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The pentameric ligand-gated ion channel (pLGIC) from Gloeobacter
violaceus (GLIC) has provided insightful structure-function views
on the permeation process and the allosteric regulation of the
pLGICs family. However, GLIC is activated by pH instead of a
neurotransmitter and a clear picture for the gating transition
driven by protons is still lacking. We used an electrostatics-based
(FD-DH) method to predict the acidities of all aspartic and glutamic
residues in GLIC, both in its active and closed-channel states. Those
residues with a predicted pKa close to the experimental pH50 were
individually replaced by alanine and the resulting variant receptors
were titrated by ATR-FTIR spectroscopy. E35, located in front of
Loop F far away from the orthosteric site, appears as the key
proton sensor with a measured individual pKa at 5.8. In the GLIC
open conformation, E35 is connected through a water-mediated
hydrogen-bond network first to the highly conserved electrostatic
triad R192-D122-D32 and then to Y197-Y119-K248, both located
at ECD-TMD interface. The second triad controls a cluster of hy-
drophobic side-chains from the M2-M3 Loop that is remodeled
during the gating transition. We solved 12 crystal structures of
GLIC mutants, 6 of them being trapped in an agonist-bound but
non-conductive conformation. Combined with previous data, this
reveals two branches of a continuous network originating from
E35 that reach, independently, the middle transmembrane region
of two adjacent subunits. We conclude that GLIC’s gating proceeds
by making use of Loop F, already known as an allosteric site in
other pLGICs, instead of the classical orthosteric site.

Pentameric ligand-gated ion channel | pH activation | Proton sensor |
Electrostatic networks | Allosteric modulation

Introduction

Pentameric ligand-gated ion channels (pLGICs), also known as
Cys-Loop receptors in animals[1], or, more recently, Pro-loop
receptors[2], mediate rapid signal transduction in the central and
peripheral nervous systems[1]. Activation of these receptors is
favored by the binding of agonist(s) in the extracellular domain
(ECD), which lowers the activation energy between closed and
open states[3]. This leads to a global allosteric conformational
change and promotes the opening of the transmembrane domain
(TMD) ion channel pore. Dysfunction of pLGICs can cause se-
vere nervous-system diseases and conditions such as Alzheimer’s
disease, Parkinson’s disease, epilepsy, and alcohol dependence.
They are the targets of several important therapeutic compounds
such as general anesthetics, barbiturates and benzodiazepines,
whose structures of complexes with a pLGIC are reviewed in [4].

Available structural information on this family was derived
from a number of prokaryotic and eukaryotic channels[5]–[13].
Despite substantial diversity of sequences, structural information
shows high conservation of tertiary and quaternary architectures
between eukaryotic receptors and their bacterial homologs. Be-

sides the covalent link between ECD and TMD through the pre-
M1 region, the ECD-TMD interface comprises with four highly
conserved loop regions: the β1-β2 loop, the Loop F, the Pro-
loop and the M2-M3 loop[1], [14] (Fig. 1A inset). Of all pLGICs,
the prokaryotic ELIC from Erwinia chrysanthemi and GLIC from
Gloeobacter violaceus stand out as the subjects of many structure-
function relationship studies. Notably, GLIC has been captured
in four different states. Following the first apparently open/active
state of GLIC crystallized at pH 4.0[13], [15], several proton-
bound but non-conducting forms have been solved, which have
been designated as ‘Locally Closed’ states (LC)[16]–[18]. Among
those LC forms, which all display an unfolding of the C-terminus
of the M2 helix and a change of its orientation that closes the
pore but have different conformations of M2-M3 loop, one of
them (LC2) has been recently suggested to be a pre-active state,
an intermediate state along the transition pathway from the
resting state to the active state[19]. The closed/resting state of
GLIC was solved at neutral pH[20]. Finally, the structure of a
putative desensitized state of GLIC has also been reported[21].
In addition, GLIC has been extensively used to characterize
the binding properties of important pharmacological reagents,
such as propofol[22], bromoform[23], [24], ethanol[23], [25] and
barbiturates[26], while ELIC has also been used for the structural

Significance

Several classes of membrane ion channels are sensitive to the
intracellular or extracellular proton concentration. However,
the detailed mechanism of channel gating induced by protona-
tion proves in general difficult to address. Here we use a com-
bined computational and experimental approach to identify
the proton sensor in the pentameric proton-gated ion channel
GLIC. Further electrophysiology and crystallography data help
delineate the mechanism of the gating transition initiated by
protonating this sensor, revealing that those positions that
trap the receptor in a nonfunctional closed pore conformation
build up a continuous network. Our results provide a novel
approach to search for and identify proton sensors as well as
networks of residues important for the gating transition in the
pentameric ligand-gated channels family.
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Fig. 1. Predictions of proton-sensing residues among all Glu and Asp in GLIC
derived from electrostatic FD/DH calculations. (A) Cartoon representation of
the open form of GLIC crystallized at pH 4. The front subunit is highlighted
and shown in green. Asp and Glu residues predicted to have ΔpKa larger
than 1 unit between the open and closed states are shown as sticks and their
Cα atoms are shown as red van der Waals spheres (inset). Cα atom of R192 is
shown as a cyan sphere. The black bars represent the plasmamembrane level.
(B) Top view of GLIC with color and representation of atoms identical to A.
(C) Scatter plots for the predicted pKa values of all Asp (19 for each subunit)
and Glu (16 for each subunit) for the open and closed forms of the receptor.
Residues lying on the diagonal (green line) have predicted pKa values that
are equal in the two forms. The pink region contains residues for which the
protonation state is predicted to change at pH50 ± 1 (pH50 = 5.10 ± 0.20). (D)
ΔpKa values, from the open to closed form, of Asp and Glu are plotted as a
function of the residue number (red line).

characterization of the binding of general anesthetics and benzo-
diazepine molecules[27]–[29]. A number of biophysical methods
such as EPR have also been applied to characterize GLIC con-
formations in solution. These methods, due to their inherent time
scale, are likely to probe the desensitized state, whose structure
is still highly debated, leading to some apparent disagreement in
the interpretation of the experiments[30]–[33].

GLIC’s channel is gated by proton(s) with pH50 = 5.1 ±
0.2, at which half the maximal current amplitude is reached.
This contrasts with most human pLGICs, which are activated by
neurotransmitter binding to a cavity in an inter-subunit interface
in the ECD, mainly involving loops B and C (Fig. 1A inset). Var-
ious invertebrate pLGICs have been demonstrated to be directly
responsive to pH[34]–[36]. Proton-gating has also been observed
in ion channels that are not members of the pLGIC family, such

as acid-sensing ion channels (ASIC) and some inward-rectifying
potassium channels (Kir) [37], [38]. The mechanism of proton
gating is in general very difficult to study as there are many candi-
dates for the role of proton-sensing residues. In addition, protons
are usually not directly seen by crystallography, precluding the
possibility to ascertain which residue is protonated and which is
not, even if the structure is known at high-resolution.

In this study, we performed a systematic and computer-
aided survey of residues that can be qualified as proton sen-
sors contributing to channel gating in GLIC, namely residues
that change their protonation state during the conformational
transition. Taking advantage of the knowledge of the structures
of open/active and closed/resting forms of GLIC, we use the
Finite Difference Poisson-Boltzmann/Debye-Hückel (FD/DH)
to predict individual pKa values and to guide the search for
the position of pH-sensing residues. FD/DH has been shown
to be superior to classical FD-PB[39] for filtering candidate
residues responsible for pH-induced channel gating. We then
experimentally determined the individual pKa values of those
residues that exhibit a strong change in the calculated pKa values
between the two known states, by employing Attenuated Total
Reflectance Fourier Transform Infra-Red Spectroscopy (ATR-
FTIR). The assignment of the carboxylic side chain frequencies
was performed by replacement of individual carboxylate residues
by alanine and calculating the difference between the spectra of
the wild-type and mutated receptors. We infer from these results
that E35 accounts for proton sensing, in accordance with recent
electrophysiology results[40].

We then extensively explored the environment of residue E35,
located at the ECD-TMD interface with Loop F of the adjacent
subunit, by site-directed mutagenesis, chemical labeling, electro-
physiology and crystal structure analysis and found an interfacial
hydrogen network mediated by water molecules which controls
channel gating, in association with an additional layer made of an
intra-subunit cluster of hydrophobic side-chains. Both networks
are crucial for maintaining the channel open. These networks
can be mapped further down to the middle pore region in two
adjacent subunits by projecting on the structure of the active state
of GLIC all known positions whose mutation results into an LC
structure, namely a structure trapped before the transition to the
active form.

Results

Poisson-Boltzmann electrostatics and the FD/DH method predict
potential pH-sensing residues in GLIC

Activation of GLIC is triggered by lowering the pH from
neutral to acidic values with a pH50 = 5.1 ± 0.2. Our goal is to
identify those residues whose protonation will most profoundly
affect the conformational transition between the closed and the
open forms of the channel. These are likely to be either Asp, or
Glu or His residues. There are 34 carboxylate residues in each
subunit, along with 3 His residues. Here we focus on Asp and
Glu as it has been shown elsewhere that His residues play no role
in the gating transition[40]. It is expected that the pKa values of
carboxylate residues that are essential to proton activation should
be significantly shifted from their model pKa (Asp = 3.8-4.0;
Glu = 4.2-4.4). However, this is a necessary but not sufficient
condition to predict/identify the proton-sensing residues. Indeed,
following Sazanavets and Warwicker[39], one can divide residues
whose pKa values are shifted from their model pKa in two classes:
pH-sensors and pH-coupled. Only the pH-sensors are expected
to change ionization during the conformational change between
the two forms, namely around pH50 ± 1, whereas proton-coupled
residues are not[39].

Poisson-Boltzmann (PB) electrostatic calculations can pre-
dict individual pKa values of a protein with a known structure.
FD/DH calculation is a refined Poisson-Boltzmann method that
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Fig. 2. pH-induced FTIR difference spectra of GLIC
reconstituted in POPE/POPG lipids of (A) Wild-type
GLIC and (B) the E35Amutant. Reference spectra were
taken at pH = 7.0 and FTIR differences were recorded
while the solution pHwas continuously lowered. Neg-
ative peaks represent the structural components that
were reduced after lowering the pH, while positive
peaks represent the structural components that were
gained by lowering the pH. (C) pH titration curves
derived from the normalized intensities of the band
at 1400 cm-1 (symmetric carboxylate vibration) of the
wild-type (+) and of the E35A mutant (red). Open
and filled symbols represent data from different ex-
periments performed under identical conditions. (D)
Deviations of the mutants’ pH titration from the wild-
type. The cross marker in black (+) represents trace
deviation of wild-type between two different exper-
iments, which sets the extent of the reproducibility
error. The solid curves represent results of fitting the
data points by the Henderson-Hasselbalch equation
for E35A, E75A, E181A.

has been shown to be significantly better at predicting pH-sensing
residues compared to normal FD-PB methods[39]. For charged
and exposed residues the method takes into account both their
intrinsic flexibility by sampling all possible rotamers and also the
screening effect due to the surrounding salt by using the Debye-
Huckel theory[39]. GLIC X-ray structures have been solved in
both its open/active form (pH 4.0, PDB ID: 3EAM, 4HFI) and
in its closed/resting form (pH 7.0, PDB ID: 4PQN) so that we can
calculate pKa values in both forms.

The FD-DH analysis of all GLIC carboxylate protonatable
residues shows that most have the same predicted pKa values
in both states (Fig. 1C and SI Appendix, Notes), suggesting that
they are not involved in pH sensing. Interestingly, five Glutamate
residues, E26, E35, E75, E104, and E177, are predicted to change
protonation state within one log of the functional pH50 and have
a predicted pKa value significantly different in the two states
(pink zone in Fig. 1C). E177 is located near the known agonist-
binding site (Loop C), while E26, E35 and E75 are at the interface
between two subunits. E104 is located close to a known positive
allosteric modulator (PAM) binding site (Fig. 1A inset).

In comparison, the pKa values of D32, D122 and E181 differ
substantially between the open and the closed forms (ΔpKa ≥ 1),
but in a pH range distant from GLIC’s pH50 (Fig. 1C-D), and are
therefore more likely to be pH-coupled residues, rather than pH-
sensing [39]. D32 and D122 are involved in strong electrostatic
interactions with R192, which are highly conserved in almost all
pLGIC, even in receptors that are not activated/modulated by
pH changes[2]. Mutations at these positions often impair the
expression of the receptors at the cell membrane or lead to total
loss-of-function phenotypes (SI Appendix, Table S1). Therefore,
they are not expected to play a role in proton sensing per se but
rather to be essential for maintaining the structural integrity of
the receptor. E181 is located in Loop C, which experiences a
considerable conformational change between the two states and
would be a good candidate for proton sensing (SI Appendix, Fig.
S2B). However, its predicted pKa is not in the range of pH50 ± 1.
Furthermore, mutations of each protonatable residue in loop C
show no or small effects on proton activation in the range of pH
7.0-4.0[41], [42]. Indeed, deleting the entire loop C or replacing it
by 10 glycines does not affect pH activation of GLIC[17].

The output of FD-DH calculations contains a list of putative
salt bridges and strong hydrogen bonds in the structure, along
with their calculated energy. The strongest ion pairs (with an
interaction energy around 9 kT in the open form, but 6 kT in the
closed form) involve the triad R192, D122 and D32, a strongly
conserved feature of all pLGICs[2]. Interestingly, the less-known
triad made of Y197-Y119 within the same subunit and K248 of
the next subunit is at the same energy level (8.5-9.5 kT). These
two “triads”, hereafter referred to as “primary” and “secondary”
triads, respectively, are linked together by an interaction between
Y197 and R192 of 4.8-5.2 kT in the open form (but not in the
LC forms). The interactions between K248 and Y119 or Y197 are
weakened in the closed form (SI Appendix, Notes).

To further characterize the potential candidates for pH-
sensing (E26, E35, E75, E104, E177), titrations using FT-IR
spectroscopy in combination with site-directed mutagenesis were
performed to experimentally derive their individual pKa values, as
these quantities cannot be derived easily from electrophysiology
experiments. Other residues (D86, D88, E67, D97, E181 and
E243) served as experimental controls (SI Appendix, Fig. S3).

Experimental determination of the individual pKa values of
potential pH-sensing residues by ATR/FT-IR spectroscopy

FTIR spectroscopy of the pH-induced conformational transi-
tion of GLIC has been conducted using the ATR sampling tech-
nique (SI Appendix, Fig. S1A). Wild-type GLIC and its mutants
have been reconstituted in a mixture of POPE/POPG. Protein-
lipid films were dried atop the internal reflection element and
immersed in buffered aqueous solution. Difference spectra were
calculated between sample spectra measured at various low pH
values down to pH ∼ 2.0 and a reference spectrum measured
at pH = 7.0. Peak positions of the bands in the FTIR spectra
of the wild-type and the E35A mutant (Fig. 2A-B) are almost
identical, with differences smaller than 2 cm-1. All observed bands
could be assigned either to the protein (1718-22, 1655, 1630, 1573,
1540, 1520, 1400 cm-1), to the lipids (1738, 1466, 1456 cm-1) or to
the buffer (1364, 1321, 1218 cm-1) as described in SI Appendix,
Materials and Methods. Among the protein bands, those at
∼1720 cm-1 (ν(C=O)), ∼1573 cm-1 (νas(COO-)), and 1400 cm-1

(νs(COO-)) are assigned to the carboxylic acid/carboxylate group
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Fig. 3. Probing the immediate environment of E35. (A) Cartoon represen-
tation of the open form at 2.22 Å resolution for GLIC at pH 4. Only two
subunits, viewed from the outside of the pentamer, are shown. The ECD
and TMD interface loop regions are highlighted in green and blue. The
inset shows structurally ordered water molecules at the ECD-TMD interface
crevice. Water molecules are depicted as red spheres with blue mesh repre-
sentation of 2mFo-DFc electron density map contoured at a level of 1 σ and
overlaid. Surrounding residues are represented as sticks and labeled. Black
dashed lines represent the hydrogen bonds network at the domain interface
made of water molecules, Loop F, Q193 and the M2-M3 loop. (B) Effect of
MMTS binding on the function of GLIC Cys-less and mutant T158C. The same
recording protocol was used for all constructs (see Materials and methods).

of Asp or Glu residues. An increase in the intensity of the ν(C=O)
band due to the carboxylic acid (1720 cm-1) is observed at lower
pH due its protonation, along with the decrease of the intensity
of νas(COO-) and νs(COO-) bands. Since the intensities of these
bands indicate the extent of the protonation state of Asp and
Glu residues in the protein, a plot of the intensity of these peaks
as a function of pH provides a titration curve for the carboxyl
groups. We note that a definite determination of peak positions
and absolute intensities of ν(C=O) and νas(COO-) are difficult to
obtain as these bands closely overlap with lipid ester band at 1738
cm-1 and amide II band at 1540 cm-1, respectively. Therefore, we
used the νs(COO-) band at 1400 cm-1 as a marker for the intensity
analysis of carboxylic group, as it is sufficiently isolated from other
bands (Fig. 2A-B and SI Appendix, S1B-E).

The normalized peak heights at 1400 cm-1 for the wild-type
(black cross) and E35A mutant of GLIC (red dots) are shown in
Fig. 2C. The intensities are normalized to be zero at pH = 7.0
and -1 at pH 2.0 for the wild-type GLIC receptor. These plots
provide a titration curve of all Glu and Asp residues in GLIC.
Since each GLIC subunit contains 16 Glu and 18 Asp residues,
the overall titration curve displays a broad sigmoidal shape in
a wide range of pH values due to the overlap of the individual
titration curves from each residue. Notably, the pH titration curve

Fig. 4. Characterization of GLIC Q193M and Q193L mutations. (A) Proton-
elicited currents from GLIC wild-type (green), Q193M (cyan) and Q193L
(orange). (B) Structural superimposition of the GLIC Q193M (cyan) with the
open form of wild-type GLIC (green). Only two subunits are shown viewed
from the outside of the pentamer. Both structures are aligned using the
whole pentamer. Inset shows an enlarged view of the pre-M1 region and of
the M2-M3 loop reorganization. (C) Top view of the conformational change
of M2 helices. (D). Conformational rearrangement of the pre-M1 region. The
electron density of the 2mFo-DFc map around Q193M (blue) is contoured at
the level of 1σ. (E) Side view of the conformational change of M2 helix, M2-
M3 loop and M3 helix from one subunit. (F) Pore-radius profile for GLIC WT
open (green), Q193M (cyan), Q193L (orange). The constriction sites in the
Locally-Closed conformation from M2 helix are labeled and are shown as
sticks in (E).

from E35A mutant shows significant deviations from that of the
wild-type receptor (Fig. 2C-D). Note that individual features of
these titration curves are highly reproducible in a set of three
independent experiments (SI Appendix, Fig. S4).

The differences in the pH titration curves become clear when
the trace from the wild-type is subtracted from each of the
mutant’s trace. In a first approximation, one can show that the
difference between the titration curves of the mutant and the
wild-type represents the titration of the individual group that has
been replaced by an alanine. The deviation of the traces is in
the range of 2-7 % of the total intensity (Fig. 2D). Deviations
in curves from the wild-type receptor between two different
experiments do not exceed the range of ± 1%. Therefore, we only
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Fig. 5. The two electrostatic triads at the ECD-TMD interface governing
channel gating. (A) Side view of two subunits of GLIC viewed from the
outside of the pentamer. Inset shows a zoomed-in view of the inter-residue
electrostatic network at the ECD-TMD interface. The salt bridges formed
between R192, D122 and D32 are shown in dashed lines. Hydrophobic
stacking interactions between residue Y197, P120, Y119 (Pro-Loop) are also
highlighted by a star. The interaction between the primary electrostatic
triad and the secondary electrostatic triad through Y197 (pre-M1) and R192
is shown in dashed lines. (B) Proton-elicited currents of GLIC Y197F and
Y197A.(C) Conformational change of Y197F mutant structure (purple) in the
M2 helix and the M2-M3 loop compared to the GLIC wild-type (green). (D)
Top view of the TMD. (E) Conformational rearrangement of the pre-M1
region. The electron density 2mFo-DFc map of the Y197F mutant structure
(blue mesh) is contoured at the level of 1σ. (F) Top view of the structure of
Y119A in the TMD region. The detergent molecules inserted into the intra-
subunit cavity are shown as sticks with a bluemesh representation of the 2Fo-
Fc electron density map in its vicinity contoured at 1σ and overlaid. The inset
zooms in on the zone of interaction of a detergent molecule with residues
bordering the intra-subunit cavity. (G) Top view of the structure of Y119F in
the TMD region.

consider mutants whose titration curves exhibit deviations > 2
%, as seen in the E35A and E181A variants. The other variants,
E26A, E75A, E177A, and E104A, are below this criterion, thus

we do not attempt to derive a pKa value for these groups (Fig.
2D). Experimental pKa values of E35 and E181 residues were
determined to be 5.8 and 5.5, respectively, through fits to the
Henderson-Hasselbalch equation (continuous lines in Fig. 2D).

We note that the trace of E35A (Fig. 2D) exhibits a sigmoidal
shape, as expected for a canonical pH titration involving one
proton. The abrupt decrease observed from pH 4.2 to 3.0 is not
caused by an artifact caused by the instability of the lipid bilayer,
as shown by the difference spectrum of the E243G mutant, which
has a normal titration curve that is flat from pH 2.5 to 4 (SI
Appendix, Notes). Rather, the decrease of the signal at pH < 4.2
can be explained by the change in pKa of one of the protonatable
groups accessible to the solvent, induced by the mutation itself
(SI Appendix, Notes). This adds a negative “bell-shaped curve”
centered at around pH 3.8-4.2, on top of the regular pH-induced
titration curve. Theory predicts that the pKa

eff of E181 should be
equal to pKa

(c)–log KD, which directly leads to an estimate of
KD=20, where KD is the equilibrium constant between the open
and closed forms at pH 7 (SI Appendix, Notes Eq. 14). To our
knowledge, this is the first time that this quantity, which is crucial
in the allosteric model, is experimentally determined.

Probing residues around E35 by site-directed mutagenesis
Among the potential proton-sensing residues (pink zone in

Figure 1C), E35 stands out as the only one whose individual pKa
could be precisely measured with a well-defined transition curve
by FT-IR, and its pKa value is indeed close to the pH50 determined
by electrophysiology. Because E35 is not located at or close to
the expected agonist-binding site of the pLGIC family, delineated
by Loop C and Loop B, we performed a systematic study of its
immediate environment by mutagenesis.

Exploring the role of Loop F by mutation and chemical labeling
Examination of the structure of GLIC indicates that E35

establishes a polar interaction with T158 from Loop F (Fig.
3A inset). To determine whether this interaction belongs to a
network of interactions important for the global allosteric tran-
sition involved in gating, we probed this residue as well as those
immediately adjacent in Loop F (G159, W160) by site-directed
mutagenesis. Each position was mutated to a cysteine in order
to perform further analysis through chemical labeling, and the
impact of these mutations on the function of the correspond-
ing residue was measured by electrophysiology. The Cys-less
mutant of GLIC (C27S) has the same properties as the wild-
type GLIC and is unaffected by treatment with MMTS (S-M-
ethylmethanethiosulfonate), a reagent that blocks the side chain
of cysteine and converts it into –S-S-CH3 group, or with DTT
(Dithiothreitol), that reduces S-S bonds. Cysteine replacement of
T158 does not affect the function of the receptor. However, when
T158C mutant is labeled with MMTS, the current is decreased by
50%. This phenotype can be reversed by reducing and removing
the MMTS labeling (Fig. 3B). G159C mutation totally abolishes
the pH-induced currents and generates a nonfunctional receptor;
this is also the case of the W160C mutant (SI Appendix, Table
S2). Expression tests in oocytes show that W160C is not expressed
and G159C has a low expression level, but still detectable (SI
Appendix, Fig S11), indicating that the two residues located in
Loop F are not only functionally important but also structurally
crucial for the receptor. Notably, the side chain of W160 is stacked
above the strictly conserved residue R192 (Fig. 5A). We noted
earlier that the TGW sequence in GLIC’s Loop F is special, where
it is usually [G]EW in cationic pLGICs[43] (Fig. 6B).

A water-mediated electrostatic network at the ECD-TMD inter-
face stabilizes the open form structure

An open-form crystal structure of GLIC was determined at
2.22 Å resolution and has significantly better refinement statistics
than the previously known 2.4 Å structure (SI Appendix, Table
S3), which allows a more detailed study of the bound water
molecules. A close analysis of this high-resolution model uncovers
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Fig. 6. Figure 6 Two stabilization networks are used in GLIC to maintain the channel open. (A) View of the GLIC wild-type open-form structure. Two adjacent
subunits are highlighted. (B) Multiple-sequence alignment of GLIC and its homologs in a limited set of regions to highlight the positions in GLIC (colored in
red) whose mutation traps GLIC in Locally-Closed conformation. The alignment contains GLIC (G. violaceus) and ELIC (E. chrysanthemi), sTeLIC (symbiont of
the worm Tevnia), GluCl (a glutamate-gated chloride ion channel from C. elegans) and α1-GlyR (the glycine receptor α1 subunit from Zebrafish), 5HT3A (the
serotonin receptor from mouse). The remaining sequences arerepresentatives for human pLGICs. Numbering refers to the GLIC protein sequence. The yellow
stars indicate the residues forming the primary electrostatic triad and the purple stars indicate residues involved in the secondary electrostatic triad. The TGW
motif in GLIC is boxed. (C-D) Two branches of a continuous network originating from E35 that reach, independently, the middle transmembrane region (H235)
of two adjacent subunits. The proton-sensor E35 and key residues responsible for channel activation are shown as sticks. (C) View from outside the pentamer
with the first network shown as a purple line, across subunits. (D) View from inside the pentamer showing the second network involving the hydrophobic
cluster as an orange line, within the same subunit.

the existence of an elaborate hydrogen bond network at the
ECD-TMD interface. The side chain of Q193 interacts with the
backbone amide nitrogen atom of G159 from loop F, as well as
with the carbonyl oxygen atom of K248 from the M2-M3 loop
of the adjacent subunit through hydrogen bonds mediated by
water molecules. This hydrogen bond network at the ECD-TMD
interface extends to residue T158 of Loop F, which is in turn
interacting with E35 (Fig. 3A and inset).

Probing the interfacial hydrophilic crevice centered on Q193
First, Q193 has been replaced by a hydrophobic residue, ei-

ther methionine or leucine. Electrophysiology experiments show
that both mutants exhibit a loss-of-function phenotype with pH50
= 4.53 ± 0.02 and pH50 = 4.48 ± 0.05 compared to that of wild-
type pH50 = 5.10 ± 0.20 (Fig. 4A and SI Appendix, Table S2).
We solved the crystal structures of Q193M and Q193L at pH
4 with 2.95 Å and 3.39 Å resolution. Unexpectedly, both mu-
tants adopt the conformation previously described as LC1 in the
“Locally Closed”[16] or “fully-liganded closed-channel” forms[17].

When superimposed to GLIC H235F, the very first LC1 form
of GLIC (PDB ID: 3TLC)[16], the Q193M and Q193L mutants
show a root mean square deviation (RMSD) of 0.61 Å and 0.59
Å, respectively. All five M2 α-helices are kinked at the level
of the I9’ position. The upper portion of M2 helices tilts and
rotates clockwise around the five-fold symmetry axis along the
ion channel pore, and consequently narrow the ion permeation
pathway, generating a nonconductive ion channel (Fig. 4C and
Fig. 4E-F). Compared to the wild-type open-form structure, the
side chains of M193/L193 rotate by 90° and do not protrude
into the interfacial crevice any more (Fig. 4D). Thus, breaking
the hydrogen bond network by replacing Q193 with hydrophobic
residues hinders gating and destabilizes the open form.

We further probed the ECD-TMD interfacial hydrogen bond
network by replacing Q193 with a cysteine to introduce a shorter
and less polar side chain. The phenotype of Q193C was almost
identical to that of the wild-type (SI Appendix, Table S2). Consis-
tently, the 2.58 Å resolution structure of Q193C adopts the open
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Table 1. Structural mapping of the mutations that trap GLIC in a
Locally Closed conformation

Variant Location Conformation
(Phenotype)

Note

Q193C+MMTS Pre-M1 LC1 (Loss of
function)

This study

Q193L Pre-M1 LC1 (Loss of
function)

This study

Q193M Pre-M1 LC1 (Loss of
function)

This study

Y197F-P250C Pre-M1 LC1 (Wild type
phenotype)

This study

I201W- E243C Pre-M1 LC2
(Nonfunctional)

This study

H235F (H11’F) Upper M2 LC1
(Nonfunctional)

PDB ID 3TLT

H235Q
(H11’Q)

Upper M2 LC (Loss of
function)

PDB ID 5NJY

N239C (N15’C) Upper M2 LC (Loss of
function)

PDB ID 5NKJ

E243G (E19’G) Upper M2 LC2
(Nonfunctional)

This study

E243P (E19’P) Upper M2 LC2
(Nonfunctional)

PDB ID 3TLS

P247G (P23’G) M2-M3 loop LC2 (Loss of
function)

PDB ID 5HEG

T249A (T25’A) M2-M3 loop LC1
(Nonfunctional)

PDB ID 4LMJ

Y251A (Y27’A) M2-M3 loop LC1
(Nonfunctional)

PDB ID
4MLM

Wild
type-10*His

C-terminal 10*His LC and Open
Co-exist

PDB ID 4NPP

K33C-T20’C Loop2 and M2-M3
loop

LC1
(Nonfunctional)

PDB ID:
3UU3

K33C-N21’C Loop2 and M2-M3
loop

LC2
(Nonfunctional)

PDB ID 3TLW

K33C-L22’C Loop2 and M2-M3
loop

LC3 (Loss of
function)

PDB ID 3TLV

K33C-K24’C Loop 2 and M2-M3
loop

LC1
(Nonfunctional)

PDB ID 3TLU

conformation at pH 4 (SI Appendix, Fig. S7A). The structure
shows a water molecule in the interfacial crevice region that
connects the thiol group of C193 to the nitrogen atom of G159
and to the nitrogen atom of P250 of the neighboring subunit (SI
Appendix, Fig. S7B inset). The resulting hydrogen bond network
was probed by additional experiments to confirm its putative
role in maintaining the channel open. First, Labelling Q193C
with MMTS leads to a 75% current decrease, which is reversed
by DTT reduction. Thus, breaking the new interfacial hydrogen
bond network destabilizes the open form of the channel. Next,
the co-crystallized structure of Q193C with MMTS shows a con-
formation similar to that Q193M (SI Appendix, Fig. S7C-D) and
the 2mFo – DFc map shows density for the MMTS covalently
linked molecule (SI Appendix, Fig. S5E-F). In addition, we tried
to enhance the interaction of Q193C with the M2-M3 loop by
introducing a second cysteine residue (P250C), in a position such
that it could form a disulfide bridge with Q193C. As predicted,
this double mutation shows a strong ‘gain-of-function’ phenotype.
In oocytes expressing GLIC Q193C-P250C receptors, the record-
ing shows an apparent leak of current at pH 7 that can be blocked
by picrotoxin, an open channel blocker (SI Appendix, Fig. S8C),
and abolished by treatment with DTT. All those evidences point
to the key role of the residue Q193 located at pre-M1 region in
coupling proton binding to channel opening.

Preceding Q193, residue R192 interacts with two negatively
charged residues: D122 and D32. This triplet forms a bifur-
cated salt bridge that is conserved among pLGIC receptors
and has been shown to be functionally important for channel
activation[18], [44]. Furthermore, the 2.22 Å structure clearly
shows that the water molecule network linking E35 to Q193 can
be further extended to Y197 and R192 (SI Appendix, Fig. S5).
While the apolar atoms of the side chain of the strictly conserved
P120 (Pro-loop) interact with those of Y119 and Y197 through hy-
drophobic interactions, the hydroxyl group of Y197 interacts with
the side chain of R192 (SI Appendix, Fig. 5A inset). Therefore,
residues Y197-K248-Y119 form a secondary electrostatic triad
that interacts with the primary one in the open form.

Probing the tyrosine residues from the secondary electro-
static triad at the ECD-TMD interface

The FD-DH method predicts that the two tyrosine from
the secondary electrostatic triad have a highly ΔpKa value (SI
Appendix, Fig. S9). At the structural level, Y197 stands out as
undergoing a switch of its side chain from an “inward” position
to an “outward” position when switching from the LC1 form to
the open-form. During this re-arrangement of the pre-M1 region,
Y194, which points toward the lipid bilayer in the open form, also
flips its orientation by almost 180° and becomes buried inside the
inter-subunit cavity (Fig. 4D). This breaks the interaction of Y197
with R192. To test whether both the hydroxyl and aromatic groups
are required for proton-elicited channel currents, we mutated
Y197 to phenylalanine and alanine separately.

The pH 4 crystal structure of Y197F mutant is identical
to that of Q193M/Q193L, with the side chains of Y194 and
Y197F adopting the same conformations as in the model of
Q193M/Q193L (Fig. 5C-E). However, on the functional level,
Y197F does not show any decrease in proton sensitivity, with a
pH50 identical to the wild-type GLIC (Fig. 5B and SI Appendix,
Table S2). This suggests that even though the activation barrier
between the Locally Closed form and the open form is increased,
it can still be crossed to lead to the open conformation of the
channel in solution, contrary to what is seen in Q193M/Q193L.
Since the aromatic ring of Y197 interacts with P120 (Pro-loop),
Y119 (Pro-loop) and L246 (M2-M3 loop) through hydrophobic
or stacking interactions, we replaced Y197 by an alanine (Y197A)
to disrupt the interaction between Y197 and R192, and to reduce
the hydrophobic stacking between both the Pro-loop and the M2-
M3 loop. The Y197A mutation completely abolishes the function
of the channel. (Fig. 5B and SI Appendix, Table S2). We could
only get a 7Å data set from crystals of Y197A, but we could
nevertheless assess that Y197A mutation traps the receptor in the
LC form (SI Appendix, Fig. S10). Hence, our data indicate that
the aromatic residue Y197 plays a crucial role in the coupling of
proton binding to channel gating.

Y119 is predicted to also have a large ΔpKa value (ΔpKa
= 2.7) (SI Appendix, Fig. S9B). The crystal structure of Y119F
displays an open conformation, which is in line with functional
recordings that show a wild-type phenotype. Furthermore, the
2.8 Å crystal structure of Y119A mutant, that generates a non-
functional receptor[18], adopts an open conformation (Fig. 5F-
G), but with additional strong and continuous electron density
in the Fourier mFo-DFc difference map near the mutation site
(average peak height at 7.5 σ), indicative of the presence of
a bound molecule that we interpreted as a detergent molecule
(DDM) in each of the subunit. DDM, that we used during the
purification and crystallization of the receptor, is positioned in
such a way that its sugar moiety is exposed to the ECD lumen and
its hydrophobic tail inserts into the cavity vacated by the removal
of the phenylalanine side chain (Fig. 5F inset). Therefore, we
propose that in this case the hydrophobic tail of DDM fulfills
the role of the aromatic ring of Y119 to artificially maintain the
channel open. Interestingly, this cavity largely overlaps with the
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site that has been shown to contribute to the binding of propofol
and desflurane[22].

We also explored the role of K248, which is involved in the
secondary electrostatic triad, by solving the structures of K248C
and K248A mutants. Their structures are wild-type-like at pH 4
(SI Appendix, Table S3): in K248C, the cysteine side-chain is still
able to make a hydrogen bond with Y197 and for K248A, N245
changes rotamer to make one more hydrogen bond with Y197,
indicating a compensatory role of this site.

Mutations that trap the channel in the LC form reveal two
different networks that stabilize the open form of the channel
down to H235

One interfacial hydrophilic network connects E35 to the en-
trance of the channel pore (E243) and further down to H235

One of the new results of the FD-DH calculations is the
existence of a triad of strong electrostatic interactions involving
Y119-Y197 and K248(+) (adjacent subunit) that extends the
R192-D122-D32 well known triad. Y197 can actually interact
with two different M2-M3 loops, one from the same subunit
(through L246) via the Pro-Loop, and one from the adjacent
subunit (through K248) (Fig. 5A inset). E243 marks the entrance
of the channel. Strikingly, its side chain can adopt two different
conformations in the open form [32]. However, electrophysiology
recordings show that E243C has almost the same pH50 value
as the wild-type[19]. Consistent with electrophysiology results,
E243C structure shows no distinguishable difference with the
open form of GLIC (RSMD = 0.215 Å) (SI Appendix, Fig. S12A).
To further probe the site of E243, the substitution E243G was
generated: it results in a closed channel, similar to E243P, whose
structure was previously reported to be in the Locally Closed
(LC2) conformation (SI Appendix, Fig. S12C). Collectively, our
data suggest that E243 is probably not a key residue for proton
sensing; rather, it is crucial for maintaining the stability of the
upper part of M2 helix during the channel opening. Strikingly, if
one goes down the M2 helix starting at E243 by steps of 4 residues,
on the same side of the helix, one finds N239 and H235 whose
mutation stabilizes in both cases the LC form in the crystal[45].
In conclusion, by connecting the dots between positions whose
mutations trap the receptor in an LC-form, the network Y197-
K248-E243-N239-H235 further extends the network that origi-
nates from E35, Q193 and Y197, going deeply to the TMD of the
adjacent subunit (Fig. 6C).

A different interfacial network that involves hydrophobic
sidechains connects E35 to the pre-M1 and to a TMD intra-subunit
cavity known to bind general anesthetics (GAs)

The hydrophobic network originating from the Y197-P120-
Y119 interactions reaches out to L246 from the M2-M3 loop
of the same subunit to build up a second ramification of the
network connecting mutants stabilizing an agonist-bound but
inactive form, in such a way that it completely encircles the ECD-
TMD interface of the pentamer (Fig. 6D). Indeed, it contains
residues close to L246 that have been mutated in previous studies
and found to lead to the LC-form as well, namely P247G[18] and
Y249 and T251[17].

Upon channel opening, the tightly packed bundle of five M2
helices detach from each other and move closer to M3 helices.
This reshapes a cavity located behind the M2 helix and beneath
the residues Y197-P120-Y119, that is essential for general anes-
thetics binding[22]. Structure analysis predicted that the mutation
I201W (Pre-M1), introducing a bulky amino acid in that cavity,
would block the M2 helices movement. Indeed, the mutant I201W
generates a nonfunctional receptor[19]. The crystal structure of
I201W shows a LC conformation, the same as that of E243G (SI
Appendix, Fig. S12B and SI Appendix, Fig. S13). In the open form
of GLIC, the side chain of I201 contacts the hydrophobic residue
F238 (F14’), L241 (L17’) and V242 (V18’) within the M2 helix
of the same subunit (SI Appendix, Fig. S12E). The new bulky

residue in I201W occupies this cavity and hinders the movement
of the upper part of the M2 helix. Hence, this tightly packed
hydrophobic network is also important for GLIC function and its
modulation by pharmacological reagents.

Discussion

The structures of pairs of open and closed forms of the ion
channel, in the case of GLIC[13], [15], [20], GluCl[5], [6] and
GlyR[10] open the way to an understanding of the conformational
transitions that take place during gating in pLGICs. Previous
work has focused on normal mode analysis and coarse-grained
methods to predict possible transition pathways from pairs of
structures and simplified models of the proteins based on a mix-
ture of elastic network models[20], [46]. In addition, experimental
studies such as the measurement of the coupling phi-values using
site-directed mutagenesis and patch clamp electrophysiology can
provide detailed models of the sequence of events leading to the
opening of the channel[47], [48]. Also, time-resolved fluorescence
quenching experiments can give information on the conforma-
tional transitions of the receptors in the millisecond scale[19].
Fully atomistic molecular dynamics studies have also been used
on the TMD alone[49] or on the full GluCl receptor, either for the
gating or un-gating transition[50], [51]. Recently, MD simulations
were used to generate possible transition pathways for the gating
in GLIC through the string method [52]. For pH-gating, however,
there is an additional difficulty in assigning the protonation state
of all Asp, Glu and His residues in the two end states. Presently,
it is not known with certainty which of these residues are pro-
tonated concomitantly with the conformational transition, and
current MD experiments do not allow the (reversible) change of
protonation state of titratable residues during simulations of such
large systems. Therefore, more experimental studies are needed
to help resolve this question.

Our studies do not contain any temporal information; how-
ever, they reveal a crucial proton-sensing residue, from which
we progressively build up and extend a network of interactions
that are essential for the stabilization of the open form. In that
regard, we do not support the search for an “allosteric network”
that would propagate information from the orthosteric site to
the channel itself[53] and confine ourselves to the strict theory
of allostery, which postulates a global transition between two
forms of the same macromolecule (resting and active). Here, we
could determine the KD between the two forms in the absence
of the ligand, which shows the presence of 5% of the bound
form without any ligand. Strikingly, residues whose mutations
perturb this equilibrium form a network of spatially connected
residues. This network potentially provides a framework for the
interpretation of a large body of experimental data.

The proton-sensing residue is located opposite to Loop F and
may bypass the classical agonist-binding site

One of the major questions in the GLIC gating transition
is to identify its proton sensor(s). It has been known for some
time that several regions at the ECD-TMD interface are crucial
for the gating transition [18]. However, the exact role of all 34
carboxylate residues in the conformational change that occurs
upon dropping the extracellular pH, has remained elusive up to
now. To identify the proton-sensing residues responsible for the
gating transition, systematic site-directed mutagenesis of all Asp
or Glu residues was undertaken, followed by both functional and
structural characterization of the mutants[40]. These studies have
an inherent limitation in that only the global pH50 of the transition
is measured, for all the remaining Asp and Glu [54]. Here we go
further by using pH-induced FT-IR spectroscopy and difference
spectra to individually titrate a list of candidate Asp/Glu residues
selected computationally by detailed electrostatic calculations.

E35 stands out as the main proton-sensor. It is located at
the end of the β1-β2 loop and interacts with Loop F of the
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next subunit through residue T158. Experiments involving the
chemical labeling of T158C with MMTS showed the importance
of this residue for channel opening. This is similar to experiments
performed on the same position in ELIC, which also lead to
the conclusion that this position is very important for the gating
transition[27]. Loop F has been shown to be responsible for the
inhibition of some pLGICs by divalent ions, such as Ca++ ions
for ELIC and for nAChR, and Zn++ for GABA-R [53]–[55].
Recently, Ulens and coll. showed that one should distinguish
between the upper Loop F binding site, occupied by bromoform
in ELIC and Xenon in GLIC, and the lower Loop F binding site,
occupied by chlorpromazine[58]. Strikingly, examination of the
GLIC structure strongly suggests that mutation to W160 in Loop
F will affect the stability of the R192-D122-D32 salt bridge due
to the stacking interaction between the side chains of R192 and
W160. Furthermore, compared with the resting state of GLIC, a
marked backbone shift of Loop F is observed in the open state
of GLIC[20]. Also, EPR studies showed that big movements of
Loop F occur during activation in GLIC[30], [59].

In the eukaryotic pLGIC family, the gating equilibrium is
governed by neurotransmitter binding to the LoopC/Loop B
region[14]. The key proton sensor E35 is not close to Loop
C and Loop B. The backbone of Loop C also shifts markedly
between the open and closed states. We propose that proton-
gating in GLIC bypasses the “classical” orthosteric site and that,
instead, a consequence of the “bidirectional effect” in allostery (or
“reciprocity principle” [60]) is observed, whereby the modification
of Loop F would be concomitant with (but not driven by) a
rearrangement of Loop C similar to what is observed in a pLGIC
gated by a neurotransmitter.

Mapping residues stabilizing the Locally-Closed form in-
forms on the transition pathway

The crystal structures of the open and LC states of GLIC are
both captured at pH 4. Because it is fully protonated and has
a closed pore, the LC-form represents an “agonist-bound closed
form” of GLIC; it was found in three variant forms termed LC1,
LC2 and LC3[16]. In the LC2 conformation (E243G and I201W
in this study), the deformation of the end turn of M2 helices
stabilizes the closed pore but the M2-M3 loop conformation is
unaltered. In the LC1 conformation (Q193M/L, Q193C+MMTS
and Y197F in this study), the mutation in the pre-M1 region
presumably impairs the coupling of the ECD and TMD, the M2
helix end turn is destabilized and the M2-M3 loop conformation is
changed. In the LC3 conformation the M2 helix is further desta-
bilized at its C-terminus. LC2 has been suggested to represent
a pre-activation form, as inferred by detailed kinetics studies of
the transition[19]. Recently, more mutations further down on the
same face of the M2 helix at positions N239 and H235, were
also shown to lead to the stabilization of the LC1 form[45]. Here
we go further by producing mutants in the pre-M1 region that
also stabilize the LC1 form at positions 193 and 197 (Table 1),
extending the network of positions where a mutation can change
the equilibrium between the two forms and providing a link with
the proton-sensing residue E35. The open and LC1 forms actually
co-exist in the same crystal at pH 4[20]. This indicates a low energy
barrier between these two conformations such that single-point
mutations can modify it with a clear readout (SI Appendix, Fig.
S14D-E). This unique property enables us to map the residues
that are important for the stabilization of the open form.

Structure-based activation model with two alternative stabi-
lization networks originating from the same ECD subunit inter-
face and plunging into the TMD

If we simply connect together those positions where mutants
adopt any of the LC-forms, we can propose a model for the cou-
pling between proton binding and channel gating. First the ECD
undergoes a conformational change stabilized by an increase of

the proton concentration, probably starting with the protonation
of E35 (pKa = 5.8) when the pH is lowered from 7 to 4. This would
be associated with several changes in the ECD-TMD interface:
i) A change in loop F (T158, G159, W160), also affecting R192
through its hydrophobic stacking interactions with the side-chain
of W160, ii) The local rearrangement of the β1-β2 loop (including
D32), tightening the D122-R192-D32 triple salt bridge, iii) The
pre-M1 region (Q193) through the described water-mediated hy-
drogen bond network at the ECD-TMD interface, again affecting
R192 directly. The R192 primary triad is also linked in the open
form of GLIC to a secondary electrostatic triad involving Y197
(pre-M1), Y119 (Pro-Loop) and the M2-M3 loop (K248) of the
adjacent subunit (SI Appendix, Fig. S14A-C).

On one side of Y197, the rearrangement of the M2-M3 loop
through L246 is accompanied by a counter-clockwise movement
of the upper portion of M2 helices that generates a conduc-
tive channel pore; this movement also reshapes the TMD intra-
subunit cavity probed by general anesthetics [22]. Together with
other data on the M2-M3 loop[16], this supports the idea that the
coupling between the pre-M1 region, Pro-loop and M2-M3 loop
is mediated, at least partly, by a hydrophobic cluster within each
subunit that stabilizes the open form of the channel (Fig. 6D).
On the other side of Y197, another electrostatic network involves
Y119, K248 of the next subunit as well as E243. Strikingly, H235
and N239 have been shown to also be a binding site for several
general anesthetics that, in some mutants of GLIC, can switch
the receptor back and forth from the open to the closed-forms,
when they bind[45] (Fig. 6C). Altogether, the network of residues
stabilizing the LC forms both percolate to the center of the TMD
region and circulate between subunits. Residues involved in the
stabilization networks described here were also shown to strongly
affect the activation energy between the open and closed forms
of eukaryotic pLGICs[44]. Thus, we anticipate that the same
activation model should be a general feature of pLGICs.

Our findings underline the importance of electrostatics in
understanding the conformational transitions of pLGICs. First,
the binding of the charged neurotransmitter (a cation in 5HT3
or ACh, or a zwitterion in GABA or Gly) changes the interface
between ECDs, which is known to be highly deformable[61],
immediately followed by solvent relaxation and adaptation of the
surface charges at the lipid-water interface. In this respect, the
presence of two separate electrostatic triads at the ECD-TMD
interface is perhaps not so surprising. Second, the opening of the
channel also leads to a major change of the electrostatic energy,
if one considers transmembrane helices as simple macro-dipoles.
Finally, the permeation of ions drastically changes the electro-
static energy by setting to zero the local transmembrane potential,
thus leading to another conformational transition of the receptor,
this time to the desensitized form, probably accompanied by the
relaxation of the lipid-TMD interactions. We expect that MD
simulations explicitly taking into account the difference of ionic
concentrations on each side of the membrane will give further
insight into the conformational transitions of members of the
pLGIC family.

Materials and Methods
GLIC was expressed and purified crystallized according to the protocol
described in ref (13). The electrophysiology experiments were performed on
GLIC expressed in Xenopus laevis oocytes. FT-IR experiments were carried out
by reconstitution of GLIC and its variants in POPE/POPG lipids. Full materials
and methods are available in Supplementary files.
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