an Zeitrei-
hen und ist somit weniger anfällig für Verzerrungen, die aus Informationsdefiziten re-
sultieren. Gleichzeitig nutzt es externe Instrumente zur Identifikation von strukturellen
Schocks und vermeidet somit schwer zu verteidigende Annahmen hinsichtlich der Reak-
tion von makroökonomischen Variablen auf Unsicherheitsschocks. Ich schlage einen
neuen effizienten Schätzalgorithmus vor, der die Zustandsraumdarstellung des Modells
nutzt. Ich stelle fest, dass Unsicherheitsschocks negative Auswirkungen auf die Real-
wirtschaft haben und kurzfristig deflationär wirken. Des Weiteren zeige ich, dass das
Identifikationsschema von entscheidender Bedeutung für die korrekte Schätzung der
dynamischen kausalen Effekte von Unsicherheitsschocks ist.
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Introduction and Overview

Bayesian methods have become increasingly popular for estimating empirical macroe-
conomic models in recent years. The reasons for this increased popularity are two-fold:
Firstly, a Bayesian set-up provides a technically convenient estimation framework. For
example, it facilitates averaging parameter estimates across models and it allows to
estimate high-dimensional systems. Second, the use of prior distributions allows the
researcher to flexibly and transparently introduce external information about key eco-
nomic parameters into the model. This feature offers an environment suitable for causal
inference. These two advantages, technical convenience and the ability to introduce
external information into the model, have led to a rapid increase in the number of
Bayesian empirical macroeconomic applications. Still, the Bayesian methodological
toolkit needs to be extended and the performance of Bayesian approaches should be
investigated in different applications.

The key feature of Bayesian models, the prior distribution, can be employed for
various purposes. It facilitates averaging parameter estimates across different model
specifications. Model averaging techniques can be employed to assess the sensitivity of
parameters, thereby yielding specification-robust results, as argued by Leamer (1985).
Furthermore, within a multiple time series context, prior distributions can be employed
to express prior beliefs about model parameters with a direct economic interpretation
(see for example Baumeister and Hamilton, 2015). Expressing prior beliefs directly
on parameters with an economic interpretation allows the researcher to flexibly and
transparently incorporate prior information to achieve identification, thereby making
causal inference. Lastly, prior distributions can be employed to make the estimation of
high-dimensional time series models feasible by combining shrinkage of the parameter
space with shrinkage of the variable space, to a degree controlled by the researcher
(see Bernanke et al., 2005). A Bayesian approach allows to introduce an identifica-
tion scheme based on external data to this model in a tractable and efficient manner
(see Caldara and Herbst, 2019), thereby offering a framework to draw credible causal
inference in a large-dimensional model.
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Introduction and Overview

In this thesis I contribute to the development of the Bayesian toolkit for empirical
macroeconomic models and I illustrate their benefits in applications to fiscal crises,
oil market shocks and uncertainty shocks. In particular, the thesis (i) uses a model
averaging approach to identify robust leading indicators for fiscal distress, (ii) proposes
a new approach to flexibly express prior beliefs on the impulse response functions
of structural VAR models, and (iii) proposes a new Bayesian framework to combine
dynamic factor analysis with an external instrument identification scheme to recover
the effects of uncertainty shocks.

In the first chapter, which is based on joint work with Tigran Poghosyan, we use an
Early Warning System (EWS) to recover leading indicators of fiscal distress events. In
particular, we use Extreme Bounds Analysis (EBA), a model averaging approach in
Bayesian spirit introduced by Leamer (1985) and popularised by Sala-i Martin (1997),
to assess the robustness of leading indicators for fiscal distress across different models.
We find that both fiscal and non-fiscal leading indicators are robust predictors of fiscal
distress events. In a second step we assess the forecasting performance of an EWS
based on the most robust leading indicators. We find that it offers a gain in predictive
power compared to a baseline model which is based on fiscal leading indicators only.
Lastly, we assess the robustness of these results across various model specifications,
subsamples and estimation strategies.

The contribution to the literature of this chapter is three-fold: Firstly, it shows how
to apply EBA in the context of a fiscal EWS and analyses its performance across various
specifications. This is an important step forward compared to EWS based on an ad
hoc choice of variables. Secondly, it exemplifies the importance of non-fiscal indicators
for the prediction of fiscal distress events, thereby confirming theoretical results on the
joint importance of sound fundamentals and resilience to speculative attacks by for
example Obstfeld et al. (1984). Lastly, it offers a newly developed EWS based on both
fiscal and non-fiscal leading indicators, which has a better predictive performance than
a baseline model using only fiscal leading indicators.

In the second chapter, which is based on joint work with Michele Piffer, we propose
a new approach to express prior beliefs on the impulse responses of structural vector
auto-regressive (SVAR) models. This approach does not restrict the family of prior
distributions to a subset that is technically convenient. Rather, it combines extensive
flexibility in the choice of priors with an efficient importance sampler to explore the
posterior distribution. We compare our new posterior sampler to a computationally
more demanding generic sampler and confirm that we recover the shape of the poste-
rior well. We illustrate the approach in an application of sign restrictions to identify
oil market shocks. We show that posterior inference is sharpened compared to the
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Introduction and Overview

traditional approach of imposing sign restrictions and that oil supply shocks play a
major role in driving oil price dynamics.

This chapter extends the Bayesian toolkit of structural VAR models and provides
researchers with a methodology that allows for more flexibility in expressing prior
beliefs, thereby complementing the work by Baumeister and Hamilton (2015) and Arias
et al. (2018). In particular, drawing on importance sampling techniques, we show that
the traditional approach to sign restrictions offers an excellent way to generate proposal
draws, which can then be mapped into posterior draws from our more flexible model
set-up at a low computational cost. In the empirical section, we find support for
previous findings by Baumeister and Hamilton (2018) and Caldara et al. (2018) on
the importance of oil supply shocks for oil price movements. We also investigate the
historical role of oil supply shocks and confirm previous findings used by Antoĺın-Dı́az
and Rubio-Ramı́rez (2018) for identification.

In the third chapter I investigate the effects of uncertainty shocks in the spirit of
Bloom (2009) using a newly developed Bayesian Proxy Factor-augmented VAR (BP-
FAVAR) model. This model combines a large information set with an identification
scheme based on external instruments thereby jointly addressing informational defi-
ciency issues and non-credible identification assumptions. I propose a new sampling
algorithm exploiting the state-space representation of the model. I find that uncer-
tainty shocks have adverse effects on the real economy and are deflationary in the
short run. To recover the dynamic causal effects, the identification scheme is crucial.

The chapter contributes to the literature in two ways: First, by combining a newly
developed Bayesian Proxy VAR by Caldara and Herbst (2019) with a Bayesian FAVAR
model, it offers a way to combine large information sets with structural identification
schemes based on external information. Using a Bayesian factor approach, the re-
searcher can directly control the degree of variable and parameter shrinkage, respec-
tively. Second, I show that to correctly recover the effects of uncertainty shocks, the
identification scheme is crucial, thereby complementing the recently growing literature
investigating credible identification schemes to recover uncertainty shocks (for example
Piffer and Podstawski, 2017 and Ludvigson et al., 2018).
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CHAPTER 1

Leading Indicators of Fiscal Distress: Evidence from

Extreme Bounds Analysis

1.1 Introduction

The global financial crisis and the subsequent weakening of fiscal positions in advanced
and emerging economies once again underscored the importance of monitoring the
vulnerability of countries to fiscal distress. A fiscal distress episode is a period when
a government experiences extreme funding difficulties, which can manifest as outright
default, debt restructuring, bond yield pressure, a large IMF-supported program, or
excessive inflation. Which variables should policymakers watch to assess fiscal risks?
There is a large empirical literature attempting to answer this question using Early
Warning Systems (EWS); a review of this literature is in Appendix 1. International
financial organizations, central banks, rating agencies, and other organizations draw
this literature to develop indicators of vulnerability to fiscal distress. Most existing
EWSs have the following characteristics (see Abiad, 2003 for a survey): First, they
use a predetermined set of leading indicators to assess country’s vulnerability to fiscal
distress, which are typically based on economic reasoning. Second, the list of these
variables varies widely across studies, in part driven by the preference of the researchers
for parsimonious models with a large number of significant leading indicators. Finally,
the results from the studies are mixed, with no agreement as to which leading indicators
are most robustly associated with fiscal distress. A key characteristic of a robust leading
indicator is that its coefficient’s sign does not depend on the model specification.

The purpose of this paper is to revisit the issue of leading indicators of fiscal distress
using Extreme Bounds Analysis (EBA). The main advantage of this methodology is

This chapter was previously published as: Bruns, Martin, and Tigran Poghosyan. "Leading indicators
of fiscal distress: evidence from extreme bounds analysis." Applied Economics 50.13 (2018): 1454-
1478.
https://doi.org/10.1080/00036846.2017.1366639.
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that it takes an agnostic approach with respect to the leading indicators of fiscal distress
and does not require the researcher to predetermine the set of explanatory variables.
Instead, it “allows the data to speak” and ranks a set of possible leading indicators
based on the “robustness” of their association with fiscal distress. This methodology is
used in other economic fields, notably growth theory (see for example Sala-i-Mart́ın,
1997) and to analyze financial crises, for example by Ho (2010). However, to our best
knowledge we are the first to apply it for analyzing fiscal distress.

Our analysis leads to the following conclusions. First, both fiscal and non-fiscal
leading indicators are robustly associated with fiscal distress. This is in contrast to
traditional measures of fiscal stress based on fiscal leading indicators (Baldacci et al.,
2011). Second, a vulnerability index based on these robust indicators performs compa-
rably to the average performance of other EWS (for fiscal, currency, banking, and other
types of crises) in the literature. However, it has better predictive power than the EWS
of Baldacci et al. (2011), which is based on only fiscal leading indicators. Finally, the
main result on the importance of both fiscal and non-fiscal leading indicators for fiscal
distress is robust to various model specifications and sample compositions. The policy
implication is that policymakers should not restrict their attention to fiscal indicators
only when assessing country’s vulnerability to fiscal distress.

The remainder of the paper is structured as follows. Section 1.2 describes the empir-
ical methodology and data. Section 1.3 presents the estimation results using EBA and
conducts robustness checks. Section 1.4 develops an indicator of fiscal distress based on
most robust leading indicators identified using EBA and assesses its predictive power.
The final section concludes.

1.2 Empirical Methodology and Data

1.2.1 Extreme Bounds Analysis

As discussed above, Extreme Bounds Analysis (EBA) is an agnostic approach to iden-
tify explanatory variables that are robustly associated with an outcome variable. In-
stead of pre-selecting a small set of explanatory variables, EBA explores a large number
of combinations from a pool of variables used in the existing literature and based on
theoretical considerations.

In the context of an Early Warning System (EWS) for fiscal distress events, the
following logit specification is estimated:

log(
P (Y = 1|z, xj)
P (Y = 0|z, xj)

) = βzjz + βxjxj + ε (1.1)
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Where Y is a binary outcome variable indicating a fiscal distress event, z is the leading
indicator whose robustness is being assessed and xj are other leading indicators from
the pool of all leading indicators, excluding z. Assume there are n elements in this pool.
Then, for each leading indicator z, one has to estimate a regression with k additional
controls xj, which gives M = (n− 1− k)!/k! combinations per leading indicator z and
a total of nM regressions to be estimated.

For each leading indicator z, we follow the following procedure:

• Estimate each of the M regressions and store the estimated coefficient of z, β̂zj.

• Weigh coefficients β̂zj by the relative likelihood of the model that they are a part
of, so that coefficients stemming from a very unlikely model receive less weight
than others. The weight is:

ωzj =
Lzj∑M
i=1 Lzj

(1.2)

• Calculate the weighted average of coefficients across regressions to obtain the
coefficient of leading indicator z:

β̂z =
M∑
j=1

ωzjβzj (1.3)

• Calculate a likelihood-weighted average standard error in a similar fashion.

• Assess the robustness of β̂z. Assuming that β̂z is normally distributed across
regressions, calculate the proportion of its distribution to one side of zero, and
consider β̂z to be robust if this proportion exceeds a certain confidence level (e.g.
90 percent).

Following these steps for each indicator results in a set of indicators that can be ranked
according to their respective robustness.

1.2.2 Data

Our dataset covers 29 advanced and 52 emerging economies (81 countries in total) over
the 1970 to 2015 period. It builds on the original dataset of fiscal distress developed
by Baldacci et al. (2011), extending the data through 2015 and expanding the set of
leading indicators.
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1.2.2.1 Fiscal distress

A fiscal distress episode is identified as a period when government experiences extreme
funding difficulties. Based on the literature survey, Baldacci et al. (2011) identify four
types of criteria to capture fiscal distress episodes: (i) debt default or restructuring; (ii)
sovereign bond yield pressure; (iii) large IMF-supported program; and (iv) excessive
inflation. We adopt the same definition of fiscal distress (see Table 1) and expand the
series through 2015.

Table 1.1: Definition of Fiscal Distress

Event Criteria Advanced Economies Emerging Economies

Public debt default
or restructuring

Failure to service
debt as payments
come due, as well
as distressed debt
exchanges

S&P definition S&P definition

Extreme financing
constraint of the
sovereign

Sovereign yield pres-
sure

Sovereign spreads
greater than 1,000
basis points or 2 s.d.
from the country
average

Sovereign spreads
greater than 1,000
basis points or 2 s.d.
from the country
average

Large financing Large IMF-
supported program

Access to 100 percent
of quota or more

Access to 100 percent
of quota or more

Implicit/Internal
public debt default

High inflation rate Inflation greater than
35 percent per annum

Inflation greater than
500 percent per an-
num

Note: Baldacci et al. (2011)

Table 1.2 presents the distribution of fiscal distress episodes across their types and
country groups. Several observations emerge. First, comparison across country groups
suggests that advanced economies have experienced fewer fiscal distress episodes than
emerging economies. The low unconditional likelihood of fiscal distress for advanced
economies will have implications for the conditional analysis conducted below. Second,
the comparison across types of distress events suggests that advanced economies experi-
enced almost no outright default episodes and most fiscal distress episodes manifested
in the form of bond yield pressures. By contrast, emerging economies experienced
a large number of fiscal distress episodes and were frequent recipients of large IMF-
supported bailouts. Finally, the total number of distress episodes is lower than the
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sum of individual episodes. This is due to the fact that some countries experienced
multiple fiscal distress events simultaneously.

Table 1.2: Fiscal Distress Episodes

Sovereign Default
or Restructuring

Bond
Yield
Pressures

Inflation
Pres-
sures

IMF
pro-
gram

Total

Advanced Economies 1 (0) 30 (29) 5 (5) 8 (6) 41 (39)
Emerging Economies 54 (52) 17 (15) 6 (6) 103 (79) 160 (135)

Note: Baldacci et al. (2011) and author’s calculation for 2011-2015. The numbers in brackets represent
fiscal distress episodes in the original Baldacci et al. (2011) dataset running through 2010.

Figure 1.1 shows the share of fiscal distress episodes that coincided with currency and
banking crises using the Reinhart and Rogoff dataset.1 We find that currency crises
overlap with 26 percent of fiscal distress episodes, while banking crises overlap with
24 percent of fiscal distress episodes for the sample spanning through 2010 (the last
year of Reinhart and Rogoff’s dataset). The high share of overlaps suggest that some
of the fiscal distress events may have originated outside of the fiscal sector, which is
consistent with the “twin crises” narrative proposed by Kaminsky and Reinhart (1999).

1.2.2.2 Leading Indicators

We identify 37 variables that were used as leading indicators for fiscal distress in the
literature. Table 1.6 in Appendix 1.A.2 lists these variables as well as their sources.
The indicators cover not only the fiscal sector, but also macro, monetary, and external
sectors. Some of the indicators reflect the impact of contagion effects and global factors,
which is consistent with predictions of the theoretical literature. All variables are
measured in percentage points. The panel is unbalanced as some indicators are not
available for all countries and differ in time coverage.

Table 1.7 presents descriptive statistics, while Table 1.8 presents bivariate correla-
tions based on the pooled series. As shown in the latter tables, most variables are not
highly correlated with the exception of some debt-related indicators. This should limit
multicollinearity issues.

1The dataset is available at: http://www.reinhartandrogoff.com/data/.
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Figure 1.1: Banking, Currency and Fiscal Crises

 

 

 
Note: Reported is the overlap between fiscal, banking, and currency crises for the period 1970–2010.
Data on banking and currency crisis episodes are from Reinhart and Rogoff (2009). Data on the first
year of a fiscal crisis are from Baldacci et al. (2011).

1.3 Estimation Results

In this section, we present estimation results for the baseline specification covering
the whole sample and based on the pooled logit specification. We also check whether
the results are sensitive to changes in the sample and estimation methods. Leading
indicators are assessed to be robust if the rate of confidence in the sign of the coefficient
exceeds 90 percent, as approximated by the normal distribution. We use a forecasting
horizon of 1 year throughout the estimation.2

1.3.1 Baseline Extreme Bounds Analysis Model

Table 1.3 presents the baseline EBA estimation results. Estimations are performed
using the pooled logit model. We use various combinations of two additional controls
per regression, which leads to 630 regressions per leading indicator (23,410 regressions
in total). The main reason for using two additional controls as a baseline is computa-

2The results do not change qualitatively when using a forecasting horizon of two years.
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tional efficiency and a higher number of observations per regression. The variables are
ranked according to their robustness, with the most robust indicators placed on top.

The estimation results suggest that both fiscal and non-fiscal variables are robust
leading indicators of fiscal distress. We find that fiscal distress tends to follow a period
of overheating in the real sector (widening of output gap). This is consistent with
the Alberola et al. (2013) finding that growth, if it is not driven by sound economic
fundamentals, can be detrimental to systemic stability. A related explanation could be
that a large positive output gap, even if it is non-inflationary, can be associated with
a build-up of financial imbalances, which in turn can indirectly lead to fiscal distress
(see Borio et al., 2016).

In addition, adverse developments in the external sector (high current account deficit,
low level of FX reserves/GDP ratio, slowdown in FX reserves growth, and higher
openness) tend to precede fiscal distress episodes. These results are consistent with
both Chakrabarti and Zeaiter (2014)’s analysis of external debt arrears as well as
Gourinchas and Obstfeld (2012) analysis of the causes of sovereign default. A negative
effect of openness is found in Manasse et al. (2003).

Among fiscal leading indicators, we found that foreign exchange debt to GDP ratio,
primary fiscal balance gap, as well as primary and overall fiscal balance to GDP ratios,
are robust indicators, which is in line with most fiscal EWSs, such as Baldacci et al.
(2011).

One potential reason for the robustness of non-fiscal indicators could be a high
correlation with fiscal indicators. Table 1.8 shows that this is not the case: for example,
the correlation between FX reserves (% of GDP) and various robust fiscal indicators,
such as primary balance, overall balance or primary balance gap does not exceed 0.35
in absolute terms. The same is true for the output gap. This indicates that non-fiscal
indicators do not just pick up the effects of fiscal indicators, but that they matter on
their own.

An illustration for why external factors perform better than fiscal factors as leading
indicators is observable in Figure 1.2. It shows an application of the Event Study
Methodology proposed by Gourinchas and Obstfeld (2012), where a fixed effects model
is employed to regress the leading indicator of interest on dummies indicating the
distance from a fiscal distress event. The graphs plot the estimated coefficients of
these dummies, which are a measure of the percent deviation of the respective leading
indicator from its “tranquil” time average. This “tranquil” time average is defined as
the average level of the respective variable outside the Event Study horizon. Figure 1.2
shows that the debt to GDP ratio before the crisis is not significantly different from
levels observed in tranquil times, but increases rapidly after the crisis incident. This
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Table 1.3: Extreme Bounds Analysis (baseline)

Coeff. SE C(0) Obs.

Output Gap 0.296 0.069 1.000 3188
Current Account Balance (% of GDP) -0.046 0.014 1.000 3275

FX Reserves Growth -0.010 0.003 0.998 3051
FX Reserves (% of GDP) -0.034 0.012 0.998 3103
Openness: (M+X)/ GDP -0.006 0.003 0.970 3254

Primary Balance Gap (% of GDP) -0.029 0.017 0.958 688
Real GDP Growth -0.039 0.023 0.957 3269

Overall Fiscal Balance (% of GDP) -0.052 0.031 0.953 2035
Primary Balance (% of GDP) -0.048 0.037 0.907 1874

Foreign Exchange Debt (% of GDP) 0.008 0.006 0.903 1124

Gross Financing Need 0.016 0.013 0.885 735
Change in Net Claims on Central Government 0.000 0.000 0.861 2415

Short Term Debt (% of total) -0.008 0.007 0.854 2107
Unemployment Rate -0.020 0.021 0.826 2546

LIBOR 0.042 0.049 0.801 3670
FX Reserve Coverage -0.012 0.015 0.788 1581

CPI Inflation 0.004 0.005 0.786 2804
Concessional Debt (% of total) -0.004 0.006 0.766 1632

Interest Expenditure (% of total Expenditure) 0.010 0.014 0.763 1908
Domestic Credit Gap 0.001 0.002 0.755 2588

Real Interest Rate 0.010 0.015 0.752 1387
Short Term External Debt (% of GDP) -0.005 0.008 0.746 2142

Debt (% of GDP) -0.002 0.004 0.744 3073
Real Exchange Rate Undervaluation -0.002 0.004 0.741 2877

External Debt (% of GDP) -0.002 0.003 0.722 2475
Average Maturity -0.020 0.039 0.698 733
FDI (% of GDP) 0.010 0.033 0.625 2972

Amortisation of Total Public Debt (% of GDP ) -0.003 0.008 0.622 2030
Debt owed to Commercial Banks (% of total) -0.005 0.016 0.618 1423

US TBill Rate 0.010 0.042 0.594 3592
GDP per Capita -0.006 0.033 0.575 3291

Short Term Debt (% of FX Reserves) 0.000 0.001 0.568 1984
Nominal GDP Growth 0.001 0.005 0.567 3046

Debt Service due (% of GDP) -0.003 0.020 0.551 1602
Debt owed to Multilateral Creditors (% of total) 0.001 0.009 0.545 1632

Interest-Growth Differential -0.001 0.008 0.527 2154
Average Effective Interest Rate 0.000 0.002 0.523 1951

Note: Reported are estimation results from the EBA regression. The dependent variable is Baldacci
et al. (2011) definition of fiscal distress: (i) debt default or restructuring, (ii) sovereign bond yield
pressure, (iii) large IMF-supported program, and (iv) excessive inflation. Estimations are performed
using the pooled logit model, with 2 additional controls per specification. The variables are ranked
according to their robustness, with most robust indicators placed on top. The sample covers 29
advanced and 52 emerging economies for the period 1970-2015.
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Figure 1.2: Event Study Analysis

 
Note: Both graphs as generated using the Gourinchas and Obstfeld (2012) Event Study Methodology.
It shows the percent deviation of the Debt Ratio and the Current Account Balance from their respective
"tranquile" average. This is defined as the average level of the respective variable outside the window
of (-3; 3) around the crisis incident. Dotted lines denote the 10% Confidence Interval.

indicates that the debt to GDP ratio - one of the key fiscal indicators used in previous
studies (see, e.g., Kraay and Nehru, 2006) - is more of an ex post indicator of fiscal
distress rather than a leading indicator. The current account balance, on the other
hand, is significantly lower relative to tranquil times before the crisis, suggesting that
it can be used as a leading indicator. This result supports the hypothesis that fiscal
vulnerabilities can be built up outside the public sector.

Overall, the baseline results suggest that limiting leading indicators to fiscal variables,
like in Baldacci et al. (2011), may result in a loss of important information regarding
vulnerability to fiscal distress.3 Consistent with predictions of most recent theories of
crises, information from other sectors should also be monitored.

3Our results remain qualitatively unchanged when the sample is restricted to the period 1970–2010
as in Baldacci et al. (2011).
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1.3.2 Robustness Checks

We run several additional EBA regressions to check the results for sensitivity to changes
in the sample and estimation methods (see Appendix 1.A.3).
“Narrow” definition of fiscal distress The robustness of non-fiscal leading indi-

cators, especially those pertaining to the external sector, may be driven by the fact
that some of the large scale IMF programs (the third definition of fiscal distress) are
triggered by balance of payment or other crises that are not purely linked to fiscal
distress. In addition, high inflationary pressures (fourth definition of fiscal distress)
may be caused by large devaluations following currency crises. To check whether the
robustness of non-fiscal variables still holds for “narrow” fiscal distress episodes, we
re-estimate the model using a more restrictive sample of fiscal distress episodes that
did not overlap with banking and currency crises.

Table 1.9 in Appendix 1.A.3 presents estimation results from a specification that
restricts the dependent variable to “narrow” fiscal distress episodes. The set of robust
determinants still includes non-fiscal leading indicators, confirming the baseline results.
Gross financing needs and interest costs also turn robust in this specification, suggest-
ing that borrowing cost pressures are important leading indicators for “narrow” fiscal
distress episodes. The main drawback of this specification is that the sample has to be
restricted through 2010, the last year for which banking and currency crisis variables
are available in the Reinhart and Rogoff database.
Emerging economies As indicated in the previous section, most fiscal crisis events

took place in emerging economies, which could explain the relatively high proportion
of external leading indicators that are mostly relevant for emerging economies. For
example, difficulties to finance a persistent current account deficit and the associated
decline in FX reserves have historically been associated with fiscal distress in emerging
markets. Advanced economies on the other hand, face fewer financing problems of
this sort as they are often able to borrow in their own currency and generally rely
less on external financing (IMF, 2010). To assess whether our baseline results are
mostly driven by emerging economies, we redo the analysis by restricting the sample
to emerging economies.4

Table 1.10 in Appendix 1.A.3 presents estimation results from the sample of emerging
economies. The set of robust indicators is very similar to the one for the total sample,
confirming the influence of emerging economies in driving the main results. Out of 10
robust leading indicators found in the total sample, eight remain significant in emerging
economies. One additional variable that becomes significant for emerging economies is

4Unfortunately, we could not replicate the analysis for just the advanced economies due to the limited
number of fiscal distress events.
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the unemployment rate. The latter is consistent with the robust result on the output
gap, given that unemployment is its mirror image.
Number of control variables We also check the robustness of results to the larger

number of control variables. Table 1.11 in Appendix 1.A.3 presents the estimation
results from a specification that increases the number of control variables from two
to three. This results in a substantially increased time for model estimation, as the
number of regressions per leading indicator increases to 7140 (264,180 regressions in
total). Nevertheless, the main results remain unchanged, with 8 out of 10 robust
indicators from the baseline regression remaining robust. As before, the set of robust
leading indicators includes both fiscal and non-fiscal variables.
Random effects logit and pooled probit models We also check the robustness

of the main results to types of discrete choice models. First, we control for unobserved
country-specific heterogeneity by using a random effects logit model.5 Table 1.12 in
Appendix 1.A.3 presents the estimation results, showing that the set of robust indica-
tors remains qualitatively unchanged, with 8 out of 10 robust indicators from baseline
regression remaining robust. Second, given that the logit model has fatter tails than
the probit model, we also check the sensitivity to tail risks by using a pooled probit
model. Table 1.13 in Appendix 1.A.3 presents estimation results, showing that the set
of robust indicators remains practically unchanged and suggesting that fat tails are not
affecting the results.
Using alternative filtering technique for the output gap Throughout the

analysis, we find a persistent evidence of robustness of the output gap variable, which
comes on top of the list in all tables. This could be due to the fact that the two-sided
HP filter used to estimate the output gap could potentially bias the results prior to
fiscal crises as it uses future values of output, already affected by the crisis, to smooth
past series. To check the sensitivity of the results to the smoothing technique, we use
the one-sided filter of Christiano and Fitzgerald (2003). Table 1.14 in Appendix 1.A.3
presents estimation results using this filter. The results remain unchanged suggesting
that the measurement of the output gap does not constitute a problem and reinforcing
the importance of output cycles as leading indicators of fiscal crises.

5We have also tried a fixed effects logit specification and the results remain similar. The main drawback
of the fixed effect model is that it drops countries that have never experienced a fiscal distress (see
Bussiere, 2013 for a discussion).
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1.4 Fiscal Distress Index and Its Performance

In this section, we present an alternative fiscal distress index based on the most robust
leading indicators identified using the EBAmethodology (Table 1.4).6 We then measure
its performance for in-sample and out-of-sample and make a comparison with other
EWS in the literature.

A natural question is which indicators make the largest contribution to the fiscal
distress index. In order to assess this, Figure 1.3 shows the impact of changes in robust
leading indicators between the 25th and the 75th percentile on the logarithm of the
odds ratio of the fiscal crisis. The log odds ratio is given in equation (1.1). It is based
on the results of the Logit model presented in Table 1.4. In order to compute it, we
take a specific variable and compute its 25th and 75th quantile. Then we take the
difference these two quantiles and multiply it by the corresponding coefficient β̂i. The
result writes as (β̂ix

(0.75)
i − β̂ix(0.25)

i ) , where x(q)
i is the q-th quantile of leading indicator

i. It measures by how much the log odds ratio changes if indicator i moves from its
25th to its 75th quantile while the remaining indicators stay constant.7

The figure shows that non-fiscal indicators have a larger relative impact on the fiscal
distress index than fiscal indicators reflecting their importance in assessing underlying
vulnerabilities.

1.4.1 Fiscal Distress Index

Figure 1.4 presents the evolution of the fiscal distress index based on most robust lead-
ing indicators for advanced and emerging economies and the fiscal distress incidents.
This index is obtained by computing the predicted values from the logit model, which
includes the most robust leading indicators obtained in the first step. Two observa-
tions are worth noting. First, the level of fiscal stress tends to be lower in advanced
economies than in emerging economies, which is consistent with the fact that advanced
economies have a lower propensity to experience distress on average. Second, there
are spikes in the level of fiscal distress around periods of notable financial crises (late
1990s, the global financial crisis). This is consistent with the empirical regularity of
clustering across different types of crises due to contagion effects.

6The index does not include primary balance gap variable (because of low numbers of observations),
the foreign exchange debt ratio (because the series end in 2012), and the FX reserves to GDP ratio
(because we already control for the FX reserves growth variable).

7As an example, consider the Current Account Balance (% of GDP). Its 25th quantile is −0.0998 and
its 75th quantile is 0.4465. The coefficient, as given in Table 1.4, is β̂i = −0.0943 . This gives a log
odds ratio of (0.4464 + 0.0998)(−0.0943) = −0.0515 as shown in Figure 1.3. This means that when
Current Account Balance (% of GDP) moves from its 25th to its 75th quantile, holding the other
variables constant, the log odds ratio will change by −0.0515.
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Table 1.4: Early warning system based on the most robust leading indicators

Pooled logit

Output Gap 0.4377***
[0.0860]

Current Account Balance (% of GDP) -0.0943***
[0.0196]

FX Reserves Growth 0.0002
[0.0029]

Openness: (M+X)/ GDP -0.0097***
[0.0035]

Real GDP Growth -0.1312***
[0.0349]

Overall Fiscal Balance (% of GDP) -0.0030
[0.0407]

Primary Balance (% of GDP) -0.0078
[0.0439]

Intercept -1.9855***
[0.3069]

Number of observations 1765
Pseudo R2 0.537
AUROC 0.815

Type 1 error 0.218
Type 2 error 0.312

TME 0.530

Note: Reported are estimation results from the pooled logit model using most robust leading indicators
of fiscal distress. The dependent variable is Baldacci et al. (2011) definition of fiscal distress: (i) debt
default or restructuring, (ii) sovereign bond yield pressure, (iii) large IMF-supported program, and
(iv) excessive inflation. The sample covers 29 advanced and 52 emerging economies for the period
1970-2015. ***, **, and * denote significance at 1, 5, and 10 percent levels, respectively.
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Figure 1.3: Economic Significance of Robust Leading Indicators
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Note: Reported is the difference in the logarithm of the odds ratio calculated for 75th and 25th
percentile of each leading indicator (components of the fiscal distress index). A larger absolute value
indicates a larger economic impact of a change in that indicator on the log odds ratio of a fiscal
distress.

1.4.2 Measure of Performance

As pointed out by Ho (2015), it is not obvious that the most robust leading indicators
are also those that yield the best predictive performance of an EWS. This is why,
following Baldacci et al. (2011), we assess the performance of our model using the total
misclassification error:

TME(t) = Type1(t) + Type2(t), (1.4)

where Type1(t) indicates missed crises as a share of all crises, Type2(t) indicates false
alarms as a share of all non-crisis periods, and t is the threshold level. The threshold
can take values between 0 and 1, thus dividing the fiscal distress index resulting from
the Logit model into two regions: When the index exceeds the threshold level, an
alarm is raised. When the index stays below the threshold, an alarm is not raised.
The choice of the threshold level is determined by the policymaker facing a trade-off.
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Figure 1.4: Fiscal Distress Index Based on Robust Leading Indicators

 
Note: The fiscal distress index is generated by using predicted values from the logit model that
includes most robust leading indicators. The most robust leading indicators are defined as those with
at least 90 percent probability of not switching signs using the EBA results. Robust leading indicators
include (i) Output Gap; (ii) Current Account Balance (% of GDP); (iii) FX Reserves Growth; (iv)
Openness: (M+X)/GDP; (v) Real GDP Growth, (vi) Overall Fiscal Balance (% of GDP); and (vii)
Primary Balance (% of GDP). The blue line indicates the Fiscal Distress Index (left axis). Dotted lines
indicate 90 percent confidence bands around predicted values. Orange line represents the absolute
number of distress events in a given year (right axis). Data are missing for the pre-1980 period,
meaning that no predictive values can be generated.

If t is set too high, the index will cross it in very few cases and many crises will be
missed, thus resulting in a large Type 1 error. Alternatively, if t is set too low, the
index will frequently cross the threshold, meaning that many alarms will be falsely
issued resulting in a large Type 2 error. We assume that the utility of the policy maker
can be represented by using TME as a loss function, which is minimized over t.

Figure 1.5 presents the in-sample performance for different threshold values for both
the EBA-based indicator and the Baldacci et al. (2011) fiscal distress index. Neither
model is dominated by the other, as the performance depends on the choice of the
threshold. Figure 1.5 shows that the TME of the EBA-based indicator is minimized at
0.52 when the level of the threshold is 0.07. The Baldacci et al. (2011) fiscal distress
index obtains a minimum of 0.73 when the level of the threshold is 0.38. Thus, the
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Figure 1.5: In-sample Performance: EBA-based Fiscal Distress Index versus Baldacci
et al. (2011) Index

 
Note: Reported is the Total Misclassification Error (TME) for different threshold levels. The blue line
represents the baseline model based on robust leading indicators: (i) output gap; (ii) current account
balance (% of GDP); (iii) FX reserves growth; (iv) openness: (M+X)/GDP; (v) real GDP growth;
(vi) overall fiscal balance (% of GDP); and (vii) primary balance (% of GDP). The vertical line marks
the threshold level (0.07) that minimizes the TME. The orange line represents TME from the model
based on variables used by Baldacci et al. (2011).

TME is reduced by 29 percent for the optimal choice of the threshold, suggesting that
our model has a better fit.

Figure 1.6 presents in-sample and out-of-sample performance for different threshold
values of the EBA-based fiscal distress indicator. We use the years 1970 through 2007
to fit the model, compute the coefficients and obtain the threshold. The model is
then applied to the years 2008 through 2015, computing the fiscal distress index by
combining these estimated coefficients from the model-fitting sample with the data in
the prediction sample. As expected, the in-sample performance outperforms out-of-
sample performance. Nevertheless, the minimum TME for the out-of-sample is not
much higher than in-sample TME suggesting that our model would have done well
predicting the post-2007 sample using information available through 2007.
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Figure 1.6: In-sample Versus Out-of-sample Performance of the EBA-based Fiscal Dis-
tress Index

 
Note: Reported is The Total Misclassification Error (TME) for different levels of the threshold. The
fiscal vulnerability index is based on robust leading indicators: (i) output gap; (ii) current account
balance (% of GDP), (iii) FX reserves growth; (iv) openness: (M+X)/GDP; (v) real GDP growth;
(vi) overall fiscal balance (% of GDP); (vii) primary balance (% of GDP). The blue line represents the
in-sample TME based on the years 1970-2007. The orange line represents the out-of-sample TME for
the years 2008-2015. The vertical line marks the threshold level (0.04) that minimizes the in-sample
TME.

Table 1.5 presents the classification table for out-of-sample predictions made by the
EBA-based fiscal distress indicator. It is an illustration for the two types of errors
that every EWS makes, as explained above. Out of the 32 crises that were identified
between 2008 and 2015, the model predicts 25 correctly (78 %). A false alarm is issued
for 118 out of 344 non-crisis years (34%).

Figure 1.7 presents a comparison with other studies. It plots the minimum, 25th
percentile, mean, 75th percentile and maximum of the 3 relevant quality measures of
an EWS: The TME, type 1 error, and type 2 error It shows that our model is within the
1st and 3rd quartile of the TME when compared to other studies on EWS. It performs
slightly worse than average regarding the type 2 errors and slightly better regarding
the type 1 errors. As mentioned in Berg et al. (2005), a different trade-off between the
two error types could be achieved using an asymmetrically weighted loss function.
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Table 1.5: Classification Table for Out-of-sample Predictions of the EBA-based Fiscal
Distress Indicator

Crisis

Yes No Total

S
ig
n
al Yes 25 118 143

No 7 226 233

Total 32 344 376

Note: Reported is the model classification for the years 2008–2015. An alarm is issued if fiscal distress
index exceeds the threshold derived from the in-sample minimization of the TME.

Figure 1.7: Comparison with Other Studies

 

Note: Reported is the in-sample total misclassification error (TME), Type 1 and Type 2 errors of eight
Early Warning Systems for currency, banking and sovereign crises reported in the literature. The
values represent the minimum, the 25th percentile, the mean, the 75th percentile and the maximum.

1.5 Conclusion

Reviewing the large literature on EWS for fiscal distress, we assess the robustness of
the leading indicators employed in these studies using Extreme Bounds Analysis. We
find both fiscal and non-fiscal leading indicators to be robust.

In a second step, we build a vulnerability index using the most robust leading indica-
tors and find that its predictive properties are close to the average found in other EWS
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(for fiscal, currency, banking, and other types of crises) in the literature. However, the
use of robust fiscal and non-fiscal leading indicators helps us to improve performance
relative to Baldacci et al. (2011) EWS based on fiscal indicators only. From a pol-
icy perspective, these results suggest that some non-fiscal leading indicators should be
monitored as closely as fiscal leading indicators to assess a country’s vulnerability to
fiscal distress.

Designing a EWS based on robust leading indicators poses several problems that
could be addressed in the future. First, the estimation sample using a logit model
is constrained by the shortest time series, which can significantly reduce the sample
size and, thus, precision. Second, while using a pooled sample of both advanced and
emerging economies does increase the sample size, it constrains the leading indicators
and their relative effects to be the same across the two subsamples. However, separate
analysis for advanced economies only is complicated given that most fiscal crises have
occurred in emerging economies. Lastly, identifying “narrow” fiscal distress events is
challenging due to the frequent occurrence of twin or multiple crises and the spillovers
among them.
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1.A Further results

1.A.1 Related Literature

1.A.1.1 Theories of Crisis Determinants

When modeling crises, it is important to draw distinction between underlying vul-
nerabilities and crisis risks. The presence of underlying vulnerabilities is a necessary
precondition for a crisis to occur, but not sufficient. Crises tend to be triggered by
external or domestic shocks, which are highly uncertain. The underlying vulnerability
helps to identify countries that are prone to crisis should even a moderate shock occur.

The early theoretical literature emphasizes the role of fundamentals in measuring
underlying vulnerability. The classic reference is Krugman (1979), which predicts that
weak fundamentals, in part driven by unsustainable fiscal and monetary policies, make
countries vulnerable to a balance of payments crisis. For fiscal crises, Detragiache and
Spilimbergo (2001) show that sovereign default is the only equilibrium response to a
large negative shock to fundamentals.

The following generation of theoretical literature of crises emphasizes the role of
self-fulfilling expectations and non-fiscal fundamentals. The self-fulfilling crisis litera-
ture (Obstfeld et al., 1984; Calvo, 1988; Alesina et al., 1989; Cole and Kehoe (1996);
Jeanne, 1997; and Masson, 1999) was inspired by the fact that while some crises were
preceded by deterioration in fundamentals, some speculative attacks have taken place
without apparent monetary and fiscal imbalances. These studies developed multiple-
equilibrium models that better allow capturing the complex interaction between under-
lying vulnerabilities and speculative attacks (Eichengreen et al., 1995 provide a review).
In these models, countries can jump from good to bad equilibrium for a certain range
of values of economic fundamentals. For example, Calvo (1988) shows that if a govern-
ment is unable to commit to repay its debt, multiple equilibria, including repudiation
and inflation, can arise.

The main takeaway from the review of theoretical literature is that there is no reason
a priori to restrict leading indicators of fiscal distress to fiscal fundamentals.

1.A.1.2 Empirical Evidence on Early Warning Indicators of Fiscal Distress

The empirical literature on early warning indicators of fiscal distress was developed as
part of a larger literature on early warning indicators of financial crises. Comprehensive
surveys of EWS for banking, currency, sovereign debt, equity, and inflation crises can
be found in Kaminsky and Reinhart (1999), Klau et al. (2000), d Abiad et al. (2003),
Berg et al. (2005), and Frankel and Saravelos (2012). As discussed above, the main
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objective of these studies is to identify leading indicators making countries vulnerable
to a crisis, rather than prediction of the timing of the crisis. The empirical techniques
used in this literature could be grouped into two main categories: non-parametric and
parametric (Baldacci et al., 2011; Frankel and Saravelos, 2012; and Comelli, 2013).

The most popular non-parametric EWS is the “signals” approach popularized byKaminsky
et al. (1998) in the context of currency crises. This approach selects a number of vari-
ables as leading indicators of crises and determines threshold values beyond which a
crisis signal is considered to have been given. The main drawback of this approach is
that it only focuses on bivariate association between an early warning indicator and
crises, thus controlling for other factors is not allowed. In addition, the statistical
significance of the early warning indicators cannot be determined directly, although
out-of-sample performance could be assessed. Studies using these techniques in the
context of fiscal crises include Reinhart (2002), Baldacci et al. (2011), Berti et al.
(2012) and De Cos et al. (2014). These studies suggest that fiscal fundamentals, such
as the level of public debt, the composition of public debt, fiscal deficit, and fiscal
financing needs are important leading indicators of fiscal distress.

The parametric EWS models draw on limited dependent variable techniques (mul-
tivariate logit, probit). These methods allow testing the significance of various leading
indicators in determining the likelihood of crisis occurring in the near future, while
accounting for their correlation. However, these methods require long-time series of
leading indicators and low degrees of freedom that may prevent the use of multivariate
approach when the number of predictors is large. Studies applying parametric methods
to analyze fiscal crises include Marashaden (1997), Peter (2002), Manasse et al. (2003),
Kraay and Nehru (2006), and Gourinchas and Obstfeld (2012). Sumner et al. (2017)
apply a logit approach to European fiscal stress events, updating the Baldacci et al.
(2011) series of fiscal stress events. Their in-sample model performance is comparable
to ours, while the out-of-sample performance cannot be directly compared due to dif-
ferences in sample splits. These studies confirm the importance of fiscal fundamentals,
but suggest that macroeconomic developments in general, especially in the external
sector, also play a role.

Both groups of studies share a common characteristic – the set of leading indicators
of fiscal distress is predetermined by the researcher. This selection is typically done
with the benefit of hindsight, with the significance of the leading indicator typically
playing a role in the selection process. To overcome this issue, some studies apply
extreme bounds analysis to study leading indicators of financial crises.
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1.A.1.3 Extreme Bounds Analysis

Extreme bounds analysis was developed and applied to study determinants of growth
by Leamer (1985), and was later on extended and popularized by Sala-i Martin (1997).
The methodology does not rely on a predetermined set of explanatory variables and
“lets the data speak” by examining all possible combinations of explanatory variables.
The focus is on the change in signs of explanatory variables. If a sign change is observed
relatively frequently, it is said that the explanatory variable is not robustly related to
the dependent variable.

Early warning studies using extreme bounds analysis (or its Bayesian equivalent)
include Chakrabarti and Zeaiter (2014), Ho (2015), and Christofides et al. (2016).
However, to the best of our knowledge no study used this approach to analyze deter-
minants of fiscal distress, which is the gap we fill with our paper. The closest paper to
ours is Chakrabarti and Zeaiter (2014), which analyzes determinants of external debt
arrears using a linear regression model. The results suggest that a range of fiscal and
non-fiscal indicators, including growth, inflation, trade deficit, foreign reserves, and
exchange rates, are robust predictors of external debt arrears.

Alessi et al. (2015) provide an overview of alternative ways of combining the infor-
mation in a large set of variables, such as the Lasso, the ridge regression estimator,
Bayesian Model Averaging, principal component analysis, and factor models. However,
an advantage of Extreme Bounds Analysis is that it does not introduce an estimation
bias, unlike the Lasso or the ridge regression. Furthermore, its data requirements are
less strict than for Bayesian Model Averaging as it can be applied to unbalanced pan-
els and the results are more directly interpretable than those stemming from principal
component or factor models.

1.A.2 Descriptive Statistics
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Table 1.6: List of leading indicators of fiscal distress
Leading Indicator Source Grouping Description

Average Maturity Baldacci et al. (2011) Public Sector: Liquidity Pressure Indicators Average Maturity of remaining debt (in
years)

Gross Financing Need Baldacci et al. (2011) Public Sector: Debt Burden Gross financing needs (short-term debt
plus the overall balance), percent of GDP

Interest-Growth Differential Baldacci et al. (2011) Public Sector: Debt Tolerance Indicators Difference between average effective in-
terest rate and GDP growth in percent

Primary Balance (% of GDP) Baldacci et al. (2011) Public Sector: Liquidity Pressure Indicators Revenue-Expenditure+Interest Expendi-
ture, percent of GDP

Short Term Debt (% of FX Reserves) Baldacci et al. (2011) Public Sector: Debt Burden Short Term Debt, percent of FX Reserves
Short Term Debt (% of total) Baldacci et al. (2011) Public Sector: Debt Burden Short Term Debt, percent of total Debt
GDP per Capita Chakrabarti and Zeaiter (2014) Public Sector: Debt Tolerance Indicators Gross domestic product per capita, cur-

rent prices in U.S. dollars
Concessional Debt (% of total) Detragiache and Spilimbergo (2001) Public Sector: Debt Burden Concessional Debt, percent of total Debt
Debt owed to Commercial Banks (% of total) Detragiache and Spilimbergo (2001) Public Sector: Debt Burden Debt owed to Commercial Banks, percent

of total Debt
Debt owed to Multilateral Creditors (% of total) Detragiache and Spilimbergo (2001) Public Sector: Debt Burden Debt owed to Multilateral Creditors, per-

cent of total Debt
Debt Service due (% of GDP) Detragiache and Spilimbergo (2001) Public Sector: Liquidity Pressure Indicators Debt Service due, percent of GDP
Current Account Balance (% of GDP) Gourinchas and Obstfeld (2012) Public Sector: Liquidity Pressure Indicators Balance on current account, percent of

GDP
Domestic Credit Gap Gourinchas and Obstfeld (2012) Public Sector: Macroeconomic Factors Domestic Credit percent deviation from

HP-filter trend
FX Reserves (% of GDP) Gourinchas and Obstfeld (2012) Public Sector: Macroeconomic Factors Foreign Exchange Reserves, percent of

GDP
Real Exchange Rate Undervaluation Gourinchas and Obstfeld (2012) Public Sector: Macroeconomic Factors Percent deviation of real effective ex-

change rate from HP filter trend
Real Interest Rate Gourinchas and Obstfeld (2012) Public Sector: Macroeconomic Factors 6 months Treasury Bill Rate - CPI Infla-

tion (end of period percentage change)
Short Term External Debt (% of GDP) Gourinchas and Obstfeld (2012) Public Sector: Debt Burden Short Term External Debt, percent of

GDP
Change in Net Claims on Central Government Hemming et al. (2003) Public Sector: Liquidity Pressure Indicators Change in Net Claims on Central Govern-

ment, in percent
CPI Inflation Manasse et al. (2003) Public Sector: Macroeconomic Factors Consumer Prices, end-of-period, percent

change
Debt (% of GDP) Manasse et al. (2003) Public Sector: Debt Burden Public Debt, percent of GDP
External Debt (% of GDP) Manasse et al. (2003) Public Sector: Debt Burden Total external debt, gross, including ar-

rears and other short-term debt, percent
of GDP

FDI (% of GDP) Manasse et al. (2003) Public Sector: Macroeconomic Factors Foreign direct investment, net inflows in
reporting economy, percent of GDP

FX Reserves Growth Manasse et al. (2003) Public Sector: Debt Tolerance Indicators Annual percentage change in Foreign Ex-
change Reserves

Interest Expenditure (% of total Expenditure) Manasse et al. (2003) Public Sector: Liquidity Pressure Indicators Interest Expenditure, percent of total Ex-
penditure

LIBOR Manasse et al. (2003) Contagion Effects and Global Factors London Interbank Offered Rate
Nominal GDP Growth Manasse et al. (2003) Public Sector: Macroeconomic Factors Nominal GDP, annual percentage change
Openness: (M+X)/ GDP Manasse et al. (2003) Public Sector: Macroeconomic Factors Exports+Imports, percent of GDP
Overall Fiscal Balance (% of GDP) Manasse et al. (2003) Public Sector: Liquidity Pressure Indicators Revenue-Expenditure, percent of GDP
Real GDP Growth Manasse et al. (2003) Public Sector: Macroeconomic Factors Gross domestic product, constant prices,

annual percentage change
Unemployment Rate Manasse et al. (2003) Public Sector: Macroeconomic Factors Unemployment Rate
US TBill Rate Manasse et al. (2003) Contagion Effects and Global Factors 6 months US Treasury Bill Rate
Output Gap Ostry et al. (2010) Public Sector: Macroeconomic Factors Percent deviation of real GDP from

Baxter-King filter
Average Effective Interest Rate VEE 2014 Public Sector: Liquidity Pressure Indicators Interest payments(t)/General Govern-

ment Debt(t-1)
Foreign Exchange Debt (% of GDP) VEE 2014 Public Sector: Debt Burden General government gross debt in foreign

currency, percent of GDP
FX Reserve Coverage VEE 2014 External Sector Reserves, percent of (Short Term debt

at remaning maturity+Current Account
deficit)

Primary Balance Gap (% of GDP) VEE 2014 Public Sector: Liquidity Pressure Indicators Primary Balance Gap, percent of GDP
Amortisation of Total Public Debt (% of GDP ) VEE 2015 External Sector Amortization paid, (principal only), per-

cent of GDP

Source: Survey of the literature by the authors.
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Table 1.7: Descriptive statistics

Obs. Mean Med. St.
Dev.

10th
per-
centile

90th
per-
centile

Debt (% of GDP) 3,073 52.5 45.3 34.1 16.6 95.2
Output Gap 3,188 -0.1 -0.1 2.0 -1.5 1.3

Openness: (M+X)/ GDP 3,254 71.2 60.0 53.2 26.1 123.0
CPI Inflation 2,804 28.3 6.2 224.0 1.4 26.1

FX Reserve Coverage 1,581 1.7 0.7 11.2 0.1 2.9
Amortisation of Total Public Debt (% of GDP ) 2,030 10.0 4.2 19.9 0.6 19.4

Real Interest Rate 1,387 -1.2 1.4 52.9 -4.9 6.9
Domestic Credit Gap 2,588 -48.1 -1.4 1754.8 -94.0 26.3

Current Account Balance (% of GDP) 3,275 -2.1 -1.9 7.6 -8.4 4.7
Real Exchange Rate Undervaluation 2,877 -3.6 -1.5 38.0 -24.6 20.3

FX Reserves (% of GDP) 3,103 12.3 7.5 15.0 1.9 25.9
Short Term External Debt (% of GDP) 2,142 14.4 4.8 37.8 0.0 27.6

Interest-Growth Differential 2,154 -15.7 -4.1 108.6 -24.7 3.0
Primary Balance (% of GDP) 1,874 0.7 0.3 3.9 -3.4 5.3
Short Term Debt (% of total) 2,107 17.9 13.8 17.5 0.0 41.3

Short Term Debt (% of FX Reserves) 1,984 654.0 51.6 5328.2 0.0 438.5
Debt owed to Commercial Banks (% of total) 1,423 11.3 5.8 14.0 0.1 30.6

Concessional Debt (% of total) 1,632 22.8 15.6 22.1 1.3 58.9
Debt owed to Multilateral Creditors (% of total) 1,632 17.4 14.1 13.1 3.7 35.3

Debt Service due (% of GDP) 1,602 5.8 4.3 6.4 1.4 10.9
FX Reserves Growth 3,051 18.3 9.4 52.4 -19.8 58.6

LIBOR 3,670 2.5 2.6 2.5 -1.1 5.4
US TBill Rate 3,592 5.1 5.0 3.3 0.1 9.6

Unemployment Rate 2,546 8.5 7.2 6.0 2.6 15.7
Nominal GDP Growth 3,046 40.4 11.2 297.2 2.8 34.9

Real GDP Growth 3,269 3.5 3.7 4.9 -0.9 8.3
External Debt (% of GDP) 2,475 68.2 44.4 90.0 14.5 141.1

FDI (% of GDP) 2,972 -1.4 -0.7 3.4 -5.1 1.0
Overall Fiscal Balance (% of GDP) 2,035 -2.5 -2.5 4.3 -7.4 2.1

Interest Expenditure (% of total Expenditure) 1,908 9.9 7.8 8.9 2.3 20.2
Change in Net Claims on Central Government 2,415 47.4 10.8 795.9 -48.3 116.4

GDP per Capita 3,291 9.3 9.7 4.2 6.0 13.3
Average Effective Interest Rate 1,951 17.5 0.2 75.1 0.0 14.4

Gross Financing Need 735 11.4 8.8 11.3 1.3 26.6
Average Maturity 733 7.2 6.2 4.2 3.0 13.3

Primary Balance Gap (% of GDP) 688 0.9 0.8 8.3 -4.7 7.6
Foreign Exchange Debt (% of GDP) 1,124 15.4 4.4 22.6 0.0 41.5

Source: IMF WEO, World Development Indicators, International Finance Statistics,
Government Finance Statistics.

24



C
hapter

1
Leading

Indicators
ofF

iscalD
istress:

E
vidence

from
E

xtrem
e

B
ounds

A
nalysis

Table 1.8: Correlation Matrix
Debt (%
of GDP)

Output
Gap

Openness:
(M+X)/
GDP

CPI In-
flation

FX Re-
serve
Coverage

Amortisation
of Total
Public
Debt (%
of GDP )

Real
Interest
Rate

Domestic
Credit
Gap

Current
Account
Balance
(% of
GDP)

Real
Ex-
change
Rate
Under-
valua-
tion

FX Re-
serves
(% of
GDP)

Short
Term
Ex-
ternal
Debt
(% of
GDP)

Debt (% of GDP) 1.000
Output Gap -0.173 1.000

Openness: (M+X)/ GDP -0.160 -0.007 1.000
CPI Inflation 0.249 -0.070 -0.034 1.000

FX Reserve Coverage -0.272 -0.057 0.291 -0.199 1.000
Amortisation of Total Public Debt (% of GDP ) -0.421 0.063 0.106 0.017 -0.260 1.000

Real Interest Rate 0.353 -0.054 -0.650 0.064 -0.326 -0.108 1.000
Domestic Credit Gap 0.059 0.299 -0.143 0.002 -0.551 0.108 0.063 1.000

Current Account Balance (% of GDP) -0.451 -0.087 -0.238 -0.323 0.378 0.403 0.160 -0.156 1.000
Real Exchange Rate Undervaluation 0.202 0.012 0.290 0.096 -0.017 0.195 -0.247 0.062 -0.083 1.000

FX Reserves (% of GDP) -0.223 0.114 0.715 -0.151 0.282 0.397 -0.562 -0.156 0.096 0.150 1.000
Short Term External Debt (% of GDP) -0.595 0.110 0.026 -0.162 -0.224 0.906 -0.138 0.223 0.462 0.064 0.302 1.000

Interest-Growth Differential 0.556 0.108 -0.414 -0.384 -0.238 -0.149 0.346 0.062 -0.044 0.026 -0.168 -0.154
Primary Balance (% of GDP) 0.652 0.042 -0.374 0.106 -0.232 -0.281 0.491 -0.152 -0.218 -0.177 -0.269 -0.385
Short Term Debt (% of total) -0.665 0.295 0.039 -0.184 -0.184 0.703 -0.173 0.252 0.364 -0.117 0.299 0.868

Short Term Debt (% of FX Reserves) -0.546 0.085 -0.323 -0.003 -0.361 0.642 0.087 0.245 0.297 -0.047 -0.226 0.804
Debt owed to Commercial Banks (% of total) -0.059 -0.011 -0.092 0.563 -0.417 0.357 0.343 0.011 -0.114 -0.295 -0.095 0.295

Concessional Debt (% of total) -0.215 -0.222 0.604 -0.028 0.498 -0.325 -0.489 -0.173 -0.102 0.158 0.215 -0.332
Debt owed to Multilateral Creditors (% of total) 0.265 -0.276 0.307 0.012 0.306 -0.672 -0.139 -0.067 -0.300 0.098 -0.068 -0.712

Debt Service due (% of GDP) 0.444 -0.200 -0.226 0.093 -0.329 0.485 0.326 -0.047 0.148 0.267 0.043 0.271
FX Reserves Growth -0.075 -0.027 -0.163 0.004 0.347 -0.205 0.013 -0.325 0.252 -0.361 0.159 -0.124

LIBOR -0.194 0.190 0.024 -0.261 0.193 -0.186 -0.033 -0.132 -0.011 -0.321 0.087 -0.060
US TBill Rate -0.190 0.022 -0.090 -0.339 0.271 -0.151 0.026 -0.347 0.123 -0.358 0.055 -0.045

Unemployment Rate 0.219 0.035 -0.456 -0.003 -0.371 -0.177 0.311 0.083 -0.216 0.092 -0.578 -0.057
Nominal GDP Growth -0.020 -0.132 -0.047 0.872 -0.075 0.037 0.129 -0.094 -0.129 -0.030 -0.185 -0.094

Real GDP Growth -0.680 0.010 -0.070 -0.031 0.267 0.233 -0.055 -0.118 0.437 -0.262 -0.047 0.327
External Debt (% of GDP) 0.355 -0.256 -0.007 0.084 -0.216 0.358 0.053 0.045 -0.017 0.493 0.005 0.202

FDI (% of GDP) -0.265 -0.105 -0.629 -0.164 0.069 0.329 0.324 -0.047 0.710 -0.158 -0.273 0.455
Overall Fiscal Balance (% of GDP) -0.596 0.283 0.281 -0.664 0.306 0.168 -0.440 -0.156 0.268 -0.168 0.349 0.326

Interest Expenditure (% of total Expenditure) 0.878 -0.183 -0.390 0.316 -0.337 -0.294 0.547 0.006 -0.293 0.064 -0.354 -0.461
Change in Net Claims on Central Government 0.159 0.047 0.178 0.133 0.102 -0.059 -0.018 0.078 -0.030 0.083 0.148 -0.145

GDP per Capita -0.088 -0.096 0.849 -0.037 0.416 -0.314 -0.601 -0.129 -0.320 0.250 0.382 -0.339
Average Effective Interest Rate -0.307 -0.141 0.642 0.098 0.333 -0.237 -0.461 -0.080 -0.194 0.081 0.194 -0.236

Gross Financing Need 0.585 -0.341 -0.617 0.421 -0.313 -0.014 0.693 -0.053 0.095 0.061 -0.450 -0.190
Average Maturity 0.254 0.089 -0.061 -0.260 0.218 -0.332 -0.185 -0.026 -0.172 0.321 -0.084 -0.324

Primary Balance Gap (% of GDP) -0.138 -0.093 -0.108 0.262 0.242 -0.021 -0.182 -0.258 0.194 -0.251 0.028 -0.048
Foreign Exchange Debt (% of GDP) 0.842 -0.207 0.162 0.311 -0.148 -0.351 0.086 -0.008 -0.575 0.343 -0.075 -0.552
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Interest-
Growth
Differ-
ential

Primary
Balance
(% of
GDP)

Short
Term
Debt
(% of
total)

Short
Term
Debt
(% of
FX Re-
serves)

Debt
owed to
Com-
mercial
Banks
(% of
total)

Concessional
Debt
(% of
total)

Debt
owed to
Multi-
lateral
Cred-
itors
(% of
total)

Debt
Service
due
(% of
GDP)

FX Re-
serves
Growth

LIBOR US
TBill
Rate

Unemployment
Rate

Nominal
GDP
Growth

Real
GDP
Growth

External
Debt
(% of
GDP)

FDI
(% of
GDP)

Overall
Fiscal
Balance
(% of
GDP)

Interest
Expen-
diture
(% of
total
Expen-
diture)

1.000
0.673 1.000
-0.131 -0.285 1.000
-0.160 -0.249 0.733 1.000
-0.297 0.206 0.359 0.427 1.000
-0.615 -0.593 -0.399 -0.429 -0.417 1.000
-0.241 -0.156 -0.741 -0.689 -0.470 0.818 1.000
0.444 0.370 -0.066 0.108 0.153 -0.493 -0.378 1.000
0.078 0.146 -0.007 -0.128 0.009 -0.077 -0.040 -0.149 1.000
0.149 0.003 0.041 -0.147 -0.162 0.044 0.056 -0.248 0.342 1.000
0.221 0.151 0.014 -0.098 -0.135 -0.060 -0.039 -0.092 0.462 0.876 1.000
0.494 0.392 0.015 0.350 0.037 -0.418 -0.170 0.035 -0.006 0.085 0.081 1.000
-0.617 -0.056 -0.121 0.121 0.590 0.101 0.033 -0.061 0.054 -0.304 -0.317 -0.102 1.000
-0.645 -0.476 0.281 0.441 0.195 0.229 -0.121 -0.268 0.126 -0.172 -0.023 -0.316 0.377 1.000
0.194 0.012 -0.259 0.121 -0.117 -0.052 -0.028 0.742 -0.284 -0.226 -0.162 0.117 -0.023 -0.182 1.000
0.167 -0.035 0.358 0.553 0.066 -0.442 -0.511 0.249 0.169 -0.104 0.060 0.225 -0.050 0.344 0.102 1.000
0.053 -0.115 0.491 0.163 -0.268 0.054 -0.210 -0.327 0.148 0.348 0.414 -0.073 -0.538 0.211 -0.384 0.031 1.000
0.571 0.790 -0.568 -0.325 0.113 -0.385 0.115 0.561 -0.019 -0.142 -0.068 0.379 0.094 -0.559 0.421 -0.049 -0.609 1.000
-0.162 -0.139 -0.256 -0.299 -0.173 0.300 0.316 0.037 -0.073 -0.152 -0.291 -0.404 0.068 -0.063 0.110 -0.354 -0.235 0.046
-0.462 -0.423 -0.292 -0.478 -0.335 0.841 0.655 -0.508 -0.143 0.012 -0.126 -0.341 0.006 -0.013 -0.109 -0.673 0.162 -0.358
-0.715 -0.592 -0.204 -0.231 -0.144 0.825 0.567 -0.606 -0.097 -0.088 -0.233 -0.392 0.276 0.321 -0.221 -0.513 0.074 -0.523
0.276 0.442 -0.417 -0.019 0.245 -0.384 -0.041 0.629 0.041 -0.252 -0.138 0.219 0.340 -0.170 0.460 0.319 -0.757 0.761
0.289 -0.045 -0.439 -0.331 -0.682 0.131 0.200 0.038 -0.082 0.101 0.106 -0.024 -0.284 -0.180 0.276 -0.105 -0.025 0.055
-0.198 0.200 0.011 0.057 0.164 -0.080 -0.155 -0.051 0.333 -0.317 -0.107 -0.169 0.390 0.363 -0.172 0.141 0.105 0.006
0.286 0.439 -0.717 -0.530 -0.098 0.109 0.447 0.382 -0.213 -0.168 -0.173 0.164 0.077 -0.566 0.561 -0.457 -0.560 0.771

Change
in Net
Claims
on Cen-
tral
Govern-
ment

GDP
per
Capita

Average
Effec-
tive
In-
terest
Rate

Gross
Financ-
ing
Need

Average
Matu-
rity

Primary
Balance
Gap
(% of
GDP)

Foreign
Ex-
change
Debt
(% of
GDP)

1.000
0.237 1.000
0.247 0.866 1.000
0.116 -0.579 -0.478 1.000
0.070 0.141 0.018 -0.048 1.000
-0.024 -0.065 0.066 0.046 -0.158 1.000
0.185 0.232 -0.048 0.410 0.243 -0.132 1.000

(continued)
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1.A.3 Robustness Checks
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Table 1.9: Robustness check 1: “Narrow” fiscal distress episodes

Coeff. SE C(0) Obs.

Output Gap 0.194 0.076 0.995 2955
FX Reserves Growth -0.011 0.006 0.979 2736

CPI Inflation 0.025 0.012 0.978 2576
FX Reserves (% of GDP) -0.049 0.024 0.977 2788

Primary Balance Gap (% of GDP) -0.105 0.057 0.968 453
Gross Financing Need 0.032 0.017 0.965 502

Real Interest Rate 0.064 0.037 0.959 1263
Openness: (M+X)/ GDP -0.010 0.006 0.951 2859

Current Account Balance (% of GDP) -0.037 0.024 0.940 2882
Change in Net Claims on Central Government 0.000 0.000 0.939 2415

Overall Fiscal Balance (% of GDP) -0.083 0.054 0.939 1640
Interest Expenditure (% of total Expenditure) 0.042 0.030 0.920 1513

FX Reserve Coverage -0.023 0.021 0.870 1385
Average Maturity -0.064 0.062 0.850 514

Nominal GDP Growth 0.012 0.012 0.832 2812
External Debt (% of GDP) -0.005 0.006 0.831 2081

Debt owed to Multilateral Creditors (% of total) -0.012 0.015 0.783 1509
Foreign Exchange Debt (% of GDP) 0.009 0.011 0.782 994

Concessional Debt (% of total) -0.006 0.010 0.730 1509
Debt Service due (% of GDP) -0.030 0.055 0.708 1479

Short Term External Debt (% of GDP) -0.011 0.020 0.702 1834
Real Exchange Rate Undervaluation -0.003 0.008 0.671 2646

Average Effective Interest Rate 0.003 0.008 0.651 1556
Interest-Growth Differential -0.006 0.017 0.649 1920

Short Term Debt (% of total) -0.005 0.013 0.645 1797
GDP per Capita 0.018 0.057 0.627 2896

Debt owed to Commercial Banks (% of total) 0.006 0.018 0.620 1423
Domestic Credit Gap 0.001 0.002 0.609 2588

US TBill Rate 0.015 0.060 0.600 3280
Debt (% of GDP) -0.001 0.006 0.558 2678

Short Term Debt (% of FX Reserves) 0.000 0.001 0.551 1736
LIBOR 0.009 0.073 0.547 3280

Unemployment Rate -0.004 0.039 0.544 2175
Amortisation of Total Public Debt (% of GDP ) 0.002 0.021 0.541 1767

Real GDP Growth -0.004 0.045 0.533 2874
Primary Balance (% of GDP) -0.004 0.061 0.528 1479

FDI (% of GDP) 0.003 0.067 0.516 2579

Note: Reported are estimation results from the EBA regression. The dependent variable is the
narrower fiscal stress definition, which excludes Currency and Banking crises as identified in Reinhart
and Rogoff (2008). Estimations are performed using the pooled logit model, with 2 additional controls
per specification. The variables are ranked according to their robustness, with most robust indicators
placed on top. The sample covers 29 advanced and 52 emerging economies for the period 1970-2010.
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Table 1.10: Robustness check 2: Emerging economies

Coeff. SE C(0) Obs.

Output Gap 0.259 0.070 1.000 3188
FX Reserves Growth -0.012 0.004 0.999 3051

FX Reserves (% of GDP) -0.040 0.013 0.999 3103
Current Account Balance (% of GDP) -0.033 0.014 0.989 3275

Real GDP Growth -0.050 0.023 0.987 3269
Overall Fiscal Balance (% of GDP) -0.066 0.035 0.972 2035
Primary Balance Gap (% of GDP) -0.029 0.017 0.958 688

Unemployment Rate -0.035 0.023 0.937 2546
Primary Balance (% of GDP) -0.056 0.042 0.911 1874

Openness: (M+X)/ GDP -0.004 0.003 0.896 3254
Gross Financing Need 0.016 0.013 0.885 735

Change in Net Claims on Central Government 0.000 0.000 0.865 2415
FDI (% of GDP) 0.037 0.041 0.816 2972

FX Reserve Coverage -0.012 0.015 0.784 1581
Short Term Debt (% of total) -0.006 0.008 0.770 2107

Concessional Debt (% of total) -0.004 0.006 0.766 1632
LIBOR 0.039 0.054 0.766 3670

CPI Inflation 0.004 0.006 0.750 2804
Short Term External Debt (% of GDP) -0.007 0.010 0.749 2142

Domestic Credit Gap 0.001 0.002 0.748 2588
External Debt (% of GDP) -0.002 0.004 0.719 2475

Average Maturity -0.020 0.039 0.698 733
Real Interest Rate 0.008 0.015 0.696 1387

Real Exchange Rate Undervaluation -0.002 0.005 0.658 2877
Interest-Growth Differential 0.003 0.009 0.638 2154

Foreign Exchange Debt (% of GDP) 0.002 0.007 0.629 1124
Short Term Debt (% of FX Reserves) 0.000 0.001 0.622 1984

Debt (% of GDP) -0.001 0.004 0.621 3073
Debt owed to Commercial Banks (% of total) -0.005 0.016 0.618 1423

Average Effective Interest Rate -0.001 0.003 0.607 1951
US TBill Rate 0.006 0.047 0.552 3592

GDP per Capita 0.004 0.035 0.551 3291
Debt Service due (% of GDP) -0.003 0.020 0.551 1602

Nominal GDP Growth -0.001 0.006 0.547 3046
Debt owed to Multilateral Creditors (% of total) 0.001 0.009 0.545 1632
Amortisation of Total Public Debt (% of GDP ) -0.001 0.009 0.542 2030
Interest Expenditure (% of total Expenditure) 0.001 0.014 0.531 1908

Note: Reported are estimation results from the EBA regression. The dependent variable is Baldacci
et al. (2011) definition of fiscal distress: (i) debt default or restructuring, (ii) sovereign bond yield
pressure, (iii) large IMF-supported program, and (iv) excessive inflation. Estimations are performed
using the pooled logit model, with 2 additional controls per specification. The variables are ranked
according to their robustness, with most robust indicators placed on top. The sample covers 52
emerging economies for the period 1970-2015.
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Table 1.11: Robustness check 3: Number of control variables

Coeff. SE C(0) Obs.

Output Gap 0.333 0.083 1.000 3188
Current Account Balance (% of GDP) -0.054 0.017 0.999 3275

FX Reserves (% of GDP) -0.038 0.014 0.996 3103
FX Reserves Growth -0.011 0.004 0.993 3051
Real GDP Growth -0.045 0.028 0.947 3269

Openness: (M+X)/ GDP -0.006 0.004 0.941 3254
Primary Balance Gap (% of GDP) -0.028 0.019 0.935 688
Overall Fiscal Balance (% of GDP) -0.050 0.038 0.907 2035

Unemployment Rate -0.030 0.025 0.891 2546
CPI Inflation 0.009 0.008 0.858 2804

Primary Balance (% of GDP) -0.045 0.043 0.853 1874
Short Term Debt (% of total) -0.009 0.009 0.849 2107

Gross Financing Need 0.014 0.014 0.842 735
Domestic Credit Gap 0.003 0.003 0.834 2588

Change in Net Claims on Central Government 0.000 0.000 0.786 2415
LIBOR 0.054 0.069 0.785 3670

Concessional Debt (% of total) -0.005 0.007 0.766 1632
FX Reserve Coverage -0.011 0.016 0.761 1581

Debt (% of GDP) -0.003 0.005 0.755 3073
Short Term External Debt (% of GDP) -0.008 0.011 0.754 2142

Real Interest Rate 0.015 0.022 0.753 1387
External Debt (% of GDP) -0.003 0.004 0.746 2475

Foreign Exchange Debt (% of GDP) 0.005 0.007 0.745 1124
Average Maturity -0.024 0.041 0.719 733

Real Exchange Rate Undervaluation -0.003 0.005 0.689 2877
Interest Expenditure (% of total Expenditure) 0.007 0.016 0.660 1908

Interest-Growth Differential -0.004 0.011 0.646 2154
FDI (% of GDP) 0.014 0.038 0.645 2972

Debt owed to Commercial Banks (% of total) -0.008 0.021 0.638 1423
US TBill Rate -0.021 0.062 0.630 3592

Nominal GDP Growth 0.002 0.008 0.600 3046
Debt Service due (% of GDP) -0.006 0.024 0.599 1602

GDP per Capita 0.008 0.043 0.576 3291
Amortisation of Total Public Debt (% of GDP ) -0.002 0.011 0.570 2030

Average Effective Interest Rate 0.000 0.003 0.529 1951
Debt owed to Multilateral Creditors (% of total) -0.001 0.011 0.526 1632

Short Term Debt (% of FX Reserves) 0.000 0.001 0.518 1984

Note: Reported are estimation results from the EBA regression. The dependent variable is Baldacci
et al. (2011) definition of fiscal distress: (i) debt default or restructuring, (ii) sovereign bond yield
pressure, (iii) large IMF-supported program, and (iv) excessive inflation. Estimations are performed
using the pooled logit model, with 3 additional controls per specification. The variables are ranked
according to their robustness, with most robust indicators placed on top. The sample covers 29
advanced and 52 emerging economies for the period 1970-2015.
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Table 1.12: Robustness check 4: Random effects logit model

Coeff. SE C(0) Obs.

Output Gap 0.302 0.071 1.000 3188
Current Account Balance (% of GDP) -0.054 0.016 1.000 3275

FX Reserves Growth -0.010 0.003 0.998 3051
FX Reserves (% of GDP) -0.035 0.013 0.997 3103

Real GDP Growth -0.041 0.024 0.960 3269
Primary Balance Gap (% of GDP) -0.029 0.018 0.950 688

Openness: (M+X)/ GDP -0.005 0.003 0.948 3254
Overall Fiscal Balance (% of GDP) -0.055 0.035 0.941 2035

Gross Financing Need 0.019 0.015 0.891 735
Primary Balance (% of GDP) -0.048 0.041 0.879 1874

Change in Net Claims on Central Government 0.000 0.000 0.861 2415
Unemployment Rate -0.025 0.024 0.851 2546

Foreign Exchange Debt (% of GDP) 0.007 0.007 0.833 1124
Short Term Debt (% of total) -0.007 0.008 0.823 2107

LIBOR 0.045 0.050 0.814 3670
FX Reserve Coverage -0.012 0.015 0.779 1581

Concessional Debt (% of total) -0.005 0.006 0.775 1632
CPI Inflation 0.004 0.006 0.771 2804

Real Exchange Rate Undervaluation -0.003 0.004 0.766 2877
Domestic Credit Gap 0.001 0.002 0.757 2588

Real Interest Rate 0.010 0.016 0.735 1387
Short Term External Debt (% of GDP) -0.005 0.008 0.721 2142

Debt (% of GDP) -0.002 0.004 0.702 3073
External Debt (% of GDP) -0.001 0.003 0.682 2475

Average Maturity -0.017 0.043 0.657 733
FDI (% of GDP) 0.012 0.035 0.636 2972

Interest Expenditure (% of total Expenditure) 0.005 0.017 0.617 1908
Debt owed to Commercial Banks (% of total) -0.005 0.016 0.614 1423

US TBill Rate 0.012 0.043 0.612 3592
Amortisation of Total Public Debt (% of GDP ) -0.002 0.009 0.595 2030

Short Term Debt (% of FX Reserves) 0.000 0.001 0.585 1984
Average Effective Interest Rate 0.000 0.003 0.554 1951
Debt Service due (% of GDP) -0.003 0.021 0.551 1602

GDP per Capita -0.003 0.040 0.526 3291
Nominal GDP Growth 0.000 0.006 0.525 3046

Debt owed to Multilateral Creditors (% of total) 0.000 0.010 0.504 1632
Interest-Growth Differential 0.000 0.008 0.503 2154

Note: Reported are estimation results from the EBA regression. The dependent variable is Baldacci
et al. (2011) definition of fiscal distress: (i) debt default or restructuring, (ii) sovereign bond yield
pressure, (iii) large IMF-supported program, and (iv) excessive inflation. Estimations are performed
using the random effects logit model, with 2 additional controls per specification. The variables are
ranked according to their robustness, with most robust indicators placed on top. The sample covers
29 advanced and 52 emerging economies for the period 1970-2015.
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Table 1.13: Robustness check 5: Pooled probit model

Coeff. SE C(0) Obs.

Output Gap 0.138 0.034 1.000 3188
Current Account Balance (% of GDP) -0.025 0.007 1.000 3275

FX Reserves (% of GDP) -0.016 0.005 0.998 3103
FX Reserves Growth -0.003 0.001 0.995 3051

Primary Balance Gap (% of GDP) -0.018 0.009 0.973 688
Openness: (M+X)/ GDP -0.003 0.001 0.969 3254

Real GDP Growth -0.020 0.011 0.959 3269
Overall Fiscal Balance (% of GDP) -0.026 0.016 0.954 2035
Foreign Exchange Debt (% of GDP) 0.004 0.003 0.909 1124

Primary Balance (% of GDP) -0.023 0.018 0.905 1874

Gross Financing Need 0.008 0.007 0.872 735
Short Term Debt (% of total) -0.004 0.004 0.861 2107

Change in Net Claims on Central Government 0.000 0.000 0.844 2415
Unemployment Rate -0.010 0.010 0.832 2546

LIBOR 0.020 0.024 0.798 3670
CPI Inflation 0.002 0.003 0.798 2804

FX Reserve Coverage -0.007 0.008 0.796 1581
Domestic Credit Gap 0.001 0.001 0.781 2588

Concessional Debt (% of total) -0.002 0.003 0.764 1632
Interest Expenditure (% of total Expenditure) 0.005 0.007 0.764 1908

Short Term External Debt (% of GDP) -0.003 0.004 0.753 2142
Real Interest Rate 0.005 0.008 0.742 1387

Real Exchange Rate Undervaluation -0.001 0.002 0.741 2877
Debt (% of GDP) -0.001 0.002 0.735 3073

External Debt (% of GDP) -0.001 0.001 0.717 2475
Average Maturity -0.010 0.020 0.700 733
FDI (% of GDP) 0.005 0.016 0.633 2972

Amortisation of Total Public Debt (% of GDP ) -0.001 0.004 0.626 2030
Debt owed to Commercial Banks (% of total) -0.002 0.008 0.618 1423

US TBill Rate 0.004 0.020 0.585 3592
Nominal GDP Growth 0.001 0.003 0.581 3046

Short Term Debt (% of FX Reserves) 0.000 0.000 0.576 1984
GDP per Capita -0.003 0.017 0.570 3291

Debt Service due (% of GDP) -0.001 0.010 0.555 1602
Debt owed to Multilateral Creditors (% of total) 0.001 0.005 0.544 1632

Interest-Growth Differential 0.000 0.004 0.542 2154
Average Effective Interest Rate 0.000 0.001 0.520 1951

Note: Reported are estimation results from the EBA regression. The dependent variable is Baldacci
et al. (2011) definition of fiscal distress: (i) debt default or restructuring, (ii) sovereign bond yield
pressure, (iii) large IMF-supported program, and (iv) excessive inflation. Estimations are performed
using the pooled probit model, with 2 additional controls per specification. The variables are ranked
according to their robustness, with most robust indicators placed on top. The sample covers 29
advanced and 52 emerging economies for the period 1970-2015.
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Table 1.14: Robustness check 6: Using new measure of output gap

Coeff. SE C(0) Obs.

Output Gap 0.074 0.018 1.000 3188
Current Account Balance (% of GDP) -0.025 0.007 1.000 3275

FX Reserves (% of GDP) -0.016 0.005 0.998 3103
FX Reserves Growth -0.003 0.001 0.995 3051

Primary Balance Gap (% of GDP) -0.018 0.009 0.971 688
Openness: (M+X)/ GDP -0.003 0.001 0.967 3254

Real GDP Growth -0.019 0.011 0.954 3269
Overall Fiscal Balance (% of GDP) -0.026 0.016 0.953 2035
Foreign Exchange Debt (% of GDP) 0.004 0.003 0.907 1124

Primary Balance (% of GDP) -0.023 0.018 0.904 1874

Gross Financing Need 0.008 0.007 0.873 735
Short Term Debt (% of total) -0.004 0.004 0.859 2107

Change in Net Claims on Central Government 0.000 0.000 0.843 2415
Unemployment Rate -0.010 0.010 0.835 2546

LIBOR 0.020 0.024 0.800 3670
FX Reserve Coverage -0.007 0.008 0.797 1581

CPI Inflation 0.002 0.003 0.797 2804
Domestic Credit Gap 0.001 0.001 0.781 2588

Interest Expenditure (% of total Expenditure) 0.005 0.007 0.767 1908
Concessional Debt (% of total) -0.002 0.003 0.766 1632

Short Term External Debt (% of GDP) -0.003 0.004 0.753 2142
Real Exchange Rate Undervaluation -0.001 0.002 0.744 2877

Real Interest Rate 0.005 0.008 0.738 1387
Debt (% of GDP) -0.001 0.002 0.732 3073

External Debt (% of GDP) -0.001 0.001 0.716 2475
Average Maturity -0.010 0.020 0.695 733
FDI (% of GDP) 0.006 0.016 0.639 2972

Amortisation of Total Public Debt (% of GDP ) -0.001 0.004 0.628 2030
Debt owed to Commercial Banks (% of total) -0.002 0.008 0.613 1423

US TBill Rate 0.005 0.020 0.589 3592
Nominal GDP Growth 0.001 0.003 0.581 3046

Short Term Debt (% of FX Reserves) 0.000 0.000 0.575 1984
GDP per Capita -0.003 0.017 0.569 3291

Debt Service due (% of GDP) -0.001 0.010 0.556 1602
Debt owed to Multilateral Creditors (% of total) 0.001 0.005 0.543 1632

Interest-Growth Differential 0.000 0.004 0.539 2154
Average Effective Interest Rate 0.000 0.001 0.522 1951

Reported are estimation results from the EBA regression. The dependent variable is Baldacci et al.
(2011) definition of fiscal distress: (i) debt default or restructuring, (ii) sovereign bond yield pressure,
(iii) large IMF-supported program, and (iv) excessive inflation. Estimations are performed using the
pooled Logit model, with 2 additional controls per specification. The output gap is generated using
a one-sided Christiano-Fitzgerald filter. The variables are ranked according to their robustness, with
most robust indicators placed on top. The sample covers 29 advanced and 52 emerging economies for
the period 1970-2015.
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CHAPTER 2

Bayesian Structural VAR models: a new approach for

prior beliefs on impulse responses

2.1 Introduction

Structural Vector Autoregressive models (SVARs) are extensively used in applied Macroe-
conomics. To provide results that can be interpreted economically, SVARs require
identifying restrictions. It has become popular to introduce identifying restrictions in
the form of sign restrictions on selected structural parameters. This is typically done
using a Bayesian approach with informative prior beliefs that reflect the intended signs
(Uhlig, 2005, Baumeister and Hamilton, 2015, Arias et al., 2018).

Implementing sign restrictions presents the researcher with a trade-off. There exist
infinitely many prior probability distributions that reflect a desired set of sign restric-
tions. Out of this large class of priors, the literature often limits the analysis to the
Normal-inverse-Wishart-Uniform prior (hereafter NiWU) in order to simplify the anal-
ysis of the posterior distribution (Uhlig, 2005, Rubio-Ramirez et al., 2010). However,
this constrains the type of prior information introduced by the researcher to the one
that can be modelled by the Normal-inverse-Wishart-Uniform prior. This is an im-
portant limitation, given that, even in a large sample, the results are affected by the
specific probability distribution used to model the desired sign restrictions. Yet, mov-
ing beyond the NiWU prior makes the posterior distribution (and hence the results)
more challenging to analyse (Arias et al., 2018). A trade-off hence emerges between
the flexibility in the selection of the prior distribution used, advocated by Baumeister
and Hamilton (2015), and the tractability of the posterior distribution, favoured by
Rubio-Ramirez et al. (2010).

The first contribution of the paper consists in developing a methodology that makes
the above trade-off disappear. We build our methodology on a new importance sampler

This chapter is based on joint work with Michele Piffer.
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that uses the posterior distribution of the convenient NiWU case as an importance
distribution. While relatively unchallenging to implement, importance samplers require
that the importance distribution covers the relevant support of the target distribution
(Creal, 2012). When working directly on structural parameters, this condition can be
argued to hold only for prior beliefs that do not differ considerably from the NiWU
prior, a case explored by Arias et al. (2018). We build on their work and show that
this condition holds for a much wider class of prior beliefs if one builds the importance
sampler in two separate stages: first on the reduced form parameters, and second on
the mapping into structural parameters. We show that, after acknowledging this point,
the trade-off mentioned above disappears: one can follow Baumeister and Hamilton
(2015) and use prior beliefs that differ considerably from the one implied in the NiWU
approach, but the sampling of the corresponding posterior distribution does not become
technically more involved compared to the techniques developed by Rubio-Ramirez
et al. (2010) for the NiWU approach. Accordingly, the methodology offers the most
desirable scenario, as it allows for prior flexibility at no additional computational cost.
To further confirm the effectiveness of our sampler, we show that the results of the
applications in this paper are the same when exploring the posterior distribution using
the sequential approach by Waggoner et al. (2016), which is more time-demanding
but also suitable to explore potentially ill-shaped distributions. We first develop our
methodology by focusing on the case of only sign restrictions, and then discuss an
extension that combines sign and zero restrictions.

The second contribution of the paper consists in proposing a new approach for sign
restrictions on impulse responses, which are arguably the most important statistic
of SVAR models. On the one hand, starting from prior beliefs directly on impulse
responses makes it technically demanding to explore the posterior distribution (see
Kociecki, 2010, Barnichon and Matthes, 2018 and Plagborg-Møller, 2019). On the
other hand, as discussed above, the use of the NiWU approach reduces the flexibility
on the actual prior probability distribution introduced on the parameters of interest.
We propose a compromise that parametrizes the structural VAR model as in Uhlig
(2005), hence in the reduced form autoregressive elements and in the contemporaneous
impulse responses. We then depart from Uhlig (2005) and do not restrict the prior
on the contemporaneous impulse responses to the one implied by the NiWU prior.
Instead, we allow for a general prior distribution. In offering prior flexibility on the
impulse response horizon where flexibility is needed the most (Canova and Pina, 2005
and Canova and Paustian, 2011), our approach provides a balance between prior flex-
ibility on the key structural parameters, and conditionally conjugate priors on all the
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remaining parameters. We then explore the posterior distribution of the remaining
parameters using the newly developed importance sampler.

Having developed a tractable framework that can handle a wide class of prior distri-
butions on the contemporaneous impulse responses, we illustrate that indeed the results
in applied work can be sensitive to the prior distribution used. When mapping reduced
form parameters into structural parameters, the criterion used in the NiWU approach
focuses on orthogonal matrices, namely that orthogonal matrices are conditionally
uniformly distributed. This approach can unintentionally treat as equally plausible
orthogonal matrices that imply an impact of a one-standard-deviation shock as big as
a multiple of the standard deviation of a variable of the model. We propose a prior
specification that ensures that the prior mass associated with one-standard-deviation
shocks is in line with the scaling of the variables, in a way modelled explicitly by the
researcher through a training sample and a set of hyperparameters. We show that this
new feature can tighten posterior bands considerably, potentially leading to new results
in applied work. Compared to the NiWU approach, the tighter posterior bands do not
trivially come from tighter priors (and indeed we show that the opposite holds). They
come from the fact that the mapping from reduced form to structural parameters is
made consistent with the volatility of the variables. Alternative prior specifications
are, of course, possible. All in all, the paper suggests that prior beliefs on structural
parameters should be selected carefully, as advocated by Baumeister and Hamilton
(2015), but also that the NiWU approach advocated by Rubio-Ramirez et al. (2010)
offers the required point of departure to explore the posterior distribution associated
with this more general approach.

Since the traditional NiWU approach to sign restricted SVARs frequently implies
relatively wide posterior bands on impulse responses, many studies have proposed
to combine sign restrictions with additional restrictions on other statistics (see, for
example, Kilian and Murphy, 2012, Antoĺın-Dı́az and Rubio-Ramı́rez, 2018 and Amir-
Ahmadi and Drautzburg, 2018). We argue that taking into account the scaling of the
variables when forming prior beliefs to model sign restrictions on impulse responses
is sufficient to deliver sharper inference, to the point that no additional restriction is
needed to interpret the results. We show this by applying our methodology to the
long lasting debate on what drives the unexpected variations in the price of oil and
the associated effects on the US economy. Kilian and Murphy (2012) address this
question using sign restrictions on contemporaneous impulse responses applied in a
setting close to the NiWU approach. They show that sign restrictions alone deliver
posterior bands that are too wide to disentangle the different channels driving oil price
dynamics. They propose to add restrictions on the elasticity of oil supply, and find
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that oil demand shocks are the main drivers of oil price dynamics. We show, instead,
that applying the same initial sign restrictions in a way that is more consistent with
the scaling of the variables can tighten posterior bands considerably without need for
restrictions on elasticities (as in Kilian and Murphy, 2012) nor on estimated shocks
and historical decompositions (as in the extension of the model by Kilian and Murphy,
2012 proposed by Antoĺın-Dı́az and Rubio-Ramı́rez, 2018).

More precisely, we construct our application to the oil market as follows. We use
a prior probability distribution that treats different structural shocks symmetrically,
ensuring that the prior does not favour one shock over the other as drivers of the
variables in the model. We then show that the wide posterior bands in Kilian and
Murphy (2012) can be replicated using prior beliefs that attach 80% prior probability
mass to very strong effects of one-standard-deviation shocks on the variables of the
model, based on an initial quantitative assessment from a training sample. Last, we
tighten the prior mass by making it more consistent with the scaling of each variable
of the model. While confirming the initial results by Kilian and Murphy (2012) on the
importance of oil demand shocks, we find that oil supply shocks have a considerable
effect on oil price dynamics. Quantitatively, we find that as much as 30-40% of the
forecast error variance of the real price of oil can be explained by oil supply shocks.
Our results confirm the findings by Baumeister and Hamilton (2019) and Caldara et al.
(2018). We also find that oil supply shocks were indeed the prevailing driver of the
drop in oil production during the first Gulf War, a feature that Antoĺın-Dı́az and
Rubio-Ramı́rez (2018) introduce as an identifying restriction.

From the methodological point of view, we complement the work by Sims and Zha
(1998) and Baumeister and Hamilton (2015) and study the case of beliefs on con-
temporaneous impulse responses rather than on the contemporaneous relation among
variables. Baumeister and Hamilton (2018) combine prior beliefs on contemporaneous
relations and contemporaneous impulse responses. Relative to Baumeister and Hamil-
ton (2018), we focus on impulse responses and propose a different prior specification
and posterior sampler. Last, we relate to Giacomini and Kitagawa (2015) in stressing
the mapping from reduced form to structural parameters, but we concentrate on a
single prior.

The paper is organized as follows. Section 2.2 outlines the methodology proposed
and discusses its relation to the existing literature. Section 2.3 shows an illustrative
example on simulated data based on the estimated bivariate VAR model by Baumeister
and Hamilton (2015). Section 2.4 reports the application to the oil market. Section 2.5
concludes.
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2.2 The methodology

In this section we present the structural VAR model and summarize the traditional
NiWU approach to sign restrictions. We then outline our methodology and discuss the
new importance sampler. Last, we propose one possible prior distribution that can be
used with our approach. Our importance sampler can be used also with other prior
beliefs.

2.2.1 The model

Following Uhlig (2005), we write the structural VAR model as

yt = π0 +

p∑
l=1

Πlyt−l +Bεt,

= Πwt +Bεt, εt ∼ N(0, Ik), (2.1)

where yt is a k × 1 vector of endogenous variables, εt is a k × 1 vector of structural
shocks, and wt = (1,y′t−1, ..,y

′
t−p)

′ is an m× 1 vector of the constant and p lags of the
variables, with m = kp+ 1. The matrix Π = [π0,Π1, ..,Πp] is of dimension k ×m. We
normalize the covariance matrix of εt to the identity matrix.1

Matrix B in equation (2.1) captures the contemporaneous effects of one-standard-
deviation shocks, while future horizons of the impulse responses are calculated using
model (2.1) recursively. Although structural VARs can also be specified in matrix
A = B−1 rather than in B (see, for example, Sims and Zha, 1998), we use model (2.1)
as in Uhlig (2005) in order to emphasize the key objects of interest for our analysis,
which are the contemporaneous impulse responses. We focus on the case in which
the researcher expresses identifying restrictions in the form of sign (and possibly zero)
restrictions on contemporaneous impulse responses.2

1This normalization is frequently used in applications that employ sign restrictions on impulse re-
sponses, see for example Canova and De Nicoló (2002), Uhlig (2005), Benati and Surico (2009).

2Whether the model is more conveniently expressed in A = B−1 or B (or even in a combined form)
depends on whether the identifying restrictions introduced by the researcher are more naturally
expressed on contemporaneous relation among variables or contemporaneous effects of the shocks,
respectively. For example, the literature on the identification of monetary policy shocks employs
restrictions either on B, as in Uhlig (2005), or on A, as in Arias et al. (2019) and Baumeister and
Hamilton (2018). Restrictions imposed on one form might not be apparent in the other form, due
to the nonlinearities in the mapping from one to another. Going through the publications of all top-
five journals and the Journal of Monetary Economics since 1998, we found that around 13% of the
total number of issues checked included at least one application of Structural Vector Autoregressive
models. Of the total number of SVAR applications that we found, approximately 15% specifies the
model in the A form, 76% specifies the model in the B form, and 9% specifies the model in the hybrid
AB form. The detailed list is available at this link.
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The reduced form representation of the structural model is

yt = π0 +

p∑
l=1

Πlyt−l + ut,

= Πwt + ut, ut ∼ N(0,Σ), (2.2)

where it holds that ut = Bεt and Σ = BB′. Orthogonal matrices Q, which by definition
satisfy QQ′ = Ik, allow for the mapping from reduced form to structural parameters,
with

B = h(Σ)Q, (2.3)

and h(Σ) a factorization of Σ satisfying h(Σ)h(Σ)′ = Σ, for example the Cholesky
factorization.

2.2.2 The NiWU approach used in the literature

The most popular approach for sign restricted SVAR models expresses prior beliefs
on the parameters (π,Σ, Q), with π = vec(Π) the km × 1 vector that stacks the
columns of Π. As already discussed in the literature, when p(π,Σ) falls within either
the independent or the conjugate Normal-inverse-Wishart prior, drawing from the joint
posterior distribution p(π,Σ|Y ) is technically convenient (see, for example, Koop et al.,
2010). One can then extract Q matrices uniformly in the parameter space QΣ, defined
as the set of orthogonal matrices such that the sign restrictions on the structural
parameters are satisfied, given a draw of Σ. Draws of Q are retained if the sign
restrictions are satisfied, and are discarded otherwise.

The convenience of the NiWU approach is that efficient algorithms exist for the
sampling of the posterior distribution, developed for example by Rubio-Ramirez et al.
(2010). In addition, the possibility of discarding undesired draws allows for the straight-
forward introduction of sign restrictions not only on contemporaneous impulse re-
sponses, but also on future horizons. The inconvenience is that the prior probability
distribution is not directly specified on the structural parameters of interest, namely
the impulse responses, but on reduced form parameters and on orthogonal matrices.
Since impulse responses are not point identified parameters (or in the terminology by
Rubio-Ramirez et al., 2010, are not exactly identified parameters), the implicit prior
distribution matters also in a large sample and must be selected carefully (Baumeister
and Hamilton, 2015).

To appreciate the importance of the above point, consider for simplicity the case of
sign restrictions on the contemporaneous impulse responses. The restrictions can be
modelled with a probability distribution p(B) that attaches zero mass to the values that
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do not satisfy the restrictions. However, there are infinitely many probability distribu-
tions {p(B)1, p(B)2, p(B)3, ...} that reflect the same candidate sign restrictions. Since
B is not point identified, the posterior distributions {p(B|Y )1, p(B|Y )2, p(B|Y )3, ...}
differ even in a large sample. Accordingly, not only the sign restrictions are impor-
tant, but also the actual probability distribution used to model them (Baumeister and
Hamilton, 2015). Under the NiWU approach the flexibility on p(B) is constrained by
the fact that it is expressed indirectly through p(Σ, Q), that p(Σ) must be the inverse
Wishart probability distribution, and that p(Q|Σ) is uniform in the space QΣ.3

2.2.3 The normal p(B) approach proposed in this paper

To overcome the limitations discussed in the previous section, we propose to express
prior beliefs directly on B. We then develop an importance sampler that ensures that
the additional flexibility on the prior specification does not come at a computational
cost.

2.2.3.1 Prior beliefs expressed directly on (π,B)

We parametrize the model as in equation (2.1) and express prior beliefs on (π, B), i.e.

p(π, B) = p(π|B) · p(B). (2.4)

Since π is identified, p(π) matters less compared to p(B), as long as the sample is
sufficiently long. Hence, as also in the NiWU approach, we restrict p(π) to

π ∼ N(µπ, Vπ), (2.5)

where µπ and Vπ can be a function of B. By contrast, p(B) allows for a large class
of prior distributions, granting the researcher flexibility on the prior beliefs used to
express sign restrictions on key structural parameters.4

3That prior beliefs on one parametrization imply questionable or unintended features on some other
parametrization is to some extent inevitable. Baumeister and Hamilton (2015) argue that prior beliefs
should be judged relative to the structural parametrization of interest, which in our application is B.
Arias et al. (2018) derive analytically the distribution implied by the NiWU approach on structural
parameters. See also Section 2.A.2 in the Appendix.

4As in Baumeister and Hamilton (2015) and Baumeister and Hamilton (2019), we require that p(B)
is everywhere nonnegative, and when integrated over the set of all values of B, it produces a finite
positive number. If the posterior distribution is then explored with our importance sampler, an
additional requirement is that the variance of the weights in Stage A of our algorithm is finite
(Geweke, 1989). We return to this point below as well as in Section 2.A.3.2 of the Appendix.
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As we show in Section 2.A.3 of the Appendix, the joint posterior distribution satisfies

p(π, B|Y ) = p(π|B, Y ) · p(B|Y ), (2.6)

where

π|B, Y ∼ N(µ∗π, V
∗
π ), (2.7)

p(B|Y ) ∝ p(B) · |det(B)|−T · |det(Vπ)|−
1
2 · |det(V ∗π )|

1
2 ·

· e−
1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
, (2.8)

with ỹ, W , µ∗π and V ∗π defined in the Appendix. Drawing from p(π, B|Y ) requires a
suitable posterior sampling procedure for the k2 elements in p(B|Y ), or even for fewer
parameters in case zero restrictions are introduced on B. Draws for the km elements
in π|B, Y can instead be obtained with a standard random number generator.

The above approach strikes a balance between flexibility and tractability. On the
one hand, it grants the researcher flexibility on impulse responses at the horizon where
flexibility is needed the most, which is the horizon of the impact effect. On the other
hand, as also the NiWU approach, it makes the analysis more tractable by using a
normal prior distribution on π. The normality on π is not restrictive except in small
samples, given that π is point identified. Since sign restrictions on impulse responses
are frequently introduced contemporaneously rather than on future horizons, we do
not view our framework as particularly restrictive. In addition, by parametrizing the
model in π, our approach makes it straightforward to use the prior by Litterman (1986)
(which is applied directly on π), simplifying the analysis compared to Sims and Zha
(1998) and Baumeister and Hamilton (2015).

2.2.3.2 A new posterior sampler for p(B|Y )

To make our approach viable in applied work we require an efficient algorithm that
explores the posterior distribution p(B|Y ) from equation (2.8). When prior beliefs p(B)

take the special case implied by the NiWU approach, the posterior distribution p(B|Y )

can be explored using existing algorithms for the NiWU approach (Section 2.A.2 of the
Appendix). We now develop an extension of such algorithms to allow for a wider class
of prior beliefs on B.

We build our sampling procedure on importance sampling techniques. Consider
a parameter vector of interest, θ. Suppose we are interested in sampling from the
target distribution p(θ)target, and suppose we cannot draw from p(θ)target directly, but
can evaluate it. In addition, suppose that we can extract proposal draws from the
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importance function p(θ)importance. To the extent that the importance function fully
covers the support of p(θ)target, we can obtain draws from p(θ)target by resampling with
replacement the draws {θi} obtained from the importance distribution using weights
w(θi) = p(θ=θi)

target

p(θ=θi)importance
(see for example Koop, 2003, chapter 4). A popular diagnostic

metric is the effective sample size ESS =
(∑

i

(
wi/
∑
i

(wi)
)2
)−1

, which captures the

effective number of draws used to represent the target probability, given an initial
number of proposal draws. If the importance function sufficiently covers the support
of the target function, a small effective sample size suggests increasing the number of
draws from the importance function. If, instead, we cannot ensure that the importance
function gives sufficient mass to the support of the target function, the importance
function must be changed irrespectively of the effective sample size (see the simulation
exercise in Section 2.3).

Define p(B|Y )Np(B) as the posterior distribution associated with the general prior
p(B) from our approach, which we denote Np(B) (equation 2.8), and p(B|Y )NiWU

as the posterior distribution associated with the NiWU approach. Since sampling
from p(B|Y )NiWU is not challenging, in principle one could set θ = B, p(θ)target =

p(B|Y )Np(B) and p(θ)importance = p(B|Y )NiWU . Arias et al. (2018) show that this
approach works successfully if the target distribution p(B|Y )Np(B) does not differ too
much from the tractable distribution p(B|Y )NiWU . However, this procedure does not
work in a general framework, because one cannot ensure that p(B|Y )NiWU sufficiently
covers the support of p(B|Y )Np(B), except for special cases in which p(B)Np(B) is close
to the prior on B implied in the NiWU approach.

We circumvent the above challenge by exploring p(B|Y )Np(B) indirectly. First, define
the following functions:

• p(Σ|Y )Np(B): posterior distribution on Σ implied by p(B|Y )Np(B) from equation
(2.8), corresponding to our Np(B) approach which expresses the prior on struc-
tural parameters;

• p(Σ|Y )NiWU : posterior distribution on Σ corresponding to the NiWU approach
which expresses priors on reduced form parameters and rotation matrices;

• p(Q|Σ)Np(B): conditional distribution on Q implicit in the prior p(B) from our
Np(B) approach;

• p(Q|Σ)NiWU : conditional distribution on Q employed in the NiWU approach,
which coincides with a uniform distribution on the space QΣ;

• p(B)Np(B): prior distribution on B used in our Np(B) approach.
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Then, notice that drawing from p(B|Y )Np(B) is equivalent to drawing from p(Σ|Y )Np(B)

and mapping Σ into B using draws of Q from p(Q|Σ)Np(B). Accordingly, consider the
following importance sampling procedure. First, explore p(Σ|Y )Np(B) using p(Σ|Y )NiWU

as an importance function. Since Σ is point identified, p(Σ|Y )NiWU and p(Σ|Y )Np(B)

are close to each other except in small samples, making p(Σ|Y )NiWU a candidate im-
portance function for p(Σ|Y )Np(B). Then, use p(Q|Σ)NiWU as a proposal function
for p(Q|Σ)Np(B) to map draws from p(Σ|Y )Np(B) into draws from p(B|Y )Np(B). Since
p(Q|Σ)NiWU is conditionally uniform, it fully explores the parameter space QΣ, reduc-
ing to zero the probability that p(Q|Σ)NiWU does not explore the relevant parameter
space covered by p(Q|Σ)Np(B). In the first stage, a low effective sample size suggests
that the sample is too short to imply that p(Σ|Y )NiWU and p(Σ|Y )Np(B) are similar
distributions, a conjecture that can be verified indirectly by computing the effective
sample size and employing existing diagnostic procedures. In the second stage, a low
effective sample size only suggests to increase the number of draws from the importance
function.

Section 2.A.3.2 of the Appendix provides a further discussion of the sampler. It
gives the analytical form for p(Σ|Y )NiWU and p(Σ|Y )Np(B), and shows that numerically
evaluating p(Q|Σ)Np(B) only requires evaluating the prior p(B)Np(B). When only sign
restrictions are introduced on B, when µπ and Vπ are not a function of B, and when the
NiWU employed to obtain proposal draws is used in its independent prior specification,
the sampler can then be implemented using the following algorithm:

Our Algorithm (sign restrictions):

Stage A: generate draws from p(Σ|Y )Np(B):

1. run a Gibbs sampler to explore p(π,Σ|Y )NiWU using m1 burn-in repli-
cations and m2 retained replications. Store the retained draws in{

Σd

}m2

d=1
, which by construction represent draws from p(Σ|Y )NiWU ;

2. for each Σd compute weights

wstage A
d =

p(Σ = Σd|Y )Np(B)

p(Σ = Σd|Y )NiWU

∝

∫
B(Σd)

p(B)Np(B)dB

|det(Σd)|−
d+k
2 · e− 1

2
tr[Σ−1

d S]
, (2.9)

with
∫
B(Σd)

p(B)Np(B)dB the integral of p(B)Np(B) along the space of
B that implies BB′ = Σd. Assess if the effective sample size ESSA =(∑

d

(
wstage A
d /

∑
d

(wstage A
d )

)2
)−1

is sufficiently high5;

5An ESS below 0.5 suggests that the weights are unsuitable for re-sampling. See Appendix 2.A.3.2
for a discussion.
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3. randomly select Σd from
{

Σd

}m2

d=1
with replacement using weights

wstage A
d to generate draws from p(Σ|Y )Np(B);

Stage B: map draws from p(Σ|Y )Np(B) into draws from p(B|Y )Np(B):

4. draw an orthogonal matrix (Qd) using the method by Rubio-Ramirez
et al. (2010) and compute Bd = h(Σd)Qd;

5a. if (Bd) satisfies the sign restrictions, store (Bd, Qd) and proceed to
Step 6;

5b. if (Bd) does not satisfy the sign restrictions, repeat Step 4 up to m4

times. Stop as soon as (Bd) satisfies the sign restrictions and proceed
to Step 6, otherwise discard (Σd) and move back to Step 3;

6. repeat Steps 3 to 5 until m5 draws are stored;

7. for all draws
{
Bd, Qd

}m5

d=1
compute weights

wstage B
i =

p(Q = Qd|Σd)Np(B)

p(Q = Qd|Σd)NiWU

∝ p(B = Bd). (2.10)

Assess if the effective sample sizeESSB =
(∑

i

(
wstage B
d /

∑
i

(wstage B
i )

)2
)−1

is larger than a desired minimum number m6. If so, proceed to Step
8, otherwise move back to Steps 3 to 6 and increase m5;

8. generate
{
Bd

}ESSB
d=1

by resampling the draws
{
Bd

}m5

d=1
from Step 7 with

replacement using weights wstage B
d .6

Our algorithm resamples the posterior draws from the NiWU approach and makes them
representative of the posterior distribution associated with the generic prior beliefs p(B)

from our approach. In the rest of the paper we document that the sampling time of
our algorithm is roughly 30 minutes in the oil application and about 6 minutes in the
simulation exercise, depending on the sample size. In Section 2.A.3.2 of the Appendix
we also argue that the size of the dataset beyond which the effective sample size in Stage
A is sufficiently high is relatively small, further suggesting that our algorithm can be
used in samples frequently used in applied work. The only computationally demanding
term to evaluate for our algorithm is

∫
B(Σd)

p(B)Np(B)dB, which we evaluate numerically
as discussed in Section 2.A.3 of the Appendix. Yet, the Appendix shows that an
approximate algorithm that sets

∫
B(Σd)

p(B)Np(B)dB = 1 reaches an almost identical
approximation of the posterior distribution, further reducing the computational time.

6Since ESSB can be much smaller than m5, we resample
{
Bd
}m5

d=1
only ESSB times (or the closest

integer), rather than m5 times. This avoilds unnecessary repetitions.
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Our algorithm offers a way of implementing sign restrictions. Only two modifications
are required to extend the algorithm to account for also zero restrictions on B. First,
the computation of p(Σ|Y )Np(B) (required for the weights in Stage A, Step 2) and the
evaluation of p(Q|Σ)Np(B) (required for the weights in Stage B, Step 7) must now ac-
count for the fact that the mapping from B to Σ features zero restrictions. Accordingly,
a numerical approach must be used to compute the corresponding Jacobian transfor-
mation, and can be done, for example, using the method developed by Arias et al.
(2018). Second, the algorithm generating candidate Q matrices (required in Stage A
for the computation of

∫
B(Σd)

p(B)Np(B)dB and in Stage B to generate proposal draws
for Q), must now be replaced with the methods by either Binning (2013) or Arias et al.
(2018). The existing version of the algorithm can then be applied to the case in which
zero restrictions are introduced on one structural shock of interest.7

To further assess whether the algorithm correctly samples from the posterior, we
also explore p(B|Y )Np(B) using the Dynamic Striated Metropolis-Hastings algorithm by
Waggoner et al. (2016). This alternative algorithm is computationally more demanding,
but can handle potentially irregularly shaped posterior distributions and a large number
of parameters. Using the posterior distribution from this algorithm, we use simulations
to show that the sampling procedure proposed in this section does a good job in
exploring p(B|Y )Np(B) even in relatively small samples. Section 2.A.4 of the Appendix
discusses how we implement the algorithm by Waggoner et al. (2016).

2.2.4 Proposing one possible prior p(B)

The paper has so far developed an approach that uses a general prior distribution
p(B)Np(B) for the contemporaneous impulse responses, while still allowing for fast and
efficient posterior sampling. We conclude the section on the methodology by discussing
one possible prior specification for p(B). Other prior beliefs are also possible, and must
ultimately be chosen by the applied researcher.

Specifying prior beliefs p(B)Np(B) is challenging, because the literature still provides
limited guidance on explicit prior beliefs on structural parameters. Baumeister and
Hamilton (2015) impose restrictions on B−1 rather than on B and use the existing
literature to form prior beliefs on the contemporaneous elasticities among variables.

7In our algorithm, extracting Q matrices from the algorithm by Rubio-Ramirez et al. (2010) ensures
that the orthogonal parameter space Q is explored uniformly, and hence is fully explored. When
zero restrictions are introduced, the uniformity in the extraction of Q is lost, except in the case in
which zero restrictions are introduced on only one structural shock of interest (Arias et al., 2018).
In this case, the full relevant orthogonal parameter space is still explored. When zero restrictions
are introduced on the effects of more than one shock of interest, the distribution p(Q|Σ)NiWU must
be evaluated numerically, and the possibility that the relevant part of the orthogonal space is not
explored must be addressed.
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However, as discussed by Kilian and Lütkepohl (2017), researchers may lack explicit
prior information on the contemporaneous relationship among variables. Instead, they
frequently have prior beliefs that do not go beyond the sign of contemporaneous im-
pulse responses. As an example, one may entertain the belief that an exogenous,
one-standard-deviation monetary increase in the interest rate decreases inflation, but
lacks prior beliefs on the scale of such a decrease.

To overcome this challenge, we propose a prior specification for p(B)Np(B) that builds
on a conventional prior specification used in the literature for p(π) known as the Min-
nesota prior (see, for example, the discussion in Canova, 2007 and Kilian and Lütkepohl,
2017). The crucial step is to take a stand on what is considered a reasonable scale,
or magnitude, for the parameters. With the Minnesota prior, one first associates each
variable with a reasonable scale capturing the volatility of the variables. This is usually
implemented by estimating the variance σi of the residual on univariate AR processes
on each variable, using a training sample. Then, Bayesian shrinkage is introduced
through a set of hyperparameters that shrink the parameters in π towards the random
walk or the white noise process, taking the relative scale of the variables into account.

We propose to extend the above procedure as follows. Call bij the entry of B captur-
ing the effect of a one-standard-deviation shock j to variable i. It can be shown that
the covariance restrictions Σ = BB′ imply

− Σ0.5
ii ≤ bij ≤ Σ0.5

ii , (2.11)

with Σii the i − th element of the diagonal of Σ.8 Accordingly, γi = Σ̂0.5
ii provides

a candidate assessment of the upper bound for bij, where Σ̂ is an estimate based on
a training sample. We then introduce two hyperparameters ψ1 and ψ2 that control
for the location and the spread of p(bij). We use independent normal distributions
N(µij, σij) as follows:

1. if no sign restriction is imposed on bij, set µij = 0 and σij = ψ2γi/1.96, so that
the distribution is symmetric around 0, and 95% of the prior mass is in the space
(−ψ2γi, ψ2γi);

2. if bij is restricted to be positive, start from a normal distribution with µij = ψ1γi

and calibrate the variance such that the distribution has 95% prior mass in the
space (0, ψ2γi);

8Given Σ = BB′, the equations corresponding to the diagonal elements of Σ are Σii = b2i1+b2i2+...+b2ik.
Since Σii is nonnegative and since b2ij ≥ 0, each element bij must satisfy −Σ0.5

ii ≤ bij ≤ Σ0.5
ii . See

also equation (33) in Baumeister and Hamilton (2015).
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3. if bij is restricted to be negative, start from a normal distribution with µij =

−ψ1γi and calibrate the variance such that the distribution has 95% prior mass
in the space (−ψ2γi, 0).

Put differently, since the mode of p(bi,j) equals ψ1γi (if bi,j is restricted to be positive) or
−ψ1γi (if bi,j is restricted to be negative), ψ1 controls for the first moment of the prior.
The hyperparameter ψ2 then controls for the second moment of the prior, given that ψ2

is positively related to the probability mass attached to |bi,j > γi|. The convenience of
the above approach is that the researcher sets a plausible upper bound for the effect of
the shocks by selecting γi, and then explicitly introduces Bayesian shrinkage through
the hyperparameters ψ1 and ψ2. ψ1 and ψ2 can be treated hierarchically, further
providing flexibility on the prior distribution used. If sign restrictions do not identify
all shocks, we suggest to numerically introduce the restriction that the non-identified
shocks do not replicate the sign restrictions of the identified shocks.9 Alternative
specifications are also possible.

2.3 An illustrative example

In this section we outline the intuition for our approach using simulations on a bivariate
VAR model. We then discuss what drives the difference between the Np(B) approach
proposed in this paper and the traditional NiWU approach used in the literature.

2.3.1 Simulation exercise

We build the simulation exercise on the model estimated by Baumeister and Hamilton
(2015). We first employ ordinary least squares to estimate their bivariate reduced form
VAR model, which uses data on the growth rates of the US real labour compensation
and total employment from 1970Q1 through 2014Q4, adding a constant and 8 lags.
We then use the estimated reduced form VAR as the data generating process. We
generate a dataset of 680 draws initializing the data from the estimated unconditional
mean. We discard the first 100 draws to make the data less dependent on the initial
point, and store the next 100 draws to use as a training sample. We then divide the
remaining 480 draws into five pseudo datasets, including up to the first 30, 60, 120,
240 and 480 observations. We use the same training sample for all datasets to improve
the comparison, and to avoid an unreasonably short training sample for the dataset of
smaller size.

9If more than one shock is non-identified, uniqueness could for example be achieved by imposing in
addition that the non-identified shocks have distinct sign patterns.
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For each pseudo dataset, we estimate the structural VAR model from equation (2.1)
by introducing sign restrictions on the contemporaneous impulse responses. We identify
the demand shock and the supply shock as the structural shocks that move wages
and employment in the same and in the opposite direction, respectively. While the
models employ the same sign restrictions, we model such restrictions using different
prior probability distributions. For the NiWU approach, Section 2.2.2, we use the
independent prior specification and specify the inverse Wishart distribution using the
two most popular parametrizations, which are either the improper prior specification
or the specification by Kadiyala and Karlsson (1997).10 For the Np(B) approach,
Section 2.2.3, we introduce prior independence between π and B and specify p(B) as
discussed in Section 2.2.4, setting ψ1 = 0.8 and ψ2 = 1.5 for the illustration. For all
models estimated, we set µπ = 0 and V −1

π = 0 for both the NiWU and the Np(B). All
models include a constant term and 8 lags, as in the DGP.

2.3.2 The intuition behind our importance sampler

We illustrate the intuition behind our posterior sampler by showing the different prob-
ability distributions involved in our algorithm. Figure 2.1 shows the results for the
(1, 2) entry of Σ and B for some of the datasets considered (see Section 2.A.5 of the
Appendix for the full illustration). The left column of Figure 2.1 shows the results
for Σ and displays the marginal distributions of Σ1,2 associated with p(Σ|Y )NiWU and
p(Σ|Y )Np(B). These are the importance density and the target density in Stage A of
the algorithm, respectively. p(Σ|Y )Np(B) is sampled using both our algorithm and the
Dynamic Striated Metropolis-Hastings algorithm by Waggoner et al. (2016). The closer
these two empirical distributions are, the more the algorithm successfully explores the
posterior distribution of interest. The right column of Figure 2.1 reports the equivalent
distributions for B. It shows the marginal distribution of p(B1,2|Y )Np(B) explored using
either our algorithm or the Dynamic Striated Metropolis-Hastings (DSMH) algorithm,
and the proposal distribution obtained when mapping draws from p(Σ|Y )Np(B) into
B using draws from p(Q|Σ)NiWU . See Table 2.5 in the Appendix for how we set the
tuning parameters required in our algorithm, and Table 2.7 for the diagnostics on the
importance weights.

As we see from the left column of Figure 2.1, the dataset with T = 30 observations
is still too small for p(Σ|Y )NiWU (dashed line) to be similar to p(Σ|Y )Np(B) (sampled
by the DSMH, dotted-dashed line), making the reweighted draws a poor approxima-

10The improper prior specification sets d = 0 and S = 0 · Ik. The parametrization by Kadiyala and
Karlsson (1997) sets d = k + 2, and sets S such that E(Σ) equals the diagonal matrix displaying,
on the diagonal, the variance of the residuals in univariate autoregressive processes, estimated on a
training sample.
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Figure 2.1: Illustration of our algorithm

Note: In the left column, the proposal draws are obtained from Step 1 in our algorithm, the
reweighted draws correspond to the same draws reweighted using weights from Step 2, while the
draws associated with the Dynamic Striated Metropolis-Hastings algorithm are obtained indirectly
after running such algorithm on p(B|Y )Np(B). In the right column, the proposal draws correspond
to draws obtained from Step 6 of our algorithm, the reweighted draws are obtained from Step 8,
and the remaining draws are associated with the Dynamic Striated Metropolis-Hastings algorithm
run on p(B|Y )Np(B). See Figure 2.7 to Figure 2.11 in the Appendix for the full illustration.

tion of p(Σ|Y )Np(B). However, as the sample size increases, the likelihood dominates.
This makes p(Σ|Y )NiWU an excellent importance function for p(Σ|Y )Np(B) already for
T = 60, such that the reweighted draws now well approximate p(Σ|Y )Np(B) from the
DSMH sampler. The right column of the figure displays how successful our algorithm is
in sampling the posterior p(B|Y )Np(B). While for T = 30 the distribution p(Σ|Y )Np(B)

is still quite different from the distribution generating proposal draws, the associated
sampling of p(B|Y )Np(B) is already close to what is detected by the Dynamic Stri-
ated Metropolis-Hastings algorithm. For the remaining datasets the approximation
improves even further, showing that our sampler is successful in sampling the posterior
distribution of interest.
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Table 2.1: Performance of our algorithm
Stage A Stage B

T T − p proposal effective relative proposal effective relative
draws sample size effective draws sample size effective

sample size sample size
m2 ESSA ESSA

m2
m5 ESSB ESSB

m5

30 22 50,000 1,894 0.0379 80,000 45,322 0.5665
60 52 50,000 27,594 0.5519 80,000 56,260 0.7033
120 112 50,000 38,853 0.7771 80,000 53,740 0.6718
240 232 50,000 44,156 0.8831 80,000 52,522 0.6565
480 472 50,000 46,672 0.9334 80,000 51,858 0.6482

Table 2.1 provides additional intuition for our algorithm by reporting relevant metrics
from the sampler. As should be expected, the higher is the sample size of the dataset,
the higher is the effective sample size in Stage A, further confirming that the importance
function tends to coincide with the target distribution. By contrast, in Stage B a high
effective sample size is not required for the sampler to successfully explore the posterior
distribution. As Table 2.1 shows, approximately 55% of the initial draws are effectively
used already for T = 60, a ratio that does not change much as the sample size increases.

2.3.3 Comparison to the NiWU approach

Having discussed the key intuition of the sampler, we now illustrate what drives the
difference between the Np(B) and the NiWU approach, and compare the computational
time. To improve the comparison, for each dataset we run the NiWU approach to
generate the same number of draws that are effectively obtained from the Np(B).

Figure 2.2 shows the equivalent of Figure 2.1 by reporting prior and posterior dis-
tributions associated with our Np(B) approach and with the traditional NiWU ap-
proach.11 As we see from Figure 2.2, the prior distributions on Σ1,2 are quite different,
but the associated posterior distributions are very similar already for T = 60. By
contrast, since B is not identified, differences in prior beliefs on B between the NiWU
and the Np(B) approach remain present in the posterior distributions also in a large
sample, as p(Q|Σ)NiWU and p(Q|Σ)Np(B) differ. Figure 2.2 also shows that the poste-
rior distributions associated with the two parametrizations of the NiWU approach are
quite similar already for T = 60. This occurs because, upon learning from the data
about Σ, the remaining posterior uncertainty on B largely comes from p(Q|Σ)NiWU ,
which is the same irrespectively of the parametrization of the inverse Wishart prior.
Note also that p(B|Y )Np(B) is tighter than p(B|Y )NiWU despite p(B)Np(B) being wider

11The prior distribution in the NiWU case with the improper prior specification is approximated using
d = k + 2 and S = 0.01 · I2, see Figure 2.13 in the Appendix.
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Figure 2.2: Comparison to the NiWU approach
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Note: See Figure 2.12 to Figure 2.19 in the Appendix for the full illustration.

than p(B)NiWU . This happens because p(B|Y )NiWU inherits posterior uncertainty from
p(Q|Σ)NiWU , which does not take an explicit stand on which part of the structural pa-
rameter space the researcher considers more reasonable, but accepts what is implied
by the uniformity on QΣ.

The intuition behind the differences between the Np(B) and the NiWU approach
can be further clarified by abstracting from estimation uncertainty and comparing
p(Q|Σ)NiWU to p(Q|Σ)Np(B). In the bivariate case, distributions on Q can be shown
graphically as the distribution on the corresponding rotation angle θ of Givens trans-
formations matrices (see, for example, Fry and Pagan, 2011, as well as the analysis
in Baumeister and Hamilton, 2015). Uniformity on Q is equivalent to uniformity on
θ. The top-left plot of Figure 2.3 shows that indeed the angle of the rotation matri-
ces that replicate draws of Q from the algorithm by Rubio-Ramirez et al. (2010) is
uniformly distributed in the support [−π/2, π/2]. Conditioning on Σtrue, the rotation
angles consistent with the sign restrictions are the subset shown in the bottom-left
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Figure 2.3: Rotation angle implicit in p(Q|Σ)NiWU and p(Q|Σ)Np(B)
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Note: The figure shows the distribution of the rotation angle that ensures Q̃ = Q(θ), with Q(θ)

the Givens transformations matrix
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
and Q a draw from either p(Q|Σ)NiWU or

p(Q|Σ)Np(B). See Section 2.A.3.2 of the Appendix for further details.

plot of the figure, which correspond to QΣtrue . While the NiWU approach treats such
angles as equally plausible, the Np(B) approach does not, preferring instead to take an
explicit stand on the part of the structural parameter space that is considered more
in line with the scaling of the variables. The remaining panels of Figure 2.3 show
the implied distribution on B. Given the constraint from equation (2.11), no draw
of bij is obtained outside of the interval [−Σ0.5

i,i,true,+Σ0.5
i,i,true], as displayed in the fig-

ure. The NiWU approach implies a distribution that is skewed towards such bounds
(equation (33) in Baumeister and Hamilton, 2015 and their Figure 1), while the Np(B)
approach implies a distribution that reflects p(B)Np(B). As the sample size increases,
the posterior distributions p(B|Y )NiWU and p(B|Y )Np(B) approach the ones displayed
in Figure 2.3.12

12Figure 2.3 shows the analysis conditioning on Σtrue. As the sample size increases, both p(Σ|Y )NiWU

and p(Σ|Y )Np(B) collapse to a point mass at Σtrue, making the analysis conditioning on Σtrue rele-
vant as a discussion of the posterior distributions p(B|Y )NiWU and p(B|Y )Np(B). Within the NiWU
approach, the fact that the prior beliefs on B differ across parametrizations while still leading to
almost identical posteriors suggests that it can be misleading to inspect prior beliefs on structural
parameters to study what information the NiWU approach introduces on the results. It is, instead,
best to consider the analysis conditioning on Σtrue. Note also that the uniform distribution in
the full space Q explored by the algorithm by Rubio-Ramirez et al. (2010) is used in our algo-
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Table 2.2: Comparison of the computational time

Np(B) approach NiWU approach

Our algorithm DSMH with with
algorithm improper KK(1997)

Stage A Stage B Total prior prior

T h m s h m s h m s h m s h m s h m s

30 5 52 20 6 12 3 40 24 22
60 5 32 17 5 50 4 35 30 29
120 5 34 17 5 52 7 5 32 31
240 5 37 17 5 55 28 8 34 32
480 5 52 17 6 9 2 25 12 37 37
Note: All codes are run on Matlab, except for the Dynamic Striated Metropolis-Hastings algorithm,
which we coded on Fortran to reduce computational time.

Table 2.2 shows the computational time of the Np(B) approach, the NiWU approach,
and of the Dynamic Striated Metropolis-Hastings algorithm. All applications of the
Np(B) approach and the NiWU approach take only a few minutes to run on Matlab.
The Dynamic Striated Metropolis-Hastings algorithm takes longer to run due to its
sequential nature.

2.4 Application to the oil market

We now apply our methodology to real data and revisit the model of the oil market by
Kilian and Murphy (2012). We show that inference becomes sharper when taking into
account the scaling of the variables in forming prior beliefs to introduce the same sign
restrictions as Kilian and Murphy (2012). The exercise also illustrates to what extent
the results are affected by the actual prior probability distribution used to express the
sign restrictions.

2.4.1 The model

We use the three-variate model by Kilian (2009) and Kilian and Murphy (2012), which
has become standard in the literature. The model includes the percentage variation
in global crude oil production, the detrended index of global real economic activity
developed by Kilian (2009), and the log of the real price of oil, multiplied by 100.
We use the data updated by Antoĺın-Dı́az and Rubio-Ramı́rez (2018), which covers

rithm as a devise to explore the distribution that is uniform in QΣtrue . The marginal distributions
p(Q)NiWU =

∫
p(Q|Σ)NiWU p(Σ)NiWU dΣ and p(Q|Y )NiWU =

∫
p(Q|Σ)NiWU p(Σ|Y )NiWU dΣ are

not necessarily uniform nor they have mass in the full space Q (Figure 2.22 in the Appendix) .
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Table 2.3: Sign restrictions on the contemporaneous impulse responses
A) Sign restrictions used

oil supply aggregate demand oil-specific demand
shock shock shock

Oil production – + +
economic activity – + –
real price of oil + + +

B) Prior distributions modelling the sign restrictions

ψ1 ψ2 Prob(|bi,j | > γi)
prior I wide prior 2 4 0.83
prior II medium prior 1 2 0.53
prior III tight prior 0.8 1.5 0.33

the period from January 1971 to December 2015. To improve the comparability with
Antoĺın-Dı́az and Rubio-Ramı́rez (2018) we add a constant and 24 lags in the model.
We use the independent NiWU specification and set µπ = 0 and V −1

π = 0 for both the
NiWU approach and our Np(B).

We label the structural shocks using the sign restrictions on the contemporaneous
impulse responses employed by both Kilian and Murphy (2012) and Antoĺın-Dı́az and
Rubio-Ramı́rez (2018), see Table 2.3. However, we depart from both papers along
two dimensions. First, we do not introduce explicit restrictions on elasticities, nor on
the historical decompositions. Second we do not model the sign restrictions through
the NiWU approach, but through the prior distribution proposed in Section 2.2.4. As
discussed, this prior first uses a training sample to estimate an indicative upper bound
γi for the elements bi,j, and then allocates prior mass by selecting the hyperparameters
ψ1 and ψ2. ψ1 affects the first moment of the marginal prior distribution in p(bi,j),
whose mode is set equal to ±ψ1γi, while ψ2 controls for the second moment of the prior
by being positively related to the prior mass allocated to |bi,j| ≥ γi. We explore the role
of prior beliefs by using the three separate specifications for ψ1 and ψ2 documented
in Table 2.3. Prior I corresponds to a wide prior that attaches approximately 80%
probability mass beyond the estimated γi. Priors II and III progressively tighten the
prior to make it more consistent with the scaling of the variables, giving approximately
50% and 30% prior probability mass beyond γi, respectively. We favour Prior III, which
implies a mode of the marginal prior slightly below the estimated upper bound, while
still allowing for a non-negligible tail that gives prior mass above this point.13

13We estimate the scale γi using a training sample on the first 20% of the available observations, as in
Primiceri (2005). The prior distributions, which are shown in Figure 2.26 of the Appendix, are such
that the marginal prior on the effect of different shocks on each variable only differ potentially up
to sign but not magnitude, in order not to introduce asymmetries in the results. See also Table 2.13
for a further illustration of the distribution of the probability mass under the prior distribution.
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2.4.2 Results

To make the analysis more focused, we concentrate our discussion on the drivers of oil
price variations, comparing the results from our Np(B) approach to the results from
the NiWU approach, parametrized with the independent improper prior specification.
We refer to Section 2.A.6 of the Appendix for the analysis of the other variables in
the model, as well as for robustness checks and diagnostics on the performance of the
sampler.

Figure 2.4: Posterior impulse responses for the real oil price, comparing NiWU and
Np(B)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach. The rows of
the figure differ for the parametrization used for the prior distribution p(B), as from Table 2.3.
See Figure 2.34 to Figure 2.37 in the Appendix for the full analysis.

Figure 2.4 shows how one-standard-deviation shocks affect the price of oil, and com-
pares the results from the NiWU approach and from our Np(B) approach. The columns
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of the figure differ for the structural shock considered, while the rows differ for whether
prior specification I, II or III is used in the Np(B) approach. The figure shows that the
pointwise posterior bands associated with the NiWU approach are quite wide. Indeed,
it is this feature that led Kilian and Murphy (2012) and Antoĺın-Dı́az and Rubio-
Ramı́rez (2018) to introduce further restrictions on elasticities and/or shocks and his-
torical decompositions. The posterior bands associated with the Np(B) approach can,
instead, be tighter, depending on the prior specification used. We find that, irrespec-
tively of the prior specification, the dataset is sufficiently large for the NiWU and the
Np(B) approach to deliver nearly identical posteriors for the bounds ±Σ0.5

i,i that con-
strain bi,j through equation (2.11) (see Figure 2.25 and Figure 2.31-Figure 2.33 in the
Appendix). Accordingly, the differences in p(B|Y )NiWU and p(B|Y )Np(B) are strongly
influenced by differences in p(Q|Σ)NiWU (which is the uniform distribution in QΣ) and
p(Q|Σ)Np(B) (which is the distribution implied by the prior beliefs p(B)Np(B) used).

As shown in the first row of Figure 2.4, prior I from our Np(B) approach replicates
the posterior bands from the NiWU approach up to a close approximation. Yet, prior
I attaches as much as 80% prior mass to values of B above the estimated reasonable
bound γi. We view this prior mass as too wide given the scaling of the variables. As
shown with prior II and III, tightening p(B) to make it more consistent with the scaling
of the variables tightens the posterior bands considerably. On the short horizon of the
response, the 95% credible bands associated with the Np(B) approach under prior
III are as tight as the 68% credible bands of the NiWU approach. This suggests that
introducing explicit information on the scaling of the variables can make inference much
sharper. Using prior III, which attaches approximately 30% prior mass to values of B
above the estimated upper bounds γi, we find that oil-specific demand shocks generate
an immediate increase in the price of oil, an increase that then progressively declines,
while aggregate demand shocks produce stronger effects also at longer horizons. While
this confirms the results by Kilian (2009) that demand shocks are important drivers
of oil price responses, we find that this is more so for aggregate demand shocks rather
than oil-specific demand shocks. In addition, we find that oil supply shocks generate
sizeable effects on the price of oil, although with smaller effects when focusing on the
longer horizon of the response.

The result on the importance of oil supply shocks in driving the price of oil is in
line with the results by Caldara et al. (2018) and Baumeister and Hamilton (2019) de-
spite the different methodologies used. Caldara et al. (2018) use an exactly identified
model that minimizes the distance between the elasticities implied by the VAR model
and external estimates. Yet, as they show, the parametrization of the elasticities have
an important effect on the results. Baumeister and Hamilton (2019) also build their
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analysis on external information on price elasticities on oil, and use a sign restricted
framework. They then add information on the dynamics in inventories and measure-
ment error, weight data differently depending on the period that they correspond to,
and combine sign restrictions on elasticities with sign restrictions on the contempo-
raneous impulse responses. We show that the results in Caldara et al. (2018) and
Baumeister and Hamilton (2019) are robust to a framework that focuses on the sign
restrictions on the contemporaneous impulse responses. Figure 2.48 in the Appendix
shows that the posterior distributions on the price elasticities implicit in our approach
are broadly consistent with the estimates by Caldara et al. (2018) and Baumeister and
Hamilton (2019).

Figure 2.5: Posterior forecast error variance decomposition for the real oil price, com-
paring NiWU and Np(B)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible bands
associated with the improper prior parametrization of the NiWU approach. The remaining solid
and dashed lines show the same statistics associated with our Np(B) approach. The rows of the
figure differ for the parametrization used for the prior distribution p(B)Np(B), as from Table 2.3.
See Figure 2.38 to Figure 2.40 in the Appendix for the full analysis.
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The analysis of forecast error variance decompositions, displayed in Figure 2.5, shows
that the NiWU approach can deliver credible bands that are too wide to imply results
that can be interpreted. The 95% pointwise credible band can go from close to 0 to
close to 1, failing to disclose the role of the structural shocks in driving the variance
of forecast errors. By contrast, inference is much sharper when prior mass on key
structural parameters is ensured to be in line with the scaling of the variables. As we
move our prior from specification I to III, we find that the unexpected variations in
the price of oil are mainly driven by supply shocks and aggregate demand shocks for
approximately 20-50% and 30-60%, respectively, while oil-specific demand shocks have
a more subdued effect. The result that supply shocks have an important role in driving
unexpected variations in the price of oil is consistent with Caldara et al. (2018).

Figure 2.6: Historical decomposition, cumulative effects of the shocks
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Note: The figure shows the data (solid black line) and its decomposition into the cumulative
contribution of the estimated structural shocks from the beginning of the sample until period t.
The dotted line and the shaded areas show the pointwise median, 68 and 95% credible bands
associated with the improper prior parametrization of the NiWU approach. The remaining solid
and dashed lines show the same statistics associated with our Np(B) approach. Having subtracted
the value corresponding to June 1990 before computing pointwise statistics, the figure can be
interpreted as percent relative to the initial point. See Figure 2.45 to Figure 2.47 in the Appendix
for the full analysis.

We conclude the analysis by further relating our work to Antoĺın-Dı́az and Rubio-
Ramı́rez (2018). Antoĺın-Dı́az and Rubio-Ramı́rez (2018) achieve a sharpening of the
posterior credible sets by introducing the restriction that oil supply shocks matter
significantly in driving the drop in oil production in August 1990. Indeed, this is the key
event in their application, as they discuss. Figure 2.6 shows that our approach delivers
this feature as a result, rather than as a restriction. As we make our prior more in line
with the scale of the variables, the credible sets associated with our methodology leave
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little doubt that oil supply shocks were relevant drivers of the drop in the oil production.
By contrast, the NiWU approach delivers wide posterior bands, leading Antoĺın-Dı́az
and Rubio-Ramı́rez (2018) to introduce the restriction. The result that supply shocks
contributed to the decline in oil production in August 1990 is also reported by Caldara
et al. (2018).

2.5 Conclusions

Structural Vector Autoregressive models are frequently identified using sign restrictions
on the impulse response of selected structural shocks of interest. However, it is not
clear how this identification approach should be implemented in practice. On the one
hand, it is convenient to start from a specification on reduced form parameters, as this
makes posterior sampling highly tractable. On the other hand it is important to retain
flexibility on the prior beliefs implied for the key structural parameters of interest, since
such prior affects the posterior distribution even in a large sample.

We propose an approach that offers flexibility for the prior specification on the im-
pulse response horizon that matters the most, while ensuring that the joint posterior
distribution is tractable. We illustrate the intuition of our approach using simulations
on the bivariate demand and supply model by Baumeister and Hamilton (2015). We
then develop an application to the oil market and show that our approach delivers
sharper inference. Consistent with Baumeister and Hamilton (2019) and Caldara et al.
(2018), we find that oil supply shocks have a comparable role in explaining oil price
dynamics relative to oil-specific demand shocks.
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2.A Further Results

2.A.1 Likelihood function of the model

To derive the likelihood of the model, we start from equation (2.1) of the paper, which
we rewrite here for convenience:

yt = Πwt +Bεt, εt ∼ N(0, Ik). (2.12)

yt is a k× 1 vector of variables, εt is a k× 1 vector of structural shocks, wt is an m× 1

vector of lagged variables and potentially deterministic controls, Π is a k ×m matrix
of reduced form parameters, and B is a k × k matrix of structural parameters. Write
the model in compact form as

Y = ΠW +BE, (2.13)

where Y = [y1, ...,yt, ...,yT ] and E = [ε1, ..., εt, ..., εT ] are k × T matrices of data and
shocks, andW = [w1, ...,wt, ...,wT ] is an m×T matrix of data. Then, make use of the
formula vec(ĀB̄C̄) = (C̄ ′⊗ Ā) · vec(B̄) (see Lütkepohl, 2005, mathematical appendix)
and rewrite the model as

ỹ = Zπ + (IT ⊗B)ε̃, ε̃ ∼ N
(
0, (IT ⊗ Ik)

)
, (2.14)

with ỹ = vec(Y ) and ε̃ = vec(E) of dimension kT × 1 and Z = (W ′⊗ Ik) of dimension
kT ×mk . The mk × 1 vector π = vec(Π) stacks the columns of Π vertically. Last,
rewrite the model in reduced form, obtaining

ỹ = Zπ + ũ, ũ ∼ N
(
0, Σ̃

)
, (2.15)

with ũ = (IT ⊗B)ε̃. Σ̃ and B are related through the equality

Σ̃ =
(
IT ⊗BB′

)
. (2.16)

The likelihood function can now be written in B and π as

p(Y |π, B) = (2π)−
kT
2 |det(IT ⊗BB′)|−

1
2 e−

1
2

(ỹ−Zπ)′(IT⊗BB′)−1(ỹ−Zπ), (2.17)

= (2π)−
kT
2 |det(BB′)|−

T
2 e−

1
2

(ỹ−Zπ)′(IT⊗BB′)−1(ỹ−Zπ). (2.18)
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2.A.2 NiWU approach used in the literature

In this section we report the key equations related to the NiWU approach and out-
line the corresponding algorithm. We limit the illustration to the independent (rather
than the conjugate) Normal-inverse-Wishart-Uniform prior specification for two rea-
sons. First, because it is more convenient for the implementation of our algorithm,
as we discuss in section 2.A.3. Second, because it makes the NiWU approach more
comparable with the Np(B) approach proposed in the paper, given that they can use
the same prior on π. We refer the interested reader to Canova (2007), Koop et al.
(2010) and Kilian and Lütkepohl (2017) for a more thorough discussion of the NiWU
approach, and to the material available on our website for the derivations.

Under the independent Normal-inverse-Wishart-Uniform approach the joint prior
distribution is given by14

p(π,Σ, Q) = p(Q|Σ) · p(π) · p(Σ), (2.20)

with

π ∼ N(µNiWU , VNiWU), (2.21)

Σ ∼ iW (dNiWU , SNiWU), (2.22)

Q|Σ ∼ U. (2.23)

This leads to the joint posterior distribution

p(π,Σ, Q|Y ) = p(Q|Σ) · p(π,Σ|Y ), (2.24)

with

π|Y,Σ ∼ N(µ∗NiWU , V
∗
NiWU), (2.25)

Σ|Y,Π ∼ iW (d∗NiWU , S
∗
NiWU), (2.26)

Q|Σ ∼ U, (2.27)

14Since sign restrictions on B potentially imply that a subset of the parameter space of Σ admits no
matrix B satisfying the sign restrictions, the joint prior probability distribution effectively used on
reduced form parameters in the structural analysis is

p(π,Σ) = I{Σ} · p(π)p(Σ), (2.19)

with I{Σ} an indicator function taking value of 1 if Σ implies a non-empty set of B satisfying the
sign restrictions. We omit the additional indicator function to simplify the notation.
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and

V ∗NiWU =
(
V −1
NiWU +

[
WW ′ ⊗ Σ−1

])−1

, (2.28)

µ∗NiWU = V ∗NiWU ·
(
V −1
NiWUµNiWU +

[
W ⊗ Σ−1

]
ỹ
)
, (2.29)

d∗NiWU = dNiWU + T, (2.30)

S∗NiWU = SNiWU + (Y − ΠW )(Y − ΠW )′. (2.31)

Equations (2.25) and (2.26) can be used in a Gibbs sampler to explore the joint posterior
p(π,Σ|Y ). The marginal posterior distribution for Σ associated with equations (2.25)
and (2.26) equals15

p(Σ|Y ) ∝|det(Σ)|−
d∗NiWU+k+1

2 · |det(V ∗NiWU)|
1
2 ·

· e−
1
2

{
ỹ′(IT⊗Σ−1)ỹ−µ∗′NiWUV

∗−1

NiWUµ
∗
NiWU+tr

[
Σ−1SNiWU

]}
, (2.32)

which is required in our algorithm.
Given a general distribution pΣ(Σ) for Σ, a general distribution pQ(Q|Σ) for Q, and

defining B such that B = h(Σ)Q, it holds that

pB(B) = J(Σ→ B) · pΣ

(
Σ = BB′

)
· pQ

(
Q|Σ = BB′

)
, (2.33)

with J(Σ → B) the Jacobian of the transformation from Σ to B (Bibby et al., 1979,
Mathai and Haubold, 2008, Arias et al., 2018). When no zero restrictions are introduced
on B,16

J(Σ→ B) = |det(B)|. (2.34)

It follows that the implicit distributions on B associated with equations (2.22), (2.32)
and (2.23) are

p(B) ∝ I{B} · |det(B)|−(dNiWU+k) · e−
1
2

{
vec(B−1)′(SNiWU⊗Ik)vec(B−1)

}
(2.35)

p(B|Y ) ∝ I{B} · |det(B)|−(d∗NiWU+k) · |det(V ∗NiWU)|
1
2 · (2.36)

· e−
1
2

{
vec(B−1)′(SNiWU⊗Ik)vec(B−1)+ỹ′

(
IT⊗(BB′)−1

)
ỹ−µ′∗NiWUV

∗−1

NiWUµ
∗
NiWU

}
,

15Step-by-step derivations for the NiWU approach for both the in-
dependent and the conjugate prior specifications are available at
https://drive.google.com/open?id=0B0CRyT66a7B2TmpWV2tjczdwM00.

16We compute the Jacobians of matrix transformations using the results in Bibby et al. (1979), Chapter
2, and Mathai and Haubold (2008), Chapter 11. Σ = BB′ implies dB = |det(Σ)|− 1

2 dΣ. Substituting
|det(Σ)| = |det(BB′)| = |det(B)|2 gives J(Σ→ B) =

∣∣ dΣ
dB

∣∣ = |det(B)|.
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with I{B} an indicator function taking value of 1 if B satisfies the sign restrictions.
Equation (2.35) coincides with the first part of equation (2.8) in Arias et al. (2018),
once adjusted for the difference in the notation used. We use equation (2.36) for the
implementation of the Dynamic Striated Metropolis-Hastings algorithm, see section
2.A.4. If zero restrictions are introduced on B, the computation of J(Σ→ B) requires
a numerical procedure, see Arias et al. (2018).

In the paper, we use the following algorithm to study the join posterior distribution
p(π,Σ, Q|Y ) associated with the independent NiWU approach:

NiWU algorithm:

1. run a Gibbs sampler to explore p(π,Σ|Y ) based on the distributions
(2.25) and (2.26) using n1 + n2 replications, with n1 the number of
burn-in replications and n2 the number of retained replications. Store
the retained draws in

{
πd,Σd

}n2

d=1
;

2. randomly extract (π,Σ) from
{
πd,Σd

}n2

d=1
with replacement;

3. draw an orthogonal matrix (Qd) using the method by Rubio-Ramirez
et al. (2010), which extracts uniformly from the space Q (the full
space of orthogonal matrices), and map (πd,Σd, Qd) into the structural
parameters of interest;

4a. if (πd,Σd, Qd) satisfy the sign restrictions (up to ordering of the
shocks), store (πd,Σd, Qd) and proceed to Step 5;

4b. if (πd,Σd, Qd) do not satisfy the sign restrictions, repeat Step 3
up to n3 times. Stop as soon as (πd,Σd, Qd) satisfies the sign
restrictions and proceed to Step 5, otherwise discard (πd,Σd) and
move back to Step 2;

5. repeat Steps 2 to 4 until a desired number of draws n4 is obtained.17

17The algorithm is close in spirit to the algorithms used by Uhlig (2005), Rubio-Ramirez et al. (2010)
and Giacomini and Kitagawa (2015). Dismissing draws ofQ in Step 4b numerically approximates the
extraction from a uniform distribution in QΣ (the subspace of Q that satisfies the sign restrictions
given Σ). An alternative approach is discussed in Amir-Ahmadi and Drautzburg (2018). For n3

sufficiently large in Step 4b, the algorithm delivers draws (π,Σ) that approximate p(π,Σ|Y ) from
equations (2.25)-(2.26) up to an indicator function taking value of one if the reduced form draws
imply a non-empty set QΣ. By contrast, when n3 is too small, an additional tilting of these
distributions is introduced, since draws (π1,Σ1) and (π2,Σ2) such that p(π1,Σ1|Y ) = p(π2,Σ2|Y )
are not necessarily retained with equal probability if QΣ1

and QΣ2
differ considerably in size. Step 3

of the algorithm changes if zero restrictions are introduced, see Binning (2013), Arias et al. (2018),
and Kilian and Lütkepohl (2017), Chapter 13.
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Compared to the NiWU algorithm, our algorithm for the general Np(B) approach
runs a Gibbs sampler only to generate proposal draws, which are then reweighted in the
importance sampler. In the paper, we ensure that the computational time of the NiWU
approach and the Np(B) approach are comparable by first running our algorithm, and
then running the NiWU algorithm such that it generates a number of draws equal to the
ones effectively obtained for our algorithm, see table 2.4. For example, in the simulation
exercise of section 2.3 of the paper, for T = 120 Stage B of our algorithm effectively
generates 53,740 draws. We then run the NiWU algorithm setting n2 = n4 = 53, 740.

Table 2.4: Tuning parameters used for the NiWU algorithm

n1 burn-in draws equal to m1 in our algorithm
n2 retained draws equal to ESSB in our algorithm
n3 maximum number of draws of Q equal to m4 in our algorithm
n4 desired number of draws equal to ESSB in our algorithm

2.A.3 Np(B) approach proposed in the paper

In this section we provide the derivations of the posterior distribution for the approach
proposed in the paper, and discuss our importance sampler. We then discuss the
diagnostic procedures that we use to ensure that the weights in the importance sampler
have a finite variance.

2.A.3.1 Posterior distribution

Start from the prior distribution

p(π, B) = p(π|B) · p(B), (2.37)

with
p(π|B) = (2π)−

k
2 |det(Vπ)|−

1
2 e−

1
2

(π−µπ)′V −1
π (π−µπ), (2.38)

where µπ and Vπ can be a function of B. The joint posterior distribution then equals

p(π, B|Y ) =p(π, B)
p(Y |π, B)

p(Y )
,

=p(B)·

· (2π)−
k
2 |det(Vπ)|−

1
2 e−

1
2

(π−µπ)′V −1
π (π−µπ)· (2.39)

· (2π)−
kT
2 |det(B)|−T e−

1
2

(ỹ−Zπ)′(IT⊗BB′)−1(ỹ−Zπ)p(Y )−1,
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with p(Y ) =
∫
π

∫
B
p(Y |π, B)p(π, B)dπdB. We aim to rewrite equation (2.39) as

p(π, B|Y ) = p(π|B, Y ) · p(B|Y ), (2.40)

and to exploit analytical results for p(π|B, Y ). To do so, define

Ψ(B) =
(
IT ⊗BB′

)
, (2.41)

and rewrite the joint posterior distribution as

p(π, B|Y ) = c · e−
1
2

[
(π−µπ)′V −1

π (π−µπ)+(ỹ−Zπ)′Ψ(B)−1(ỹ−Zπ)
]
, (2.42)

with c a term that includes elements which are not a function of π. As frequently done
also in the NiWU approach, factorize the terms in the exponent of (2.42) as

(π − µπ)′V −1
π (π − µπ) + (ỹ − Zπ)′Ψ(B)−1(ỹ − Zπ) =

= π′V −1
π π − 2π′V −1

π µπ + µ′πV
−1
π µπ+

+ ỹ′Ψ(B)−1ỹ − 2π′Z ′Ψ(B)−1ỹ + π′Z ′Ψ(B)−1Zπ = (2.43)

= π′[V −1
π + Z ′Ψ(B)−1Z]π − 2π′[V −1

π µπ + Z ′Ψ(B)−1ỹ]+

+ ỹ′Ψ(B)−1ỹ + µ′πV
−1
π µπ =

= (π − µ∗π)′V ∗
−1

π (π − µ∗π) + ỹ′Ψ(B)−1ỹ + µ′πV
−1
π µπ − µ∗

′

π V
∗−1

π µ∗π,

with

V ∗π = [V −1
π + Z ′Ψ(B)−1Z]−1, (2.44)

=
[
V −1
π +

[
WW ′ ⊗ (BB′)−1

]]−1

, (2.45)

µ∗π = V ∗π · [V −1
π µπ + Z ′Ψ(B)−1ỹ], (2.46)

= V ∗π ·
[
V −1
π µπ +

[
W ⊗ (BB′)−1

]
ỹ
]
. (2.47)

The joint posterior distribution can now be written as

p(π, B|Y ) = (2π)−
k
2 · |det(V ∗π )|−

1
2 · e−

1
2

(π−µ∗π)′V ∗
−1

π (π−µ∗π)︸ ︷︷ ︸
p(π|B,Y )

·

· p(B) · |det(B)|−T · |det(V ∗π )|
1
2 · |det(Vπ)|−

1
2 ·

· e−
1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
·

· (2π)−
kT
2 · p(Y )−1.
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It follows that

π|B, Y ∼ N(µ∗π, V
∗
π ), (2.48)

p(B|Y ) ∝ p(B) · ... (2.49)

· |det(B)|−T · |det(Vπ)|−
1
2 · |det(V ∗π )|

1
2 · e−

1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
,

which proves equations (2.7) and (2.8) in section 2.2.3 of the paper.
Our algorithm requires to evaluate the distribution on Σ implied by the distribution

(2.49). To illustrate how to compute this function, call B(Σ) the subset of the parameter
space of B such that BB′ = Σ̄ (note that the sets B(Σ) and B(Σ̃) do not intersect unless
Σ̄ = Σ̃). Then, defining pB(B) a general distribution for B, pΣ(Σ) the distribution for
Σ implied by pB(B), and Σ̄ a value for Σ, it holds that draws Σ = Σ̄ are generated by
pΣ(Σ) if and only if pB(B) draws from the set B(Σ̄). Accordingly, it holds that

pΣ(Σ) = J(B → Σ) ·
∫
B(Σ)

pB(B)dB, (2.50)

where J(B → Σ) is the Jacobian transformation from B to Σ (which equals |det(Σ)|− 1
2

when no zero restrictions are introduced, see section 2.A.2), and
∫
B(Σ)

p(B)dB is the
probability mass of pB(B) in the subspace B(Σ). In the application of the paper, this
implies

p(Σ|Y ) ∝ J(B → Σ) ·
∫
B(Σ)

p(B|Y )dB,

∝ |det(Σ)|−
1
2 ·
[ ∫
B(Σ)

p(B) · |det(B)|−T · |det(Vπ)|−
1
2 · |det(V ∗π )|

1
2 ·

· e−
1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
dB
]
,

∝ |det(Σ)|−
T+1
2 · |det(Vπ)|−

1
2 · |det(V ∗π )|

1
2 · (2.51)

· e−
1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
·
∫
B(Σ)

p(B)dB.

Note that equation (2.51) does not necessarily coincide with equation (2.32) unless
p(B) coincides with the distribution implied by the NiWU approach, equation (2.36).
Last, Step B of our algorithm requires evaluating the distribution p(Q|Σ) implicit in
the distribution p(B|Y ) (or identically, implicit in the distribution p(B)) within the
set B(Σ). For this, note that for a general value B̃ with B̃B̃′ = Σ̃ and Q̃ = B̃h(Σ̃)−1,
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when no zero restrictions are introduced equation (2.33) implies

p(B = B̃)

p(Q = Q̃|Σ̃)
∝ J(Σ→ B) · p(Σ = Σ̃), (2.52)

∝ |det(Σ)|−
1
2 · p(Σ = Σ̃). (2.53)

The ratio p(B=B̃)

p(Q=Q̃|Σ̃)
is hence a function of Σ which can be hard to characterize ana-

lytically, but it is constant along combinations B,Q that imply a given Σ̃. In the
applications of the paper, this implies that p(Q = Q̃|Σ̃) can be evaluated numerically
using

p(Q = Q̃|Σ̃) ∝ p(B = B̃). (2.54)

2.A.3.2 The importance sampler

Before discussing the importance sampler, we clarify the notation used so far by notic-
ing that several distributions (for example p(B|Y ) and p(Σ|Y )) have been derived
twice: once for the special case associated with the NiWU approach (which requires
specifying the hyperparameters µNiWU , VNiWU , dNiWU , SNiWU), and once for the less
restrictive Np(B) (which requires specifying p(B),µπ, Vπ). By construction, these sets
of functions coincide when the distribution p(B) from the Np(B) approach coincides
with the distribution implicit in the independent NiWU approach, equation (2.35), and
when µNiWU = µπ and VNiWU = Vπ. To avoid confusion, the discussion in this section
and in the paper uses the following notation:

Np(B) approach:

• p(B)Np(B): prior distribution on B used in the Np(B) approach;

• p(Σ)Np(B): prior distribution on Σ associated with the Np(B) approach;

• p(B|Y )Np(B): posterior distribition on B associated with p(B)Np(B) and derived
analytically in equation (2.49);

• p(Σ|Y )Np(B): posterior distribution on Σ implicit in the Np(B) approach and
derived analytically in equation (2.51);

• p(Q|Σ)Np(B): distribution on Q implicit in the prior p(B)Np(B) conditioning on
the space Σ = BB′, evaluated as in equation (2.54);

NiWU approach:
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• p(B)NiWU : prior distribution on B implied by the NiWU approach, derived an-
alytically in equation (2.35) for the independent prior specification;

• p(Σ)NiWU : prior distribution on Σ explicitly introduced in the NiWU approach,
which is the inverse Wishart distribution;

• p(B|Y )NiWU : posterior distribition on B implied by the NiWU approach, derived
analytically in equation (2.36) for the independent prior specification;

• p(Σ|Y )NiWU : marginal posterior distribution on Σ implicit in the NiWU ap-
proach, derived analytically in equation (2.32) for the independent prior specifi-
cation;

• p(Q|Σ)NiWU : distribution on Q explicitly used in the NiWU approach, which
is uniform in the space QΣ of orthogonal matrices that satisfy the identifying
restrictions, given Σ;

Our importance sampling procedure aims to draw from p(B|Y )Np(B) by drawing from
p(Σ|Y )Np(B) and p(Q|Σ)Np(B). To this aim, Stage A of our algorithm uses p(Σ|Y )NiWU

as an importance function for p(Σ|Y )Np(B). While the prior distributions p(Σ)Np(B) and
p(Σ)NiWU may well differ, the corresponding posterior distributions p(Σ|Y )Np(B) and
p(Σ|Y )NiWU are closer to each other since Σ is identified and the likelihood function
dominates the prior distribution. Accordingly, p(Σ)NiWU , which can be explored conve-
niently with a Gibbs sampler, can be used as an importance function for p(Σ|Y )Np(B).

Start from a selection of p(B),µπ, Vπ. Consider the case in which (µπ, Vπ) are in-
dependent of B, and in which the NiWU approach employed to generate proposal
draws is used in its independent prior specification, rather than the conjugate specifi-
cation. Then select (dNiWU and SNiWU) (see discussion below) and set µNiWU = µπ

and VNiWU = Vπ. Following equations (2.51) and (2.32), the weights for Stage A can
then be computed as

wstage A
d =

p(Σd|Y )Np(B)

p(Σd|Y )NiWU

∝
J(B → Σd) ·

∫
B(Σd)

p(B)Np(B)dB

|det(Σd)|−
d+k+1

2 · e− 1
2
tr[Σ−1

d S]
. (2.55)

In equation (2.55), J(B → Σd) = |det(Σd)|−
1
2 when no zero restriction on B is in-

troduced, and must be computed numerically otherwise. Note that when (µπ, Vπ) are
independent of B and when proposal draws are obtained from the independent NiWU
approach with µNiWU = µπ and VNiWU = Vπ, the term |det(V ∗π )| does not contain B
and µ∗NiWU = µ∗π and V ∗NiWU = V ∗π . Accordingly, several terms in equations (2.51)
and (2.32) cancel out in equation (2.55). The algorithm can be modified by generating
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proposal draws from the conjugate NiWU specification and/or setting π and/or Vπ a
function of B, but the computation of wstage A

d must be adjusted accordingly.18

To evaluate
∫
B(Σd)

p(B)Np(B)dB (up to a constant), for each Σd we draw enough
orthogonal matrices from the algorithm by Rubio-Ramirez et al. (2010) until m3 are
stored that satisfy the restrictions. We then evaluate p(B)Np(B) at B = h(Σd)Qq for
each {Qq}m3

q=1 and each {Σd}m2
d=1. Last, we sum along the Q dimension and evaluate∫

B(Σd)
p(B)Np(B)dB as the d entry of the obtained m2 × 1 vector, up to an arbitrary

constant scalar. In our application we found that an approximate algorithm that omits
the term

∫
B(Σd)

p(B)Np(B)dB recovers almost the same posterior distribution, see figure
2.42-2.44.

Having obtained draws from p(Σ|Y )Np(B) by reweighting draws from p(Σ|Y )NiWU

using weights {wstage A
d }, it remains to draw from p(Q|Σ)Np(B) and map draws of Σ and

Q into B. Extracting from p(Q|Σ)Np(B) is not straightforward. However, the algorithm
developed by Rubio-Ramirez et al. (2010) extracts orthogonal matrices uniformly from
the full orthogonal space Q, and hence also from the general subset in which the target
function p(Q|Σ)Np(B) has mass. Hence, the distribution p(Q|Σ)NiWU can be used as an
importance function for p(Q|Σ)Np(B). This requires being able to evaluate (rather than
draw from) p(Q|Σ)Np(B) in correspondence to the proposal extractions, which can be
done using p(Q = Q̃|Σ̃)Np(B) ∝ p(B = B̃), as discussed above. Last, the uniformity of
the importance distribution for Stage B implies p(Q|Σ)NiWU ∝ 1. All in all, it follows
that the weights for Stage B can be computed as

wstage B
d =

p(Q|Σ)Np(B)

p(Q|Σ)NiWU

∝ p(B)Np(B). (2.56)

In principle, our algorithm can be modified by combining the two separate impor-
tance samplers used into a single reweighting procedure. However, since the effective
sample size in Stage A and Stage B bears very different interpretations, we find it more

18If π and/or Vπ are a function of B, the equalities µ∗NiWU = µ∗π and V ∗NiWU = V ∗π do not hold and
wstage A
d must be computed as

wstage A
d =

J(B → Σd) · |det(Vπ)|− 1
2 · |det(V ∗π )| 12 · e−

1
2

{
−µ∗

′
π V
∗−1

π µ∗π+µ′πV
−1
π µπ

}
·
∫
B(Σ)

p(B)dB

|det(Σ)|−
dNiWU+k+1

2 · |det(V ∗NiWU )| 12 · e−
1
2

{
−µ∗′NiWUV

∗−1
NiWUµ

∗
NiWU+tr

[
Σ−1SNiWU

]} .

If in addition proposal draws are generated from the conjugate rather than the independent NiWU
approach, wstage A

d should be computed as

wstage A
d =

J(B → Σd) · |det(Vπ)|− 1
2 · |det(V ∗π )| 12 · e−

1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗

′
π V
∗−1

π µ∗π+µ′πV
−1
π µπ

}
·
∫
B(Σ)

p(B)dB

|det(Σ)|−
dNiWU+k+1

2 · ·e− 1
2 trace[Σ

−1S∗NiWU ]
,

with S∗NiWU computed in accordance with the conjugate NiWU approach.
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natural to organize the algorithm into two separate importance samplers. In addition,
the computational time is reduced when keeping Stage A and B separate, as a relatively
low effective sample size in Stage B requires only running Stage B again with a higher
number of proposal draws, without running Stage A again.

Implementing our algorithm requires setting the hyperparameters dNiWU , SNiWU .
We propose to set them heuristically to minimize the distance between p(Σ|Y )Np(B)

and p(Σ|Y )NiWU . We set dNiWU = k + 2 and SNiWU such that the expected value of
Σ associated with the prior distribution implicit in the importance function equals the
prior mean of Σ implicit in p(B)Np(B). This procedure requires to

1. specify p(B);

2. extract m0 draws from p(B);

3. compute the corresponding draws of Σ = BB′;

4. set SNiWU = (d− k − 1) ·
∑m0
d=1 Σd
m0

.

Other parametrizations are also possible.
The simulation exercise in section 2.3 of the paper discusses posterior distributions in

the hypothetical case in which the researcher has access to an infinitely large dataset.
Our algorithm can be modified to explore such a scenario by running only Stage B using
Σ = Σtrue in Step 3, with Σtrue the true value of Σ used in the data generating process.
The same simulation exercise also explores the distribution of the rotation angle θ
implicit in the orthogonal matrices extracted from p(Q|Σ)Np(B) and p(Q|Σ)NiWU . In
the bivariate case, since orthogonal matrices can be viewed as Givens rotations

Q(θ) =

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
, (2.57)

one can explore the distribution on θ implicit in p(Q|Σ)Np(B) or p(Q|Σ)NiWU by com-
puting θ = atan

(
Q̄2,1

Q̄1,1

)
for each extraction Q̄ from p(Q|Σ)Np(B) or p(Q|Σ)NiWU , with

atan the inverse tangent function evaluated at Q̄2,1

Q̄1,1
, given Q̄i,j the (i, j) entry of Q̄.

Q(θ) = Q̄ up to sign and ordering of the columns.
Stage A of our importance sampler relies on the convergence of p(Σ|Y )NiWU and

p(Σ|Y )Np(B) towards a point mass at Σtrue to justify the use of the former distribution
as an importance function for the latter. How large the dataset must be to ensure that
p(Σ|Y )NiWU and p(Σ|Y )Np(B) are sufficiently close is ultimately an empirical question,
and depends not only on the available dataset but also on the prior distributions
p(Σ)NiWU and p(B)Np(B) used. The simulations on the bivariate VAR model from
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section 2.3 find that the ratio of effective draws to proposal draws equals 0.50 (the
threshold value used by Herbst and Schorfheide, 2014 to judge whether to change
importance function) already for T̃ = T − p = 52. In the application to the oil market
from section 2.4 of the paper, the dataset effectively has T̃ = T − p = 405 observations
and delivers a ratio of effective to proposal draws between 0.69 and 0.89 (table 2.14).
As a heuristic, back-of-the-envelop calculation, we kept the training sample constant
and used the first τ observations from the estimation sample, increasing τ from 85

to T̃ = 405. The results, reported in figure 2.49, show that the ratio of effective
to proposal draws increases fairly rapidly as the size of the dataset increases. The
threshold value of 0.50 is reached for a number of observations of τ = 125 for all three
prior specifications.

Table 2.5: Tuning parameters used for our algorithm (Np(B) approach)
section 2.3 section 2.4

Stage A
m0 draws from p(B) to calibrate proposal 5,000 5,000
m1 burn-in draws 50,000 50,000
m2 retained draws 50,000 50,000
m3 draws of Q to evaluate

∫
B(Σ)

p(B)Np(B)dB 30 30

Stage B
m4 maximum number of draws of Q 1,000 1,000
m5 proposal draws 80,000 80,000

∆m5 incremental for m5 if ESSB < m5 40,000 40,000
m6 minimum effective sample size accepted 1,000 1,000

2.A.3.3 Diagnostics for the Importance Sampler

Stage B of the importance sampler uses an importance function that features positive
mass everywhere in the support of the target function. Accordingly, the favourable
condition highlighted by Geweke (1989) in his equation (5) holds, ensuring that the
variance of the estimators constructed on the parameters of interest is finite (see also
Robert and Casella (2013), chapter 3). However, this condition does not hold for Stage
A of the algorithm, which hence requires ensuring that the non-normalised importance
weights {wi}Ni=1 of size N have a finite variance. As pointed out by Geweke (1989)
and Robert and Casella (2013), the finite variance condition is not necessary to ensure
consistency of the estimators based on the weighted draws, but it reduces the risk that
the sampler performs poorly. In order to assess whether the variance of the weights
in Stage A is bounded, we employ a graphical procedure and three diagnostic tests
proposed by Koopman et al. (2009).
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Graphical Assessment

A measure frequently used to assess the quantitative importance of outliers in impor-
tance weights (and hence possible concerns about the finiteness of the variance) is the
recursively estimated variance of the weights. Define this estimated variance as {vi}Ni=1,
where vi = V ar(w1:i) is the variance of the first i weights. If outliers do not raise quan-
titatively relevant concerns, {vi}Ni=1 should converge smoothly towards a constant. If,
instead, individual outliers dominate the recursive variance, the plot will reveal large
jumps. Jumps in {vi}Ni=1 are indicative of an unbounded variance of the weights. We
use this graphical procedure to assess the performance of the weights in our sampler.

Diagnostic tests: Wald test, Score test and LR test

In addition to using graphical illustrations, we employ the more formal testing proce-
dures by Koopman et al. (2009) to assess the quantitative relevance of outliers. Koop-
man et al. (2009) propose a Wald test, a score test and a Likelihood Ratio test to
test

H0 : the variance is finite (2.58)

against
H1 : the variance is unbounded. (2.59)

To set the stage, note that the problematic part of {wi}Ni=1 are the excessively large
weights. It is therefore natural to consider only those weights that are larger than a
certain threshold u. After specifying u, generate a new random variable

Zi = wi − u if wi > u. (2.60)

If {wi}Ni=1 are i.i.d. random draws from the same random variable, then, as shown by
Pickands et al. (1975), for large N and u the new sequence of random variables {Zi}ni=1

approximates a generalised Pareto distribution with density function

f(z|ξ, β) =
1

β

(
1 + ξ

z

β

)− 1
ξ
−1

. (2.61)

The attractive feature of this distribution is that the finiteness of the variance can
directly be assessed: If ξ ≤ 0.5, the variance of Zi exists, otherwise it is unbounded.

In practice, the threshold u plays a crucial role. We follow Arias et al. (2018) and
use five different threshold values, v1 = 0.5N , v2 = 0.6N , v3 = 0.7N , v4 = 0.9N and
v5 = 0.99N and set uj = w(vj), where w(i) are the ordered weights, i.e. w1 ≤ w(2) ≤
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... ≤ w(N). To make the tests operational we use the null and alternative hypotheses

H0 : ξ = 0.5, (2.62)

H1 : ξ > 0.5. (2.63)

Wald test

The log likelihood function based on the generalised Pareto distribution in (2.61) equals

logf(z|β, ξ) = −n · log(β)−
(

1 +
1

ξ

) n∑
i=1

log(1 + ξβ−1zi). (2.64)

To construct the test statistic, we need to numerically maximise (2.64) with respect
to β and ξ to obtain βMLE and ξMLE, and then construct a test statistic to test for
ξ = 0.5. In practice, we follow these steps:

1. numerically maximise the unrestricted log likelikood function given in (2.64) to
obtain βMLE and ξMLE;

2. construct the test statistic as

t =

√
n

3β̂MLE

(
ξ̂MLE − 1

2

)
. (2.65)

The statistic t has an approximate standard normal distribution for n → ∞. Large
values indicate that ξ exceeds 0.5, which is indicative of unbounded weight variance.
Therefore, we reject H0 of finite variance of the weights if t exceeds the critical value
obtained from the standard normal distribution.

Score Test

In order to construct a score test, we need to maximise (2.64) under the null hypothesis
of ξ = 0.5. We follow these steps:

1. numerically maximise (2.64) with respect to β under the restriction ξ = 0.5 to
obtain βMLE,r;

2. since the test statistic is based on the score function of ξ, differentiate (2.64) with
respect to ξ and set ξ = 0.5 and β = βMLE,r. This gives 19

ŝξr = 4
n∑
i=1

log(1 +
zi

2βMLE,r
)− 6

n∑
i=1

zi
2βMLE,r + zi

; (2.66)

19Please note that there is a typo in Koopman et al. (2009) (page 4) in the corresponding equation.
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3. compute

sξ∗ =
1√
2n
ŝξr. (2.67)

Since sξ∗ → N(0, 1) for n→∞, we reject H0 of finite weight variances if sξ∗ exceeds the
critical values obtained from a standard normal distribution.

LR Test

In order to construct a likelihood ratio test statistic, we follow these steps:

1. Estimate the model under the restriction implying infinite weight variance, i.e.
maximise (2.64) under the restrictions ξ ≥ 0.5 to obtain β̃ and ξ̃. Compute
logf̃ = f(z|β̃, ξ̃);

2. The restricted MLE estimator for β, βMLE,r, is computed in the previous section.
Compute logf r = f(z|βMLE,r, ξ = 0.5);

3. The test statistic is LR = 2(logf̃ − logf r).

The null hypothesis of finite weight variance is rejected for large values compared to a
χ(1) distribution.

Figure 2.21 and figure 2.50 report the results of the graphical assessment for the
applications developed in the paper, while table 2.7 and table 2.16 report the test
statistics.

2.A.4 The Dynamic Striated Metropolis-Hastings algorithm by Waggoner
et al. (2016)

To assess whether our sampling procedure successfully explores the posterior distribu-
tions of the applications in the paper, we sample the same posterior distributions using
the sampler developed by Waggoner et al. (2016). We do so because such sampler
was intentionally designed to explore posterior distributions that are potentially irreg-
ularly shaped and challenging to explore, and hence is appropriate for the application
of the paper. While being more computationally demanding, the Dynamic Striated
Metropolis-Hastings sampler offers a benchmark against which to compare the extrac-
tions of the posterior distribution from our sampler. Section 2.A.4.1 briefly discusses
the functioning of the sampler, while section 2.A.4.2 discusses the convergence criteria
that we use to assess the performance of the posterior chains.
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2.A.4.1 The sampler

The key intuition behind the Dynamic Striated Metropolis-Hastings sampler is that
one does not immediately sample p(B|Y )Np(B), which might feature an irregular shape
and multiple peaks, but a simpler function. The draws from this starting function are
then progressively used to draw from p(B|Y )Np(B). Define θ the vector including the
parameters of interest and the function fλ(θ) as

fλ(θ) = f s(θ) ·
(
f i(θ)

)λ
·
(
fd(θ)

)1−λ
, (2.68)

with tempering parameter λ ∈ [0, 1]. f s(θ), f i(θ) and fd(θ) are selected such that
fλ=0(θ) is the kernel of a starting distribution and fλ=1(θ) concides with the kernel of
the probability distribution that one ultimately wants to explore. As λ increases from
0 to 1, fλ(θ) progressively introduces the elements of f i(θ) and drops the elements of
fd(θ).

Waggoner et al. (2016) specify f s(θ), f i(θ) and fd(θ) in order to initialize the algo-
rithm from the prior distribution. We depart from Waggoner et al. (2016) and specify
f s(θ), f i(θ) and fd(θ) to initialize the algorithm from p(B|Y )NiWU . Initializing the
algorithm in p(B|Y )NiWU rather than p(B)Np(B) speeds up the posterior sampler, be-
cause the starting kernel already introduces information from the data. Then, we
progressively convert p(B|Y )NiWU into p(B|Y )Np(B) using the sampler by Waggoner
et al. (2016). In our applications, the sampler is required for either four or nine pa-
rameters, which is well within the range of parameters in which the Dynamic Striated
Metropolis-Hastings sampler performs efficiently.

More precisely, in our applications θ contains the entries of B, excluding the ones
restricted to zero, if any. In sampling p(B|Y )Np(B) from equation (2.8), one could set

f s(θ) = p(B)Np(B), (2.69)

f i(θ) = |det(B)|−T · |det(V ∗π )|
1
2 · e−

1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ′∗π V ∗

−1
π µ∗π

}
, (2.70)

fd(θ) = 1. (2.71)

This specification follows Waggoner et al. (2016) in initializing the algorithm at the
prior distribution. We propose, instead, to start from a function that allows exploiting
the computational advantage of the NiWU approach from section 2.2.2 of the paper.
Since the posterior distribution corresponding to the NiWU approach is available an-
alytically, equation (2.32), we use this function as the starting point of the algorithm
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and set

f s(θ) = |det(B)|−T · |det(V ∗π )|
1
2 · e−

1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ′∗π V ∗

−1
π µ∗π

}
, (2.72)

f i(θ) = p(B)Np(B) · |det(Vπ)|−
1
2 · e−

1
2

{
µ′πV

−1
π µπ

}
, (2.73)

fd(θ) = |det(B)|−(d+k)e−
1
2

{
vec(B−1)′(S⊗Ik)vec(B−1)

}
. (2.74)

We set d and S as in our algorithm, see section 2.A.3.2. If zero restrictions on B are
introduced, either equation (2.74) is modified to numerically account for the volume
element featuring also zero restrictions or the algorithm is initialized in p(B)Np(B).

Once the functions f s(θ), f i(θ) and fd(θ) are selected, define the target function

log[fλh(θ)] = log[f s(θ)] + λh · log[f i(θ)] + (1− λh) · log[fd(θ)], (2.75)

as the logarithm of the tempered function fλh(θ) at stage h, with h = 1, ..., H and H
the total number of stages. To the extent that, among other requirements, a sufficient
number of stages is used, the target function at stage h− 1 is sufficiently close to the
target function at stage h. This makes the draws representative of the target function
at stage h−1 a useful point of departure to numerically explore the target distribution
at stage h.

Within this sequential approach, Waggoner et al. (2016) propose sampling log[fλh(θ)]

using a modified Metropolis-Hastings algorithm.20 In the general stage h, the algorithm
can be summarized in the following steps:

1. start stage h with N ·G draws {θ(h−1)
d }N ·Gd=1 , which are representative of the target

distribution at stage h− 1. If h = 1, then {θ(0)
d }N ·Gd=1 are drawn from the starting

function, otherwise, they are computed at the end of stage h− 1;

2. evaluate the function log[f i(θ)] at each {θ(h−1)
d }N ·Gd=1 and group draws {θ(h−1)

d }N ·Gd=1

into M ‘striations’ (subsets), depending on the corresponding value of log[f i(θ)];

3. for each {θ(h−1)
d }N ·Gd=1 compute weights ω̃d =

fλh (θ
(h−1)
d )

fλh−1
(θ

(h−1)
d )

. As with importance

sampling techniques, ωd = ω̃d∑N·G
d=1 ω̃d

, d = 1, .., N · G allow reweighting the draws
from the previous stage such that they become representative of the target dis-
tribution of the current stage, provided that the effective sample size does not
shrink excessively;

20See, for example, Herbst and Schorfheide (2014) for an alternative approach to sequential Monte
Carlo samplers.
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4. use {θ(h−1)
d , ωd}N ·Gd=1 to compute numerically the variance Ωh of the target function

at stage h;

5. explore the target function log[fλh(θ)] as follows. For each group g, set the
initial draw θold to a random draw from {θ(h−1)

d }N ·Gd=1 , extracted with replacement
using {ωd}N ·Gd=1 . Then, with probability p, set θnew = θold + θshock with θshock
a multivariate zero-mean normal random variable with variance ch · Ωh, while
with probability 1 − p set θnew to a randomly extracted draw from the subset
of {θ(h−1)

d }N ·Gd=1 from the striation associated with function log[f i(θ)] evaluated at
θold. Accept θnew with probability min

{
1,

fλh (θnew)

fλh (θold)

}
if θnew was generated from

the random walk extraction, and with probability min
{

1,
fλh (θnew)

fλh−1
(θold)

fλh (θold)

fλh−1
(θnew)

}
if

θnew was randomly selected from the strations at the previous stage. Continue
for N · τ iterations;

6. store one every τ draws for each group and collect the N · G draws {θ(h)
d }N ·Gd=1 .

Use {θ(h)
d }N ·Gd=1 to initialize the next stage h + 1. If h = H, the last stage has

been reached, and {θ(h)
d }N ·Gd=1 are interpreted as posterior draws from the desired

distribution.

To make the above algorithm operational, we need to set several tuning parameters.
Following Waggoner et al. (2016), we set p = 1/(10τ). We then set the parameter ch at
each stage following the guidance discussed by Waggoner et al. (2016) in Appendix A,
hence ensuring, within each stage, an acceptance ratio between 0.20 and 0.30 from a
preliminary Metropolis-Hastings algorithm with K iterations. We set the progression
of the tempering parameter as in Herbst and Schorfheide (2014), using λh =

(
h−1
H−1

)2.
It remains to calibrate the number of stages H, the number of groups G, the effective
number of iterations N within each group, the number K affecting the number of
iterations K ·G for the calibration of the parameter ch, the frequency τ at which draws
stored, and the number of striations M . These parameters affect the time required for
the algorithm to run. For the applications in this paper, we speed up posterior sampling
by setting these parameters to relatively low values, under the following conditions:

1. that the effective sample size computed for the importance sampling from one
stage to the next one never falls below 80%. If this occurs a higher number of
stages H is used;

2. that the convergence criteria discussed in the next section of this appendix con-
firm that the draws at stage h have converged to the distribution of the target
function at stage h. If this is not the case, a higher number of effective draws N
and/or groups G is used.
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Table 2.6 reports the values of the tuning parameters used in the applications.

Table 2.6: Tuning parameters used for the DSMH algorithm
section 2.3 section 2.4

H number of stages 6 8
G number of groups 8 8
N number of MH iterations per group 8,000 12,000
K number of iterations to calibrate c 1,000 1,000
τ frequency of storage of iterations 1 1
M number of striations 10 10

2.A.4.2 Convergence criteria

Consider the chain {θd}N ·Gd=1 , with θd = (θ1,d, .., θj,d, .., θκ,d)
′ of dimension κ × 1. We

employ four convergence criteria in order to assess if the chain has converged in distri-
bution, namely the converge criteria developed by Geweke (1992), by Raftery and Lewis
(1992), by Gelman and Rubin (1992) and by Brooks and Gelman (1998). Intuitively,
the criteria used operate by assessing whether the series has excessive auto-dependence
(which indicates that the draws are not from a stationary distribution) and whether it
depends on the starting point (which indicates that the chain is not long enough).

The convergence criteria that we use can be classified according to two main features.
First, whether the convergence of each parameter is assessed in isolation from the
remaining κ − 1 parameters or jointly (i.e. whether the object of interest is θj,d or
θd). Second, whether the series of N · G draws are considered in a long chain from a
single starting value or in multiple chains from multiple starting points (i.e. whether the
object of interest is {θj,d}N ·Gd=1 or {θj,d}Nd=1, {θj,d}2N

d=N+1, ..., {θj,d}N ·Gd=(G−1)N+1 for univariate
chains, and {θd}N ·Gd=1 or {θd}Nd=1, {θd}2N

d=N+1, ..., {θd}N ·Gd=(G−1)N+1 for multivariate chains).
The statistic by Brooks and Gelman (1998) considers the multidimensional objects,
while the remaining criteria consider univariate objects. The criteria by Geweke (1992)
and Raftery and Lewis (1992) consider single chains, while the criteria by Gelman and
Rubin (1992) and Brooks and Gelman (1998) consider multiple chains. For a detailed
comparative review of convergence criteria for Markov Chain Monte Carlo mechanisms
see Cowles and Carlin (1996) and Brooks and Roberts (1998).

Geweke (1992)

The univariate approach by Geweke (1992) assesses the convergence of each parameter
of the series in isolation, using the series {θj,d}N ·Gd=1 for each parameter j. The assessment
is based on a comparison of means across different parts of the chain. If the means are
close to each other, the procedure detects convergence.
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To run the test we proceed in four steps:

1. Extract the first 10% and the last 40% of the draws of {θj,d}N ·Gd=1 , i.e. {θj,d}0.10·N ·G
d=1

and {θj,d}N ·Gd=0.60·N ·G;

2. For each subseries, compute the mean and the standard deviation and call them
µ̂first, µ̂last, σ̂first and σ̂last;

3. Compute the test statistic

CD =
µ̂first − µ̂last
σ̂first√
0.1NG

+ σ̂last√
0.4NG

. (2.76)

Under the conditions mentioned in Geweke (1992), CD has an asymptotic stan-
dard normal distribution;

4. Compute the p-value.

The final statistic of the test is the p-value associated with the statistic CD. A
p-value below the significant level indicates that the null hypothesis of convergence,
captured by the equality of means across the chain, can be rejected, and hence that
the series has not converged.

Raftery and Lewis (1992)

The approach by Raftery and Lewis (1992), like the one by Geweke (1992), investigates
one long univariate chain of draws for one parameter in isolation, {θj,d}N ·Gd=1 . The main
objects of interest are the quantiles of the probability distribution for the parameter j.
The method assesses if the chain is long enough to get precise estimates of quantiles of
this distribution.

To define the notion of closeness, three values have to be specified by the user: s, q
and r. If the interest lies in qj,0.025, the 0.025 quantile of the posterior of a parameter
θj, then q = 0.025. If one exerts 95% of the posterior draws to lie in an interval of
+/- 0.0125 around the true 0.025 quantile, then s = 0.95 and r = 0.0125. These
specifications are standard for output from an MCMC chain. The implementation of
the algorithm for each parameter j proceeds in 4 steps:

1. Transform {θj,d}N ·Gd=1 into a dichotomous random variable Zd:

Zd =

1 if θj,d < q0.025,

0 otherwise;
(2.77)
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2. Write the matrix of transition probabilities for Zd conditioning on the previous
state,

P =

[
1− α α

β 1− β

]
,

with α = P (Zd+1 = 1|Zd = 0) and β = P (Zd+1 = 0|Zd = 1). The unconditional
probabilities of being in one state or another are

π0 = P (θj,d < q0.025) = P (Zd = 0) =
β

α + β
(2.78)

π1 = P (θj,d ≥ q0.025) = P (Zd = 1) = 1− π0 =
α

α + β
(2.79)

3. Approximate the probability that a draw of the parameter is smaller than the
quantile of interest as

P (θj,d < q0.025) ≈ Z̄NG,j =
1

NG

NG∑
d=1

Zd. (2.80)

As shown by Raftery and Lewis (1992), Z̄NG is approximately normally dis-
tributed with mean q0.025 and variance 1

NG
(2−α−β)αβ

(α+β)3
;

4. Compute the optimal length of the chain as the length that ensures P (q − r ≤
Z̄NG ≤ q + r) using

n∗ =
(2− α− β)αβ

(α + β)3

{Φ−1(1
2
(s+ 1))

r

}2

(2.81)

The key statistic of the test is n∗, which has an intuitive interpretation: it is the
minimum number of draws we need for the desired level of accuracy of the quantile q
(given by r and s). If N ·G is lower than n∗, this suggests that the chain length needs
to be increased.

Gelman and Rubin (1992)

The convergence diagnostic by Gelman and Rubin (1992) uses multiple univariate
chains, {θj,d}Nd=1, {θj,d}2N

d=N+1, ..., {θj,d}N ·Gd=(G−1)N+1. If the chains have converged, then
they should not depend on starting values any more. The convergence statistic is
based on a comparison of between-sequence variance and within sequence variance.
The procedure consists of four steps:
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1. Compute the variance of the mean of each sequence (“between-sequence variance”)
as

B =
1

G− 1

G∑
g=1

(θ̄j,·,g − θ̄j)2, (2.82)

where θ̄j,·,g is the mean of θj,d within the g-th chain and θ̄j is the mean across all
chains for parameter j.

2. Compute the mean across sequences of the variances within sequence (the “within-
sequence variance”) as

W =
1

G(N − 1)

G∑
g=1

N∑
n=1

(θj,n,g − θ̄j,·,g)2; (2.83)

3. Estimate the overall variance as

V̂ = σ̂2
+ +

B

G
, (2.84)

with
σ̂2

+ =
N − 1

N
W +B; (2.85)

4. Compute the statistic

R̂ =
V̂

W
. (2.86)

The key statistic of the test is R̂. As a rule-of-thumb, R̂ should be below 1.2 to
assert that the chain has converged.

Brooks and Gelman (1998)

The statistic by Brooks and Gelman (1998) is a multivariate extension of Gelman and
Rubin (1992) and requires different chains of a multivariate series, {θd}Nd=1, {θd}2N

d=N+1

, ..., {θd}N ·Gd=(G−1)N+1. Intuitively, as in the test by Gelman and Rubin (1992), the ap-
proach by Brooks and Gelman (1998) builds the analysis by comparing the between-
chain and within-chain variances. The test builds on the multivariate extension of the
steps used for the the approach by Gelman and Rubin (1992):

1. Compute the variance of the mean of each sequence (“between-sequence variance”)
as

B =
1

G− 1

G∑
g=1

(θ̄g − θ̄)(θ̄g − θ̄)′; (2.87)
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2. Compute the mean across sequences of the variances within sequence (the “within-
sequence variance”) as

W =
1

G(N − 1)

G∑
g=1

N∑
n=1

(θn,g − θ̄g)(θn,g − θ̄g)′; (2.88)

3. Estimate the overall variance as

V̂ =
N − 1

N
W +

(
1 +

1

G

)
B; (2.89)

4. Compute the (scalar) distance measure between these two matrices as

R̂mult =
N

N − 1
+
G+ 1

G
λ1, (2.90)

where λ1 is the largest eigenvalue of the matrix W−1B.

The final statistic of the test is R̂mult. As for the approach by Gelman and Rubin
(1992), the rule-of-thumb prescribes that R̂mult is below 1.2 in order to assert conver-
gence.

Table 2.8 to table 2.12 and table 2.17 to table 2.19 report the convergence diagnostics
for the two applications developed in the paper.
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2.A.5 Additional tables/figures for section 2.3
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Figure 2.7: Illustration of our algorithm, T = 30

Stage A, p(Σ|Y )

-1 0 1
0

2

4
Stage A, proposal draws
Stage A, reweighted draws
True (DSMH algorithm)

i,j, true

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

-0.5 0 0.5
0

2

4

6

8

Stage B, p(B|Y )

-1 0 1Stage B, proposal draws
Stage B, reweighted draws
True (DSMH algorithm)

-1 0 1

-0.5 0 0.5 -0.5 0 0.5

Note: In the upper panel, the proposal draws are obtained from Step 1 in our algorithm, the
reweighted draws correspond to the same draws reweighted using weights from Step 2, while the
draws associated with the Dynamic Striated Metropolis-Hastings algorithm are obtained indirectly
after running such algorithm on p(B|Y )Np(B). In the lower panel, the proposal draws correspond
to draws obtained from Step 6 of our algorithm, the reweighted draws are obtained from Step 8,
and the remaining draws are associated with the Dynamic Striated Metropolis-Hastings algorithm
run on p(B|Y )Np(B).
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Figure 2.8: Illustration of our algorithm, T = 60
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Note: In the upper panel, the proposal draws are obtained from Step 1 in our algorithm, the
reweighted draws correspond to the same draws reweighted using weights from Step 2, while the
draws associated with the Dynamic Striated Metropolis-Hastings algorithm are obtained indirectly
after running such algorithm on p(B|Y )Np(B). In the lower panel, the proposal draws correspond
to draws obtained from Step 6 of our algorithm, the reweighted draws are obtained from Step 8,
and the remaining draws are associated with the Dynamic Striated Metropolis-Hastings algorithm
run on p(B|Y )Np(B).
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Figure 2.9: Illustration of our algorithm, T = 120
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Note: In the upper panel, the proposal draws are obtained from Step 1 in our algorithm, the
reweighted draws correspond to the same draws reweighted using weights from Step 2, while the
draws associated with the Dynamic Striated Metropolis-Hastings algorithm are obtained indirectly
after running such algorithm on p(B|Y )Np(B). In the lower panel, the proposal draws correspond
to draws obtained from Step 6 of our algorithm, the reweighted draws are obtained from Step 8,
and the remaining draws are associated with the Dynamic Striated Metropolis-Hastings algorithm
run on p(B|Y )Np(B).
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Figure 2.10: Illustration of our algorithm, T = 240
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Note: In the upper panel, the proposal draws are obtained from Step 1 in our algorithm, the
reweighted draws correspond to the same draws reweighted using weights from Step 2, while the
draws associated with the Dynamic Striated Metropolis-Hastings algorithm are obtained indirectly
after running such algorithm on p(B|Y )Np(B). In the lower panel, the proposal draws correspond
to draws obtained from Step 6 of our algorithm, the reweighted draws are obtained from Step 8,
and the remaining draws are associated with the Dynamic Striated Metropolis-Hastings algorithm
run on p(B|Y )Np(B).
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Figure 2.11: Illustration of our algorithm, T = 480
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Note: In the upper panel, the proposal draws are obtained from Step 1 in our algorithm, the
reweighted draws correspond to the same draws reweighted using weights from Step 2, while the
draws associated with the Dynamic Striated Metropolis-Hastings algorithm are obtained indirectly
after running such algorithm on p(B|Y )Np(B). In the lower panel, the proposal draws correspond
to draws obtained from Step 6 of our algorithm, the reweighted draws are obtained from Step 8,
and the remaining draws are associated with the Dynamic Striated Metropolis-Hastings algorithm
run on p(B|Y )Np(B).
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Figure 2.12: Comparing our approach to the NiWU approach: priors
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Note: Since the prior distribution for the NiWU approach with d = 0, S = 0 is an improper
function, in this figure we approximate it by setting d = k + 2, S = 0.01Ik. See also figure 2.13.
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Figure 2.13: More on the approximate improper prior in the NiWU approach
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Figure 2.14: Comparing our approach to the NiWU approach, posteriors for T = 30
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Figure 2.15: Comparing our approach to the NiWU approach, posteriors for T = 60
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Figure 2.16: Comparing our approach to the NiWU approach, posteriors for T = 120
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Figure 2.17: Comparing our approach to the NiWU approach, posteriors for T = 240
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Figure 2.18: Comparing our approach to the NiWU approach, posteriors for T = 480
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Figure 2.19: Comparing our approach to the NiWU approach, posteriors asymptoti-
cally
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Figure 2.20: Posterior distribution of the estimated bounds ±Σ0.5
i,i associated with

p(Σ|Y )NiWU and p(Σ|Y )Np(B)

A) T = 30

B) T = 60
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C) T = 120

D) T = 240
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E) T = 480

Note: The grey solid line refers to the distribution p(B|Y )Np(B), the dashed blue line refers to the
distribution p(B|Y )NiWU , the blue and grey dotted lines refer to the distributions of the upper
bounds ±Σ0.5

i,i corresponding to p(Σ|Y )Np(B) and p(Σ|Y )NiWU , respecitvely. The distributions
associated with the NiWU approach refer to the improper prior specification.
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Table 2.7: Diagnostics on the importance weights, tests

u 0.5N 0.6N 0.7N 0.9N 0.99N
T = 30

Wald -73.00 -60.49 -44.09 22.77 -0.29
Score -6.00 -5.94 -5.00 2.75 -0.16
LR NA NA NA NA NA

T = 60
Wald -39.96 -34.09 -27.83 -13.27 -2.97
Score -13.45 -11.76 -9.98 -5.80 -1.99
LR 0.00 0.00 0.00 0.00 0.00

T = 120
Wald -47.91 -42.59 -36.44 -19.71 -5.36
Score -19.08 -16.09 -13.75 -7.51 -2.52
LR 0.00 0.00 0.00 0.00 0.00

T = 240
Wald -53.43 -49.18 -43.69 -26.60 -9.02
Score -21.84 -18.86 -16.27 -8.37 -2.78
LR 0.00 0.00 0.00 0.00 0.00

T = 480
Wald -56.71 -53.08 -48.01 -30.60 -10.45
Score -23.15 -20.04 -16.76 -9.21 -2.56
LR 0.00 0.00 0.00 0.00 0.00

Note: Reported are the test statistics. The null hypothesis implies finite weight variance. The
corresponding critical values above which the null hypothesis is rejected are 1.65 for the Wald test,
1.65 for the score test and 2.68 for the LR test (5% significance level). The corresponding p-values
are close to 0 for T = 30 and close to 1 for all other cases.
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Figure 2.21: Diagnostics on the importance weights, graphical assessment
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Note: The graph shows the recursive variance {vi}Ni=1, where vi = var(w1:i) computed using
de-meaned and standardized weights.
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Table 2.8: Convergence diagnostics for the application in section 2.3 of the paper, T =
30

parameter 1 2 3 4 all

Geweke (1992), p-value. Convergence found if p-value ≥ 0.01
stage 1 0.82 0.33 0.22 0.50
stage 2 0.38 0.86 0.02 0.09
stage 3 0.27 0.01 0.92 0.14
stage 4 0.24 0.05 0.30 0.01
stage 5 0.72 0.02 0.16 0.12
stage 6 0.47 0.45 0.41 0.91

Raftery and Lewis (1992), n∗. Convergence found if n∗ ≤ N ·G (64,000)
stage 1 25,457 27,159 30,127 27,500
stage 2 26,442 26,803 28,344 26,955
stage 3 24,578 26,511 32,887 25,469
stage 4 22,904 25,974 32,659 23,816
stage 5 22,663 21,714 30,463 23,272
stage 6 24,546 23,686 27,441 23,240

Gelman and Rubin (1992), R̂. Convergence found if R̂ ≤ 1.2
stage 1 1.003 1.002 1.002 1.002
stage 2 1.003 1.001 1.002 1.002
stage 3 1.002 1.002 1.001 1.003
stage 4 1.002 1.002 1.001 1.003
stage 5 1.005 1.002 1.002 1.002
stage 6 1.001 1.001 1.001 1.001

Brooks and Gelman (1998), R̂mult. Convergence found if R̂mult ≤ 1.2
stage 1 1.003
stage 2 1.004
stage 3 1.005
stage 4 1.004
stage 5 1.008
stage 6 1.002
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Table 2.9: Convergence diagnostics for the application in section 2.3 of the paper, T =
60

parameter 1 2 3 4 all

Geweke (1992), p-value. Convergence found if p-value ≥ 0.01
stage 1 0.35 0.93 0.09 0.60
stage 2 0.07 0.46 0.57 0.17
stage 3 0.20 0.84 0.74 0.33
stage 4 0.50 0.50 0.25 0.21
stage 5 0.26 0.59 0.49 0.60
stage 6 0.86 0.48 0.96 0.99

Raftery and Lewis (1992), n∗. Convergence found if n∗ ≤ N ·G (64,000)
stage 1 26,633 29,931 20,179 29,286
stage 2 29,912 27,584 21,278 30,639
stage 3 27,370 29,397 20,753 30,145
stage 4 24,342 27,417 22,054 29,624
stage 5 27,668 24,618 22,783 29,758
stage 6 25,252 24,410 21,994 24,854

Gelman and Rubin (1992), R̂. Convergence found if R̂ ≤ 1.2
stage 1 1.001 1.001 1.001 1.000
stage 2 1.002 1.002 1.002 1.002
stage 3 1.001 1.000 1.001 1.001
stage 4 1.000 1.001 1.001 1.001
stage 5 1.001 1.000 1.001 1.001
stage 6 1.003 1.002 1.002 1.001

Brooks and Gelman (1998), R̂mult. Convergence found if R̂mult ≤ 1.2
stage 1 1.003
stage 2 1.002
stage 3 1.003
stage 4 1.003
stage 5 1.002
stage 6 1.003
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Table 2.10: Convergence diagnostics for the application in section 2.3 of the paper,
T = 120

parameter 1 2 3 4 all

Geweke (1992), p-value. Convergence found if p-value ≥ 0.01
stage 1 0.90 0.84 0.90 0.89
stage 2 0.64 0.34 0.87 0.66
stage 3 0.81 0.45 0.57 0.77
stage 4 0.64 0.18 0.21 0.50
stage 5 0.25 0.29 0.89 0.67
stage 6 0.55 0.48 0.42 0.71

Raftery and Lewis (1992), n∗. Convergence found if n∗ ≤ N ·G (64,000)
stage 1 38,177 38,540 24,618 45,268
stage 2 38,229 37,637 26,218 39,798
stage 3 38,184 36,551 23,368 37,841
stage 4 40,124 43,235 22,783 37,114
stage 5 33,015 37,353 19,773 31,707
stage 6 30,682 33,353 20,706 31,242

Gelman and Rubin (1992), R̂. Convergence found if R̂ ≤ 1.2
stage 1 1.001 1.001 1.001 1.001
stage 2 1.001 1.001 1.001 1.002
stage 3 1.001 1.001 1.001 1.001
stage 4 1.001 1.001 1.001 1.001
stage 5 1.001 1.000 1.000 1.001
stage 6 1.001 1.001 1.001 1.001

Brooks and Gelman (1998), R̂mult. Convergence found if R̂mult ≤ 1.2
stage 1 1.002
stage 2 1.005
stage 3 1.002
stage 4 1.004
stage 5 1.003
stage 6 1.002
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Table 2.11: Convergence diagnostics for the application in section 2.3 of the paper,
T = 240

parameter 1 2 3 4 all

Geweke (1992), p-value. Convergence found if p-value ≥ 0.01
stage 1 0.28 0.11 0.13 0.35
stage 2 0.15 0.21 0.27 0.22
stage 3 0.85 0.91 0.75 0.74
stage 4 0.74 0.62 0.74 0.68
stage 5 0.96 0.57 0.96 0.64
stage 6 0.35 0.18 0.19 0.25

Raftery and Lewis (1992), n∗. Convergence found if n∗ ≤ N ·G (64,000)
stage 1 37,890 44,770 27,980 39,878
stage 2 43,621 40,519 27,826 41,374
stage 3 40,011 42,262 27,205 40,226
stage 4 42,403 40,688 24,506 40,909
stage 5 39,060 38,904 24,144 37,694
stage 6 38,379 35,270 20,960 37,987

Gelman and Rubin (1992), R̂. Convergence found if R̂ ≤ 1.2
stage 1 1.001 1.002 1.002 1.001
stage 2 1.003 1.003 1.004 1.002
stage 3 1.003 1.003 1.004 1.003
stage 4 1.001 1.003 1.003 1.001
stage 5 1.001 1.002 1.002 1.001
stage 6 1.001 1.001 1.001 1.001

Brooks and Gelman (1998), R̂mult. Convergence found if R̂mult ≤ 1.2
stage 1 1.004
stage 2 1.005
stage 3 1.006
stage 4 1.004
stage 5 1.003
stage 6 1.001
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Table 2.12: Convergence diagnostics for the application in section 2.3 of the paper,
T = 480

parameter 1 2 3 4 all

Geweke (1992), p-value. Convergence found if p-value ≥ 0.01
stage 1 0.15 0.24 0.18 0.14
stage 2 0.69 0.82 0.76 0.79
stage 3 0.81 0.92 0.84 0.97
stage 4 0.19 0.13 0.17 0.38
stage 5 0.06 0.01 0.01 0.02
stage 6 0.16 0.09 0.15 0.35

Raftery and Lewis (1992), n∗. Convergence found if n∗ ≤ N ·G (64,000)
stage 1 45,528 49,194 35,838 46,921
stage 2 47,989 41,589 31,108 44,513
stage 3 47,795 46,939 32,032 49,132
stage 4 43,952 44,744 29,345 41,305
stage 5 45,518 45,321 28,359 44,232
stage 6 41,568 45,321 27,007 39,536

Gelman and Rubin (1992), R̂. Convergence found if R̂ ≤ 1.2
stage 1 1.003 1.002 1.003 1.003
stage 2 1.003 1.003 1.003 1.004
stage 3 1.002 1.002 1.002 1.001
stage 4 1.001 1.001 1.001 1.001
stage 5 1.003 1.004 1.004 1.003
stage 6 1.001 1.001 1.001 1.001

Brooks and Gelman (1998), R̂mult. Convergence found if R̂mult ≤ 1.2
stage 1 1.003
stage 2 1.005
stage 3 1.006
stage 4 1.003
stage 5 1.005
stage 6 1.003
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Figure 2.22: Marginal distribution on the rotation angle θ implicit in the marginal prior
and posterior distributions p(Q) and p(Q|Y )
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C) T = 120
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D) T = 240
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E) T = 480

0
0 - - /2 /2

prior
posterior

0
0 - - /2 /2

KK(1997) specification, prior
KK(1997) specification, posterior
improper specification, posterior

Note: The NiWU approach uses the distribution p(Q|Σ)NiWU , which is the uniform distribution
in the matrix parameter space QΣ. The Np(B) approach uses the distribution p(Q|Σ)Np(B)

that is implied by the prior p(B)Np(B). The marginal distributions p(Q)NiWU , p(Q|Y )NiWU ,
p(Q)Np(B) and p(Q|Y )Np(B) are obtained by marginalizing out Σ using p(Σ)NiWU , p(Σ|Y )NiWU ,
p(Σ|Y )Np(B) and p(Σ|Y )Np(B), respectively. The figure shows the distribution on the rotation
angle θ associated with the distributions p(Q)NiWU , p(Q|Y )NiWU , p(Q)Np(B) and p(Q|Y )Np(B).
See also the discussion in footnote 12 of the paper and section 2.A.3.2 of the Appendix.
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2.A.6 Additional tables/figures for section 2.4
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Figure 2.23: Data, as it enters the model
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Figure 2.24: p(Σ)NiWU and p(Σ)Np(B)

Note: The figure shows the prior distribution p(Σ) associated with our approach and with the
prior specification by Kadiyala and Karlsson (1997) of the NiWU approach.
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Figure 2.25: p(Σ|Y )NiWU and p(Σ|Y )Np(B)

Note: The figure shows the posterior distribution p(Σ|Y ) associated with our approach and with
the NiWU approach.
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Figure 2.26: p(B)Np(B) comparing prior specifications for our approach

Note: The figure shows the three alternative prior specifications we use for the prior distribution
in our Np(B) approach. See also table 2.3 in the paper.
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Table 2.13: Allocation of prior probability mass in our Np(B) approach
Estimated bounds γi used to specify the prior p(B)Np(B)

i = 1: Oil production growth 0.978
i = 2: Economic activity index 2.668
i = 3: Real oil price 2.953

Prior probability mass of the absolute value of Bi,j beyond γi

prior I prior II prior III
0.84 0.84 0.84 0.52 0.52 0.52 0.33 0.33 0.33
0.84 0.84 0.84 0.53 0.53 0.53 0.33 0.33 0.33
0.84 0.84 0.84 0.53 0.53 0.53 0.33 0.33 0.33

97.5th percentile of the marginal distributions p(Bi,j)Np(B)

prior I prior II prior III
-4.353 4.341 4.352 -2.124 2.097 2.103 -1.625 1.604 1.620
-11.721 11.492 -11.537 -5.960 5.787 -5.929 -4.349 4.396 -4.372
12.890 12.889 12.868 6.481 6.501 6.487 4.801 4.756 4.887
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Figure 2.27: p(B|Y )Np(B), comparing algorithms (prior I)

Note: The figure shows the posterior distribution p(B|Y )Np(B) associated with prior specification
A (table 2.3 in the paper), sampled using either our algorithm or the Dynamic Strated Metropolis-
Hastings algorithm by Waggoner et al. (2016).
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Figure 2.28: p(B|Y )Np(B), comparing algorithms (prior II)

Note: The figure shows the posterior distribution p(B|Y )Np(B) associated with prior specification
B (table 2.3 in the paper), sampled using either our algorithm or the Dynamic Strated Metropolis-
Hastings algorithm by Waggoner et al. (2016).
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Figure 2.29: p(B|Y )Np(B), comparing algorithms (prior III)

Note: The figure shows the posterior distribution p(B|Y )Np(B) associated with prior specification
C (table 2.3 in the paper), sampled using either our algorithm or the Dynamic Strated Metropolis-
Hastings algorithm by Waggoner et al. (2016).
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Figure 2.30: p(B|Y )NiWU , comparing NiWU approach with improper prior and with
prior from Kadiyala and Karlsson (1997)

Note: The figure shows the posterior distribution p(B|Y )NiWU when parametrizing the underlying
inverse Wishart either with the improper prior or with the prior specification by Kadiyala and
Karlsson (1997).

120



Chapter 2 Bayesian Structural VAR models: a new approach for prior beliefs on
impulse responses

Figure 2.31: p(B|Y ), comparing our approach to the NiWU approach (prior I)

Note: The figure shows the posterior distribution p(B|Y )Np(B) associated with prior specification
I (table 2.3 in the paper) and the posterior distribution p(B|Y )NiWU associated with the improper
prior specification. It then shows the distributions of the upper bounds ±Σ0.5

i,i (equation (2.11) in
the paper) associated with the posterior distributions p(Σ|Y )Np(B) and p(Σ|Y )NiWU .
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Figure 2.32: p(B|Y ), comparing our approach to the NiWU approach (prior II)

Note: The figure shows the posterior distribution p(B|Y )Np(B) associated with prior specification
II (table 2.3 in the paper) and the posterior distribution p(B|Y )NiWU associated with the improper
prior specification. It then shows the distributions of the upper bounds ±Σ0.5

i,i (equation (2.11) in
the paper) associated with the posterior distributions p(Σ|Y )Np(B) and p(Σ|Y )NiWU .
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Figure 2.33: p(B|Y ), comparing our approach to the NiWU approach (prior III)

Note: The figure shows the posterior distribution p(B|Y )Np(B) associated with prior specification
III (table 2.3 in the paper) and the posterior distribution p(B|Y )NiWU associated with the im-
proper prior specification. It then shows the distributions of the upper bounds ±Σ0.5

i,i (equation
(2.11) in the paper) associated with the posterior distributions p(Σ|Y )Np(B) and p(Σ|Y )NiWU .
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Figure 2.34: IRFs, comparing NiWU approach with improper prior and with prior from
Kadiyala and Karlsson (1997)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the inverse Wishart distribution.
The x-ed, dashed and solid lines show the same statistics associated with the prior specification
of the inverse Wishart by Kadiyala and Karlsson (1997). As in Antoĺın-Dı́az and Rubio-Ramı́rez
(2018), the response of the oil production has been accumulated to the level.
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Figure 2.35: IRFs, comparing NiWU and Np(B) (prior I)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach under prior
specification I. As in Antoĺın-Dı́az and Rubio-Ramı́rez (2018), the response of the oil production
has been accumulated to the level.
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Figure 2.36: IRFs, comparing NiWU and Np(B) (prior II)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach under prior
specification II. As in Antoĺın-Dı́az and Rubio-Ramı́rez (2018), the response of the oil production
has been accumulated to the level.
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Figure 2.37: IRFs, comparing NiWU and Np(B) (prior III)

0 6 12 18

-1

0

1

0 6 12 18

-1

0

1

0 6 12 18

-1

0

1

0 6 12 18

-5

0

5

0 6 12 18

-5

0

5

0 6 12 18

-5

0

5

0 6 12 18
-5

0

5

10

0 6 12 18
-5

0

5

10

0 6 12 18
-5

0

5

10

Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach under prior
specification III. As in Antoĺın-Dı́az and Rubio-Ramı́rez (2018), the response of the oil production
has been accumulated to the level.
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Figure 2.38: FEVD, comparing NiWU and Np(B) (prior I)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach under prior
specification I.
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Figure 2.39: FEVD, comparing NiWU and Np(B) (prior II)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach under prior
specification II.
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Figure 2.40: FEVD, comparing NiWU and Np(B) (prior III)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach under prior
specification III.
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Figure 2.41: Sensitivity analysis for figure 2.4 in the paper
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible bands
associated with the improper prior parametrization of the NiWU approach. The remaining solid
and dashed lines show the same statistics associated with our Np(B) approach under Prior I. The
rows of the figure differ for the number of draws used to evaluate

∫
B(Σd)

p(B)Np(B)dB numerically
in Stage A of our algorithm.
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Figure 2.42: Sensitivity analysis. Sampling p(B|Y )Np(B) with our algorithm (prior I)

Note: The red dotted line shows the results using the full algorithm. The blue continuous line
shows the results using the approximation with

∫
B(Σd)

p(B)Np(B)dB = 1. This approximation
reduces the computational time from 34m19s to 6m6s.

132



Chapter 2 Bayesian Structural VAR models: a new approach for prior beliefs on
impulse responses

Figure 2.43: Sensitivity analysis. Sampling p(B|Y )Np(B) with our algorithm (prior II)

Note: The red dashed line shows the results using the full algorithm. The blue continuous line
shows the results using the approximation with

∫
B(Σd)

p(B)Np(B)dB = 1. This approximation
reduces the computational time from 35m2s to 6m5s.
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Figure 2.44: Sensitivity analysis. Sampling p(B|Y )Np(B) with our algorithm (prior III)

Note: The red continuous line shows the results using the full algorithm. The blue continuous
line shows the results using the approximation with

∫
B(Σd)

p(B)Np(B)dB = 1. This approximation
reduces the computational time from 36m21s to 8m56s.
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Figure 2.45: Historical decomposition, June – December 1990 (prior I)
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Note: The figure shows the data (solid black line) and its decomposition into the cumulative
contribution of the estimated structural shocks from the beginning of the sample until period t.
The dotted line and the shaded areas show the pointwise median, 68 and 95% credible bands
associated with the improper prior parametrization of the NiWU approach. The remaining solid
and dashed lines show the same statistics associated with our Np(B) approach. Having subtracted
the value corresponding to June 1990 before computing pointwise statistics, the figure can be
interpreted as percent relative to June 1990.
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Figure 2.46: Historical decomposition, June – December 1990 (prior II)
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Note: The figure shows the data (solid black line) and its decomposition into the cumulative
contribution of the estimated structural shocks from the beginning of the sample until period t.
The dotted line and the shaded areas show the pointwise median, 68 and 95% credible bands
associated with the improper prior parametrization of the NiWU approach. The remaining solid
and dashed lines show the same statistics associated with our Np(B) approach. Having subtracted
the value corresponding to June 1990 before computing pointwise statistics, the figure can be
interpreted as percent relative to June 1990.
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Figure 2.47: Historical decomposition, June – December 1990 (prior III)
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Note: The figure shows the data (solid black line) and its decomposition into the cumulative
contribution of the estimated structural shocks from the beginning of the sample until period t.
The dotted line and the shaded areas show the pointwise median, 68 and 95% credible bands
associated with the improper prior parametrization of the NiWU approach. The remaining solid
and dashed lines show the same statistics associated with our Np(B) approach. Having subtracted
the value corresponding to June 1990 before computing pointwise statistics, the figure can be
interpreted as percent relative to June 1990.
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Figure 2.48: Price and demand elasticities
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Note: The figure shows the posterior medians estimated by Baumeister and Hamilton (2019) and
by Caldara et al. (2018).
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Figure 2.49: Behaviour of the relevant effective sample size in Stage A of our algorithm
when the size of the dataset increases
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Note: The figure reports the ratio of the effective sample size relative to the proposal draws from
Stage A of our algorithm. The training sample used to set the prior beliefs is the same as in the
application in the paper. We then use the first p + τ observations of the estimation sample and
progressively increase τ , starting from τ = 105. The ratio reaches approximately 0.50 for τ = 125
for all three cases. The Gibbs sampler extracts 20,000 burn-in draws and 40,000 retained draws
to reduce computational time.
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Table 2.14: Performance of our algorithm
Stage A Stage B

proposal effective relative proposal effective relative
draws sample size effective draws sample size effective

sample size sample size
m2 ESSA ESSA

m2
m5 ESSB ESSB

m5

Prior I 50,000 42,947 0.8589 80,000 59,314 0.7414
Prior II 50,000 44,618 0.8924 80,000 37,698 0.4712
Prior III 50,000 34,286 0.6857 80,000 15,971 0.1996

Table 2.15: Comparison of the computational time

Np(B) approach NiWU approach

Our algorithm DSMH with with
algorithm improper KK(1997)

Stage A Stage B Total prior prior

h m s h m s h m s h m s h m s h m s

Prior I 32 44 1 34 34 19 24 52 29 6 11 6 11
Prior II 33 23 1 39 35 2 25 29 42 6 11 6 11
Prior III 34 48 1 33 36 21 25 54 11 6 11 6 11
Note: All codes are run on Matlab, except for the Dynamic Striated Metropolis-Hastings algorithm,
which we coded on Fortran to reduce computational time.
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Table 2.16: Diagnostics on the importance weights, tests

u 0.5N 0.6N 0.7N 0.9N 0.99N
using prior I

Wald -51.44 -47.03 -41.35 -23.86 -7.09
Score -21.52 -18.49 -15.25 -8.05 -2.50
LR 0.00 0.00 0.00 0.00 0.00

using prior II
Wald -53.55 -49.36 -43.88 -26.37 -8.25
Score -22.03 -18.98 -15.81 -8.61 -2.45
LR 0.00 0.00 0.00 0.00 0.00

using prior III
Wald -48.25 -43.28 -37.43 -20.99 -5.93
Score -19.49 -16.95 -14.36 -7.91 -2.54
LR 0.00 0.00 0.00 0.00 0.00

Note: Reported are the test statistics. The null hypothesis implies finite weight variance. The
corresponding critical values above which the null hypothesis is rejected are 1.65 for the Wald test,
1.65 for the score test and 2.68 for the LR test (5% significance level). The corresponding p-values
are close to 1 in all cases.
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Figure 2.50: Diagnostics on the importance weights, graphical assessment
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Note: The graph shows the recursive variance {vi}Ni=1, where vi = var(w1:i) computed using
de-meaned and standardized weights.
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Table 2.17: Convergence for the application in section 2.4 of the paper
(prior I)

parameter 1 2 3 4 5 6 7 8 9 all

Geweke (1992), p-value. Convergence found if p-value ≥ 0.01
stage 1 0.89 0.99 0.76 0.52 0.97 0.81 0.89 0.93 0.60
stage 2 0.34 0.10 0.91 0.70 0.45 0.53 0.50 0.95 0.32
stage 3 0.97 0.00 0.44 0.38 0.73 0.11 0.20 0.84 0.77
stage 4 0.34 0.13 0.07 0.10 0.02 0.00 0.53 0.11 0.19
stage 5 0.04 0.47 0.30 0.80 0.43 0.37 0.09 0.20 0.08
stage 6 0.51 0.22 0.73 0.89 0.13 0.84 0.13 0.48 0.08
stage 7 0.24 0.09 0.91 0.42 0.54 0.88 0.13 0.10 0.67
stage 8 0.71 0.87 0.35 0.67 0.53 0.84 0.82 0.83 0.22

Raftery and Lewis (1992), n∗. Convergence found if n∗ ≤ N ·G (96,000)
stage 1 41,344 46,534 49,785 35,215 51,856 51,204 54,525 38,755 35,627
stage 2 37,434 50,066 53,377 36,224 54,932 46,233 56,568 36,924 37,273
stage 3 38,730 44,984 56,174 34,828 50,566 53,771 57,904 39,664 35,354
stage 4 34,979 48,661 47,399 31,605 57,975 46,849 50,863 39,008 34,591
stage 5 33,342 54,051 48,941 29,899 45,119 48,833 48,579 36,675 31,792
stage 6 32,761 44,036 44,523 28,301 48,893 51,204 46,194 34,675 31,982
stage 7 32,849 42,128 50,356 28,183 46,572 47,749 49,348 36,461 29,521
stage 8 31,937 42,577 47,819 28,189 46,003 40,744 44,222 32,982 27,444

Gelman and Rubin (1992), R̂. Convergence found if R̂ ≤ 1.2
stage 1 1.001 1.002 1.001 1.001 1.001 1.001 1.001 1.001 1.002
stage 2 1.001 1.001 1.001 1.000 1.001 1.001 1.001 1.001 1.001
stage 3 1.001 1.003 1.001 1.001 1.001 1.001 1.002 1.001 1.001
stage 4 1.001 1.004 1.002 1.003 1.002 1.002 1.002 1.002 1.001
stage 5 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.003
stage 6 1.001 1.001 1.000 1.001 1.001 1.000 1.001 1.001 1.003
stage 7 1.000 1.002 1.001 1.004 1.001 1.001 1.002 1.002 1.001
stage 8 1.006 1.001 1.005 1.002 1.002 1.002 1.004 1.002 1.003

Brooks and Gelman (1998), R̂mult. Convergence found if R̂mult ≤ 1.2
stage 1 1.005
stage 2 1.004
stage 3 1.006
stage 4 1.006
stage 5 1.005
stage 6 1.005
stage 7 1.006
stage 8 1.009
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Table 2.18: Convergence diagnostics for the application in section 2.4 of the paper
(prior II)

parameter 1 2 3 4 5 6 7 8 9 all

Geweke (1992), p-value. Convergence found if p-value ≥ 0.01
stage 1 0.89 0.99 0.91 0.77 0.76 0.63 0.99 0.97 0.22
stage 2 0.43 0.83 0.69 0.51 0.74 0.38 0.64 0.52 0.92
stage 3 0.43 0.22 0.96 0.16 0.72 0.64 0.30 0.19 0.97
stage 4 0.83 0.46 0.47 0.10 0.39 0.12 0.60 0.47 0.87
stage 5 0.00 0.06 0.04 0.23 0.87 0.40 0.00 0.00 0.09
stage 6 0.47 0.92 0.92 0.74 0.80 0.72 0.39 0.92 0.66
stage 7 0.40 0.03 0.18 0.28 0.89 0.20 0.11 0.32 0.43
stage 8 0.01 0.89 0.09 0.78 0.01 0.03 0.07 0.02 0.33

Raftery and Lewis (1992), n∗. Convergence found if n∗ ≤ N ·G (96,000)
stage 1 38,119 47,370 45,685 33,838 48,710 54,814 50,787 38,627 35,620
stage 2 36,111 51,075 45,272 36,428 53,673 52,694 50,161 38,833 36,033
stage 3 32,480 52,883 47,749 32,248 47,931 47,439 45,531 36,582 34,444
stage 4 34,444 45,531 44,619 31,061 46,337 47,739 46,519 36,616 29,441
stage 5 32,019 43,502 46,992 30,289 47,548 44,677 46,233 34,586 31,792
stage 6 35,469 43,375 41,654 29,404 40,952 47,123 50,108 32,027 29,643
stage 7 31,382 41,270 43,832 30,067 41,937 45,093 47,313 32,065 28,585
stage 8 30,502 38,932 43,630 31,056 44,353 44,017 40,908 34,958 28,010

Gelman and Rubin (1992), R̂. Convergence found if R̂ ≤ 1.2
stage 1 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.002 1.001
stage 2 1.002 1.000 1.002 1.001 1.001 1.001 1.001 1.001 1.001
stage 3 1.002 1.003 1.001 1.003 1.002 1.003 1.002 1.004 1.001
stage 4 1.001 1.001 1.001 1.002 1.001 1.001 1.001 1.002 1.001
stage 5 1.003 1.003 1.004 1.004 1.001 1.003 1.003 1.002 1.003
stage 6 1.003 1.001 1.002 1.002 1.002 1.001 1.001 1.001 1.003
stage 7 1.002 1.002 1.002 1.001 1.001 1.003 1.002 1.001 1.002
stage 8 1.001 1.002 1.001 1.000 1.002 1.002 1.001 1.002 1.001

Brooks and Gelman (1998), R̂mult. Convergence found if R̂mult ≤ 1.2
stage 1 1.004
stage 2 1.005
stage 3 1.006
stage 4 1.006
stage 5 1.007
stage 6 1.006
stage 7 1.007
stage 8 1.004
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Table 2.19: Convergence diagnostics for the application in section 2.4 of the paper
(prior III)

parameter 1 2 3 4 5 6 7 8 9 all

Geweke (1992), p-value. Convergence found if p-value ≥ 0.01
stage 1 0.34 0.19 0.79 0.21 0.15 0.93 0.45 0.69 0.23
stage 2 0.19 0.05 0.77 0.08 0.31 0.40 0.16 0.02 0.26
stage 3 0.02 0.66 0.34 0.85 0.30 0.05 0.11 0.01 0.57
stage 4 0.83 0.21 0.22 0.13 0.91 0.66 0.37 0.39 0.70
stage 5 0.58 0.65 0.63 0.11 0.13 0.35 0.75 0.13 0.28
stage 6 0.11 0.00 0.56 0.99 0.26 0.52 0.03 0.33 0.10
stage 7 0.96 0.54 0.83 0.31 0.97 0.98 0.74 0.72 0.74
stage 8 0.84 0.94 0.75 0.73 0.29 0.39 0.99 0.39 0.91

Raftery and Lewis (1992), n∗. Convergence found if n∗ ≤ N ·G (96,000)
stage 1 37,689 53,538 51,722 34,207 44,543 54,581 49,135 42,587 37,145
stage 2 34,567 45,578 46,664 33,528 55,295 49,189 47,142 41,561 37,241
stage 3 33,222 43,924 48,205 32,954 45,218 46,233 51,032 33,876 30,648
stage 4 31,323 43,539 46,376 29,732 43,055 47,250 47,880 33,629 27,675
stage 5 31,199 41,190 42,998 30,821 47,182 42,177 46,664 39,145 27,893
stage 6 31,334 37,051 46,625 27,926 49,575 43,758 46,625 35,121 27,064
stage 7 28,247 35,268 37,146 26,598 37,434 38,522 41,190 30,424 26,591
stage 8 28,836 34,149 33,992 26,167 32,697 35,645 35,472 29,141 27,444

Gelman and Rubin (1992), R̂. Convergence found if R̂ ≤ 1.2
stage 1 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.002 1.000
stage 2 1.002 1.002 1.001 1.003 1.003 1.002 1.003 1.005 1.002
stage 3 1.002 1.002 1.001 1.002 1.000 1.001 1.002 1.001 1.001
stage 4 1.001 1.002 1.001 1.001 1.002 1.001 1.002 1.002 1.001
stage 5 1.001 1.001 1.000 1.001 1.001 1.001 1.001 1.001 1.001
stage 6 1.002 1.002 1.001 1.001 1.000 1.001 1.002 1.001 1.001
stage 7 1.002 1.001 1.002 1.001 1.000 1.001 1.001 1.001 1.001
stage 8 1.001 1.001 1.001 1.002 1.001 1.000 1.001 1.001 1.002

Brooks and Gelman (1998), R̂mult. Convergence found if R̂mult ≤ 1.2
stage 1 1.004
stage 2 1.006
stage 3 1.005
stage 4 1.006
stage 5 1.004
stage 6 1.003
stage 7 1.005
stage 8 1.005
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CHAPTER 3

Combining Factor Models and External Instruments

to Identify Uncertainty Shocks

3.1 Introduction

Following the seminal paper by Bloom (2009) a fast growing literature analyses the
macroeconomic impact of exogenous increases in uncertainty using structural VAR
models. An increase in uncertainty is broadly defined as increased difficulties of eco-
nomic agents to make accurate forecasts. Within this literature, there is a consensus
that exogenous increases in uncertainty lead to adverse real effects. These include
falling production, hours, and employment. However, there is an ongoing debate about
whether these reactions are dominated by supply or demand channels, i.e. whether they
are accompanied by a rise or fall in inflation. These nominal reactions are crucial for
policy makers: if, for example, central banks know that a rise in uncertainty leads to a
decrease in inflation, they can, theoretically, move both real and nominal variables back
to their desired targets by employing an expansionary policy. If, on the other hand,
uncertainty shocks do not affect prices or are inflationary, central banks are faced with
a trade-off between allowing for more inflation or a decline in real activity.

In this paper, I propose a Bayesian Proxy Factor-augmented VAR (BP-FAVAR)
model to analyse the real and nominal effects following an uncertainty shock. This novel
model offers a unified framework to combine a large information set with a non-recursive
identification strategy. It addresses two shortcomings in commonly used small-scale,
recursively identified, VAR models: (i) informational insufficiency and (ii) non-credible
identification. I find that inflation responds negatively to a positive uncertainty shock
in the short run and is indistinguishable from zero after six months. This is comforting
news for policy makers given that they can address both real and nominal effects
using standard instruments. The dynamic effects depend strongly on the identification
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scheme. Biases resulting from a recursive scheme cannot be alleviated by augmenting
the information set of the model.

The structural VAR literature is inconclusive about the inflationary effects of un-
certainty shocks. Leduc and Liu (2016), using a four-variable, recursively identified
VAR model, find that uncertainty shocks are deflationary, even in the medium term.
Piffer and Podstawski (2017), identifying the work-horse model by Bloom (2009) via
an external instrument, find a short-lived drop and fast rebound in prices. Caggiano,
Castelnuovo and Nodari (2017), extending a small-scale VAR model to a non-linear
setting, find that uncertainty shocks are deflationary only in recessions and have no
effect on prices in expansions. Caggiano, Castelnuovo and Pellegrino (2017), employing
an interacted VAR model, find that the price reaction is indistinguishable from zero
over the whole impulse response horizon. Carriero et al. (2018) distinguish between
macroeconomic and financial uncertainty and find that while increases in the former
are inflationary, increases in the latter tend to be deflationary.

At best, the theoretical literature provides limited guidance for the inflationary effects
of uncertainty shocks. Fernández-Villaverde et al. (2015) and Born and Pfeifer (2014)
put forward two opposing channels to explain the potential price reaction following an
exogenous increase in policy uncertainty: On the one hand, if consumers face difficulties
predicting the next period, they will postpone consumption decisions, which will lead
to a fall in both economic activity and prices. Therefore, an uncertainty shock would
resemble an aggregate demand shock. Using a model with labour market frictions,
Leduc and Liu (2016) also reach this conclusion. On the other hand, if firms face
difficulties predicting the next period, they will bias their price decision upwards. The
reason is that their profit function is concave in prices, making it more costly to set
prices too low rather than too high. If this “price-bias-channel" dominates, the reactions
of real and nominal variables will resemble a short-lived aggregate supply shock. The
aggregate reaction of prices from these two opposing channels is ambiguous.

The responses to an uncertainty shock may depend heavily on the information set of
the model, as pointed out by Caggiano, Castelnuovo and Nodari (2017) and Angelini
et al. (2019). In particular, omitted variables, such as consumer sentiment (Sims, 2012),
total factor productivity (Bachmann and Bayer, 2013), and measures of anticipated risk
(Christiano et al., 2014) may bias the impulse responses. In order to avoid having to
add potentially omitted variables one by one, I augment the work-horse VAR model by
Bloom (2009) with latent factors. These summarise the information contained in a large
set of variables and, thus, should alleviate omitted variable biases. Second, as pointed
out by Stock and Watson (2012), a recursive identification scheme may be invalid
given the contemporaneous interrelation between the real economy and uncertainty
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as well as the fast moving nature of financial markets. Therefore, a recent strand of
the literature addresses identification issues by departing from recursive schemes and
employing external instruments. I follow Piffer and Podstawski (2017) in identifying
an uncertainty shock using a proxy based on the price of gold. This proxy captures
movements in the price of gold around selected economic and political events. These
events are associated with movements in uncertainty. Given that gold can be considered
a safe haven asset, these movements should capture exogenous variations in uncertainty.

Estimation of the model is subject to two challenges. The first regards the so-called
"curse of dimensionality". Even after shrinking the variable space using latent factors,
the model still contains a large number of parameters. The baseline model consists of
over 800 parameters, while the effective sample length is only roughly 400. Therefore,
estimation is challenging in a frequentist setting. A second challenge arises from the
need to effectively summarise the estimation uncertainty in both the model parameters
and the latent factors. This is difficult using bootstrap techniques (see for example
Yamamoto, 2019). In addition, there are no asymptotic results justifying the use of such
techniques, as pointed out by Kilian and Lütkepohl (2017). To jointly address these
two challenges I employ a Bayesian approach. It allows for overcoming dimensionality
problems by shrinking the parameter space and summarises the estimation uncertainty
in a joint posterior distribution. The BP-FAVAR can be considered a combination
of the Bayesian FAVAR estimation proposed by Belviso and Milani (2006) and the
Bayesian Proxy VAR by Caldara and Herbst (2019). I re-parametrize their model to
impose structure on the impact effects of shocks.

The main results are the following: Uncertainty shocks are deflationary in the short
run. The price reaction is indistinguishable from zero after about six months. Real
variables and the stock market drop and rebound. This suggests that policy makers can
employ an expansionary policy to alleviate the adverse effects of an exogenous increase
of uncertainty on both prices and real activity. I show evidence that the workhorse
model by Bloom (2009) is informationally deficient. When computing impulse re-
sponses, I find that alleviating informational deficiency problems has only marginal
quantitative effects. This finding is in line with Sims (2012), who points out that in-
formational deficiency is not an either/or but a quantitative issue. In the present case
the biases it causes are negligible, which is comforting news.

The remainder of the paper is organized as follows: Section 2 introduces the model
setup and explains the identification of uncertainty shocks. Section 3 presents the data
and discusses the results. The last section concludes.
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3.2 The Bayesian Proxy FAVAR

In this section, I introduce the Bayesian Proxy FAVAR model. I start by describing
the different parts of the model. Then, I discuss how partial identification is achieved.
Lastly, I show how the model can be decomposed into three blocks to facilitate infer-
ence.

3.2.1 Model Description

The Bayesian Proxy Factor-augmented VAR model admits a state-space form, which
consists of an observation equation, a transition equation and a proxy equation. First,
consider the observation equation, which shows how latent and observable factors map
into informational series:

xt = Λfft + Λzzt + ξt (3.1)

ξt ∼ N(0,Ω) (3.2)

where xt is a N × 1 vector of observable series, ft is a R × 1 vector of latent factors,
and zt is a K × 1 vector of observable factors. Importantly, xt does not contain any of
the observable factors in zt. Λf is a N ×R matrix of factor loadings for latent factors
and Λz is a N ×K matrix of coefficients for the observable factors. ξt is a N ×1 vector
of idiosyncratic errors. In general, ξt can be serially correlated, i.e. Cov(ξt, ξt−j) 6= 0

for some j, but they are uncorrelated across series, i.e. V ar(ξt) = Ω is assumed to be
diagonal.

Next, consider the transition equation which shows the dynamic evolution of the
factors. It writes as a VAR(P) of the following form:

yt = Πwt + ut (3.3)

ut ∼ N(0,Σ), (3.4)

where yt =

[
ft

zt

]
stacks latent and observable factors in a vector. The coefficient matrix

Π = [c,Π1, ...,ΠP ] of dimension (R+K)× (P (R+K) + 1) contains the autoregressive
parameters of the VAR. wt = [1R+K×1;y′t−1, ...,y

′
t−P ]′ stacks a constant and P lags

of yt. The (R + K) × 1 vector of reduced form errors, ut, is serially uncorrelated,
i.e. Cov(ut,ut−p) = 0 ∀t = 1, ..., T , ∀p = 1, ...,∞. Also, ut are uncorrelated with
all leads and lags of the idiosyncratic errors, ξt, i.e. Cov(utξt−j) = 0 ∀j = 1, ...,∞,
∀t = 1, ..., T .
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I impose structure on the on-impact effects of structural shocks by assuming that
the reduced form errors map into structural shocks as:

ut = Bεt (3.5)

εt ∼ N(0, IR+K), (3.6)

where B is a (R+K)× (R+K) matrix containing the on-impact effects of the struc-
tural shocks. Their variance is normalised to one and they are contemporaneously
uncorrelated. This implies the following relation between the reduced form covariance
matrix and the matrix of on-impact effects: Σ = BB′

As is well known, further restrictions beyond those implied by the covariance matrix
are needed to identify B. The reason is that the data cannot discriminate between
observationally equivalent representations: All B such that BB′ = Σ yield the same
likelihood.

In order to identify the first column of B, which I denote by b, I augment the model
by a "proxy equation", as in Caldara and Herbst (2019). It spells out the relation
between structural shock and instrument and is given as1:

mt = βε1,t + σννt (3.7)

νt ∼ N(0, 1), (3.8)

where mt is a scalar instrument correlated with the shock of interest, ε1,t. The shock
of interest is ordered first, without loss of generality. Furthermore, mt is orthogonal
to all other shocks, ε−1,t, i.e. E(mtε−1,t) = 0 ∀t, where ε−1,t stands for a vector
containing all but the first shock. In other words, the instrument needs to be both
relevant and exogenous in order to be appropriate for identification. β captures the
relationship between instrument and shock, while νt captures any noise contained in the
instrument. The higher its variance, σ2

ν , the less information the instrument contains
about the shock of interest.

1Unlike their case, however, identification focuses on the on-impact effects of the shocks rather than
on the contemporaneous relations of the variables included in the model. Put differently, the model
imposes structure on B, rather than on B−1. Caldara and Herbst (2019) estimate a so-called A-model
(see Kilian and Lütkepohl, 2017 for a discussion). The A-model specification is appropriate given
their aim of identifying a monetary policy equation. In the context of uncertainty shocks, however,
it is more common to inform the on-impact effects of shocks (see e.g. Bloom, 2009 or Caggiano,
Castelnuovo and Nodari, 2017). Therefore, I propose to use a so-called B-model, which imposes
structure on the on-impact effects.
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The full model can be written in compact matrix notation as:xtzt
mt

 =

 Λf Λz 0N×1

0K×R IK 0K×1

01×R 01×K 1


ftzt
mt

+

 ξt

0K×1

0

 (3.9)

V ar(ξt) = Ω (3.10)[
yt

mt

]
=

[
Π

01×P (K+R)

]
wt + B

[
εt

νt

]
(3.11)

V ar(

[
εt

νt

]
) =

[
IR+K 0R+K×1

01×R+K 1

]
, (3.12)

where B =

[
B β

β′ σν

]
, and β =

[
β

0(R+K−1)×1

]
.

3.2.2 Identification

Shock identification in the BP-FAVAR model is achieved by weighting draws from the
posterior of structural parameters. In particular, more weight is given to posterior
draws which lead to a close relation between instrument and the shock of interest. To
be more precise, consider the joint likelihood of xt, yt and mt

2:

p(X, Y,m|Π,Σ,Λf ,Λz,Ω, β, σν , b) (3.13)

=p(Y |Π,Σ,Λf ,Λz,Ω)

· p(m|Y,Π,Σ,Λf ,Λz,Ω, β, σν , b)

· p(X|m, Y,Π,Σ,Λf ,Λz,Ω)

where X = [x1, ...,xT ], Y = [y1, ...,yT ] and m = [m1, ...,mT ] stack the observational
series, the factors, and the instrument horizontally. Note that, while the marginal
likelihood of Y and the conditional likelihood of X|m, Y depend only on reduced
form parameters, the conditional likelihood ofm|Y depends, in addition, on structural
parameters, β, σν and b.

2The factors are identified only up to an invertible rotation, i.e. the representations xt = Λyt+ξt and
xt = ΛPP−1yt + ξt yield the same likelihood. Therefore, in order to achieve identification, one has
to impose further restrictions. I follow Bernanke et al. (2005) and set the upper R ×K block of Λz

equal to a zero matrix. Furthermore, Σf = Cov(ft) is diagonal and Λf
′
Λf

N = IR. This normalisation,
although not necessary, is sufficient to pin down the factor rotation, as pointed out by Kilian and
Lütkepohl (2017).
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The conditional likelihood of m|Y can be written as (see Appendix 3.A.2 for a
derivation):

m|Y ∼ N(µm|Y , Vm|Y ) (3.14)

µm|Y = βε1 (3.15)

Vm|Y = σ2
νIT , (3.16)

where ε1 = [ε1,1, ..., ε1,T ] stacks the structural shocks of interest in a vector.
As seen in equation (3.15), the conditional likelihood of m is higher the higher the

correlation between m and βε1. In the posterior sampler, draws are weighted by the
conditional likelihood of m (see Appendix 3.A.3). Therefore, the econometrician will
give more weight to posterior draws, which result in structural errors that look like a
scaled version of the proxy.

As is apparent from equation (3.15), since ε1 is obtained from reduced form errors,
identification depends heavily on the model specification. Therefore, one should pay
close attention to which variables are included in the model since an omitted variable
bias translates into biases in the identified structural shocks. Augmenting the model
with latent factors helps alleviate this problem without taking a stand on which of a
potentially large set of observational series need to be included.

Compared to recursively identified VARs, the BP-FAVAR has the advantage that
when using a Proxy VAR, the researcher is not forced to employ potentially non-
credible short run exclusion restrictions. For example, the recursive workhorse model
on the empirical identification of uncertainty shocks by Bloom (2009) relies on the
assumption that financial markets do not price an exogenous increase in uncertainty
within a month. This might be too strong an assumption given the fast-moving nature
of financial markets. In the context of Proxy VAR models such short run exclusion
restrictions are substituted by external information contained in the proxy variable,
mt.

3.2.3 Inference

The Bayesian approach treats all model parameters and latent factors as random vari-
ables whose posterior needs to be sampled from. In order to outline the sampling
procedure, first define the parameter space as

θ = (Π,Σ,Λf ,Λz,Ω, β, σν , b) (3.17)
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The joint posterior of parameters and latent factors is:

p(θ, F |X,Z,m), (3.18)

where F = [f1, ...,fT ], Z = [z1, ...,zT ]. The challenge consists in approximating the
marginal posterior distributions of the latent factors,

p(F |X,Z,m) =

∫
θ

p(θ, F |X,Z,m)dθ (3.19)

and the model parameters,

p(θ|X,Z,m) =

∫
F

p(θ, F |X,Z,m)dF (3.20)

It is shown by Geman and Geman (1984) that these integrals can be approximated
using a multi-move Gibbs sampler, which alternately draws from two distributions:
First, draw the latent factors given all model parameters and the data, i.e.

p(F |θ,X, Z,m). (3.21)

This draw is generated using filtering techniques. Second, draw the model parameters
conditioning on this draw of factors and the data, i.e.3

p(θ|Z,X,m). (3.22)

This draw is generated using a Metropolis-within-Gibbs algorithm as in Caldara and
Herbst (2019).

Compared to the common approach of first extracting factors via Principal Compo-
nents and then feeding them into a VAR (see Stock and Watson, 2016 for a review),
this Bayesian approach has the advantage that it allows for Bayesian shrinkage of the
parameter space. This might seem unnecessary given that the factors already reduce
the dimensionality of the estimation problem. However, if, as in the present case, the
number of observable factors, K, or the lag length, P , is large, dimensionality issues
still arise and can be alleviated using Bayesian shrinkage.4 Furthermore, as shown by
3I follow Caldara and Herbst (2019) and generate draws from p(F |θ,X) and p(θ|Z,X) first and account
for the additional conditioning onm using an independence Metropolis-Hastings step. See Appendix
3.A.3 for details.

4In the application, the number of parameters to be estimated in the transition equation is

(R+K)(1 + (R+K)P ) + (R+K)2

=(4 + 8)(1 + (4 + 8)5) + (4 + 8)(4 + 8 + 1)/2

=810.
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Yamamoto (2019), bootstrap inference in frequentist factor models is far from trivial.
In particular, it remains an open issue how to account for the estimation uncertainty in
the factors. A Bayesian approach, on the other hand, offers a unified way of summaris-
ing the uncertainty of the model, as pointed out also by Huber and Fischer (2018).
The joint posterior summarises estimation uncertainty in both the parameters and the
latent factors.
Conditional posterior densities of latent factors F given θ: The procedure

to generate posterior draws of latent factors, F , differs from generating draws of pa-
rameters, θ, in that one has to generate the whole dynamic evolution of factors for
each t = 1, ..., T . For this to be feasible I exploit the Markov property of the system
described in equation (3.3) as follows:

p(Y |X, θ) = p(yt|X, θ)
T−1∏
t=1

p(yt|yt+1, X, θ). (3.23)

First note that (3.23) describes the posterior of Y , which contains both latent and
observable factors. The reason for including the observable factors is the dynamic
interdependence between latent and observable factors, which needs to be accounted
for. Given that the observable factors are non-random, their distribution has a zero
variance.5 Second, note that this is a product of R + K-dimensional conditional dis-
tributions. Given the assumption of Gaussianity of ξt and ut, this representation can
be combined with the observation equation (3.1) and is amenable to the Carter-Kohn
algorithm described in Carter and Kohn (1994) and Frühwirth-Schnatter (1994) (see
Appendix 3.A.5 for details). This approach, while straightforward to implement, in-
creases the computational burden slightly compared to Principal Components Analysis.
However, it allows incorporating the estimation uncertainty in the latent factors in a
consistent way.
Conditional posterior densities of the parameters θ given latent factors

F : In order to draw the model parameters θ given the data and a draw of the factors,
Y , I form three blocks of parameters: Block 1 refers to parameters of the observation
equation (3.1), block 2 refers to the parameters of the transition equation (3.3), and
block 3 refers to the parameters of the proxy equation (3.7). Conditional on a draw of
the factors and the data the first two blocks can be sampled independently from each
other while the last block is sampled conditional on the second block.
Block 1: Observation Equation The idiosyncratic errors ξt are assumed to be

mutually uncorrelated and normally distributed. Group the factor loading matrices as

The sample length is T = 438.
5Here, I refer to the variance across draws. The variance across time is, of course, non-zero.
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Λ = [Λf Λz]. Then, conditional on a draw of the factors, we can specify conjugate
normal-inverse Gamma priors and draw the posterior for Λ and Ω equation-by-equation
using well-known results on Bayesian linear regression models (see e.g. Koop, 2003).
For each equation i, specify the priors as:

ωii ∼ IG(sc∗, sh∗) (3.24)

λi|ωii ∼ N(µ∗λ,i,ωiiM
∗−1
i ), (3.25)

where λi is the i-th row of Λ and ωii is the i-th diagonal element of Ω. These priors
translate into posterior distributions of the following form:

ωii|X, Y ∼ IG(s̄ci, s̄hi) (3.26)

λi|ωii, X, Y ∼ N(µ̄λ,i,ωiiM̄
−1
i ) (3.27)

with

s̄hi = sh∗ + T (3.28)

s̄ci = sc∗ + ξ̂iξ̂
′
i + (λ̂OLSi − µ∗λ,i)′(M̄−1

i + (Y Y ′)−1)−1(λ̂OLSi − µ∗λ,i) (3.29)

λ̂OLSi = xiY
′(Y Y ′)−1 (3.30)

ξ̂i = xi − λ̂OLSi Y (3.31)

M̄i = M∗
i + Y Y ′ (3.32)

µ̄λ,i = M̄i(M
∗−1
i µ∗λ,i + Y Y ′λ̂OLSi ) (3.33)

I follow Bernanke et al. (2005) in specifying sc∗ = 3, sh∗ = 10−3, M∗
i = IR+K and

µ∗λ,i = 0(R+K)×1.
Block 2: Transition Equation Given a draw of factors, yt follows a standard

V AR(P ) model. Therefore, we can employ a version of the Minnesota/ Litterman
prior (Litterman, 1986) and specify independent normal-inverse Wishart priors:

vec(Π) ∼ N(µ∗Π, V
∗

Π) (3.34)

Σ ∼ IW (S∗, τ ∗), (3.35)

where vec(·) is the vectorisation operator that stacks the column of a matrix one
underneath the other into a vector. These priors translate into the following conditional

156



Chapter 3 Combining Factor Models and External Instruments to Identify
Uncertainty Shocks

posterior for vec(Π):

vec(Π)|Σ, Y ∼ N(µ̄Π, V̄Π) (3.36)

V̄Π = (V ∗−1
Π + (WW ′ ⊗ Σ−1))−1 (3.37)

µ̄Π = V̄Π(V ∗−1
Π µ∗Π + (W ⊗ Σ−1)vec(Y )) (3.38)

where W = [w1, ...,wT ], wt = [1 yt−1 ... yt−p]
′ stacks a vector of 1s and P lags of

yt. The conditional posterior for Σ is given as:

Σ|Π, Y ∼ IW (S̄, τ̄) (3.39)

S̄ = S∗ + UU ′ (3.40)

τ̄ = τ ∗ + T, (3.41)

where U = [u1, ...,uT ] stacks the reduced form errors given the current draw of factors.
I set µ∗Π to a zero vector given that all series are transformed to be stationary. V ∗Π is a
diagonal matrix containing the prior variances of the parameters contained in Π. These
are set in accordance with standard Minnesota values and given as:

v∗Π,i,j =

(λ/l)2 if i = j

(λσi/lσj)
2 if i 6= j,

(3.42)

where σi is obtained from univariate AR(1) regressions and λ = 0.2. S∗ is set to IR+K ,
while τ ∗ is set to R +K.
Block 3: Proxy Equation The parameters of the proxy equation are sampled

conditional on the parameters of the transition equation. For β and σν the priors are

β ∼ N(µ∗β, σ
∗
β) (3.43)

σν ∼ IG(sc∗ν , sh
∗
ν). (3.44)

b is computed as b = chol(Σ)Q·,1 where Q·,1 is the first column of a draw from the
uniform Haar distribution (see Rubio-Ramirez et al., 2010 for a discussion).

These priors translate into the following posteriors for β and σν :

β|Y,m,Π,Σ, σν , b ∼ N(µ̄β, σ̄β) (3.45)

µ̄β = mε1(ε1ε
′
1)−1 (3.46)

σ̄β = σν(ε1ε
′
1)−1 (3.47)
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σν |Y,m,Π,Σ, β, b ∼ IG(s̄cν , s̄hν) (3.48)

s̄cν = sc∗ν + (m− βε1)(m− βε1)′ (3.49)

s̄hν = sh∗ν + T (3.50)

For b the conditional posterior has an unknown form. Therefore, b is sampled using a
Metropolis-Hastings step. In particular, at iteration j, a draw bcand, will be accepted
with probability (see Appendix 3.A.3 for details)

α = min(
p(m|Y,Π,Σ, bcand)
p(m|Y,Π,Σ, bj−1)

, 1) (3.51)

I follow Caldara and Herbst (2019) in specifying the priors as µ∗β = 0, σ∗β = 1, sh∗ν = 2,
sc∗ν = 0.2 in order to allow the data to dominate the posterior. In particular, this prior
specification implies a zero mean prior correlation between instrument and shock, ρ.
Posterior Sampler The sampler can be summarized as follows (see the Appendix

3.A.3 for a detailed step-by-step procedure):

1. Set starting values

2. Draw yt via the Carter-Kohn algorithm

3. Draw Λ and Ω

4. Draw Σ and Π

5. Draw b using a Metropolis-Hastings step

6. Draw β and σν

These steps are repeated a sufficient number of times for the algorithm to converge
(see Appendix 3.A.5 for a discussion of the convergence properties of the sampler).

3.3 Data, Estimation and Results

This section first describes the data and the proxy used for identification. It then shows
how the number of factors is determined with the goal of alleviating informational
insufficiency issues. Lastly, it discusses how instrument relevance is assessed in the
Bayesian context and presents impulse responses from the baseline model as well as
from three benchmark models.
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3.3.1 Data and Transformations

The baseline data contained in zt are monthly US data from Piffer and Podstawski
(2017), who updated the data in Bloom (2009). The vector of observational series, xt,
contains 126 of the monthly FRED dataset by McCracken and Ng (2016) that are not
already included in zt (see Appendix 3.A.7 for a detailed description).6 The length
of the estimation sample is constrained by the instrument7 and lasts from 1979M1
through 2015M7.8 I follow Piffer and Podstawski (2017) in setting the lag length to
P = 5 as a baseline (see Appendix 3.A for a robustness exercise setting P = 9).

One concern is the measurement of the monetary policy stance. Traditionally, the
effective federal funds rate is considered to be the policy tool of the central bank.
However, given that it was constrained by the zero lower bound in the period 2009M1
to 2015M11, this variable cannot serve as an indicator of the policy stance. This is
why, for this period, I replace the effective federal funds rate by the shadow rate as
computed by Wu and Xia (2016). It is based on a term structure model and often
considered a better reflection of the policy stance during the zero lower bound period
than the federal funds rate. Figure 3.16 in Appendix 3.A.7 shows the shadow rate.

All informational series contained in xt are transformed to have zero mean. In
addition, they are transformed to induce stationarity as proposed by McCracken and
Ng (2016). Missing values are replaced with zeros, which is the unconditional mean
of the standardized series. These missing values occur mostly at the beginning of the
dataset and amount to less than one percent of total observations. Therefore, the joint
dynamics are unlikely to be overly affected by this imputation.

Piffer and Podstawski (2017) argue that a proxy for the uncertainty shock could be
based on the price of gold. The intuition behind this idea is that gold is considered a safe
haven asset that investors choose in times of heightened uncertainty. This generates
movements in the price of gold. The challenge consists in finding price variations
that are not correlated with structural shocks other than the uncertainty shock. In
order to achieve this, the authors collect a series of 38 events, which are considered to
be associated with movements in uncertainty (e.g. the fall of the Berlin Wall or the
9/11 terrorist attacks). They then compute the variation of the gold price in narrow
windows around these events and argue that these variations are driven exclusively by
movements in uncertainty. In addition, they show that this proxy has a low correlation

6Data set available at https://research.stlouisfed.org/econ/mccracken/fred-databases/
7Instrument available at https://sites.google.com/site/michelepiffereconomics/home/research-1
8An alternative to shortening the sample is put forward by Braun et al. (2017). They suggest gen-
erating synthetic observations for the instrument within their posterior sampler. This procedure
implicitly requires parameter stability for time periods when the instrument is unavailable and it
assumes that missing values occur at random.
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Figure 3.1: Uncertainty Proxy
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Note: Gold price variation around selected events. The sample period is 1979M1 to 2015M7.

with other structural shocks as computed by Stock and Watson (2012), which is further
evidence for exogeneity to their system.

Figure 3.1 shows the proxy. It peaks during well-known events such as the 9/11
terrorist attacks in 2001 or the bankruptcy of Lehman brothers in 2008.

3.3.2 Determining the Number of Factors

Choosing the number of latent factors, R, has important consequences for the amount
of additional information the BP-FAVAR is based on, compared to the small-scale
VAR model employed in Bloom (2009) and Piffer and Podstawski (2017). I follow
Mandalinci and Mumtaz (2019) and base the choice of the number of factors on the
criterion proposed by Bai and Ng (2002). Table 3.1 shows the criterion (see Appendix
3.A.6 for a description). It suggests to set R = 4. An alternative criterion for choosing
the number of factors is a scree plot (see Appendix 3.A.6 for a discussion and additional
results).

In order to present some evidence that including R = 4 aligns the econometrician’s
and the economic agent’s information sets, I employ the sequential testing procedure
suggested by Forni and Gambetti (2014). Figure 3.2 shows the test statistic under the
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Table 3.1: Bai and Ng (2002) criterion
R Criterion

1 -0.1736
2 -0.3033
3 -0.4163
4 -0.4767
5 -0.4504
6 -0.4168
7 -0.3777
8 -0.3329
9 -0.2868
10 -0.2398

Note: See Appendix 3.A.6 for a description.

Figure 3.2: Test for Informational Sufficiency

R=0

-0.5 0 0.5 1
0

0.1

0.2
R=1

-0.5 0 0.5 1
0

0.1

0.2

R=2

-0.5 0 0.5 1
0

0.2

0.4
R=3

-0.5 0 0.5 1
0

0.2

0.4

R=4

-0.5 0 0.5
0

0.2

0.4

distr(H0)
test stat

R=5

-0.4 -0.2 0 0.2 0.4
0

0.2

0.4

Note: The histogram shows the bootstrap test statistic under the Null of no Granger-causality. It
is based on a multivariate one-step-ahead out-of-sample Granger-causality test with lag length 4.
The bootstrap test statistic is based on 1000 replications. The sample is split as T = T1 + T2,
T1 = T2 = 0.5T . A larger test statistic indicates Granger-causality. Rejection of the Null of no
Granger-causality indicates informational deficiency.
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Null of informational sufficiency together with the actual test statistic (see Appendix
3.A.4 for a detailed description). The test for R = 0 can be considered evidence that the
workhorse model of Bloom (2009) is, indeed, informationally deficient and needs to be
extended in order to alleviate potential omitted variables biases. The Null Hypothesis
of informational sufficiency cannot be rejected once the model is augmented by at
least four factors. This suggest that setting R = 4 alleviates informational deficiency
issues. Figure 3.3 shows the last accepted draw of estimated factors from the Bayesian

Figure 3.3: Factors
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Note: Last accepted draw from posterior sampler and Principal Components estimation of factors

estimation, together with the Principal Components estimation used as a starting value.

3.3.3 Relevance of the Instrument

The instrument is appropriate to identify the uncertainty shock to the extent that it
contains enough information about the shock, i.e. it is relevant. The relevance of the
instrument in the Bayesian context is assessed by analysing the posterior updating
of the proxy equation. A high posterior correlation between instrument and shock
suggests relevance.
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Figure 3.4 shows the updating of the relevant quantities β, σν and their ratio β/σν .
This ration is the signal-to-noise ratio and measures how much information the instru-
ment contains about the shock of interest.

The top left panel shows that while using a prior for β that is flat over the relevant
parameter space, the posterior is centred around 0.1 suggesting that the data support a
correlation between structural error ε1,t and instrument mt. The top right panel shows
the updating of σν . The prior is chosen to have mean 0.02 and infinite variance, as in
Caldara and Herbst (2019). The posterior suggests a standard deviation of this noise
measurement centred around 0.2. The bottom panel shows the implications for the
signal-to-noise ratio. While the prior is centred around zero and flat over the whole
parameter space, the posterior is centred around 0.15 and has little probability mass
near zero. This strongly suggests that the instrument contains relevant information
about the structural shock.

Figure 3.4: Instrument Relevance
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distribution while the histogram shows draws from the posterior distribution.
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3.3.4 Updating of the impact effects

Given that both the recursive identification scheme and the proxy identification scheme
impose structure on the impact effect of shocks, differences between these two ap-
proaches will be most apparent in the identification of b. It contains the impact effects
of an uncertainty shock on the latent and observable factors. The prior distribution is
not available in closed form but is implicit in the prior distributions of Σ, Q·,1, β and
σν . Prior draws are generated imposing the prior mean for β, i.e. setting β = 0, so
that all rotation vectors, Q·,1, are accepted with equal probability. A draw from the
prior of b conditional on the factors is computed as follows:

• Draw Σprior from its prior inverse Wishart distribution

• Draw Qprior
·,1 as the first column of a draw from the uniform Haar distribution

• Compute bprior = chol(Σ)Q·,1.

As pointed out by Baumeister and Hamilton (2015), a uniform prior on Q·,1 does not
necessarily imply a uniform distribution over the structural parameters of interest,
which in this case are the elements of b. Figure 3.5 shows that, indeed, the implicit
prior on b has some curvature on the impact effect of the S&P 500 index and the VXO.
However, it has good coverage of the relevant parameter space. More importantly, it is
flat in the relevant parameter regions for the variables of prime interest, namely CPI,
hours, employment, and industrial production as well as the latent factors. Therefore,
the implicit prior on b should not overly affect the posterior of b.

3.3.5 Impulse Responses

The BP-FAVAR extends the workhorse model by Bloom (2009) in two ways: First,
instead of imposing exclusion restrictions on b, the BP-FAVAR achieves identification
via a proxy. Second, the BP-FAVAR addresses informational deficiency of the Bloom
(2009) model, which could potentially bias the responses of variables to the uncer-
tainty shock. The workhorse model contains the following variables: ∆log(S&P500),
VXO, federal funds rate, ∆log(wages), ∆log(CPI), hours, ∆log(employment), and
∆log(IP ). In order to isolate the effects of the identification scheme and the informa-
tion set, I include three benchmark models to compare to the baseline BP-FAVAR:
BP-VAR. This model can be considered a Bayesian adaptation of the model by

Piffer and Podstawski (2017). I use their model specification, i.e.

yt = zt, (3.52)
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Figure 3.5: Updating of b
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Note: Updating of the first column of B (not normalised). The blue line shows the prior distribution
of b computed as the distribution implicit in the priors on Σ and Q·,1 and plotted using a Kernel
smoother. The bars show the posterior.

and identification is achieved via the gold price proxy. Differences between the BP-
FAVAR and the BP-VAR are driven primarily by informational issues.
Recursively identified VAR. This model is akin to Bloom (2009). For consistency

the variable selection is the same as in the previous model, but identification is achieved
by imposing a lower-triangular structure on B, i.e.

B = chol(Σ). (3.53)

The uncertainty shock is ordered second, i.e. after the S&P500 index. This assumes
that the stock market does not react within a month to an exogenous increase in
uncertainty and that financial shocks are the only shocks, apart from the uncertainty
shock itself, which influence the uncertainty measure within the month. Differences
between the BP-FAVAR and the recursive VAR can be driven by both informational
and identification issues.
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Recursively identified FAVAR. This scheme adds R latent factors to the small-
scale VAR while keeping B lower-triangular. The uncertainty shock is ordered in
position R + 2, i.e. after the latent factors and the S&P500 index. This assumes that
neither the latent factors nor the stock market react within a month to an exogenous
increase in uncertainty. Differences between the BP-FAVAR and the recursive FAVAR
in the impact effects of shocks will be driven primarily by the identification scheme.

Figure 3.6 shows the impulse responses obtained from the baseline and the three
benchmark models: The response variables are those employed by Bloom (2009), Piffer
and Podstawski (2017) and other studies. The shock is normalized to generate an
increase of 2.5 in the VXO on impact, which is comparable in magnitude to these
studies. Estimation is based on 50000 Gibbs draws, discarding the first 40000 draws as
a burn-in sample, as in Belviso and Milani (2006) and Amir-Ahmadi and Uhlig (2015).

All four models replicate the main findings of Bloom (2009): A rapid drop and
subsequent rebound of employment, production and hours worked. It is also in line
with Basu and Bundick (2017) who argue that the co-movement among these variables
is a key empirical feature that theoretical models should be able to reproduce.

For the stock market, the two recursively identified models (column 3 and 4) exclude
an on-impact effect of the uncertainty shock on the stock market index. This results
in a biased reaction of the S&P 500 index: The models identified via a proxy (columns
1 and 2) show that the stock market reacts on impact and quickly rebounds. This
is in line with the fast moving nature of financial markets, which price increases in
uncertainty within the period.

For the real variables, the recursive scheme suggests a moderate negative reaction of
hours, employment and industrial production of less than -0.05%. In the two models
identified via proxies this reaction is estimated to be up to -0.2% for industrial produc-
tion and roughly -0.1% for hours and employment. Given the similarity in the price
reaction across models, the recursive models provide a skewed view of the nominal and
real interactions following an uncertainty shock.

The inclusion of factors does not qualitatively alter the results. The BP-FAVAR
produces results broadly in line with the BP-VAR. The biases resulting from a recursive
identification in the small-scale VAR cannot be alleviated by the inclusion of factors.
As pointed out by Sims (2012), informational insufficiency is not an either/or concept
but can have quantitatively very different effects on impulse responses, depending on
the application. In the present case, statistical tests detect informational insufficiency,
but alleviating this issue does not have a severe quantitative impact.
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3.4 Conclusion

This paper aims at recovering the interrelations between real and nominal variables
following an identified uncertainty shock by employing a Bayesian Proxy FAVAR.

The first contribution is the empirical finding that uncertainty shocks are defla-
tionary approximately two months after the impact and indistinguishable from zero
after six months. This finding relates to the work by Born and Pfeifer (2014) and
Fernández-Villaverde et al. (2015) who show in a theoretical modelling framework that
the inflationary effects of uncertainty shocks are driven by two opposing channels: an
aggregate demand and a price-bias channel. The aggregate effect of these two chan-
nels is unknown ex ante. My results lend empirical support to the dominance of the
aggregate demand over the price-bias channel.

The second contribution is methodological. I combine a recent strand of the Bayesian
VAR literature that uses external instruments for identification (Caldara and Herbst,
2019) with the Bayesian factor model literature (Bernanke et al., 2005 Belviso and Mi-
lani, 2006, Amir-Ahmadi and Uhlig, 2015). I show how a state-space model can be set
up to jointly exploit the advantages of both approaches. The resulting Bayesian Proxy
factor-augmented VAR model avoids two shortcomings of commonly employed small-
scale recursively identified VAR models, namely a non-credible identification scheme
and informational insufficiency. I detect informational insufficiency of the small-scale
workhorse model, but find that it has limited quantitative impact on the estimated
impulse responses to an uncertainty shock. This relates to the work by Sims (2012)
who also finds that informational deficiency is not an either/or but a quantitative issue.

Future empirical research concerned with the identification of uncertainty shocks in
a structural VAR context, especially if it is conducted with few variables, should pay
close attention to the information set. Informational insufficiency is detected even in the
relatively rich workhorse model by Bloom (2009). While it has only limited quantitative
impacts in this case, this might be very different when reducing the information set.

From a methodological point of view, the BP-FAVAR model offers potential for a
number of extensions: First, identification of two or more shocks is generally possible
in this set-up. As pointed out by Kilian and Lütkepohl (2017), avoiding non-credible
short-run exclusion restrictions is particularly important in factor models. Therefore,
the BP-FAVAR could be extended to identify multiple shocks via external instruments.
Second, a combination of proxies with sign restrictions in this context is a natural point
of departure given the similarity in model set-up between the BP-VAR and VARs
identified via sign restrictions. The combination of these two approaches is likely to
lead to sharper inference.
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Figure 3.6: Impulse Responses
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Note: The sample is 1979M1 - 2015M7. The first column shows IRFs from the baseline BP-FAVAR.
The second column shows IRFs from a small-scale Proxy VAR. The third column shows IRFs from
a small-scale recursively identified VAR. The last column shows IRFs from a recursively identified
FAVAR. The BP-FAVAR and the recursive FAVAR are based on R = 4 latent factors. The bands are
computed point-wise 68 % posterior credible bands based on 50000 draws of the posterior sampler
discarding the first 40000 as burn-in.

168



Chapter 3 Combining Factor Models and External Instruments to Identify
Uncertainty Shocks

3.A Further Results

3.A.1 Robustness Checks

Stock and Watson (2012) were the first to propose two proxies for uncertainty shocks.
They employ the innovations in the VXO and in the policy uncertainty index by Baker
et al. (2016). These innovations are computed as residuals from an AR(2) process.
While innovations to the VXO are likely to be correlated with the uncertainty shocks
of interest in this study, this is less likely for the policy uncertainty instrument. The
reason is that the concept of uncertainty it is designed to approximate differs from the
one I have in mind in this study. Thus, in analysing impulse responses, I concentrate
on innovations to the VXO.

Figure 3.7: Uncertainty Proxies
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Note: The top panel shows the baseline gold price proxy for uncertainty by Piffer and Podstawski
(2017). The middle panel shows the Stock and Watson (2012) uncertainty proxy computed as residuals
of an AR(2) process of the VXO. The bottom panel shows the Stock and Watson (2012) uncertainty
proxy computed as residuals of an AR(2) process of the Baker et al. (2016) policy uncertainty proxy.
All proxies are winsorized at the 10 % level.

I reproduce the instrument as follows: In a first step I estimate an AR(2) process
including a constant for the VXO index as in Stock and Watson (2012). In a second
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Figure 3.8: Stock and Watson (2012) innovations to the VXO
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Note: The model is specified as in the baseline with the gold price proxy replaced by the Stock and
Watson (2012) VXO innovations. These are computed as the residuals from an AR(2) process of the
VXO.

step, I truncate the proxy at the 10th and 90th percentile and set all observations
within these two quantiles to zero. This is to ensure that the proxy only captures
quantitatively relevant spikes in uncertainty.

Figure 3.7 plots the resulting proxies while Table 3.2 shows the correlations among
the proxies. The instruments have some degree of correlation, but they clearly measure
distinct variations in uncertainty.

Table 3.2: Correlation among proxies

Gold proxy 1.00
VXO innovations 0.38 1.00

Policy Uncertainty innovations 0.50 0.37 1.00

Figure 3.8 shows the impulse response functions when employing the innovations to
the VXO as proxies. While the identification of the impact effects is not as sharp as
in the baseline, the dynamics are broadly similar.
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In order to assess robustness with respect to the lag length, I set P = 9. Figure 3.9
shows that the main results remain unchanged.

Jurado et al. (2015) argue that indices like the VXO used in the baseline do not
accurately capture the type of macroeconomic uncertainty that the researcher is inter-
ested in. They propose alternative indeces based on large panels of time series. Jurado
et al. (2015) provide measures extracted from macro series and Ludvigson et al. (2018)
provide measures extracted from financial and real series.9 Figure 3.10 shows that they
are highly correlated over the whole sample period.

Figure 3.11 replaces the VXO by the macro uncertainty index, Figure 3.12 replaces
the VXO by the financial uncertainty index and Figure 3.13 replaces it by the real
uncertainty index. The results remain qualitatively unchanged.

3.A.2 Conditional likelihood of mt

This section re-parametrises Caldara and Herbst (2019) to allow for identification of
impact effects. For the posterior sampler, we will need to be able to evaluate the
conditional likelihood of mt given yt.

Restate the model for convenience:

xt = Λyt + ξt (3.54)[
yt

mt

]
=

[
Π 0

0 0

][
wt

mt−1

]
+

[
B β

β′ σν

][
εt

νt

]
(3.55)

V ar(

[
yt − Πwt

mt

]
) =

[
Σ Bβ′

βB′ β′β + σ2
ν

]
, (3.56)

where β = [β 0]′

The likelihood is invariant to observationally equivalent rotations of B. Therefore
we can replace B = BcQ, where Bc is, for example, the lower-triangular Cholesky
decomposition of Σ.

V ar(

[
yt − Πwt

mt

]
) =

[
Σ BcQβ′

βQ′Bc′ β′β + σ2
ν

]
(3.57)

9Details can be found here https://www.sydneyludvigson.com/data-and-appendixes/
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Figure 3.9: Impulse Responses (P=9)
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Note: The sample is 1979M1 - 2015M7. The first column shows IRFs from the baseline BP-FAVAR.
The second column shows IRFs from a small-scale Proxy VAR. The third column shows IRFs from
a small-scale recursively identified VAR. The last column shows IRFs from a recursively identifed
FAVAR. The bands are computed point-wise 68 % posterior credible bands based on 10000 draws of
the posterior sampler.
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Figure 3.10: Uncertainty Measures
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Note: The uncertainty measures are taken from Ludvigson et al. (2018) and Ludvigson et al. (2018)
and rescaled to match the mean of the VXO for comparability.

173



Chapter 3 Combining Factor Models and External Instruments to Identify
Uncertainty Shocks

Figure 3.11: Macroeconomic Uncertainty

5 10 15 20

-10
-5
0

S
&

P
 5

00

5 10 15 20
0
2
4
6
8

M
ac

U
nc

5 10 15 20
-3
-2
-1
0

F
ed

 fu
nd

s 
ra

te

5 10 15 20

-0.6
-0.4
-0.2

0

W
ag

e

5 10 15 20

0

0.5

1

C
P

I

5 10 15 20
-0.8
-0.6
-0.4
-0.2

0
0.2

H
ou

rs

5 10 15 20

-1

-0.5

0

E
m

pl
oy

m
en

t

5 10 15 20

-2

-1

0

In
d.

 P
ro

du
ct

io
n

Note: The model is specified as in the baseline with VXO replaced by the macroeconomic uncertainty
indicator by Ludvigson et al. (2018).

Then, using the rules for the conditional mean of multivariate normal distributions, we
obtain the conditional likelihood

mt|yt,Π,Σ, b, β, σν ∼ N(µm|Y , Vm|Y ), (3.58)

µm|Y = βQ′Bc′Σ−1ut (3.59)

= βε1,t (3.60)

Vm|Y = bb′ + σ2
ν − bQ′Bc′Σ−1BcQb′ (3.61)

= σ2
ν (3.62)

Note that, once we condition on yt, the likelihood of mt does not depend on xt. In
addition, note that the conditional likelihood of mt does not depend on the full matrix
B, but only on its first column, b because the model is partially identified.
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Figure 3.12: Financial Uncertainty
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Note: The model is specified as in the baseline with VXO replaced by the financial uncertainty
indicator by Ludvigson et al. (2018).

3.A.3 Metropolis-within-Gibbs sampler for the BP-FAVAR

This section outlines the posterior sampling procedure for the Bayesian Proxy Factor
Augmented VAR. It combines posterior samplers for Bayesian FAVARs, e.g. Koop
et al. (2010) and Amir-Ahmadi and Uhlig (2015) with the algorithm for Bayesian
Proxy VARs proposed by Caldara and Herbst (2019). It provides posterior draws of
the parameters [Π,Σ,Ω,Λ, β, σν ] as well as of the latent factors ft.

Start by rewriting the posterior distribution as

p(θ, Y |X,m) ∝ p(X,m|θ, Y )p(θ, Y )

= p(m|θ, Y,X)p(X|θ, Y )p(θ, Y )

= p(m|θ, Y,X)p(X, θ, Y )

= p(m|θ, Y,X)p(θ, Y |X)p(X)

∝ p(m|θ, Y,X)p(θ, Y |X)

∝ p(m|θ, Y )p(θ, Y |X)
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Figure 3.13: Real Uncertainty
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Note: The model is specified as in the baseline with VXO replaced by the real uncertainty indicator
by Ludvigson et al. (2018).

Note that the second term in the last line is the posterior distribution of all model
parameters and factors given the data. Standard results (see Amir-Ahmadi and Uhlig,
2015) exist to generate draws from this posterior. The first term is the conditional
likelihood of m|Y . Note that the last transformation is justified by the fact that once
conditioned on Y , X does not contain further information about m. The posterior
sampler weights draws from p(θ, Y |X) with the conditional likelihood ofm|Y using an
independence Metropolis-Hastings step as in Caldara and Herbst (2019). It is in this
sense that m informs the estimation of reduced form parameters.

1. Set starting values

In order to obtain starting values of the reduced form parameters [Π,Σ,Ω,Λ], I
estimate the model once using the two-step-procedure proposed by Boivin et al.
(2009), which takes the restrictions implied by the observation equation into
account when extracting factors. I use Principal Component Analysis to obtain
R factors fPCt from xt and the factor loadings ΛPC . Then run the regression

xt = const+ ΛffPCt + Λzzt + vt
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and construct X̃ = Λ̂ffPCt , the fitted values orthogonalized with respect to the
observable factors. Then extract R factors from X̃ and repeat the procedure 20
times as in Boivin et al. (2009). Save [Λ0,f 0

t ,Ω
0]

Lastly, estimate a reduced-form VAR in y0
t =

[
f 0
t

zt

]
to obtain [Σ0,Π0].

For the remaining parameters, I start the algorithm from β0 = 0, σ0
ν = 0.5std(mt)

(Caldara and Herbst, 2019 call this the "high relevance prior", which imposes that
half the variance in the proxy can be attributed to measurement error)

At each stage j proceed with the following steps:

2. Draw f jt using the Carter-Kohn backward recursion of the Kalman filter. Set

yjt =

[
f jt

zt

]
(see Appendix 3.A.5 for details.)

3. Draw Λj from its conditional normal posterior given in equation (3.27).

λi|ωj−1
ii , X, Y ∼ N(µ̄λ,i,ω

j−1
ii M̄−1

i )

Impose the normalisation on Λ.

4. Compute ξjt = xt−Λjyjt and draw the diagonal elements of Ω from their posterior
inverse Gamma distributions

ωii|X, Y ∼ IG(s̄ci/2, s̄hi/2)

5. Sample Σcand from an inverse Wishart

Σcand ∼ IW (S̄, τ̄)

6. Sample Πcand from a multivariate normal using the Minnesota values as priors
for the posterior covariance and employ shrinkage towards a white noise process
given the stationarity of the system.

vec(Πcand) ∼ N(µ̄Π, V̄Π)

7. With probability α set Πj = Πcand and Σj = Σcand, otherwise set Πj = Πj−1 and
Σj = Σj−1, where

α = min(
p(m, Y |Πcand,Σcand, Qj−1)

p(m, Y |Πj−1,Σj−1, Qj−1)
, 1)
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8. Draw Qcand
·,1 as the first column of an orthogonal matrix form a uniform Haar

distribution using the algorithm by Rubio-Ramirez et al. (2010). Set Qj
·,1 = Qcand

·,1

with probability α and Qj
·,1 = Qj−1

·,1 else.

α = min(
p(m|Y,Πj,Σj, Qcand

·,1 )

p(m|Y,Πj,Σj, Qj−1
·,1 )

, 1)

9. Compute structural errors εjt = (chol(Σj)Qj
·,1)−1U j. Draw βj from its posterior

normal distribution

βj ∼ N(µ̄β, σ̄β)

10. Draw σjν from its posterior inverse Gamma distribution

σjν ∼ IG(s̄h, s̄c)

3.A.4 Test for Informational Sufficiency

In this section I describe the sequential testing procedure to assess whether the BP-
FAVAR model aligns the econometrician’s and the agent’s information set. This would
not be the case in the presence of omitted variables. This procedure is particularly
suited when the list of potentially omitted variables is large and the researcher therefore
would like to avoid taking a stand on which additional variables to include. In the
context of uncertainty shocks, variables which are typically omitted from small-scale
VAR models but could potentially be relevant, include consumer sentiment (Bachmann
and Sims, 2012), total factor productivity (Bachmann and Bayer, 2013), and measures
of anticipated risk (Christiano et al., 2014). Other forward-looking variables could also
potentially cause omitted variable biases.

Instead of including one variable after the other in the VAR the sequential testing
procedure augments the small-scale VAR model by latent factors extracted from a
large set of informational series until the model is informationally sufficient. The
model is informationally sufficient if none of the observable variables is Granger-caused
by factors. The basis is a multivariate out-of-sample Granger-causality test (see next
section for details). The intuition behind this test is the following: If the economy is
accurately represented by a factor model, as is assumed here, then the factors contain
all relevant information that agents base their decision making on. If these factors
do not help predict a vector of variables in the VAR, then the variables in the VAR
contain the same information as the factors. Thus, they are sufficient to align the
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econometrician’s and the agent’s information set. If, on the other hand, the factors
help predict the VAR variables, then they should be subsequently added to the VAR
as additional variables until informational sufficiency cannot be rejected any longer.
The sequential testing procedure is as follows:

In a first step, I test

H0 : fPCt do not Granger-cause zt (3.63)

H1 : fPCt Granger-cause zt, (3.64)

where fPCt is a vector containing the first six Principal Components extracted from xt.
I then test, for j = 1, ..., 5

H0 : fPCt,−(1:j) do not Granger-cause {zt,ft,1:j} (3.65)

H1 : fPCt,−(1:j) Granger-cause {zt,ft,1:j}. (3.66)

where fPCt,1:j are the first j Principal Components of xt and fPCt,−(1:j) is a vector containing
all but the first j Principal Components.

Figure 3.2 in the paper shows the distribution of the test statistic across 1000 samples
obtained via a standard residual bootstrap procedure (see next section for details)
together with the test statistic computed using the actual sample data. If the actual test
statistic lies outside the bootstrap distribution test statistic, then this indicates that
the Null of no Granger causality can be rejected. Table 3.3 shows the corresponding p-

Table 3.3: Test for Informational Sufficiency
R p-value

0 0.0000
1 0.0020
2 0.0000
3 0.0000
4 0.1240
5 0.6680

Note: p-values are obtained as the fraction of bootstrap test statistics under the Null of no Granger
causality exceeding the actual test statistic.

values. It suggests that for R = 0, informational sufficiency can be rejected. The Null
Hypothesis of informational sufficiency cannot be rejected once the model is augmented
by at least four factors. Therefore, the multiple testing procedure suggests using R = 4.
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Multivariate out-of-sample Granger-causality test

We would like to assess whether a vector ft Granger-causes a vector zt. The series ft is
said to Granger-cause the series zt if the past of ft has additional power for forecasting
zt after controlling for the past of zt. Gelper and Croux (2007) base their test statistic
on the comparison of two nested VAR models:

zt = Φ(L)zt−1 + vrt (3.67)

zt = Φ(L)zt−1 + Ψ(L)ft−1 + vft (3.68)

The restricted model (3.67) has only past values of zt as regressors, while the unre-
stricted model (3.68) has both the past of zt and ft as regressors. vrt are the residuals
of the restricted, while vft are the residuals of the full model. The test statistic is
based on the out-of-sample forecast performance of these two models. Compared to
in-sample tests, this approach is less susceptible to overfitting.

The unrestricted model can be written out as

zt = φ0 + φ1zt−1 + ...+ φpzt−p + ψ1ft−1 + ...+ ψpft−p + vft (3.69)

where φj, j = 0, ..., p are of dimension K ×K and ψj are of dimension K × R. Then
the Null hypothesis of no Granger causality can be written as

H0 : ψ1 = ψ2 = · · · = ψp = 0 (3.70)

The out-of-sample test proceeds as follows: First, split the sample in half as T = T1+T2,
where T1 = T2 = 0.5T (assuming T is even) and construct one-step-ahead forecasts
ẑrT1+1 and ẑfT1+1 based on the restricted and the full model, respectively. Then, expand
the estimation sample by one and construct ẑrT1+2 and ẑfT1+2. The last forecasts, ẑrT
and ẑfT are based on an estimation sample of size T − 1. As a second step, construct
the series of one-step-ahead forecast errors v̂rt = ẑrt − zt and v̂f = ẑft − zt for the two
competing models and save them in the vectors v̂r and v̂f of size T2. As a third step,
construct the test statistic comparing the forecasting performance of the two models
as

MSFE = log(
|v̂r′v̂r|
|v̂f ′v̂f |

), (3.71)

where MSFE is the mean squared forecast error and | · | stands for the determinant
of a matrix. If the full model provides better forecasts, MSFE takes a larger value,
indicating Granger-causality.
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The asymptotic distribution of the test statistic is unknown. Critical values will
therefore be based on a residual bootstrap. It proceeds in the following steps:

1. Estimate the model under the Null, i.e. model (3.67) and compute the test
statistic, denoted here by s0, as described above

2. Generate Nb = 1000 new time series z∗1 , ...,z∗t according to model (3.67) using
the parameter estimates and resampling the residuals with replacement. For each
bootstrap sample, compute the test statistic resulting in s∗1, ..., s∗Nb

3. The percentage of bootstrap test statistics, s∗1, ..., s∗Nb, exceeding s0 is an approx-
imation of the p-value.

Gelper and Croux (2007) show that the test performs well in a Monte Carlo setting
as well as in an application to real data.

3.A.5 Carter-Kohn Algorithm

This section lays out the Carter-Kohn algorithm. It is used to sample the factors Y
given all model parameters, θ, and the data, X, i.e. it generates draws from p(Y |θ, X).

State-space form

Start by rewriting observation and transition equation as[
xt

zt

]
= HBt +Wt (3.72)

Bt = FBt−1 + Vt (3.73)

V ar(Wt) = R (3.74)

V ar(Vt) = Q (3.75)

where

H =

[
Λf Λz 0 ... 0

0 I 0 ... 0

]
; Bt =

[
β′t β′t−1 ... β′t−p

]′
; βt =

[
ft

zt

]

Wt =

[
ξt

0

]
; F =

[
Π

I 0 0

]
; Vt =

[
ut

0

]

R =

[
Ω 0
0 0

]
; Q =

[
Σ 0
0 0

]
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Then consider the following factorisation:

p(B1:T |X,θ) = p(BT |x1:T ,θ)
T−1∏
t=1

p(Bt|Bt+1, X, θ) (3.76)

Given the linear Gaussian form of the state space model we have that

BT |x1:T , θ ∼ N(BT |T ,PT |T ) (3.77)

Bt|T |Bt+1|T ,x1:T , θ ∼ N(Bt|t,Bt+1|T ,Pt|t,Bt+1|T ) (3.78)

with

BT |T = E(BT |x1:T ,θ) (3.79)

PT |T = Cov(BT |x1:T ,θ) (3.80)

Bt|t,Bt+1|T = E(Bt|Bt|t,Bt+1|t,θ) (3.81)

Pt|t,Bt+1|T = Cov(Bt|Bt|t,Bt+1|t,θ) (3.82)

Kalman-filter

In a first step, I run a Kalman filter to obtain a series of Kalman-filtered draws of the
state variable Bt Bt|t for t = 1, ...T . To initialise, I set B1|0 = 0 and P1|0 = I. Then,
iterate forward as:

Bt|t = Bt|t−1 + κt|t−1ηt|t−1 (3.83)

where ηt|t−1 = Bt − FBt|t−1 denotes the forecast error, ft|t−1 = HPt|t−1H′ + R its
variance and κt|t−1 = Pt|t−1Hf−1

t|t−1 the "Kalman-gain"

Pt|t−1 = FPt−1|t−1F ′ +Q (3.84)

Then, conditioning on the last of these Kalman-filtered draws, BT |T and PT |T , run the
filter backwards to obtain a series Bt|t+1 for t = 1, ..., T − 1 as follows:

B∗t|t,Bt+1|T = Bt|t + Pt|tF∗
′
J−1
t+1|tψt+1|t (3.85)

P∗t|t,Bt+1|T = Pt|t − Pt|tF∗
′
J−1
t+1|tF

∗Pt|t (3.86)

where ψt+1|t = B∗t+1−F∗Bt|t and Jt+1|t = F∗Pt|tF∗
′
+Q∗. Note that Q∗ refers to the top

R×R block of Q and that F∗ and B∗ denote the first R rows of F and B, respectively.
This is required because Q is singular given the presence of observable factors.
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Plugging these draws into (3.76) results in an unconditional posterior draw of the
state variable, B1, ...,BT . Its top R + K block represents an unconditional posterior
draw of factors, yt.

Convergence of the Posterior Sampling Algorithm

The convergence properties of the reduced form parameters of a Bayesian FAVARmodel
are discussed in detail in Amir-Ahmadi and Uhlig (2015). They show that a Gibbs
sampling procedure, similar to the one employed for the reduced form parameters here,
converges for appropriate lengths of the MCMC chain. The convergence properties of
the structural parameters, however, need to be assessed. In particular the first column
of B containing the on-impact effects of the shock of interest are of importance. In order
to do so, I follow Amir-Ahmadi and Uhlig (2015) and employ the convergence diagnostic
proposed by Geweke (1992). A detailed discussion of this convergence diagnostic can
be found, for example, in Cowles and Carlin (1996).

This diagnostic assesses the convergence of each element ηi of a parameter vector, η.
The assessment is based on a comparison of means across different parts of this chain.
If the means are close to each other, the procedure detects convergence.

In a first step, extract from each (univariate) posterior draw {ηi}Di=1 the following sub-
series: η1i, ..., η0.1D,i, i.e. the first 10 % of draws for parameter i, and η0.6D+1,i, ..., ηD,i,
i.e. the last 40% of draws, where D is the length of the MCMC chain. Compute
µ̂first and µ̂last, the mean, as well as σ̂first and σ̂last, the standard deviation, of these
subseries. Then the test statistic is

CD =
µ̂first − µ̂last
σ̂first√

0.1D
+ σ̂last√

0.4D

(3.87)

Under the conditions mentioned in Geweke (1992), CD has an asymptotic standard
normal distribution

The final output is a p-value indicating whether or not we can reject the null hy-
pothesis of convergence, i.e. equality of mean across the chain, at a given significance
level.

Table 3.4 shows that for 10 out of 12 parameters, the null hypothesis of convergence
cannot be rejected. Note that the first R parameters refer to the on-impact effect on
the latent factors, which do not have an economic interpretation.

3.A.6 Criteria to determine the number of factors

This section describes two criteria to determine the number of factors: The Bai and
Ng (2002) criterion and the scree plot.
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Table 3.4: Geweke (1992) test for convergence of the MCMC chain
p-value

r=1 0.7348
r=2 0.0007
r=3 0.1343
r=4 0.1363
k=1 0.8634
k=2 0.1635
k=3 0.7797
k=4 0.0871
k=5 0.3087
k=6 0.9196
k=7 0.0444
k=8 0.1515

Note: The table shows the test for convergence of the parameters reflecting the on-impact effects of the
structural shocks. The first r = 1, ..., 4 values refer to the impact effect of the latent factors. The last
k = 1, ..., 8 refer to the on-impact effects of observable variables. The sample split is T = T1 +T2 +T3,
where T1 = 0.1T , T2 = 0.5T and T3 = 0.4T . P-values are computed as quantiles of a Chi-squared
distribution.

Bai and Ng (2002) criterion

Bai and Ng (2002) suggest the following criterion to determine the number of factors:

BN(R) =log
1

NT

T∑
t=1

(Xt − ΛPCfPCt )′(Xt − ΛPCfPCt )

+R
N + T

NT
log(min(N, T )) (3.88)

where ΛPC and fPCt are the principal components estimators of the factor loadings
and the factors, respectively. Bai and Ng (2002) suggest to set R∗ such that (3.88) is
minimised.

Scree Plot

A scree plot summarizes the marginal contribution of the r-th factor to the average
explanatory power of N regressions of xt against the first r factors as computed via
Principal Components. Figure 3.14 plots this marginal contribution against the number
of factors. It shows that the first factor explains about 60% of variance in xt, while
the first four factors explain over 95% of the variance, suggesting that for R = 4 the
factors explain a sufficiently large share of the variance in xt.
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Figure 3.14: Scree Plot
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3.A.7 Data Description
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Table 3.5: Data
Output and Income

id tcode fred description

1 5 RPI Real Personal Income
2 5 W875RX1 Real personal income ex transfer receipts
6 5 INDPRO IP Index
7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies
8 5 IPFINAL IP: Final Products (Market Group)
9 5 IPCONGD IP: Consumer Goods
10 5 IPDCONGD IP: Durable Consumer Goods
11 5 IPNCONGD IP: Nondurable Consumer Goods
12 5 IPBUSEQ IP: Business Equipment
13 5 IPMAT IP: Materials
14 5 IPDMAT IP: Durable Materials
15 5 IPNMAT IP: Nondurable Materials
16 5 IPMANSICS IP: Manufacturing (SIC)
17 5 IPB51222s IP: Residential Utilities
18 5 IPFUELS IP: Fuels
19 1 NAPMPI ISM Manufacturing: Production Index
20 2 CUMFNS Capacity Utilization: Manufacturing
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Labor Market

id tcode fred description

21* 2 HWI Help-Wanted Index for United States
22* 2 HWIURATIO Ratio of Help Wanted/No. Unemployed
23 5 CLF16OV Civilian Labor Force
24 5 CE16OV Civilian Employment
25 2 UNRATE Civilian Unemployment Rate
26 2 UEMPMEAN Average Duration of Unemployment (Weeks)
27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks
28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks
29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over
30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks
31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over
32* 5 CLAIMSx Initial Claims
33 5 PAYEMS All Employees: Total nonfarm
34 5 USGOOD All Employees: Goods-Producing Industries
35 5 CES1021000001 All Employees: Mining and Logging: Mining
36 5 USCONS All Employees: Construction
37 5 MANEMP All Employees: Manufacturing
38 5 DMANEMP All Employees: Durable goods
39 5 NDMANEMP All Employees: Nondurable goods
40 5 SRVPRD All Employees: Service-Providing Industries
41 5 USTPU All Employees: Trade, Transportation & Utilities
42 5 USWTRADE All Employees: Wholesale Trade
43 5 USTRADE All Employees: Retail Trade
44 5 USFIRE All Employees: Financial Activities
45 5 USGOVT All Employees: Government
46 1 CES0600000007 Avg Weekly Hours : Goods-Producing
47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing
48 1 AWHMAN Avg Weekly Hours : Manufacturing
49 1 NAPMEI ISM Manufacturing: Employment Index
127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing
128 6 CES2000000008 Avg Hourly Earnings : Construction
129 6 CES3000000008 Avg Hourly Earnings : Manufacturing
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Housing

id tcode fred description

50 4 HOUST Housing Starts: Total New Privately Owned
51 4 HOUSTNE Housing Starts, Northeast
52 4 HOUSTMW Housing Starts, Midwest
53 4 HOUSTS Housing Starts, South
54 4 HOUSTW Housing Starts, West
55 4 PERMIT New Private Housing Permits (SAAR)
56 4 PERMITNE New Private Housing Permits, Northeast (SAAR)
57 4 PERMITMW New Private Housing Permits, Midwest (SAAR)
58 4 PERMITS New Private Housing Permits, South (SAAR)
59 4 PERMITW New Private Housing Permits, West (SAAR)

Consumption, Orders and inventories

3 5 DPCERA3M086SBEA Real personal consumption expenditures
4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales
5* 5 RETAILx Retail and Food Services Sales
60 1 NAPM ISM : PMI Composite Index
61 1 NAPMNOI ISM : New Orders Index
62 1 NAPMSDI ISM : Supplier Deliveries Index
63 1 NAPMII ISM : Inventories Index
64 5 ACOGNO New Orders for Consumer Goods
65* 5 AMDMNOx New Orders for Durable Goods
66* 5 ANDENOx New Orders for Nondefense Capital Goods
67* 5 AMDMUOx Unfilled Orders for Durable Goods
68* 5 BUSINVx Total Business Inventories
69* 2 ISRATIOx Total Business: Inventories to Sales Ratio
130* 2 UMCSENTx Consumer Sentiment Index
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Money and Credit

id tcode fred description

70 6 M1SL M1 Money Stock
71 6 M2SL M2 Money Stock
72 5 M2REAL Real M2 Money Stock
73 6 AMBSL St. Louis Adjusted Monetary Base
74 6 TOTRESNS Total Reserves of Depository Institutions
75 7 NONBORRES Reserves Of Depository Institutions
76 6 BUSLOANS Commercial and Industrial Loans
77 6 REALLN Real Estate Loans at All Commercial Banks
78 6 NONREVSL Total Nonrevolving Credit
79* 2 CONSPI Nonrevolving consumer credit to Personal Income
131 6 MZMSL MZM Money Stock
132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding
133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding
134 6 INVEST Securities in Bank Credit at All Commercial Banks

Interest Rates and Exchange Rates

84 2 FEDFUNDS Effective Federal Funds Rate
85* 2 CP3Mx 3-Month AA Financial Commercial Paper Rate
86 2 TB3MS 3-Month Treasury Bill:
87 2 TB6MS 6-Month Treasury Bill:
88 2 GS1 1-Year Treasury Rate
89 2 GS5 5-Year Treasury Rate
90 2 GS10 10-Year Treasury Rate
91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield
92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield
93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS
94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS
95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS
96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS
97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS
98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS
99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS
100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS
101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies
102* 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate
103* 5 EXJPUSx Japan / U.S. Foreign Exchange Rate
104* 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate
105* 5 EXCAUSx Canada / U.S. Foreign Exchange Rate
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Prices

id tcode fred description

106 6 WPSFD49207 PPI: Finished Goods
107 6 WPSFD49502 PPI: Finished Consumer Goods
108 6 WPSID61 PPI: Intermediate Materials
109 6 WPSID62 PPI: Crude Materials
110* 6 OILPRICEx Crude Oil, spliced WTI and Cushing
111 6 PPICMM PPI: Metals and metal products:
112 1 NAPMPRI ISM Manufacturing: Prices Index
113 6 CPIAUCSL CPI : All Items
114 6 CPIAPPSL CPI : Apparel
115 6 CPITRNSL CPI : Transportation
116 6 CPIMEDSL CPI : Medical Care
117 6 CUSR0000SAC CPI : Commodities
118 6 CUUR0000SAD CPI : Durables
119 6 CUSR0000SAS CPI : Services
120 6 CPIULFSL CPI : All Items Less Food
121 6 CUUR0000SA0L2 CPI : All items less shelter
122 6 CUSR0000SA0L5 CPI : All items less medical care
123 6 PCEPI Personal Cons. Expend.: Chain Index
124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods
125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods
126 6 DSERRG3M086SBEA Personal Cons. Exp: Services

Stock Market

80* 5 S&P 500 S&P’s Common Stock Price Index: Composite
81* 5 S&P: indust S&P’s Common Stock Price Index: Industrials
82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield
83* 5 S&P PE ratio S&P’s Composite Common Stock: PE Ratio
135* 1 VXOCLSx VXO
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Figure 3.15: Observable Factors
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Note: The sample length is 1979M1 to 2015M7. The observable factors are the variables included in
Piffer and Podstawski (2017).
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Figure 3.16: Shadow Rate
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ichen noch einer anderen Fassung bzw. Überarbeitung einer anderen Fakultät, einem
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