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Muzychenko for the help and insightful discussions and also my former office mates Jun

Yang, Xinyi Yang, Mohammad Sadeh, and Emmeke Aarts and all the current and former

members of the Computational Molecular Biology group at MPIMG for the friendly and

motivating environment.

I would like to thank my parents for supporting me spiritually throughout my study

and my life in general. Finally, I must express my very profound gratitude to my wife

for providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without her. Thank you.

v





Contents

Acknowledgements v

Contents vi

Abstract 1

1 Introduction 3

2 Genotype and Haplotype 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Genotype and Haplotype . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The importance of haplotypes . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Disease association studies . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Population genetics and evolution of organisms . . . . . . . . . . . 15

2.3.3 Sequence assembly and variant calling for polyploid genomes . . . 15

2.4 Different approaches for haplotyping . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Haplotype phasing via family information . . . . . . . . . . . . . . 16

2.4.2 Haplotype phasing via population data . . . . . . . . . . . . . . . 16

2.4.3 Single Individual Haplotyping (SIH) . . . . . . . . . . . . . . . . . 17

2.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Genome ploidy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Low variant density . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Structural variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.4 Repetitive regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.5 Technical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Ground truth data availability . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Metrics and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Single individual haplotype reconstruction: techniques and protocols 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 How to model single individual haplotype assembly . . . . . . . . . . . . . 30

3.3 Early single individual haplotyping with sequence reads . . . . . . . . . . 32

3.3.1 HapCut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 ReFHap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 NGS technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Integration of variable insert length NGS data . . . . . . . . . . . 37

vii



3.4.2 Integration of NGS and population data . . . . . . . . . . . . . . . 37

3.4.3 Integration of NGS and transcriptome data . . . . . . . . . . . . . 38

3.4.4 Chromosome isolation . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Single cell sequencing technologies with NGS . . . . . . . . . . . . . . . . 40

3.5.1 Linked-read data (10X Genomics) . . . . . . . . . . . . . . . . . . 40

3.5.2 Strand-seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Third-generation sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.1 ProbHap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.2 WhatsHap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.3 Third-generation sequencing plus NGS reads . . . . . . . . . . . . 43

3.7 Haplotype reconstruction for polyploid genomes . . . . . . . . . . . . . . . 44

3.7.1 HapCompass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.2 SDhaP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.3 H-PoP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Haplotype assembly of polyploid genomes 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Problem definition and formulation . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Terminologies for Ranbow algorithm . . . . . . . . . . . . . . . . 54

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Mask and seed sequence finding . . . . . . . . . . . . . . . . . . . . 58

4.3.1.1 Listing masks . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1.2 Mask ranking . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Phasing a mask and its extension . . . . . . . . . . . . . . . . . . . 62

4.3.2.1 Phasing a mask with P seed sequences . . . . . . . . . . 62

4.3.2.2 Block extension . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Merging overlapping and connected masks . . . . . . . . . . . . . . 65

4.3.3.1 Overlapping haplotype segments . . . . . . . . . . . . . . 65

4.3.3.2 Conflicting paths, desired paths, and desired cycles . . . 66

4.3.3.3 Merging the haplotype segments in non-conflicting cycles 67

4.3.3.4 Merging through direct connections between haplotype
segments . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.4 Phasing the regions with fewer than P haplotypes . . . . . . . . . 71

4.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Evaluation and results 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Dataset properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.3 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 All methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 H-PoP vs Ranbow . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Comparison of the results on real and simulated datasets . . . . . 89

5.3.4 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



5.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 An application of haplotype assembly: Haplotype aware de novo as-
sembly of hexaploid Ipomoea batatas 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Pilot project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Preliminary assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.1 Initial assembly of consensus genome . . . . . . . . . . . . . . . . . 98

6.4 Haplotype-Improved Assembly . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.1 Variant calling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.2 Haplotype phasing . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.3 Validation of haplotypes . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.4 Haplo-scaffolding strategy . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.5 Haplotype-Improved assembly for I. batatas (HI-assembly) . . . . . 107

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Summary 112

List of Figures 113

List of Tables 123

List of Algorithms 125

Abbreviations 126

A Ranbow user manual 137

A.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Ranbow for haplotype assembly . . . . . . . . . . . . . . . . . . . . . . . 138

A.2.1 Indexing input files (mode: index) . . . . . . . . . . . . . . . . . . 140

A.2.2 Run Ranbow on computer farm . . . . . . . . . . . . . . . . . . . 140

A.2.3 Collecting data from (mode: collect) . . . . . . . . . . . . . . . . . 143

A.2.4 Revising sequence variants (mode: modVCF) . . . . . . . . . . . . 143

A.2.5 Evaluation of the results . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2.6 Ranbow phylo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B Dataset Availability 147

C Short CV 149

D Zusammenfassung 151
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Abstract

Sequencing and genome assembly constitute the basis for further research into the bio-

logy of an organism; however, the main players are chromosomes, not the consensus

references. The assembly programs flatten two or more homologous chromosomes, de-

pending on the ploidy of the organism, into one reference sequence. Although the major

characteristics and functionalities of homologous chromosomes are the same, the minor

differences may play an important role. The sequence of one chromosome is called a

haplotype. A haplotype is the main component of inheritance; hence, obtaining the hap-

lotype sequences instead of the consensus, provides a panoramic view for investigations.

Human is diploid and has two copies of each autosomal chromosome, each inherited

from one parent. Other organisms have several copies of the autosomal chromosomes.

Higher ploidy of an organism leads to more information being flattened in the reference

sequence, and results in less similarity between the reference sequence and any of the

chromosomes.

In this thesis, we focus on haplotyping problems and various approaches to call the

haplotypes. In the first chapter, Genotype and haplotype, the approaches for inferring

haplotypes and the challenges are discussed. In Chapter 3, we focus on single individual

haplotyping based on the sequence reads, which is currently the major and most direct

approach to haplotyping. Different technologies, protocols, models, and methods are

also reviewed. In Chapter 4, we propose a novel method, called Ranbow , to address

the polyploid haplotype assembly problem. The performance of Ranbow compared to

the other state-of-the-art methods is investigated on both real and simulated datasets.

For the evaluation, we used data from tetraploid Capsella bursa-pastoris (Shepherd’s

Purse), and hexaploid Ipomoea batatas (sweet potato) genomes (Chapter 5). In Chapter

6, one application of reconstructed haplotypes is discussed. We assembled the sweet

potato genome and used haplotype information to propose a novel scaffolding method

called haplo-scaffolder. Finally, a summary of the thesis is provided and possible future

directions are discussed in the summary chapter.
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Chapter 1

Introduction

The idea of genome assembly with sequence reads goes back to 1979 when Rodger Staden

mentioned: “With modern fast sequencing techniques and suitable computer programs

it is now possible to sequence whole genomes without the need of restriction maps”[1].

Although at the time of this quote, the “modern sequencing techniques” were gel reading,

and the “computer programs” were stored on tapes, the underlying principle for genome

assembly has stayed the same: genome assembly based on reads’ overlaps. From then

on, with first generation sequencing technology, new tools for the genome assembly were

developed. Virus genomes of a few kilobases were assembled by Sanger et al. in 1978[2],

and then, 1Mb bacterium (1995)[3], 120Mb fruit fly (2000)[4], and 3Gb human (2001)[5]

genomes were sequenced and assembled.

With the advancement of sequencing technologies and assembly tools several consortia

and groups have been addressing human and non-human genomes; however, the as-

sembled references do not provide a complete picture of the underlying biology: the

main entities are chromosomes, not the consensus references sequences; a reference is

an estimate for the real entity behind it. The sequence of one chromosome is called the

haplotype (Section 2.2). Haplotypes are the main components of inheritance, and most

of the chromosomal regulatory interactions are derived within haplotypes. Hence, ob-

taining the haplotype sequences, instead of the consensus, provide us with a panoramic

view for the investigations. Section 2.3 explains the importance of haplotype assembly.

Human is diploid and has two copies of each autosomal chromosomes, each inherited

from one parent. Various organism may have several copies of autosomal chromosomes.

For instance, treefrog[6] is triploid (three copies, or 3x), zebrafish[7], axolotl[8], and

potato[9] are tetraploid (4x), wheat[10] and sweet potato[11] are hexaploid (6x), and

strawberry[12] is octaploid (8x). The higher ploidy of an organism causes more inform-

ation to be flattened in the reference sequence, and results in less similarity between the

3



Chapter 1. Introduction 4

reference sequence and any of the chromosomes. Several approaches have addressed the

haplotyping problem based on different data, such as haplotyping via family pedigree,

population data, or from sequence reads (Section 2.4).

In single individual haplotype reconstruction based on reads, those reads that span at

least two variants are the informative ones. This restriction on the reads’ property makes

the haplotyping problem challenging dependent on the sparsity of the variants. It took

six years, after the first release of human genome, to publish the first human haplotype,

called HuRef. Part of the reason was the sparsity of the variants (it is in the range of

one in 1kb). Section 2.5 refers to challenges for diploid and polyploid haplotyping. The

HuRef assembly was done with Sanger paired sequencing which provides relatively long

reads with high accuracy; which potentially can cover more than one polymorphic site

(Section 3.3). The focus has been shifted, owing to the high cost of Sanger sequencing,

by emerging high-throughput next generation sequencing (NGS). But the NGS read

length was, and still is, too short to cover two or more variants needed for haplotyping.

Since then, several different types of data integration (Section 3.4), library preparation,

and recruiting single cell technologies (Section 3.5) have been proposed. Fosmid, HiC,

Strand-seq, and 10X Genomics library preparations and chromosomal isolation before

sequencing are among these approaches. The single molecule real-time (SMRT) tech-

nologies bring the sequencing technologies to the third generation by producing long

but error prone reads. Although, SMRT reads span several variants, the high error rate

makes the variant calling and pinpointing the variants in reads challenging. Integration

of SMRT and NGS technologies is one solution for dealing with such a problem (Section

3.6).

All these attempts have addressed the human genome, or can be applied for any diploid

genomes; however, the polyploid genome and haplotype assembly are more challen-

ging. The high heterozygosity that comes from the presence of three or more copies

of the monoploid genome will always hinder the genome assembly process; the reason

being that genome assembly focuses on the vast majority of bases that are invariant

across homologous chromosomes. Since these invariant regions are intermittent along

the whole chromosome, the result is fragmentation in polyploid assembly. Any error in

the reference is propagated to variant calling and read mapping, which are the inputs

for haplotyping. In addition, the main principle for sequence assembly, read assembly

by proper overlaps, is violated in polyploid haplotype assembly. However, the high het-

erozygosity of these genomes may come to help haplotyping with short reads; the higher

heterozygosity, the higher the chance of covering two variants with one short read. A

few methods have been reported for polyploid haplotype assembly, but due to lack of a

gold standard data set, they have not been applied on real genomic data, and are not

scalable to deal with billions of short reads generated for de novo assembly (Section 3.7).
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We proposed a novel method to address the polyploid haplotype assembly problem. It

accepts the reference sequence, mapped reads, and called variants as input and pro-

duces a set of mapped assembled haplotypes. This method is called Ranbow and is

explained and evaluated in Chapter 4 and Chapter 5, respectively. Ranbow initially

was developed for the haplotype assembly of sweet potato and for the improvement of its

assembled genome; however, it can be applied to other polyploid genomes as well. We

assessed Ranbow on simulated and real datasets. The simulated datasets are inspired

by the hexaploid sweet potato and the tetraploid Capsella bursa-pastoris (shortly CBU)

genomes. We tested the performance of Ranbow by changing different parameters such

as sequence read insert sizes. For real dataset, Roche 454 sequence reads were produced

and served as the ground truth dataset to evaluate the assembled haplotypes from Illu-

mina short reads. The characteristics of these datasets and the results are explained in

Chapter 5.

In Chapter 6, we explain de novo assembly of the sweet potato genome which was done

in collaboration with Jun Yang, an independent researcher in our lab also affiliated to

Chinese Academy of Sciences, and the sequencing core facility of Max Planck Institute

for Molecular Genetics. DNA material was transferred from China and sequenced in

house. The initial de novo assembly was done in the sequencing core facility by Heiner

Kuhl and provided to us for further analysis and improvement. We proposed a new

scaffolding tool, called haplotype-aided scaffolder. The proposed method relies on the

assembled haplotypes and the connections between scaffolds which are inferred through

the reads mapped to these haplotypes. This method improved the N50 scaffold size of

sweet potato by ∼40%. We suggest haplotype-aided scaffolding as a step to improve de

novo assembly of complex genomes. This collaboration resulted in a report published

in Nature Plants[11].





Chapter 2

Genotype and Haplotype

2.1 Introduction

In this chapter, firstly, we define haplotypes and relevant terminology (Section 2.2).

Then, we explain how the availability of haplotypes for both diploid and polyploid gen-

omes is of a great importance (Section 2.3). There are a number of different approaches

for obtaining haplotypes depending on the type of input data, such as population data,

relative genotypes, and sequence reads of a single individual. These approaches are

listed and discussed in Section 2.4. In this thesis, we focus on single individual haplo-

typing from sequence reads; hence, a number of potential challenges for single individual

haplotyping are mentioned in Section 2.5. In the last two sections of this chapter, the

availability of ground truth data is discussed (see Section 2.6) and then the metrics for

evaluation of computed assembled haplotypes are described (see Section 2.7).

2.2 Genotype and Haplotype

The human genome is diploid, it has two sets of autosomal chromosomes. Each copy is

inherited from one parent. The two copies of an autosomal chromosome are similar, yet

the information they carry differs slightly. These differences are called sequence variants

or alleles and are located in the polymorphic sites (or loci) in the genome. They can be

Single Nucleotide Polymorphism (SNP, when the variant is observed in more than

1% within a population), Single Nucleotide Variant (SNV, when it appears in < 1%

within a population), indels (insertion or deletion when the region in question is < 50bp

in size) and structural variants (deletion, duplication, insertion, and translocation). The

set of variants at all polymorphic sites is called the genotype. However, genotype does

not provide the complete genetic map for an organism, as the homologous chromosomes

7



Chapter 2. Genotypes and Haplotypes 8

are flattened into one reference sequence and its sequence variants, without information

about the origin of these variants. The set of variants that are located on a single chro-

mosome is called Haplotype1 (Figure 2.1). In contrast to diploid organisms, polyploid

organisms have more than two copies of each autosomal chromosome. These genomes

have undergone the duplication of entire genomes[13] resulting in more than two copies

of each chromosome. Although polyploidy in animals is less frequent than in plants,

there are several insects, amphibians, reptiles and fish whose genomes are reported as

polyploid[13].

In order to explain the meaning of haplotypes, let’s define the following terms more

precisely (Figure 2.1 illustrates these terms in an example). Note that some of the

following terms are defined for a population of individuals while the other terms are

explained for a single individual:

• Polymorphism: The coexisting of different alleles in the individuals of the same

population.

• Polymorphic site: A genomic position whose corresponding alleles may vary

among the chromosomes in the population. A polymorphic site may point to two

(biallelic polymorphic site) or more (multiallelic) variants which are detected in

the population.

• SNP: Single nucleotide polymorphism, or SNP, is a polymorphic site containing

DNA sequence variations in the size of one single base pair which its variant is

observed in more than 1% of population.

• Indel: Insertion and deletion smaller than 50 base pair.

• Multinucleotide polymorphism: The variants which are larger than one basepair

and are equal in length e.g. ‘ATC’ and ‘CGA’.

• SmP: In this thesis, we introduce Small Polymorphism, shortly SmP, which could

be a single nucleotide variant, a multinucleotide variant, or an indel. SmP covers

all type of small variants which are dealt with in this thesis.

• Interpolymorphic region: An interpolymorphic region is a region between two

consecutive polymorphic sites. The sequences of nucleotides in these regions are

identical among homologous chromosomes.

• Homologous chromosomes: A group of chromosomes with a similar length

and centromere position, which possess similar genes at corresponding loci. For

example, human is diploid having 22 pairs of homologous autosomes. A P-ploid

1Frequently used terms are appeared in blue and explained in glossary.
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Figure 2.1: Schematic view of genotype and haplotype. Panel A or reference
panel illustrates a reference sequence (black line) and its polymorphic sites identified in
population. These polymorphic sites are then depicted as genotype in the coded allele
illustration. Panel B shows polymorphic sites in a single individual consisting of hetero-
and homozygous variants. These variants are depicted in both nucleotide- and coded
allele spaces. In order to infer the coded allele from a variant, one has to check how the
variant is coded in the reference panel and the genotypes. Panel C shows the haplotypes
in coded allele space. Since the interpolymorphic, i.e., the regions between consecutive
polymorphic sites, and homozygous regions are identical in both chromosomes, their
sequences in parental haplotypes can be simply inferred from the reference sequence.
The objective of haplotype reconstruction is to infer the connection of heterozygous

variants. Panel C shows what haplotype reconstruction methods are aiming for.

genome consists of a set of chromosomes which contains P homologous chromo-

somes. For instance, sweet potato has a hexaploid genome (P=6) with the base
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chromosome set of 15 meaning that there are 15 sets of homologous chromosomes

each of which contains six chromosomes (15× 6 = 90 chromosomes).

• Sequence variant: A sequence appears in one chromosome of one individual at

a polymorphic site. It is worth noting that a sequence variant could be a SNP or

indel. In this thesis, we use variant and sequence variant interchangeably.

• Genotype: A set of variants at a polymorphic site is called a genotype. For

example in Figure 2.1-A, the first genotype is {A,C} and the second one is {T,G}.
The genotypes are illustrated as unordered sets, meaning that it is not clear which

allele belongs to which of the parental chromosomes.

• Homozygous variant: A homozygous variant is a variant which is identical in

all homologous chromosomes. Note that when we talk about these variants, we are

referring to one single individual and not the population. There are other variants

in the population at the corresponding polymorphic site but the individual carries

the same variant in all of its homologous chromosomes.

• Heterozygous variant: The sequence variants which are not identical among

the homologous chromosomes of a single individual.

Figure 2.2: Homozygous and heterozygous variants. A) two consecutive homo-
zygous variants, one reference and one alternative. Obtaining haplotypes is trivial and
there is no ambiguity in inferring them. B) Ambiguity of obtaining the haplotypes when
the polymorphic sites are heterozygous. There are two possibilities for the haplotypes

considering two consecutive heterozygous polymorphic sites.
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The sequences of nucleotides in the regions between polymorphic sites are identical in

autosomal chromosomes. The same applies to homozygous variants. Since the sequences

of these variants are identical, the variants in each of the chromosomes are known, and

they do not provide information for phasing the other variants. Therefore, the focus

of haplotyping is on the heterozygous variants. Figure 2.2-A indicates the sequence

of haplotypes are known when the polymorphic sites are homozygous. Figure 2.2-B

illustrates the ambiguity of connection between alleles caused by two consecutive het-

erozygous variants. In order to solve this ambiguity, extra information such as sequence

reads sampled from one chromosome is demanded. Therefore, the ordered collection of

heterozygous variants of each chromosome together with the reference sequence provide

a complete picture of a haplotype. So, the haplotyping problem for a P−ploid gen-

ome, P = 2 for diploid and P > 2 for polyploid genomes, is formulated as finding the

ordered sequence variants in one chromosome (Figure 2.1-C ). These variants are coded

into numbers for simplicity; 0 is used for the reference allele, while 1, 2, 3, . . . , P − 1

are used for the alternative ones. Hence, in a more abstract form, one haplotype is a

sequence of numbers with the length of the number of heterozygous polymorphic sites.

We call this illustration, haplotypes in coded allele space (see Figure 2.1).

Figure 2.3: Obtaining haplotypes of a diploid genome once one of the hap-
lotypes is known. When one haplotype is known, the other haplotype can be simply

computed as its bitwise complement.

For a diploid genome, the alleles in one haplotype are either the reference allele or

the alternative one; therefore, the two haplotypes are the bitwise complement of each

other. Recall that the homozygous alleles are unambiguous and are removed. In other

words, knowing one haplotype sequence gives us the other haplotype sequence as well.

This, in a sense, makes the computational problem definition of diploid and polyploid

haplotyping different. For diploid genomes, the aim is obtaining just one haplotype
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sequence. Once one haplotype is inferred or assembled, the other haplotype can be

computed by converting zeros to ones and ones to zeros (Figure 2.3). However, for

polyploid genomes, this principle cannot be employed. Figure 2.4 shows four possible

groups of haplotypes which can be inferred if one of the haplotypes is known and given as

input. This indicates that all of the P haplotypes in P-ploid genome need to be inferred

or assembled, which distinguishes the computational problem for reconstructing diploid

and polyploid haplotypes. In diploid genomes, we need to assemble one haplotype (not

two), but in polyploid one all P haplotypes need to be assembled.

Figure 2.4: Obtaining haplotypes of a polyploid genome once one of the
haplotypes is known. This figure shows a triploid genome and its genotype for three
heterozygous positions. Given the genotype and one of the haplotypes, there are four
possible ways for obtaining the other two haplotypes. This figure shows these four

possible haplotype groups.

We define the following technical terminology (see Figure 2.1 for an illustration):

• Haplotypes in nucleotide space: A haplotype shown as a sequence of nucle-

otides.

• Haplotypes in coded allele space: As it is mentioned, haplotypes can be

defined as the sequence of coded alleles on heterozygous polymorphic sites. This

representation in this thesis is called haplotypes in coded allele space. Given a

haplotype in coded allele space, one can decode the numbers into the correspond-

ing alleles from the genotype and then insert the homozygous alleles and inter-

polymorphic regions with the guide of reference sequence in order to obtain the

haplotype in nucleotide space.
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• Fragment: A read in coded allele space is called a fragment.

• Genotype in coded allele space: A genotype is an unordered set so the illus-

tration should include this property; hence, the genotypes are shown as a set of

numbers separated with slashes. For example, ‘0/0/1’ indicates that the genotype

consists of two reference alleles and one alternative one. Homozygous and hetero-

zygous genotypes are illustrated in Figure 2.2-A and Figure 2.2-B respectively.

• Missing allele: This terminology, which is illustrated as ‘−’, is used when an

allele is unknown in coded allele space. For example ‘10210 − 21’ is a haplotype

where its sixth allele is unknown. Since this dash is used in coded allele space,

there is no danger of confusing it with a deletion.

Note that, when the base pairs are illustrated and used, it implicitly indicates that the

haplotypes are in nucleotide space while using a sequence of numbers (0≤numbers<P)

indicates that the haplotype is in coded allele space.

2.3 The importance of haplotypes

Haplotype information plays an important role in diverse contexts, such as disease asso-

ciation studies, population genetics, and also in technical and computational problems

like de novo assembly of a genome. Here, we list some of these applications as follows.

2.3.1 Disease association studies

Compound heterozygosity: Inferring haplotypes is essential for addressing several

problems of molecular biology. Finding the compound heterozygosity is one of the

applications of the phased genome, i. e. a genome with known haplotypes (Figure

2.5-A). Compound heterozygosity occurs when two mutations hit one gene in two dif-

ferent positions. The two mutations may exist either in the same copy (cis-compound

heterozygosity) or in both paternal and maternal alleles, each at a different position

(trans-compound heterozygosity). In the trans case, both alleles may behave abnor-

mally and cause a disease. For instance, in the case of Miller syndrome, Roach et al.[14]

studied a patient with the syndrome, his sibling and their parents. They sequenced the

four individuals’ genes and found that there is one gene which harbours two mutations

in two sites; one in the maternal and another one in the paternal copy. This information

is not accessible through genotyping. The genotype just shows that the two mutations

are there, but it does not indicate if the two hits are in one haplotype (cis) or in different

ones (trans).
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Variants in regulatory elements: The same principle, mentioned above, is valid for

distant enhancers and the corresponding genes. The chromosomes are packed in a 3D

structure, which brings the regulatory elements from far physical distance in genomic

DNA to close proximity in 3D space. It has been shown that a majority of the interac-

tions between genes and regulatory elements are intra-chromosomal[15]. For example,

having two variants in a gene and its enhancer (shown in Figure 2.5-B) leads, again, to

the cis and trans scenarios. In the former, there is a copy with no variant and the expres-

sion of one copy may compensate the effect of mutation in the other gene maintaining

the phenotype[16].

Figure 2.5: A) Compound heterozygosity in a gene. B) Compound hetero-
zygosity in one gene and its enhancer

High frequency and low effect variants: Compound heterozygosity and the studies

mentioned above are about highly penetrant variants, i.e. variants which are highly

associated with the traits and phenotypes. However, higher frequency of variants which

have a low effect could cause a disease as well. In the case of systemic lupus eryth-

ematosus (SLE), Graham et al.[17] reported variants in a protein coding gene (tumour

necrosis factor α-protein 3 - TNFAIP3) as well as in two haplotype blocks, one 200kb

upstream and one 200kb downstream of the gene. Therefore, not just one variant but

the combination of all variants in this ∼400kb region may play a role in this disease.
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Pharmacogenetics: In addition to the investigations on the causal variants in diseases,

haplotype information plays a role in clinical genetics and pharmacogenetics. A different

combination of variants in one haplotype could result in different protein sequences and

may alter the metabolism the proteins are involved in; hence, knowing the phase helps

to predict the drug response of the patient[18].

2.3.2 Population genetics and evolution of organisms

Haplotypes are the units of inheritance and provide higher precision than genotypes

for population genetics studies. Population history, migration, and bottlenecks can be

traced back more confidently with haplotype resolution[19]. It is possible to trace back

the evolutionary history of an organism considering the haplotype blocks. In Yang et

al.[11], we reported the estimation of polyploidization time via assembled haplotype

blocks in the sweet potato genome. Sweet potato is hexaploid, with six copies of each

chromosome. A haplotype block in this context is a region which is phased into its six

haplotypes. Each haplotype block reveals an evolutionary model for the polyploidization.

Inferring a model for each block revealed the most probable historical evolutionary model

and its timing for this genome.

2.3.3 Sequence assembly and variant calling for polyploid genomes

Variant calling improvement: Haplotype information can be used in a post pro-

cessing step for variant callers, i.e. the tools that identify the existence of variants at

polymorphic sites from sequence reads. Given haplotype data, variant callers not only

consider the allele frequency in polymorphic sites but also integrate the information of

the neighbouring alleles. For instance in a hexaploid organism like sweet potato, three

consecutive SmPs with two, two, and three alleles, which are called by a variant caller,

could give rise to 2× 2× 3 = 12 haplotype combinations. Just six out of these 12 com-

binations are correct. The assembled haplotype support for each combination is taken

into account, and the alleles are evaluated considering haplotypes[11]. This application

will be explained more in Chapter 6.

De novo assembly improvement: Haplotypes are of great importance for de novo

assembly of highly heterozygous genomes. The high heterozygosity, which partly comes

from the presence of three or more copies of each chromosome, always hinders the

genome assembly process even with state-of-the-art assembling tools, because genome

assembly focuses on the vast majority of bases that are invariant across homologous chro-

mosomes (interpolymorphic regions). Since these regions are smaller along the whole
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chromosomes of polyploid genome due to high heterozygosity, the assembly is more frag-

mented. Phasing the haplotypes splits the variant regions into their original sequences

which the assembler can rely on to deal with the fragmentation[11]. More details can

be found in Chapter 6.

2.4 Different approaches for haplotyping

Several techniques, protocols, and computational approaches have been reported for

inferring the haplotypes, most of them addressing the human genome. These method-

ologies are, therefore, more compatible with the characteristics of the human genome,

diploid with low-density of alleles. These approaches are divided into the following main

categories based on the data and the experimental settings.

2.4.1 Haplotype phasing via family information

This approach, which is also called genetic haplotyping, or haplotyping with ped-

igree information, combines genotype and pedigree data to infer haplotypes. In this

approach, the genotypes are mainly obtained from SNP arrays with predefined primers,

therefore, the sequences of the SNPs need to be known at first to design the primers.

This strategy works when the SNP is already known, but it misses the SNVs. The

pedigree information shows the relation between members of a family. Phasing a trio, a

child and the parents, shows a successful result on the sites which contain both hetero-

zygous and homozygous alleles within family members. For instance, when a/A, A/A,

and a/A are the genotypes of the father, mother, and child respectively, it is clear that

a (A) is transmitted from father (mother). Trio phasing fails when all sites are equally

heterozygous, all genotypes are equal. In this case, the genotypes of other relatives may

be useful. Working with genotype data is limited to the known variants, and it is not

possible to phase SNVs sites.

2.4.2 Haplotype phasing via population data

These methods rely on the shared haplotype blocks within a population which are ob-

tained from the genotype information and the linkage disequilibrium (LD) measure.

The LD measure is calculated based on the association of variants in different position

in a given population. To obtain this, the frequency of combinations of variants are

measured and then compared to a scenario in which variants are inherited together at

random. The shared blocks can be exploited to phase all individuals in the population
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including the target one. Based on a model, such as the assumption of the minimum

number of haplotype sequences in a population (parsimony model) [20], the haplotypes

are phased. This approach is effective for imputing missing alleles, i.e., estimating the

missing alleles with the help of flanking variants and their frequency in population data,

and phasing the common variants, and can result in haplotype segments up to 300kb

long in size[21]; however, this approach is limited when dealing with rare variants and

crossing recombination hotspots [21].

2.4.3 Single Individual Haplotyping (SIH)

This group of methods aims to assemble the haplotypes from sequence reads of a single

individual. Each read is sampled from one chromosome and can serve as a short hap-

lotype. These approaches rely on the sequence overlaps on polymorphic sites and glue

the reads based on the allele similarity to obtain a longer haplotype (see Figure 2.6).

The methods for SIH have developed along with sequencing technologies. Firstly, the

mate-pair Sanger reads were used for this purpose. These reads are long enough to

connect consecutive alleles in most of the regions in the human genome, but the sequen-

cing technology is costly. The next generation sequencing (NGS) technologies provide

high-throughput short read data. Most of the current NGS reads are not usable for low-

heterozygous genomes like the human one. However, in the more heterozygous genomes

the polymorphic sites are closer, and, therefore, haplotyping with the short NGS data

may also be possible. In Yang et al., we proposed an approach to deal with complex and

highly heterozygous genomes with NGS data, that involves Illumina sequencing (100bp

and 150bp reads) data on the heterozygous sweet potato genome[11].

To address human haplotyping, several approaches integrate NGS data with other se-

quencing technologies or protocols, such as HiC, Strand-seq, RNA-Seq and chromosome

isolation. Third-generation sequencing outputs long (several kilobase pairs) sequences

sampled from one chromosome. These type of reads not only connect several poly-

morphic sites, but could span problematic genomic regions like repeats. In addition,

10X Genomics produces linked-read data, i.e. highly accurate short reads that are

sampled from one high molecular weight (HMW) fragment. These approaches will be

explained in more detail in Chapter 3.

2.5 Challenges

Unlike genome assembly that focuses on the majority of invariant bases in the reads,

haplotype reconstruction methods need variants. The genome properties, such as variant
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Figure 2.6: Haplotype reconstruction for a diploid genome. As an example, a
part of human chromosome seven is depicted in this figure. The variants in polymorphic
sites of each homologous chromosome (red and blue) are illustrated in the same color as
the chromosomes. The lower part of the figure shows the sequence reads, and the vari-
ants they carry. These reads are partly sampled from the blue chromosome and partly
from the red one. The reads can be grouped according to the information they carry.
A read is useful for haplotype assembly if it contains at least two sequence variants.
Reads with no or one sequence variant are not useful and excluded for haplotyping

(black reads).

distribution, as well as sequencing features, like read length and accuracy, play a major

role in haplotyping. Here we list a number of genome properties and technical issues

which are important for diploid and polyploid haplotype assembly.

2.5.1 Genome ploidy

Methods for haplotyping are, from a technical point of view, divided into two groups of

diploid and polyploid haplotypers. The reason, as explained in Section 2.3, is that the

haplotypes in diploid genomes are the bitwise complement of each other. The availability

of both alleles in heterozygous sites, and knowing the sequence of one haplotype directly

result in the sequence of the other one. Hence, the goal of diploid haplotype assembly

can be redefined as the assembly of one of the haplotypes. Likewise, the situation with

two overlapping reads with an identical overlap indicates that the two reads are sampled

from one haplotype. This can be considered as a foundation in diploid haplotyping.

However, polyploid genomes do not have this property. Knowing the sequence of one

haplotype provides no information about the others. Accordingly, it can change the

problem definition in the assembly of reads as well. The matching overlap between two

aligned reads is not sufficient to infer whether they belong to one haplotype. Figure 2.7

illustrates this situation. More information is needed to decide whether two reads are

from one haplotype and can be merged. We call this property Ambiguity of Merging

Problem (AoM problem) (Figure 2.7).
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Figure 2.7: AoM problem The fragments A and B have an overlap with two match-
ing SmPs (T...T ). Frag.C is made from merging Frag.A and Frag.B. The real haplotype
sequences from which Frag.A and Frag.B are sampled, are illustrated in (B), showing
that Frag.C does not belong to any of the real haplotypes. This ambiguity makes it dif-
ficult to merge two fragments with high confidence, only by considering their sequences.

2.5.2 Low variant density

The higher heterozygosity of polyploid genomes can be helpful in polyploid haplotyping.

The smaller the distance between polymorphic sites, the more variants present in one

sequence read, and the more useful reads there are for haplotyping. Figure 2.8 shows the

comparison between the proportion of reads that are usable for haplotyping in human

and the same for sweet potato. In general, the average interval distance of polymorphic

sites in human and sweet potato is ∼1kb and ∼60bp, respectively.

2.5.3 Structural variants

Structural variants affect the haplotyping since they may change the number of sequence

copies. One unrecognized duplication inflates the number of reads which are mapped

to the reference in the duplicated region. If the duplicated sequences diverge enough,

they may accumulate a number of variants. These variants, together with the original

variants, are mapped to the corresponding region in reference. This may affect the

haplotyping since the haplotypers assume the number of copies is the same as the ploidy,

but in reality, there is one more copy available (Figure 2.9). One potential approach to

address this problem is finding these regions and applying the haplotype assembler with

the proper ploidy. However, finding structural variants is another problem and needs

its own consideration. The same reasoning is also applied to paralogous genes. Without

knowing the structural variants, more careful consideration is necessary for mapping and

variant calling, and this makes the haplotyping rather more complicated.
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Figure 2.8: The percentage of SmP hits in human and sweet potato gen-
omes. The percentage of useful reads for haplotyping for human and hexaploid sweet
potato is compared. As shown, about 1% and 50% of the reads are usable for haplo-
typing for human and sweet potato, respectively. The notable difference is due to the
heterozygosity of these genomes. The polymorphic sites are much closer in the sweet
potato genome such that more read pairs, with 100bp single-end short reads, cover
more than two polymorphic sites. The statistics are inferred from an individual in the

1000 genomes project[22] and the pilot sweet potato project data[Section 6.2]

Figure 2.9: Effect of a duplication in haplotyping for the human genome. The
green sequence is a duplication of the blue one. The mapper and haplotype assembler
cannot distinguish the reads which are sampled from the green region; consequently,
it assumes there are two haplotypes and it merges the reads from three haplotypes to

assemble two haplotype sequences.

2.5.4 Repetitive regions

Repeats are defined as similar or identical sequences placed in different positions in

the genome. The large genomes contain different amounts of repetitive sequences, for

example, human and sweet potato genomes have 50% and 40% repetitive elements,

respectively [11, 23]. Repeat elements can be interspersed or tandem. Interspersed

repeats are elements which are identical or near identical and can be a million base

pairs apart in a genome, while tandem repeat elements are adjacent. The size of a

tandem element can be as small as two base pairs, and the number of the copies in one

repeat can be many thousands[24].
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Although genome and haplotype assembly could be defined as one problem, i.e. obtain-

ing the sequence of all of the chromosomes, they are defined here as two due to the high

similarity between autosomal chromosomes and also the limitation in sequencing tech-

nologies dealing with the complex regions in the genome such as repeats. These regions

cause fragmentation in de novo assembly if the reads are not sufficiently long to cross

the repeats. De novo assembly focuses on the invariant regions in the genome while

haplotyping sits on variant sequences with the assumption of having accurate reference

and variants. Therefore, here, we discuss the effect of repeats in de novo assembly as

well since the assembled reference is the input for haplotyping.

The reads sampled from repeats are mapping ambiguously, meaning they can be mapped

to several places with a good similarity. Read length plays a major role; if a repeat is

covering the read, there is no signal indicating from which repeat sequence the read is

sampled. If the read is long enough to span the repeat, or contain part of the flanking

regions, the flanking sequences come to help for mapping the read properly. Other-

wise, the ambiguous mapping of short reads affects the accuracy of variant calling, and

consequently, haplotype assembly. In the case of tandem repeats the difficulty is the

estimation of repeat size. Figure 2.10 shows the effect of repeats in genome assembly

(Figure 2.10-A), and estimating the size of reference on repetitive sites (Figure 2.10-B).

Figure 2.10: Repetitive regions A) The effect of interspersed repeats in genome
assembly. It is possible to find out which sequence (blue or orange) should be connected
to the black one. B) The effect of tandem repeats in genome assembly. The assembler

might squeeze the region since the reads are short.
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2.5.5 Technical issues

Coupled with the genome characteristics, there are a number of sequencing related tech-

nical issues which may affect the haplotyping, e.g., read length, error rate, and cover-

age. For example, the read length of the recruited sequencing technology should be long

enough to connect at least two variants. The read length and the genome heterozygosity

are two important inter-related characteristics which affect the haplotyping. The other

characteristic is the error rate in base calling. With high error rate, the variant caller

may not identify the true sequence variants among the erroneous bases. This problem

could be addressed by deeper sequencing, which has the downside of higher cost. This

becomes more challenging for polyploid genomes. For example, we sequenced the sweet

potato genome with one of the earliest MinION Nanopore Flow cells. The low coverage

and high error rate meant that we could not distinguish if the alleles in the reads were

true or not (Figure 2.11).

Figure 2.11: An illustration of sequence errors in the genome browser. The
three tracks are MinION Nanopore, Roche 454, and assembled haplotypes from Illumina
reads. The dissimilarity between the reads and reference are depicted in different colors.
The first track shows the error rate is so high that distinguishing between true variants

and error is not trivial.

Moreover, differences between the sequenced individual and the reference and also the

errors in the reference may introduce errors in the haplotyping. For re-sequencing data,

since the reference sequence is not the same individual as the sequenced one, the struc-

tural differences between the individual and reference may prevent assembly of the true
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haplotype (see Section 2.5.3). Moreover, haplotypes containing SNVs may be more dif-

ficult to assemble. One strategy to deal with these errors is de novo assembly of the

individual together with haplotyping. This approach is costly and needs long reads and

high coverage. The currently available sequencing technologies are either rather short,

highly accurate, and high-throughput, such as Illumina sequencing, or long, error-prone,

and low throughput, e.g., Nanopore and PacBio.

2.6 Ground truth data availability

Obtaining the ground truth data for every organism is a hard task with current se-

quencing technologies, their costs, and available tools. However, for a decade various

groups have addressed human genome haplotyping. The haplotype sequences obtained

from genotyping of a trio family released by The International HapMap Consortium

(phase II and III, 2007 and 2010 respectively) have served as the ground truth haplo-

types for a while. In one dataset, the child and the parents were genotyped, and later

on sequenced deeply with Illumina technology for calling SNVs and indels; hence, the

child’s haplotypes, NA12878, can be considered as the ground truth data. Another set

of phased haplotypes, for the human genome, was obtained from the combination of

several sequencing technologies, Illumina, PacBio, and BioNano genomics[25].

Such ground truth data, sequenced with different types of sequencing technologies and

studied in-depth with the aid of pedigree information, is not available for non-human or-

ganisms. Chen et al. reported deep PacBio sequencing for diploid Arabidopsis thaliana,

Vitis vinifera (grape), and the coral fungus Clavicorona pyxidata. They did de novo as-

sembly and haplotyping for these genomes; however, no sequence can serve as the ground

truth to evaluate the assembled haplotypes[26]. In Yang et al., we proposed a strategy

for evaluation of assembled haplotypes for hexaploid sweet potato genome. It relies on

deep Illumina sequencing for haplotype assembly and recruited Roche 454 reads, which

were not integrated with the de novo assembly, as the ground truth data. Although the

Roche 454 reads are limited in size, they are sufficiently accurate for evaluating parts of

the assembled haplotype[11].

2.7 Metrics and evaluation

It is important to assess the quality of the computed assembled haplotypes obtained from

different methods. Different metrics have been introduced according to the type of input

data. Here we list some of these metrics. Generally, these metrics can be divided into
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two groups based on the availability of ground truth haplotypes. Note that these metrics

are applied after the assignment of each assembled haplotype to the ground truth data,

if available. Depending on the ploidy of the genome, there could be two or more possible

assignments. Each assignment has a score and the following metrics are calculated on the

best assignment. Figure 2.12 shows two possible assignments of computed haplotypes to

the ground truth ones. The selected metric is computed for both of the assignments. The

assignment with a better score is selected for further analysis. The number of possible

assignments in polyploid genome is P! (i.e. P × (P −1)× (P −2)× ...2×1). Figure 2.13

shows a triploid assignment as an example. There are six possible assignments each of

which is evaluated by its accuracy and the assignment with highest accuracy is used for

evaluation.

Figure 2.12: The two possible assignments of computed haplotypes to the
ground truth ones in a diploid genome. The ground truth and computed haplo-
types are shown in the middle. The two assignments are illustrated as first and second
assignments. The selected metric here is the number of matches divided by the length
of haplotypes. The second assignment has a better score, or accuracy, and it will be

used for the evaluation of computed haplotypes.

Figure 2.13: The six possible assignments of computed haplotypes to the
ground truth ones in a triploid genome.
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• N50: This metric is a weighted average length and evaluates the length of the

assembled sequences. It indicates half of the assembled sequences are assembled

into sequences of this length or longer. Figure 2.14-A illustrates this measurement.

• Variant N50: It has the same meaning as N50 but instead of base pairs it uses

the variants. In other words, the N50 is in nucleotide space and the VN50 is in

coded allele space. Variant N50, or VN50, means half of the computed haplotypes

in coded allele space are bigger than the VN50 size.

• Accuracy or reconstruction rate: It is calculated based on the number of

correct matches on heterozygous sites between the assembled haplotypes and the

true ones divided by the length of the haplotypes. Two parental haplotypes and

two assembled haplotypes are shown in Figure 2.12 as an example. There are two

possibilities for the assignments of assembled haplotypes to the real ones (shown

as first and second assignments) with the score of
4 + 4

2× 6
= 0.66 and

1 + 1

2× 6
= 0.16,

respectively; hence, the second assignment is the better one, and the accuracy of

0.66 is chosen.

• Switch error: It is the number of allele block exchanges between the assembled

haplotypes in such a way that after these exchanges the assembled haplotypes

become equal to the true ones. Let’s assume that the two haplotypes obtained

from a diploid genome are MMPPM and PPMMP, where P and M stand for

paternal and maternal alleles. We know the true haplotypes are PPPPP and

MMMMM. Therefore, there is a need to switch the assembled haplotype blocks

in position two and four to obtain the real ones. So, in this example, the switch

error is two. This metric can be applied on diploid genomes since the haplotypes

only contain the heterozygous alleles. Moreover, there is just one possible number

of switches in diploid genomes. Whenever the ground truth haplotype disagrees

with the computed one, a switch is needed. The position of switches in the other

haplotype are exactly in the same place (see Figure 2.14-B).

In polyploid genomes there might be several possible sets of switches. Figure

2.14-C illustrates two possible set of switches for a triploid genome. Therefore,

in this case we need to choose one of all possible sets of switches in order to

evaluate the computed haplotypes. In parsimony paradigm, one can select the

set with minimum number of switches; hence, minimum switch error can be

used as a metric for evaluation. However, there is a problem using this measure for

polyploid genomes. It might be the case that no possible set of switches can convert

the assembled haplotype to the true ones when the detailed genotype data is not

available. Figure 2.14-D highlights a polymorphic site in which the genotype of

ground truth and the computed haplotypes are not identical. Another problem is
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predicting the frequency of alleles in the polymorphic sites of computed haplotypes.

For example, given the genotype data 0,1, and 2 for a hexaploid genome, there

are several possibilities for the frequencies of the alleles such as ‘ 0/0/0/1/1/2’,

or ‘0/0/0/0/1/2’. In such a situation, no switch error can be computed. One

strategy to deal with this problem is to ignore the sites which the frequencies

are not matching; however, there might be some correctly assembled haplotypes

among all of them which are ignored at the polymorphic sites.

Figure 2.14: N50 and switch error metrics. Panel A illustrate the N50 measure.
Panel B depicts the number of switches needed for converting the computed haplotypes
to the ground truth ones. Panel C shows two possible set of switches, namely four
and seven switches, for the first and second scenarios, respectively. Panel D indicates
the problem of usingutilizing switch error for evaluation of computed haplotypes for
polyploid genomes. The highlighted column indicates that if the genotypes of computed
haplotypes and ground truth ones at a polymorphic site are not identical, the switch

error measure cannot be computed.

• Completeness This metric shows how many of the heterozygous alleles are covered

by the longest haplotypes. For instance, if one haplotype connects 95 polymorphic

sites among one hundred, the completeness is 95%. This measure is defined based

on the longest assembled haplotype.

• Resolution This metric is also defined for the longest assembled haplotype. It

shows how many gaps are present in this haplotype.
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• Error correction: This metric is based on the minimum error correction model

(Section 3.2), and it is calculated as the number of corrected errors in assembled

haplotype in such a way that all reads assigned to each haplotype are compatible

with each other.

• Weighted error correction: This metric is calculated in the same way as the

Error correction, but instead of counting the number of alleles, it sums over the

weight of the corrected alleles.

• Fragment removal: It is defined based on minimum fragment removal model

(Section 3.2) and calculates the number of reads needed to be removed to have a

non-conflicting partition of reads.

Accuracy is the most widely used metric to evaluate haplotypes. Switch error helps

mostly when the errors in the haplotypes change the long-range connectivity, such as

with using paired-end and mate-pair libraries. Completeness and resolution allows

us to evaluate genome-wide haplotyping when the sequencing technologies are long and

accurate enough, and when the sequencing depth is sufficiently high that one haplotype

covers most of the genome. Error correction, weighted error correction, and

fragment removal metrics provide fitness when the true haplotypes are not available.

These metrics check the assignment of reads to the assembled haplotypes and calculate

the scores of how well these assignments were done.





Chapter 3

Single individual haplotype

reconstruction: techniques and

protocols

3.1 Introduction

Haplotyping methods were developed along with advancement in sequencing technologies

and the assembly of the human genome. First, second, and third generation sequencing

data have been used for haplotyping of a single individual. Although NGS technolo-

gies have drastically reduced the price and increased the throughput of sequencing, the

length of their reads is too short to connect more than a few of the variants across

the genome. However, a number of haplotyping methods were designed to deal with

NGS data. These methods have mostly been applied to first generation sequencing data

since the underlying principle for the first and second generation, i.e., read accuracy and

connectivity with paired reads, are the same. Since then, Illumina sequence reads have

become dominant due to the associated low cost, high accuracy, and high-throughput;

however, Illumina read length is technically limited and recently reached 2 × 300bp

(Illumina MiSeq series sequencers[27]). To overcome this limitation various strategies

have been proposed. Integrating various Illumina insert sizes (Section 3.4.1), utilizing

population (Section 3.4.2) or RNA-Seq data (Section 3.4.3), and recruiting single cell

sequencing techniques together with special library preparation for NGS, like 10X Gen-

omics (Section 3.5.1) and Strand-seq (Section 3.5.2) are among these strategies. In the

next sections, we first explain how single individual haplotype assembly can be modeled,

and then, we describe in more detail how the mentioned technologies and protocols can

help with haplotyping.

29
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3.2 How to model single individual haplotype assembly

There are several models introduced for haplotype assembly from sequence reads (SIH

problem). These models provide a fitness to a set of assembled haplotypes. Minimum

Error Correction (MEC), Minimum Fragment Removal (MFR), and weighted

Minimum Error Correction (wMEC) are the most well-known models among them.

All of these models have been proven to be computationally hard; this necessitates the

use of heuristics approaches[28].

Minimum Error Correction (MEC): The most well-known model for SIH problem

is the MEC model. It assigns a fitness to a partition and its supporting fragments. For a

diploid genome (P = 2), according to minimum error correction model, we are looking for

two clusters of reads. Each cluster is a collection of reads supporting one haplotype. The

haplotype is computed based on majority of votes at each column (polymorphic sites)

of the reads which are assigned to the corresponding cluster. MEC model enumerates

the number of mismatches between reads and computed haplotypes. The final MEC

score is the sum of MEC scores in both clusters. Figure 3.1 illustrate how the MEC

score is calculated for a specific partitioning. There are 2n−1 partitions, where n is the

number of reads, and the aim of this model is to find the one with minimum number

of errors. These errors are flipped or changed such that all fragments in each cluster

become compatible with computed haplotype and with each other. The number of allele

changes is an indicator of how good the partitioning is. The MEC model suggests that

the haplotypes assembled from the partition with the minimum amount of corrected

errors are the best ones. It has been shown that haplotyping under the MEC model is

an NP-hard problem[28].

Weighted Minimum Error Correction (wMEC): This model integrates the quality

of alleles into the MEC model. All alleles in the MEC model are considered to be equally

accurate. However, it is possible to integrate the allele quality provided as base calls for

single nucleotide variants or the average of base qualities for indels. The goal of wMEC

model is finding a partition such that the weights of alleles which are needed to be flipped

to have a non-conflicting clusters is minimum. Like MEC, wMEC is NP-hard[29].

Minimum Fragment Removal (MFR and wMFR): This model assumes that the

conflicting alleles among the reads, which are assigned to one haplotype, are introduced

owing to misalignment. This model sets its objective according to the number of frag-

ments that need to be removed to have non-conflicting clusters. It tries to find the

minimum number of such fragments. Figure 3.1 shows which four reads need to be

removed for the illustrated clusters. The SIH problem under the MFR setting is an

NP-hard problem as well[29]. The wMFR model follows the same principle but each
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Figure 3.1: An illustration for minimum error correction(MEC) and min-
imum fragment removal(MFR) models. For a diploid genome the reads are par-
titioned into two clusters (cluster 1 and cluster 2). For each cluster one haplotype is
computed based one majority of votes on each column (colored in purple). Afterwards,
the number of mismatches (in orange) between reads in the clusters and the computed
haplotypes are counted. In this example, there are three mismatches in cluster 1 and
two mismatches in cluster 2, so in total the score for this partition is five. In MEC
model the number of mismatches is an indicator of goodness of partitioning. In MFR
model, the goodness of the partitions are calculated based on the number of fragments
need to be removed in order to have clusters with no disagreement. In the partition
illustrated in this figure, there would be no dissimilarities between the reads in the

clusters if the four reads which are pointed out with the arrows are removed.

fragment has a weight and the model calculates the sum of the weights instead of the

number of fragments.

The MEC and wMEC models assume that the reads are correctly aligned, and all of the

reads should be considered in haplotype assembly. After partitioning, the haplotypes

can be assembled via the majority of votes within each cluster. The MFR model checks

if a fragment belongs to any cluster or not; and if it does, it should not be in conflict

with fragments of the same class. These models provide objective fitness functions to

optimize. MEC and wMEC may involve the fragments which are mistakenly mapped

to the reference; which is common, especially in repeats. The MFR assumes that errors

occur when there is a misalignment, and it eliminates such alignment. This model
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may remove many informative fragments from error-prone third-generation sequencing

data. All in all, although all models are useful as an objective function, none of them

are applicable for all types of input data. The best strategy is recruiting a model or

combination of them based on the properties of sequencing technology.

3.3 Early single individual haplotyping with sequence reads

The first attempts at assembling the haplotypes of the human genome, which showed the

feasibility of haplotyping with sequence reads, resulted in a single individual assembled

genome reference called HuRef. To assemble the HuRef, 32 million Sanger sequence reads

of 500bp and 800bp lengths were used; these reads were paired by 2, 10, 40, and 100kb

clone insert lengths. After de novo assembly of the genome with Celera assembler[30],

assembled sequences were mapped to the reference genome and the variants were called

afterwards. These variants were then identified in the reads and grouped into paternal

and maternal reads. Finally, the consensus sequences of each group were represented

as the computed haplotypes. This algorithm is explained in more detail in the next

paragraph and Algorithm 1 [31].

Algorithm 1 represents the pseudocode of this approach. A list of aligned fragments

(please find the definition of fragment in Section 2.2) is considered as the input data

(represented as F ). The grouping step is done in a greedy manner. First, the fragment

containing the maximum number of polymorphic sites is selected and assigned as the

initial haplotype (C1). Recall that in diploid genomes one haplotype is representative of

both paternal and maternal haplotypes such that it itself represents one of the parental

haplotypes and its bitwise complement represents the other one. Having found the

longest fragment (C1) and its bitwise complement (C2) as the initial haplotypes, all

fragments are clustered into two groups (FC1 and FC2) according to their similarity

to initial haplotypes. This similarity or score is represented as scr1 and scr2. Given

a fragment fi, scr1 (scr2) indicates the similarity score to C1 (C2). fi is assigned to

FC1 if scr1 > scr2 and is assigned to FC2 otherwise. Then, the consensus sequence of

both clusters (FC1 and FC2) are computed as the new haplotypes (updating C1 and

C2). This algorithm is done iteratively by assigning fragments to new haplotypes and

updating the consensus sequences. The algorithm stops when the haplotypes’ sequences
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do not change in two consecutive iterations.

Levy et al. algorithm

input : a set of fragments F

output: a set of haplotypes H

C1 ← Find a fragment which covers maximum number of alleles

C2 ← bitwise complement of C1

Cold
1 , Cold

2 ← ∅, ∅
while C1 6= Cold

1 or C2 6= Cold
2 do

FC1 , FC2 ← ∅
Cold

1 , Cold
2 ← C1, C2

for fi in F do
scr1 ←compute the similarity score of fi and C1

scr2 ←compute the similarity score of fi and C2

if scr1 > scr2 then

FC1 ← fi

else

FC2 ← fi

end

C1 ← consensus sequence of FC1

C2 ← consensus sequence of FC2

end

Algorithm 1: Levy et al. algorithm

3.3.1 HapCut

HapCut [32] is a graph based algorithm which builds a read-haplotype consistency

graph. This graph is constructed based on an initial haplotype and the input list of

fragments. It starts with a random initialization of one haplotype. As mentioned be-

fore, the other haplotype is its bitwise complement. Nodes are the polymorphic sites, so

the number of nodes is n if the haplotype length is n in coded allele space. Two nodes

are connected if there is at least one read covering their corresponding polymorphic

sites. For instance, ‘101’ as an aligned fragment starting at the position one (positions

are 1, 2, and 3) contributes three edges to the graph namely, ‘(1,2)’, ‘(2,3)’ and ‘(1,3)’.

The weight of an edge indicates the strongness of co-occurring of variants at the two

polymorphic sites in the initial haplotypes and is calculated as the number of fragments

between two nodes which are consistent with the initial haplotype minus those which are
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inconsistent. That is why the graph is called read-haplotype consistency graph. If the

read is consistent to the haplotype it contributes positive weight and if it is inconsistent,

contributes negative weights. Figure 3.2 shows an initial haplotype, a set of fragments,

and their corresponding graph.

Figure 3.2: Schematic view of HapCut algorithm. Left) A list of fragments
and an initial haplotype. Right) Constructed graph based on the initial haplotype and
the list of fragment. The weights are calculated as the number of reads supporting the
haplotype subtracted by the reads which are inconsistent with it. The red weights are

the negative ones. Figure is adapted from [32]

A cut S in the graph is a subset of nodes; so the nodes of the graph is divided into two

sets, namely the cut (S) and its complement (S′). Weight of a cut is calculated as the

sum of weights connecting S and S′. As mentioned, the weights are obtained based on

the initial haplotype, therefore, by bitwise complementing the variants corresponding to

S, the following conditions hold:

• The weights of edges within S and also within S′ stays similar.

• The weight of edges between S and S′ are inverted.

Bansal and Bafna proved that any cut with minimum weight smaller than zero leads to a

haplotype with lower MEC score. Therefore, an optimum cut leads to an optimal MEC

score. Since finding an optimal cut is NP-hard[33], Bansal and Bafna proposed a greedy

heuristics method to find a sub-solution cut and then update the haplotype with respect

to the cut. This procedure happens iteratively until no better haplotype can be found.

As an example, one good cut in the example shown in Figure 3.2 is S = {6, 7, 9, 13}.
By flipping the variants in the haplotype at these polymorphic sites, all the red scores
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are converting to positive scores; however, a number of negative score are also generated

such as w8,9 becomes ‘-1’ rather than ‘1’. These negative edges are targeted in the next

iterations until no further improvement can be made.

HapCut algorithm

input : a set of fragments F
output: a set of haplotypes H

C1 ← Random initial haplotypes
repeat

Construct the read-haplotype consistency graph (GC1)
nodes: SNPs
edges: Number of consistent fragments − number of inconsistent

fragments.
Compute a greedy heuristic cut S
C ′1 ← Flip the value of C1 at positions s where s ∈ S
if MEC(C1) > MEC(C ′1) then

C1 ← C ′1
end

until no improvement in MEC(C1);

Algorithm 2: HapCut algorithm

3.3.2 ReFHap

Like HapCut , ReFHap is also a graph-based haplotype reconstruction method based

on MEC model which was proposed by Duitama et al.[34]. Unlike HapCut in which

nodes are polymorphic sites, and edges are inferred from fragments, ReFHap usesutil-

izes fragments as nodes and the edges are inferred from the overlap between fragments.

ReFHap constructs a graph data structure called conflict graph, meaning that the

weight of an edge indicates how likely the two nodes (fragments) are from different hap-

lotypes. High weight of an edge suggests that corresponding fragments of the two nodes

are more likely to be from different haplotypes. Weights are calculated based on the

number of inconsistent and consistent shared alleles between two fragments. ReFHap

utilizes conflict graph data structure in order to cluster the nodes into two parts. In

other words, ReFHap finds a cut to partition the fragments. In ideal conditions with

no error in the input, the graph would be bipartite with no edge within each partition,

so the fragments stemming from each haplotype are clustered together. However, due to

error there may be edges which violate the ideal scenario. An error could be a miscalling

variants which may introduce edges within clusters. This may draw a conflicting edge

between the fragments originating from one haplotype. Misalignment may cause loss of

an edge between the fragments of different haplotypes.
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Finding the best cut is NP-hard[33], therefore, ReFHap follows a heuristic idea in order

to find a good cut and more precise haplotypes. ReFHap starts by assigning scores

between all pairs of fragments. It finds a random cut and calculates the MEC score for

it. This cut gives an initial score which is obtained randomly and needs to be improved.

Then ReFHap tries to find a better cut and improves its MEC score. For this purpose,

ReFHap sorts the edges in descending order based on their weight. Then, it iterates

over the edges (e ∈ ESorted) in the sorted list.

At each iteration, it assigns the nodes corresponding to the edge (e = (vi, vj)) into two

clusters (vi ∈ S and vj ∈ S′ ). Then, all of the other nodes (e′ ∈ E − e) are partitioned

according to the score of being assigned to each cluster(S or S′). This assignment is

done such that the sum of edges inside each group becomes minimum meaning there is

less conflict in both clusters. At the end of this step all nodes are assigned to either

S or S′. To optimize the cut locally, ReFHap performs the following steps in the

iteration as well. ReFHap iterates over the edges crossing the two clusters and checks

if swapping the nodes improves the overall score or not. It swaps the edges if the

swapping decreases the conflicting score. Afterwards, the haplotypes are constructed

based on majority of votes in both of the clusters. The constructed haplotypes should

be bitwise complementary since the fragments contain only heterozygous variants. In the

last step, the sites with homozygous variants can be corrected with the help of fragments

supporting the variants. Finally the MEC score for this iteration is calculated and kept

if the overall score improves.

In order to improve speed by compromising the accuracy, ReFHap defines a parameter

k for the number of iterations over the reads. It is claimed that k =
√
|E| could be

a good bound in order to achieve a good accuracy. Algorithm 3 details the steps of

ReFHap.

3.4 NGS technologies

Since 2005, the massively parallel sequencing technologies drastically reduced the cost

of whole-genome sequencing (WGS) and re-sequencing. Along with the advancement

in these technologies, haplotyping methods were developed to use such high-throughput

data. Since Illumina sequencers have been the most widely used in the past years, we

investigate the methods dealing with such data in the following sections. Although

NGS is the most cost-effective way for WGS of the human genome, it is infeasible to

link distant alleles or to assemble long stretches of haplotypes with the current read

length (100 to 300bp). As shown in Figure 2.8, fewer than 1% of reads are useful for

human haplotyping with the single-end read of length 100bp. Integrating paired reads
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Figure 3.3: A conflict graph. This figure shows a conflict graph obtained from the
fragment list shown in the upper left part. The fragment list is converted to a conflict
graph shown in the upper right. Nodes are the fragments and edges are calculated based
on the number of mismatches minus the number of matches between two fragments. A
good cut splits fragments into two separate groups S = {1} and S′ = {2, 3, 4}. Figure

is adapted from [35]

information helps to improve the results, especially using diverse insert lengths and high

coverage data, but it remains difficult to expand haplotypes to long DNA stretches using

only Illumina reads. Moreover, population, transcriptome, Strand-seq, or Hi-C data can

also be integrated with NGS data to boost the performance of haplotypers.

3.4.1 Integration of variable insert length NGS data

Various insert lengths of paired-end reads help to obtain longer haplotypes from short

reads. Through simulation, Tewhey et al. [36] reported that the integration of different

insert sizes and production of sufficient coverage compensate the short length of Illumina

reads. Figure 3.4 indicates that ∼100 fold coverage of three inserts results in the same

haplotype variant N50 as a read length of 10kb with 50 fold coverage. In this analysis,

the size of a single-end read is 100bp; the paired reads are sampled randomly from

chromosome 1 of a Yoruban individual (NA19240 from the 1000 genome project), and

the insert length distributions are normal with the mean of 2, 5, and 10kb and standard

deviation of 10%. The same variant N50 could be obtained by only using 10kb mate-pairs

but higher coverage (∼140 folds).

3.4.2 Integration of NGS and population data

Yang et al.[37] proposed a method, called haplotyping with reference and sequence tech-

nology, shortly HARSH, which combines haplotype assembly and haplotype phasing to

obtain more accurate haplotypes. Since thousands of individuals were and more are go-

ing to be sequenced, utilizing reference panels of haplotypes can be very useful for single
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ReFHap algorithm

input : a set of fragments F
output: a set of haplotypes H

Construct the Fragment graph (G(V,E))
V = f ∈ F
E = number of inconsistent alleles between two fragments − number of

consistent ones
C ← Random initial cut
ESorted ← Sort edges in descending order
Ek

Sorted ← Select the k =
√
|F | highest values

for e = (fi, fj) ∈ Ek
Sorted do

assign fi and fj to two different partition S1 and S′2
repeat

(Ci, v)←find v such that by assigning it to either Ĉ1 or Ĉ2, sum of the
scores becomes maximized

until Ĉ1 + Ĉ2 6= V ;
Two local optimizations by flipping edges and nodes to see if it boosts the score
or not
if score(Ĉ1, Ĉ2) > score(C1, C2) then

(C1, C2)← (Ĉ1, Ĉ2)
end

end

Algorithm 3: ReFHap algorithm

individual haplotyping. In other words, the reference haplotype panels are getting more

accurate over time; therefore, the assembled haplotypes are getting more accurate as

well. From the sequence data, the suggested probabilistic model tries to find two hap-

lotypes with the minimum number of conflicting alleles with reads data (MEC model).

From the reference haplotype panel data, it utilizes the statistical model for patterns in

linkage disequilibrium suggested in [38]. In general, the aim is to obtain haplotypes that

are consistent with both sequence reads and reference haplotype panel.

3.4.3 Integration of NGS and transcriptome data

Missing the connectivity of distant alleles by paired reads is the major problem for hap-

lotyping with merely genomic sequence data. Transcriptome data can help the phasing

of the exonic regions with short reads. This idea is motivated by two factors:

• RNA-Seq read pairs are both sampled from one chromosome. They provide in-

formation about the haplotype which the gene was transcribed from. Since each

read (or part of a read) of a transcript is sampled from one mRNA, there is a
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Figure 3.4: The comparison of different insert size on the haplotype as-
sembly of human genome. The y-axis shows the variant N50 (this figure is adapted

from [36] ).

chance of sampling one read (or part of it in split reads) from one exon and the

other read (or in part) from another exon; which provides longer distance allele

connectivity than normal DNA-seq reads. As an example, if two reads of a pair,

with an insert of 1kb, are sampled from two consecutive exons, the paired-end read

information gives the connectivity of 1kb + intron size (Figure 3.5-b). Berger et

al. suggest this idea to leverage single individual haplotyping[39].

• Differential allele-specific expression (DASE) information within RNA-Seq data

can be employed to detect the connectivity of the distant variants. If the expres-

sion of the maternal and paternal chromosomes differs significantly, it is possible

to assign the exons with the same level of transcription into one haplotype. Dif-

ferential haplotypic expression gives the information on variants’ connections in

exonic regions in the range of gene length (Figure 3.5-c).

HapTreeX integrates this information into a haplotyper. It works under a probabilistic

model; it searches for a collection of partial solutions according to a relative likelihood

function of reads and a set of candidate haplotypes. This collection consists of a set

of k-length haplotypes, from the 1st SNP to the kth SNP. HapTreeX extends these

haplotypes to the k+ 1th SNP position. It iterates this procedure until it covers the full

haplotype length[40].

3.4.4 Chromosome isolation

One direct, yet complicated and labour intensive, approach to haplotyping is chromo-

some isolation. Fan et al. proposed to separate chromosomes during the metaphase

to capture each chromosome. Afterwards, the method collects chromosome by chromo-

some, makes two sets of parental chromosome sets and then amplifies and genotypes
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Figure 3.5: Haplotyping with the help of transcriptome data This figure shows
the allele connectivity via paired reads (a), RNA-Seq reads (b), and DASE information
(c). By ‘DNA-seq reads’, here, we mean genomic sequence reads. Part (d) shows the
length of the region of effect for each of the information layers. This figure is adapted

from [40]

each set. Since the alleles in each set belong to one chromosome, there is no need for

haplotype assembly. In principle, it is possible to sequence each chromosome set to

detect SNVs as well[41].

3.5 Single cell sequencing technologies with NGS

3.5.1 Linked-read data (10X Genomics)

Zheng et al. introduce another type of sequence reads called linked-reads[42]. Con-

ceptually, a linked-read is a collection of highly accurate short reads which are known

to be sampled sparsely from one chromosome. This information is provided by means

of sequence barcodes; however, the order of the reads in the fragment is not known

but can be inferred, for example, by mapping them to the reference. The underlying

technology works based on “in emulsion PCR”. It consists of 1) a number of gel beads,

each of which contains 16 letter unique barcodes, necessary sequence adapter and poly-

merases and 2) a microfluidic system. High-weight DNA sequences (<100kb) are loaded

into the gel-beads (or droplet) and the fragments in each droplet are barcoded with

one barcode. Afterwards, the emulsion is broken and the reads with the barcodes are
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sequenced (Figure 3.6). Since both the number of fragments per gel-bead and the size

of the high-weight DNA sequences in each gel-bead are limited, the chance of loading

two fragments from two chromosomes of the same homolog is very low (0.5%[42]). The

length of initial fragments can also be integrated to reduce this chance. Therefore, it

is highly probable that the reads with the same barcode that are mapped to a specific

region in the genome are from one haplotype. Although the coverage of each fragment

in one droplet is very low, it provides highly accurate information about distant alleles.

Long Ranger : This software integrates linked-reads and defines a probabilistic model

consisting of the matrix of connected alleles via linked-reads together with the variant

qualities as the observation, and it tries to maximize the likelihood function of having

a phase given the observed reads. It is worth mentioning, in order to further reduce

the chance of seeing two fragments from different homologs which by chance are loaded

to one droplet, those barcodes with inter-read gap lengths of >50kb are excluded. The

algorithm, firstly, tiles the genome into blocks of 40 variants and applies a beam search

algorithm to find a near-optimal solution. Then the junctions between blocks are connec-

ted via the reads spanning the consecutive blocks. Afterwards, it inverts the haplotype

assignment iteratively to increase the likelihood until it converges. The last step of the

algorithm is finding the weak break point to break the haplotypes into highly confident

blocks. These breakpoints are obtained by inverting the haplotype on the left side of

the breakpoint and calculating the score of the inverted one. This algorithm results in

haplotypes of several Mbs[42].

Figure 3.6: The schematic view of 10X genomic pipeline from high molecular
weight fragments to assembled haplotypes. (adapted from [43])
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3.5.2 Strand-seq

Strand-seq is a single cell protocol that allows sequencing of a single strand of a chro-

mosome, either forward (Crick strand, shortly C) or reverse (Watson strand, shortly

W). The complement strand of each sister chromatid is labelled with bromodeoxyur-

idine (BrdU) during replication, instead of thymine. After cell division, there are four

possibilities for the original strands in daughter cells, i.e., containing C/C, W/W, W/C,

and C/W. The replicated strand can be distinguished by the BrdU labels and removed

before sequencing. Therefore, after the sequencing of each cell, the original strand of the

mother cell can be distinguished by mapping the reads onto the reference. The reads

from the Crick (Watson) strand would be mapped to the forward (reverse) reference;

hence, the paternal and maternal reads will be separated according to the mappability

to the forward/reverse reference. Therefore, W/C and C/W regions are used to give

haplotype information.

One difficulty of using such data is the low coverage, which is about 0.1x. Thus, sequen-

cing of one single cell provides very sparse but chromosome-wide haplotype information.

The connection between alleles could span the areas problematic for haplotyping such

as centromeres and non-heterozygous regions. To deal with the low coverage, many

cells need to be processed[44]. This protocol moves the challenge from haplotyping to

sequence assembly since the origin of each read can be obtained via the directionality of

the mapping.

Figure 3.7: Strand-seq pipeline. (adapted from [44])

3.6 Third-generation sequencing

Like for genome assembly, the accuracy and the length of sequence reads are among the

main parameters for haplotype assembly. Third-generation sequencing, which is also

called Single Molecule Real-Time (SMRT) sequencing, such as PacBio and Nanopore,

provides much longer reads than NGS data with the length ranging from 2-20kb, albeit a
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higher error rate (10%). These reads can connect several polymorphic sites and improve

the allele connectivity for haplotyping. However, the high error rate can convert one

allele to the other and cause flipping or switch errors in assembled haplotypes. The

high error rate could be reduced by making consensus reads via all-vs-all alignment of

these reads; however, the strategy of making consensus sequences comes with the cost

of needing higher coverage.

3.6.1 ProbHap

Kuleshov suggests a probabilistic model for human haplotyping called ProbHap. He

designed a probabilistic dynamic programming algorithm on a probabilistic graphical

model which optimizes MEC objective function. This model uses the sum-product mes-

sage passing algorithm, which is a generalised model for HMM (Hidden Markov Model).

The objective function is based on the likelihood of reads’ assignment to haplotypes and

probability calculation of this assignment given the alleles and their quality. The former

are the hidden variables of the model while the latter are considered as the observed

variables. [45].

3.6.2 WhatsHap

WhatsHap is another approach designed for so called future-generation sequencing

methods. This tool is developed to be independent of the size of the reads (speculat-

ing that reads will get longer in the future). Like ProbHap, the quality of bases is

considered in WhatsHap; hence, by current sequencing technologies it fits best with

third-generation sequencing data. The WhatsHap core is using the coverage as the

fixed parameter. However, when the fixed parameter is more than 20x coverage, its

performance drops. WhatsHap usesutilizes a dynamic programming approach to solve

a wMEC problem. In the wMEC model the reads are partitioned into two clusters such

that the objective function becomes optimized. The score of a partition is computed by

the sum of the alleles’ scores which needs to be flipped in such a way that the clusters

become conflict free. WhatsHap goes from one end of the scaffold to the other and

calculates the score of all possible 2|reads| bipartitions to find the one with the highest

objective score.

3.6.3 Third-generation sequencing plus NGS reads

Pendleton et al. proposed a single human individual de novo assembly and haplotyping

pipeline. They used 44x coverage of PacBio reads of NA12878 genomic DNA for contig
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assembly using Celera [46] and Falcon assemblers. The contigs were connected through

BioNano genome maps using 80x coverage of long molecules (>180 kb) with mean spans

of 277.9 kb[25]. BioNano, in short, is an optical physical mapping strategy which replaces

specific sequence motifs with a fluorescently labelled sequence on a HMW, i.e. High

Molecular Weight fragments (currently up to 2Mb). The fragments are loaded into a

chip and are linearised and imaged. Knowing the labelled sites in the fragments and

corresponding contigs helps the scaffolding procedure (BioNano Genomics).

For haplotyping, they firstly compared the SNVs and indels called from the high-depth

Illumina trio and PacBio sequencing. They found far more heterozygous polymorphic

sites with Illumina sequencing than only with the PacBio data. Therefore, they integ-

rated the Illumina and PacBio reads to call the SNVs and then connect them via highly

confident reads of both types. They recruited HapCut [32] as the haplotyping method

to obtain the final haplotypes[25].

3.7 Haplotype reconstruction for polyploid genomes

Most of the methods for diploid haplotyping, such as HapCut , base their algorithm

on the fact that the haplotypes in diploid genomes are the bitwise complement of each

other, so they assemble one haplotype and infer the other as its complement. These

methods start with an initial haplotype, which is one among 2#heterozygous sites pos-

sible haplotypes. The initial haplotype can be random or a local optimum based on

the input data. However, this property doesn’t hold for polyploid genomes. First, all

haplotypes should be independently inferred, and the alphabet for haplotypes are not

binary; hence, one true haplotype is one possibility among P#heterozygous sites possible

haplotypes. This characteristic, along with the ambiguity of merging fragment property

(see Section 2.5.1), defines a new problem for polyploid haplotyping. Nevertheless, in a

broader view, both problems can be considered as a clustering problem with P groups,

P = 2 for diploid and P > 2 for polyploid genomes. In a schematic view, there are

different layers of information for polyploid haplotyping, which are depicted in Figure

3.8.

There are a number of methods which are designed for polyploid genomes. An extension

of HapCompass, which was initially designed for diploid haplotyping, SDhaP , H-

PoP , and Ranbow are the most recent and well-known haplotypers. HapTree also has

an extended version for polyploid genomes, but is excluded here, since it needs genotype

information as input, and it has technical issues being run on real and simulated data.
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Figure 3.8: Different layers of complexity for polyploid haplotyping. Skyline
layer: The number of unique sequences of chromosomal segments. Structure layer:
The number of copies of each unique sequence. Haplotypes layer: The number of

variants which are arranged into the haplotypes.

3.7.1 HapCompass

Aguiar and Istrail[47] proposed a graph data structure from reads and polymorphic sites,

called compass graph, to solve the SIH problem under wMFR model. The nodes in this

graph are the possible phases for every two adjacent polymorphic sites. For instance,

for a diploid genome, the two possible phases are ‘00’ (and its complement ‘11’, for

simplicity we merge both and use ‘00,11’) and ‘10,01’. The edges are calculated based

on the number of reads supporting each combination. For example, if there are 5 reads

supporting ‘00’ or ‘11’, and three reads supporting ‘10,01’, the weight is calculated as

5 − 3 = 2. Using this graph, each path provides a haplotype. Positive edges indicate

that ‘00’ is the more pronounced phase, while the negative numbers suggest ‘10,01’ as

the phase. The cycles in the graph might be desired (happy cycles) or conflicting. If

the number of negative edges in a cycle is even then the cycle is happy, otherwise, it’s

conflicting. Aguiar and Istrail defined the problem as removing the minimum number of

edges such that the graph becomes conflict-free. Each spanning tree in a happy compass

graph gives the haplotypes. Based on this, HapCompass finds the maximum spanning
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tree first, and then searches for the conflicting cycles, and solves them until the graph

becomes happy (Algorithm 4).

This algorithm is designed for diploid genomes and needs to be generalized for polyploid

ones. Aguiar and Istrail modified the algorithm and the graph structure for polyploid

genomes. Firstly, the weight definition is redefined based on the likelihood of a possible

phase owing to the complication rooted in the AoM problem, i.e. ambiguity of merging

problem (see Section 2.5.1). For instance, there are two possibilities for connecting

‘00,01,10’ and ‘00,01,10’ nodes (i.e, ‘000,010,101’ or ‘001,100,010’) in a triploid genome.

The weight indicates which one is more probable. Secondly, HapCompass finds a

spanning tree, based on the algorithm mentioned above for diploid, then it keeps the

nodes in the order they appear in the spanning tree. This graph with the ordered nodes

is called a chain graph. The chain graph can be considered as a network flow with P

sources and P sinks. P paths with disjoint nodes and disjoint edges are desired, each of

which represents one haplotype[47].

HapCompass algorithm

input : Set of fragments F , set of polymorphic sites
output: Set of haplotypes H

G← Construct the Compass graph
T ← Find the maximum spanning tree of G
CG ← Find all conflicting cycles
for c ∈ CG do

Resolving the conflicting cycle c by removing edges
Updating the compass graph G after edge removal

end

Algorithm 4: HapCompass algorithm

3.7.2 SDhaP

SDhaP uses a semi-definite programming approach that aims to find an approximate

solution for haplotype reconstruction for polyploid genomes problem by a greedy search

in the space of all possible phasings. The algorithm starts with random initial haplotypes

and tries to find solutions with a maximum score by making changes in the initial

haplotypes according to a gradient descent method[48].
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3.7.3 H-PoP

Xie et al. proposed a method called H-PoP , which models the problem as an optimal

poly-partition problem of reads, called Polyploid Balanced Optimal Partition (PBOP)

model. For the P-ploid genome, PBOP clusters the reads into P groups such that it

maximizes the defined fitness function. This fitness function is calculated according to

the combination of distances between the reads of each group and the distance between

the reads of different clusters. Since this model is NP-hard, they designed a heuristic

dynamic programming algorithm that considers the solution of m reads and then extends

this solution with the aid of the m+ 1th read[49].

3.8 Summary

In this chapter, we reviewed the technologies, protocols, and approaches for single indi-

vidual haplotyping. Firstly, we reviewed human haplotyping and then we mentioned the

polyploid haplotype assembly tools as well. Each of the reviewed types of input data has

a domain of target polymorphic sites. RNA-Seq data provides distant variant connectiv-

ity in the range of gene size and the whole genome, respectively. Population data helps

to fill the gaps in the inner recombination hotspot regions. Additionally, the linked-reads

give long range connection, in the range of 100kb according to the library preparation,

with high accuracy, but with a huge amount of gaps in between. Strand-seq protocol

provides the whole chromosome range connectivity but in a very sparse way. Recently,

third-generation sequencing technologies, such as PacBio and Nanopore, provide long

sequence reads. The drawback of using such data is its high cost and error rate. Fig-

ure 3.9 represents a schematic view of how different methods find the connectivity of

variants. All in all, the mentioned methods are either inefficient to call whole chromo-

some haplotypes or are costly; hence, this field is still open to both methodology and

technology improvement.

In the last section of this chapter, we reviewed the state-of-the-art methods for poly-

ploid haplotyping. We explained why polyploid haplotyping is more challenging than

diploid haplotyping. Moreover, some of the mentioned protocols for diploid haplotyp-

ing are either too expensive and laborious to be applied to polyploid genomes, such as

haplotyping with chromosome isolation, or not applicable owing to the higher ploidy,

like Strand-seq. High error rate in third-generation sequencing data makes the problem

more complicated since it is hard to distinguish true alleles from erroneous sequences.

However, the high heterozygosity which is seen more often in polyploid genomes helps

to utilize the highly accurate short reads for phasing; the higher the heterozygosity, the
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greater the chance of capturing alleles through short sequence reads. This characteristic

led us to design a novel method for polyploid haplotyping. In the next chapter, we

explain this method in detail.

Figure 3.9: A schematic view of allele connectivity via different types of
data. One circle is one variant, either called (green and orange) or not called; The

called variants could be lowly accurate (orange) or highly accurate (green)



Chapter 4

Haplotype assembly of polyploid

genomes

4.1 Introduction

In the previous chapter, the technologies, protocols, and methods to address single indi-

vidual haplotyping for diploid and polyploid genomes were reviewed. In this chapter, we

explain a novel method, called Ranbow , for reconstructing haplotypes of a polyploid

genome from sequence reads (the name is inspired by “rainbow”; as raindrops split the

white light into the light spectrum, Ranbow splits the reference sequence into its hap-

lotypes). In the following sections, firstly, we give the mathematical problem definition

of polyploid haplotype assembly. Then, Ranbow is explained in detail. Note that the

terms such as interpolymorphic regions, haplotypes in nucleotide space, haplotypes in

coded allele space, which are used in following sections, are defined in Section 2.2

Recall that for haplotype reconstruction of an organism, its reference sequence (Fasta

file), variants (VCF file), and aligned reads (BAM or SAM file) are consider as the input.

The goal is producing a list of aligned sequences as the haplotypes.

4.2 Problem definition and formulation

A haplotype is the sequence of nucleotides in one chromosome. The homologous chromo-

somes of an individual are similar to each other, except for the polymorphic sites; thus,

these haplotypes could also be considered as series of interpolymorphic regions, regions

which are equal to each other among homologous chromosomes, (denoted as di’s) and

the heterozygous variants at SmP sites, i.e. Small Polymorphisms, (shown as vj [i]’s)

49
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Figure 4.1: Haplotypes in nucleotide and coded allele space. This figure
illustrates how haplotypes are transferred from nucleotide space to coded allele space.

between them (see Figure 4.1-nucleotide space panel for illustration and Section 2.2 for

the definitions). For example the haplotype sequences in a triploid genome with three

polymorphic sites are:

hNucleotide space
1 = d0.v1[1].d1.v1[2].d2.v1[3].d3

hNucleotide space
2 = d0.v2[1].d1.v2[2].d2.v2[3].d3

hNucleotide space
3 = d0.v3[1].d1.v3[2].d2.v3[3].d3

(4.1)

where ‘.’ indicates the concatenation operation of sequences. Due to the fact that di’s

are identical among all homologous chromosomes, they can be removed and a haplotype

can be simplified and represented as (see Figure 4.1):

ĥj = vj [1].vj [2].vj [3]...vj [n] (4.2)

where n is the number of polymorphic sites and vj [i]’s are the variants. For more

simplicity vj [i]’s are coded into numbers ranging from zero to P − 1, where P is the

ploidy of the organism, 0 refers to the reference allele, 1 refers to the first alternative

allele, 2 to the second one and so on. By this definition, all type of SmPs are coded into

numbers. Recall that a SmP could be a single nucleotide polymorphism, multinucleotide

polymorphism, or an indel (see Section 2.2 for definitions). Therefore, a haplotype can
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be written as Eq.4.3, which is called haplotype in coded allele space. (see Figure 4.1-

Coded allele space panel as an example):

hCoded allele space
j = hj = aj [1].aj [2].aj [3]...aj [n] (4.3)

where aj [i]’s are the coded variants. In this chapter, by default haplotypes are considered

in coded allele space.

In order to convert back a haplotype from coded allele space into nucleotide space after

haplotype assembly, first the numbers are transformed to variants (aj [i] → vj [i]) and

then, the interpolymorphic sequences (di) are inserted between the variants.

Computed versus ground truth haplotypes: In order to clarify if a haplotype is

computed or is a ground truth, we define the following sets, where H is a set of computed

haplotypes and HTrue is a set of ground truth haplotypes:

HTrue = {htrue1 , htrue2 , htrue3 , ..., htrueP }
H = {h1, h2, h3, ..., hq}

where q ≤ P
(4.4)

where P is the ploidy and q is the number of assembled haplotype. q might be less

than P because there might be a lack of signal such as missing sequence reads from

haplotypes.

Fragment: A fragment f is a sequence of variants which are covered by an aligned read

(recall that the variants and the reads are the inputs). To construct a fragment from a

read, firstly variants are found in the read. Then, the regions between polymorphic sites

are removed and each variant is coded into a number according to the genotype. Figure

4.2 depicts how a read is converted to a fragment. Figure 4.2-A shows sequence variants

and how they are coded into numbers. Figure 4.2-A shows two tables, one containing a

list of variants and their positions in nucleotide space and the other containing the same

variants but in coded allele space. The former helps to identify the starting point, the

length, and the sequence of a variant, while the latter transforms them into coded allele

space.

Figure 4.2-B illustrates a read which covers four sequence variants and a missing allele

(explained in the next paragraph): a deletion, a reference variant, an insertion, a missing

allele, and a substitution, respectively. These variants are the ith to i+4th variants in

the variant list meaning that the variants before ith and after i+4th positions are not

covered by the read.
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If a read contains a variant which is not reported in the list, it is considered as missing

data or a missing allele (shown in Figure 4.2-B in purple). In general, a missing allele

in a fragment is a SmP, or small variant, which is not covered by the fragment and is

represented by ‘−’. If the fragment contains a variant, we need to checked whether it is

reference or alternative and how it is coded into numbers (Figure 4.2-A-right).

Figure 4.2: Conversion of a read to a fragment: There are three type of variation
(insertion, deletion, and a substitution) covered by the read. This figure shows how the

information is formulated into the fragment sequence.

Similarity and dissimilarity functions: Similarity and dissimilarity functions are

defined as follows:
sim(f1, f2) =

∑
n
k=11.s(f1[k], f2[k])

dim(f1, f2) =
∑

n
k=11.d(f1[k], f2[k])

(4.5)

s(f1[k], f2[k]) =

1 f1[k] = f2[k] & f1[k] 6=′ −′ & f2[k] 6=′ −′

0 Otherwise

d(f1[k], f2[k]) =

1 f1[k] 6= f2[k] & f1[k] 6=′ −′ & f2[k] 6=′ −′

0 Otherwise
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where, f1 and f2 are two fragments and n is the haplotype length. s(f1[k], f2[k])

(d(f1[k], f2[k])) returns ‘1’ if the two variants f1[k] and f2[k] are available and identical

(different).

The similarity function goes over all variants covered by fragments and checks whether

the variants at each polymorphic site are equal in both of the fragments. It computes

the number of polymorphic sites in which both fragments carry the same variant; hence,

if they carry different variants or one of the fragments carries a missing allele, the

polymorphic site is not counted. The dissimilarity function is defined in the same way

but it computes the number of different available (non-missing) variants.

Haplotype segment: A haplotype segment is a consensus sequence of a set of frag-

ments (F ′ = {f1, f2, f3, ..., ft} ⊂ F ) which is computed by function Merge function

and is defined as:

s = merge(F ′) = argmax
s′

∑
fk∈F ′

sim(fk, s
′) (4.6)

where F ′ is a set of fragments and s is the haplotype segment computed as the consensus

haplotype of F ′. The function which computes s is called merge function. Having

computed s, F ′ is also called Supporting fragments of s which is explained later in

more detail.

A segment is either a fragment or a consensus sequence of a set of fragments. The former

stems from a haplotype and the latter is predicted to be originated from one haplotype.

Hence, each segment is supported by one or more fragments, and each of its variants is

covered with at least one fragment.

Note that the merge function (Eq.4.6) does not solve the Ambiguity of Merging Problem

(AoM problem) (see Section 2.5.1), while it assumes the input set F ′ is already not

ambiguous and all fragments fk ∈ F ′ stem from one haplotype. The solution for AoM

problem is explained in Section 4.3.

The aim of haplotype reconstruction is assembling all or a subset of all fragments

F = {f1, f2, f3, ..., fm} into assembled haplotypes H = {h1, h2, h3, ..., hP }. In an ideal

scenario, i.e. sufficient accurate signal such as availability of sufficient coverage and

long enough and error-free fragments, the aim of haplotype reconstruction is to merge

fragments into exactly P haplotypes which are one to one equal to the ground truth

ones:

sim(hi, h
True
j ) = n : hi ∈ H, hTrue

j ∈ HTrue (4.7)
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where H and HTrue are sets of computed and ground truth haplotypes, respectively,

and n is the length of the haplotypes.

In reality, due to sequencing errors, mapping errors, and lack of connectivity between

alleles, haplotypes may be assembled partially. So, the aim of haplotype assembly is

computing a number of haplotypes with maximum length and maximum similarity (or

minimum dissimilarity) with the ground truth ones.

4.2.1 Terminologies for Ranbow algorithm

We view haplotyping as clustering of fragments in seed regions. One seed region, its

SmPs and aligned reads are illustrated in Figure 4.3 in both nucleotide and coded allele

spaces. These seed regions are called ‘masks’ which is explained below. This helps

us to avoid the AoM problem (see Section 2.5.1). Our approach looks at the allele

combinations in sets of polymorphic sites. To this end, we first define a mask:

Mask (msk): A mask msk is an ordered set of indices of polymorphic sites. For

instance, (1, 2, 4) or (2, 4, 6) are two masks in a haplotype with seven polymorphic sites

(all indices are (1, 2, 3, 4, 5, 6, 7)). Figure 4.4-A shows one mask msk1 covers 3, 6, and 8

indices; hence, msk1 = (3, 6, 8).

Seed sequences of a mask (tmsk): A seed sequence is a subsequence of a fragment

excluding ‘−’s. It indicates the sequence pattern in one fragment at the indices of the

mask. For example, having fragments f1 = -0102-1 and f2 = 12111-3, t
(2,4,7)
1 = 001 and

t
(2,4,7)
2 = 213 are two seed sequences of the mask (2, 4, 7). Hence:

fk[mski[j]] = a[j] : a[j] ∈ tmski (4.8)

where a[j] is the variant of tmski at index of mski[j] belonging to fk. Figure 4.4-A shows

the corresponding seed sequence of msk1 = (3, 6, 8) covered by f1.

Set of seed sequences(Tmski): Tmski is defined as all seed sequences covered by a mask

mski. Figure 4.4-A and Figure 4.4-B illustrate two examples of regions covered by one

and three fragments. f1 contains ‘121’ at indices (3, 6, 8) so t
(3,6,8)
1 = 121. In Figure 4.4-

B, each of f2, f3, and f4 contributes one seed sequence to the mask msk2 = (20, 22, 24).

‘001’ and ‘002’ are covered by one (f3) and two (f2,f4) fragments, respectively; hence,

‘001’ and ‘002’ have sets of supporting fragment of length one and two. Figure 4.4-C

indicates that neither of the shown fragments constitute a seed sequence for the mask

‘34’ and ‘44’.
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Figure 4.3: From sequence reads to initial haplotypes of a triploid genome
in a mask region. The fragments are clustered according to the seed sequences
they carry. There are three clusters; each constructs one haplotype segment (shown
in blue boxes). The haplotype segments are supported with four, three, and three
fragments, respectively (blue, red, and green fragments). The purple read and fragment
are erroneous which is put asside from the assembly. Two tables are shown in the lower
part of the figure. The left one is in nucleotide space and the right one is obtained by
transforming the left table into coded allele space. Recall that the reference, aligned

reads, and list of variants are the inputs.

Depending on the number of reads mapped to a region, one mask may be covered with

zero, one, or a few fragments, each of which contributes one seed sequence to a mask.

If a read contains variants of all indices indicated in a mask, it contributes one seed

sequence to it. Besides, a fragment may contribute several seed sequences to different

masks. Figure 4.5 shows all possible seed sequences contributed by one fragment. In this

example, the length of seed sequence varies from two to four. Having four polymorphic

sites covered with the fragment fk ∈ F , the number of seed sequences of lengths two,

three, and four are
(

4
2

)
,
(

4
3

)
, and

(
4
4

)
, respectively.
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Figure 4.4: An illustration of masks and their seed sequences. (A) shows the
mask (msk1), its seed sequence (‘121’) and the fragment containing this seed sequence
(f1). (B) depicts a mask (msk2) and the three fragments covering the mask. Since the
seed sequence of f2 and f4 are identical, both contribute one seed sequence to the mask

msk2, therefore, the set of seed sequences T (20,22,24) contains t
(20,22,24)
1 and t

(20,22,24)
2 .

(C) shows a masks msk3 with no seed sequence

Supporting fragment of a seed sequence (Ftmski ): Ftmski is a set of fragments

which are contributing to a seed sequence tmski . therefore:

Ftmski = {fk|fk[mski[j]] = a[j]} (4.9)

where tmski is a seed sequence, fk ∈ F , and a[j] is a sequence variant. Eq.4.9 indicates

the variants in seed sequence and fragment at corresponding index are identical. Set

of all masks (MSKall): MSKall is the collection of all masks with a length of two or

more:

MSKall = {mski|mski ⊂ {1, 2, .., n}, 2 ≤ |mski|} (4.10)

where n is the number of polymorphic sites. Potentially, there are
∑n

k=2

(
n
k

)
= 2n−n−1

seed sequences available with n polymorphic sites.

4.3 Method

The AoM problem as a critical challenge in polyploid haplotyping was defined and ex-

plained in Section 2.5.1. To overcome this problem, we need to consider the information
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Figure 4.5: All possible seed sequences contributed by one fragment. The
depicted fragment covers four polymorphic sites. The seed sequences of length two,
three, and four are shown in panel B. As it is shown in panel A, the number of seeds

of length two, three and four are six, three, and one, respectively.

of neighboring reads; hence, we defined masks and their seed sequences in Section 4.2.

Figure 4.6 depicts a schematic view of how one mask is phased to the haplotypes ac-

cording to the supporting fragments of their seed sequences. This figure is illustrated

in nucleotide space to make it more understandable. In this example, only polymorphic

sites are illustrated (interpolymorphic regions are not shown). The colors in the refer-

ence indicate that the genome can be tiled into subregions each of which is similar to

one of the haplotypes. One seed sequence represents part of a haplotype, therefore, seed

sequences are illustrated in different colors.

A mask and its seed sequences can be considered as a window on the reference sequence

and mapped reads. Ranbow (Algorithm 5) finds all masks for which at least one seed

sequence is available (Section 4.3.1 - Figure 4.6-a,b). Then, it extends the seed sequences

with the aid of supporting and neighboring fragments (Section 4.3.2 - Figure 4.6-c,d).

Adjacent masks may overlap. Ranbow utilizes a graph data structure with haplotype

segments as nodes and overlaps of haplotype segments as its edges. Section 4.3.3 explains

how the overlapping masks can be merged. In order to phase the regions with fewer

than P unique haplotypes, e.g. two of the chromosome sequences are similar in a region,

some restrictions are applied to the mask phasing, which are explained in Section 4.3.4.
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Figure 4.6: Schematic view of a mask phasing for a hexaploid genome. a)
Illustrates a reference genome and possible masks (arrows). The colors in the reference
indicate that the genome can be tiled into subregions each of which is similar to one of
the haplotypes. b) The arrows are shaded according to the masks’ read support. The
one with the highest support (shown in black) is selected and phased. c) The mask is
phased into its six seed sequences. d) The purple seed sequence and its supporting reads
are shown. After error correction the reads are merged into one assembled haplotype.

4.3.1 Mask and seed sequence finding

Each seed sequence is a subsequence of one aligned fragment, and each fragment is

sampled from one chromosome; thus, one seed sequence represents one haplotype. P

unique seed sequences of a mask represent P unique haplotype segments. For instance, in

a hexaploid genome, a mask with six seed sequences is phased into its six segments. The

number of seed sequences in a mask could be smaller than P either due to the similarity of

alleles in different homologous chromosomes or because of errors from upstream analysis

such as base calling, genome assembly, mapping, and variant calling steps. By obtaining

all of the masks (mski ∈ MSKalls) and their sets of seed sequences (Tmski for a mask

mski) with length P or more (|tmski | ≥ P ), we phase the genome into Haplotype

Blocks, shortly blocks or bmski , of P haplotypes. Considering |Tmski | as the cardinality

of the set Tmski , or the number of seed sequences in Tmski , there are three conditions

for different values of |Tmski |:
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i |Tmski | < P indicates there is not enough information for phasing the region to P

haplotypes. This situation may happen either because some haplotype segments

are equal or due to lack of sampled sequence reads, i.e. low coverage, or errors in

data. The algorithm for dealing with these regions is explained in Section 4.3.4.

ii |Tmski | = P implies that each seed sequence represents one haplotype segment.

The mask is phased into its haplotypes.

iii |Tmski | > P indicates error in the mask. These masks are phased into their seed

sequences after applying the error correction step. P seed sequences are kept after

error correction, so that the second condition is met. The erroneous seed sequences

are detected according to their fragment supports. The smaller the number of

supporting fragments, the higher the probability of this being an erroneous seed

sequence. In fact, in this case we delete the seed sequences deemed erroneous and

keep only P seed sequences. We call this error corrected set Θ(Tmski) which is

defined as:

Θ(Tmski) =


Tmski , |Tmski | = P

Tmski
corrected, |T

mski | > P

∅, |Tmski | < P

(4.11)

where mski is a mask, Tmski is a set of its seed sequences, and Tmski
corrected is the

corrected set of seed sequences of mski when |Tmski | > P . When |Tmsk| > P ,

the seed sequences with less read support are considered as error and are removed

to make |Tmsk
corrected| = P . Figure 4.7 illustrates detecting and correcting erroneous

fragment for a triploid genome. There are four seed sequences detected for mask

(7, 9), so T (7,9) = {20, 11, 10, 22} each of which supported with three, two , two ,

and one fragments, respectively. Hence, F (7,9) = {F20, F11, F10, F22} = {3, 2, 2, 1}.
Since we know the genome is triploid as a prior information and F22 has the

minimum amount of supporting fragment, ‘22’ is considered as error and is removed

from T (7,9). Now, |T (7,9)| = P and condition (ii) is meet.

Ranbow finds all of the masks and their seed sequences and checks if the conditions

(ii) or (iii) hold. The algorithm proceeds with the following steps: Mask finding and

Mask ranking.

4.3.1.1 Listing masks

Given a fragment list F as input, the goal is obtaining all seed sequences and masks

with the following properties:
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Figure 4.7: An Illustration of errors detection when Tmsk > P for a triploid
genome: Reads with same seed sequences are depicted in same color. Seed sequence
‘22’ is the erroneous seed sequence because it is supported with one fragment while the

other seed sequences are supported with at least two fragments.

i |msk| ∈ {2, 3, ..., k}

ii |Tmski | ≥ P

Finding all available masks is not trivial. There are potentially 2n−n−1 possible masks,

where n is the number of polymorphic sites, but not all of these regions are supported

with fragments. To obtain all available masks and their seed sequences, we used a

data structure of two nested hash tables. The keys in the outer hash table, HR (Hash

table of masks), are masks and the values are hash tables. The inner hash table keeps

seed sequences as a key and a list of supporting fragment as the value. For instance,

|HR(0,2)
00 | = 7 means there are 7 fragments supporting seed sequence ‘00’ in loci 0 and 2.

To fill the mentioned data structure, Ranbow goes through the fragments list. Each

fragment contributes a number of seed sequences to their corresponding masks. A frag-

ment with k non-missing alleles contributes 2k−k−1 seed sequences to different masks.

For example, the fragment fi = 00-1 contributes 1 support to each of the following seed

sequences and masks:

t(0,1) = 00

t(0,3) = 01

t(1,3) = 01

t(0,1,3) = 001

Consequently it contributes one support to:
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HR
(0,1)
00

HR
(0,3)
01

HR
(1,3)
01

HR
(0,1,3)
001

Using this data structure, Ranbow fills HR independent of the position of fis, their

lengths, and the scaffold size.

This data structure provides a fast way to find all of the masks, seed sequences, and

the supporting fragments. This algorithm provides all available masks (we call this set

MSK) and ignores masks with no supporting fragments.

Two masks, mski and mskj , may overlap at one or more loci. By phasing mski, there

are two possibilities for phasing mskj .

i mskj ⊂ mski: mskj is already phased by mski; thus, there is no need to phase

the region again.

ii mskj 6⊂ mski: mskj needs to be phased.

Condition i indicates that the order of phasing masks is important and influences the

results. This raises the question of which mask has higher priority for being phased.

4.3.1.2 Mask ranking

Given MSK, Tmsk, and Ftmsk , Ranbow ranks the masks according to the least suppor-

ted seed sequence of the mask. The fitness for each mski is defined as:

ψ(mski) = min
tmski∈Θ(Tmski )

|Ftmski | (4.12)

where Θ is defined in Eq.4.11 as the corrected set for Tmski , Ftmski is a set of supporting

fragments for seed sequence tmski .

This defines a fitness function ψ(mski), which computes the fitness according to the read

support for the P th highest supported seed sequence. Each seed sequence has a number

of supporting fragments. We sort them descendingly and the P th number in the sorted

list is considered as the fitness of the mask. The reason behind this is that the masks

with more support for the weakest seed sequence are more reliable to be phased first. For

instance, for the situation depicted in Figure 4.7, mski = (7, 9) and ψ((7, 9)) = 2 due
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to the fact that the least supported seed sequences are supported with two fragments,

which are colored in green and yellow. The red fragment is an error because the genome

is assumed to be triploid.

An error in a supporting fragment may occur either in masks or non-masks positions.

For instance, consider fi = 12111-3 as a fragment, msk = (1, 2, 4) as one mask, and

t(1,2,4) = 121 as one of its seed sequences. An error may occur in positions 1, 2, or 4,

i.e. error in masks, or in positions 3, 5, or 7, i.e. error in non-mask. Note that, the

error correction function Θ only corrects the errors in masks positions. The variants in

non-masks indices can be corrected via merge function which was defined in Eq.4.6 (see

details in Section 4.3.2).

The masks are ranked based on the fitness defined in Eq.4.12. For phasing a mask

we prefer to phase the one with higher score. The higher the score is, the higher the

priority for a masks to be phased. We use MSKranked notation when the mask is sorted

as explained.

4.3.2 Phasing a mask and its extension

Constructing a list of ranked masks, here, we explain how a mask is phased, and how

the segments in a phased mask are elongated.

4.3.2.1 Phasing a mask with P seed sequences

Given a mask mski and its P seed sequences (tmski
j ∈ Tmski) each of which are supported

with supporting fragments F
t
mski
j

as input, Ranbow phases mski into its P haplotype

segments (defined in Section 4.2) and collects them in a set called a Haplotype Block

bmski :

bmski = {smski
j |smski

j = merge(F
t
mski
j

)} (4.13)

where smski
j is a haplotype segment and merge function is defined in Eq.4.6.

We define a haplotype block as:

Haplotype Block (bmski): A set of haplotype segments (smski
j ) with the following

properties: 1) Initiated from one mask (mski). 2) The haplotype segments are construc-

ted from the supporting fragments (F
t
mski
j

) of the seed sequences of the mask 3) The

haplotype segments are elongated by neighboring fragments.
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Here we discuss the elongation of a haplotype block by overlapping fragments. Re-

call that, a matching overlap does not provide enough information to apply the merge

function due to the AoM problem (Section 2.5.1). Here, this problem is addressed by

recruiting the information of the other overlapping sequences.

For this purpose, we define the following criteria for a segment si and a fragment fk,

which is called a matching overlap:

i) sim(si, fk) > 0

ii) dim(si, fk) = 0
(4.14)

where sim and dim functions are defined in Eq.4.5. Recall that a segment could be

a fragment or a set of fragments (Section 4.2-haplotype segment); hence, the matching

overlap can be checked between one fragment and one segment or two segments. Let si

and sj , be two different segments belonging to bmski , and fk be an overlapping fragment,

we are looking for the criteria in which fk and si can be merged with no ambiguity. First

let’s discuss if fk shares a matching overlap with si, then, the following cases may happen:

I fk shares non-matching overlaps with all of sj ’s; hence, there is one possibility for

fk to be merged with, and that is si. The fk has to have non-matching overlap

with P − 1 segments and have matching overlap with si in order to be merged

with no ambiguity. This assures that fk belongs to one and only one haplotype.

We call this kind of overlap a unique match (see Figure 4.8 for an illustration of

unique match in nucleotide space) between si and fk.

II fk shares a matching overlap with sj ; so there is no signal to explain whether fk

belongs to si or belongs to sj .

III The same applies if fk does not share an overlap with one segment sj . This means

there is no signal to distinguish if the overlap between sj and fk is matching or

not; therefore merging would be ambiguous.

Secondly, fk may have P mismatching overlap, which provides the same condition for

a unique match by finding the errors in one of the overlaps. We define the selecting

scoring function, Φ in order to distinguish which overlap is more likely to be the one fk

could be merged with:

sselected = argmin
si∈bmsk

Φ(si, fk)

Φ(si, fk) = sim(si, fk)− dim(si, fk)2
(4.15)
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where sselected is the selected segment to be merged with fk, Φ(si, fk) is the scoring func-

tion evaluating which segment si is more likely to have originated from the haplotype

which fk belongs to, therefore, can be merged with fk. Φ is designed to penalize the

erroneous haplotypes and to select the segment with higher similarity and lower dissim-

ilarity with fk. This condition is also called a unique match, in the following steps of

the algorithm.

Figure 4.8: Uniquely matched overlap between a fragment and a set of hap-
lotypes. The only matching overlap between the fragment and the block is “A”. Since
there is just one matching overlap and five mismatching overlaps, the new fragment

can be merged with the yellow haplotype segment.

4.3.2.2 Block extension

Given haplotype segments of a block si ∈ bmskt and a fragment list F , si’s can be

extended using neighboring fragments. We define a set of overlapping fragments of a

block (F ′) as follows:

F ′ = {f ′j |f ′j ∈ F,∀si ∈ bmskt : sim(f ′j , si) + dim(f ′j , si) > 0} (4.16)

where similarity and dissimilarity functions were defined in Eq.4.5. For block extension,

Ranbow selects a fragment f ′j and a segment si such that:

f ′j , si = argmax
f ′
j∈F ′,si∈bmskt

Φ(f ′j , si) (4.17)

where Φ(f ′j , si) is defined in Eq.4.15. Eq.4.17 indicates Ranbow selects f ′j and si such

that their overlap provides the maximum score. Then the supporting fragment of si,

i.e. F si , is updated, and consequently, updated F si results in a new si:

F si ← F si ∪ {f ′j}
si = merge(F si)

(4.18)
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Now, the haplotype block is extended in length so it may overlap with new fragments.

These steps are done iteratively until the segments in a haplotype block converge.

In other words, at each iteration Ranbow selects a fragment, if possible, to merge it

with one haplotype. After merging, the new fragment overlaps are introduced and the

scores between the segments in the block and the overlapping fragments are updated.

This leads to the block extension as it is shown in Figure 4.9.

Figure 4.9: The seed extension process: a) A constructed seed and its corres-
ponding haplotypes. b) Seed extension by uniquely matched reads c) iteratively the

blocks are getting longer and the final block is constructed.

4.3.3 Merging overlapping and connected masks

Block extension is applied on all phased masks. Although the two masks mski and mskj

do not share any overlap, their extended blocks namely, bmski and bmskj , might overlap.

There might be fragments (from single-end, paired-end, and mate-pair reads) which are

partly used in si ∈ bmski and partly used in sj ∈ bmskj . In other words, one fragment

fi could be a member of several segments of different blocks (fi ∈ F sj ∩ F sk |j 6= k);

hence, it provides information to merge the haplotype segments it belongs to. In the

next step, we recruit these connections to merge the overlapping segments to elongate

the segments. We call this procedure Merging overlapping haplotype segments.

4.3.3.1 Overlapping haplotype segments

Given a list of blocks B = {bmsk1 , bmsk2 , ..., bmskb} and the supporting fragments of

the segments in these blocks, the aim is using the connections between the segments for

elongation of haplotypes. We model this problem as a weighted k-partite graph G(V,E),

in which:

V = {sx|sx ∈ bmskt , 1 ≤ t ≤ b}
E = {e(sx, sy)|sx ∈ bmski , sy ∈ bmskj , i 6= j}

(4.19)
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where sx and sy are two haplotype segments belonging to bmski and bmskj , respectively,

as the nodes of the graph, e(sx, sy) is an edge between sx and sy. We define weights,

w’s, for the edges which are calculated as the number of fragments which belong to the

intersection of supporting fragments: F sx ∩ F sy . We draw an edge between two nodes

if F sx ∩ F sy 6= ∅.

Graph G is multipartite, each bmskt is a partition, so there is no edge connecting the

nodes inside a partition. Nodes are partitioned according to the haplotype blocks. In

the ideal scenario, i.e. no error in input data, each path or cycle in this graph indicates

an elongated haplotype segment, called here desired paths and desired cycles. There

might be paths occurring due to errors in the graph, i.e. conflicting paths. Figure

4.10 depicts a schematic view of graph G.

Figure 4.10: Schematic view of graph G: This figure shows a number of fragments
and their corresponding edges in graph G. The fragments with missing alleles may be
obtained from paired reads. If two reads of a pair are mapped into two haplotype

segments of different blocks, one edge is assigned between the nodes.

4.3.3.2 Conflicting paths, desired paths, and desired cycles

Conflicting paths: A conflicting path is defined as a path which connects two nodes

of the same partition. This means two segments of one block should be merged which

violates the definition of segments in haplotype blocks and also the definition of parti-

tions in a k-partite graph. For instance, Figure 4.11-B depicts three conflicting paths.

smsk1
0 → smsk2

0 → smsk1
1 is a conflicting path because this path indicates smsk1

0 and
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smsk1
1 , which are two distinct segments, are essentially originated from one haplotype.

This creates a conflict. Conflicting paths occur due to errors in the set of edges (E).

Desired paths: A path which is not conflicting is called a desired path.

Desired cycles: Edges of a cycle are supporting each other; this gives us a better

clue for the connectivity of haplotypes. For instance, for a cycle with length three of

smsk1
0 → smsk2

1 → smsk3
0 → smsk1

0 (shown in Figure 4.11-A(Blue)) every path between

a number of nodes, e.g. smsk1
0 → smsk2

1 → smsk3
0 , is supported by another path, e.g.,

smsk3
0 → smsk1

0 ; thus, firstly, we base the elongation step on these cycles.

Figure 4.11: Desired cycles, desired paths, and conflicting paths. A and B
illustrate two desired cycles (blue), one desired path (green), and three conflicting paths
(red). The conflicting paths are those containing two nodes of the same partition. In
desired cycles the connectivity between two nodes are not only supported with a direct

edge but also supported through the path of other nodes of the cycle.

4.3.3.3 Merging the haplotype segments in non-conflicting cycles

In order to find desired cycles and paths, first the graph should be constructed which is

a costly task due to the following reasons:

i Finding all non-conflicting cycles in the graph is of high time complexity

ii It is costly to find all edges in G because all pairs of segments need to be checked

to see if they share fragments or not.

Moreover, the probability of having an edge between distant haplotype segments is

low. Therefore, we designed a greedy algorithm which avoids constructing the whole
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graph. It, first, constructs the graph partially and finds cycles with the length of

three, called here triangles. For this purpose, Ranbow sorts haplotype blocks (B =

{bmsk1 , bmsk2 , ..., bmskb}) based on their starting positions and constructs a new list of

blocks called Bsorted. Recall that a haplotype block which is defined in Section 4.3.1, is a

collection of haplotype segments which are obtained from a mask. The starting position

of a block is the smallest starting position of its segments. Let l be the length of a

sliding window covering a number of neighboring blocks in Bsorted. In Figure 4.13, red

rectangles are the sliding windows with the size of four, l = 4. Then, Ranbow searches

for the triangles and desired paths at each sliding window. Considering a sliding win-

dow covers l blocks where bmski is the first block and bmskj ’s are the other blocks in the

same sliding window, Ranbow takes bmski and then, finds all of the edges starting from

sx ∈ bmski and connecting to sy ∈ bmskj . Let E′ be a set of edges which connect sx to

sy (Figure 4.13-solid gray edges):

E′ = {e(sx, sy, w(sx,sy))|w(sx,sy) = |F sx ∩ F sy |, w(sx,sy) > 0}
where ∀sx ∈ bmski , sy ∈ bmskj with (sx, sy, w) ∈ E ⇒ i 6= j

(4.20)

where w(sx,sy) is the number of fragments shared between sx and sy (|F sx ∩ F sy |).
Ranbow searches for a pair of edges such that they start from one node, sx, and end in

two nodes, sy and sz where sy and sz are not in the same block. Figure 4.12 depicts this

situation. Then, Ranbow checks whether there is an edge between sy and sz or not.

If this edge exists, sx, sy and sz construct a triangle. Ranbow seeks to find a triangle

with maximum fragment support as:

sx, sy, sz = argmax w(sx, sy) + w(sx, sz) + w(sy, sz)

where sx, sy, sz ∈ V,
and sx ∈ bmski , sy ∈ bmskj , sz ∈ bmskk

(4.21)

Figure 4.12: Searching for triangles: This figure depicts a triangle starting at sx
and ends at sy and sz. Ranbow checks if there is an edge between sy and sz (dotted

line) to form a triangle.
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Having found a triangle with maximum support, Ranbow merges sx, sy, and sz (Figure

4.13-solid blue lines) and constructs a new haplotype segment and replaces the sx with

the updated haplotype (snewx ) such that:

F sx
new = F sx ∩ F sy ∩ F sz

snewx = merge(F sx
new)

sx ← snewx

(4.22)

where F sx , F sy , and F sz are the sets of supporting fragments for sx, sy, and sz, re-

spectively. This step results in an updated bmski and the removal of sy and sz; however,

Ranbow keeps track of which nodes are merged and which are removed. In the example

above, Ranbow keeps the information that sx, sy, and sz are merged into sx ( sy, and

sz are removed). Moreover, it keeps the information that sy and sz belonged to bmskj

and bmskk , respectively. This information is useful for the next iterations in order to

identify conflicting cycles when sx is be a candidate for merging to another segment.

After this step, the algorithm goes to the next iteration and updates E′ and applies the

same steps until no triangle can be found in E′. As the elongation is done for bmski , then

the same procedure is applied for bmski+1 with a window shifted one block to the right.

The algorithm stops when the sliding window arrives and processes the last group of

blocks and all of the triangles are considered. Figure 4.13 represents a simple example

with eight haplotype blocks and explains how the triangles are gradually formed in a

sliding window of length four.

4.3.3.4 Merging through direct connections between haplotype segments

The next step is elongation through direct connections. Ranbow sorts all edges based

on their weight descendingly and iterates over the sorted list of edges. At each iteration,

Ranbow selects one edge and checks if merging two nodes of the edge results in a conflict

or not. If there is no conflict then the nodes are merged and the graph gets updated.

Therefore, having e(sx, sy, w(sx,sy)) ∈ E with maximum w(sx,sy) , Ranbow merges sx

and sy nodes such that:

F sx
new = F sx ∩ F sy

snewx = merge(F sx
new)

sx ← snewx

(4.23)

and sy is removed from V .
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Figure 4.13: Connecting haplotype segments of different blocks in an it-
erative manner. Edges are the connections obtained via reads. Red rectangles are
sliding windows with length of four. Solid gray lines are the edges beginning from the
leftmost block of a sliding window. The dotted lines are edges, and the blue edges are
the newly formed haplotypes. The candidate edges at each step are checked to find if
they construct a triangle or not. The most supported triangle at each step is converted

to one haplotype segment.

Note that, in order to find conflicts, the algorithm checks if a segment consists of many

segments, which were merged in former iterations, or it consists of one segment. To make

it more clear, let’s follow the example below which is illustrated in Figure 4.14. Assume

sx = merge(sx, sy) and sp = merge(sp, sq) which were done in previous iterations, and

assume sx, sy, sp, and sq belonged to bmski , bmskj , bmskj , and bmskk , respectively. Now

consider sx and sp are the candidates for being merged at current iteration. Ranbow

identifies the origin of sx and sp to check that there will not be any conflict caused by

merging these two segments. Since sy and sp belong to one block, i.e. bmskj , Ranbow

does not merge sx and sp and considers this condition as a conflict.

Now assume that sx and sy can be merged with no conflict. To update E and to

delete sy, we only use sy and its connecting nodes (such as sz) considering the following

conditions:
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Figure 4.14: Conflicts in merging two segments This figure shows how a conflict
occurs by merging sx and sp if sx consists of sx and sy, and also sp consists of sp and
sq. Merging sx and sp results in merging sy and sp which causes a conflict of merging

two segments of a block

i) if e(sy, sz, w(sy ,sz)) ∈ E , e(sx, sz, w(sx,sz)) /∈ E =⇒ E ← E + e(sx, sz, w(sy ,sz))

ii) if e(sy, sz, w(sy ,sz)), e(sx, sz, w(sx,sz)) ∈ E =⇒ w(sx,sz) ← w(sx,sz) + w(sy ,sz)

(4.24)

where e(sy, sz, w(sy ,sz)) is an edge between sy and sz with the weight of w(sy ,sz) and E

is the set of all edges. Eq.4.24 explains how Ranbow acts if there is an edge between

sy and another node, called sz, by merging sy to sx (explained in Eq.4.23).

Eq.4.24-i indicates that there is no edge between sx and sz, therefore by merging sy to

sx, the edges between sy and other segments are added to the sx. Eq.4.24-ii indicates

that there is an edge between sx and sz, so by merging sy to sx, just w(sx,sz) has to be

updated.

The above steps are done iteratively on the list of sorted edges. At each step e(si, sj , w)

with maximum weight is selected and its nodes are merged. By merging two nodes and

their corresponding edges, E is updated. The algorithm stops when E = ∅ or the weight

of edges at an iteration goes lower than a predefined threshold.

4.3.4 Phasing the regions with fewer than P haplotypes

All regions with P distinct sequences have been phased to P haplotypes so far. In a

P -ploid genome there is the possibility of having regions with fewer than P haplotypes.

This may happen if the heterozygosity of a region is low such that the reads cannot

extend enough to find exactly P unique sequences. Therefore, these regions can be

phased to p < P haplotypes. We use masks again to find haplotype blocks with p < P

seed sequences. Having MSKall as the collection of masks with at least one fragment

support for each seed sequence, we define masks with p seed sequences each as:
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MSKp = {msk|msk ∈MSKall, ∀mski : |Tmski | = p, 2 ≤ p ≤ P}
hence

MSKall = MSKP +MSKP−1 +MSKP−2 + ...+MSK2

(4.25)

where Tmski is the set of seed sequences of the mask mski. If one region cannot be phased

into P haplotypes, firstly, we check if it can be phased into p = P − 1 haplotypes. For

this purpose Ranbow uses MSKP−1. The algorithm is designed such that it starts from

p = P − 1 and goes down to p = 2. For each p, it iterates over sorted mski ∈ MSKp,

and checks if mski is already phased or not. If the mask is not phased so far, Ranbow

phases it into p haplotypes.

The extension part cannot be applied here; the reason is explained in the simplest

scenario of p = P − 1 and p = P − 2. Let’s assume:

bmski = {bmski
1 , bmski

2 , ..., bmski
p } : mski ∈MSKP−1 (4.26)

as a haplotype block with p segments. The condition shown in Eq.4.26 indicates that

one of the segments, for instance, bmski
k has two copies. Let’s assume that bmski

k can be

found from the coverage of segments. Figure 4.15 depicts this condition in a tetraploid

genome with two blocks of three segments each. Let’s assume that the weights of edges

are known and shown in the Figure 4.15-A. There are two possible scenarios depicted

in Figure 4.15-A. There is no sufficient evidence to infer which of these scenarios is the

truth. This introduces an ambiguity for merging haplotype segments. The situation

becomes more complicated if p < P − 1. For instance, if p = P − 2, firstly we need

to decide if there are two copies of two haplotype segments or three copies of one of

them (Figure 4.15-B). Then, in either scenario, the ambiguity explained above prevents

extension of haplotypes. Therefore, we leave the phased haplotypes with no extension

in this step.

4.3.5 Summary

In this chapter, we explained a novel method, called Ranbow , for reconstructing haplo-

types of a polyploid genome from sequence reads. Firstly, we introduced the mathemat-

ical problem definition of polyploid haplotype assembly. Then, Ranbow is explained in

detail. In the next chapter, we evaluate Ranbow based on various real and simulated

datasets and compare it with available state-of-the-art methods.
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Ranbow algorithm

Input : Fragment list F
Output: Assembled haplotype H
MSKall, Tmsk, Ftmsk ← Mask finding(F )
MSKranked

P +MSKranked
P−1 +MSKranked

P−2 +...+MSKranked
2 ← Mask ranking(MSKall)

B = ∅
for mski ∈MSKranked

P do
if mski not already phased then

bmski=Phase a mask(mski, T
mski)

bmski
extended= Block extension(bmski , F )
B = B + bmski

else
Ignore seed mski

end

end
G(V,E)← Convert to graph (B)
for sliding window w ∈ all sliding windows do

for block bmski ∈ w do
for triangles c starting from bmski do

if c is non-conflicting cycle then
B ←Merging cycles(c,B)

else
Ignore seed c

end

end

end

end
for e ∈ sorted(E) do

b←Merge haplotype segments(e,B)
end
for p = P − 1 downto 2 do

for mski ∈MSKranked
p do

if mski not already phased then
bmski=Phase a mask(mski, T

mski)
B = B + bmski

else
Ignore seed mski

end

end

end

Algorithm 5: Ranbow algorithm
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Figure 4.15: Different possibilities for phasing the regions with fewer than
P sequence patterns. In this example P = 4. (A) depicts two regions each of
which phased into three haplotypes. The colored nodes indicate the nodes with two
copies. The weights of edges show the number of fragments connecting the nodes. The
two possibilities of connecting nodes are shown in (A). The left one assumes that the
connection with the weight two is an error. The right one indicates there is no error
and the weights are distributed unevenly. (B) illustrates two possible phases of a region

with two unique segments, and it is not known which one is true.
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Evaluation and results

5.1 Introduction

In the Results Section, the performance of HapCompass[47], SDhaP [48], H-PoP [49],

and Ranbow (Chapter 4) are assessed on real and simulated data. As a real dataset,

we used hexaploid sweet potato sequencing data. Long Roche 454 reads are recruited

in order to evaluate haplotype assembly of Illumina short reads. We also generated

two simulated datasets, with various read insert sizes, inspired by sweet potato and

tetraploid CBU genomes. The performances of all methods are evaluated on mentioned

datasets concerning accuracy, length of assembled haplotypes and execution time.

5.2 Results

Ranbow is implemented using Python 2.6.8. and is available online1. It takes Fasta

(collection of reference sequences), VCF (collection of sequence variants), and BAM

(collection of aligned reads) files as input and returns the list of aligned haplotypes in

BAM and hap format (hap format file keeps the haplotypes in coded allele space; please

see Section 4.2 for the formal definition of coded allele space). Since we aimed to develop

a method compatible with high-throughput sequence reads needed for de novo assembly,

distributing data to multiple cores is also automated. Ranbow accepts the number

of available cores as input parameter, and groups the scaffolds such that it tries to

minimize the estimation of maximum running time for the busiest core. The assignment

of scaffolds into cores is not a trivial problem, so we designed and implemented a heuristic

method for this purpose.

1 http://www.molgen.mpg.de/ranbow

75
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To evaluate Ranbow , we compared it to the state-of-the-art methods HapCompass,

SDhaP , and H-PoP regarding accuracy, length of the assembled haplotype, and

runtime. We used one real and two simulated datasets, each of which contains 50

scaffolds with different lengths. The evaluation contains three parts. We firstly com-

pare all methods on a smaller dataset due to the very high execution time of some

methods on large datasets. Then H-PoP , which performs better than the other avail-

able approaches, is comprehensively compared to Ranbow . Finally, the performance of

Ranbow on the real sweet potato dataset is compared to the corresponding simulated

one.

In order to convert input data from the nucleotide space to the coded allele space (ex-

plained in Section 2.2) for the sake of decreasing time and space complexity, Ranbow

extracts a list of fragments from the input sequence reads and variants (in BAM and

VCF files). Based on the sequencing throughput and heterozygosity of the genome, the

volume of the read-file could be reduced hundredfold, e.g., in sweet potato genome, it

is reduced from 657Gb of mapped reads down to 1.6Gb of aligned fragments. The VCF

and the fragment files are indexed to speed up the search process to balance scaffold

distribution on a processor farm. The scaffolds are assigned optimally to the processors

according to their length to minimize the maximum run time among all cores. Ranbow

generates hap file format, which contains the assembled haplotype segments (at coded

allele space) and their properties. The haplotypes at nucleotide space are generated

afterwards and converted to sorted and indexed BAM format, which can be uploaded

to the genome browser and used in downstream analysis.

5.2.1 Dataset properties

The genome of hexaploid sweet potato (Ipomoea batatas) and tetraploid Capsella bursa-

pastoris[50] (shortly CBU) are used for evaluation of methods. The characteristics of

these genomes, i.e., SmP interval length distribution, the rate of different type of vari-

ants, and genotype distributions are depicted in Figure 5.1. The SmP interval length is

generated based on the distances between polymorphic sites in the VCF files.

Figure 5.1-A shows how close the variants in these two genomes are. Additionally, it

indicates the higher level of heterozygosity in the sweet potato genome since the green

line is placed higher than the blue line, and also the negative slope of the sweet potato

trend is higher than the CBU genome’s trend.

Figure 5.1-B indicates the complexity of variants. Some of the methods for polyploid

haplotype assembly are insensitive to non-SNP variants, i.e. multinucleotide variants

and indels. This plot explains that SNPs are the most common type of variant, however,
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Figure 5.1: Dataset properties of sweet potato and CBU genomes. A) The
interval length distribution of polymorphic sites. Both axes are in log scale. This plot
indicates the high number of short intervals and the low number of long intervals. B)
Different kinds of variants. This plot shows the frequency of the different types of
variants, namely SNPs, non-SNP and multiallelic sites. The y-axis is in logarithmic
scale. The plot depicts the high number of SNPs in both genomes while the number
of the other types of variant is still considerable. Note that, multiallelic variants are a
part of non-SNP variants. This plot shows that what proportions of non-SNP variants
are multiallelic variants in these genomes.C, D) Genotype distribution for sweet potato
(left) and CBU (right) genomes. The y-axes are in logarithmic scale. On the x-axes,

all possible genotype configurations are shown.
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the number of non-SNP variants is substantial. Therefore, in this thesis we use all

variants with smaller than 50 base pairs, which we call SmPs. Moreover, we checked

how the genotypes are distributed in these genomes.

#reference alleles ≥ #1st alternative ≥ #2nd alternative ≥ ...

The violating genotypes are converted according to the frequency of the alleles; for

instance, {0, 1, 1, 2} genotype is converted to {1, 0, 0, 2} since it is expected to observe

more zeros than ones and twos. Figure 5.1-C,D shows how the non-biallelic polymorphic

sites are distributed.

The mentioned characteristics of the polyploid genomes need to be known for data

simulation. To keep all these features in the simulated data, we designed the following

pipeline.

For each organism, we selected five scaffold groups of 10kb, 50kb, 100kb, 500kb, and

1000kb length, each of which contains ten scaffolds. The selection process was based on

length and coverage so that they represent the majority of scaffolds’ properties (Figure

5.1). The 50 scaffolds of sweet potato are used for both real and simulated evaluation

(due to the availability of semi-true haplotypes, i.e., Roche 454 GS FLX+ pyrosequencer

reads) and the 50 scaffolds of CBU are used only for generating simulated data owing

to lack of ground truth haplotypes.

5.2.2 Real data

There was no gold standard real dataset for polyploid haplotyping; hence we construct

and introduce the following datasets from sweet potato sequencing data[11] (this data-

set is available online. See Appendix B). We used Illumina short reads for haplotype

assembly (see Figure 5.4 for the properties of sequencing insert sizes and coverage) and

the Roche 454 sequencing data for evaluation. The ∼1kbp long Roche 454 reads were

not used in the de novo assembly pipeline. This dataset is used to evaluate the accuracy

of assembled haplotypes with the limit of Roche 454 sequence read length (see the read

length distribution Figure 5.3-Right).

The sequencing error in the 454 reads are more concentrated at homopolymers and the

ends; hence, trimming low-quality base calls improves the quality significantly. We set

the high threshold of 99.7% (Phred=25) for base quality and 99% for mapping quality

(Phred=20). Considering that we only compare variant positions between the haplotypes

and the 454 reads (meaning the error in bases should convert one allele to another to

cause an error), it is more likely that a match is due to actual sequence identity rather
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Figure 5.2: Selected scaffolds’ properties. In this plot, each dot depicts one
scaffold of the sweet potato genome. These scaffolds were obtained after the scaffolding
step of de novo assembly. The x-axis shows the log scale of coverage and the y-axis
shows the log scale of scaffold lengths. We randomly selected 50 scaffolds of different
sizes, namely 10kb, 50kb, 100kb, 500kb, and 1000kb, ten scaffolds each. These scaffolds

are used for evaluating with real data and producing the simulated dataset.

than to a sequencing error in the 454 read. For instance, the chance of seeing one error in

70 SmP overlap is less than 19% (1− 0.99770, where 0.99770 is the probability of having

no error in an overlap of length 70), and it drops exponentially as the length of overlap

decreases. Filtering low-quality base pairs and mapped reads gives high-quality ground

truth haplotype sequences. For evaluation, the fragments of the mapped 454 reads are

extracted. Then, those assembled haplotype segments which contain a shared region

with the 454 segments are considered for evaluation. Only one assembled haplotype

segment out of six is assigned to the corresponding 454 fragment for assessment based

on similarities and dissimilarities (Eq.4.5).

5.2.3 Simulated data

By usingutilizing the real scaffolds and their variants, the properties of real data such as

interval length and complexity of the polymorphic sites are conserved. Based on these

scaffolds and their randomly shuffled genotypes, P haplotypes are generated. After that,

each haplotype is used as a reference for the read simulator tools EAGLE [51] and pIRS

[52]. We constructed two datasets, one small and one large. The small data set is gen-

erated to test all of the four mentioned state-of-the-art-methods. Figure 5.4 depicts the
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Figure 5.3: Base quality and length distribution of Roche 454 reads. Left)
Each 454 read is divided into 20 equal size segments. The box plot shows the base
quality distribution and the red line indicates the high threshold we set for filtering
the bases on quality. Right) The Roche 454 length distribution. Maximum length is

1771bp

.

features of the small simulated dataset, and its comparison to the real data character-

istics. HapCompass and SDhaP were not able to accomplish the haplotyping of long

scaffolds. Therefore, to test H-PoP and Ranbow in more details, we generated a large

dataset, consisting of four insert sizes. Moreover, we collected these four data sets in

one larger dataset as well (see Figure 5.5). The reads from different haplotypes are then

collected in one BAM file. The BAM file and the corresponding VCF file are used as a

simulated dataset.

5.3 Evaluation

5.3.1 All methods

In this section, the performance of Ranbow is evaluated and compared to the state-

of-the-art methods. All of these methods are applied on real and simulated data sets.

Figure 5.6 shows the general performance of different methods.

Match-mismatch plots: The first and second columns of Figure 5.6 show the result

on real and simulated data, respectively. The scatter plots in the first row, which we

call “match-mismatch plots”, illustrate the accuracy of methods. One dot in these plots

is one assembled haplotype that is compared to the ground truth. The colors indicate

the frequency. The x-coordinate (y-coordinate) of a dot indicates how many alleles are

assembled correctly (incorrectly). Since the aim of haplotyping is obtaining longer and
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Figure 5.4: Dataset properties for sweet potato genome. Left) Insert size
distribution. The real data contains five different libraries with different insert sizes,
namely 350bp, 550bp, 950bp, 20k, and no size selection. For simulated data, we gener-
ated inserts of 350bp from the selected scaffolds with 30x coverage for each haplotype.
Right) Coverage of selected scaffolds for real and simulated data. The x-axis shows
base coverage, and the y-axis depicts frequency. In the real dataset, the base coverage
varies in a wide range up to 10k while the simulated data has the peak at 180x. This

discrepancy is caused by the presence of repeats in the genome.

more accurate sequences, a longer x-coordinate and shorter y-coordinate are desired.

The flatter the slope of a line, the higher the accuracy of the method it belongs to.

Figure 5.6-A presents the match-mismatch plot for sweet potato real data. The x-axis is

the number of matches between the alleles in Roche 454 reads and assembled haplotype,

while the y-axis depicts mismatches between them. Since the length of Roche 454 reads

is limited, the maximum size of the overlap between assembled haplotypes and these

reads is limited as well. The lines depict linear fits to the dots of each method. Figure

5.6-B is the match-mismatch plot for simulated data generated from the comparison of

the assembled haplotypes and the genomes’ simulated haplotypes. Since in simulated

data the six haplotypes are available, there is no limit for the size of overlaps. These

plots show that Ranbow performs best with respect to accuracy, as illustrated by the

lower slopes of the fitted lines.

Execution times: The lower plots show the execution times for different scaffold size

groups (10 scaffolds per five scaffold length groups, 10×5 scaffolds in total). The y-axes

are in logarithmic scale. Ranbow is at least one order of magnitude faster than the

other methods for real data in all scaffold size groups (Figure 5.6-C ), and it is several

times faster for simulated ones (Figure 5.6-D).
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Figure 5.5: Insertion length distribution for simulated dataset of CBU gen-
ome. Four 100 bp paired-end read libraries with the insert sizes of 350bp, 1kbp, 2kbp
and 5kb are generated by EAGLE (Enhanced Artificial Genome Engine)[51]. EAGLE
generates reads and converts them to alignments. It is designed to simulate the be-
havior of Illumina’s Next Generation Sequencing instruments. For each library, the

coverage for every haplotype is 40x.

Accuracy and haplotype length: To investigate the performance of all methods in

more detail, we split the haplotypes based on their lengths into five and four categories

for simulated and real data respectively: very short, short, medium, long, and very

long. The real data does not contain the very long category since the evaluation of

real data is done by Roche 454 reads, which is limited in size. Here, we compare the

accuracy distribution of the haplotypes in different groups. Figure 5.7 shows if there is

any dependency of the assembled haplotype length and their accuracy, and how Ranbow

performs in different haplotype length categories. Recall that, the accuracy is defined

as:

#matches

#matches+ #mismatches
(5.1)

The results on real and small simulated datasets are shown as box plots in Figure 5.7.

These plots indicate, independent of the size of the assembled haplotype, that Ranbow

outperforms in terms of accuracy.

Haplotype length: Although the box plots in Figure 5.7 show the length distribution

in each category as well as the accuracy, to compare the haplotype length more precisely,

we depict the histogram of assembled haplotype length in real data (Figure 5.8). The

y-axis shows the count on a logarithmic scale. This plot shows Ranbow and H-PoP

outperform the other methods in terms of assembled haplotype length.
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Figure 5.6: Comparison of all methods on sweet potato real and simulated
datasets. A, B) match-mismatch plots for sweet potato real and simulated datasets

C, D) The execution times for different scaffold size groups
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Figure 5.7: Comparison of the methods regarding accuracy on real and
simulated sweet potato data. Left) The assembled haplotypes of simulated data
are grouped into five groups according to their size. Right) Since the size of real ground

truth data is limited, the real data is grouped into four categories.

5.3.2 H-PoP vs Ranbow

To investigate the performance of H-PoP and Ranbow in more detail, we produced

four simulated libraries, namely 350bp, 1kbp, 2kbp, and 5kbp for each organism (see the

details of insert size for CBU genome in Figure 5.5). Moreover, all of the reads of these

four libraries are collected in one extra library, which is depicted as ‘All’ in the plots.

Match-mismatch plot: Figure 5.9 shows the match-mismatch plots for H-PoP and

Ranbow for different insert sizes. These plots indicate that Ranbow is more accurate

and assembles longer haplotypes; the dots are closer to the x-axis. Moreover, its per-

formance increases when different sequencing libraries are integrated, which is mostly

the case for sequencing of new organisms. Comparing Figure 5.9-All-Ranbow and Figure

5.9-All-H-PoP depicts how well Ranbow is usingutilizing the four insert sizes to produce

longer haplotypes but with lower mismatches. These plots also depict the importance

of using different insert sizes for haplotype assembly.

The same principle applied to sweet potato data: Figure 5.10 indicates the better per-

formance of Ranbow in terms of length, number of assembled haplotypes, and their

accuracy. Ranbow shows higher accuracy than H-PoP , i.e. the dots are closer to the

x-axis in all insert sizes. However, the assembled haplotypes are not as good as the ones

assembled from CBU genome owing to higher heterozygosity and ploidy. The higher
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Figure 5.8: Comparison of all methods in terms of assembled haplotype
length on sweet potato real data. This plot shows Ranbow and H-PoP perform

better in terms of assembled length.

heterozygosity causes higher allele connections resulting in longer haplotypes, and the

greater ploidy may introduce higher switch errors that result in more error which is

shown in Figure 5.10.

Accuracy: We proceed to show that the comparison of methods does not change when

looking at particular scaffold lengths. For this purpose, we categorized the perform-

ances by scaffold lengths in Figure 5.11. In this figure, each dot represents the average

accuracy of haplotypes belonging to each insert size. This plot is generated from CBU

data. In Figure 5.11, the x-axis shows five different categories of scaffold length, the

y-axis is the average accuracy measure, each dot is the average accuracy of 10 scaffolds

phased from the same insert size. This plot shows Ranbow outperforms H-PoP in all

categories; the red dots are always located above the green ones except the annotated

green dot. The annotated green dot is the accuracy of H-PoP on 350bp insert size and

the corresponding red dot for the same insert size obtained from Ranbow method is

pointed out as well. This plot shows Ranbow performs better for all insert sizes in all

scaffold length categories.

Haplotype length: We compared Ranbow and H-PoP in terms of the number of

connected alleles which are correctly assembled into haplotypes. In other words, the

mismatches are ignored in this comparison. Figure 5.12 shows this comparison. Each

pair of violin plots is obtained from one insert size. The y-axis depicts the number of

matches in the assembled haplotype. The width of the violin plots shows the histogram

of the number of assembled haplotypes within the groups. Except for the 350bp group,
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Figure 5.9: Comparison of H-PoP and Ranbow on different insert sizes for
simulated dataset of CBU genome. The match-mismatch plots show the effect
of different insert sizes on the performance of the methods. The colors indicate the
frequency. Ranbow performs best in almost all conditions; the dots are closer to the
x-axis, and also the number of matches is longer in the right plots. Moreover, the
combination of all insert sizes improves the result dramatically (lower plots). There are
a good number of assembled haplotypes containing very low number of mismatches in

the lower right plot.

in which H-PoP performs better, Ranbow outperforms in all groups including the

collection of all insert sizes, which is depicted in all.

Error correction and reconstruction rates: Another measure for comparing meth-

ods is the rate of error correction. This measure is designed using the Minimum Error

Correction model (explained in Section 3.2). It is calculated based on the assignment

of reads to the haplotypes. The number of allele corrections needed to make the reads

compatible to the haplotypes they assigned to is calculated. The error correction rate

can be used for comparing methods when no ground truth haplotype is available. Since

we utilized Roche 454 reads for real data and the reference haplotypes for simulated

data as the ground truth for evaluation, the accuracy can be easily calculated and there
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Figure 5.10: Effect of different insert sizes on the performance of H-PoP
and Ranbow on sweet potato simulated data. This figure shows that Ranbow
performs better not only on various insert sizes, but it also outperforms when all libraries

are merged into one dataset. The colors indicate the frequency.

is no need for extra measures. Nevertheless, we calculated the error correction measure

for our haplotype assembly as well. It is worth noting that although Ranbow is not

designed to optimize this measure, it produces a very low error correction rate. Figure

5.13, which looks like a match-mismatch plot, shows the distribution and the average

rate of corrected alleles in the assembled haplotype. In other words, this figure shows
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Figure 5.11: Comparison of H-PoP and Ranbow regarding accuracy on
CBU simulated dataset. Ranbow results in more accurate haplotypes in all groups

with various scaffold lengths.

Figure 5.12: Matching length and frequency distribution of assembled hap-
lotypes by different insert size on simulated sweet potato data. In this plot
the mismatches are removed; hence it shows the number of correctly connected alleles.

how many inconsistencies are found between the haplotypes and the reads they are as-

sembled from. The x-axis shows the length of haplotypes while the y-axis indicates the

number of inconsistencies between the haplotypes and its reads. The closer the dots

to the x-axis the lower the error correction rate assigned to the corresponding scaffold.

The reconstruction rate is calculated as 1 − error correction; it indicates how many

correct alleles from the reads were involved in assembling the haplotypes. The average

reconstruction rates are shown in the title of the plots.

The reconstruction rate of Ranbow on real and simulated date are 0.9997 and 0.9996

respectively. However, Ranbow does not involve all of the reads in the assembly. It
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Figure 5.13: Scatter plots of corrected alleles in assembled haplotypes. Each
haplotype is assembled from a collection of fragments that may contain a few disagree-
ments with each other. The average reconstruction rate, i.e. 1 − error correction for

both real and simulated datasets are more than 99.9%

filters the reads which may not belong to the region and assembles the haplotypes from

a set of highly confident reads. Since not all of the generated reads are considered to

calculate the error correction rate, our approach does not follow the MEC model entirely.

Thus, we skip the comparison of Ranbow and other methods based on MEC model and

only report the rate of error correction among selected fragments by Ranbow . Recall

that MEC model (Minimum Error Correction model) tries to cluster and correct errors

in reads such that all reads in each cluster are compatible with each other (Section 3.2).

5.3.3 Comparison of the results on real and simulated datasets

To investigate the performance of Ranbow on real and simulated data, we compared

them in terms of number of haplotypes in a phased region (Number of Inferred

Haplotypes) (Figure 5.14), and the rate of connectivity in multiallelic sites (Figure

5.15) in the following paragraphs.

Number of Inferred Haplotypes: Number of inferred haplotypes is the number of

haplotypes in a phased region. This number could be P as the ploidy of the organism
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or fewer than P. The latter case could be due to the characteristics of the genome in

the region or owing to the failure in sequencing (see Section 4.3.4 for more details on

how Ranbow deals with these regions.) We investigate Number of Inferred Haplotypes

for real and simulated data. It is worth noting again that the underlying scaffolds and

variants for both real and simulated reads are the same. Moreover, it is infeasible to

check if the Number of Inferred Haplotypes is correctly called since there are no clear

boundaries for the regions with different Number of Inferred Haplotypes. On one hand,

the whole scaffold is the Number of Inferred Haplotypes equal to P . On the other hand,

by putting the boundaries between the polymorphic sites such that each interval contains

only one polymorphic site, the Number of Inferred Haplotypes would be the same as the

size of the genotype for the site. Hence, the same genome can be annotated with several

sets of true Number of Inferred Haplotypes according to the boundary selection.

In Figure 5.14 we investigate the Number of Inferred Haplotypes from both real and

simulated reads. We divided our analysis into four groups, with or without gaps, in

nucleotide space and coded allele space. These plots indicate most of the regions in

both datasets are phased into P haplotypes. The sum of the regions with P haplotypes

is far higher than the simulated one due to the long insert sizes; however, the plots

with removed gaps show that many of the alleles in these haplotypes are not called. The

regions in P -ploid genomes contain fewer than P haplotypes when a piece of chromosome

is identical in two or more copies. Ranbow calls these regions as well, whose properties

are depicted in Figure 5.14.

Assembly of non-SNP sites: Additionally, we investigate the performance of Ran-

bow on multiallelic and non-SNP polymorphic sites (non-SNPs). We checked the effect

of these variants on haplotype assembly and how accurately they are assembled. For

this purpose, the number of non-SNP sites which are accurately called in each haplo-

type is checked. Figure 5.15 illustrates the distribution of the accuracies in assembled

haplotypes on non-SNP polymorphic sites of the sweet potato simulated dataset. The

accuracy rate of 0.79 indicates that most non-SNP alleles are integrated correctly into

the haplotypes. However, the precision of integrating this type of variant is lower than

for SNP variants; nevertheless, more of the dots sit in the right lower side of the plot

and are close to the x-axis, which shows that Ranbow performs well in integrating these

variants into the haplotypes.

5.3.4 Usability

Finally, we compared the methods from the usability point of view in Table 5.1. We

compared these methods based on their demand on pre and postprocessing, and also
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Figure 5.14: Frequency of Number of Inferred Haplotypes in the phased
regions. The upper plots show the haplotype length in nucleotide space, and the
lower plots show the same in coded allele space. In the left plots, the missing data is
removed from the haplotypes. These plots indicate the number of gaps in the produced
haplotypes in the real data set, due to the long insert size sequencing libraries used
for real data sets. Moreover, these plots show both real and simulated data assemble

almost the same number of haplotypes with the same number of copies.

their non-SNP and multiallelic variants handling. Ranbow and HapCompass accept

BAM and VCF format as input and produce aligned haplotypes as in a BAM format.

There is no need for pre or postprocessing to make the data ready for applying the

algorithm and using the result for downstream analysis. However, H-PoP and SDhaP

accept fragment format. In this format the alleles are coded into numbers and their

connectivity via reads are shown as a sequence of numbers. As output, these methods

produce a fragment file as well. Therefore, to apply these methods on real data, both

pre and post-processing steps need to be carried out to make these tools ready for real

applications. Moreover, HapCompass, together with Ranbow , are the only methods

that can handle non-SNP sites. SDhaP cannot handle non-SNP polymorphic sites if the
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Figure 5.15: Distribution of the accuracies in assembled haplotypes on mul-
tiallelic polymorphic sites of sweet potato simulated dataset. Each dot shows
one assembled haplotype. On the x-axis, the accuracy of assembled multiallelic poly-
morphic sites is depicted while the y-axis shows the number of multiallelic sites. This
plot shows that, as the number of multiallelic sites increases, the accuracy rate drops,
but still, there are a good number of long haplotypes with very high accuracy, and the

average accuracy of all dots is 79%.

number of alleles is higher than four; therefore, this restriction needs to be considered

in the preprocessing step for this method. H-PoP does not integrate more than two

SmP alleles in the haplotype assembly, it converts them to either the reference or first

alternative alleles (Table 5.1).

Ranbow H-PoP SDhaP HapCompass

Additional pre- and postprocessing No Yes Yes No
non-SNP handling Yes ∗ ∗ Yes

∗ There are restrictions on handling these sites.

Table 5.1: Usability of methods

5.4 Conclusion and Discussion

We applied Ranbow and three state-of-the-art methods on hexaploid sweet potato se-

quencing data. The results were then evaluated by recruiting long Roche 454 reads. This

dataset can be used as a gold standard for polyploid haplotypers. We also generated

two simulated datasets inspired by sweet potato and tetraploid CBU genomes. In order

to compare the performance of different methods on short sequence reads, we generated

four insert size libraries, in the 350bp to 5kbp range, with 100bp single-end read length.
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The performances of all methods were evaluated on real and simulated datasets concern-

ing accuracy, length of assembled haplotypes and execution time. Ranbow performs

best in all measures. Moreover, Ranbow was more than one order of magnitude faster

than the other methods, which was enough to be applied on the whole sweet potato gen-

ome for several iterations. The iterations were used to useutilize haplotyping to improve

the scaffolding step of de novo assembly (details are explained in Chapter 6). With

this speed each iteration took less than two days on the processor farm, which means

it is infeasible for the next best method to be applied to the same data. Furthermore,

Ranbow resulted in 40% of phased haplotype regions in the sweet potato genome.

Through emerging third generation sequence technologies and decreasing cost of ob-

taining long reads, one avenue for future work would be scaling the current method or

designing new methods for usingutilizing this type of data. The other important direc-

tion would be combining different sequencing technologies. As an example, the SMRT

technologies provide erroneous long allele connections while the errors can be detected

and fixed by short read data. Furthermore, the integration of base quality seems ne-

cessary, especially for using only SMRT reads. Linked read technology (10X Genomics)

helps to accurately call the variants but it suffers from the possibility of combining two

haplotype segments into one read. All in all, not one sequence technology can thor-

oughly solve the haplotyping of the genome - specifically polyploid genomes - at this

time; thus, the combination of methods depending on the characteristics of the target

genome seems to be a more reasonable direction for future research. The haplotyping

could be integrated into the genome assembly and scaffolding to obtain more accurately

assembled genomes.





Chapter 6

An application of haplotype

assembly: Haplotype aware de

novo assembly of hexaploid

Ipomoea batatas

This chapter describes a collaborative work of the Max Planck Institute for Molecular

Genetics with the Chinese Academy of Sciences. In this project, we assemble the sweet

potato genome in collaboration with Jun Yang, an independent researcher in our lab,

and the sequencing core facility of the Max Planck Institute for Molecular Genetics.

DNA material was transferred from China and sequenced in house. The initial de novo

assembly was done in the sequencing core facility by Heiner Kuhl and provided to us

for further analysis and improvement. This collaboration resulted in a report published

in Nature Plants[11]. In this chapter, after explaining the de novo assembly part of this

project, we explain a novel method for improving the assembly, more specifically the

scaffolding part, called haplotype-aided scaffolding. The proposed method relies on the

assembled haplotypes and the connections between scaffolds which are inferred through

the reads mapped to these haplotypes. After obtaining a new assembly, the haplotyping

can be repeated. This makes an iterative cycle between the assembly and haplotyping

which improves the assembly stepwise. More detail is provided in the following sections.

6.1 Introduction

With a consistent global annual production of more than 100 million tons, as recor-

ded between 1965 and 2014 (FAO), the sweet potato Ipomoea batatas, is an important

95
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source of calories, proteins, vitamins and minerals for humanity. It is the seventh most

important crop in the world and the fourth most significant crop in China. In periods

of shortages of basic cereal foods, I. batatas is frequently served as the main food source

for many Chinese. It rescued millions of lives during and up to three years after the

Great Chinese Famine in the 1960s and was subsequently raised as a main guarantor of

food security in China.

The sweet potato has a complex and very difficult to assemble genome with a genome

size of about 4.4 Gb. It is a hexaploid organism with haploid number 45 (n=45), i.e.

number of the chromosomes in the gamete cells, and 15 monoploid chromosomes (x=15)

which results in 2n = 6x = 90. It has a composition of two B1 and four B2 component

genomes (B1B1B2B2B2B2), as predicted by genetic linkage studies using RAPD and

AFLP markers[53, 54]. This nomenclature shows a hybridization of a diploid B1 and a

tetraploid B2 organism followed by a duplication.

The sweet potato is highly polymorphic. Our initial sequencing of the I. batatas genome

revealed that the distance between adjacent polymorphic sites is roughly one tenth of the

distance in the human genome. Based on previous statistics, there are approximately 14

million polymorphic sites in the estimated 700∼800 Mb monoploid genome of I. batatas.

This means that, on average, one read (100∼150bp length) from Illumina sequencing

will cover 2∼3 polymorphic sites. This density of such sites should permit phasing the I.

batatas genome, employing cost-effective Illumina sequencing with paired-end libraries.

While the high heterozygosity of I. batatas makes genome assembly more challenging, it

simultaneously makes haplotyping easier. This property suggests that the high hetero-

zygosity could benefit in phasing the genome to fairly long haplotypes and, furthermore,

to employ these haplotypes for improving the genome assembly. In this chapter, we

present the pipeline designed for de novo assembly of sweet potato genome. Moreover,

we detail how phased regions could potentially advance the genomes’ de novo assembly.

6.2 Pilot project

A newly bred carotenoid-rich cultivar of I. batatas, Taizhong6 (China national acces-

sion number 2013003) from China, was used for genome sequencing at the MPI core

sequencing unit. During the genome survey stage, three sequencing libraries were con-

structed and sequenced on Hiseq2500 and GS FLX+ platforms (Table 6.1 - A500, A1kb

and A454 ). After a preliminary genome assembly, we obtained ∼166k scaffolds with

the N50 of ∼60kb. Thereafter, the reads were mapped to the scaffolds, and the PCR

duplicates were removed. Mapped reads were employed for variant calling to meet the
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requirements for haplotyping. A small sample of scaffolds (n=75) was chosen on the

basis of scaffold length and the coverage of informative reads for haplotyping, i.e., reads

contain at least two sequence variants (Figure 6.1). The haplotyping on selected scaffolds

was carried out using Ranbow in order to phase the genome into up to six haplotypes,

into triploid, tetraploid, pentaploid, and hexaploid regions.

Figure 6.1: Selected and highly covered scaffolds. The selected scaffolds are
shown in red. These scaffolds were chosen on the basis of scaffold length and inform-
ative read coverage. Total number of scaffolds is ∼166k. The reason for selecting such
a subset was anticipating more scaffolds closer to this region by more sequencing since
they are sufficiently long and covered by reads. The purple dots illustrate very highly
covered scaffolds, which are more likely to be repeat regions or small assembled hap-
lotypes which are not integrated in the longer scaffolds due to the heterozygosity. It
was predicted that these scaffolds will be mapped to the longer ones by enhancing the

quality of assembly.

Library Platform Sequencing type Insert size QC-passed reads Mapped rate*

A500 Hiseq 2500 PE100 350 bp 345333619 94.66%
A1kb Hiseq 2500 PE100 950 bp 190263659 95.07%
L500 Nextseq 500 PE150 550 bp 837098772 94.70%
MP Nextseq 500 PE150 No size selection 694919486 91.65%

AMP Hiseq 4000 PE100 20kb 316973015 95.67%
A454 GS FLX+ SE (up to 1kb) - 3385694 98.91%

Total - - - 2387974245 93.97%

* Map against preliminary assembly

Table 6.1: Sequence library characteristics

The coverage of these regions led us to estimate the minimum coverage needed for haplo-

typing the whole genome. This was inferred according to the peak coverage of hexaploid

regions in Figure 6.2. The observed coverage for the regions with fewer copies of haplo-

types are lower than the coverage peak of hexaploid regions (Figure 6.2). This suggests

the sequencing coverage is not enough for the regions predicted as non-hexaploid. Figure
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6.2 shows that 40-fold monoploid genome coverage, at minimum, is needed to phase the

genome into six haplotypes.

Figure 6.2: Coverage distribution of genomic regions phased into triploid,
tetraploid, pentaploid, and hexaploid during genome survey. Based on the
genome survey data and primary assembly, genome regions have been phased into up
to six haplotypes. The coverage of each phased region and number of phased haplotypes
is summarized here. The peak coverage around 40 in hexaploid indicated the minimal
sequencing depth requirement for haplotyping of hexaploid genome. The peak coverage
shifting from triploid to hexaploid demonstrated the insufficient sequencing depth in

the genome survey stage.

Moreover, short inserts are preferential for haplotyping since Ranbow sits on the re-

gions with at least six unique sequence patterns; the smaller the insert, the higher the

chance of connecting consecutive polymorphic sites, the higher the chance of finding six

unique sequence patterns. On the other hand, longer insert sizes of paired-end reads

are beneficial for scaffolding. Considering these facts, new libraries were sequenced on

the Nextseq500 platform to meet the estimated coverage requirement (Table 6.1-L500 ),

and additionally gel-free mate-pair and 20k mate-pair libraries were also sequenced to

improve scaffolding (Table 6.1-MP and AMP. The insert size distributions of these se-

quence libraries are shown in Figure 6.3).

6.3 Preliminary assembly

6.3.1 Initial assembly of consensus genome

A heterozygosity-tolerant assembly pipeline, combining de Bruijn[55] and OLC[56] (over-

lap layout consensus) graph strategies, was employed to carry out the hexaploid genome

assembly of I. batatas, using error corrected Illumina reads. A total length of ∼870Mb,

mainly representing the monoploid genome, was assembled using this pipeline. We found

the assembled endophyte Bacillus pumilus genome as the largest scaffold being 3.7Mbp
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Figure 6.3: The insert size distribution of sequenced paired-end libraries.
(a) Insert size distribution of paired-end libraries A500, L500, and A1kb. (b) Insert

size distribution of mate-pair libraries MP and AMP.

in size (the highlighted scaffold in Figure 6.4-a). This figure also explains the differ-

ent heterozygosity characteristics of Bacillus pumilus genome which isolates it from the

scaffolds of I. batatas.

After excluding Bacillus pumilus genome, the largest scaffold of I. batatas, which har-

bours 54 genes, was 581kb (and contained 133 contigs). The N50 of all scaffolds was

∼60kb with a 5,649bp contig N50. The total number of scaffolds was 79,089 and their

length varied between 312 and 3,723,026bp. There were 3,796 scaffolds longer than 60kb.

Besides scaffolds, there were 991,314 contigs with a total length of ∼436Mb. Among

these, 92,790 contigs were longer than 1kb harbouring a total of 175,679,534bp. These

contigs mainly reflected heterozygosity of the hexaploid genome, since 97.35% of all

contigs have been mapped back to scaffolds and one third of these contigs were found
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Figure 6.4: Summary of variations in scaffolds in preliminary assembly. (a)
Number of variations and length of all scaffolds. An isolated dot represents the fully
assembled genome of sweet potato endophyte, Bacillus pumilus. (b) High correlation
(0.975) between “Number of variations” and “Scaffold length” after excluding the en-

dophyte Bacillus pumilus genome.

to match at full length, despite many single nucleotide mismatches or small indels, as

shown in Figure 6.5.

High heterozygosity prevents the assemblers to distinguish the sequences of different

haplotypes of one genomic region; hence, they may assemble more than one sequence as

contigs or scaffolds, which belong to one region. This causes the assembly of genomes

that are larger than the estimated sizes. We designed three approaches to address the

redundancy in the assembly. These approaches are based on applying the following modi-

fications on the scaffolds and, then, exhaustive comparisons among modified sequences.

The similarity between these sequences helps to decrease scaffolds’ redundancies.
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Figure 6.5: A snapshot of mapping results of contigs against scaf-
folds. The large number of single nucleotide mismatches indicates the single nuc-
leotide polymorphism between homologous chromosomes in Ipomoea batatas. Ci-
gar fields of these mapped scaffolds were listed as follows. (a) 4045M. (b)
33S44M1D136M1I10M6D149M15D21M1I1799M. (c) 579M. (d) 56M13D162M. (e)
15S2396M2I92M. (f) 733M. (g) 1260M. (h) 1014M1I162M1D136M. Among these, (b),

(e), (g), and (h) are partially shown here.

1. Replacing the variants by a sequence of wildcard nucleotides: Knowing

the length of the reference variants, we replace the variant sequences by sequences

of wildcard nucleotides of the same length. Using this strategy, we are conserving

the reference variant length and relaxing their sequence differences for the BLAT

search[57].

2. Removing the sequence variants from all scaffolds: Having obtained the

variant calling results, the reference alleles are removed from the scaffolds, and the

modified scaffolds are considered as the input of the BLAT search. These variants

are one of the reasons why the assemblers cannot distinguish that these scaffolds

are actually from one region.

3. Keep the reference variants in the scaffolds.

Self-to-self BLAT was employed to check the similarity between the scaffolds and paral-

lelized in computer farm. We then investigate the result based on sequence identity and

the overlap length. When one scaffold was covered by another longer scaffold with more

than x% sequence identity and more than y% sequence overlap, the shorter one was re-

moved. Table 6.2 details the results when (x, y) = (80%, 80%) and (x, y) = (85%, 85%).

As expected, the length and number of scaffolds obtained from method 1 were longer

and more numerous than those from method 3 due to the relaxing condition achieved

by using wildcard nucleotides. On the contrary, the results of method 2 show fewer

scaffold maps; which is caused by the effect of the size and the frequency of indels

in I. batatas genome (see Figure 5.1-upper right for the statistics of indel frequency).
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Method 1 Method 2 Method 3

(Identity, Overlap) Sum #Scfs Sum #Scfs Sum #Scfs

(85%, 85%) 43M 17970 52M 22848 32M 14011
(80%, 80%) 59M 23009 120M 51075 47M 19106

Table 6.2: The result of self-to-self BLAT on all scaffolds by applying three strategies
and two thresholds. This table summarizes the number of and the total length of
removed scaffolds. Overlap shows the length of the overlapping sequence between scaf-

folds, and Identity indicates how similar the overlapping sequences are.

As the estimated size of the genome measured by C-value[58] was between 600Mb and

800Mb and the initial assembly size was ∼870Mb, we adopted the first method and used

(85%,85%) thresholds. Prior to removing the candidate scaffolds, several long candidates

were manually checked via Circos visualization[59].

After these procedures, there were 61,118 remaining scaffolds, of total length 822,598,598bp,

with 64,561bp N50. Then these scaffolds were connected using 20kb mate-pair library by

Platanus[60] ∼142kb. The total number of scaffolds was 57,051 and their length varied

between 392 and 1,152,062bp. We call this version the “preliminary assembly”.

6.4 Haplotype-Improved Assembly

In contrast with genome assembly, which relies on the similarity between the sequence

reads, the haplotyping process pays more attention to DNA sequence differences among

homologous chromosomes. The integration of genome assembly methods and haplo-

typing offers us a panoramic view of all the homologous chromosomes. Haplotyping

itself, however, poses its own challenges. For example, the haplotyping of the human

individual genome relies mainly on fosmid-based sequencing which is costly and time

consuming[34, 61]. Since the distance of the adjacent variants between paternal and

maternal chromosomes in humans is normally in the kilobase range[62], it is beyond

the capacity of current cost-effective sequencing platforms to cover at least two variant

positions in most cases. Nevertheless, human haplotyping studies have already indicated

that genome assembly and accurate haplotyping are tightly linked[61]. Unfortunately,

the computational phasing problem in polyploidy is considerably harder than for a dip-

loid organism because in the polyploid case one can not make inferences about the

“other” haplotype once one has seen the first.

Here, we report the integration of de novo assembly and haplotyping methods to im-

prove the genome assembly. We recruit Ranbow haplotyper in an iterative manner

to update haplotypes based on the assembly, and these haplotypes are then used for

post-scaffolding. Using this pipeline, we observed remarkable improvements in terms
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of longer stretches of scaffolds, more phased regions, and longer haplotype lengths (see

Section 6.4.5).

6.4.1 Variant calling

All the Illumina raw reads were mapped back to all scaffolds of the preliminary assembly

(Table 6.1). After removing the PCR duplicates, there were 1,725,677,696 mapped

reads in the final BAM file for variant calling using freebayes[63]. In total, there were

14,342,083 variations, consisting mainly of single nucleotide polymorphisms but also

indels, across the assembly. Most of the variant positions harboured two possible alleles

(Figure 6.4.1-a). We observed, on average, one polymorphic site every ∼58bp and a

median distance of 20bp between polymorphic sites. The distance distribution peaked

at 6bp and only 7% of observed distances are longer than 150bp (Figure 6.6-b). These

findings confirmed our earlier conclusion that the I. batatas genome is very heterozygous

and formed the basis for phasing haplotypes using 100–150bp Illumina reads. A high

correlation (r=0.975) was found between number of variations and scaffold length (Figure

6.4), which increases our chances for phasing the scaffolds.

6.4.2 Haplotype phasing

We used Ranbow algorithm for reconstructing the haplotypes (see Chapter 4). The

assembled haplotypes could be further extended by connecting paired-end reads. Part

of the paired-end reads map to haplotypes within one scaffold, while other paired-end

reads connect haplotypes from different scaffolds, due to better matching to the phased

sequence. These connections are used for the Haplotype-Improved assembly. The as-

sembled haplotypes length distribution is shown in Figure 6.7. The length distribution

is shown in nucleotide and coded allele spaces, respectively. Moreover, we removed the

gaps from the haplotypes to show the number of SmPs that are connected through the

haplotypes.

6.4.3 Validation of haplotypes

To evaluate the haplotyping accuracy, we used a set of 454 reads(Table 6.1-A454 ) that

had been produced earlier but were not used for assembly or phasing. Each 454 read can

be considered as a short DNA fragment from one chromosome, except for some chimeric

reads in rare cases. The reads are on the order of 1000bp long(Figure 5.3) and can

thus serve to identify errors in the haplotype reconstruction. A large fraction of these
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Figure 6.6: Summary of variations. (a) The total numbers of variation with dif-
ferent numbers of variant alleles. On average 831,919,670/14,342,083 = 58 bp with one
variant, which means short reads (100bp and 150bp) are informative for haplotyping.
Npos, Number of positions; Nvar, Number of Variant. (b) Adjacent variation distance
distribution peaked at 6 bp (red dashed line). Only 7% observed distances are longer

than 150bp.

454 reads displays haplotypes that have been correctly reconstructed by our short-read

based methodology.

Roche 454-trimmed reads were mapped against genome assembly (please refer to Section

5.2.2 and Figure 5.3 for more details on the trimming procedure). Only the polymorphic

sites indicated by variant calling were extracted and their overlaps with haplotypes

were evaluated. The ‘match’ and ‘mismatch’ sites of each overlap, i.e., the number

of coinciding polymorphic sites between haplotype and 454 read, and the number of

different polymorphic sites in the overlap respectively, were recorded for evaluating the

haplotypes. More than 60% of overlaps between haplotypes and 454 reads are identical
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Figure 6.7: Haplotype length distribution in nucleotide and coded allele
levels. These plots show the distribution of haplotype length as well as the number
of gaps in them. In the coded allele space plot (the right one), we can see that both
trends are covering each other when the number of SmPs is less than ∼100 alleles, and
then they diverge as the length of haplotypes increase so that the maximum number of
SmPs for normal haplotype is 11504 while it reduces to 1261 alleles by removing the
gaps. This indicates the effect of paired-end and mate-pair reads which connect distant
haplotypes. The divergence in nucleotide space is not as pronounced in coded allele

space due to the availability of interpolymorphic regions.

at variant loci. The longest reconstructed haplotype contained 92 polymorphic sites

without any mismatch indicated by 454 reads. There may be many longer perfectly

reconstructed haplotypes that remain undetected because of the limited 454 read length.

6.4.4 Haplo-scaffolding strategy

Higher heterozygosity and ploidy in a genome complicates the scaffolding step of the

de novo assembly pipeline. This, in part, is due to the assembly of erroneous reference

which accumulates the most frequent alleles in polymorphic sites as the reference alleles.

This results in a reference which differs from the true haplotypes. The problem arises

when the reads are sequenced from the true haplotypes but are mapped to consensus

reference. The higher the heterozygosity, the more the divergence between the true

haplotypes and the assembled reference. In the scaffolding step, the reads are getting

mapped to the reference sequence in order to find connections among scaffolds. Since

higher heterozygosity increases the chance of observing more errors in the reference

to which the reads are mapping, it influences the mapper efficiency. More reads are

rejected to be mapped to the reference (Figure 6.9(left scaffold) shows an example of an

inaccurate reference in a region with four polymorphic sites).
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Figure 6.8: Haplotype evaluation by 454 reads. x axis: ‘Match’ is the number of
coinciding polymorphic sites between haplotype and 454 read. y axis: ‘Mismatch’ is the
number of different polymorphic sites in the overlap. Color indicates frequency of the
respective (haplotype, 454 read) pairs, ranging from red to purple (on an exponential
scale). (a) Evaluation of haplotypes. (b) Less than 6 mismatch part (97.25% of total
number of overlaps). There were 64.78% of overlaps between haplotypes and 454 reads
are identical at variant loci (y = 0). Even with strict mismatch threshold, a large

fraction of 454 reads are supporting haplotypes reconstructed by short reads.

In order to solve the mentioned problem, we proposed a strategy called haplo-scaffolding.

Firstly, we phase the genome into haplotypes which are packed in blocks. Each block

is a fully phased region containing up to P haplotypes. Then, the paired-end reads

are mapped to the haplotypes, and perfect maps are selected as the candidates for

scaffolding. The position of candidates are then calculated according to the position

of haplotypes in the scaffold and the read in the haplotypes. These candidates are

considered as new connections between different scaffolds. Figure 6.9 depicts an example

of the effect of haplo-scaffolding strategy for two scaffolds. In this example, we set the

mapping threshold to two base pairs. Both of the reads in scaffold I are rejected by

mappers. After mapping reads to the haplotypes and extract the perfect maps, the

connections between two scaffolds are obtained. These connections are then used for the

scaffolding step.
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Figure 6.9: The effect of haplo-scaffolder. The reference accumulates the haplo-
types’ most frequent alleles. In scaffold I, it is shown that the reference sequence may
not be similar to any of the haplotypes. Two reads, which are rejected from mapping
due to the mismatch threshold, are now being mapped to the haplotypes (red and green
haplotypes). The other reads of the pairs are mapped to scaffold J. These two newly

extracted connection between scaffolds I and J could be used for haplo-scaffolding.

6.4.5 Haplotype-Improved assembly for I. batatas (HI-assembly)

All the Illumina raw reads were mapped against haplotype sequences generated by

the phasing step. Only perfectly matched paired-end reads were considered as hap-

lotype connections. The interscaffold and intrascaffold connections were separated for

haplotype-based scaffolding and haplotype elongation, respectively. The interscaffold

connections are separated according to insert sizes. It is worth noting that we faced

the following technical issues by looking at the insert length distribution obtained from

mapping AMP and MP libraries, 20kb and gel-free mate-pair reads respectively, to our

assembly (see Table 6.1).

• We found two peaks for MP library (see Figure 6.10 for the insert length distribu-

tion). To address this issue we extracted the reads mapped to the small scaffolds

(<1000bp). It was expected that the first peak is constructed from the reads

mapped to the substantial short scaffolds. By removing the reads mapped to the

short scaffolds, the first peak disappeared. Figure 6.11 indicates the proper peak

for the MP library. Regarding the long tail of this library, we expected to see a

wide insert length distribution since it was sequenced without selecting a size for

the insert library (non-selected size insert library).
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Figure 6.10: Insert length distribution for MP library. This library contains
two peaks, one very short and one at 1.7kb, and a wide range of inserts up to ∼12kb

• We couldn’t find a clear peak of insert sizes for AMP library. In contrast to

MP library, the insert length distribution for AMP was not anticipated to be in

such a wide range without a clear peak around 20kb (Figure 6.3-b(orange)). It

is worthwhile noting that AMP library was mapped to a closely related organism

(Ipomoea trifida) as well to see if this problem was a result of mapping such long

inserts to small scaffolds in our assembly or not. Figure 6.12 illustrates that this

trend is almost the same in both assemblies.

Figure 6.11: The insert length distribution of MP library. The insert sizes on
short contigs (< 1000) are shown in red which explains the first peak on Figure 6.10-a.
By removing the inserts mapped to small scaffolds the insert size becomes one peak

distribution.
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Figure 6.12: Insert length distribution for AMP library. One pronounced peak
for very short inserts, two minor peaks at 3kb and 15kb.

We designed an approach for haplo-scaffolding considering mentioned technical issues.

In this method, we extract the useful connections which are inferred from the assembled

haplotypes. These connections are then used to assemble contigs and scaffolds into

longer scaffolds by a scaffolding tool. We used SSPACE[64] scaffolder for this purpose.

Therefore, firstly, the connections from short insert size libraries, namely A500, L500,

and A1kb, were applied. Among 994,434 connections obtained from the haplo-scaffolding

step, 222,709 were mapped to the border of the scaffolds and used for scaffolding. These

border regions are defined according to the insert size of sequence libraries. We set

the minimum number of interscaffold connections to 5, the recommended value, which

resulted in connecting ∼3500 scaffolds and 0.8% improvement of the N50 length. After-

wards, the connections obtained from MP and AMP libraries are selected according to

predefined boundary sizes, i.e., 1.5kb, 3kb, 6kb, 9kb, 12kb, and 15kb. These boundaries

filter out the connections that are not placed in the scaffold borders. Figure 6.13(lower

left) shows the proportion of reads which satisfy these conditions. Having the satisfying

connections, the scaffolder was applied iteratively. At each step, a group of connec-

tions from one sequence library was fed to the scaffolder. The resulting scaffolds were

considered as the input of the next step.

The major drawback of this approach is that it squeezes the gap sizes and results in
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smaller scaffolds due to combining both small and long connections in earlier steps,

such as 1.5kb and 3kb inserts; and consequently, it has negative effects on the gap size

prediction. Nevertheless, the Haplo-scaffolding resulted in 35,919 scaffolds (the input

number of scaffolds was 57.051) varied between 392 and 1,335,955bp with the N50 of

∼201kb, 40% improvement.

Figure 6.13: Haplo-scaffolding results. Upper left plot shows the improvement
of N50 by applying different libraries. Lower left plot indicates the maximum scaffold
length on each assembly. Upper right plot presents the histogram of number of scaffolds
after applying each library. Lower right plot shows the number of extracted connection
through haplo-scaffolders and the number of connections that are useful for haplo-

scaffolding.
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6.5 Conclusion

In this chapter, we explained the de novo assembly pipeline of the sweet potato genome.

As the main part of this pipeline, we mentioned an application of haplotyping. We

employed a haplotyping tool, Ranbow , and designed a new haplotype aware scaffolder

called haplo-scaffolders. Haplo-scaffolder uses the assembled haplotypes in order to

rescue a set of potential connections which were hidden due to the differences of true

haplotypes and the reference sequence. These connections are obtained by mapping

the reads into haplotypes and transforming the connection information to the scaffold

level. This process can be repeated as the set of scaffolds are updated after each round

of haplo-scaffolding. We showed how the N50, maximum scaffold length improved by

using this strategy for sweet potato genomes. The effect of haplo-scaffolding in the first

iterations is high but after a number of iterations it reaches a plateau.



Summary

In this thesis, we focus on the problem of reconstructing haplotypes for polyploid gen-

omes and the utilization of called haplotypes in de novo assembly of these genomes.

We approach this topic exploring short read sequence data of the highly heterozygous

hexaploid sweet potato genome.

First, we investigate the role of heterozygosity and ploidy number in reconstructing

haplotypes with short reads. In short, higher heterozygosity provides higher number of

useful reads for reconstructing haplotypes while being polyploid introduces a challenge

in assembling reads into longer sequences; we called it the problem of ‘Ambiguity of

Merging fragments’. However, we address this problem and show that reads can be as-

sembled into haplotypes with high accuracy using short reads. To this end, we propose

a new algorithm, called Ranbow , and evaluate its performance on real and simulated

datasets from tetraploid Capsella bursa-pastoris (Shepherd’s Purse), and hexaploid Ipo-

moea batatas (sweet potato) genomes. We are able to show that our method achieves

higher accuracy and longer assembled haplotypes than the other methods.

Next, we present the de novo assembly pipeline of the sweet potato genome utilizing

computed haplotypes for genome assembly improvement. This novel approach, called

haplo-scaffolders, uses the assembled haplotypes in order to rescue a set of potential

connections which were hidden due to the differences of true haplotypes and the reference

sequence. These connections are obtained by mapping the reads into haplotypes and

transforming the connection information to the reference level. This process can be

repeated by updating the scaffold set to further improve the genome assembly. We

show that this strategy improves substantially the N50 and maximum scaffold length of

assembled sweet potato genome.
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from [35] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 The comparison of different insert size on the haplotype as-
sembly of human genome. The y-axis shows the variant N50 (this
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3.5 Haplotyping with the help of transcriptome data This figure shows
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information layers. This figure is adapted from [40] . . . . . . . . . . . . . 40

3.6 The schematic view of 10X genomic pipeline from high molecu-
lar weight fragments to assembled haplotypes. (adapted from [43]) 41

3.7 Strand-seq pipeline. (adapted from [44]) . . . . . . . . . . . . . . . . . 42

3.8 Different layers of complexity for polyploid haplotyping. Sky-
line layer: The number of unique sequences of chromosomal segments.
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lotypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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4.1 Haplotypes in nucleotide and coded allele space. This figure il-
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allele space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Conversion of a read to a fragment: There are three type of variation
(insertion, deletion, and a substitution) covered by the read. This figure
shows how the information is formulated into the fragment sequence. . . . 52

4.3 From sequence reads to initial haplotypes of a triploid genome
in a mask region. The fragments are clustered according to the seed
sequences they carry. There are three clusters; each constructs one hap-
lotype segment (shown in blue boxes). The haplotype segments are sup-
ported with four, three, and three fragments, respectively (blue, red, and
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the figure. The left one is in nucleotide space and the right one is ob-
tained by transforming the left table into coded allele space. Recall that
the reference, aligned reads, and list of variants are the inputs. . . . . . . 55

4.4 An illustration of masks and their seed sequences. (A) shows the
mask (msk1), its seed sequence (‘121’) and the fragment containing this
seed sequence (f1). (B) depicts a mask (msk2) and the three fragments
covering the mask. Since the seed sequence of f2 and f4 are identical,
both contribute one seed sequence to the mask msk2, therefore, the set
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2 . (C) shows a

masks msk3 with no seed sequence . . . . . . . . . . . . . . . . . . . . . . 56

4.5 All possible seed sequences contributed by one fragment. The
depicted fragment covers four polymorphic sites. The seed sequences of
length two, three, and four are shown in panel B. As it is shown in panel
A, the number of seeds of length two, three and four are six, three, and
one, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Schematic view of a mask phasing for a hexaploid genome. a)
Illustrates a reference genome and possible masks (arrows). The colors in
the reference indicate that the genome can be tiled into subregions each
of which is similar to one of the haplotypes. b) The arrows are shaded
according to the masks’ read support. The one with the highest support
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seed sequences. d) The purple seed sequence and its supporting reads are
shown. After error correction the reads are merged into one assembled
haplotype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 An Illustration of errors detection when Tmsk > P for a triploid
genome: Reads with same seed sequences are depicted in same color.
Seed sequence ‘22’ is the erroneous seed sequence because it is supported
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least two fragments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Uniquely matched overlap between a fragment and a set of hap-
lotypes. The only matching overlap between the fragment and the block
is “A”. Since there is just one matching overlap and five mismatching
overlaps, the new fragment can be merged with the yellow haplotype seg-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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4.9 The seed extension process: a) A constructed seed and its corres-
ponding haplotypes. b) Seed extension by uniquely matched reads c)
iteratively the blocks are getting longer and the final block is constructed. 65

4.10 Schematic view of graph G: This figure shows a number of fragments
and their corresponding edges in graph G. The fragments with miss-
ing alleles may be obtained from paired reads. If two reads of a pair
are mapped into two haplotype segments of different blocks, one edge is
assigned between the nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Desired cycles, desired paths, and conflicting paths. A and B
illustrate two desired cycles (blue), one desired path (green), and three
conflicting paths (red). The conflicting paths are those containing two
nodes of the same partition. In desired cycles the connectivity between
two nodes are not only supported with a direct edge but also supported
through the path of other nodes of the cycle. . . . . . . . . . . . . . . . . 67

4.12 Searching for triangles: This figure depicts a triangle starting at sx
and ends at sy and sz. Ranbow checks if there is an edge between sy
and sz (dotted line) to form a triangle. . . . . . . . . . . . . . . . . . . . . 68

4.13 Connecting haplotype segments of different blocks in an iterat-
ive manner. Edges are the connections obtained via reads. Red rect-
angles are sliding windows with length of four. Solid gray lines are the
edges beginning from the leftmost block of a sliding window. The dot-
ted lines are edges, and the blue edges are the newly formed haplotypes.
The candidate edges at each step are checked to find if they construct a
triangle or not. The most supported triangle at each step is converted to
one haplotype segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.14 Conflicts in merging two segments This figure shows how a conflict
occurs by merging sx and sp if sx consists of sx and sy, and also sp consists
of sp and sq. Merging sx and sp results in merging sy and sp which causes
a conflict of merging two segments of a block . . . . . . . . . . . . . . . . 71

4.15 Different possibilities for phasing the regions with fewer than P
sequence patterns. In this example P = 4. (A) depicts two regions each
of which phased into three haplotypes. The colored nodes indicate the
nodes with two copies. The weights of edges show the number of fragments
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5.1 Dataset properties of sweet potato and CBU genomes. A) The
interval length distribution of polymorphic sites. Both axes are in log
scale. This plot indicates the high number of short intervals and the
low number of long intervals. B) Different kinds of variants. This plot
shows the frequency of the different types of variants, namely SNPs, non-
SNP and multiallelic sites. The y-axis is in logarithmic scale. The plot
depicts the high number of SNPs in both genomes while the number of the
other types of variant is still considerable. Note that, multiallelic variants
are a part of non-SNP variants. This plot shows that what proportions
of non-SNP variants are multiallelic variants in these genomes.C, D)
Genotype distribution for sweet potato (left) and CBU (right) genomes.
The y-axes are in logarithmic scale. On the x-axes, all possible genotype
configurations are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Selected scaffolds’ properties. In this plot, each dot depicts one scaf-
fold of the sweet potato genome. These scaffolds were obtained after the
scaffolding step of de novo assembly. The x-axis shows the log scale of cov-
erage and the y-axis shows the log scale of scaffold lengths. We randomly
selected 50 scaffolds of different sizes, namely 10kb, 50kb, 100kb, 500kb,
and 1000kb, ten scaffolds each. These scaffolds are used for evaluating
with real data and producing the simulated dataset. . . . . . . . . . . . . 79

5.3 Base quality and length distribution of Roche 454 reads. Left)
Each 454 read is divided into 20 equal size segments. The box plot shows
the base quality distribution and the red line indicates the high threshold
we set for filtering the bases on quality. Right) The Roche 454 length
distribution. Maximum length is 1771bp . . . . . . . . . . . . . . . . . . . 80

5.4 Dataset properties for sweet potato genome. Left) Insert size dis-
tribution. The real data contains five different libraries with different
insert sizes, namely 350bp, 550bp, 950bp, 20k, and no size selection. For
simulated data, we generated inserts of 350bp from the selected scaffolds
with 30x coverage for each haplotype. Right) Coverage of selected scaf-
folds for real and simulated data. The x-axis shows base coverage, and
the y-axis depicts frequency. In the real dataset, the base coverage varies
in a wide range up to 10k while the simulated data has the peak at 180x.
This discrepancy is caused by the presence of repeats in the genome. . . . 81

5.5 Insertion length distribution for simulated dataset of CBU gen-
ome. Four 100 bp paired-end read libraries with the insert sizes of 350bp,
1kbp, 2kbp and 5kb are generated by EAGLE (Enhanced Artificial Gen-
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eration Sequencing instruments. For each library, the coverage for every
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5.6 Comparison of all methods on sweet potato real and simulated
datasets. A, B) match-mismatch plots for sweet potato real and simu-
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5.7 Comparison of the methods regarding accuracy on real and sim-
ulated sweet potato data. Left) The assembled haplotypes of simu-
lated data are grouped into five groups according to their size. Right)
Since the size of real ground truth data is limited, the real data is grouped
into four categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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5.8 Comparison of all methods in terms of assembled haplotype
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5.9 Comparison of H-PoP and Ranbow on different insert sizes for
simulated dataset of CBU genome. The match-mismatch plots show
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insert sizes improves the result dramatically (lower plots). There are
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mismatches in the lower right plot. . . . . . . . . . . . . . . . . . . . . . 86

5.10 Effect of different insert sizes on the performance of H-PoP
and Ranbow on sweet potato simulated data. This figure shows
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indicate the frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Comparison of H-PoP and Ranbow regarding accuracy on CBU
simulated dataset. Ranbow results in more accurate haplotypes in all
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5.12 Matching length and frequency distribution of assembled hap-
lotypes by different insert size on simulated sweet potato data.
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5.13 Scatter plots of corrected alleles in assembled haplotypes. Each
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5.14 Frequency of Number of Inferred Haplotypes in the phased re-
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and the lower plots show the same in coded allele space. In the left plots,
the missing data is removed from the haplotypes. These plots indicate the
number of gaps in the produced haplotypes in the real data set, due to
the long insert size sequencing libraries used for real data sets. Moreover,
these plots show both real and simulated data assemble almost the same
number of haplotypes with the same number of copies. . . . . . . . . . . 91

5.15 Distribution of the accuracies in assembled haplotypes on mul-
tiallelic polymorphic sites of sweet potato simulated dataset.
Each dot shows one assembled haplotype. On the x-axis, the accuracy
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6.1 Selected and highly covered scaffolds. The selected scaffolds are
shown in red. These scaffolds were chosen on the basis of scaffold length
and informative read coverage. Total number of scaffolds is ∼166k. The
reason for selecting such a subset was anticipating more scaffolds closer to
this region by more sequencing since they are sufficiently long and covered
by reads. The purple dots illustrate very highly covered scaffolds, which
are more likely to be repeat regions or small assembled haplotypes which
are not integrated in the longer scaffolds due to the heterozygosity. It
was predicted that these scaffolds will be mapped to the longer ones by
enhancing the quality of assembly. . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Coverage distribution of genomic regions phased into triploid,
tetraploid, pentaploid, and hexaploid during genome survey.
Based on the genome survey data and primary assembly, genome regions
have been phased into up to six haplotypes. The coverage of each phased
region and number of phased haplotypes is summarized here. The peak
coverage around 40 in hexaploid indicated the minimal sequencing depth
requirement for haplotyping of hexaploid genome. The peak coverage
shifting from triploid to hexaploid demonstrated the insufficient sequen-
cing depth in the genome survey stage. . . . . . . . . . . . . . . . . . . . . 98

6.3 The insert size distribution of sequenced paired-end libraries.
(a) Insert size distribution of paired-end libraries A500, L500, and A1kb.
(b) Insert size distribution of mate-pair libraries MP and AMP. . . . . . 99

6.4 Summary of variations in scaffolds in preliminary assembly. (a)
Number of variations and length of all scaffolds. An isolated dot rep-
resents the fully assembled genome of sweet potato endophyte, Bacillus
pumilus. (b) High correlation (0.975) between “Number of variations” and
“Scaffold length” after excluding the endophyte Bacillus pumilus genome. 100

6.5 A snapshot of mapping results of contigs against scaffolds. The
large number of single nucleotide mismatches indicates the single nucle-
otide polymorphism between homologous chromosomes in Ipomoea bata-
tas. Cigar fields of these mapped scaffolds were listed as follows. (a)
4045M. (b) 33S44M1D136M1I10M6D149M15D21M1I1799M. (c) 579M.
(d) 56M13D162M. (e) 15S2396M2I92M. (f) 733M. (g) 1260M. (h) 1014M1I162M1D136M.
Among these, (b), (e), (g), and (h) are partially shown here. . . . . . . . . 101

6.6 Summary of variations. (a) The total numbers of variation with dif-
ferent numbers of variant alleles. On average 831,919,670/14,342,083 =
58 bp with one variant, which means short reads (100bp and 150bp) are
informative for haplotyping. Npos, Number of positions; Nvar, Number
of Variant. (b) Adjacent variation distance distribution peaked at 6 bp
(red dashed line). Only 7% observed distances are longer than 150bp. . . 104
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6.7 Haplotype length distribution in nucleotide and coded allele
levels. These plots show the distribution of haplotype length as well
as the number of gaps in them. In the coded allele space plot (the right
one), we can see that both trends are covering each other when the num-
ber of SmPs is less than ∼100 alleles, and then they diverge as the length
of haplotypes increase so that the maximum number of SmPs for normal
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distant haplotypes. The divergence in nucleotide space is not as pro-
nounced in coded allele space due to the availability of interpolymorphic
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.8 Haplotype evaluation by 454 reads. x axis: ‘Match’ is the number
of coinciding polymorphic sites between haplotype and 454 read. y axis:
‘Mismatch’ is the number of different polymorphic sites in the overlap.
Color indicates frequency of the respective (haplotype, 454 read) pairs,
ranging from red to purple (on an exponential scale). (a) Evaluation of
haplotypes. (b) Less than 6 mismatch part (97.25% of total number of
overlaps). There were 64.78% of overlaps between haplotypes and 454
reads are identical at variant loci (y = 0). Even with strict mismatch
threshold, a large fraction of 454 reads are supporting haplotypes recon-
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6.9 The effect of haplo-scaffolder. The reference accumulates the haplo-
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Appendix A

Ranbow user manual

Ranbow is a haplotype assembler for polyploid genomes. Initially, it has been developed

for the haplotype assembly of the sweet potato genome, which is hexaploid and highly

heterozygous. Ranbow can also be applied to other polyploid genomes. After one

round of haplotype assembly, Ranbow utilizes the assembled haplotypes to correct

called variants. Moreover, it can infer the organism evolutionary history for computed

haplotypes. Ranbow has three main modes of function:

ranbow hap: for haplotyping

ranbow eval: for evaluating of the assemble haplotypes by gold standard (long) reads

ranbow phylo: for the phylogenetic analysis

Availability

You can download the source code and the toy example files here:

https://www.molgen.mpg.de/ranbow

The following video explains how you can simply run Ranbow on the toy example:

https://youtu.be/2zZ5IfpuGZQ

Dependencies

The code is implemented in python 2.7.13 and can be run from linux shell. To run

Ranbow the following libraries and tools should be available:

python libraries

137
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• pysam 0.10.0

• numpy 1.12.1

tools

• samtools 0.1.19-44428cd.

A.1 Data preparation

We generated a random list of scaffolds from the sweet potato genome in order to make

a data input as a toy example. Then, the fasta, bam and vcf files were extracted. Data

files for selected scaffolds are named as ‘sel.bam’, ‘sel.vcf’, and ‘sel.fasta’. These files are

generated by ‘toy data.sh’ which is available in toy folder as well.

It worth mentioning that Ranbow can be applied on the whole or selected region of

the scaffolds. This feature helps for better parallelization as well as phasing targeted

interval in the genome.

A.2 Ranbow for haplotype assembly

Ranbow hap has four modes of sub-function. For simplicity we refer to them as different

modes, namely index, hap, collect, and modVCF. The mode of choice is declared by

-mode parameter in command line.

python2 7 13 ranbow.py hap -mode index

python2 7 13 ranbow.py hap -mode hap python2 7 13 ranbow.py hap -mode collect

python2 7 13 ranbow.py hap -mode modVCF

The index mode generates the index files in order to have random access to chromo-

somes and scaffolds in case of parallelization. After running Ranbow in index and hap

mode, Ranbow should be applied on collect mode. The collect mode collects the

haplotypes assembled with different processors to generate the final fasta file, bam file

(aligned haplotypes) and also hap formatted file. The bam file is already sorted and

indexed and is ready to be loaded in IGV browser for downstream analysis. The hap
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formatted file includes haplotype information such as name, start position, haplotype se-

quence, number of error correction, haplotype quality, and supporting fragments. These

fields are explained in more details as follows.

Haplotype name: The name includes scaffold/chromosome name, and an index num-

ber at the end of the name. For example if the ploidy is six, the following haplotypes

belong to the haplotype block indexed by 4 in chromosome 1: chr1 hap4 0, chr1 hap4 1,

chr1 hap4 2, chr1 hap4 3, chr1 hap4 4, and chr1 hap4 5.

Haplotype sequence: sequence of alleles in which the alleles are coded to numbers in

[0, ploidy) interval. For sweet potato they are coded with ‘0’ to ‘5’.

Number of error correction: Each haplotype has a number of supporting fragments.

This field represents the number of mismatches among these fragments.

Quality of haplotype: The supporting fragment coverage of each position in the haplo-

type. Length of quality is equal to the length of haplotype. Supporting fragments: A

full list of supporting fragments. To run Ranbow , the parameters in the following table

need to be adjusted. Some of these parameters have to be passed from the command

line (mentioned as following), while the others could also be passed via a parameter file.

The compulsory parameters are as follows: Here is the content of a parameter file used

in this toy example:

-ploidy 6

-noProcessor 4

-bamFile path to folder∼>RANBOW/toy/sel.bam

-refFile path to folder∼>RANBOW/toy/sel.fasta

-vcfFile path to folder∼>RANBOW/toy/sel.vcf

-selectedScf path to folder∼>RANBOW/toy/scaffolds.list

-outputFolderBase path to folder∼>/RANBOW/toy/result

For simplicity, data files are stored in one folder (named ‘RANBOW/toy’) and the

parameters are adjusted in ‘hap.params’ file. The parameter file is passed to Ranbow

through the -par argument. python2 7 13 ranbow.py hap -par RANBOW/toy/hap.params

So here is the list of files in the folder:

RANBOW/toy > ls -lh

total 30M
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-rw-r----- 1 moeinzad moeinzad 426 Mar 31 10:33 hap.params

-rw-r----- 1 moeinzad moeinzad 641 Mar 30 09:51 scaffolds.list

-rw-r----- 1 moeinzad moeinzad 29M Mar 30 11:21 sel.bam

-rw-r----- 1 moeinzad moeinzad 133K Mar 30 11:21 sel.fasta

-rw-r----- 1 moeinzad moeinzad 1.1M Mar 30 11:21 sel.vcf

-rw-r----- 1 moeinzad moeinzad 405 Mar 30 11:18 toy data.sh

A.2.1 Indexing input files (mode: index)

It generates index files for bam, vcf, and fasta if not exist:

python2 7 13 ranbow.py hap -mode index -par RANBOW/toy/hap.params

Then the index files are generated and listed as follows:

RANBOW/toy > ls -lht

total 30M

drwxr-x--- 2 moeinzad moeinzad 10 Mar 31 10:58 result

-rw-r----- 1 moeinzad moeinzad 844 Mar 31 10:58 sel.vcf.index

-rw-r----- 1 moeinzad moeinzad 225K Mar 31 10:58 sel.bam.bai

-rw-r----- 1 moeinzad moeinzad 1.2K Mar 31 10:58 sel.fasta.fai

-rw-r----- 1 moeinzad moeinzad 426 Mar 31 10:33 hap.params

-rw-r----- 1 moeinzad moeinzad 29M Mar 30 11:21 sel.bam

-rw-r----- 1 moeinzad moeinzad 1.1M Mar 30 11:21 sel.vcf

-rw-r----- 1 moeinzad moeinzad 133K Mar 30 11:21 sel.fasta

-rw-r----- 1 moeinzad moeinzad 405 Mar 30 11:18 toy data.sh

-rw-r----- 1 moeinzad moeinzad 641 Mar 30 09:51 scaffolds.list

A.2.2 Run Ranbow on computer farm

The -noProcessor parameter should be adjusted according to the number of available

processors. For example, if the code is running on a cluster with 200 cores, -noProcessor

can be set to 200. Then, 200 independent jobs will be executed with different set of

chromosomes, chromosome parts, or scaffolds. These 200 jobs are independent and can
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be run on different machines. For the sake of simplicity in the toy example, we run the

code utilizing three cores.

The -processorIndex is a compulsory parameter in command line if the number of

processors is more than one (-noProcessor ≥ 2). Otherwise -noProcessor is set to

one and -processorIndex is set to zero by default, meaning that the output is generated

with one processor and the result is going to be generated in a folder named ‘0’. Here,

the standard output for the first processor (-processorIndex = 0 and -noProcessor

= 3) is shown as follows.

python2 7 13 ranbow.py hap -mode hap -par hap.params -processorIndex 0 scaffold4183|size30906

readBAM 0:00:12.360045 Ranbow single 0:00:51.672871 single2file 0:00:00.055484

scaffold9406|size6143 readBAM 0:00:01.335690 Ranbow single 0:00:00.000836

single2file 0:00:00.000018 scaffold13332|size3918 readBAM 0:00:03.531090 Ranbow single

0:00:00.162100 single2file 0:00:00.002223 scaffold16724|size3385 readBAM 0:00:01.684177

Ranbow single 0:00:00.201964 single2file 0:00:00.003162

The running time for each part of haplotyping is reported in the standard output. The

haplotyping result will be appear in the subfolder of -outputFolderBase named as

-processorIndex. For example, since we generated haplotypes for -processorIndex

0, the only generated folder is called ‘0’

RANBOW/toy/result > ls

0

This folder contains three files as follows:

RANBOW/toy/result/0 > ls -lh

total 964K

-rw-r----- 1 moeinzad moeinzad 49K Mar 31 11:01 ranbow.single.hap

-rw-r----- 1 moeinzad moeinzad 113K Mar 31 11:01 ranbow.single.hap.fasta

-rw-r----- 1 moeinzad moeinzad 234K Mar 31 11:01 ranbow.single.hap.bam

The hap format shows the connectivity between alleles in haplotype segments, the quality

of alleles in assembled haplotype (the number of supporting reads for the allele), and

in general all information regarding the assembled haplotype in coded allele space. In

coded allele space means the shared sequence between alleles are ignored and the alleles
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are decoded to numbers. The fasta and the bam files for the aligned haplotypes are

generated in this folder as well.

To run the code in parallel on one machine the following command can be executed:

for i in {0..2}

do

python2 7 13 ranbow.py hap -mode hap -par hap.params -processorIndex $i > $i.log

&

done

The standard outputs for every processor is collected in ‘0.log’, ‘1.log’, and ‘2.log’ files.

It is also possible to run Ranbow partly in one machine and partly in the other. Fol-

lowing our toy example, set 0 (-processorIndex = 0) and set 1 (-processorIndex =

1) are executed in machine A and set 2 (-processorIndex = 2) is executed in machine

B.

Machine A:

for i in {0..1}

do

python2 7 13 ranbow.py hap -mode hap -par hap.params -processorIndex i >i.log

&

done Machine B:

for i in {2..2}

do

python2 7 13 ranbow.py hap -mode hap -par hap.params -processorIndex i >i.log

&

done

The three generated folder are listed as follows:

RANBOW/toy/result > ls -lh

total 12K

drwxr-x--- 2 moeinzad moeinzad 4.0K Mar 31 11:00 0

drwxr-x--- 2 moeinzad moeinzad 4.0K Mar 31 11:03 1

drwxr-x--- 2 moeinzad moeinzad 4.0K Mar 31 11:03 2
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A.2.3 Collecting data from (mode: collect)

When all jobs get finished, -mode collect can be executed to collect the haplotypes

from different machines:

python2 7 13 ranbow.py hap -mode collect -par hap.params

number of folders: 3

[samopen] SAM header is present: 28 sequences.

[samopen] SAM header is present: 28 sequences.

Then the generated files are as follows:

RANBOW/toy/result > ls -lht

total 1.2M

-rw-r----- 1 moeinzad moeinzad 359K Mar 31 11:05 ranbow.single.hap.fasta

-rw-r----- 1 moeinzad moeinzad 132K Mar 31 11:05 ranbow.single.hap

-rw-r----- 1 moeinzad moeinzad 2.3K Mar 31 11:05 ranbow.single.hap.bam.bai

-rw-r----- 1 moeinzad moeinzad 48K Mar 31 11:05 ranbow.single.hap.bam

drwxr-x--- 2 moeinzad moeinzad 4.0K Mar 31 11:03 2

drwxr-x--- 2 moeinzad moeinzad 4.0K Mar 31 11:03 1

drwxr-x--- 2 moeinzad moeinzad 4.0K Mar 31 11:00 0

For this toy example the generated ‘single.hap.bam’ file is ready to be loaded for IGV

viewer for further analysis.

A.2.4 Revising sequence variants (mode: modVCF)

The following command modifies and corrects the variants with the aid of assembled

haplotypes.

hap/RANBOW > python ranbow.py hap -mode modVCF -par params.txt

modified vcf file:

/hap/RANBOW/toy/sel.mod.vcf

log of modified SNPs:
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/hap/RANBOW/toy/result/ranbow.modVCF.log

Modified SNPs: 853 Deleted SNPs: 49

The detailed information of the modification can be found in:

/hap/RANBOW/toy/result/ranbow.modVCF.log

A.2.5 Evaluation of the results

To evaluate the haplotyping accuracy, we recruit the Roche 454 trimmed reads mapped

to the assembly. This file or other gold standard mapped read files has to be passed with

-bamFileEval parameter. ranbow eval can also be executed in parallel. For obtaining

the evaluation result the following steps needs to be done.

python2 7 13 ranbow.py eval -par hap.params -mode index

mode run for parallelization:

python2 7 13 ranbow.py eval -par hap.params -mode run -processorIndex i

mode collect for collecting data:

python2 7 13 ranbow.py eval -par hap.params -mode collect

After running the above commands the following files will be generated:

toy/result > ls -lt eval/

total 28

-rw-r----- 1 moeinzad moeinzad 4561 Apr 16 18:33 result.sing

drwxr-x--- 2 moeinzad moeinzad 66 Apr 16 18:33 0

drwxr-x--- 2 moeinzad moeinzad 66 Apr 16 18:33 1

drwxr-x--- 2 moeinzad moeinzad 66 Apr 16 18:33 2

drwxr-x--- 2 moeinzad moeinzad 66 Apr 16 18:33 3

The ‘result.sing’ file is the evaluation of haplotypes which are assembled from the reads.

The two columns indicate the ‘Match’, ‘Mismatch’ of the overlaps between phased hap-

lotypes and 454 reads. In order to investigate the overlaps further, one can take a

look at the files named ‘/*/ranbow.single.eval’. The following lines are selected from
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‘/0/ranbow.single.eval’ file as an example. Each line shows the similarity and dissimil-

arity of the overlap between a 454 read and an assembled haplotype in one block. The

numbers in parentheses show the similarity and dissimilarity of the overlap. The arrow

indicates which haplotype is assumed to be sampled from the same chromosome that

the 454 read is also sampled. For instance, (8, 1) indicate eight allele matches and one

allele mismatch between a 454 read and the second assembled haplotype.

454 17 -------101010100-------

illumina

10 00000000000000000000011 (5, 4)

10 1000000101010110001110- (8, 1) <---

12 --0001000001010001101-- (7, 2)

12 --01-110100111010010--- (4, 5)

11 -1101100011101101010011 (6, 3)

11 -0010100110001110010--- (4, 5)

A.2.6 Ranbow phylo

To infer the evolutionary event of the organism with the aid of haplotypes, Ranbow

phylo can be employed to extract and tune the alignments from all phased regions and

report the topology of the evolutionary phylogenetic tree. All the regions phased into

‘P’ haplotypes are used for constructing UPGMA (unweighted pair group method with

arithmetic mean) trees with the MEGA-Computing Core[65]. Ranbow phylo can be

executed in parallel mode as well. Therefore the files need to be indexed first.

python2 7 13 ranbow.py phylo -par hap.params -mode index

-mode run for parallelization:

python2 7 13 ranbow.py phylo -par hap.params -mode run -processorIndex i

For collecting the generated data:

python2 7 13 ranbow.py phylo -par hap.params -mode collect

then collect mode is deployed in order to report the final statistics for different phylo-

genetic tree topologies.
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hap/RANBOW > python ranbow.py phylo -par params.txt -mode collect

7 ((((()))))

7 (((()())))

29 (((())()))

13 (((()))())

43 ((()())())

26 ((())(()))

Moreover ranbow phylo -mode tree calculates the mutation rates in the branch trees

reports the relative branch lengths.

hap/RANBOW > python ranbow.py phylo -par params.txt -mode tree

Tree topology: (((A-B)I (C-D)J ) M (E-F) N)

Branch Name Mean relative distance SD relative distance

A: 0.674418604651 0.813288765118

B: 0.674418604651 0.813288765118

I: 0.639534883721 0.721961003548

C: 0.732558139535 1.05295176025

D: 0.732558139535 1.05295176025

J: 0.581395348837 0.604539345654

M: 0.886627906977 1.60414025402

E: 0.779069767442 0.891186337505

F: 0.779069767442 0.891186337505

N: 1.0523255814 1.2325032897

Mutation rate for A-B and C-D branches: 0.00701902094469

Mutation rate for E-F branch: 0.00848135858809

hap/RANBOW >
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Dataset Availability

There was no gold standard real dataset for polyploid haplotyping; hence we construct

and introduce the following datasets from sweet potato sequencing data. We release a

real semi-ground truth dataset for haplotype reconstruction for polyploid genomes. This

dataset can be used for evaluating and comparing methods on real data. We used the

trimmed Roche 454 reads, which were not used for de novo assembly and haplotyping,

to evaluate the assembled haplotypes. Since the Roche 454 reads are limited in size, this

data set can not be considered as a full gold standard data and that is why we called it

semi-ground truth dataset. Most of the haplotypers use the haplotypes and the reads in

coded allele space; hence, we converted Illumina and Roche 454 reads into coded allele

space. This helps the developers to avoid data conversion and also it reduces the size

of the dataset and makes it easier for downloading. We released two datasets one small

for selected scaffolds, which were used in Chapter 4, and one big dataset which contains

all of the scaffolds in the assembly. Here are the links to the mentioned datasets: Full

dataset

https://owww.molgen.mpg.de/~ranbow/454_all_scfs.frags.bz2

https://owww.molgen.mpg.de/~ranbow/all_scfs.frags.bz2

Selected dataset

https://owww.molgen.mpg.de/~ranbow/454_selected_scfs.frags.bz2

https://owww.molgen.mpg.de/~ranbow/selected_scfs.frags.bz2

https://owww.molgen.mpg.de/~ranbow/selected_scfs.genotypes.bz2

The instruction for using these datasets can be found in:

https://github.com/euginm/CreateFragmentMatrix
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Appendix C

Short CV

For reasons of data protection, the curriculum vitae is not published in the electronic

version
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For reasons of data protection, the curriculum vitae is not published in the electronic

version



Appendix D

Zusammenfassung

Diese Dissertation widmet sich dem Problem der Rekonstruktion von Haplotypen in polyploiden

Genomen, und der Verwendung der Haplotypen für das de novo assembly dieser Genome. Der

gewählte Ansatz stützt sich auf short read Sequenzierdaten des höchst heterozygoten hexaploiden

Genoms der Süßkartoffel. Zunächst wird die Rolle der Heterozygosität und Ploidie im Kontext

der Rekonstruktion von Haplotypen durch short reads untersucht. Höhere Heterozygosität macht

mehr reads für die Rekonstruktion von Haplotypen nutzbar, während die Polyploidie das Zusam-

menfügen der reads in längere Sequenzen erschwert. Dieses Problem wird hier Ambiguity of Mer-

ging Fragments genannt und durch den beschriebenen Algorithmus Ranbow adressiert. Die Leis-

tung von Ranbow wird mit Hilfe von realen und simulierten Datensätzen des tetraploiden Genoms

des Hirtentäschelkrauts (Capsella bursa-pastoris) und des hexaploiden Genoms der Süßkartoffel

(Ipomoea batatas) evaluiert. Der Vergleich mit anderen Methoden zeigt, dass man mit Ranbow

die höchste Genauigkeit und die längsten Haplotypen erreicht. Anschließend wird eine Pipeline

für das verbesserte de novo assembly des Süßkartoffelgenoms präsentiert, die die zuvor errech-

neten Haplotypen nutzt. Diese neue Methode, genannt haplo-scaffolders, deckt mit Hilfe der

Haplotypen einen Satz an möglichen Verbindungen zwischen scaffolds auf, die zuvor durch die

Unterschiede zwischen echten Haplotypen und der Referenzsequenz versteckt blieben. Diese

Verbindungen werden aufgedeckt, indem die reads den Haplotypen zugeordnet werden und die

Verbindungen auf das Referenzlevel übertragen werden. Der Prozess kann wiederholt werden, in

dem der scaffold Satz aktualisiert wird, um das Genom assembly weiter zu verbessern. Es wird

gezeigt, dass diese Strategie den N50-Wert und die maximale Scaffold-Länge des Süßkartoffel-

genoms signifikant verbessern.
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Glossary

Ambiguity of Merging Problem A characteristic of polyploid genomes which prevent as-

sembly of two fragments with identical shared overlap. 18, 53

Fragment A fsequence of coded variants which are covered by an aligned read. 12, 51

Genotype A set of variants at a polymorphic site. 10

Genotype in coded allele space A genotype is an unordered set so the illustration should

include this property; hence, the genotypes are shown as a set of numbers, each corres-

ponding to one allele, separated by slashes. 13

Haplotype The set of variants that are located on a single chromosome. 7

Haplotype-Improved assembly The assembly that is improved via assembled haplotype in-

formation.. 103

Haplotype Block A set of haplotype segments with the following properties: 1) Initiated from

one mask. 2) The haplotype segments are constructed from the supporting fragments of

the seed sequences of the mask. 3) The haplotype segments are elongated by neighboring

fragments.. 57, 62

Haplotype segment A haplotype segment is a consensus sequence of a set of fragments. The

fragments are supposed to be originated from one haplotype. 53

Haplotypes in nucleotide space A haplotype shown as a sequence of nucleotides. 12

haplotypes in coded allele space A sequence of coded alleles at heterozygous polymorphic

sites. 10, 12

Heterozygous variant The sequence variants which are not identical among the homologous

chromosomes of a single individual. 10

Homologous chromosomes A group of chromosomes with a similar length and centromere

position, which possess similar genes at corresponding loci. 8
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Homozygous variant A homozygous variant is a variant which is identical in all homologous

chromosomes. 10

Indel Insertion and deletion smaller than 50 base pair. 8

Interpolymorphic region A region between two consecutive polymorphic sites. The sequences

of nucleotides in these regions are identical among homologous chromosomes. 8

Mask A mask is an ordered set of indices of polymorphic sites. 54

MEC Minimum Error Correction mode. This model tries to cluster reads and correct their

errors such that all reads at each cluster are compatible with each other. 30

Merge function A function that constructs a consensus sequence from a set of input fragments.

53

Minimum Error Correction This model tries to cluster reads and correct their errors such

that all reads at each cluster are compatible with each other. 30

Missing allele This terminology, which is illustrated as ‘−’, is used when an allele is unknown

in coded allele space. 13

Multinucleotide polymorphism The variants which are larger than one basepair and are

equal in length. 8

non-SNP variants Multinucleotide variants and indels. 76

Number of Inferred Haplotypes The number of haplotypes in a phased region. This num-

ber could be P like the ploidy of the organism or fewer than P. The latter case could be

due to the characteristics of the genome in the region or owing to a failure in sequencing.

89

Polymorphic site A genomic position whose corresponding alleles may vary among the chro-

mosomes in the population. 8

Polymorphism The coexisting of different alleles in the individuals of the same population. 8

Seed sequences of a mask A seed sequence is a subsequence of a fragment excluding missing

alleles. It indicates the sequence pattern in one fragment at the indices of the mask. 54

Sequence variant A variant that appears in one chromosome of one individual at a poly-

morphic site. It could be a single nucleotide variant, a multinucleotide variant, or an

Indel. 10

SmP Small Polymorphism, which could be a single nucleotide variant, a multinucleotide variant,

or an Indel. 8
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SNP Single nucleotide polymorphism, a polymorphic site containing DNA sequence variations

with a size of one single base pair whose variant is observed in more than 1% individuals

of population. 8

Supporting fragment of a seed sequence A set of fragments which are contributing to a

seed sequence. 55

Supporting fragments A set of fragments that is predicted to stem from one haplotype and

supports one assembled haplotype segment. 53
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