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1 Introduction

An enhancer is a regulatory region which can boost or activate the transcrip-

tional expression of a target gene (Banerji et al., 1981). The target gene can

be several kilobases away from the enhancer, upstream or downstream, and is

not necessarily the nearest gene to the enhancer. Moreover, a gene can be reg-

ulated by several enhancers at the same time (Pennacchio et al., 2013) and one

enhancer can regulate several genes (Levine, 2010). In contrast to promoters,

the location of most enhancers is still unknown. The majority is located in the

non-coding part of the genome, which represents ∼ 98% of the total size, and

therefore constitutes a huge search space. Furthermore, most enhancers show

dynamically changing activity levels between conditions such as different cell

types or time-points. Hence, enhancers that are active in a certain condition

can be switched off in another, adding an additional layer of complexity to

the task of locating them in the genome (Pennacchio et al., 2013). However,

the functional annotation of enhancers and their corresponding target genes

is crucial to understand underlying mechanisms of gene expression regulation.

In addition to that, enhancers were shown to play a key role in the patho-

genesis of many diseases, such as diabetes or certain types of cancer (Wang

et al., 2018). Many disease-associated genetic variants are enriched in regions

which overlap with known enhancers or show enhancer marks. A subsequent

enhancer malfunction can, for example, result in a misregulation of oncogenes

(Sur and Taipale, 2016).

While individual enhancers have been validated using reporter assays, it is too

time-consuming and expensive to functionally test all enhancer candidates in a

corresponding genome-wide approach. However, advances in high-throughput
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sequencing lead to the exploitation of several genome-wide measurable en-

hancer properties to serve as a substitute for enhancer activity. Yet, pinpoint-

ing an active enhancer based on such data sets, even at a narrowly defined

locus, can quickly be too complex to do it manually (see for example Figure

1.1). The more feasible approach is to integrate data representing enhancer

properties as features into computational methods for enhancer prediction.

The majority of computational approaches are either unsupervised or super-

vised. The unsupervised methods search for patterns in the given epigenomic

data which subsequently can be used to characterize certain types of genomic

elements. No prior knowledge is needed to apply these methods to new data,

but the user has to decide which of the discovered patterns or combinations of

features ‘best’ represent the genomic elements of interest, for example active

enhancers. Prominent examples of unsupervised genome segmentation meth-

ods used for enhancer prediction are ChromHMM (Ernst and Kellis, 2012,

2017) and EpigSeq (Mammana and Chung, 2015), which are based on hidden

Markov models, and the dynamic Bayesian network method Segway (Hoffman

et al., 2012).

Supervised prediction methods rely on a gold-standard set of known enhancer

and non-enhancer regions in the cell type of interest, on which enhancer-

associated features distinguishing the one group from the other can be learned.

Since often validated enhancers are rare, enhancer properties enter the predic-

tion task through the choice of the feature set as well as through the criteria

used to define training enhancers. Both choices should be, at best, independent

of each other to avoid circular reasoning. Examples of supervised methods for

enhancer prediction are the neural network based approach CSI-ANN (Firpi

et al., 2010), or RFECS (Rajagopal et al., 2013) and REPTILE (He et al.,

2017) which use random forest classifiers (see Whitaker et al. (2015) and Lim

et al. (2018) for reviews on enhancer prediction methods).

Since one of the challenges in the supervised setting is the construction of

a condition-specific training set, the transferability of an already established

classifier to other conditions without available gold-standard is crucial. How-

ever, only few available prediction tools offer such pre-trained classifiers. Apart

from that, the comparison of multiple samples across conditions is often not

2
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Figure 1.1: Genome browser snapshot. Synovial fibroblast data from two
healthy mice (‘Mf05’, ‘Mf07’, in blue) and two mice affected with rheumatoid arthri-
tis (‘Mf06’, ‘Mf08’, in green) at a putative enhancer (red), which we predicted to be
active in the diseased but not in the healthy state. More details on the data can be
found in Sections 4.2 and 6.3.
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integrated into the available enhancer prediction tools. In fact, the identifica-

tion and assignment of condition-specific enhancers has to be done by the user

in a post-processing step. Another challenging task related to enhancer predic-

tion is the identification of the corresponding target gene. Ernst et al. (2011)

matched enhancers with target promoters within a defined distance based on

the correlation of epigenomic signals across conditions. However, by using a

distance-oriented approach they do not take into account the recently revealed

partitioning of the genome into domains of preferential chromatin interaction

which is thought to limit enhancer activity (Rowley and Corces, 2018). In

another approach from Corradin et al. (2014), the distance-based criterion for

possible enhancer-gene interactions is complemented by binding sites of known

insulator elements (CTCF ) which are involved in the formation of some but

not all domain boundaries. Also the motif orientation was not taken into ac-

count which is often crucial for the domain formation (Rowley and Corces,

2018).

In this work, we remedy the described problems and present a novel supervised

classifier to predict enhancers genome-wide, which can be applied across differ-

ent conditions without re-training. Furthermore, we integrate our pre-trained

classifier into a comprehensive framework to assign enhancer-gene pairs or ‘reg-

ulatory units’ in a condition-specific manner. Our classifier is based on two

random forests. It splits the task of distinguishing enhancers from the rest

of the genome into two individual ones, focusing especially on the difference

between enhancers and promoters. For feature and training set construction,

we make use of the widely accepted concept that the condition-specific activity

of an enhancer can be characterized by an accessible region flanked by nucle-

osomes which carry specific histone modification (HM) patterns (Heintzman

et al., 2009; Rada-Iglesias et al., 2011). Our classifier is based on six core

histone modifications, which are available for many different cell types and

species (Bernstein et al., 2010; Stunnenberg et al., 2016) and therefore guaran-

tee a broad applicability. Furthermore, the design of the feature set takes the

particular shape of the HM distribution at active enhancers into account by

including several bins around the center of the enhancer. For the definition of

our training enhancers, we also include bidirectional transcription as an addi-
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tional mark of active enhancers as well as chromatin accessibility. Thousands of

condition-specific bidirectionally transcribed enhancers have been experimen-

tally identified and collected in the FANTOM5 database (Andersson et al.,

2014), such that we were able to construct training sets in different cell types

and species.

In a collaborative effort with Verena Heinrich, our pre-trained classifier is inte-

grated into a comprehensive framework to predict condition-specific regulatory

units (Ramisch et al., 2018). The classifier is applied to histone modification

data from several conditions, and differentially active enhancer regions are

identified using a non-parametric permutation test directly on the predicted

enhancer probabilities. Subsequently, the differential enhancers are assigned

to their corresponding conditions and matched to putative target genes based

on a high correlation between their probabilities and gene expression values.

Here, the search space for each enhancer is restricted to its topologically asso-

ciating domain (TAD) to take into account prior knowledge about domains of

preferential chromatin interaction. The final outcome is a manageable candi-

date list of condition-specific enhancer-gene pairs that can be used for further

analyses.

Outline of this work

In Chapter 2, we give a summary of the biological background of this work.

We introduce a collection of experimental techniques and the corresponding

measurable enhancer properties which we exploit for the design and training

of our prediction method as well as the prediction of target genes. In Chapter

3, we give a general overview of machine learning and the two main types of al-

gorithms: unsupervised and supervised methods. Furthermore, we introduce

several performance measures which we used for validation or method opti-

mization. Chapter 4 presents the construction, and Chapter 5 the validation

and comparison of our enhancer prediction method. We cover both predic-

tion within a cell type as well as across different conditions, and finally offer

a pre-trained classifier. In Chapter 6, we introduce our framework to predict

condition-specific regulatory units and apply it to a complex disease model.
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2 Biological Background

2.1 Regulation of gene expression

Gene expression is the process in which the encoded information from a gene

is first transcribed from DNA into RNA and then translated to a functional

gene product, e.g. a protein. The identity and function of a cell depends

on the regulation of gene expression, which comprises control mechanisms to

adjust the rate and time of transcription and translation for each individual

gene. During development, the regulation of gene expression is critical to

produce the diversity of cell types (Alberts et al., 2002). Moreover, even cells

of the same type can show differential patterns of gene expression, i.e., different

concentration levels of the same protein or functional RNA, as a response to

environmental stressors.

The primary control point for the regulation of gene expression is thought to

be the initiation of transcription. Transcription starts at the transcription

start site (TSS) which is located immediately at the 5′ end of a gene. The

TSS is part of the promoter, a short asymmetric sequence which is able to

assemble the transcriptional machinery including RNA polymerase II and a set

of proteins called general transcription factors. The promoter of a gene

dictates the accurate position of initiation as well as the direction of tran-

scription. The rate of transcription initiation is flexible and can be influenced

by many factors, for example by the speed of the transcriptional machinery

assembly or the presence of gene regulatory proteins including transcrip-

tional activators. The set of regulatory proteins can differ for each gene, as

well as the location of their binding sites which can be close to the promoter

6



or further away. In fact, these regulatory sequences called enhancers are able

to affect the RNA polymerase activity of a gene from distances of hundreds of

thousand of base pairs away and therefore add an additional layer of regulatory

potential (Alberts et al., 2002).

2.2 Enhancer definition and short history

Enhancers are genomic regions of up to several hundred base pairs (bp) in

length that are able to boost the transcription of a target gene independently

of their orientation or distance to the target promoter (Banerji et al., 1981).

The first enhancer, a 72 bp repeated sequence element, was found in a small

DNA virus more than 30 years ago, more or less by coincidence by Banerji

et al. (1981). The original aim of the corresponding study was to analyze the

effects of alterations in eukaryotic gene promoters on the gene expression to

identify putative regulatory elements. In the experiment which finally led to

the enhancer discovery, a 5000 bp fragment of rabbit DNA containing the β-

globin gene was cloned into two vectors, one including an SV40 DNA segment

(intended for DNA amplification). When transfecting into Hela cells, only the

SV40-containing plasmid produced high levels of β-globin. Follow-up experi-

ments using different constructs showed that the boost of globin expression was

highly reproducible, irrespective of the orientation of the insert at the cloning

site, and at distances of more than 1000 bp (1400 bp upstream or 3300 bp

downstream) from the TSS of the gene. These functional properties observed

in 1981 are still the foundation of the currently accepted enhancer definition

(see e.g. Pennacchio et al. (2013) for an enhancer review).

Shortly after, the first non-viral enhancer was discovered in the immunoglobu-

lin heavy chain (IgH) gene locus, which was the first cell type-specific genetic

element of that kind (Banerji et al., 1983; Gillies et al., 1983). The develop-

ment of so-called enhancer traps, which can determine the enhancer activity of

randomly-selected regions, provided a sophisticated and systematic approach

to define enhancer regions (Weber et al., 1984; Hamada, 1986; Bellen et al.,

1989). In the following years, various properties of enhancers were observed
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and with an increasing number of novel methods these properties could be

studied in more detail.

2.3 Experimental techniques commonly used

to study gene regulation

2.3.1 ChIP-seq

Chromatin immunoprecipitation followed by massively parallel sequencing

(ChIP-seq) was first described by Barski et al. (2007) and allows the genome-

wide identification of binding sites for TFs, histones and other proteins in

vivo.

DNA-bound proteins are cross-linked to the chromatin using formaldehyde

thereby producing covalent bonds between them. Then, the DNA is frag-

mented using ultrasounds (sonication), and fragments which are linked to the

protein of interest are subsequently isolated using an antibody recognizing the

specific protein or protein modification. The purified DNA-protein complexes

are then reverse cross-linked and the DNA is prepared for deep-sequencing.

The pulled-down DNA fragments are sequenced using next-generation sequenc-

ing (NGS) and mapped back to the genome to identify the genome-wide protein

binding sites.

reverse cross-link
& purify

add antibody 
& isolate

cross-link & sonicate
sequence  fragments 

& map to genome

Figure 2.1: Overview ChIP-seq protocol. Chromatin in the nuclei is cross-
linked and fragmented. DNA fragments bound to the proteins or histone modifi-
cation of interest (depicted as green balls) are enriched in the immunoprecipitation
step by the specific antibody. Finally, the isolated fragments are reverse cross-linked,
purified and sequenced. Inspired by Barski et al. (2007).
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2.3.2 RNA-seq

RNA sequencing (RNA-seq) is used to measure the transcriptome of a cell,

which comprises the complete set of transcripts and their isoforms, as well

as their quantity at a specific condition or developmental stage (Lister et al.,

2008; Mortazavi et al., 2008; Nagalakshmi et al., 2008).

The workflow of an RNA-seq experiment starts with isolating the RNA of

interest from a given organism and cell type. The isolated RNA molecules

are reverse transcribed into cDNA and fragmented (or in an inverted order,

first fragmented and then reverse transcribed). The cDNA fragments of the

desired size are ligated with adapters to create the cDNA input library. In a last

step, the library is amplified and sequenced using high-throughput sequencing

technology.

Most differences in RNA-seq technologies can be found in the library prepara-

tion step. Some approaches of adding sequencing adapters lack strand speci-

ficity, while others assure that this important information is kept for amplifi-

cation and sequencing. An overview of strand-specific RNA-seq methods can

be found in Levin et al. (2010) or Hrdlickova et al. (2017).

2.3.3 CAGE

Cap analysis gene expression (CAGE) published by Shiraki et al. (2003) is a

high-throughput gene expression technique to identify transcriptional starting

points genome-wide by identifying capped 5’ ends of coding and noncoding

mRNA. The standard protocol was updated by Takahashi et al. (2012) and

can be summarized as follows.

First, cDNA is synthesized from an mRNA population of interest and full-

length cDNA are captured by linking/trapping a biotin residue at the 5’ cap

structure (cap trapper method). Incompletely synthesized cDNAs are elimi-

nated in this step. Then, 27 nucleotides are cleaved inside the 5’ end of the

cDNAs by digestion of the restriction-modification enzyme EcoP15I. The re-

sulting CAGE tags are amplified in a PCR step and sequenced.
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2.3.4 DNase-seq

DNase I hypersensitive sites sequencing (DNase-seq) is a method to identify

DNase I hypersensitive sites (DHSs) genome-wide as a proxy for open chro-

matin regions (Crawford et al., 2006; Boyle et al., 2008). First, nuclei of a

selected cell population are isolated and treated with a DNase I concentra-

tion to release short DNA fragments. Then, the DNase-digested fragments are

isolated and ligated to sequencing adapters for NGS library preparation.

2.3.5 ATAC-seq

Assay for transposase accessible chromatin with high-throughput sequencing

(ATAC-seq) is a relatively new method from Buenrostro et al. (2015) that can

be used as an alternative to DNase-seq to measure whole-genome chromatin

accessibility. DNA samples of interest are exposed to the mutated hyperactive

transposase Tn5 which preferentially cuts at open regions and simultaneously

ligates sequencing adapters. The resulting transposed DNA fragments are then

isolated, amplified by PCR and sequenced.

2.4 Enhancer properties

After the discovery of the first enhancer and the establishment of a functional

enhancer definition (see Section 2.2), various properties of enhancers were ob-

served that are closely intertwined with each other. Many experimental meth-

ods, some of them reviewed in Section 2.3, and novel computational methods

were developed to study these properties. Below, we first give a short summary

of several observed enhancer features and then discuss each individual feature

in more detail in the following sections.

2.4.1 Overview of properties

Active enhancers act as binding platforms and are accessible to a combina-

tion of various transcription factors (TFs) (Long et al., 2016). The flanking

nucleosomes were observed to carry specific histone modifications (HMs) such
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as H3K4me1 or H3K27ac (Rada-Iglesias et al., 2011). Active enhancers are

often hypomethylated, i.e. show low methylation levels (Schmidl et al., 2009),

and frequently produce short RNA transcripts in a bidirectional fashion (Mel-

gar et al., 2011). A particularly active type of enhancers are super-enhancers,

which correspond to large genomic segments displaying abundant characteris-

tic enhancer features (Hnisz et al., 2013; Whyte et al., 2013).

The activity of enhancers is mostly condition-specific, and as such enhancers

display differential activities between different conditions. In accordance with

activity, also the chromatin accessibility as well as the characteristic HM

pattern of an enhancer change dynamically between conditions (Heintzman

et al., 2009). A subset of enhancers overlap with differentially methylated

regions (DMRs) and can display hypermethylated or hypomethylated CpG

dinucleotides depending on their activity (Schmidl et al., 2009).

Enhancers can regulate genes independently of their orientation and over very

large genomic distances. However, the capacity of enhancers to control gene

transcription is thought to be restricted to genes located in the same domain

of preferential chromatin interaction (Rowley and Corces, 2018). Finally, some

enhancers, but not all, are highly conserved between species (e.g. Blow et al.

(2010)). A simplified representation of several enhancer features and their

dynamics between conditions can be found in Figure 2.2.

2.4.2 Cell type-specific histone modifications

Nucleosomes form the fundamental repeating units of eukaryotic chromatin.

Each nucleosome consists of approximately 146 bp of DNA wrapped around

a histone octamer consisting of two copies each of the core histones H2A,

H2B, H3, and H4. Each histone protein has an unstructured tail extended

from the globular domain which can be post-translationally modified. Post-

translational histone tail modifications such as acetylation and methylation

have been observed and documented for many years and were thought to affect

chromatin structure by influencing histone-DNA or histone-histone contacts

(van Holde, 1989). The observation of distinct, condition-dependent patterns

of histone modifications (HMs) endorsed the idea that histones are not only, as
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Figure 2.2: Overview of enhancer properties. Genomic landscape for two
different conditions. Active enhancers (yellow) are bound by a combination of tran-
scription factors, produce bidirectional short transcripts and are flanked by nucle-
osomes carrying H3K27ac and H3K4me1. The active target genes (light blue) are
either upstream (condition 1) or downstream (condition 2) of the regulating en-
hancer (indicated with arrows) and are located in the same domain of preferential
chromatin interaction (red triangle). Histone modifications, transcript production
and transcription factor binding is changing dynamically between the conditions
according to the changes in enhancer activity (inactive enhancers in light grey).

originally thought, static structural elements but dynamic components linked

to gene regulation. Furthermore, it was proposed that HMs may act together

in a complex sequential or combinatorial manner to encode a ‘language’, the

so-called histone code, that can be read by other proteins (Strahl and Allis,

2000).

The specific functions of most of the HMs, however, were still unknown at

that point, especially due to the lack of information regarding the responsible

histone-modifying enzymes. Histone acetylation (of histone H4) was already

very early linked to transcriptionally active genes (Hebbes et al., 1988), and the

identification of the first histone acetyltransferase (HAT) initiated intensive

functional studies of histone acetylation in connection with transcriptional

regulation (Brownell et al., 1996). The same holds true for histone methylation,
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where the finding of H3-specific methyltransferases pioneered the research to

link methylation of certain histone tails to gene activity (Chen et al., 1999;

Rea et al., 2000).

Locus-centric studies served as a first test bed for hypotheses about the prop-

erties of the histone code. The β-globin locus, for example, was studied exten-

sively (Litt et al., 2001; Agalioti et al., 2002; Bulger et al., 2003), as well as

other well characterized developmental genes (Schneider et al., 2004). With the

arrival of new technologies like ChIP-seq (see Section 2.3.1 for more details),

larger regions could be studied with increasing resolutions until genome-wide

analyses became standard procedure also for higher eukaryotes.

Scientists observed high levels of histone H3 acetylation and H3K4me3 at the

promoter regions of active genes (Schübeler et al., 2004; Kim et al., 2005;

Liang et al., 2004) which could be correlated with the level of chromatin ac-

cessibility and gene expression (Roh et al., 2005; Bernstein et al., 2005). In

embryonic stem cells (ESCs), H3K4me3 and the repressive mark H3K27me3

were found to colocalize at promoters of developmental genes to form a so-

called ‘bivalent’ configuration which is suggested to keep the genes ready or

‘poised’ for a rapid activation or repression (Roh et al., 2006; Boyer et al.,

2006; Bernstein et al., 2006; Barski et al., 2007).

Many of the HMs enriched at promoters were also detected in intergenic or

transcribed regions, for example H3 acetylation which could be observed at

known functional enhancers (Roh et al., 2005). The first mark distinguish-

ing enhancers from promoters was H3K4me1 (Heintzman et al., 2007; Wang

et al., 2008). Later, Rada-Iglesias et al. (2011) observed a group of inactive

enhancers in ESCs, so-called ‘poised’ enhancers, that could be characterized

by an absence of H3K27ac, an enrichment of the active mark H3K4me1 and

an enrichment of the repressive mark H3K27me3. This finding refined the

role of H3K27ac, together with H3K4me1, as the active enhancer mark. In

contrast to promoters, the enhancer-associated HM patterns were largely cell

type-specific (Heintzman et al., 2009).

Very recently, a new class of active enhancers has been observed which show

a lack of H3K27ac, but are enriched for the globular domain acetylation

H3K122ac instead (Pradeepa et al., 2016).
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2.4.3 The role of chromatin accessibility in enhancer

function

Already before the discovery of the first enhancer in 1981, it was observed that

certain regulatory regions are hypersensitive to DNase I digestion, and as such

are nucleosome-free (Wu, 1980). The exposed DNA sequences are thus acces-

sible for recognition and binding by TFs. As a result, DNase I hypersensitivity

mapping has been extensively used to identify ubiquitous and tissue-specific

regulatory regions, including enhancers. However, the first effort of mapping

DNaseI hypersensitive sites (DHSs) within the chromatin required a lot of te-

dious working steps, was quite inaccurate and was limited to single loci. In

combination with array technology and later high-throughput sequencing ap-

proaches, such as DNase-seq (see Section 2.3.4), genome-wide libraries of DHSs

could be generated and many new putative enhancers identified using various

peak-calling algorithms (Crawford et al., 2006; Sabo et al., 2006; Boyle et al.,

2008; Hesselberth et al., 2009; Bernstein et al., 2010).

In the mean time, also other methods to detect open regions emerged which

were used for enhancer identification as well (Fu et al., 2018; Daugherty et al.,

2017; Davie et al., 2015), for example formaldehyde-assisted isolation of regula-

tory elements combined with high-throughput sequencing (FAIRE-seq, Giresi

et al. (2007)) or ATAC-seq, which is short for assays for transposase accessi-

ble chromatin and high-throughput sequencing (Buenrostro et al. (2015), see

Section 2.3.5).

2.4.4 Enhancers as platforms for transcription factor

binding

Enhancers can be considered as clusters of short DNA sequences called motifs,

that can be specifically recognized by DNA binding TFs. The bound TFs

can recruit co-activators or co-repressors, which often lack a sequence-specific

DNA-binding competency. These co-factors, in turn, can modify the chromatin

nearby the enhancer and subsequently determine its transcriptional activation

(Buecker and Wysocka, 2012; Long et al., 2016).
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In addition to the combination of several motifs, there are many other param-

eters which can affect the functional output of an enhancer. These universal

principles of motif organization within an enhancer, often referred to as en-

hancer grammar, comprise the number and the affinity of individual binding

motifs, the spacing between them, their order and orientation, as well as the lo-

cal DNA shape (Spitz and Furlong, 2012; Long et al., 2016). How flexible these

principles are is still a topic of research, and close inspection of the architecture

of individual well-studied enhancers has currently led to three distinct models

to describe enhancer activity which are also depicted in Figure 2.3. The en-

hanceosome model relies on a rigid motif composition and grammar, which

means that all recruited TFs and their relative positioning are essential to pro-

duce a functional outcome (Thanos and Maniatis, 1995; Merika and Thanos,

2001). The billboard model, on the other hand, allows for more flexibility.

Even though the motif composition is fixed, there are fewer constraints on

the relative positioning of the motifs. Also, the binding of (different) subsets

of TFs at the enhancer site can be sufficient for its activation (Kulkarni and

Arnosti, 2003). The TF collective model describes the scenario in which a

specific set of TFs binds (as a collective) to a set of enhancers without leading

to any obvious shared motif grammar. In this recruitment situation, usually

all TFs are necessary for enhancer activity, but the grammar is very flexible

since only a (varying) subset of TFs binds directly to the DNA and the rest

are recruited through protein-protein interactions (Junion et al., 2012). In

fact, most enhancer architectures may constitute a mixture of the three mod-

els where some TFs rely on a rigid motif grammar but not others (Ng et al.,

2014).

In summary, this suggests that a given enhancer activity or output can be

generated by multiple motif compositions and organizations, and in reverse, a

given combination of recruited TFs can generate multiple functional enhancer

outputs depending on their relative positioning (Spitz and Furlong, 2012).

This lack of generalizable motif rules at enhancers makes it difficult to uncover

the often cell type-specific TF combinations necessary for activation. However,

existing knowledge of key signaling pathways coupled with high-throughput

technology made it possible to examine well-studied cell types for enhancer-
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Figure 2.3: Motif architecture models for enhancers. In the enhanceosome
model, TFs bind by direct cooperativity, i.e., a direct protein-protein interaction,
directly to the DNA. The motif organization is very stringent and the evolutionary
conservation high. In the billboard model, a fixed type and number of TFs bind by
indirect cooperativity directly to the DNA, while their motif organization is flexible.
In the TF collective model, TFs bind by indirect cooperativity directly and indirectly
to the DNA, resulting in varying motifs being present. For both, the billboard and
the TF collective model, the evolutionary conservation is low. Inspired by Long
et al. (2016)

associated TFs. In mouse embryonic stem cells (mESCs), for example, ChIP-

seq experiments of sequence-specific TFs revealed that regions enriched in

known pluripotency factors showed enhancer activity (Chen et al., 2008).

Moreover, since activating co-factors are recruited by single TFs irrespective

of cell type, they are often preferred for genome-wide enhancer identifica-

tion, especially when prior knowledge of the underlying regulatory network

is sparse. The acetyltransferase and transcriptional co-activator p300 is one

of few known enhancer-associated factors. It was found to be present at both

active and poised enhancers (Buecker and Wysocka, 2012), and is widely used

to predict the location and cell type-specific activity of enhancers (e.g. Visel

et al. (2009)). The Ada-Two-A-Containing complex is another co-activator

with a known enhancer association. It is a multiprotein co-activator that con-

tains a catalytic histone acetyltransferase (HAT) module and can be found

at promoters as well as enhancers. Its enhancer binding is cell type-specific

and interestingly defines a class of enhancers not bound by p300 (Krebs et al.,

2011).
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2.4.5 Functional rather than sequence conservation

Nonfunctional DNA collects mutations much faster than functional DNA, since

deleterious mutations are generally eliminated by natural selection while mu-

tations which have no phenotypic or only slightly deleterious effects can be

randomly fixed in the population. As a consequence, most of the highly con-

served sequences, i.e., sequences which are maintained over evolution and do

not accumulate mutations, are very likely functional (Charlesworth, 2012).

Following this logic, one of the first efficient computational approaches to pre-

dict enhancers was based on inter-species comparisons to pinpoint conserved

regions. Nobrega et al. (2003), for example, compared two gene deserts sur-

rounding the human DACH gene across multiple species to identify evolution-

ary conserved regions corresponding to putative DACH enhancers. Applying

new computational methods they were able to find several conserved sequences

which they also tested for in vivo enhancer activity. The increasing number

of available whole genome sequences paved the way for advanced comparative

genomic tools to predict enhancers with a high specificity enabling an in vivo

characterization and assembly of the predicted regions (Siepel et al., 2005;

Prabhakar et al., 2006). In fact, the VISTA database was the first public

resource which provided access to evolutionary conserved noncoding human

sequences tested for enhancer activity using transgenic mouse assays (Visel

et al., 2007). Many noncoding sequences, especially in and around genes asso-

ciated with vertebrate development, were found to be enriched for enhancers

(Woolfe et al., 2004; Pennacchio et al., 2006; Prabhakar et al., 2006).

On the other hand, there is a substantial fraction of identified enhancers with

only a modest or no conservation at all (Schmidt et al., 2010; Blow et al., 2010;

May et al., 2012). The level of conservation was found to vary depending on

the tissue-specificity of an enhancer (Blow et al., 2010), but also depending

on its activity status. Poised developmental enhancers, for example, exhibited

an overall low conservation (Rada-Iglesias et al., 2011). Moreover, the evo-

lutionary sequence conservation of enhancers is closely connected to its motif

architecture (see also Figure 2.3).

Recently, Arnold et al. (2014) found that a large fraction of enhancers show
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deeply conserved activity as a result of selection and transcription factor bind-

ing site (TFBS) turnover, even between orthologous regions of evolutionary

close species. This pinpoints towards a conservation of function of en-

hancers rather than conservation of their underlying DNA sequence.

2.4.6 Bidirectional transcription

During investigations of the transcriptional landscape of higher eukaryotes

it became clear that not only protein coding sequences are transcribed, but

a large portion of the non coding genome as well. (Carninci et al., 2005;

Cheng et al., 2005; Johnson et al., 2005; The ENCODE Project Consortium,

2007; Kapranov et al., 2007). These noncoding transcripts reside in intergenic

regions as well as in introns of known genes, and their discovery raised a lot of

questions and controversies about the origin and possible functionality of the

‘dark matter’ or ‘pervasive’ transcription (Johnson et al., 2005; Struhl, 2007;

Ponjavic et al., 2007; van Bakel et al., 2010; Clark et al., 2011).

Genome-wide studies of RNA polymerase II occupancy revealed widespread

transcription at enhancers and showed that, in fact, enhancers build the ma-

jor group of noncoding regions undergoing transcription (Kim et al., 2010; De

Santa et al., 2010; Koch et al., 2011). Most of the enhancer transcripts or

eRNAs are relatively short (0.5-2 kb), nonpolyadenylated and bidirectional,

but a subset of enhancers was also found to generate undirectional, rather long

(> 3-4 kb) and polyadenylated eRNAs (Kim et al., 2010; Wang et al., 2011;

Natoli and Andrau, 2012). Nevertheless, bidirectional transcription became

a hallmark of enhancers and was widely used to (computationally) predict

enhancers in a genome-wide manner (Melgar et al., 2011). The FANTOM5

consortium (Functional Annotation of the Mouse/Mammalian Genome) pro-

vides an atlas of in vivo transcribed enhancers (and promoters) across multiple

tissues and cell types in human and mouse. Based on CAGE data (see 2.3.3

for more details) they mapped bidirectional transcription and identified the

corresponding TSSs in the genome (Andersson et al., 2014). In these studies,

it was also shown that the amount of produced bidirectional eRNA correlates

well with enhancer activity and therefore is a good indicator for cell type-
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specificity.

In addition, the findings suggest that the transcription or the produced eRNAs

themselves might have a mechanistic importance for the activity of the corre-

sponding enhancer. And indeed, experimental evidence has been found for the

functional importance of several candidate eRNAs. In some cases, the eRNA

molecules seem to be necessary for enhancer activity, since their degradation

lead to reduced nearby mRNA expression (Lam et al., 2013) or their induction

caused an increase in enhancer-promoter looping strength (Li et al., 2013).

Furthermore, depletion of eRNAs could be linked to a decrease in transcript

and protein levels of nearby genes (Ørom et al., 2010; Mousavi et al., 2013),

and eRNAs were shown to promote RNA polymerase II recruitment to certain

genomic loci (Johnson et al., 2003; Mousavi et al., 2013).

However, despite (few) examples of functional enhancer transcripts there is

a clear reporting bias due to the fact that it is difficult to prove the non-

functionality of an eRNA.

It was also recently discussed that bidirectional transcription is not specific to

enhancers, but solely a mark for accessible chromatin (Young et al., 2017). As

such, it is a feature found at many active enhancers, but also at regions which

do not show any enhancer-associated chromatin marks or enhancer activity.

2.4.7 Variable DNA methylation

DNA methylation is an epigenetic modification in which a methyl group is

added to the DNA molecule, either to the cytosine or adenine base, without

changing the underlying sequence. In eukaryotes, the methylation of cyto-

sine is much more prevalent and was already mentioned in 1975 as a possible

regulatory key player in development or X inactivation, making it one of the

most studied modifications (Riggs, 1975; Holliday and Pugh, 1975). Cytosine

methylation has been found in different sequence contexts, but in mammals it

predominantly occurs at CpG dinucleotides (Ziller et al., 2011). CpG islands

(CGIs) are genomic regions which show a high CG density, a high frequency

of CpG sites and are mostly located at promoters of housekeeping and devel-

opmentally regulated genes (Smith and Meissner, 2013). Most of the CGIs at
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promoters are not methylated, but if they are, the methylation is associated

with long-term silencing of the genes (Jones, 2012). Enhancers are mostly

CpG-poor and many were observed to be neither completely methylated nor

unmethylated, hence termed ‘low-methylated regions’ or LMRs (Stadler et al.,

2011). This is a result of averaging over dynamically changing (binary) methy-

lation states of the individual CpGs located in the enhancer (Jones, 2012).

Additionally, differentially methylated regions (DMRs), which display a

varying methylation status across conditions like different cell types or time-

points, were found to overlap with enhancer regions (Ziller et al., 2013). It

was shown for a subset of DMRs that hypomethylation associates with an

increased regulatory activity, as the reverse holds true for hypermethylation

(Schmidl et al., 2009).

2.4.8 Enhancer-promoter communication is restricted

to topologically associating domains

The genome is divided into different chromosomes, and the chromosomes them-

selves are partitioned into physically and structurally distinct domains which

relate to their position in the nucleus and their local organization in the three

dimensional space, respectively. These domains are also associated to their

level of activity. The non-random organization of the genome in the (mam-

malian) cell nucleus has been studied for more than three decades (see Cre-

mer and Cremer (2001) for a comprehensive review), and has been shown to

constitute an important layer of gene regulation since the direct physical envi-

ronment of a gene has the potential to affect its expression (Bell et al., 2001).

Genes closer to the nuclear periphery, for example, are more often found in

a repressed state than those located further away. Moreover, repositioning of

genes to the periphery leads to reduction in gene expression (Finlan et al.,

2008).

At the megabase-scale level of chromosomes, chromatin is organized in insu-

lated domains. Scientist have postulated the existence of insulator elements or

barriers, which can block the spreading of active and inactive chromatin states

(Sun and Elgin, 1999; Bell et al., 2001). Insulators are of special interest in
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the context of enhancers, since they are neutral barriers able to block enhancer

function when positioned between the enhancer and its target promoter, but

have no functional consequence when positioned outside of the region which

lies between the two regulatory elements (Bell et al., 2001).

It is now thought that insulators mostly function in vertebrate genomes by

creating domains of preferential chromatin interactions (Rowley and Corces,

2018). These domains were revealed using genome-wide mapping of chro-

matin interactions based on chromosome conformation techniques (like Hi-C

and 5C) and are referred to as topologically associating domains (TADs)

(Lieberman-Aiden et al., 2009; Nora et al., 2012; Dixon et al., 2012). The re-

sulting partitioning of the genome corresponds to ‘regulatory neighborhoods’

limiting enhancer activity to genes located in the same TAD. It was also found,

that the TAD structure is (to a certain degree) invariant between cell types

and even conserved between species (Dixon et al., 2012).

Apart from being insulated regulatory units of the genome, TADs are molds

for enhancer-promoter communication, enabling the normal regulation via the

formation of chromatin loops. The looping model is one of the possible ex-

planations hypothesizing that the communication of enhancers and promoters

was driven by the interaction of proteins bound to both regulatory elements

resulting in a loop of the intermediate DNA (Ptashne, 1986). An extensive

set of evidence has endorsed this model for over a decade now. One of the

first evidence thereof was the β-globin gene (Tolhuis et al., 2002). Here, using

chromosome conformation capture (3C)-based assays allowed to capture spa-

tial proximity between specific pairs of loci in the nucleus. Enhancer-promoter

loops were also observed at thousands of loci in the following years (Javierre

et al., 2016).

2.4.9 Super-enhancers

Recently, it was observed in several mammalian cell lines that a subset of

enhancers cluster together in large domains, called super-enhancers, which

show high levels of H3K27ac, enhancer-associated TF binding as well as bind-

ing of the Mediator coactivator (Med1 ), and primarily control cell identity
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genes (Hnisz et al., 2013; Whyte et al., 2013).

Whyte et al. (2013) defined super-enhancers in mESC based on Med1 ChIP-seq

occupancy. In their analysis, enhancers were called based on TF enrichment

and stitched together within a range of 12.5 kb. Then, based on the distribu-

tion of the coactivator Med1 over all enhancers a cutoff was chosen, to define

super-enhancers. In mESC, Med1 was found to be the ‘optimal’ decision fac-

tor, since it showed the clearest transition between super-enhancers and other

‘typical’ enhancers in comparison to DNase I, H3K27ac or H3K4me1. The

mESC super-enhancers have a larger size than typical enhancers (median dis-

tance of ∼ 8, 6 kb vs. ∼ 700 bp), show high ChIP-seq occupancy of OCT4,

SOX2, NANOG, KLF4 and ESRRB, and regulate genes which are know to

control the pluripotent state of the cell.
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3 Machine Learning Background

3.1 Introduction

The term machine learning was first introduced by Samuel (1959) and

evolved out of the field of artificial intelligence. The focus of machine learning

is, quite literally, the creation of ‘machines’ (e.g. in the form of algorithms)

that ‘learn’ from a given large data set by extracting meaningful informa-

tion and gaining experience to increase their performance in the future (see

Chapter 1 of Izenman (2008)). Since there is a need for understanding and

learning from large data sets in several applications, the techniques employed

in machine learning are also influenced by many different disciplines such as

statistics, pattern recognition or artificial intelligence, to name only a few ex-

amples. As a consequence, there are several possibilities how to categorize the

multitude of developed machine learning approaches. In this work, we will

distinguish different approaches according to their learning strategies into two

main groups: supervised and unsupervised learning. The goal in supervised

learning is to to find a function that approximates a provided correct output

variable from a given set of input variables. This approach is comparable to

learning with a teacher who knows the correct answers and can therefore help

to improve results progressively (by repetition) until a certain performance is

reached. The input and output variables can be of categorical or continuous

nature whereby depending on the nature of the output variable, supervised

learning splits into regression (continuous) or classification (categorical). In

unsupervised learning the algorithm is also provided with (categorical or

continuous) input variables, but not with a correct output variable. Thus,
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unsupervised learning pursues a different goal in that it explores properties of

the input. It is comparable to the scenario in which no teacher is available

to provide any corrections. The different assumptions in supervised and un-

supervised learning methods demonstrate that the choice of method type is

motivated by data availability. But this is just one aspect in a complex set of

decisions leading to a successfully solved learning problem. In Chapter 1 of

Duda et al. (2001) this is described as a design cycle, a repetition of data

collection, feature choice, model choice, training, and evaluation steps.

Data collection is the first part of the design. A lot of data is usually

needed to achieve a good performance, but its collection is often costly and

time consuming. The choice of features specifies the part of the information

decoded in the data which the learning algorithm will have access to, which

usually requires some prior knowledge about the nature of the data. There

are also some desirable properties a good feature set should fulfill: it should

be easy to extract, insensitive to noise and also useful for actually making the

discrimination of interest. The model choice is more than just deciding if

the approach is unsupervised or supervised. Within each of this learning types

there are several methods to choose from, where each of them comes with ad-

vantages and disadvantages, strength and weaknesses. Hence, this step is also

very dependent on prior knowledge of the collected data and chosen features.

Training is the process of inferring knowledge from the collected data and

make predictions based on what was learned. There are different ways how to

train a model, which are mostly connected to data availability but also to the

model choice. The performance evaluation of the trained model is impor-

tant for multiple reasons. It helps with comparing different models (and hence

can influence the final model choice) and it can tell us if there is still a lot

of room for improvement. Evaluation is also crucial to find a good trade-off

between model complexity and the ability of a model to generalize. The more

complex a model gets, the better it might be able to explain the training data,

but a likely consequence is that it performs poorly on new unseen data. This

phenomenon is called overfitting and stands in contrast to the main goal of

machine learning which is to make reliable predictions on future data.
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3.2 Mathematical setting

Let X and Y be random variables which can be represented by a joint distribu-

tion P(X, Y ). Here, X = (X1, . . . , Xp) ∈ X denotes the set of input variables

of interest, which can be categorical or continuous. Each variable describes

a certain feature of the input data set and is therefore also called input fea-

ture. The number of features, p, describes the dimensionality the input data

lives in. Y is the output or response variable and can also be of continuous or

categorical nature.

The aim of unsupervised learning is to infer the properties of the joint

probability density P(X) from an unlabeled input data U = {x1, . . . , xn},
since there are no data realizations of Y available. In supervised learning,

the goal is to predict outcomes of Y from X by determining the properties

of the conditional density of Y given X, P(Y |X), from the labeled learning

set L = {(x1, y1), . . . , (xn, yn)}. For continuous Y , the prediction task is called

regression, while for a categorical Y it is called classification (see e.g. Hastie

et al. (2009), Chapters 2 and 14).

In this work, we will concentrate on the binary classification problem where

Y can take two possible classes, Y ∈ Y = {0, 1}. Hence, our classification task

is to learn a function hL : X → {0, 1} on the training set L which predicts

the class membership of an input observation x ∈ X . Since we are focusing on

binary classification, we model the conditional class probabilities as

p0(x) = P(Y = 0|X = x), p1(x) = P(Y = 1|X = x) = 1− p0(x), (3.1)

and assign labels based on the estimated probabilities according to

hL(x) =

0, if p1(x) < c

1, if p1(x) ≥ c
(3.2)

for a chosen probability cutoff c ∈ [0, 1]. For c = 0.5, this is equivalent to the

assignment rule

hL(x) = argmax
k=0,1

pk(x).
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3.3 Evaluation

One of the main goals in classification (and in machine learning in general)

is to construct a method that is generalizable and therefore can be reliably

applied to new independent data, which was not used for training. Evaluating

this quality of a classifier is of importance for the choice of the underlying

model (e.g. parameter choices), but also for the performance assessment of

the final classifier. In the following, we give an overview of typical measures

used for evaluation purposes in machine learning. The error definitions as well

as Section 3.3.3 are following notations from Hastie et al. (2009) (Chapter 7)

and Louppe (2014), and Section 3.3.4 is based on Fawcett (2006).

3.3.1 Generalization error

We want to construct a classifier hL in a way that it predicts reliably not only

on the training set L but also on unseen data from X \L. This can interpreted

as minimizing the expected prediction error or generalization error

Err(hL) = EX,Y [L(Y, hL(X))], (3.3)

where the expected value is computed over all (x, y) ∈ X ×Y and not only the

measurements from L. The function L(Y, hL(X)) measures the error between

output Y and the predicted output hL(X) and is called loss function.

A typical example in binary classification is the 0-1 loss function

L(Y, hL(X)) = 1(Y 6= hL(X)) (3.4)

which counts the number of misclassifications and penalizes each equally.

Unfortunately, the generalization error can rarely be computed directly since

the distribution P(X, Y ) is unknown. Instead, it has to be estimated from

the data. The simplest estimate is the training sample error which is only

based on L and can therefore be used when no additional data is available. It
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is defined as the average loss over all samples in L = {(x1, y1), . . . , (xn, yn)},

Êrrtrain =
1

|L|
∑

(x,y)∈L

L(y, hL(x)).

As one can imagine, this is a rather poor estimate since a model trained on L is

prone to make especially good predictions for these samples, but too optimistic

estimates for unseen samples from X \ L. A better possibility would be to

estimate the generalization error from an independent test set L′ ⊂ (X ×Y)\L
which has not been used for training and as such was not ‘seen’ by the classifier

hL. Unfortunately, as mentioned earlier, the training set is often the only

available labeled data. If the number of samples n = |L| is ‘big enough’, we

can simply split L into non-overlapping training and test sets, L = Ltrain∪Ltest.

In this case, the so-called test sample estimate is defined as

Êrrtest =
1

|Ltest|
∑

(x,y)∈Ltest

L(y, hLtrain(x)), (3.5)

and a reliable estimate of the generalization error of L. If there are ‘too few’

samples in L, the set used for training could be too small after putting aside

the independent test set and both the trained classifier and the generalization

error estimate might be of rather poor quality. An efficient sample re-use

can be helpful in this situation. The two most commonly used methods are

bootstrapping, which is for example used to construct a random forest classifier

(see Section 3.4.3), and cross-validation, which we will explain in more detail

in the following section

3.3.2 Cross-validation

Following the same idea as in the ‘data rich’ scenario, cross-validation uses a

part of the data to train the model and another independent part to compute

the test sample estimate defined in Equation (3.5). However, instead of looking

at only two subsets of L, the data is split into K parts of roughly equal size,

L = L1 ∪ . . . ∪ LK . Then, for all k = 1, . . . , K, we train a model hL\Lk and
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compute the average prediction error over Lk,

ErrCVk
=

1

|Lk|
∑

(x,y)∈Lk

L(y, hL\Lk(x)). (3.6)

In other words, we train on K − 1 of the K subsets and use the remaining

independent data part to compute the test sample estimate. The fact that

every subset of the partition is once being left out for training comes with the

advantage that we have predictions on all samples (x, y) ∈ L. Also, the model

hL\Lk should be close to hL as it was trained on a big proportion of L.

The final estimate of the generalization error for K-fold cross-validation

is computed by averaging over all K average prediction errors from Equation

(3.6),

ÊrrCVk
=

1

K

K∑
k=1

ErrCVk
.

In most applications, either 5-fold or 10-fold cross-validation is used.

3.3.3 Model selection with parameter optimization

The classification model does usually not only depend on the training set L but

also on free (tuning) parameters θ which describe the model complexity. Hence,

before assessing the performance of a trained model hL,θ on an independent

test set, we first want to select the ‘best’ model configuration by finding the

‘optimal’ parameters θ. In principal, we would need another independent data

set to measure the prediction errors. In a data-rich scenario, L can be split

into a training set, a validation set for model selection and a test set

for model assessment or evaluation. In the data-poor scenario, however, the

training and model selection is usually done on the same set using, for example,

cross-validation as described in Section 3.3.2, and only the model assessment

is done on a beforehand separated independent test set.
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3.3.4 Confusion matrix and associated performance met-

rics

In Section 3.3.1 we introduced the loss function as a necessary measure for

classification performance where it represents the cost of a misclassification.

Loss functions are chosen in a computational feasible way since they are part

of the objective function used for model optimization, for example, when tun-

ing model parameters θ as discussed in the previous Section 3.3.3. However,

there are also other possibilities to assess an already optimized model. Many

of the standard performance metrics are based on the classification outcomes

summarized in the so-called confusion matrix, in which one dimension de-

scribes the actual class and the other the predicted class membership. For

binary classification, this results in a 2× 2 matrix as depicted in Table 3.1.

Table 3.1: Confusion matrix for binary classification problem.

predicted positive predicted negative

actual positive true positive (TP) false negative (FN)

actual negative false positive (FP) true negative (TN)

The first row describes the number of the measurements with a ‘positive’ out-

come (Y = 1) which were correctly classified (hL(Y ) = 1, true positives) or

misclassified (hL(Y ) = 0, false negatives), while the second row counts how

many measurements with ‘negative’ outcome (Y = 0) are either misclassified

(hL(Y ) = 1, false positives) or correctly classified (hL(Y ) = 0, true negatives).

Probably the most prominent metric to measure classification performance

from the results of a confusion matrix is accuracy, which is defined as the

fraction of correctly labeled predictions (see Table 3.2). Accuracy values lie

between 0 and 1, where a classifier with accuracy = 1 predicted all labels

correctly. The accuracy measure has a one-to-one relationship to the 0-1 loss

function (see Equation (3.4)) since the minimization of the 0-1 loss is equivalent

to the maximization of accuracy.

When the test data is unbalanced, i.e., when the cardinality of one class is

much bigger than of the other, accuracy is not the optimal metric to measure
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performance because it can give misleading results. If, for example, the class

with output Y = 0 made up 90% of the data, then a model predicting exclu-

sively this class label would have a high accuracy of 0.9, a 100% recognition

rate for the bigger class, but a recognition rate of 0% for the smaller class cor-

responding to a true negative rate (TNR) of 1 and a true positive rate (TPR)

of 0, respectively (see Table 3.2).

Table 3.2: Performance Metrics.

accuracy ACC = TP+TN
TP+TN+FP+FN

recall, true positive rate TPR = TP
TP+FN

precision PREC = TP
TP+FP

false positive rate FPR = FP
FP+TN

specificity, true negative rate TNR = TN
TN+FP

The receiver operating characteristics (ROC) curve is another way of

illustrating the performance of a binary classification task, but in contrast to

the metrics before, it is based on the predicted conditional class probabilities

defined in Equation (3.1) in Section 3.2. The ROC curve results from plotting

the false positive rate (FPR) against the TPR for a gradually changing proba-

bility threshold and the corresponding class assignments according to Equation

(3.2). The perfect ROC curve goes from (0, 0) straight up to (0, 1) and then

straight to (1, 1), and has an area under the curve (AUC) of 1. The expected

AUC-ROC for a random class assignment is 0.5 independently of the trained

model (see Figure 3.1). Just as accuracy, the results of the AUC-ROC can

be misleading for unbalanced classification problems. The precision-recall

(PR) curve is created by plotting precision against recall (equivalent to TPR)

for class assignments based on varying probability thresholds, and is more in-

formative in this situation (see Figure 3.1). The perfect curve starts in (0, 1),

goes straight to (1, 1) and then down to (f ∗, 0), where f ∗ is the fraction of
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Figure 3.1: ROC curve and precision-recall curve. Performance results for
predictions on 10 positive and 10 negative samples (balanced classification problem).
Grey dotted lines indicate expected performance of a random classifier.

actual positives in the analyzed set of measurements. Thus, the area under

the precision-recall curve (AUC-PR) is 1 at best. Furthermore, the AUC-

PR corresponds to f ∗, i.e., to the fraction of actual positives, for a random

classifier.

3.4 Supervised learning

3.4.1 Introduction

In supervised learning, we are provided with a labeled training set

L = {(x1, y1), . . . , (xn, yn)} which consists of n realizations of the random

vector X = (X1, . . . , Xn) and the corresponding response variable Y . The

goal is to learn a classifier hL : X → Y based on the training set L which can

reliably predict the outcome y ∈ Y for a new data point x.

In this work, we are interested in binary classification, a subtype of super-

vised learning methods, where Y is a binary outcome variable, Y ∈ Y = {0, 1}.
The variety of available classification methods is huge, and the individual meth-
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ods complex. Some of the most popular methods are linear discriminant anal-

ysis, logistic regression, support vector machines, the naive Bayes classifier,

neural networks, decision trees and random forests (Hastie et al., 2009).

In this work, we will focus on random forests, which we introduce according to

Chapter 14 of Izenman (2008), unless stated otherwise. In order to understand

the underlying principles of random forests, we also explain decision trees in

more detail based on Chapter 2 of Breiman et al. (1984).

3.4.2 Decision trees

Decision trees are preferably used when the data has many (correlated) features

and when the features influence the outcome in a complicated, nonlinear way.

The main idea of tree-structured classifiers is to make complicated interactions

of features more manageable by partitioning the measurement space X into

smaller subsets. The construction of the tree starts by splitting X into two

descendant subsets (see Figure 3.2 for an example). In a second step, both

descendant subsets will be split into two even smaller subsets. This procedure

is repeated until a set of (very) small regions is reached which are easy enough

to handle to fit a simple model to them. The training set L is used to guide the

construction of the decision tree. Each tree is divided in three main elements:

1. recursive partitioning/ determination of splits,

2. determination of when to stop splitting a subset, and

3. model fitting for each subset of the partition.

A decision tree comprises three types of core elements: tree nodes, branches

and terminal nodes. Each tree node t represents a test that is performed on

one of the p features of a measurement vector x ∈ X , and the outcome of each

test is represented by the tree branches. A terminal node represents the

class label, in our case l ∈ {0, 1}, which is finally assigned by the tree to each

cell of the final partition. The class prediction of a measurement vector x is

determined by its path through the tree and corresponds to the class label of

the terminal node in which it lands.

32



−2

0

2

−4 −2 0 2 4

H3K27ac

H
3
K
9
m
e
3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● inactive

active

Figure 3.2: Example of a binary decision tree distinguishing ‘active’ from
‘inactive’ genomic regions. We trained a decision tree based on input-normalized
histone modification ChIP-seq data to distinguish ‘active’ from ‘inactive’ genomic
regions. The tree has two splits based on H3K27ac and on H3K9me3, and three
terminal nodes representing the terminal partitions with labels. We plot normal-
ized counts of H3K9me3 and H3K27ac for the ‘active’ (blue triangle) and ‘inactive’
(orange point) regions in the training set and include the partitions as rectangular
shapes where the colour corresponds to the predicted label. The majority of regions
would have been classified correctly based on the decision tree (i.e., blue samples in
blue rectangle, orange samples in orange rectangle).

It turns out that the model fitting, i.e., the assignment of labels to the terminal

nodes, is a simple problem, whereas the determination of splits and the decision

to terminate the splitting process are much more challenging.

The fundamental idea of the recursive partitioning is that after each split the

data becomes more homogeneous (in terms of class membership) in each of the

two descendant regions than it was in the parent region. We define the node

proportion p(l, t) as the proportion of training measurements xi ∈ L which are

located in the the subset Rt ∈ X associated to node t, and additionally belong
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to class l ∈ {0, 1}:

p(l, t) =
1

|{xi ∈ Rt}|
∑

i:xi∈Rt

1(yi = l).

Thus, for every node t it has to hold that p(0, t)+p(1, t) = 1. The node propor-

tion is subsequently used to compute a measure of homogeneity or ‘pureness’

for each node t, called impurity measure. The node impurity i(t) can be

computed in different ways, for example using entropy, the misclassification

error, or the Gini index. These are all non-negative functions that give higher

values when the class labels of training samples in Rt are very mixed and

smaller values in case of a homogeneous class membership. The most com-

monly used rule to create the partitioning is the Gini index, which is defined

as

i(t) = 1−
1∑
l=0

p(l, t)2 = 1− p(0, t)2 − p(1, t)2

in the 2-class problem. The Gini index of a pure subset Rt is zero because one

of the squared node proportions would be one and the other zero, and it reaches

its maximum value when both of the proportions are equal, p(0, t) = p(1, t) =

0.5. The goodness of a split is now determined by the decrease in impurity.

Let ρ be the binary split that divides a parent region Rt into two descendent

regions Rt1 and Rt2 , and let p(Rt1) =
|{xi∈Rt1}|
|{xi∈Rt}| and p(Rt2) =

|{xi∈Rt2}|
|{xi∈Rt}| be the

corresponding proportions of training data in Rt moved to subset Rt1 or Rt2 ,

respectively. Then, the goodness of split ρ is computed as

∆i(ρ, t) = i(t)− p(Rt1)i(t1)− p(Rt2)i(t2).

The maximum decrease of impurity in the scenario of a perfect split into two

pure descendent regions Rt1 and Rt2 is equal to the Gini index of Rt, since

i(t1) = i(t2) = 0 and hence ∆i(ρ, t) = i(t).

At every node t a certain set R of binary splits ρ is defined for every feature

Xj, j = 1, . . . , p. How the set R is chosen depends on the nature of the feature

and the values represented in the training set. In our case, the features are

continuous and the number of observations xi in the training set gives the
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upper boarder of possible binary splits, n − 1, for each feature. The split ρ

with the maximum decrease in impurity is chosen, but it is only realized in case

it fulfills a heuristic criterion which can be based on a threshold for ∆i(ρ, t) or

on a maximum number of observations that have to fall into each descendent

subset Rt1 and Rt2 . If at a node t non of the splits fulfill the criterion, t

becomes a terminal node. The model fitting in the case of classification, like

already mentioned, is rather simple. A terminal node t will be assigned the

class label lt ∈ {0, 1} which is most abundant in the corresponding subset of

the partition Rt:

lt = argmax
l∈{0,1}

∑
i:xi∈Rt

1(yi = l)

where yi, i = 1, . . . , n, are the output measurements or labels from the training

set L.

The predicted class membership for an input measurement x ∈ X is equal to

hL(x) = lt, where lt is the label of the terminal node that includes x.

3.4.3 Random forest

A random forest classifier is a learning method consisting of a collection of

decision trees. Each individual tree is based on a different randomly sampled

subset of the training observations, and each split within a tree is determined

from a randomly sampled subset of features. The final output or prediction for

an observation vector x ∈ X is a probability value resulting from the fraction

of trees voting in favor of the class of interest (see also Figure 3.3).

Let the random forest classifier consist of an ensemble of m = 1, . . . ,M ran-

domized tree-structured classifiers hL(θm) : X → {0, 1} based on independent

identically distributed random vectors {θm}Mm=1. More precisely, for each tree

Tm a random vector θm is generated which is independent of the m− 1 previ-

ously generated vectors {θ1, . . . , θm−1}. According to θm, a bootstrap sample

Lm of size n is drawn with replacement from the training set L to construct

the decision tree Tm. Each split in the tree is based on only a small subset of

the available p features. The number of chosen features p′ can vary, but is per

default set to p′ =
√
p. Finally, the trees are growing without pruning, i.e.,
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Tree 1 Tree 2 Tree M

Class A Class B Class B

Figure 3.3: Classification with random forest. A new data instance is labeled
by each of the M decision trees according to its path through the tree and its
terminal node. The final class membership of the new data instance is based on the
majority voting of the individual tree labels.

they are grown to their maximum size. The individual steps of constructing a

random forest classifier are summarized in Algorithm 1.

The final output of a random forest for an input measurement x ∈ X is the

predicted conditional class probability which is computed from the voting of

the individual decision trees according to

pl(x) =
1

M

M∑
m=1

1(hL(x, θm) = l), l ∈ {0, 1}.

The class membership of x can then be assigned according to a cutoff c as

explained in Equation (3.2) in Section 3.2.
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Input: learning set L, number of trees M , number of features to be
chosen at each split p′

Output: random forest as a collection of M tree-structured classifiers
{h(x, θ1), . . . , h(x, θM)}
for m = 1, . . . ,M do
• generate random vector θm independent of {θ1, . . . , θm−1}
• draw bootstrap sample Lm from L according to θm
• grow a tree Tm based on Lm using random feature selection

(at each node randomly select p′ features from X = (X1, . . . , Xp)
according to θm and find best split based on Gini index)

• define classifier h(x, θm) having a single vote for the class of x ∈ X
end for

Algorithm 1: Random forest

Advantages of ‘random components’

Random forests are characterized by the combination of two ‘randomizing com-

ponents’, bootstrap aggregation and random feature selection, which together

create a collection of decision trees. Each single tree by itself would not be an

optimal classifier. Growing until full depth without pruning, the trees are ex-

pected to have a low bias and a high variance, which means that they are prone

to overfitting to their training data. However, each tree is based on different

training data obtained by bootstrap aggregation (drawing by replacement) and

additionally, each split in the tree is based on a randomly selected subset of

features. This leads to a decrease in dependence or correlation between the

individual trees, and therefore in a lower generalization error of the forest (see

Equation (3.3) in Section 3.3.1 for more details on generalization error). In

fact, it was shown by Breiman (2001) that the generalization error of a random

forest converges almost surely to an upper bound with increasing number of

trees M (M → ∞) in dependence of only two parameters, the strength or

accuracy of each individual tree and the correlation between the trees. The

existence of such an upper bound shows that random forests are not prone to

overfitting especially for a large number of trees. Another practical advantage

of bootstrap aggregating is that it can be used to make ongoing out-of-bag es-

timates of the error, strength and correlation of the trees in the forest without
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the need of a set-aside labeled test set.

Also, in case of high correlation between features, the random feature selection

can be useful to acknowledge the importance of each feature individually. It

still holds that once a feature is used in the tree, a highly correlated one has a

decrease in importance, but since they will not always be chosen together in a

tree, both features should in theory play a role in the tree construction. Finally,

the random feature selection step results in a decrease in computational time

compared to an evaluation of all available features.

3.5 Unsupervised learning

3.5.1 Introduction

In unsupervised learning, we are provided with learning or training data which

only consists of unlabeled input measurements U = {x1, . . . , xn} as realizations

of the random vector X = (X1, . . . , XP ) ∈ X . The goal is to get a better un-

derstanding of the data by exploring its underlying (hidden) structure. While

for low-dimensional problems like p = 1, 2, 3 there are methods to directly

compute certain properties of the data, the task gets much harder in higher

dimensions. In fact, the number of features p and as such the dimensionality of

the data can be quite high in many unsupervised settings, often much higher

than for supervised learning. This leads to an estimation problem since it be-

comes more likely that the available learning data U is sparse in the inflated

feature space and as a result not every feature is sufficiently represented.

Two well known strategies to tackle this problem are clustering and dimen-

sionality reduction. Dimensionality reduction aims at reducing the data

space by inferring a small set of so-called latent variables from the observed

features. Based on these latent variables, the data can be projected (and

handled) in a smaller space without loosing too much of the original informa-

tion. Principal component analysis is one of the most prominent examples for

dimensionality reduction. Clustering methods aim to find informative pat-

terns or clusters of similar data with potentially simpler underlying structures.

However, the applied similarity measures or cost functions can vary between
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different algorithms which may lead to different clustering results. Also, the

number of desired clusters often needs to be specified beforehand (Duda et al.,

2001). Hidden Markov models (HMMs) are also common methods to infer

latent variables. They do not constitute a classical example of unsupervised

methods since they can be used for classification as well given the necessary

labeled data. However, HMMs can be learned in an unsupervised way using

the expectation maximization (EM) algorithm to infer the latent or hidden

variables.

In this work, we focus on HMMs as an example of unsupervised methods

since they form the basis of several enhancer prediction methods and will be

discussed in this context in Chapter 4. Before we explain HMMs in more detail,

we will introduce the concept of Markov Chains in the following chapter.

The presented material is mainly based on the Chapters 7 and 10 of Koski

(2001), on Chapter 3 of Durbin et al. (1998) and Chpater 8 of Hastie et al.

(2009).

3.5.2 Markov chains

A sequence of random variables {St}t∈N0 taking values in a finite set S =

{ς1, . . . , ςJ} is called Markov chain (of order 1), if for all t ≥ 1 and for all

s0, s1, . . . , st ∈ S there holds

P(St = st|S0 = s0, . . . , St−1 = st−1) = P(St = st|St−1 = st−1).

This condition is also called Markov property and says that the future (t)

and the past states (t−2, t−3, . . .) of the chain are independent if conditioned

on the present state (t− 1). In other words, the chain ‘has no memory’.

The conditional probabilities

p
(t)
i,j = P(St = ςj|St−1 = ςi), t ≥ 1, i, j = 1, . . . , J

are called one step transition probabilities and P (t) = (p
(t)
i,j )i,j=1,...,J is the

J × J transition (probability) matrix. We consider time-homogeneous

Markov chains, for which the transition probabilities are independent of the
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time, p
(t)
i,j = pi,j, and hence P (t) = P for all t ≥ 1. Since the i-th row of

the transition matrix P describes the conditional probability distribution of

St given the knowledge that the chain was in state ςi in the immediate past,

St−1 = ςi, it holds true that

pi,j ≥ 0 for all i, j = 1, . . . , J and
J∑
j=1

pi,j = 1.

The initial distribution is defined by π(0) = (πς0(0), . . . , πςJ (0)) with πςj(0) =

P(S0 = ςj) describing the probability of starting in state ςj at time t = 0 for

j = 1, . . . , J . A Markov chain is uniquely defined by its initial distribution

π(0) and the transition probabilities in P .

3.5.3 Hidden Markov models

Markov chains are defined in a way that the state of the random sequence

at time t is directly observable, since state sequence and output live in the

same space S and have a one-to-one correspondence. For hidden Markov

models (HMMs), however, the underlying state of the model is hidden and as

such cannot be directly inferred from the output. Instead, an HMM can be

characterized by

1. defining a hidden Markov chain,

2. defining an observable random process, and

3. the assumption of conditional independence between the observations

and the hidden state sequence.

The hidden Markov chain is a sequence of random variables {St}t∈N0 which

takes values in S = {ς1, . . . , ςJ} and follows a (one-step) time-homogeneous

Markov chain characterized by an initial distribution π(0) and a transition

probability matrix P with properties as described in Section 3.5.2.

Since the output of the model is no longer a direct result of the (hidden)

sequence states modeled by {St}t∈N0 , an additional sequence of random vari-

ables is required for modeling the HMM. The observable random process

{Ot}t∈N0 , lives in the finite state space O = {ω1, . . . , ωK}, where K does not
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have to be equal to J . The two processes {St}t∈N0 and {Ot}t∈N0 are connected

through the so-called emission probabilities

eςj(ωk) = P(Ot = ωk|St = ςj), j = 1, . . . , J, k = 1, . . . , K,

for a fixed t ≥ 1. In words, eςj(ωk) describes the probability that output

ωk ∈ O is observed when the model is in state ςj ∈ S. For the emission

probabilities there holds

eςj(ωk) ≥ 0 for all j = 1, . . . , J ; k = 1, . . . , K and
K∑
k=1

eςj(ωk) = 1.

They can be summarized in the matrix E = (eςj(ωk))
J,K
j=1,k=1. Furthermore,

we assume conditional independence of the emitted output sequence o =

(o0, . . . , ot) given the corresponding vector of hidden states s = (s0, . . . , st):

P(O = o|S = s, E) =
t∏
i=0

esi(oi),

with O = (O0, . . . , Ot) and S = (S0, . . . , St). As a consequence of the intro-

duced assumptions, we can write the joint probability of an emitted output

sequence o and the hidden states s as

P(O = o, S = s) = πs0(0)es0(o0)
t∏
i=1

psi−1,siesi(oi).

Computing the joint probability can be challenging, since we often do not know

all variables needed. In the unsupervised applications of HMMs it is actually

the main goal to infer the hidden states of the model from the given data.

Given the case that we observe a sequence o = (o0, . . . , ot) and we know the

initial, emission and transition probabilities/parameters, we have two possibil-

ities to infer or decode the underlying hidden states (s0, . . . , st), either Viterbi

coding or posterior coding (forward-backward algorithm). Since this is not the

focus of this work, we will not go into further details but refer the interested

reader to Durbin et al. (1998) for more information.
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In the unsupervised scenario, which we are interested in, the only given pa-

rameter is the number |S| = J of hidden states, which is probably the most

difficult HMM scenario. All other parameters have to be inferred based on

given observations, o = (o0, . . . , ot), which can be done by maximizing the

likelihood function of the observed data,

P(O = o;E,P, π) =
∑
s∈St+1

P(O = o, S = s;E,P, π).

Since there is no closed-form solution for this problem, this has to be done

by estimation. The Baum-Welch algorithm is used as a standard in the

context of unsupervised HMMs. It integrates the already mentioned forward-

backward algorithm into the well-known expectation maximization (EM)

algorithm. The EM approach, an iterative algorithm to perform maximum

likelihood estimation, is widely used in the context of HMMs since it is ap-

plicable when models depend on latent or hidden parameters. Let θ be the

entire set of parameter values {E,P,O} used in this model. The EM algorithm

starts from an initial arbitrary choice of parameters, θ(0), and improves them

by repeatedly applying an expectation (E) and a maximization (M) step. More

precisely, an improved parameter θ(t+1) is computed in every iteration step t

by maximizing the expected log-likelihood function of the data evaluated with

the current estimate θ(t):

θ(t+1) = argmax
θ

∑
s∈S

P(S = s|O = o, θ(t)) log P(O = o, S = s, θ).

The forward-backward algorithm is needed in the expectation step to infer the

underlying hidden states from the data and the current estimates θ(t). The

iteration stops when some convergence criterion is reached.
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4 Enhancer Prediction Method

Based on Histone Modification

Data and a Combination of

Two Random Forest Classifiers

In this chapter, we describe the theoretical background of a new supervised

method to predict the location of enhancers genome-wide solely based on his-

tone modification ChIP-seq data. On the example of a mouse embryonic stem

cell (mESC) data set, we present the parameter optimization strategy used to

create our final enhancer classifier. In this context, we also assess the quality of

the mESC samples and the enhancer set, which we chose for training. Finally,

we present in detail how we perform motif analysis on predicted enhancer

regions, and we introduce the theoretical background of two other methods

commonly used for enhancer prediction.

Our enhancer prediction method presented in this chapter is an extended and

adapted part of a paper which was co-first authored with Verena Heinrich

(Ramisch et al., 2018). The content of this chapter is based on my part of the

collaboration.

4.1 Framework of our prediction method

Genome-wide enhancer prediction describes the task to decide for each base

pair position in the genome if it encodes for an active enhancer or not based
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on one or more chosen measurable features. As one can imagine, this decision

is of varying difficulty for different positions depending on the real underlying

genomic element (e.g. promoters, genes, intergenic regions) and on how well

the chosen feature set is suited to contrast enhancers from each type of genomic

element.

The way we tackle this problem is to segment the genome into equally sized

bins of 100 bp each, predict the enhancer probability

P(binx = active enhancer)

for each binx using a supervised approach and assign an ‘enhancer’ or ‘non-

enhancer’ label to the corresponding binx based on the predicted probability.

The supervised classification model has to be trained on a set of already la-

beled input data, the so-called training set, on which the class-specific feature

patterns are learned (see Section 3.4 for more details on supervised classifica-

tion).

Our prediction model is a combination of two random forest classifiers with

histone modification-based feature sets, where one classifier learns the differ-

ence between ‘active’ and ‘inactive’ genomic regions, and the other learns to

distinguish active enhancers from active promoters. Each random forest con-

sists of several decision trees which determine the final classification outcome

via majority voting (see also Section 3.4.3). The training enhancers are chosen

according to their level of bidirectional transcription and accessibility.

The successfully trained model can predict enhancers genome-wide solely based

on ChIP-seq data from six core HMs and a control experiment. The integrated

implementation of the two random forest classifiers results in two genome-wide

probability tracks (see Figure 4.1). These are multiplied for each genomic bin

to generate the final enhancer probability values, based on which a list of

annotated enhancers is created. Moreover, closely positioned enhancers are

summarized to enhancer clusters.

In the following sections, we explain the individual steps of building our en-

hancer prediction model. First, we illustrate the feature choice, followed by

the idea to combine two classification tasks to handle the heterogeneous ‘non-
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Figure 4.1: Framework of our enhancer prediction method. The two pre-
trained classifiers (classifier 1 and 2) are applied to ChIP-seq data and result in two
genome-wide probability tracks (dark blue). Classifier 1 predicts the probability of
an ‘active’ region, and peaks at the active promoter (‘AP’, small rectangle, light blue)
and both active enhancers (‘AE’, small rectangle, yellow). Classifier 2 distinguishes
active enhancers from active promoter, and reaches high probabilities at the active
enhancers and a low probability at the active promoter. Multiplying classifier 1 and
2 results in genome-wide enhancer probabilities (yellow), which are used to create
enhancer annotations (small rectangles, yellow). These are clustered into regions of
high enhancer density (broad rectangle, yellow). ChIP-seq count distributions are
illustrative.
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enhancer’ set in the genome. Then, we discuss the training set composition,

the necessity to choose training and feature set in an independent manner, as

well as how we define enhancers and promoters for training in detail. Finally,

we demonstrate how to annotate individual enhancer peaks from the predicted

genome-wide enhancer probabilities, and how to combine or cluster these peaks

into regions of high enhancer density.

4.1.1 Feature choice

The nucleosomes flanking an active enhancer show specific histone modification

(HM) patterns which change dynamically according to the activity status of the

enhancer (see Section 2.4.2 for more details). Therefore, HM data is a suitable

and prominent feature candidate for (cell type-specific) enhancer prediction.

The feature set for our enhancer prediction is derived from six core histone

modifications: H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3, and

H3K36me3. These marks are available for many different cell types and tissues

as they make up the minimum set of core HMs defined by the International

Human Epigenome (IHEC) consortium (Stunnenberg et al., 2016), and are also

included in the NIH Roadmap Epigenomics Mapping Consortium (Bernstein

et al., 2010). The challenge is to collapse the information of these HM marks

at each genomic location into one informative measure of enhancer activity,

which is in our case an enhancer probability track.

We compute the raw ChIP-seq read counts in each non-overlapping 100 bp bin

for the respective HM feature sets and the control or input sample using the

R package bamProfile (Mammana and Helmuth, 2016). Then, we perform an

input normalization by computing the log2 ratio between the counts of each

HM and the input (both with pseudocount of 1) per bin.

To account for the physical structure of an enhancer (an accessible region

flanked by nucleosomes), the prediction for each genomic bin depends also on

the HM read counts in multiple adjacent bins.

As shown in Figure 4.2, we expect a very low HM signal at the accessible

nucleosome-free center of an active enhancer, the 100 bp binx. For enhancer as-

sociated marks like H3K27ac and H3K4me1 we expect to see strongly increas-
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Figure 4.2: Illustrative HM profile at an active enhancer region. Count
signals (on the y-axis) of H3K27ac, H3K4me1 and H3K27me3 at the center of an
active enhancer (binx, in yellow) and five adjacent bins up- and downstream (in
grey). Low HM signals at the accessible region and peaks for enhancer-associated
marks H3K27ac and H3K4me1 at the flanking nucleosomes. Overall low signal for
repressive mark H3K27me3.

ing signals in a number of neighbouring 100 bp bins to the left (binx−1, binx−2, . . .)

and to the right (binx+1, binx+2, . . .) reflecting the level of modifications at the

flanking nucleosomes, while for repressive marks like H3K27me3 we do not

expect to see any signal in the vicinity of the active enhancer. Taking into ac-

count N neighboring bins to both sides of binx, this results in 2N + 1 features

(normalized count values) per HM. The number N of neighboring bins con-

sidered in the model is a parameter that is optimized as described in Section

4.3.
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4.1.2 Combination of two random forest classifiers

According to the genome-wide distribution of several HM marks only a small

fraction of the genome (about 10%) has enhancer potential (Kellis et al., 2014).

This results in an unbalanced classification problem where the class of interest

is underrepresented. Furthermore, the remaining part of the genome is very

diverse. It consists of active and inactive promoters, corresponding genes in-

cluding exons and introns, and other types of genomic elements. Based on

prior knowledge about properties of different genomic elements, e.g., through

the occurrences of certain HMs throughout the genome, it can be expected

that the distinction of active enhancers and ‘non-functional background’ re-

gions is rather easy, while active enhancers and active promoters are much

harder to distinguish (see Section 2.4). Hence, it is desirable to learn indi-

vidual strategies how to distinguish enhancers from different types of genomic

regions instead of considering one very heterogeneous ‘non-enhancer’ class.

Since the probability of observing an active enhancer can also be written as

P (binx =active enhancer) =

P(binx = active)︸ ︷︷ ︸
classifier 1

·P(binx = active enhancer | binx = active)︸ ︷︷ ︸
classifier 2

,

we split the task of enhancer prediction into two individual classification prob-

lems. The first classifier, classifier 1, learns to distinguish active from inactive

genomic regions, while the focus of classifier 2 lies in the distinction of active

enhancers and active promoters. In case a region does not show any active

features, classifier 1 should predict a very low probability and as a result, the

final enhancer probability will be low as well independent of the outcome of

classifier 2. If classifier 1 assigns a high probability, the enhancer decision is

transferred to classifier 2. The combination, i.e., the product, of both classifiers

results in the final enhancer prediction and is summarized in Figure 4.1.

Classifier 1, which has the objective to distinguish active regions from the rest

of the genome, is based on a subset of the six modifications: the active mark

H3K27ac and the repressive marks H3K27me3 and H3K9me3. We consider

all six HMs as well as the ratio between H3K4me1 and H3K4me3 to learn
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the difference between active promoters and enhancers with classifier 2. The

H3K4me1/H3K4me3 ratio is computed as the log2 ratio between the input

normalized values of H3K4me1 and H3K4me3 per bin (with pseudocount of

1), after shifting their distributions to the positive numeric values (> 0). It is

expected to be higher at enhancers and was found to be an important feature

(Calo and Wysocka, 2013).

For both classifiers, the features are correlated not only due to the interplay of

individual HMs (Lasserre et al., 2013), but especially due to their (neighboring)

genomic location, e.g., the level of H3K27ac at binx is expected to be correlated

to the level of H3K27ac at binx−1 or binx+1.

We use random forest algorithms for both classification tasks since random

forests are known to show a robust performance under a correlated feature

assumption. In addition, they can provide us with information about the

importance of the individual features for the classification task. A random

forest is an ensemble classification method consisting of a numberM of decision

trees. For a genomic binx, each individual tree votes for a class membership

and the enhancer probability is the ratio of all positive voting outcomes. More

details on decision trees and random forests can be found in Sections 3.4.2

and 3.4.3, respectively. We optimize the number of decision trees M for both

classifiers independently as described in Section 4.3.

4.1.3 Training and test set composition

The training set of a classification task comprises a positive set and a

negative set of labeled data from which the classifier can adequately learn

differentiating feature patterns. The individual compositions of the positive

and negative set, i.e., the fraction and type of positive and negative examples,

are important to give a complete summary of the class of interest regarding

the chosen feature set and to create a representative background class.

For our model, we train two random forest classifiers and hence also require

two different training sets. Classifier 1 learns to distinguish between ac-

tive genomic regions (active enhancers and active promoters) constituting the

positive set and inactive genomic regions (intergenic, intragenic and inactive
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promoters) as the negative set. The proportion of the individual regions in the

training set takes into account the composition of the genome as described in

Kellis et al. (2014). We chose 10% active enhancers, 2% active promoters, 2%

inactive promoters, 6% intragenic and 80% intergenic regions, summing up to

1000 regions in total. Classifier 2 learns the difference between the two types

of active regions used in classifier 1, i.e., the active enhancers constitute the

positive set and active promoters the negative one. It is trained on 120 regions

of which 83.3̄% are active enhancers and 16.6̄% are active promoters, keeping

the same promoter-enhancer ratio and total numbers as used in classifier 1.

We decided to reflect the genome-wide imbalance between enhancers and non-

enhancer regions to not introduce a deliberate sample selection bias on the

training set. That means, we keep the (label) distribution of the training set

as similar to the real genome-wide distribution as possible to avoid the need

of making adjustments on the prediction results. It is know that without

making adjustments on new data predictions, which were based on shifted

prior probabilities in the training set, likely results in a loss of performance in

comparison to predictions that took the real underlying prior class probabilities

into account during training (Amos, 2008; Latinne et al., 2001).

The performance of the overall prediction, which results from a combination

of the two classifiers, is computed on an independent test set of 1000 exam-

ples. Since we are interested in how well active enhancers can be predicted,

the positive set contains only enhancers while the negative set comprises the

remaining genomic regions. The proportion of individual elements is kept as

for classifier 1, i.e., the positive class makes up 10% of the test set.

4.1.4 Independence of training and feature set

If we would be provided with a large set of in vivo tested enhancers, we could

train a classifier based on HM data (or any other feature of interest) without

being concerned about potential introduced biases, since the training enhancers

would be chosen independently of their individual HM level.

However, in most cases there are not enough in vivo tested enhancers available

in the cell type of interest, and observed enhancer probabilities have to be
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exploited to create a reliable positive set. As a consequence, the next challenge

is to construct a training set which is ideally completely independent of the

classification features to avoid circular reasoning.

Example of strongly correlated feature and training criterion

Let us assume, we take promoter distal H3K27ac peaks as a proxy for enhancers

in our training set, which is common in certain applications (e.g. Sun et al.

(2016) and Novo et al. (2018)). For the construction of this particular training

set, we would have to use two kind of a priori observed knowledge: a cutoff

on the peak height of H3K27ac, cH3K27ac, which distinguishes active enhancers

(Y = 1) from background (Y = 0), and a distance cutoff, cdist, distinguishing

enhancers from promoters (Y = 0). Assuming we would use H3K27ac peak

height and promoter distance also as features, is there additional information

hidden in the data that the classifier could learn, which we did not already

know during the training set design? The answer is no, since the classifier will

achieve the best performance results following our own design rules:

Y =


1, if H3K7ac ≥ cH3K27ac and promoter distance ≥ cdist,

0, if H3K7ac ≥ cH3K27ac and promoter distance < cdist,

0, if H3K7ac < cH3K27ac.

If we would replace H3K27ac with a very correlated feature, like H3K9ac,

the classification rules would change, but only as a function of the correlation

between the two HMs. Hence, by using correlated training set criteria and

features, we bias our predictions towards self-set rules and also challenge the

need and gain of training a classifier in the first place.

Suitable training criteria for HM-based feature set

Considering that we want to use HMs as features, we want to choose enhancer

properties that are most suitable and at the same time available for the con-

struction of a reliable training set. In Section 2.4, we discussed many observed

properties in detail: the binding of cell type-specific TFs and other co-factors,
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functional and sequence conservation, accessibility, bidirectional transcription,

DNA methylation, and also enhancer-promoter communications within TADs.

There are several classifiers which rely on distal p300 binding sites as a proxy

for enhancers and use HMs in their feature set, for example Rajagopal et al.

(2013) and He et al. (2017). Since p300 is a histone acetyltransferase (HAT)

and as such is directly correlated to the presence and level of H3K27ac, we

excluded p300 binding sites as valid criterion for our training set. In addition,

it was found that there is a subset of enhancers in human ESCs which are pre-

loaded by p300 while they are in a poised state (Rada-Iglesias et al., 2011).

These regions would enter the training set as false positives.

Some classifiers, especially earlier ones, rely solely on conservation scores (Sie-

pel et al., 2005; Prabhakar et al., 2006). We did not include these features into

our analysis since many enhancers show very low conservation levels even be-

tween closely related species (Schmidt et al., 2010; Blow et al., 2010; May et al.,

2012). Furthermore, we want to predict enhancers in different cell types and

tissues, where different TFs may be important for enhancer activity. Hence,

introducing conservation into the training set might bias the analysis towards

a specific set of enhancers.

4.1.5 Definition of training enhancers

The assembly of reliable training samples is one of the bottlenecks in most

biological applications since experiments are often expensive and/or time-

consuming. In particular, labeled positive examples are rare, which is why

a reliable prediction method is needed in the first place. We choose training

enhancers combining two enhancer properties: the presence of bidirectional

transcripts and chromatin accessibility. In the first part of the definition of

our training enhancers, we chose all enhancers from the FANTOM5 database

that showed a certain amount of bidirectional transcription in our cell type

or tissue of interest for one or more replicates. Here, the level of transcrip-

tion corresponds to the level of observed tag counts measured with the CAGE

technique (see Sections 2.4.6 and 2.3.3 for more details on the FANTOM5

database and CAGE, respectively). The criteria used on the number of counts
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Figure 4.3: Genomic region annotation. Each 100 bp bin overlapping with
a TSS of an active gene (light blue, log2(FPKM + 1) > 2) and with a DNase-seq
peak (summit, light gray) is defined as an active promoter (‘AP’, blue), whereas
bins overlapping with a TSS of an inactive gene (light orange, FPKM value = 0)
are marked as inactive promoter (‘IP’, orange). Active enhancer bins (‘AE’, yellow)
are mapped to FANTOM5 annotated enhancers containing a DNase-seq peak (light
yellow) marking the accessible region within the enhancer. The remaining part of
the active enhancer as well as FANTOM5 enhancers without corresponding DNase-
seq peak are not used for training (white bins). All bins which are not overlapping
with enhancers, promoters or genes are assigned to the group of intergenic regions
(‘IG’, gray).

can vary for different cell types to adjust the amount of resulting enhancers

and is summarized in Table B1.

In a second step, we discard all identified FANTOM5-based enhancers from our

training set which do not overlap with a DNase-seq peak (peak calling details

in Ramisch et al. (2018)) and as such are not accessible in the corresponding

cell type or tissue. This is necessary to filter our training set for possible false

positives stemming from CAGE experiments which may not exactly match

the experimental setting of the HM ChIP-seq data used for the construction

of the feature set. The DNase-seq experiments have been done under the same

conditions as the HM data and as such constitute a reliable filter. Finally,

every 100 bp bin overlapping a FANTOM5 annotated enhancer and a DNase-

seq peak is defined as an active enhancer for training and testing, which is also

depicted in Figure 4.3.

As a result, the active enhancers are centered on their accessible region, which

is crucial for the successful training of our model. The final number of active

enhancers per cell type can be found in the Appendix, Table B2.
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4.1.6 Definition of training promoters

In the training set of both classifiers, but especially in the one of classifier 2,

we need to distinguish active from inactive promoters. We make this decision

based on a combination of accessibility and gene expression data since, follow-

ing the same line of thought as for enhancers in Section 4.1.5, the criterion

should be as feature-independent as possible. We could not use CAGE data

for our promoter definition, as there was no data available for TSSs in our cell

types of interest.

We compute FPKM (fragments per kilobase million) gene expression values

from RNA-seq data matching the cell type of our HM data origin. The FPKM

values were computed with DESeq2 (R package version 1.20.0, Love et al.

(2014)). Then, we define annotated genes from the Ensembl database (human

assembly ‘GRCh37.70’, mouse assembly ‘GRCm38.90’, Kersey et al. (2018)) as

active if log2(FPKM + 1) > 2, and as inactive if log2(FPKM + 1) = 0. In case

that multiple replicates are available, this has to hold for all of them accord-

ingly. Our (strict) cutoff is based on the expression profile of log2 transformed

FPKM values depicted in Figure 4.4. Note also that, even though FPKM = 1

(equivalent to log2(FPKM + 1) = 1) is often used, a widely excepted generic

cutoff to distinguish expressed from not expressed genes does not exist.

We define each 100 bp bin overlapping an annotated TSS of an inactive gene as

inactive promoter. For the definition of active promoters, we also incorporated

the accessibility represented by DNase-seq data to center the promoter on its

open region. Active promoters are therefore defined as 100 bp bins overlap-

ping with an annotated TSS of an active gene and a DNase-seq peak. These

concepts are also illustrated in Figure 4.3 and an overview of the final number

of active and inactive promoters in the different cell types and tissues can be

found in Table B3. TSSs of genes with 0 < log2(FPKM+1) ≤ 2 were not used

for training.

4.1.7 Enhancer annotation

To call enhancers in a genome-wide manner, we make enhancer predictions

by multiplying the outcome of classifier 1 and classifier 2 (introduced in Sec-
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Figure 4.4: Example distribution of gene expression values. Distribution
of FPKM normalized gene expression values per gene for a mouse embryonic stem
cell RNA-seq sample. We defined a gene with log2(FPKM + 1) > 2 as active (blue
solid line), and every gene with log2(FPKM + 1) = 0 as inactive (orange solid line).
The dotted blue line indicates a weaker cutoff, that we will come back to in Section
4.2.2.

tion 4.1.2) for each 100 bp bin in the genome. Then, we sort all bins with

an enhancer probability of ≥ 0.5 in a descending order from highest to low-

est probability. Bins with identical probabilities are sorted according to their

genomic location per chromosome where bins closer to the start of the chro-

mosome come first/higher in the sorted list. In a next step, we extend all

bins to 1100 bp by adding 500 bp upstream and downstream. This is moti-

vated by considering N = 5 neighboring bins to the right and to the left in

the feature set (see also Figure 4.2). Starting at the most probable enhancer

bin, we detect all overlapping bins and discard them from the sorted list. We

repeat this procedure for each bin in the list moving from highest to lowest

probabilities. This results in a final list of non-overlapping 1100 bp enhancers

with probabilities ≥ 0.5 (see Figure 4.1).
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4.1.8 Regions of high enhancer density

We define regions of high enhancer density by combining proximal enhancers

to bigger clusters. Following the definition of super-enhancers as stated by

Hnisz et al. (2013) and Whyte et al. (2013), each pair of called enhancer peaks

with a maximum distance of 12.5 kb is concatenated (see also Figure 4.1). In

contrast to the definition of super-enhancers, our enhancer clusters are built

solely based on distance, and do not take measures of enhancer activity or

levels of TF binding into account. See also Section 2.4.9 for more details on

super-enhancers.

4.2 Assessment of training enhancers in mouse

embryonic stem cells

In Chapter 5, we will validate the performance of our enhancer prediction

method on the example of a mouse embryonic stem cell data set. To be able

to make reliable performance statements, we first assess the quality of the

corresponding HM ChIP-seq samples and analyze various properties of the

training enhancers which we chose based on CAGE data and accessibility.

4.2.1 ChIP-seq data quality

We applied the plotFingerprint tool (deepTools, Ramı́rez et al. (2016)) to our

mESC ChIP-seq samples to assess data quality. With this tool we can measure

how well a certain HM mark can be distinguished from the genomic background

signal in the input or control sample. According to what we would expect

based on prior knowledge we can then make a conclusion about the quality

of the individual marks. For the histone modifications H3K27ac or H3K4me3,

for example, we expect a very strong and specific enrichment according to

genome-wide coverage results from (Kellis et al., 2014). Moreover, both marks

were observed to cover only a small fraction (< 20%) of the genome. H3K4me1

shows a broader and overall lower enrichment and is distributed over a third

of the genome. The enrichment of transcript elongation mark H3K36me3 is
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Figure 4.5: Fingerprint quality control metrics for mESC ChIP-seq ex-
periments. For each HM ChIP-seq data, reads with a mapping quality ≥ 30 are
counted per adjacent 500 bp bin. Then, the read counts are sorted and their cu-
mulative sum is plotted. The plots are done with deepTools (Ramı́rez et al., 2016).

also very broad with more than half of the enriched regions having a very

low signal strength. The repressive marks H3K27me3 and H3K9me3 were

observed to cover more than half of the genome with an almost exclusively

very low signal.

In a first step, the genome is divided into non-overlapping 500 bp bins for

which reads with a mapping quality ≥ 30 are counted. Then, the computed

read counts are sorted from lowest to highest and their cumulative sum is

plotted. This is done for each sample separately.

For the perfect control or input sample, we expect a profile close to the diagonal
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indicating a uniform and hence unspecific read distribution throughout the

genome. In Figure 4.5, we see that the input sample for the mESC data set

fulfills this criteria. The profile of H3K4me3 shows a steep rise for the highest

ranked genomic bins, likely a result of specific enrichment which should be well

differentiable from the background. More specifically, the cumulative sum over

95% of the genomic bins covers less than 20% of the highest read coverage.

Furthermore, we can see the proportion of the genome which was not sequenced

at all. For H3K4me3, nearly 40% of the genomic bins are not covered by any

reads which coincides with the observations from Kellis et al. (2014). The

other HM samples also fulfill the expectations according to genome coverage

and signal strength distribution. For the repressive marks, nearly all genomic

bins are covered with reads, but mostly at a very low number. H3K27ac,

H3K4me1 and H3K36me3 behave similarly. However, H3K27ac has a higher

number of bins without read coverage indicating a more specific enrichment.

4.2.2 Properties of FANTOM5 training enhancers

According to Section 4.1.5, we define active enhancers for training based on

their accessibility as well as on their ability to produce transcripts in a bidi-

rectional fashion, which can be measured with the CAGE technique (see Sec-

tion 2.3.3). The FANTOM5 enhancer data base for mouse (genome build

‘GRCm37’) consists of 44, 459 potential enhancer regions and the correspond-

ing CAGE counts in 1, 037 samples of different cell lines including biological

replicates. For human enhancers (genome build ‘GRCh37’), CAGE counts for

65, 423 potential enhancer regions in 1, 828 samples was collected.

In total, the FANTOM5 data base covers 1, 037 samples covering many dif-

ferent cell types and tissues. We define candidate enhancers for our mouse

embryonic stem cell (mESC) data based on a subset of 13 samples:

• ES-OS25 embryonic stem cells, DMSO control – 3 biological replicates

• ES-OS25 embryonic stem cells, untreated control – 3 biological replicates

• ES-Ert embryonic stem cells, untreated control, 48hr – 3 biological repli-

cates
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• ES-OS25 embryonic stem cells, untreated siRNA control – 2 biological

replicates

• ES-OS25 embryonic stem cells, scrambled siRNA control – 2 biological

replicates

From the 44, 459 putative FANTOM5 enhancers, we found 372 with≥ 4 CAGE

counts in all 13 samples. Even though a count cutoff of 3 is denoted as a

‘permissive’ cutoff for promoters, our chosen filter should lead to confident

enhancer candidates since Andersson et al. (2014) found that enhancers have

an overall lower RNA abundance than promoters. We converted the ‘GRCm37’

genome coordinates to ‘GRCm38’ using the coordinate conversion tool liftOver

from the UCSC Genome Browser utilities to match the genome build of our

HM and DNase-seq data (Hinrichs et al., 2006).

In total, 280 of the 372 selected FANTOM5 enhancers overlap with a DNase-

seq peak in mESC and are therefore also accessible.

Length distribution of FANTOM5 enhancers

The length of a putative enhancer defined by the FANTOM5 consortium repre-

sents the merged region of transcription initiation on the minus and plus strand

of the bidirectional transcripts, and as such covers the maximum length of the

accessible chromatin to which the transcription machinery binds. The major-

ity of the 280 accessible FANTOM5 enhancers have a length between 100 bp

and 400 bp, as can be seen in Figure 4.6, with a minimum length of 61 bp

and a maximum of 1640 bp.We concluded to base our enhancer prediction on

feature information from regions up to ∼ 2000 bp in length.

Distribution of CAGE tags at FANTOM5 enhancers

As described above, we chose mESC-specific enhancers by (i) filtering for FAN-

TOM5 enhancers which have at least 4 CAGE counts in each of the 13 mESC-

associated samples, and (ii) discard those regions that do not overlap with a

mESC-specific DNase-seq peak. The CAGE counts in the remaining 280 en-

hancers over all 13 samples range from 4 to 765, which is depicted in Figure 4.7
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Figure 4.6: Length distribution of filtered FANTOM5 enhancer in mESC.
Majority of 280 FANTOM5 enhancers found to be active in mESC and overlapping
with a DNase-seq peak have a length between 100 and 400 bp. The length of the
enhancers is based on CAGE data and was computed by the FANTOM5 consortium.

a). Looking at each sample individually (Figure 4.7 b) on a smaller scale, the

count distributions vary even within the same cell type, but most enhancers

have between 10 and 40 counts.

The FANTOM5 consortium also computed tags per million (TPM) mapped

reads, which were normalized between the individual samples (see Andersson

et al. (2014) for details). But since they did not make direct recommendations

how to choose a TPM-based cutoff to define enhancers, we use a tag count

oriented definition in this work. Also, we observed that it does not influence

our final set of training enhancers much. Choosing a TPM cutoff of 0.5 for

all 13 samples and discarding all enhancers not overlapping with a DNase-seq

peak, we got 354 putative enhancer regions in mESC. Of these, 267 overlap

with the 280 putative enhancers that we found previously by applying a CAGE

tag count based cutoff. The TPM distributions in the 354 enhancers in all 13

samples are shown in Figure 4.8.

Histone modification patterns and accessibility at FANTOM5 en-

hancers

To check whether the HM profiles and the chromatin accessibility at the CAGE

tag-based active enhancers display the enhancer-typical features, we computed
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Figure 4.7: CAGE count distribution of mESC enhancer. a) Histogram of
raw CAGE tags for 280 FANTOM5 enhancers over all 13 mESC-associated FAN-
TOM5 samples. The x-axis is cut at 80. b) Density plot of raw CAGE tags for 280
FANTOM5 enhancers in individual mESC-associated samples. Identical colours in-
dicate replicates of the same cell type. The x-axis is cut at 200.

the read counts (in 100 bp bins) in a 3 kb window around our 280 training

enhancers for our six core HMs and an independent ATAC-seq data in mESC.

Our filtered enhancers show a centered ATAC-seq peak indicating accessi-

bility, which is in agreement with the filter of overlapping DNase-seq peaks

(see Figure 4.9, and also Figures A1 and A2). Both enhancer-associated HM

marks, H3K27ac and H3K4me1, show peaks adjacent to the accessible region.

H3K27me3 is not present or even exhibits a depletion at our chosen enhancers.

Interestingly, also H3K4me3, the promoter-associated HM mark, is enriched
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Figure 4.8: CAGE tpm distribution of mESC enhancer. a) Histogram
of CAGE tpm values for 280 FANTOM5 enhancers over all 13 mESC-associated
FANTOM5 samples. The x-axis is cut at 40. b) Density plot of CAGE tpm values
for 280 FANTOM5 enhancers in individual mESC-associated samples. Identical
colours indicate replicates of the same cell type. The x-axis is cut at 30.

to a similar degree as H3K4me1 pointing out the difficulty of distinguishing

enhancers from promoters.

Histone modification patterns and accessibility at promoters

We assess the differences between enhancers and promoters in terms of HM

signals by plotting the same distributions as above for our training promoters

(‘very active’ in Figure 4.9). The promoters show a lower H3K4me1 level,

and a much higher enrichment in H3K4me3. Subtle differences between the
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Figure 4.9: HM and ATAC-seq signal at enhancers and promoters in
mESC. Summarized profiles of ATAC-seq and six HM data for six sets of genomic
regions: active promoters (log2(FPKM + 1) ≥ 1, dark blue), ‘very’ active promoters
(log2(FPKM + 1) ≥ 2, green), active promoters overlapping with a DNase-seq peak
(log2(FPKM + 1) ≥ 1, dark blue), inactive promoters (log2(FPKM + 1) < 1, light
blue), ‘very’ inactive promoters (log2(FPKM + 1) = 0, yellow), FANTOM5-based
active enhancers with DNase-seq peak overlap (red). a) Raw cage counts. b)
Raw cage counts excluding 1st and 95th quantile, and scaled to [0, 1] for each data
individually. Plots based on results from deepTools (Ramı́rez et al., 2016).

different sets become especially clear in the normalized profiles excluding few

regions with particularly low or high values (see Figure 4.9 b)).

Since we chose a quite strict cutoff on the expression values of the correspond-

ing genes for our promoter definition (see Section 4.1.6, we wanted to exclude

a possible bias towards a very high activity level and hence defined a second

set of promoters with a less stringent cutoff. Based on Figure 4.4, we defined

all promoter regions belonging to a gene with log2(FPKM + 1) ≥ 1 as active

promoters. In Figure 4.9 it can be seen that the set of less stringently de-

fined promoters shows on average very similar profiles compared to the more
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stringent set. Hence, our strict cutoff for the training promoters should not

influence the learned classification rules to distinguish enhancers from promot-

ers. Also, we seem to decrease the amount of promoters that are not active

according to their HM levels by applying the stricter cutoff (see Figure A2).

In our final set for training, we take the overlap of the strictly defined promoters

and mESC-specific DNase-seq peaks, resulting in regions with an on average

even higher H3K27ac and H3Kme3 signal. Since the promoter activity was

defined based on a strict cutoff on the gene expression, inaccessible promoter

regions could be due to wrongly annotated TSSs. These then decreased the

signal of promoter-associated HMs on average.

4.3 Hyperparameter optimization using grid

search

After ensuring the suitability of the feature data and the training regions in

the previous section on the example of mouse embryonic stem cell data, we can

finally train our two random forest classifiers. Both classifiers have two free

hyperparameters, the number M of decision trees used in the random forests

(see Section 4.1.2) and the number N of pairs of neighboring 100 bp bins (one

on each side of the bin of interest) taken into account in the feature space (see

Section 4.1.1), which have to be set before the training process starts.

We optimize these parameters by performing a grid search for

M = {10, 20, . . . , 100} and N = {0, 1, . . . , 10}. Moreover, we sample 10 dif-

ferent training sets according to the rules described in Section 4.1.3 for each

parameter combination (M,N) to decouple the performance results from the

random factor in the training set choice. This results in 10 · 11 · 10 = 1100

combinations of M , N and the training set, for which we learn classifier 1 and

classifier 2, and compute the area under the precision recall curve (AUC-PR)

and the area under the ROC curve (AUC-ROC) on a test set (see Section

3.3.4 for more details on these performance measures). For classifier 1, we

concentrate more on the AUC-PR results, since the class of interest (‘active’)

is underrepresented. However, for classifier 2 this is not the case and the
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Figure 4.10: Grid search results for random forest classifiers. AUC-ROC
and AUC-PR results from a 5-fold cross-validation for classifier 1 (active vs. inactive)
and classifier 2 (enhancer vs. active promoter). Number of adjacent bins N included
in the feature set on x-axis from 0 to 10. Different colours indicate the number of
decision trees M used in the random forest classifiers.

AUC-ROC is more informative.

The performance results of both classifiers greatly depend on the number of

features represented by N (see Figure 4.10). The highest change in perfor-

mance happens between the choice of N = 0 and N = 1. Taking no adjacent

bin into account in the learning process, i.e., predicting based on the HM val-

ues in the central 100 bp bin, leads to an AUC-PR ∈ [0.58, 0.72] for classifier

1 and an AUC-ROC ∈ [0.61, 0.85] for classifier 2, depending on the choice of

M (see Figure 4.10). Adding HM information in one bin upstream and down-

stream (N = 1) improves the performance results to AUC-PR ∈ [0.82, 0.91]

and AUC-ROC ∈ [0.63, 0.94], respectively.

A likely explanation is that for most active promoters and enhancers, the ac-

cessible region is at least ∼ 100 bp long and therefore only little information
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regarding HMs can be found in the central bin. The adjacent bins, however,

seem to cover nucleosomes with modified histone tails that can help to dis-

tinguish different genomic regions. From N = 1 to N = 2 an increase in

performance with a smaller range for different values of M is visible (AUC-PR

∈ [0.9, 0.96] for classifier 1, and AUC-ROC ∈ [0.75, 0.95] for classifier 2). Then,

the performance stabilizes and only increases in small steps. We finally chose

N = 5 for both classifier 1 and classifier 2, and thus cover 1, 100 bp of HM

information for each enhancer prediction.

With increasing the number of trees M in the random forests the median

performance increases independently of the number of adjacent bins N . For

the rest of our analysis, we set M = 70 for classifier 1 and classifier 2, as a

compromise between computing cost and performance.

4.4 Motif analysis

As part of the validation of our classifier, we compute the enrichment of TF

motifs in different sets of predicted enhancers. Motif enrichment analysis is

usually based on position frequency matrices (PFMs) which describe the bind-

ing specificity of TFs by determining the nucleotide frequencies at each position

from several (aligned) TFBSs. Each PFM can be represented by a so-called

motif logo as shown in in Figure 4.11. A sequence of DNA is scanned for

matches with a PFM to detect the number of motif hits as well as the subse-

quent motif enrichment value. However, assessing the statistical significance

of motif hits is a difficult task, since most motifs are rather short (a few base

pairs), can include small variations in their underlying sequence without loos-

ing their function, or lack specificity and therefore may occur by chance in

the genome (A survey of motif discovery methods in an integrated framework;

Geir Kjetil Sandve and Finn Drablos).

Here, we use the function motifEnrichment which is part of the R package

motifcounter (Kopp, 2017; Kopp and Vingron, 2017) and was shown to out-

compete various motif count models for most of the analyzed motif structures

(e.g. non-self-overlapping motifs, but especially self-overlapping motifs such as
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Figure 4.11: Examples of JASPAR motif logos. Motif logos of a) POU2F2,
b) POU5F1 (OCT4) and c) the consensus motif of cluster 18 according to the PFMs
from the JASPAR CORE vertebrates database 2018. Motif logos were plotted with
the R package seqLogo (Bembom, 2018) after normalizing the PFMs such that the
columns sum up to 1. d) Logo tree of a motif cluster, cluster 18, adapted from
JASPAR (Khan et al., 2018).

palindromes and repeat-like motifs). It is based on a compound Poisson model

and a higher-order Markov background model. Motif hits are called based on

a desired false positive level, and the enrichment of motif hits is tested by

comparing the number of motif hits observed in a sequence of interest with

the number of motif hits in a sequence generated by the background model.

By taking into account a background of higher order, possible sequence biases
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such as a higher frequency of ‘GC’ dinucleotides in CpG islands of promoters,

are less likely reflected in the enrichment results.

In our analysis, we use the default parameters, an order-1 background model

and a false positive level of α = 0.001, and we scan both strands for motif hits.

Also, we indicate the over-representation of a motif in a set of sequences (in

comparison to the modeled background) with the fold-enrichment value.

We estimate enrichment for motifs (available as PFMs) from the open-source

database JASPAR (Khan et al., 2018). We use the JASPAR CORE vertebrates

database which contains a set of 579 manually curated non-redundant TF

motifs. In addition, to limit redundancy due to sequence similarity, the 579

TF binding motifs were clustered by tree partitioning into 78 sets (Castro-

Mondragon et al., 2017). An example tree for cluster 18 is depicted in Figure

4.11 d).

Each cluster is represented by a consensus motif and corresponding logo (Fig-

ure 4.11 c)) computed from the original PFMs of the comprised TF motifs

(Figure 4.11 a) and b)). We apply motifcounter to the consensus PFMs which

we normalized such that the columns sum up to one.

4.5 Two other enhancer prediction methods

In this section, we give a detailed summary of one unsupervised and one su-

pervised method used for enhancer prediction. The final comparison to our

approach can be found in Section 5.3.

4.5.1 ChromHMM

ChromHMM is a genome segmentation tool aimed at dividing the genome

into biologically meaningful combinations of chromatin marks and discovering

de novo chromatin states Ernst and Kellis (2012, 2017). It is comparable to

our method in terms of usability, since the necessary biological input data are

ChIP-seq bam files, for example from several HMs. ChromHMM is an unsu-

pervised multivariate HMM and as such models multiple input measurements

as the observable output generated by a fixed number of hidden states, here the

68



underlying chromatin states. Typical for HMM models, the only input param-

eter is the number of hidden states or chromatin states that has to be chosen

by the user. The observable output is based on a set of binarized chromatin

marks, where either the presence of a mark (1) or the absence (0) is encoded at

each genomic position. As a result, the emission probabilities in each hidden

state are modeled as a product of independent Bernoulli variables. The emis-

sion and also the state transition parameters are learned in an unsupervised

manner using a variant of the iterative EM based Baum-Welch algorithm.

Following the notation in Ernst and Kellis (2010), in a first step, each chro-

mosome c = {1, . . . , C} in the genome is split into Tc non-overlapping 200

bp bins ct, t = 1, . . . , Tc. Then, for each bin ct, the presence of a chromatin

mark m = 1, . . . ,M is denoted as νct,m = 1 and the absence as νct,m = 0.

The vector νct = (νct,1, . . . , νct,M) denotes the presence or absence of all M

chromatin marks in bin ct. Furthermore, let pk,m be the emission probability

that chromatin mark m is present int state k, bi the transition probability from

state i to state j with i, j ∈ {1, . . . , K}, and ai the initial probability that the

first bin of a chromosome is in state i. The joint probability of a hidden state

sequence sc = (sc1 , . . . , scTc ) ∈ Sc throughout chromosome c and an emitted

output sequence of chromatin marks νc = (νc1 , . . . , νcTc ), can be written as

P(νc, sc) = asc1

(
M∏
m=1

p
νc1,m
sc1 ,m

(
1− psc1 ,m

)1−νc1,m

)
︸ ︷︷ ︸

initial state and emission probability

·

Tc∏
t=2

bsct−1 ,sct

(
M∏
m=1

p
νct,m
sct ,m

(
1− psct ,m

)1−νct,m

)
.

The unknown parameters can be estimated by maximizing the corresponding

likelihood function of the genome-wide observed chromatin profiles,

P(ν; a, b, p) =
∏
c∈C

∑
sc∈Sc

P(νc, sc),

for a fixed number of states K using a (computationally less time consuming)

variant of the EM-based Baum-Welch algorithm (see Section 3.5.3 for more
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details on HMMs and (Ernst and Kellis, 2012) for a detailed explanation of

the model learning step).

Each genomic bin is finally associated with one of the K ‘hidden’ states based

on the posterior probability distribution computed with a forward-backward

algorithm.

4.5.2 REPTILE

REPTILE, short for regulatory element prediction based on tissue-specific lo-

cal epigenetic marks, is a random forest based supervised method to identify

enhancers from HM ChIP-seq and whole-genome cytosine DNA methylation

profiles (He et al., 2017). The putative enhancers used for training are pro-

moter distal p300 binding sites.

The classification model comprises two individually learned random forests,

where both consist of 2, 000 decision trees and are based on the same feature

set. In total, 14 different features are used. For each region in the train-

ing or test set, DNA methylation and six HM signals (H3K4me1, H3K4me2,

H3K4me3, H3K27me3, H3K27ac and H3K9ac) are computed in the target

sample, i.e., the sample in which enhancer predictions are needed. Addition-

ally, these seven features are also computed in (several) reference samples from

different cell types tissues. The mean of the resulting feature levels over the

reference samples is subsequently subtracted from the one in the target sam-

ple creating the so-called intensity deviation feature set, which is supposed to

measure the variation between different cell types or tissues. The classifiers

differ in the composition of their training sets including differently seized query

regions and different strategies for labeling. One classifier is trained on 40, 000

regions of size 2 kb, of which 5, 000 are labeled as active enhancers and the rest

as inactive. The putative enhancers are the top 5, 000 (promoter-distal) bind-

ing sites of the histone acetyltransferase p300, and the 35, 000 non-enhancer

regions are composed of 5, 000 annotated GENCODE promoters and 30, 000

random genomic regions. The training set of the second classifier is based

on differentially methylated regions (DMRs), which are called from the DNA

methylation data in the target sample in a genome-wide manner. DMRs over-
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lapping with putative enhancers from the training set of the first classifier are

part of the positive set, while those overlapping previously annotated non-

enhancer regions build the negative set for training.

After both classifiers are trained, the enhancer probability of a new region

(default: 2 kb) is determined by taking the maximum of the enhancer score

from the first classifier for the entire region and the enhancer score(s) from

the second classifier for the DMR(s) within this region. Genome-wide score

predictions are computed for 2 kb bins which are sliding in steps of 100 bp, as

well as for all DMRs. Every DMR with an enhancer score > 0.5 is annotated

as ‘enhancer-like’ DMR, and predictions for the 2 kb bins are annotated like

described for our method (see Section 4.1.7). The final list of called enhancers

is the union of both annotation results.

REPTILE is offered as a pre-trained classifier for mouse, trained on mESC

data, in several settings. In contrast to our method (and also to ChromHMM),

the user has to run several independent scripts for training and also for en-

hancer predictions. Unfortunately, the normalization is not part of the REP-

TILE tool and has to be done by the user beforehand. The recommendations

for normalizing the ChIP-seq HM data prior to training and predicting is tak-

ing the log2 fold change relative to a control sample of the RPM (read per

million) count values.

4.6 Summary

In this chapter, we introduced a new supervised classification model to predict

cell type-specific active enhancers genome-wide. The predictions are based

on six widely-used histone modifications (HM) and therefore collapse several

epigenetic marks into one enhancer probability track.

For the design of our feature set, we took into account the observed local

chromatin structure of an active enhancer, which is in essence an accessible

region flanked by nucleosomes with specific HM patterns. Furthermore, our

model consists of two individually trained random forests which split the task of

enhancer prediction. While one random forest learns to distinguish active from
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inactive genomic regions, the other specializes on the more difficult distinction

of active enhancers and active promoters. The composition of our training sets

follows the expected proportions of different genomic elements genome-wide.

A limiting factor is often the availability of gold-standard enhancers in the cell

type of interest, since only few enhancers have been experimentally validated.

Therefore, we took advantage of known enhancer properties and defined active

enhancers in a cell type-specific way based on accessibility and their ability to

produce short bidirectional transcripts. Here, we paid special attention to the

independence of feature and training set criteria to avoid circular reasoning.

We introduced a mouse embryonic stem cell data set, with which we illustrated

certain properties of our defined training enhancers and showed the suitabil-

ity of the training and the feature set for our enhancer prediction task. We

optimized both random forest classifiers and observed that the length of the

accessible region within an enhancer is reflected in the optimal feature choice.

Finally, we described a motif analysis framework which we will apply in the

following chapters for evaluation purposes, and introduced two competitor

methods commonly used for enhancer prediction.
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5 Validation of our Enhancer

Prediction Method

In this chapter, we extensively validate our enhancer prediction method which

was introduced in the previous Chapter 4. We present our prediction results

when trained and tested in a single cell type, and also offer a pre-trained clas-

sifier that can be reliably applied across different cell types and species solely

based on the corresponding HM data. We compare our enhancer prediction

method with a commonly used unsupervised approach, ChromHMM, and a

recently published supervised method, REPTILE, which is in part based on

histone modification data.

The presented results are (in a less detailed manner) published as a pre-print

(Ramisch et al., 2018), which I co-first authored with Verena Heinrich. The

content of this chapter is soley based on my part of the work, except for the

application of the ChromHMM genome segmentation tool on the mESC data

set in Section 5.3, which was done by Philipp Benner, a co-author of the above

mentioned paper.

5.1 Results of enhancer prediction in mouse

embryonic stem cells

In Section 4.3, we performed a hyperparameter optimization for our two ran-

dom forest classifiers trained on a mouse embryonic stem cell (mESC) data

set. The optimized classifiers are both based on M = 70 decision trees and

N = 5 pairs of adjacent bins in the feature set. Below, we discuss the impor-
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tance of our features for the classification decisions and subsequently present

the performance results of the final enhancer prediction method. More pre-

cisely, we assess the performance for a chosen test set, measure the spatial

resolution of our genome-wide predicted enhancers as well as the validity of

the promoter-proximal enhancer predictions. For further validation, we com-

pare regions with a high predicted enhancer density with already annotated

super enhancers and finally perform a motif analysis on our enhancer set.

5.1.1 Feature importance of optimized random forest

classifiers

During training, a random forest classifier collects information on the impor-

tance of the features. One of the importance measures is the Gini index, which

we introduced in Section 3.4.3. The Gini index allows to recapitulate which

features were preferentially chosen to optimize split decisions in the individual

decision trees of the forest. Since at each split only a randomly drawn subset

of features is tested for optimization, highly correlated features are expected

to show similar results in terms of their Gini index.

For our enhancer prediction method, we analyze the feature importance of the

two optimized random forest classifiers, classifier 1 (active vs. inactive regions)

and classifier 2 (enhancer vs. active promoter). The feature set of classifier 1

is based on the active mark H3K27ac and the two repressive marks H3K27me3

and H3K9me3. This results in 3 · 11 = 33 features in total taking into account

N = 5 adjacent bins upstream and downstream of the bin of interest, denoted

by { binx−5, . . . , binx−1, binx, binx+1, . . . , binx+5}. We can see in Figure 5.1

that H3K27ac is by far the most important feature distinguishing an active

from an inactive genomic region. The central binx as well as binx±1 show a

low Gini index, while for the second adjacent bin to both sides, binx±2, a clear

increase resulting in a peak of importance is visible. This suggests that the cen-

tral 300 bp bin of an active enhancer is on average accessible/ nucleosome-free

and as such shows no HMs. Furthermore, the importance measure decreases

in binx±5, which supports the choice of taking N = 5 adjacent bins to both

side into account. The importance peak of H3K27ac to the left of binx is
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Figure 5.1: Feature importance of optimized random forests. Gini index
for 11 bins per HM-based features on the y-axes and genomic bins on the x-axes.
Bin x denotes the central bin of the genomic training regions. a) Classifier 1 (active
vs. inactive) with three HMs. b) Classifier 2 (enhancer vs. active promoter) with
six HMs and the H3K4me1/H3K4me3 ratio.
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higher than on the other side which could be due to the randomness in the

feature set choice at each split, i.e., binx−1 was chosen more often by chance.

Another possibility is that the training set consists of stronger plus than minus

strand promoter which usually have asymmetrical H3K27ac peak heights. We

balanced the number of both types of promoters, but the choice according to

activity strength is random and could have an effect on the feature importance.

The classifier learning the difference between active enhancers and active pro-

moters, classifier 2, is based on the six HMs H3K27ac, H3K27me3, H3K36me3,

H3K4me1, H3K4me3 and H3K9me3, and the ratio H3K4me1/H3K4me3. The

feature with the highest importance values is H3K4me3 which is low in the

three center bins and peaks at positions binx±2. This agrees with the obser-

vations in Figure 4.9, that promoters and enhancers show similar H3K4me3

level, but active promoters show a much higher H3K4me3 signal on average.

The H3K4me1/ H3K4me3 ratio is the second most important feature with

higher values in the seven central bins, bin(x−3):(x+3). H3K4me1 has overall

low importance values, but still shows small peaks at binx±3, which could hint

towards a broader enrichment of H3K4me1 at enhancers than at promoters

(see also Figures A3 and A4).

5.1.2 Performance results for test set prediction

We validate our mESC classifier based on the optimized hyperparameters N =

5 and M = 70 on an independent test set containing 1000 genomic regions (see

Section 4.1.3 for a more detailed description of the test set). First, we confirm

that our chosen test set is representative of the composition of the genome

in terms of its HM signature and accessibility. After that, we compute the

performance results using the area under the ROC curve (AUC-ROC) and area

under the precision recall curve (AUC-PR). We also discuss possible reasons

for difficulties in performance validation.

Test set is representative of genome

Intergenic regions, inactive promoters and intragenic regions from active genes

in our test set should be easily distinguishable from active enhancers since they
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Figure 5.2: Histone modifications and accessibility at test set regions. HM
and ATAC-seq profiles for all active genes (AG, dark blue), active promoters (AP,
blue), active enhancers (E, light blue), inactive genes (IG, green), inactive promoters
(IP, yellow) and intergenic regions (I, red) in the test set. a) Raw cage counts. b)
Raw cage counts excluding 1st and 95th quantile, and scaled to [0, 1] for each data
set individually. Plots based on results from deepTools (Ramı́rez et al., 2016).

are not accessible and do not carry H3K27ac and H3K4me1 (see Figures 5.2

and A5) but instead are slightly enriched for the repressive marks H3K27me3

and H3K9me3. Genomic regions placed in active genes are slightly enriched

for H3K4me1, but in a uniform fashion, i.e., without the enhancer or promoter

typical pattern of an accessible region with surrounding peaks of enrichment.

Also, they do not carry the active mark H3K27ac, which should make them

easily distinguishable from enhancers through classifier 1 (active vs. inactive).

Enhancers and active promoters have a very similar profile regarding the ac-

cessibility and the active mark H3K27ac. On average, the test set enhancers

and active promoters differ in H3K4me3 and H3K4me1 profiles, and also the

active promoters show the transcriptional elongation mark H3K36me3.

Based on these observations, our test set seems to be representative regarding

challenges expected for genome-wide enhancer predictions, and therefore mea-

sured test set performances should serve as a good indicator for the quality of

our classifier model.
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a) b)

Figure 5.3: ROC and precision-recall curve for test set predictions. Per-
formance results for ten randomly sampled (overlapping) test sets. Grey lines in-
dicate the expected performance result for a random classifier. a) ROC curve. b)
Precision-recall curve.

ROC-curve and Precision-recall curve

We measure the performance of our mESC enhancer classifier in terms of area

under the receiver operating statistics curve (AUC-ROC) and the area under

precision-recall curve (AUC-PR) on a randomly sampled test set described in

Section 4.1.3. To control for the performance variation between different test

set choices, we sampled 10 overlapping test sets containing 800 regions from

the original test set (positive and negative regions are kept at the same ratio).

We apply our optimized classifier to the 10 test sets and predict enhancer

probabilities for 800 regions each time. Sliding the enhancer probability cutoff

from 0 to 1 in steps of ∼ 0.005 we compute 200 true positive rates (TPR), false

positive rates (FPR) and precision values (PREC) with which we compute the

AUC-ROC and AUC-PR (more details on the performance measures can be

found in Section 3.3.4). Overall, the AUC-ROC as well as the AUC-PR are

stable for these different subsets taking very high values in [0.98, 0.99] and

[0.93, 0.96], respectively, as can be seen in Figure 5.3.
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Choosing the test set with the best AUC-PR performance (shown in dark blue

in Figure 5.3) and a cutoff of 0.5, i.e., a classification according to

label(binx) =

0 (non-enhancer), if P(binx = active enhancer) < 0.5

1 (enhancer), if P(binx = active enhancer) ≥ 0.5,

the results for our classifier are TPR= 0.85, FPR= 0.015 and PREC= 0.86.

In words, this means that

• 85% of the true enhancers in the test set were also predicted to be en-

hancers (TPR),

• 86% of our predicted enhancers are also true enhancers (PREC), and

• 1.5% of the non-enhancer regions in the test set were wrongly predicted

to be enhancers (FPR).

Nearly half (5/12) of the wrongly classified true enhancers, called false nega-

tives, have a predicted enhancer probability higher than 0.43 and thus missed

the cutoff to be labeled as an enhancer by less than 0.1.

From the wrongly classified non-enhancer regions, called false positives (FPs),

also nearly half (5/11) have a probability below 0.6 and are therefore based

on low-confidence enhancer predictions. The original label of the false positive

enhancer predictions are very heterogeneous:

• 4 intergenic regions,

• 3 active promoters (with probabilities between 0.51 and 0.67),

• 1 inactive promoter and

• 3 active genes,

from which one is the FP with the highest predicted probability (0.8). The

normalized HM counts at this originally labeled active gene show indeed re-

semblance to HM profiles at active enhancer regions: a high H3K27ac and

H3K4me1 signal with two peaks on both sides of a signal depletion at the

center (see Figure 5.4). A possible reason is that by coincidence an unknown

active enhancer was part of the negative subset of the test set, which could dis-

tort the performance and is a good example of why the validation of enhancer
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prediction methods is a difficult task. Of course, this cannot be concluded

with certainty since we still lack a complete understanding of the role of HMs

at genomic regions.

5.1.3 Spatial resolution for genome-wide predictions

Another way of validating our mESC classifier is to measure the spatial res-

olution of genome-wide enhancer predictions, i.e., the distance to the closest

accessible region represented by ATAC-seq data. We annotate enhancers as

described in Section 4.1.7 and compute for each single enhancer the distance

to the closest ATAC-seq summit. More details on the ATAC-seq data set and

the peak calling can be found in Ramisch et al. (2018). With a probability

cutoff of 0.975, we call the top 1, 484 enhancers, which have a median distance

of 118 bp to the closest accessible region as can be seen in Figure 5.5. Adding

1, 779 enhancers with a predicted probability ∈ [0.95, 0.975) to the total set of

enhancers leads to a slightly increased spatial resolution which is still under

150 bp. For the top ∼ 11, 000 enhancers at a cutoff of 0.825 we get a good res-

olution of 236 bp, and taking together all 42, 530 enhancer with a probability

≥ 0.5 we are still within ∼ 430 bp of the closest accessible region.

5.1.4 Promoter-proximal enhancer predictions

In comparison to other types of genomic regions, it is most challenging to

distinguish active enhancers from active promoters due to similarities in a

range of properties, for example similar levels of the active mark H3K27ac (see

Section 2.4). We mostly succeeded to make the distinction in our test set, for

which we are able to check for this specific type of false positive predictions,

since we put a lot of effort in labeling the test regions (see Section 4.1.3). On

a genome-wide scale, a typical criterion to measure this quality of enhancer

predictions is to check the percentage of predicted enhancers which show an

overlap with annotated active promoters.

We divide the called enhancers into subsets according to their predicted prob-

abilities. This is done in steps of 0.05, resulting in ,e.g., 1, 484 enhancers with

80



a)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

−2

0

2

x−
5
x−

4
x−

3
x−

2
x−

1 x x+
1
x+

2
x+

3
x+

4
x+

5

bin

no
rm

al
iz

ed
 c

ou
nt

HM
H3K27ac
H3K4me1
H3K4me3

Active enhancer
(predicted probability: 1)

d)

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

x−
5
x−

4
x−

3
x−

2
x−

1 x x+
1
x+

2
x+

3
x+

4
x+

5

bin

HM
H3K27ac
H3K4me1
H3K4me3

Active gene
(predicted probability: ~0.8)

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

0

2

4

x−
5
x−

4
x−

3
x−

2
x−

1 x x+
1
x+

2
x+

3
x+

4
x+

5

bin
no

rm
al

iz
ed

 c
ou

nt
b)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

x−
5
x−

4
x−

3
x−

2
x−

1 x x+
1
x+

2
x+

3
x+

4
x+

5

bin

no
rm

al
iz

ed
 c

ou
nt

HM
H3K27ac
H3K4me1
H3K4me3

Active enhancer
(predicted probability: 1)

e)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

−2

−1

0

1

2

x−
5
x−

4
x−

3
x−

2
x−

1 x x+
1
x+

2
x+

3
x+

4
x+

5

bin

no
rm

al
iz

ed
 c

ou
nt

HM
H3K27ac
H3K4me1
H3K4me3

Intergenic region
(predicted probability: ~0.7)

c)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

x−
5
x−

4
x−

3
x−

2
x−

1 x x+
1
x+

2
x+

3
x+

4
x+

5

bin

no
rm

al
iz

ed
 c

ou
nt

HM
H3K27ac
H3K4me1
H3K4me3

Active enhancer
(predicted probability: 1)

f)

●

● ●

●
●

●
● ●

●
●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

● ●

●

●

●

●

●

●

●

−2

0

2

x−
5
x−

4
x−

3
x−

2
x−

1 x x+
1
x+

2
x+

3
x+

4
x+

5

bin

no
rm

al
iz

ed
 c

ou
nt

HM
H3K27ac
H3K4me1
H3K4me3

Intergenic region
(predicted probability: ~0.7)

Figure 5.4: Histone modification profiles for correctly and wrongly pre-
dicted genomic regions. Input-normalized HM counts on the y-axes and genomic
bin on the x-axes.
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Figure 5.5: Distance to closest accessible region. We predicted enhancers
genome-wide for a sliding probability cutoff from 1 to 0.5 (probabilities appear as
numbers in plot). For each set of predicted enhancers, we computed the median
distance to the closest ATAC-seq peak.

a probability ∈ [0.975, 1] or 3907 enhancers with probabilities ∈ [0.5, 0.525)).

For each of this subsets, we compute the distance to the nearest annotated

TSS per annotated enhancer (center). Here, we use the annotation from the

Ensembl mouse assembly ‘GRCm38.90’ and included 52, 636 TSSs promoters

in total into our analysis (Kersey et al., 2018). Then, we computed for each

subset the fraction of enhancers falling below a certain distance threshold.

For the top ∼ 5000 predicted enhancers (union of first three most confidently

predicted enhancer subsets) ∼ 2% are within a range of 200 bp of an annotated

TSS (see Figure 5.6 a)). The low number of overlapping enhancers can also be

visually confirmed by the HM profiles for the top 1, 484 enhancers in Figure

5.7 a). The percentage of overlap is highest (∼ 9%) for predicted probabilities

between 0.6− 0.625 and has a decreasing trend from there on. Since we chose

a quite small distance threshold here, it is likely (but not certain) that these

enhancers are indeed wrongly classified. However, taking into account the

level of promoter-enhancer similarities, this is a good performance result on a

genome-wide scale.

For higher distance thresholds, it is much harder to decide if overlapping en-

hancers are just promoter-proximal or actual false positive (FP) predictions.

To pursue this question, we repeated the same analysis for a distance of 2000

bp. We find that ∼ 12% of the top 1, 484 enhancers have an overlap with pro-
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Figure 5.6: Percentage of promoter-proximal enhancers. We annotate en-
hancers in mESC with a probability threshold of 0.5 as described Section 4.1.7. For
all enhancers falling into the same probability interval of size 0.025, for example
the 1484 predicted enhancers in interval [0.975, 1], we plot the fraction of enhancers
that are close to an annotated promoter (52, 636 TSSs in total). Promoter-proximal
enhancers are defined based on a a) 200 bp or b) 2000 bp distance to the nearest
promoter.

moters according to this criterion (see Figure 5.6 b). However, we also detect

that there is more than one accessible region (in terms of ATAC-seq peaks) in

the exact same vicinity for ∼ 80% of the possible FPs. Hence, it is a likely sce-

nario, that one of these accessible regions belongs to an active promoter, and

another to the actual enhancer. The same could be observed for the second

most confident set of enhancers, where ∼ 75% of the overlapping enhancers

have multiple ATAC-seq peaks nearby. The fraction of enhancers within a
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range of 2000 bp of a TSS stabilizes at around 33%. Taking into account the

HM levels and the chromatin accessibility, we could divide the set of 42, 530 en-

hancers with a probability ≥ 0.5 into two clusters: a smaller cluster dominated

by promoter-associated H3K4me3, and a big cluster where H3K4me1 is more

enriched than H3K4me3 (see Figure 5.7 b). Especially for the smaller cluster,

we observe multiple ATAC-seq peaks in the averaged profile supporting that

only a fraction of enhancers in this cluster are FPs.

5.1.5 Prediction results for validated enhancer regions

To validate our classifier on a set of known enhancers independent of FAN-

TOM5 data, we download a list of 25 mESC enhancers from Chen et al. (2008).

These enhancers were originally identified based on simultaneous binding of

the TFs Nanog, Oct4 and Sox2 and positively tested for activity using lu-

ciferase reporter assays transfected into ES cells. We make predictions on the

central 100 bp bin of the validated enhancers and achieve very high proba-

bilities > 0.72 for 23 of the 25 regions (see Figure 5.8 a)). Interestingly, all

25 validated enhancers overlap with our 42, 530 predicted enhancers which we

called based on a 0.5 probability cutoff (see also Section 5.1.3). The corre-

sponding probabilities are > 0.6 for all predicted enhancers, as can be seen in

Figure 5.8 b).

5.1.6 Comparison of predicted enhancer clusters to an-

notated super enhancers

Based on the approach described in Section 4.1.8 we reduced our 42, 530 pre-

dicted enhancers to 7, 550 clusters or domains of high enhancer density, and

9, 170 single enhancers which do not have any enhancers in their vicinity (12.5

kb). Then, we compared our enhancer clusters to 927 annotated mESC super-

enhancers (SEs) from Novo et al. (2018), which were defined mainly based on

H3K27ac (see Section 2.4.9 for general information about SEs). We found that

96% (or 896) of the annotated SEs overlap with our enhancer clusters and all

but three show an overlap with our complete list of predicted enhancers. Two
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Figure 5.7: Histone modifications and accessibility at predicted en-
hancers. a) Top 1, 484 predicted enhancers with probabilities > 0.975. b) All
42, 530 predicted enhancers with default cutoff of 0.5 clustered with deepTools
(Ramı́rez et al., 2016). First cluster shows high promoter-associated mark H3K4me3
and ATAC-seq profile with multiple peaks. Second cluster with enhancer-associated
HM patterns, e.g., higher levels of H3K4me1 and single ATAC-seq peak.
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Figure 5.8: Predicted probabilities for validated enhancers. a) Predicted
probabilities on the central 100 bp bin of the 25 validated mESC enhancers from
Chen et al. (2008). Nearly all (23/25) enhancers have a predicted probability over
our default cutoff of 0.5 (orange dashed line). b) Predicted probabilities of the 25
called enhancers that overlap with the set of validated enhancers.

example regions can be in Figure 5.9.

5.1.7 Motif analysis

We performed a motif analysis according to Section 4.4 on the total set of

predicted enhancers (42, 530), as well as on the most confident top 1, 484 en-

hancers which have a probability > 0.98. Note, that we used the consensus

motifs from the JASPAR database which were computed by a clustering ap-

proach on the whole set of individual motifs (Khan et al., 2018).

To cover mostly the accessible part at the center of an enhancer and not the
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Figure 5.9: Overlap with super enhancers. IGV browser shot of two regions in
the mm10 genome showing three HM profiles from the mESC data set, our predicted
enhancer annotation (‘predicted enhancer’), predicted domains of high enhancer
density (‘clustered enhancer’), annotated super enhancers from Novo et al. (2018)
(‘super enhancer’) and annotated genes (‘Refseq genes’).

chromatin occupied by nucleosomes, we reduce each enhancer to 300 bp. This

choice is based on previous results, for example regarding feature importance

or hyperparameter optimization (see Sections 5.1.1 and sec:gridsearch). The

background model for our motif analysis is computed from the total set of en-

hancers to take into account the underlying sequence composition of enhancers

in contrast to random sequences (e.g., long stretches of repeats).

Since the set of all active enhancers in mESC is not specific but likely in-

cludes, for example, ubiquitously active enhancers, it is not straightforward

to interpret the results of the motif analysis. The three most enriched TFs

for both sets are EWSR1-FLI1/ ZNF263, ZNF384 and RREB1 (see Figure

5.10 which are, to our knowledge, not directly associated to mESCs. The

motif logos are depicted in Figure 5.11. As could be expected for enhancers

directly associated to the pluripotent state, the enhancer sets show high en-

richment (≥ 2 fold enrichment) for the known pluripotency factors POU5F1
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Figure 5.10: Motif enrichment in mouse embryonic stem cell enhancers.
Motif enrichment values (fold-enrichment) in two sets of mouse embryonic stem cell
enhancers. Depicted are only JASPAR consensus motifs with enrichment > 2 in at
least one of the two sets. For each motif cluster (‘CL’) only a subset of contained
motifs is shown. The complete cluster summary can be found in Table B4.

(OCT4 ) and SOX2 (Boyer et al., 2005), and also for KLF4, which is thought

to play an essential role in ESC self-renewal by regulating the gene expression

of Nanog (Zhang et al., 2010). The motif logos of POU5F1 and also of the

heterodimer POU5F1::SOX2 are depicted in Figure 4.11. Interestingly, other

highly enriched motifs in our enhancers sets, MEF2, ZSCAN4 and TFAP2B,

are associated to embryonic development (Lin et al., 1998; Zalzman et al.,

2010; Moser et al., 1997).
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Figure 5.11: JASPAR motif logos for top 3 enriched motifs in mESC
enhancers. a) consensus motif of cluster 54 b) consensus motif of cluster 55 c)
consensus motif of cluster 75 Plot is done with R package seqLogo (Bembom, 2018)
from the JASPAR pfms (normalized s.t. columns sum up to 1)
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5.2 Enhancer predictions across cell types and

species

So far, we were able to show that we can reliably predict enhancers genome-

wide when training and predicting in the same cell type. A more difficult but

also more realistic challenge is to predict enhancers in conditions or cell types

for which there is no labeled training set available. Therefore, we analyze how

well we can annotate enhancers across different cell types and even different

species using a pre-trained enhancer classifier from a different setting.

For this purpose, we use in addition to mESC also three other cell types in

mouse (fibroblasts, adipocytes, hepatocytes), as well as a human hepatocytes

data set. Including replicates, this results in 12 different data sets which

are summarized in Table 5.1. We integrate ChIP-seq, RNA-seq and DNase-

seq data for all samples into the corresponding classification models. In the

Appendix (Data Processing), we describe in more detail how the data was

prepared and processed.

Table 5.1: Summary of data samples.

Abbreviation Species Tissue/Cell type
mESC mouse ESC blastocyst
mouse fibroblast #1 (‘Mf05’) mouse synovial fibroblast
mouse fibroblast #2 (‘Mf07’) mouse synovial fibroblast
mouse adipocyte #1 mouse adipocyte/white fat cell
mouse adipocyte #2 mouse adipocyte/white fat cell
mouse adipocyte #3 mouse adipocyte/white fat cell
mouse adipocyte #4 mouse adipocyte/white fat cell
mouse hepatocyte #1 mouse liver hepatocyte
mouse hepatocyte #2 mouse liver hepatocyte
human hepatocyte #1 human liver hepatocyte
human hepatocyte #2 human liver hepatocyte
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Figure 5.12: Test set performance across different cell types and species.
Area under ROC curve (AUC-ROC) and area under precision recall curve (AUC-
PR) results for 12·12 = 144 test set predictions. Classifiers are trained based on data
indicated in the rows of the matrices, and tested on data indicated in the columns.

5.2.1 Area under ROC and precision-recall curve

For each sample, we first construct a training and an independent test set

according to the descriptions in Section 4.1.3. Promoters and active enhancers

are defined incorporating DNase-seq, RNA-seq and FANTOM5 data, where

details can be found in Sections 4.1.5 and 4.1.6, as well as in Tables B1, B2 and

B3. Then, we train 12 classifiers, one for each data set, using the same six core

HMs as in the previous chapter (H3K27ac, H3K27me3, H3K4me1, H3K4me3,

H3K36me3, H3K9me3) and make predictions on the test sets of all samples.

Here, an important step is to normalize the (already input-normalized) HM

count values of the test set according to the distribution of the training set as

discussed further in Section 5.2.3. Finally, we compute the area under the ROC

curve (AUC-ROC) and the area under the precision recall curve (AUC-PR)

for all 12 · 12 = 144 test set predictions, depicted in Figure 5.12.

The AUC-ROC results are very high for all cell types, but less reliable, since the

test sets are unbalanced with an estimated 10% true active enhancers. There-

fore, we mostly concentrate on the AUC-PR as a measure of performance here.

The AUC-PR over all training set and test set predictions are good with val-
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ues ∈ [0.71, 0.95]. As a comparison, the expected result for a random classifier

would be 0.1 according to the fraction of true enhancers in the test set. In-

terestingly, the performance seems to depend rather on the test than on the

training set origin, with best results on the human hepatocyte and the mESC

test sets. This could be due to differences in the HM data quality, e.g., sparse

signals for the most important features (see also Figure A6 for data quality).

Another reason could be the test set quality in terms of wrongly labeled sam-

ples. As already discussed in Section 5.1.2, both enhancers and non-enhancers

can be mislabeled, for example due to not stringent enough cutoffs. While

a few wrongly labeled enhancers (false positives) in the training set can be

tolerated and the HM cutoffs can still be learned reliably, every false label in

the test set immediately influences the reported performance. Following this

logic, it makes sense that the best performances could be achieved on the test

sets of mESC and human hepatocytes, since for both data sets the training

enhancers were chosen more stringently (see Table B1).

It is unlikely, that the performance dependence on the test set is a sign of

overfitting, which means learning to predict just a certain kind of enhancer.

For example, if all training enhancers of a certain cell type are very active with

appropriately high values of H3K27ac, the classifier cannot correctly learn to

predict enhancers with lower activity level. However, if this would be the

case here, we we would expect to observe high results in the diagonal which

represents the prediction performance when training and test set data are from

the same sample origin and hence chosen according to the same criteria. As can

be seen in Figure 5.12, the diagonal entries rarely give the best result. Hence,

we suspect that the classifiers are able to learn how to predict enhancers from

all individual training sets, but certain regions in the test set cannot be labeled

correctly independently of classifier transferability from one cell type or species

to another.

5.2.2 Pre-trained optimized enhancer classifier

For further enhancer predictions in cell types without available training set,

we prepared a pre-trained classifier. Based on the high quality of the training
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set and taking into account the performance results of the previous section, we

chose to use the pre-trained mESC classifier for this purpose. Details about

how the classifier was trained and evaluated within mESC can be found in

Section 5.1. In summary, the classifier we are offering is based on ChIP-seq data

from six core HMs (H3K27ac, H3K27me3, H3K4me1, H3K4me3, H3K36me3

and H3K9me3) as well as a control (Input) sample, and was trained on 1000

genomic regions from which 100 are active enhancers. The used enhancers are

shown to produce bidirectional transcripts in mESCs and are centered at their

accessible region.

To make predictions, the user only has to provide the ChIP-seq data. We input-

normalize each of the six HM samples and then use quantile normalization with

the original mESC data as reference. Both normalization steps (input and

quantile normalization) are integrated into our enhancer prediction method

and thus do not have to be carried out by the user. We discuss the necessity

of the quantile normalization step in more detail in the following section.

5.2.3 Quantile normalization

Before applying our pre-trained classifier on a new data set, we make two types

of normalization. First, we input-normalize each HM sample as described

in Section 4.1.1 to account for a non-uniform background read distribution.

Then, we apply quantile normalization on these values taking the training

data, i.e., the input-normalized HMs from our mESC sample, as a reference

( normalize.quantiles.target function from the R package preprocessCore, Bol-

stad (2018)). This equalizes the HM distributions in terms of their statisti-

cal properties. Since we use cutoff-based random forests in our classification

model, it is important to have comparable HM values between our training

sample and the sample we want to predict on, which could be a replicate or

equally well from a different cell type.

To check the effects of quantile normalization on samples with varying cov-

erage, i.e., varying numbers of unique sequenced reads, we applied our pre-

trained classifier to our mESC data set where we randomly subsampled pro-

portions (10%, 20%, . . . 90%) of the alignments using SAMtools on each HM
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and the input data (Li et al., 2009). If we do not quantile-normalize the sub-

sampled data sets with respect to the original training data, we get a higher

frequency of genomic bins with predicted enhancer probabilities ∈ [0.15, 0.65],

and fewer bins with high probabilities (see Figure 5.13 a)), which leads to

decreasing numbers of genome-wide predicted enhancers (e.g., for the default

probability cutoff 0.5). This trend is more pronounced as the proportion of

subsampled reads decreases. Thus, differences in coverage seem to be directly

reflected in the distribution of predicted probabilities which makes it more

difficult to compare results from different samples regarding the number of

predicted enhancers as well as the bin-wise enhancer probabilities. If however

we include the step of quantile normalization into our workflow, we can adjust

the enhancer probabilities towards the predictions on the original data set (see

Figure 5.13 b)). We lose the elevated frequencies of probabilities ∈ [0.15, 0.65]

that we saw without quantile normalization, and also the frequencies of high

probability bins is much higher and more comparable.

To see the effects across cell types, we applied our pre-trained mESC classifier

with and without quantile normalization on two biological replicates of mouse

synovial fibroblast data (‘Mf05’ and ‘Mf07’ in Figure 5.14). Interestingly, the

two biological replicates seem to be quite different regarding the probability

distribution independent of normalization, which is likely due to quality dif-

ferences of the HM ChIP-seq data. In Figure 5.15, we plot the cumulative

sum of reads per 500 bp bin according to their ranks and see strong differences

for the H3K27ac curves of the fibroblast samples. The results for ‘Mf05’ look

as expected, with a steep slope towards the highest ranks indicating specific

enrichment across the genome, but the curve for ‘Mf07’ is close to the diago-

nal which means that the reads are nearly uniformly distributed. While these

differences in data quality seem to not be resolvable with quantile normal-

ization, we observe that the frequency distribution of predicted probabilities

∈ [0.05, 0.35] are comparable between both fibroblast and the mESC data only

if we include the step of quantile normalization. Furthermore, the probability

distribution of the fibroblast data with better quality is overlapping with the

mESC distribution even until probabilitites of ∼ 0.75, and afterwards it is

close.
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Figure 5.13: Effects of quantile normalization for varying coverage. We
applied the pre-trained mESC classifier from Section 5.2.2 to the mESC data set
with varying coverage a) without quantile normalization, or b) with quantile nor-
malization, and predict enhancer probabilities genome-wide (in 100 bp bins). We
plot the frequency of bins (log-scale) according to their predicted enhancer probabil-
ity. ‘mESC 10’ corresponds to prediction results based on an mESC data set where
we subsampled 10% of the original alignment.

5.3 Comparison to other enhancer prediction

methods

Genome-wide identification of enhancers has been a topic of interest for decades

and led to many published enhancer prediction methods based on different

computational approaches and input data types. However, the existing meth-

ods still have limitations which can be due to data availability or method

usability, especially when wanting to make predictions on new data sets (see

Kleftogiannis et al. (2016) for an overview of methods and challenges). The

majority of existing methods are either based on unsupervised HMM-based al-
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Figure 5.14: Effects of quantile normalization across cell types. We used
the pre-trained mESC classifier from Section 5.2.2 to predict enhancer probabili-
ties genome-wide (in 100 bp bins) in the mESC sample and two mouse fibroblast
samples (biological replicates). We made predictions using quantile normalization
(‘Mf05 quant’ and ‘Mf07 quant’), and without quantile normalization (‘Mf05’ and
‘Mf07’).

gorithms or supervised approaches. In this work, we compare our enhancer pre-

diction method to the unsupervised genome segmentation tool ChromHMM,

which is extensively used for enhancer prediction due to its flexibility and easy

usability (Ernst and Kellis, 2012, 2017). Furthermore, we make a compari-

son to the recently published supervised method REPTILE which reached a

superior performance over many other state-of-the art methods for enhancer
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Figure 5.15: Fingerprint quality control metrics for mouse fibroblast
ChIP-seq experiments. For each HM ChIP-seq data, reads with a mapping
quality ≥ 30 are counted per adjacent 500 bp bin. Then, the read counts are sorted
and their cumulative sum is plotted. The plots are done with deepTools (Ramı́rez
et al., 2016).

prediction (He et al., 2017). Due to the different objective of ChromHMM

(genome segmentation), we solely compare it to our method based on its per-

formance on a test set. REPTILE, however, has the same objective and out-

put as our enhancer prediction method (predicted probabilities and annotated

enhancer candidates) and can therefore be evaluated based on the same stan-

dards: performance on a test set, spatial resolution of the annotated enhancers,

overlap with promoters, as well as transferability to new data sets. A detailed

summary of both approaches can be found in Section 4.5.

ChromHMM

As described in Section 4.5.1, ChromHMM is a genome-segmentation tool

which is based on hidden Markov models (Ernst and Kellis, 2012, 2017). We

applied ChromHMM to our six core HMs and three different state parameters,

K = 8, 12, 16. The genome wide segmentation into 8 states did not result

in a clear enhancer state according to the emission probabilities. As can be
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seen in Figure 5.16 for K = 8, the only state with high probabilities for the

enhancer-associated marks H3K27ac and H3K4me1 (state E2), also shows the

promoter-associated H3K4me3. For further analysis, we therefore concentrate

on chromatin segmentations into 12 and 16 states. For K = 12, the state

E3 shows clear enhancer marks, since only H3K27ac and H3K4me1 have high

emission probabilities. We also expect E2 to cover several active enhancers as

well as active promoters due to a high H3K4me1 and H3K4me3 probabilities.

E12 could contain weak enhancers in intragenic regions indicated by the tran-

scriptional elongation mark H3K36me3. The genome wide segmentation into

K = 16 chromatin states results in a similarly clear active enhancer state (E1)

as well as a mixed enhancer-promoter state (E6) and a state that could cover

weak intragenic enhancers (E16).

Based on these observations, we define for K = 12 either

• E3 as ‘enhancer’ and all other states as ‘non-enhancer’,

• E3 + E12 as ‘enhancer’ and all other states as ‘non-enhancer’,

• E3 + E2 as ‘enhancer’ and all other states as ‘non-enhancer’,

• or E3 + E2 + E12 as ‘enhancer’ and all other states as ‘non-enhancer’;

and for K = 16, following the same logic, either

• E1 as ‘enhancer’ and all other states as ‘non-enhancer’,

• E1 + E16 as ‘enhancer’ and all other states as ‘non-enhancer’,

• E1 + E6 as ‘enhancer’ and all other states as ‘non-enhancer’,

• or E1 + E6 + E16 as ‘enhancer’ and all other states as ‘non-enhancer’.

Then we make predictions on our ten test sets, which were described in Section

4.1.3 and measured the false positive rate (FPR), the true positive rate (TPR)

as well as the precision. Here, each test set region (size 1100 bp) that has any

overlap with an annotated ChromHMM enhancer is consequently predicted as

an ‘enhancer’, and in case of no overlap as a ‘non-enhancer’. The predictions

on our test sets lead to strongly varying true positive rates ∈ [0.2, 0.925],

which interestingly separate into two clusters (see Figure 5.17). For both

segmentations the incorporation of the mixed promoter-enhancer-state (E2
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Figure 5.16: ChromHMM emission probabilities ChromHMM was applied
on mESC data to make genome-wide segmentations into 8, 12 or 16 states. The
heatmaps show emission probabilities in each state (rows) and each epigenetic mark
(columns), where a dark colour corresponds to higher probabilities. H3K27ac and
H3K4me1 (bold) are enhancer-associated marks, which are used to define exclusive
enhancer states (highlighted in black and bold) and mixed enhancer states (high-
lighted in black).

for K = 12 and E6 for K = 16) leads to a huge increase in TPR performance.

And since the TPR is the ratio between the number of all true positive (TP)

predictions and the number of all actual positive regions in the test set, the

two clusters indicate that many of the actual positive enhancers overlap with

the mixed promoter-enhancer-state and were consequently missed when not

included.

For the varying precision values ∈ [0.36, 0.775] the inclusion of the promoter-

like state increases the performance a little, while adding the intragenic (weak)

enhancers has a decreasing effect on the performance. Here, we suspect that

we add more false positive (FP) predictions than TPs ,since the precision is
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OUR 
CLASSIFIER

b)

OUR
CLASSIFIER

Figure 5.17: Comparison of ROC and precision-recall curve. We apply our
classifier, ChromHMM and REPTILE to the mouse ESC data and make predictions
on 10 (overlapping) test sets. ChromHMM was applied for K = 8 and K = 12 states,
and for different definitions of the final enhancer state. REPTILE was trained with
four different settings. Shown are a) ROC curves and b) precision-recall curves
for our classifier and REPTILE. The curves with the highest area under the curve
(AUC) are highlighted in darker colours. Since the output of ChromHMM is binary
(and not a probability value), results for the 10 test sets are depicted as single
instances and not as curves.

calculated based on only these two metrics (see also Section 3.3.4 for more de-

tails on the performance metrics). The FPR shows stable good results between

0.018 and 0.079.

Overall, these findings show that the performance results of ChromHMM

greatly vary and therefore depend on the definition of the enhancer state which

has to be done manually by the user (e.g. by eyeballing the emission probabil-

ities). Additionally, there is no single state that uniquely describes enhancers.

This emphasizes the difficulties in separating enhancers from active promoters.

Our classifier clearly outperforms ChromHMM independent of its settings or

the choice of enhancer states. For our default probability cutoff of 0.5, for

example, our results of TPR ∈ [0.85, 0.913], precision ∈ [0.833, 0.869] and also

FPR ∈ [0.015, 0.019] (see Figure 5.17) are superior to ChromHMM for the
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purpose of enhancer prediction.

REPTILE

REPTILE, described in more detail in Section 4.5.2, is a supervised method

designed specifically for enhancer prediction (He et al., 2017). It is also based

on random forests and, in its original setting, needs HM ChIP-seq and also

methylation data as input. The software to train a classifier is freely availbale,

as well as three pre-trained classifiers which were trained on p300 binding sites

in mESC and

(i) the three HMs H3K27ac, H3K4me1 and H3K4me3,

(ii) the six HMs H3K27ac, H3K4me1, H3K4me3, H3K9ac, H3K36me3 and

H3K27me3, or

(iii) six HMs and DNA methylation data.

The mESC ChIP-seq data used by He et al. (2017) is different from our data

set, and will be called mESCREP from now on.

Performance on a test set

To measure the performance on test sets in the most comparable way, we

trained REPTILE on the same data as our method, i.e., the FANTOM5-

based training set described in Section 4.1.3 and the six core HMs in mESC.

REPTILE could achieve high results in terms of area under the precision-recall

curve, AUC-PR ∈ [0.92, 0.94], as well as an AUC-ROC ∼ 0.99 over all test sets

(see Figure 5.17).

For a probability cutoff of 0.5, REPTILE achieves an FPR ∈ [0.013, 0.018] and

precision values ∈ [0.843, 0.88] and a TPR ∈ [0.825, 0.875]. Based on the test

set comparison, our method and REPTILE have a similar performance while

our classifier is slightly better in terms of AUC-PR, and slightly worse looking

at the ROC curve results. However, the AUC-PR is the more reliable quality

measure since it is best suited for imbalanced test sets (see Section 3.3.4 for

more details).
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Spatial resolution

We measured the spatial resolution of REPTILE by computing the distance

to the closest accessible region following the same logic as in Section 5.1.3. To

make a fair comparison and understand more about the differences between

our approach and REPTILE, we did this for four settings based on different

training and feature sets:

(i) FANTOM5 derived enhancers, our six core mESC HMs,

(ii) p300 defined enhancers, our six core mESC HMs and intensity deviation,

(iii) p300 defined enhancers, six mESCREP HMs, and

(iv) p300 defined enhancers, six mESCREP HMs, DNA methylation and dif-

ferentially methylated regions (DMRs).

The p300 defined enhancers, mESCREP HM ChIP-seq data, the DNA methyla-

tion data, te DMRs and the intensity deviation features are used in the original

REPTILE publication by He et al. (2017) and are also described in more detail

in Section 4.5.2.

Taking a probability cutoff of 0.5, we called (i) 24,823, (ii) 34,584, (iii) 32,797

and (iv) 30,360 enhancer regions using the REPTILE pipeline described in

Section 4.5.2, and 42, 530 enhancers with our classifier. Increasing the proba-

bility cutoff in steps of 0.025 until reaching a probability of 1, the number of

predicted enhancers decreases until we only call the (i) 2,248, (ii) 1,814, (iii)

3,087 and (iv) 2,447 most confident enhancers with the REPTILE method and

1, 484 with ours. Then, we compute the distance to the closest ATAC-seq peak

in mESC for each enhancer and compute the median of the distances for each

enhancer set.

As a general trend, the median distance to the closest accessible region in-

creases with decreasing confidence in the enhancer prediction, i.e., decreasing

cutoff probability (see Figure 5.18). For the 2, 000 most reliably predicted

enhancers, the difference in spatial resolution between our method (∼ 120

bp) and the best REPTILE setting (∼ 200 bp) is very high. Up until the

top 12, 000 annotated enhancers, our classifier outperforms the other meth-

ods, with a median distance of ∼ 250 bp. Until we reach ∼ 18, 000 predicted
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Figure 5.18: Distance to closest accessible region. We made genome-wide
enhancer predictions on the mouse ESC data with our classifier and REPTILE for
four different settings. Based on decreasing probability cutoffs from 1 to 0.5, we
annotated different sized sets of enhancers. For each enhancer set, we computed the
median of the distances between each annotated enhancer and its closest ATAC-seq
peak.

enhancers, only additional use of DNA methylation data and DMRs leads to

a better REPTILE performance. After that, our method is comparable to

the settings (ii) and (iii) of REPTILE, which are based on the p300 training

set. Enhancer predictions stemming from the REPTILE classifier trained on

the FANTOM5-based enhancers and our mESC HM feature set, however, are

on average 100 bp further away from an accessible region. To explore pos-

sible reasons for this observation, we measured the spatial resolution of our

FANTOM5-based enhancers and of the p300-based enhancers from He et al.

(2017). In Figure 5.19 a) it can be seen that the results are very similar, and

that the majority of enhancers in both sets have a median distance from the

closest ATAC-seq peak ∈ [10, 100] bp.

Another possibility could lie in a bigger diversity of FANTOM5 versus p300-

based enhancers in terms of their HM profile. Interestingly, our method has a

clearly higher spatial resolution using the exact same training set and feature

data (compare grey line in Figure 5.18). This shows that taking several neigh-

boring bins into account, as well as combining two classifiers to decouple the

distinction between enhancers and promoters, lead to a more precise location
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Figure 5.19: Distance to accessible region and transcription start sites for
p300 and FANTOM5-based training enhancers. a) Boxplots summarize the
the distances between enhancers and their closest ATAC-seq peak for FANTOM5-
based enhancers (orange) and p300-based enhancers (yellow). b) Boxplots summa-
rize the the distances between enhancers and their closest annotated transcription
start site (TSS) for FANTOM5-based enhancers (orange) and p300-based enhancers
(yellow). We define TSSs based on the Ensembl database (GRCh37.70).

of the predicted enhancers.

Promoter-proximal enhancer prediction

Here we measure the proximity or the overlap of predicted enhancers to anno-

tated transcription start sites (TSSs) for the same four settings of REPTILE

as described above. Depending on the distance, overlaps can indicate wrongly

predicted enhancers that are actual active promoters.

First, enhancers are divided in subsets based on their probability, where we

start with predicted probability values ∈ [0.975, 1] and continue in steps of

0.05 until we reach probabilities ∈ [0.975, 1] (see also to Section 5.1.4). This

results in 20 different sets of enhancers with increasing confidence or predicted

probabilities. Then, for each of these sets we compute the median of the

fraction of enhancers that are not more than (i) 200 bp or (ii) 2000 bp away
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from the closest annotated TSS.

For the 200 bp distance, the REPTILE classifiers trained on the p300-based

training enhancers have very stable and similar results, as can be seen in

Figure 5.20 a). The classifier taking into account DMRs and adding DNA

methylation as a feature shows the lowest overlap with promoters (∼ 1.5%).

In comparison to our method and the setting depending on FATOM5-based

training enhancers, the fraction of likely false positives (FPs) is better. A

potential reason could be a difference of the training enhancers attributed to

the different properties used for their definition (binding of p300 vs. bidirection

transcription).

The same analysis for a distance of 2000 bp, depicted in Figure 5.20 b), shows

similar trends. Also here, the REPTILE classifiers trained on p300-based

enhancers show a smaller overlap with promoters (10−15% for high-probability

enhancers, and 15−25% for enhancers with lower probabilities). Our classifier

shows an overlap between 15% and 35%, and the REPTILE classifier trained

on FANTOM5-based enhancers the highest with 35− 50%.

As explained in more detail in Section 5.1.4, it is not certain that enhancers

within a distance of 2000 bp of a TSS are really FP predictions or actual

promoter-proximal enhancers. We investigate this possibility by computing

the number of accessible regions within the same distance. If multiple acces-

sible regions can be detected, this could hint towards the existence of both an

active promoter and an actual active enhancer. Interestingly, we find that the

fraction of enhancers close to a promoter and close to two or more ATAC-seq

peaks is often higher for our method than for the best performing DMR-based

REPTILE method (e.g. ∼ 78% and ∼ 75%, respectively, for the most confi-

dent enhancers and ∼ 59% and ∼ 55% for the least confident ones). This may

suggest, that we are able to predict more promoter-proximal enhancers than

the competitor method.
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Figure 5.20: Percentage of promoter-proximal enhancers. We annotate
enhancers in mESC with our method and REPTILE in four different settings with
a probability threshold of 0.5. For all enhancers falling into the same probability
interval, we plot the fraction of enhancers that are close to an annotated promoter
(52, 636 TSSs in total). Promoter-proximal enhancers are defined based on a a) 200
bp or b) 2000 bp distance to the nearest promoter.

Prediction across cell types and tissues

To see how well REPTILE can be applied across different cell types and species,

we trained 12 classifiers on 12 different cell types in mouse and human using

the FANTOM5-based training sets described in Section 4.1.3 and the HM data

from Section 5.2. Then, we apply each of the classifiers on the remaining 11

data sets, and on an independent test set within the data set of training origin,

to compute the AUC-ROC and AUC-PR. This results in 12 × 12 AUC-ROC

and AUC-PR matrices depicted in Figure 5.21 a) and b), respectively.

106



a)

a b c d e f g h i j k l a b c d e f g h i j k l

98 98 98 98 98 97 97 98 97 98 97 98

97 95 97 97 97 96 97 96 95 97 97 97

99 98 98 98 97 96 96 98 97 98 95 95

99 98 98 99 97 98 98 97 98 97 93 94

98 98 98 98 98 98 99 99 97 98 96 96

99 98 99 98 98 98 98 99 97 98 96 96

99 99 98 98 98 98 99 98 98 98 95 95

99 99 99 98 98 98 99 99 97 98 96 95

99 99 98 99 98 98 98 98 99 98 96 96

99 99 99 98 98 98 98 98 98 98 93 93

99 99 99 99 98 98 98 98 98 98 93 93

99 99 99 99 98 98 99 98 98 98 95 94

99 99 99 99 95 98 97 98 98 96 96 98

99 99 99 99 96 98 98 98 99 97 97 98

99 99 99 99 95 98 98 97 99 99 95 97

99 99 99 99 96 98 98 98 99 97 97 97

99 99 99 99 96 98 97 99 98 96 96 98

99 99 99 99 96 98 98 98 99 97 97 97

99 99 98 99 95 98 98 98 98 96 96 97

99 99 98 99 98 98 98 98 98 99 96 97

99 99 98 99 96 97 98 98 98 95 96 96

99 99 99 99 95 98 98 98 99 98 96 96

99 99 98 99 95 97 98 98 98 96 96 97

99 99 99 99 95 98 97 98 99 97 95 97

OUR CLASSIFIER REPTILE

b)

94 91 91 94 81 88 87 83 83 82 75 81

91 92 90 93 80 84 88 82 88 82 77 77

92 88 92 95 82 85 86 81 87 90 72 75

92 87 89 95 84 85 87 83 89 87 74 78

92 90 91 94 83 88 88 88 84 82 73 79

93 88 89 94 81 85 89 87 86 83 73 76

90 87 88 94 81 87 88 86 86 83 73 77

92 90 91 92 85 88 88 88 86 87 75 73

92 91 90 94 81 88 86 86 85 82 74 78

93 88 91 93 82 86 84 86 86 85 71 76

92 91 90 93 83 85 86 85 83 80 73 77

95 90 90 94 82 88 86 87 87 85 71 73

73 74 81 85 76 70 68 75 72 83 77 82

63 51 70 67 64 58 64 61 55 66 71 71

88 83 83 81 77 77 78 82 68 85 66 64

85 81 79 91 78 79 83 78 90 81 64 62

84 84 84 85 85 85 88 87 72 86 74 73

89 83 85 80 83 85 88 87 68 85 69 72

86 84 82 81 79 81 89 83 76 83 68 69

89 86 88 79 85 87 88 88 69 86 73 69

87 86 82 93 78 81 86 80 88 85 71 71

92 88 92 82 84 86 87 86 78 87 66 62

92 91 91 86 79 83 83 86 82 87 63 63

92 90 90 90 83 84 87 86 83 82 68 66

OUR CLASSIFIER REPTILE

Figure 5.21: AUC-ROC and AUC-PR for CRUP and REPTILE. We
trained our classifier and the REPTILE method on 12 samples from different cell
types and species, and cell type-specific training sets with FANTOM5-based en-
hancers. For each classifier, we make predictions on all 12 test sets. Heatmaps
summarize results for a) the area under the ROC-curve (AUC-ROC) and b) the
area under the precision-recall curve (AUC-PR) for our classifier and REPTILE.
Row labels correspond to training set and column labels to test set origin. All per-
formance values are multiplied with 100, and are therefore within range of [0, 100].
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As can be seen, the AUC-ROC results are very high and stable for all the

REPTILE classifiers (∈ [0.93, 0.99]). The lowest results are achieved for the

classifiers which were trained or tested on the mouse hepatocyte data. How-

ever, since the training set is unbalanced, the precision-recall curve is the more

reliable measure (more details on AUC-ROC and AUC-PR in Section 3.3.4).

The AUC-PR performances are less stable between different training and test

set origins and vary between 0.51 and 0.93. Also here, the lowest perfor-

mances appear for training or testing on mouse hepatocytes, with a range of

[0.51, 0.85] for training set origin and [0.62, 0.82] for training set origin. In

general, training and test set from the same data origin have similar AUC-PR

results. The diagonal of the heatmap, which represents the performance of

training and testing within a sample, shows in nearly half of the cases (5/12)

the best result. In our method, which seems much more dependent on the test

set alone, this only holds in 2/12 cases. A possible reason are the different

normalization techniques. While we apply a quantile normalization towards

the training data, REPTILE does not offer a built-in normalization technique

but recommends a RPM normalization (see Section 4.5.2). This may not be

enough to make the cutoff-based classifier transferable. Overall, our classifier

shows a superior performance for training and prediction across cell types with

an AUC-PR ∈ [0.71, 0.95].

For a fair comparison, we also trained a REPTILE classifier close to its original

setting in terms of feature and training enhancer choice as described in He et al.

(2017) resulting in similar or slightly worse performances (Figure A7).

5.4 Summary and discussion

In this chapter, we validated our enhancer prediction method using a variety

of criteria for the performance assessment, and compare it to two other meth-

ods. We observed that enhancer-associated HMs correspond to features which

are of high importance in the decision making process in both mESC-based

random forest classifiers. Moreover, the accessible region within an enhancer,

and as such also the shape of the HM profiles, is represented in the measured
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feature importance. Applied on a carefully selected test set, we achieved very

good performance results. In a genome-wide manner, our classifier showed a

high spatial resolution as well as a reasonably low overlap with active pro-

moters, which accounts for the most likely source of false positive predictions.

Here, we also noticed the difficulties in distinguishing wrongly predicted active

enhancers from actual promoter-proximal enhancers.

We demonstrated that our optimized classifier can be reliably applied across

different cell types and species without the need of being re-trained. Further-

more, we showed that our classifier outperforms the prominent segmentation

method ChromHMM, which is often used for enhancer prediction. Compared

to the novel supervised approach REPTILE, we achieved similar performance

results when training and predicting in the same condition. However, the spa-

tial resolution of our most confidently predicted enhancers is higher, which

could be due to the design of our feature set and the integration of several

genomic bins at an enhancer region. In terms of transferability across con-

ditions, our classifier performs better than REPTILE. A possible explanation

could lie in the different normalization strategies. REPTILE as well as our

classifier are cutoff-based methods, therefore relying on comparability of the

input data between different samples. While REPTILE does not offer an inte-

grated normalization technique for the HM experiments, we perform a quantile

normalization and shift the distribution of new data towards the distribution

of our training data.
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6 Prediction of Dynamic Regu-

latory Units

In this chapter, we present a comprehensive framework to predict condition-

specific regulatory units from histone modification and gene expression data

called CRUP. The regulatory units consist of predicted enhancers that are

dynamically changing between conditions of interest and their putative target

genes which are located in the same topologically associating domain (TAD)

and chosen based on similar activity patterns.

In the following, we analyze the advantages of differential enhancer (and regu-

latory unit) prediction and describe our three-step framework in more detail.

Then, we demonstrate the application of our framework on a disease model of

rheumatoid arthritis. Finally, we give a detailed description of the programmed

pipeline which we made publicly available.

This chapter is based on results from a paper that I co-first authored with

Verena Heinrich and that is available as a preprint (Ramisch et al., 2018). The

chapter covers parts of the second and third step of our framework CRUP,

while the first step about modeling and validating an enhancer prediction

method was extensively discussed in Chapters 4 and 5. Verena Heinrich and

I designed the CRUP framework, discussed the applicational examples, and

wrote the paper together with Martin Vingron. I did the motif enrichment

analysis and wrote the code for training and predicting enhancers. Verena

Heinrich assembled and revised the code for publication, as it can be found

on github, and created the code for the second and third part of the CRUP

framework (i.e., the differential enhancer calling and enhancer-gene matching).
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6.1 Motivation

The prediction of enhancers in a genome-wide manner based on epigenomic

data is an important task since enhancers play a big role in fully understanding

the regulation of genes, and their misregulation is often related to complex

diseases (Wang et al., 2018). However, in many applications it is of interest to

exclude ubiquitously active enhancers from the analysis and concentrate only

on the set of cell type-specific enhancers and their corresponding target genes.

This also holds true for the comparison of different conditions or states. To

predict enhancers associated to a disease, it is necessary to find changes in

enhancer activity between the healthy and the diseased state since both, the

gain or the loss of activity, can be causative.

Similarly, to find disease-related or cell type-specific TFs, the motif search

becomes easier upon excluding uniformly active enhancers by comparing dif-

ferent states. A good example here is the motif analysis we performed in

Section 5.1.7 on the genome-wide predicted enhancers in mESC. We were able

to find TFs associated to pluripotency as well as to embryonic development

(e.g. OCT4, TFAP2B). However, without prior knowledge about these fac-

tors it would be difficult to interpret their possible role since they are not

necessarily specific for embryonic stem cells. In Ramisch et al. (2018), we

expanded the analysis and used our pre-trained classifier to additionally pre-

dict enhancers in an mESC sample which was treated with retinoic acid (RA)

and therefore pushed into differentiation. Then, we used the second part of

our framework to find a set of differentially expressed enhancers between the

pluripotent and the differentiated state, and cluster them into two sets ac-

cording to their activity level. For the motif analysis, we used the union of

both clusters for the estimation of the background model. Some of the TFs

which are enriched in our predicted mESC enhancers actually show an even

higher enrichment in the RA-induced enhancers, e.g., TFAP2B or ZNF384, as

can be seen in Figure 6.1. The set of enhancers active in the pluripotent but

not in the RA-induced state is, among others, enriched for OCT4 (POU5F1 )

and HNF1A/B, which are part of the signaling pathways regulating pluripo-

tency of stem cells defined by KEGG (Kanehisa et al., 2017). The enhancers
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Figure 6.1: Differential motif analysis in mESC. Motif enrichment for differ-
ential enhancers in LIF and retinoic acid (RA) treated mESCs. Cluster 1 describes
enhancers active in pluripotent but not differentiated state (LIF). Cluster 2 de-
scribes enhancer active in RA-induced differentiation state but not in pluripotent
state (RA). Enrichment values for cluster 1 and 2, and the log-ratio between cluster
enrichment for 21 JASPAR consensus motifs. The corresponding JASPAR motif
cluster is indicated by ‘CL’, and a complete summary of the motif clusters can be
found in Table B4. Consensus motifs shown have enrichment values ≥ 1 in one
of the clusters and a differential enrichment ≥ 1. Log-fold values in red indicate
motifs with higher motif enrichment in cluster 2, and in blue for cluster 1. Motif
names marked in blue are enriched in cluster 1 and are part of signaling pathways
regulating pluripotency in stem cells. TFs marked in red and enriched in cluster 2,
form heterodimers with RA receptors (PPARG) or play roles in early development
and differentiation.

exclusively active in the RA-induced cells show a differential enrichment for

PPARG, which is known to form heterodimers with the RA-inducable retinoid

X receptor (Mangelsdorf and Evans, 1995). Furthermore, GLIS1/2/3, poten-

tial regulators in the context of stem cell differentiation (Scoville et al., 2017)

and the RA-inducible activator of transcription TFAP2B (Luscher et al., 1989)
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A) CRUP-Enhancer Prediction B) CRUP-Enhancer Dynamics C) CRUP-Enhancer Targets

Figure 6.2: Workflow of CRUP.

show a higher enrichment in the RA-inducible enhancers. By applying the mo-

tif enrichment analysis to differential enhancers we gain knowledge about the

condition-specific importance of TFs, and facilitate follow-up analyses.

Already mentioned, we are often not only interested in the location of an active

enhancer but also in its target gene(s). Also here a possible application can be

found in a disease-related scenario where we want to understand the cascade of

misregulational events that causes a disease starting from the falsely activated

or not activated enhancer.

6.2 Model description

CRUP, short for Condition-specific Regulatory Units Prediction), is a three-

step framework depicted in Figure 6.2 to

A) predict enhancers with a pre-trained classifier (‘CRUP-EP’),

B) find dynamically changing enhancers between multiple conditions (‘CRUP-

ED’) and

C) match these enhancers with putative target genes to build regulatory

units (‘CRUP-ET’).
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A) CRUP - Enhancer Prediction

The modeling, training and validation of our enhancer classifier is described

in detail in Chapter 4. For our framework, we apply the pre-trained classifier

to ChIP-seq data (H3K27ac, H3K27me3, H3K4me1, H3K4me3, H3K36me3,

H3K9me3, control) of one or several cell types and conditions of interest. For

each data sample, we get a list of annotated enhancers as well as a genome-wide

distribution of predicted enhancer probabilities in 100 bp bins.

B) CRUP - Enhancer Dynamics

We compute differential enhancers between conditions using a non-parametric

permutation test. The (binned) predicted enhancer probabilities are the input

for the second part of CRUP. Several conditions can be included in the com-

parison, but each individual comparison is only between two conditions. Also,

each condition can be represented by several samples or replicates.

Let C1 and C2 be two conditions. We store the predicted probabilities in two

matrices, AC1 = (Axi)i∈C1 and AC2 = (Axi)i∈C2 , where x indicates the genomic

location (binx) and i the sample in condition C1 or C2. Since the number of

samples is usually small, we use a non-parametric permutation test. Therefore,

we shuffle each column (sample) of the two matrices individually and use them

to compute an empirical distribution of the t-test statistic

Tx =
µC1 − µC2 − w0

S4
.

Here, µC1 = µ(AxC1) and µC2 = µ(AxC2) are the condition-specific means for

binx, w0 set to 0.5 defines the minimum difference between them, and S4 is

the pooled standard deviation defined as

S2
4 =

(|C1| − 1)σ2
C1 + (|C2| − 1)σ2

C2

|C1|+ |C2| − 2
·
( 1

|C1|
+

1

|C2|

)
with condition-specific variances σ2

C1 = σ2(AxC1) and σ2
C2 = σ2(AxC2).

Based on this, we compute the empirical p-value Px = Px(C
1, C2) for each

binx by counting the number of Tx that are higher then the true weighted
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difference T true
x based on the unshuffled matrices AC1 and AC2 . Finally, by

setting a threshold P ∗ = 0.01 on the empirical p-values Px we find genomic

bins (of size 100 bp) that show a significantly different enhancer probability

between the two conditions and taking multiple samples into account when

available.

Subsequently, we define condition-specific enhancers by clustering and sum-

marizing differential bins based on their ‘activity pattern’. Let the indicator

function Tx(C
1, C2) be defined as

Tx(C
1, C2) =

1, if Px−2:x+2(C1, C2) ≤ P ∗ and (µC1 − µC2) > 0

0, otherwise
(6.1)

Then, Tx(C
1, C2) = 1 denotes that binx is an active enhancer in condition

C1 but not in condition C2. Note also that the indicator function Tx(C
1, C2)

depends on the p-value assigned to binx, as well as the p-values of two ad-

ditional bins upstream and downstream. Based on this, binx will be denoted

as bin{T (C1,C2)=1, T (C2,C1)=0}
x = bin{1,0}x if it is significantly differential between

conditions C1 and C2 with a higher condition-specific mean in condition C1,

(µC1 > µC2), and as bin{0,1}x if (µC1 < µC2 . In case of no differential activity,

we write bin{0,0}x . With this, each binx can be allocated to a unique ‘activity

pattern’ of {1, 0}, {0, 1} or {0, 0} (see Figure 6.3 for an overview).

We can also apply this approach for a larger number of conditions. For

three conditions, for example, the number of binary comparisons is
(

3
2

)
= 3

((C1, C2), (C1, C3) and (C2, C3)) and the total number combinations of ‘activ-

ity pattern’ is 3(3
2)−1 = 26. The pattern {0, 0, 0, 0, 0, 0} can be excluded since

it does not encode any differential information.

Finally, we define condition-specific enhancers by summarizing bins that have

the same activity pattern and are located within a 2 kb distance. Here, the

bin with the lowest empirical p-value is stored as peak. Note that regions with

different activity patterns are summarized and labeled according to the lowest

p-value.
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Figure 6.3: Strategy for the assignment of activity pattern based on two
conditions. Comparison of enhancers in two conditions, C1 and C2. The activity
pattern of binx depends on the empirical p-values of binx and two neighboring bins
to both sides, the p-value cutoff P ∗, and the group mean of C1 and C2 (µC1 , µC2 ,
respectively).

C) CRUP - Enhancer Targets

We predict putative target genes for the previously annotated differential en-

hancers based on their expression pattern across conditions. Therefore, we

compute the expression counts per exon from the corresponding RNA-seq ex-

periments of each sample in each condition and summarize them gene-wise (R

function summarizeOverlaps, Lawrence et al. (2013)). Then, the counts per

gene are variance stabilized (R function vst, Love et al. (2014)).

We elaborated in Section 2.4.8 that enhancer-promoter communication is mostly

limited to domains of preferential chromatin interactions called topologically

associating domains (TADs). Hence, to reduce the search space for potential

target genes, we only consider enhancer-gene pairs in the same TAD. For each

differential enhancer and each gene located in the same TAD, we compute the

Pearson correlation between the predicted probability values and the normal-

ized gene expression counts across all samples and conditions. Enhancer-gene

pairs with a correlation ≥ 0.9 are considered as the final condition-specific

regulatory units.

116



6.3 Description of experimental data

In the context of this chapter, we use mESC and mouse synovial fibroblast

data sets, which we described in more detail the Appendix (Data Processing).

To make comparisons between different conditions, we include a retinoic acid

(RA)-induced mESC sample into our analysis as well as synovial fibroblast

samples from mice affected with rheumatoid arthritis (Rh.A). An overview

can be found in Table 6.1.

In order to reduce the search space for enhancer-gene interactions, we identify

topologically associated domains (TADs) from Hi-C experiments in mESCs as

explained in the Appendix (Data Processing).

Table 6.1: Summary of data samples and corresponding condition.

Abbreviation Tissue/Cell type Condition/Treatment
mESC (RA-induced) ESC blastocyst -LIF, +RA
mouse fibroblast #3 (‘Mf06’) synovial fibroblast Rh.A-like
mouse fibroblast #4 (‘Mf08’) synovial fibroblast Rh.A-like

6.4 Application to a disease model

We apply our framework to a complex disease study focusing on rheumatoid

arthritis (Rh.A.), an autoimmune inflammatory disorder of the joints, which

was part of the German Epigenome Program (DEEP, 2017). The goal is to

find condition-specific regulatory units, i.e., enhancer gene-pairs either solely

active in the healthy or in the diseased state, based on data from two healthy

mice and two mice affected by rheumatoid arthritis.

Fist, we apply our pre-trained mESC classifier and predict genome-wide en-

hancer probabilities for all four samples. From these, we compute all differ-

ential 100 bp bins and summarize them according to the description in the

previous section to 514 differential enhancers in total. Taking the TAD struc-

ture into account, we find 462 condition-specific regulatory units from which

60% (279) represent enhancer-gene pairs active in the rheumatoid arthritis

affected mice (see Figure 6.4).
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Figure 6.4: Clustering and motif analysis of disease-associated enhancers.
Predicted differential enhancers for the rheumatoid arthritis disease model coloured
according to their predicted probability and separated into two clusters based on
their activity pattern. Cluster 1 (H) describes enhancers solely active in the healthy
state and cluster 2 (Rh.A.) contains enhancers solely active in the disease state.
Motif enrichment values for cluster 1 and 2, and the log-ratio between cluster en-
richment for 13 JASPAR motifs with enrichment values ≥ 1 in one of the clusters
and a differential enrichment ≥ 1. Log-fold values in red indicate motifs with higher
motif enrichment in cluster 2, and in blue for cluster 1. Motif names marked in blue
are enriched in cluster 1 and are part of signaling pathways regulating pluripotency
in stem cells. TF motifs highlighted in orange, KLF4 and EGR2, are directly as-
sociated to rheumatoid (Myouzen et al., 2010; Luo et al., 2016), while TF motifs
marked in yellow, IRF1and FLI1, are connected to inflammatory conditions (Salem
et al., 2014) or regulate TFs associated with rheumatoid arthritis (Sato et al., 2014).

We perform a motif analysis on all differential enhancers according to Sec-

tion 4.4. Note that we use the binding profiles of all 579 TFs from the non-

redundant JASPAR 2018 CORE vertebrate collection instead of the consensus

motifs (Khan et al., 2018). The four TFs KLF4, EGR2, IRF1 and FLI1 show

a higher enrichment in the Rh.A. samples, see Figure 6.4, and are already

known to be disease-associated (Myouzen et al., 2010; Luo et al., 2016; Salem

et al., 2014; Sato et al., 2014).

An example region of several predicted regulatory units is shown in Figure 6.5.

Here, a single differential enhancer which is active in the disease-affected mice is

correlated to multiple putative target genes which all belong to the CCR-gene

cluster and are part of the chemokine signaling pathway (KEGG). Chemokines
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Figure 6.5: Example region containing differential regulatory units in
a disease context. Predicted enhancer probabilities (‘prediction’) and RNA-seq
data (raw counts, cut at a maximum of 500) for two healthy mice (gray) and two
mice affected by rheumatiod arthritis (orange). Identified regulatory units consist of
differential enhancer (blue bar) active in the diseased samples i six genes (highlighted
in blue). Five of these genes are part of the CCR-gene cluster.

play a role in leukocyte recruitment to inflammation sites and are part of the

Rh.A. pathogenesis (Zhang et al., 2015). Additionally, the IRF1 motif, which

we found to be among the differentially enriched motifs, has a putative binding

site in the involved differential enhancer. Already mentioned, IRF1 is known

to be connected to Rh.A (Salem et al., 2014).

In this section we showed that our framework CRUP can be easily used to

find promising candidates of condition-specific enhancer-gene pairs genome-

wide and facilitate the search for disease causing misregulations.

6.5 Tool description

The three-step framework is realized in three independent functions: CRUP -

EP, CRUP - ED and CRUP - ET. The function CRUP - normalize is added

upstream for data preparation. Note that all four steps build upon each other

following the order (1) CRUP - normalize, (2) CRUP - EP, (3) CRUP - ED

and (4) CRUP - ET.
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Function CRUP - normalize

The function computes the read counts for HM and control/ input ChIP-seq

experiments in 100 bp bin. Then, an input-normalization is performed.

Function CRUP - EP

A pre-trained random-forest based classifier is applied to the input-normalized

count distributions from the previous step. The input-normalized counts are,

just before applying the classifier, quantile normalized to the distribution of

the corresponding training samples to guarantee a good transferability. The

output of this function is a list of putative enhancers as well as genome-wide

predicted enhancer probabilities for each 100 bp.

Function CRUP - ED

Applying a non-parametric permutation test to the predicted probabilities

from the previous step, this function identifies condition-specific or dynam-

ically changing enhancers for several conditions (and samples).

Function CRUP - ET

The functions predicts condition-specific regulatory units from the predicted

probabilities of the previously annotated condition-specific enhancers and RNA-

seq data from the same conditions (and samples).

Availability

The code to run our tool CRUP is openly available at https://github.com/

VerenaHeinrich/CRUP.

6.6 Summary and discussion

In this chapter, we described a 3-step framework to predict condition-specific

regulatory units based on histone modification and gene expression data. In
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the first step, a pre-trained classifier is applied to HM ChIP-seq data of sev-

eral user-defined conditions to make genome-wide enhancer predictions. Then,

differentially active enhancers are assigned to their corresponding conditions

using a non-parametric permutation test on the predicted enhancer probabili-

ties. Since low quality data can have a strong influence on the individual en-

hancer predictions and therefore also on the permutation test performance, it

is advisable to use several samples or replicates for each condition, if available.

Note that the number of conditions is not limited since the test is performed

in a pair-wise manner. Finally, condition-specific enhancers are linked to pu-

tative target genes located within the same topologically associating domain

(TAD). To this end,the correlation between enhancer probabilities and nor-

malized gene expression values across all conditions is computed and using a

very high threshold the final list of condition-specific regulatory units is ob-

tained. For all our analyses, we use TAD annotations from mouse embryonic

stem cells (Rao et al., 2002) and argue that the structure of TADs are (to

a certain degree) invariant between cell types and conserved between related

species (see also Section 2.4.8).

We applied our framework to a mouse study on rheumatoid arthritis (Rh.A)

and were able to find ∼ 450 disease-associated regulatory units genome-wide.

A motif analysis on the differentially active enhancers revealed an enrichment

of several TFs known to play a role in rheumatoid arthritis. We also found an

interesting genomic region where one differential enhancer was linked to several

genes belonging to a gene cluster associated with the rheumatoid arthritis

pathogenesis.

In summary, we introduced a freely available tool to collapse several layers of

epigenetic data to a candidate list of condition-specific enhancer-gene pairs.

These candidates could be used for a more comprehensive analysis of single

genomic loci and therefore dramatically reduce the search space for condition-

oriented research based on genome-wide data.
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7 Conclusion and Discussion

In this work, we introduced a novel supervised enhancer prediction method

that can locate active enhancers genome-wide in a chromosomal context. The

design of our model and the feature set are based on prior knowledge on several

enhancer features. We offer a pre-trained classifier which can be applied to new

data without re-training, and subsequently demonstrate how it can be used as

a first step in a comprehensive framework to predict condition-specific pairs of

enhancers and putative target genes.

The machine-learning methods used for enhancer prediction can be categorized

into unsupervised, semi-supervised and supervised approaches (see Chapter 3

for a general introduction of machine-learning). ChromHMM is a prominent

unsupervised genome-segmentation tool often used for enhancer prediction,

which can be applied to new data without prior knowledge. However, the

emitted genome segmentation has to be interpreted and annotated by the user,

which can lead to highly variable performance results as we demonstrated in

5.3. Our classifier obtained stable results when trained and tested in the same

cell type and showed higher performances than ChromHMM in several differ-

ent settings. The most common bottleneck for supervised enhancer prediction

is the lack of prior knowledge. Only few available methods offer pre-trained

classifiers which are transferable to experimental settings for which no train-

ing data exists. In Section 5.2, we showed that our classifier obtains good

performance results across different cell types, tissues and species, and we

chose the most reliable pre-trained classifier for further analyses. We also saw

that our classification method is comparable to another supervised method

for enhancer prediction, REPTILE, and is superior concerning transferability
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to new cell types or species (see Section 5.3). Here, we argued that next to

differences in modeling and training set choice especially our built-in quan-

tile normalization seems to be responsible for the superior performance. Since

both classifiers are cutoff-based, it is very important to account for feature dif-

ferences between conditions, for example due to varying sequencing depth. In

the past decades, several enhancer properties have been observed on individ-

ual validated example regions. We discussed the majority of these properties

extensively in Section 2.4. Recent innovations in sequencing techniques such

as high-throughput sequencing accelerated the research in this direction since

it lead to the production of comprehensive genome-wide data collections cov-

ering many different cell types and conditions. A selection of experimental

techniques used to study gene regulation can be found in Section 2.3. Cur-

rently, many enhancer properties are exploited for computational enhancer

prediction.

Our classifier, described in detail in Chapter 4, is based on histone modifi-

cations as features, and uses accessibility and bidirectional transcription to

define active enhancers for training. We showed in Chapter 4 that this selec-

tion of enhancer properties enabled reliable results for genome-wide enhancer

prediction.

However, looking at several observed enhancer properties in more detail, it

became apparent that no property alone covers all active enhancers in one

condition. Krebs et al. (2011) showed that the histone acetyltransferase p300

is not bound at a set of active enhancers in two human cell lines, even though

it is vastly used as an approximation for enhancer activity, as for example

by the REPTILE method. Pradeepa et al. (2016) found active enhancers in

mouse embryonic stem cells that were not marked by H3K27ac but showed

enrichment of the histone modification H3K122ac instead. Sequence conser-

vation and DNA methylation are other known examples for features that are

present at some enhancers but not others. Furthermore, it was recently claimed

that bidirectional transcription is not exclusively found at active enhancers,

but more broadly coincides with accessible chromatin (Young et al., 2017).

Thus, we have to bear in mind the possible biases that every enhancer predic-

tion method is introducing through the underlying enhancer properties of the
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feature and training criteria. We also saw this in Section 5.3 during the com-

parison of our classifier to the supervised approach REPTILE which is based

on a very similar HM feature set and p300-bound training enhancers. Here,

our analysis indicated that training enhancers defined by bidirectional tran-

scription resulted in a higher fraction of promoter-proximal predictions than

p300-bound training enhancers. Interestingly, a class of enhancer-like promot-

ers, also called ‘Epromoters’, were discovered recently and shown to regulate

the expression of distal genes (see Review by Dao and Spicuglia (2018)).

All these observations raise the question, if the definition of one broad class of

active enhancers is possible or even desirable in the field of enhancer prediction.

Furthermore, they illustrate the difficulties to unite the original definition of

enhancers, which is based on their functionality to activate transcription of a

target gene, with the multiple convenient and necessary approaches to charac-

terize enhancers by certain features.

Recently, Arnold et al. (2014) put forward a method called STARR-seq, short

for ‘self-transcribing active regulatory region sequencing’, to map enhancer-

activity for millions of genomic regions using quantitative enhancer assays. The

method makes use of reporter constructs containing a minimal promoter and

a downstream candidate sequence, and is based on the idea that an enhancer

will initiate its own transcription. Hence, STARR-seq offers a possibility to

detect thousands of regions in parallel which are able to drive transcription in

the described episomal setting. However, it was found that mapped back into

the original chromosomal setting, a subset of the putative enhancers are not

active and carry repressive HM marks such as H3K27me3. Another observa-

tion was, that the enhancer activity depends on the minimal promoter used in

the constructs hinting towards a necessary compatibility between an enhancer

and its target promoter. It seems that the right chromatin environment and lo-

cus topology are crucial for the final activity status of a genomic region which

is ‘in theory’ able to act as an enhancer. Thus, besides direct (functional)

and indirect (property-based) characterizations of enhancers, also differences

in episomal and chromosomal settings have to be taken into account for a suc-

cessful enhancer prediction. In the future, this could be realized by combining

known enhancer features measured in the original chromosomal context with
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larger sets of functional enhancers detected with STARR-seq or similar ap-

proaches. Unfortunately, such enhancer sets are still rare and some systematic

errors in the quite recent STARR-seq method have only been resolved recently

(Muerdter et al., 2017).

By integrating multiple properties of enhancers into our classification model,

we tried to compensate for the lack of functionally defined enhancers in the

cell types we worked with. Additionally, we continued our work towards an

application-oriented direction. In Chapter 6 we describe a comprehensive

framework which is built on our pre-trained classifier and predicts condition-

specific regulatory units, i.e., enhancer-gene pairs changing dynamically across

conditions. Limiting enhancers to specific conditions has the advantage of in-

troducing another layer of information that can be used to filter out weak pre-

dictions. In Section 6.1, the motif analysis of enhancers with differential active

patterns between two states lead to more meaningful and specific enrichment

results than the same analysis on the full set of predicted enhancers in one

of the conditions. Hence, an application-oriented approach can help to better

understand gene regulation mechanisms. In the last step of our framework, we

use gene expression data to match differential enhancers with putative target

genes. By reducing the set of possible enhancer targets to genes located in the

same topologically associating domain, we integrate another layer of chromo-

somal information and offer a manageable candidate list of regulatory units

that can facilitate further loci-based analyses.
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Figure A1: Heatmap of epigenomic data at enhancers and promoters in
mESC. Profiles and heatmaps of raw counts in 100 bp bins ±3 kb at active promot-
ers (log2(FPKM + 1) ≥ 1, dark blue), ‘very’ active promoters (log2(FPKM + 1) ≥ 2,
green), active promoters containing a DNase-seq peak (log2(FPKM + 1) ≥ 1, dark
blue), inactive promoters (log2(FPKM + 1) < 1, light blue), ‘very’ inactive promot-
ers (log2(FPKM + 1) = 0, yellow), FANTOM5-based active enhancers containing a
DNase-seq peak (red). The enhancer set is not shown as heatmap, since it is too
small. Plots based on results from deepTools (Ramı́rez et al., 2016).
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Figure A2: Scaled heatmap of epigenomic data at enhancers and promot-
ers in mESC. Profiles and heatmaps ±3 kb at active promoters (log2(FPKM+1) ≥
1; dark blue), ‘very’ active promoters (log2(FPKM+1) ≥ 2; green), active promoters
containing a DNase-seq peak (log2(FPKM + 1) ≥ 1, dark blue), inactive promoters
(log2(FPKM + 1) < 1, light blue), ‘very’ inactive promoters (log2(FPKM + 1) = 0,
yellow), FANTOM5-based active enhancers containing a DNase-seq peak (red). Raw
cage counts in 100 bp bins are scaled to [0, 1] for each data individually, after 1st and
95th quantile are excluded. The enhancer heatmap is not shown, since the enhancer
set is too small. Plots based on results from deepTools (Ramı́rez et al., 2016).
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Figure A3: Zoomed heatmap of epigenomic data at enhancers and pro-
moters in mESC. Profiles and heatmaps of raw counts in 100 bp bins ±0.6 kb
at active promoters (log2(FPKM + 1) ≥ 1; dark blue), ‘very’ active promoters
(log2(FPKM + 1) ≥ 2; green), active promoters overlapping with a DNase-seq peak
(log2(FPKM + 1) ≥ 1, dark blue), inactive promoters (log2(FPKM + 1) < 1, light
blue), ‘very’ inactive promoters (log2(FPKM + 1) = 0, yellow), FANTOM5-based
active enhancers with DNase-seq peak overlap (red). The enhancer set is not shown
as heatmap, since it is too small. Plots based on results from deepTools (Ramı́rez
et al., 2016).
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Figure A4: Zoomed and scaled heatmap of epigenomic data at enhancers
and promoters in mESC. Profiles and heatmaps ±0.6 kb at active promoters
(log2(FPKM + 1) ≥ 1; dark blue), ‘very’ active promoters (log2(FPKM + 1) ≥ 2;
green), active promoters containing a DNase-seq peak (log2(FPKM + 1) ≥ 1, dark
blue), inactive promoters (log2(FPKM+1) < 1, light blue), ‘very’ inactive promoters
(log2(FPKM + 1) = 0, yellow), FANTOM5-based active enhancers containing a
DNase-seq peak (red). Raw cage counts in 100 bp bins are scaled to [0, 1] for each
data individually, after 1st and 95th quantile are excluded. The enhancer heatmap is
not shown, since the enhancer set is too small. Plots based on results from deepTools
(Ramı́rez et al., 2016).
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Figure A5: Heatmap of epigenomic data at test set regions. Histone mod-
ification and ATAC-seq profiles and heatmaps of raw counts in 100 bp bins for all
active genes (AG, dark blue), active promoters (AP, blue), active enhancers (E, light
blue), inactive genes (IG, green), inactive promoters (IP, yellow) and intergenic re-
gions (I, red) in the test set. Plots based on results from deepTools (Ramı́rez et al.,
2016).
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Figure A6: Fingerprint quality control metrics for ChIP-seq experiments.
For each HM ChIP-seq data, reads with a mapping quality ≥ 30 are counted per
adjacent 500 bp bin. Then, the read counts are sorted and their cumulative sum is
plotted. The plots are done with deepTools (Ramı́rez et al., 2016).
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Figure A6: (Cont.) Fingerprint quality control metrics for ChIP-seq
experiments.
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Figure A7: Performance across cell lines and species for REPTILE in
original setting. REPTILE was learned using the original p300-based training set
and histone modification ChIP-seq data in mouse embryonic stem cells (He et al.,
2017). Depicted are AUC-ROC and AUC-PR results for predictions on test sets in
12 samples from different cell lines and species.
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Table B1: Enhancer regions defined by FANTOM5. CAGE count data was downloaded for mouse embryonic stem
cells, mouse synovial fibroblasts,mouse adipocytes and mouse and human hepatocytes. Depending on the available number
of replicates (’

∑
Repl.’) all regions (’# Regions’) where narrowed down to a set of high confidence enhancers (’Criterium’).

For example, we used count data of three biological replicates from murine hepatocytes and chose 753 enhancers which had
eight and more counts in all three replicates.

Abbr. FANTOM5 Cell Line Description Criterium
(∑

Repl.
)

# Regions

mESC+

• ES-OS25 embryonic stem cells, DMSO control

≥ 4 counts in all (13) 372

• ES-OS25 embryonic stem cells, untreated control
• ES-Ert2 embryonic stem cells, untreated control

, 48hr
• ES-OS25 embryonic stem cells, untreated siRNA

control
• ES-OS25 embryonic stem cells, scrambled siRNA

control

adipocyte
• ST2 (mesenchymal stem cells) cells, differentiation

> 3 counts in all (2) 756
to adipocytes, day06

fibroblast (healthy) • mouse fibroblast cell line: CRL-1658 NIH/3T3 ≥ 2 counts in any (1) 683

mouse hepatocyte
• liver sinusoidal endothelial cells, ≥ 8 counts in all (3) 753

partial hepatectomy, 01week
human hepatocyte • liver, adult, pool1 ≥ 8 counts in any (1) 298
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Table B2: Final enhancer regions defined from FANTOM5 and DNaseI peaks. DNase-seq peaks were called
for each sample/replicate. The overlap of DNAseI peaks and the filtered FANTOM5 regions from Table B1 build the final
enhancer lists used in our workflow. Here, for each type of tissue, we chose the overlap set with the maximal size (bold).
For example, we used the 239 DNaseI peaks of sample 1 that overlap with FANTOM5 as representative enhancer set for
mouse hepatocytes.

Abbreviation sample/replicate # DNaseI peaks # FANTOM5 # overlap

mESC+ replicate 1 123576
372

280
replicate 2 88973 250

adipocyte sample 1 43814 756 292

fibroblast (healthy)
sample 1 90858

683
251

sample 2 65682 141

mouse hepatocyte
sample 1 51110

753
239

sample 2 44336 227

human hepatocyte
sample 1 86296

2472
339

sample 2 44290 224
sample 3 40438 234
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Table B3: Active promoter regions defined by RNA-seq cutoff and DNase peaks. We expanded the TSSs of
active genes (”active” according to definition in Section 4.1.6) symmetrically to a total length of 100 bp and computed the
overlap with DNAse summits in the same tissue (not always the same sample). Only expanded TSSs containing a DNase
summit are finally used to define active promoters.

sample/replicate # active promoter DNaseI sample # overlap
mESC+ 10,044 replicate 1 2,853
adipocyte sample 1 9,217 sample 1 2,273
adipocyte sample 2 9,206 sample 1 2,295
adipocyte sample 3 9,245 sample 1 2,317
adipocyte sample 4 9,317 sample 1 2,339
fibroblast (healthy) sample 1 10,593 sample 1 2650
fibroblast (healthy) sample 2 10,326 sample 1 2528
mouse hepatocyte sample 1 8,392 sample 1 2,299
mouse hepatocyte sample 2 8,417 sample 1 2,318
human hepatocyte sample 1 6,668 sample 1 1,689
human hepatocyte sample 2 6,853 sample 1 1,749
human hepatocyte sample 3 7,021 sample 1 1,670
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Table B4: JASPAR CORE vertebrates clustering. Composition of all JAS-
PAR clusters used in this work which consist of more than one motif.

cluster motif name

1 DUXA, DUX4, PROP1, Phox2b, PHOX2A, Arid3a, HOXA5, Crx,
RHOXF1, OTX1, Pitx1, OTX2, PITX3, GSC, GSC2, Nkx2-5, NKX2-
3, NKX2-8, ISL2, NKX3-2, Nkx3-1, HMBOX1, Arid3b, Lhx3, Dux,
BARHL2, Barhl1, POU6F2, VENTX, Nobox, LBX1, PDX1, NKX6-
1, NKX6-2, BARX1, BSX, EN1, LHX9, ISX, Shox2, SHOX, RAX2,
Prrx2, PRRX1, UNCX, Dlx2, DLX6, Dlx3, Dlx4, MSX2, MSX1, Msx3,
PAX4, Lhx8, LMX1B, LMX1A, Lhx4, VAX1, VAX2, VSX1, VSX2, mix-
a, POU6F1, LHX6, LHX2, NOTO, MNX1, Dlx1, EN2, ALX3, MIXL1,
GBX1, GBX2, RAX, HESX1, ESX1, LBX2, MEOX1, MEOX2, GSX1,
GSX2, HOXA2, HOXB2, HOXB3, EVX1, EVX2, EMX1, EMX2

6 TFAP2B var.2, TFAP2C var.2, TFAP2B var.3, TFAP2C var.3,
TFAP2A var.3, TFAP2A var.2, TFAP2C, TFAP2B

10 ONECUT3, ONECUT1, ONECUT2, PAX7, PAX3, CUX1, CUX2

12 FOXP3, FOXI1, FOXO4, FOXO6, FOXL1, FOXD2, FOXO3, FOXD1,
FOXG1, Foxj2, SRY, Sox5, Foxq1, Foxd3, FOXF2, Foxj3, FOXA1,
FOXK1, Foxo1, FOXP1, FOXP2, FOXK2, Foxa2, FOXC2, FOXC1,
FOXB1

18 LIN54, Pou5f1::Sox2, POU3F4, POU5F1B, Pou2f3, POU2F1, POU1F1,
POU3F3, POU3F1, POU3F2, POU2F2, POU5F1

20 MEF2C, MEF2B, MEF2A, MEF2D

22 PBX1, Hoxc9, Hoxa9, HOXC10, HOXD11, HOXC13, Hoxa11, HOXC11,
HOXD12, HOXC12, CDX2, CDX1, HOXA10, Hoxd9, HOXD13,
HOXA13, HOXB13

24 ZIC1, ZIC3, ZIC4, GLIS1, GLIS2, GLIS3, INSM1, ZNF740, MZF1 var.2

28 SP2, KLF13, SP4, KLF14, Klf12, SP8, KLF16, SP3, KLF5, SP1, KLF4,
Klf1, KLF9, GLI2, ZBTB7B, ZBTB7C, EGR2, EGR4, EGR1, EGR3

30 HNF1B, HNF1A, POU4F1, POU4F2, POU4F3

33 SOX13, Sox17, SOX10, SOX15, Sox3, Sox6, Sox2, SOX9

35 NFIC::TLX1, NFIC, NFIA, NFIX, THAP1, HIC2, Hic1

41 PPARG, ESR2, ESR1

48 CTCFL, CTCF

54 EWSR1-FLI1, ZNF263
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Appendix C

Data Processing

For all experimental data used in this work, ChIP was performed against

H3K27ac, H3K27me3, H3K4me1, H3K4me3, H3K36me3 and H3K9me3, and

the sheared chromatin without antibody (Input) served as a control. More-

over, duplicates were removed using Picard tools (Wysoker et al., 2013) for all

ChIP-seq experiments. All DNase-seq experiments were aligned with BWA-

MEM (Li et al., 2013) to the genome assembly as indicated in Table C1, and

duplicates were removed using Picard tools (Wysoker et al., 2013). More de-

tailed information, for example on cell culture, isolation or sequencing libraries,

is described below. The used alignment methods are summarized in Table C1.

Table C1: Overview of alignment methods. Raw sequencing reads were
aligned to the indicated genome assembly (’GRCm38’ or ‘hs37d5’) with the indi-
cated alignment method (BWA-MEM (Li et al., 2013), STAR (Dobin et al., 2012)
or TopHat2 (Kim et al., 2013).

Tissue/Cell type genome assembly ChIP-seq RNA-seq

Mouse embryonic stem cells ‘GRCm38’ STAR BWA-MEM

Mouse synovial fibroblasts ‘GRCm38’ BWA-MEM TopHat2

Mouse adipocytes ‘GRCm38’ BWA-MEM TopHat2

Mouse hepatocytes ‘GRCm38’ STAR BWA-MEM

Human hepatocytes ‘hs37d5’ BWA-MEM TopHat2
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Mouse embryonic stem cells

E14 mouse embryonic stem cells (mESCs) were cultured and routinely pas-

saged every two days in ES medium plus leukemia inhibitory factor (LIF) in

order to maintain the pluripotent state of the cells (Smith et al., 1988; Pease

et al., 1990)). To exit from pluripotency and push the cells towards differen-

tiation, LIF was withdrawn and retinoic acid (RA) was added to the medium

for a short pulse of 4h. For ChIP-seq, cells were harvested, fixed and processed

according to the standard ChIP protocol (Ramisch et al., 2018). Sequencing

libraries were prepared and the resulting DNA fragments were paired-end 50bp

sequenced on a Illumina HiSeq 2500 device. For RNA-seq, cells were harvested

and three biological replicates were subjected to RNA extraction. Sequencing

libraries were generated from total mRNA input and high-throughput sequenc-

ing was performed on an Illumina HiSeq 2500 device generating resulting in

50bp paired-end reads. For ATAC-seq, cells were subjected to transposition re-

action and PCR amplification of accessible regions by Omni-ATAC-seq (Corces

et al., 2017). Sequencing libraries were constructed and DNA fragments were

paired-end 50bp sequenced on a Illumina HiSeq 4000 device. Raw reads were

aligned to the genome assembly ’GRCm38’ using BWA-MEM (Li et al., 2013)

and duplicates were removed with SAMtools (Li et al., 2009). ATAC-seq peaks

were identified using MACS2 (Zhang et al., 2008). Raw reads from DNase-

seq experiments were downloaded from GEO (GSM1014154). All experimental

ChIP-seq, RNA-seq and ATAC-seq data related to these samples are accessible

on GEO (accession Nr.: GSE120376).

Mouse synovial fibroblasts

Mouse synoial fibroblasts were isolated by enzymatic digestion from hind limbs

of 12 week old hTNFtg (reactive arthritis, strain Tg197 overexpressing human

TNF) and wildtype (healthy control) (Wehmeyer et al., 2016; Keffer et al.,

1991). ChIP-seq was carried out as described in Arrigoni et al. (2016). Result-

ing DNA fragments were paired-end 50bp sequenced on a Illumina HiSeq 2500

device. For RNA-seq, long RNA libraries were prepared from total mRNA

input and sequenced on an Illumina HiSeq 2500 device resulting in 50bp and
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100bp long paired-end reads. For DNase-seq, nuclei were digested with DNaseI

in five different dilutions as described by Schmidt (2016).

Mouse adipocytes

Samples for adipocytes were isolated by collagenase treatment for five minutes

followed by five minutes of collagenase inactivation (Arrigoni et al., 2016).

After centrifugation the fat layer was collected. For ChIP-seq, chromatin from

fixed cells has been extracted and sonicated for 15 minutes using Covaris S220

sonicator. Resulting DNA fragments were paired-end 50 bp sequenced on an

Illumina HiSeq HiSeq 2500 device. For RNA-seq, RNA isolation for cells was

performed using 1 ml TRIzol per sample followed by Isopropyl alcohol/Ethanol

precipitation. Sequencing libraries were generated from total mRNA input

and sequenced on an Illumina HiSeq 2500 device resulting in 100bp paired-

end reads. For DNase-seq, nuclei extracted from ∼ 10×106 cells by treatment

with IGEPAL were digested with different concentrations of DNaseI (Schmidt,

2016). Sequencing libraries were prepared and sequenced on an Illumina HiSeq

2500 device resulting in 100bp long paired-end reads.

Mouse hepatocytes

Primary mouse hepatocytes were obtained from two female mice (C57BL/6J

x DBA/2 background) at the age of nine weeks. The isolation of primary

mouse hepatocytes was performed by a two-step EDTA/collagenase perfusion

technique (Godoy et al., 2013). ChIP-seq was performed using primary mouse

hepatocytes as described in Kinkley et al. (2016) with minor modifications,

and libraries from each sample were pooled and paired-end sequenced on an

HiSeq 2500 device. For RNA-seq, RNA isolation for cells was performed using

1 ml TRIzol per sample followed by Isopropyl alcohol/RNA was extracted from

hepatocytes homogenized in 1 mL Trizol. Sequencing libraries were generated

from total mRNA input using TruSeq v3 Kit (Illumina) according to manufac-

turer’s instructions and seqeunced on an Illumina HiSeq 2500 device resulting

in 100bp paired-end reads. For DNase-seq, nuclei extracted from ∼ 10 × 106
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cells by treatment with IGEPAL were digested with different concentrations

of DNaseI (Schmidt, 2016). Sequencing libraries were prepared and sequenced

on an Illumina HiSeq 2500 device resulting in 100bp long paired-end reads.

Human hepatocytes

Primary human hepatocytes were obtained from three different female donors

(age 28-70 years) undergoing surgery due to primary or secondary liver tu-

mors. Hepatocytes were isolated from healthy liver tissue remaining from liver

resection (Godoy et al., 2013). ChIP-seq was performed using primary human

hepatocytes as described in Kinkley et al. (2016) with minor modifications,

and libraries from each sample were pooled and paired-end sequenced on an

HiSeq 2500 device. For RNA-seq, RNA was extracted from hepatocytes ho-

mogenized in 1 mL Trizol. Sequencing libraries were generated from total

mRNA input using TruSeq v3 Kit (Illumina) according to manufacturer’s in-

structions and seqeunced on an Illumina HiSeq 2500 device resulting in 100bp

paired-end reads. For DNase-seq, nuclei extracted from ∼ 10 × 106 cells by

treatment with IGEPAL were digested with different concentrations of DNa-

seI (Schmidt, 2016). Sequencing libraries were prepared and sequenced on an

Illumina HiSeq 2500 device resulting in 100bp long paired-end reads.

Processing of HiC-seq experiments

The Juicertools command ’dump’ (Durand et al., 2016) was used to extract

data from Hi-C archives associated with mESCs (Bonev et al., 2017):

http://hicfiles.s3.amazonaws.com/external/bonev/ES_mapq30.hic

The Hi-C data matrix is Knight-Ruiz normalized (Knight and Ruiz, 2013) at

10kb resolution. Topologically associated domains were identified by applying

TopDom (Shin et al., 2016) on the 25kb binned and normalized matrix with a

window size of 750 kb (30× 25kb). The resulting regions were used to reduce

the search space for promoter/gene-enhancer interactions.
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Appendix D

Zusammenfassung
In dieser Doktorarbeit zeigen wir, wie man die aktuellen Enhancer-Kentnisse

nutzen und verschiedene epigenetische Datensätze integrieren kann um die Pos-

tition aktiver Enhancer unter spezifischen Bedingungen vorherzusagen.

Zuerst stellen wir eine neue Methode zur genomweiten Enhancer-Vorhersage

basierend auf Histonmodifikationsdaten vor. Unsere Methode kombiniert zwei

Random Forest Klassifikationsverfahren zur Unterscheidung von aktiven und

inaktiven genomischen Regionen und zur schwierigeren Unterscheidung von ak-

tiven Enhancern und aktiven Promotoren. Beim Modellieren und Optimieren

der Klassifikationsmerkmale (Feature) berücksichtigen wir die lokale Chro-

matinstruktur. Kennzeichnend für einen aktiven Enhancer ist im Wesentlichen

ein Abschnitt zugänglichen Chromatins, umgeben von Nukleosomen mit spez-

ifischen Histonmodifikationen. Unsere Trainings-Enhancer sind so definiert,

dass sie offene Chromatinregionen umfassen und nachweislich bidirektionale

Transkripte herstellen. Diese Enhancer-Charakteristiken haben wir möglichst

unabhängig von den Klassifikationsmerkmalen gewählt um Zirkelschlüsse zu

vermeiden. Wir haben unsere Methode in embryonalen Stammzellen der Maus

validiert und sehr gute Vorhersagergebnisse auf ausgewählten Testsets erzielt.

Außerdem haben wir vorhergesagte, beieinanderliegende Enhancer in Regionen

hoher Enhancer-Dichte zusammengefasst, für die wir eine gute Übereinstim-

mung mit veröffentlichten Superenhancern feststellen konnten. Im Gegensatz

zu vielen Methoden zur Enhancer-Vorhersage bieten wir ein trainiertes Modell

mit integriereter Datennormalisierung an, dass zuverlässig auf neue Datensätze

anderer Zelltypen und Spezies angewendet werden kann. Unser Modell zeigt

bessere Ergenisse als die viel genutzte Methode ChromHMM, und ist bei An-

wendung innerhalb eines Zelltyps vergleichbar mit der REPTILE-Methode.

Für die Anwendung auf neue Datensätze ist unsere Methode besser geeignet.

Schließlich zeigen wir, wie unser trainiertes Modell als Basis eines Frameworks

fungieren kann um bedingungsspezifische regulatorische Einheiten (Enhancer-

Gen-Paare) von Histonmodifikations- und Genexpressionsdaten vorherzusagen.
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Appendix E

Summary
In this thesis, we show how to exploit the current knowledge of enhancers, and

integrate different types of epigenomic data to make condition-specific predic-

tions on the location of active enhancers.

First, we introduce a novel method for genome-wide enhancer prediction which

is solely based on histone modification data. Our method is a combination of

two random forest classifiers, where one classifier learns the difference between

active and inactive genomic regions and the other concentrates on the more

difficult task to distinguish active enhancers from active promoters. We model

and optimize the corresponding features taking into account the local chro-

matin structure. For an active enhancer, this is in essence an accessible region

flanked by nucleosomes with specific histone modifications. To avoid circu-

lar reasoning, our training enhancers are defined by feature set-independent

characteristics: accessibility and bidirectional transcription. We thoroughly

validate our method on mouse embryonic stem cell data and achieve very

good performances on a constructed test set as well as on a validated set of

enhancers. Moreover, our genome-wide enhancer predictions have a high spa-

tial resolution. We also cluster proximal enhancers and show that the result-

ing regions of high enhancer density are in good agreement with a published

list of super-enhancers in mouse embryonic stem cells. In contrast to many

other methods, we offer a pre-trained classifier with integrated data normaliza-

tion that can be used to reliably predict enhancers across different cell types

and species. This classifier is superior to the prominent unsupervised method

ChromHMM, and shows similar results as the recent supervised REPTILE

approach when applied in the same cell type. In terms of transferability to

other conditions, our method outperforms REPTILE.

Finally, we demonstrate how our pre-trained classifier can be embedded into a

comprehensive framework to predict condition-specific regulatory units (pairs

of enhancers and putative target genes) of histone modification and gene ex-

pression data.
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Appendix F

Short Curriculum Vitae

For reasons of data protection, the curriculum vitae is not included in the

online version.
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For reasons of data protection, the curriculum vitae is not included in the

online version.
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