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Abstract
In this thesis we study the mean curvature flow of entire graphs in Euclidean
space. From the work of Ecker and Huisken, we know that given some initial
growth condition at infinity, such graphs become self-similar under the
 evolution and the convergence is exponentially fast in time. 

In this work, we propose an alternative condition at infinity, motivated by
looking at the heat equation, and show that under mean curvature flow such
a growth condition is preserved for the height and gradient of the graph. For
the curvature we propose an analogous result to that of Ecker and Huisken,
by proving a spatial decay estimate with slightly stronger condition.

Our main result then says that under mean curvature flow and our condition,
the graph also becomes self similar, but slower than in the exponential case.

Zusammenfassung
In dieser Doktorarbeit wird der mittlere Krümmungsfluss von ganzen Graphen
im euklidischen Raum betrachtet. Ecker und Huisken zeigen, dass unter
gewissen Wachstumsbedingungen im Unendlichen, solche Graphen unter dem
Fluss selbst ähnlich werden, wobei die Konvergenz in der Zeit exponentiell
schnell ist. 

Durch die Wärmeleitungsgleichung motiviert, schlagen wir in dieser  Arbeit
eine alternative Bedingung im Unendlichen vor und zeigen, dass solch eine
Wachstumsbedingung für die Höhe und den Gradienten unter dem mittleren
Krümmungsfluss erhalten bleibt. 

Unser Hauptresultat besagt, dass unter der alternativen Bedingung, der
Graph einer Lösung des mittleren Krümmungsflusses ebenfalls selbstähnlich
wird, allerdings mit einer in der Zeit langsameren Konvergenzrate.
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Preface

Mean curvature ow simply stated is the evolution of a hypersurface in
its normal direction, with speed equal to the mean curvature at each

point. So for some initial surface F0 : Mn → Rn+1 we consider

∂F
∂t

(p, t) = H⃗(p, t) = −ν
n

∑
i=1

κi,

where ν is the outward pointing unit normal at each point p of the surface
and κi are the principle curvatures at this point. This evolution has been
studied due to its connection with geometry and physics of interfaces [15],
in particular the motion of grain boundaries in an annealing pure metal [2].
This process is the gradient ow of the area functional

∂

∂t
|Mn

t | = −
∫

Mn
t

|H⃗|2 dµt,

and is a quasi-linear (weakly) parabolic partial di erential equation evolving
the local embedding map of the hypersurface. When stated in the curvature
setting:

∂t Ai
j = ∆Mt Ai

j + Ai
j|A|2,

where Aij is the second fundamental form, it is described as a reaction-
di usion system, with the reaction part (from a cubic in the curvature term)
causing the formation of singularities, and the di usion from a Laplace-Beltrami
operator causing the singularities to be self-similar.

The investigation of mean curvature ow started around the late ’70s by
the work of Brakke [2] where he studied such ows on a more general class
of surfaces, called varifolds, in the geometric measure theory setting. His re-
sults when restricted to smooth hypersurfaces which encounter singularities
for the rst time, and satisfy certain additional assumptions, state that these
hypersurfaces at the singular time are still smooth except for a lower dimen-
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sional set. In the class of hypersurfaces with positive mean curvature the
beautiful result of Brian White gives the maximum size of the singular set as
one less than the dimension of the hypersurface, and this is optimal in view
of some special solutions.

These non-classical methods, those of geometric measure theory as well
as viscosity or level-set methods where developed to deal with the solution of
mean curvature ow after the formation of singularities at some time t = T,
when the maximal curvature

A(t) := max
Mn

t

√
κ2

1 + · · ·+ κ2
n → ∞ as t → T,

and thus the classical di erential geometric and partial di erential equation
methods fail. In this work we will however not be concerned with the solu-
tions after the rst singularity has occurred and thus remain in the classical
realm, even though the recent work of Huisken and Sinestrari uses the classi-
cal methods with “surgeries” to extend the ow beyond the singularity. Thus
we introduce the most simple case, that of curve shortening ow.

For the case of curves, Gage and Hamilton [8] proved that convex curves
evolving by mean curvature remain convex and shrink to a circular point.
Shortly afterwards, Grayson in his paper [9] completed the result by proving
that a nonconvex curve stays embedded and becomes convex in nite time
and that no singularity occurs during this process as shown in the snapshots
in the margin. Huisken later used a result which classi es all types of sin-

A closed
embedded curve
becomes convex
and eventually
disappears. Image
from [3].

gularities of mean curvature ow in his paper [12] to give a more intuitive
proof of Grayson’s result [13]. Instead of controlling the shape of the curve at
each time, Huisken used amonotonicity formula for some isoperimetric ratio
to show that the curve becomes a round circle at the singularity, and in fact
this is the only embedded limiting case of a singularity.

Around the same time as Gage and Hamilton’s result for curves, Huisken
in his now classical paper [11] proved the corresponding result for surfaces,
namely that compact convex initial surfaces contract smoothly in nite time
and become spherical in the process. Oddly enough his proof does not work
for curves. The approach of the proof was inspired by Hamilton’s results [10],
since the evolution of certain curvature quantities turned out to be similar to
those Hamilton had when evolving themetric of a compact three-dimensional
manifold with positive Ricci curvature in the direction of the Ricci curvature,
i.e. via Ricci ow:

∂

∂t
gij = −2Rij,

Positive mean curvature holds by the maximum principle for the duration of the evolution
if it does for the initial hypersurface.

Huisken’s proof shows that the asymptotic shape of the solution to mean curvature ow is
totally umbilic and the only such hypersurfaces are spheres.
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to obtain a metric of constant curvature in the limit.
This connection of mean curvature ow with Hamilton’s Ricci ow has a

deeper reason. Like the mean curvature ow, the Ricci ow is also a reaction-
di usion system of partial di erential equations, albeit in an intrinsic set-
ting, and the reaction terms are quadratic in the Riemann tensor. Thus many
properties though di erent are analogous for Ricci ow and mean curvature
ow.

On the other hand we have the simple heat equation:

ut(x, t) = ∆u(x, t) with u(x, 0) = u0(x),

and its properties, namely the rescaling property that if u(x, t) is a solution
then

uλ(x, t) = u(λx, λ2t), λ > 0 is also a solution,

which gives us optimal estimates on the regularity of solutions; smoothing
property:

|Dmu|(x, t) ≤ Cm

tm/2 sup|u|,

where if we only know the supremum of the solution is bounded, then the
derivatives of any order of the solution are bounded; and nally we have
Harnack type positivity properties:

∂t log u ≥ |D log u|2 − n
2t

,

saying that the solution cannot fall o too quickly. All these properties carry
over in some form to the mean curvature ow setting, giving us a rich source
of results.

It turns out that it is crucial to understand the properties of the self-
similar solutions which relates the properties of these ows to the geometry
of the space. The idea here is to nd monotone quantities, non-increasing
in time, in these ows, by simply using integration by parts, such that these
quantities are constant precisely on the self-similar solutions. In the case of
mean curvature ow Huisken’s monotonicity formula [12] and its generalisa-
tion by Ecker and Huisken [6] as well as a local version by Ecker [4], yields
important information about the nature of singularities and other properties
of the ow. In the Ricci ow case, the famous Perelman’s entropy are such
monotone quantities, among others, that Perelman uses for his proof of the
Poincaré conjecture.

As we alluded to earlier, the surface forms a singularity at a point when
the maximal curvature tends to in nity as we approach some maximal time
t = T and we can classify this singularity according to the rate that the cur-
vature blows up. The natural growth rate suggested by the scaling symmetry
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(x, t) 7→ (λx, λ2t) is

sup
Mn×[0,T)

|A(t)| ≤ C(T − t)−1/2.

If this rate holds for some constant C < ∞, then the surface is said to have a
“Type 1” singularity, and if not we call the singularity a “Type 2”. The mono-
tonicity formula is useful in studying Type 1 singularities of mean curvature
ow. If we rescale our surface via the natural scaling we can show that as the

surface encounters a Type 1 singularity, it becomes self-similar. Angenent
and Velázquez in their paper [1] construct solutions of mean curvature ow
that have Type 2 singularities by looking at rotationally symmetric surfaces
with non-generic neck pinches. The idea here is to use topological methods
in the analysis of singularities and obtain a complete asymptotic understand-
ing of the various kind of blow-ups via the method of matched asymptotic
expansions.

For the case of entire graphs, Ecker and Huisken in their paper [6] show
that such graphs become self-similar provided they were initially somewhat
well behaved at in nity. They show that indeed this behaviour at in nity is
necessary for asymptotic convergence, in view of a counter example which
does not converge asymptotically. Further they show using this condition
that the convergence is exponentially fast in time to an expanding self-similar
solution. Stavrou in his paper [16] proves asymptotic convergence using a
muchweaker condition to that in [6]. In their later paper Ecker andHuisken [7]
used the local properties of mean curvature ow to obtain interior estimates,
to deduce the fact that if the initial graph was only Lipschitz continuous, then
it would have a smooth solution for all time under mean curvature ow, with-
out the need for any assumption on the growth and curvature of the graph
at in nity. This is surprising since such a result does not hold for the heat
equation, where one needs to give a condition at in nity for existence.

This work also deals with entire graphs as in the Ecker and Huisken set-
ting [6]. We being with Chapter 1, where we introduce the notations and basic
di erential geometry to prove Huisken’s monotonicity formula, which we use
to prove a Weak Maximum principle we will need in the subsequent chapters.

We then motivate this work in Chapter 2, by looking at the Ecker and
Huisken condition at in nity:

⟨x, ν⟩2 ≤ c3(1 + |x|2)1−δ, c3 < ∞, δ > 0,

where x is the position vector, ν the outward unit normal and c3 some con-
stant, for the simple case of the heat equation. Since we have an explicit
solution for the heat equation, we show how for the case of cones as initial
data, this condition implies a convergence to an expanding self-similar solu-
tion in exponential time. We then propose an alternative condition to that of
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Ecker and Huisken, namely:

⟨x, ν⟩2 ≤ c
1 + |x|2 − u2

logδ(e + |x|2)
, c < ∞, δ > 0,

where u is the height above some hyperplane, and show that in this case, we
have polynomial in time convergence to the self-similar solution.

Our main result thus states that under mean curvature ow of graphs with
such a logarithmic condition at in nity, the rescaled solutions M̃s converge
to a self-similar graph in polynomial time via the following estimate for some
0 < γ < 2:

sup
M̃s

(H̃ + ⟨x̃, ν̃⟩)2ṽ2

η̃
p
2 log−ϵ η̃1

≤ (1 + s)−γ sup
M0

(H + ⟨x, ν⟩)2v2

η
p
2 log−ϵ η1

where v is the gradient function, 0 < ϵ < δ, 0 < p < 1, and for some choice of
test functions η1 and η2. Note that this logarithmic condition is much weaker
than the Ecker and Huisken condition.

To begin with we show in Chapter 3, that the height of the graph if initially
in a logarithmic growth class, stays so during the duration of the evolution.
Similarly in Chapter 4 we derive a priori logarithmic estimates for the gradi-
ent of the graph.

For the shorttime existence of the solution of entire graphs, we use the re-
sult of Ecker and Huisken [7], however in Chapter 5, by restricting to the case
of linear growth, we show longtime existence for Lipschitz initial data, which
was done by Ecker and Huisken in their paper [6]. We however then prove a
logarithmic spatial decay estimate for the curvature and all its derivatives
and show this behaviour is maintained during the evolution.

In Chapter 6, we study the behaviour of the solution as time tends to in-
nity and show that under our logarithmic assumption the graphs become

self-similar, and in fact this convergence is polynomial in time. Unlike the An-
genent and Velázquez method of using spectral analysis to obtain the rate of
convergence for self-similarly contracting solutions of mean curvature ow,
we use only the Maximum principle together with test functions to obtain
our result.
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Chapter 1

Introduction

We x our notations and present some de nitions and then present some
properties of mean curvature ow which we will use in the subsequent

chapters. Since we study a geometric ow we will start with an introduction
to some basic di erential geometric facts. Much of this material is covered
in detail in the book by Ecker [5].

1.1 Notations

We will study hypersurfaces in Rn+1, denoted by M which are smooth and
properly embedded, contained in some open set U ⊂ Rn+1. We denote such M is properly

embedded if
F−1(K) ⊂ Mn is
compact for a
compact set
K ⊂ U.

a surface by a map from an open set Mn ⊂ Rn by F : Mn → Rn+1 and write
F(Mn) = M.

At every point p ∈ Mn, the coordinate tangent vectors ∂iF(p) := ∂F/∂pi
for i = 1, . . . , n, form a basis of the tangent space Tx M at x = F(p), The
metric on M is then given by gij = ∂iF · ∂jF and then the area element of M

The inverse metric
is just the inverse
matrix of gij and is
given by
gij = [gij]

−1.

is the root of the determinant of the metric:

√
g =

√
det[gij].

1.2 Geometry of surfaces

The tangential gradient of a function on our surface h : M → R is

∇Mh = gij∂ih∂jF

1



1.2. GEOMETRY OF SURFACES CHAPTER 1. INTRODUCTION

and the covariant derivative of a smooth tangent vector X = Xi∂iF on M is

∇M
i X j = ∂iX j + Γj

ikXk.

The trace of covariant derivative tensor X on M is called the tangential di-Here Γk
ij are the

Christoffel
symbols
Γk

ij = gkl(∂igjl +

∂jgil − ∂l gij)/2.

vergence of X and is denoted by

divM X = ∇M
i Xi =

1
√

g
∂i(

√
ggijXj)

and the Laplace-Beltrami operator of h on M is then the divergence of the
tangential gradient of h and is written asThe divergence

also makes sense
for a smooth
vector field
X : M → Rn+1

which is not
necessarily
tangent to M. In
this case
divM X =
gij∂iX · ∂jF.

∆Mh = divM ∇Mh =
1
√

g
∂i(

√
ggij∂jh).

Note that ν the choice of unit normal to our hypersurface M satis es

ν · ∂iF = 0

on M for 1 ≤ i ≤ n and we de ne the second fundamental form of M as

Aij = ∂iν · ∂jF = −ν · ∂i∂jF.

The Weingarten map, which maps tangent vectors to tangent vectors, is

Ai
j = gik Akj

and its n eigenvalues κ1, . . . , κn are called the principal curvatures of M. The
mean curvature is then de ned as

H =
n

∑
i=1

κi = gij Aij = gij∂iν · ∂jF = divM ν,

and the mean curvature vector of M isNote than H⃗ is
now an inward
pointing vector. H⃗ = −Hν.

In the absence of coordinate systems we can still de ne derivatives of
functions and vector elds on hypersurfaces M by projecting them from
Rn+1 onto the tangent space of M. For a x ∈ M we thus de ne the projection
operator pTx M : Rn+1 → Tx M by

pTx M(w) = w − (ν(x) · w)ν(x).

Then for a suitably smooth function h : U → R, the tangential gradient of h
is

∇Mh = pTx M(Dh(x)) = Dh(x)− ν(x) · Dh(x)ν(x)

2



CHAPTER 1. INTRODUCTION 1.3. MEAN CURVATURE FLOW

where Dh(x) is the gradient of h in Rn+1 and x ∈ M. Similarly for a suit-
ably di erentiable vector eld X : U → Rn+1, the tangential divergence with
respect to M is de ned as

divM X(x) = divRn+1 X(x)− ν(x) · Dν(x)X(x)

where Dν(x)X(x) is the derivative in the ν(x) direction, given by

Dν(x)X(x) =

[
∂Xi
∂xj

]
1≤i,j≤n+1

ν(x).

Finally, the Laplace-Beltrami of a suitable h, given by ∆Mh = divM ∇Mh,
is

∆Mh = divM Dh + H⃗ · Dh = ∆Rn+1 h − D2h(ν, ν) + H⃗ · Dh (1.1)

where D2h(ν, ν) := ν · DνDh is the second derivative of h in the normal di-
rection.

If our hypersurface has no boundary ∂M = ∅ or the vector eld X has
compact support the divergence theorem is:∫

M
divM X = −

∫
M

H⃗ · X.

Thus for a test function ϕ ∈ C2
0(R

n+1) this implies that

0 =
∫

M
divM Dϕ + H⃗ · Dϕ =

∫
M

∆Mϕ.

1.3 Mean curvature flow

We denote a smooth family of embeddings from an open subset Mn of Rn

by Ft = F(·, t) : Mn → Rn+1 with Ft(Mn) = Mt for t ∈ I, where I an open
interval of R.

We say that this family of hypersurfaces moves bymean curvature ow if

A classical
solution to mean
curvature flow,
where a sphere
shrinks to a point
in finite time.

∂F
∂t

(p, t) = H⃗(F(p, t)) (1.2)

for p ∈ Mn and t ∈ I.
We also have the fact that

−Hν = −(divM ν)ν = gij∂i∂jF = ∆MF

3



1.4. SELF-SIMILAR EXPANDING SOLUTIONS CHAPTER 1. INTRODUCTION

so that we can write (1.2) as

∂F
∂t

(p, t)− ∆MF(p, t) = 0.

We will consider hypersurfaces which are entire graphs of the form Mt =
graph u(·, t) for u(·, t) : Rn → R and t ∈ I. In other words the last compo-
nent of the map F(·, t) of Mt can be expressed as a function of the rst n
components and we can write

F(p, t) = (F̂(p, t), u(F̂(p, t), t)).

If we denote by Du the derivative of u with respect to x̂ = F̂(p, t), then the
upward unit normal vector is given by

ν =
(−Du, 1)√
1 + |Du|2

and the mean curvature of the graph is

−H = div

(
Du√

1 + |Du|2

)
.

Now since
∂F
∂t

=

(
∂F̂
∂t

,
∂u
∂t

+ Du
∂F̂
∂t

)
we have by (1.2)

∂F
∂t

· ν = −H

which gives us the partial di erential equation for mean curvature ow of a
graph given by u(F̂(p, t), t):Actually we have

shown that (1.2) is
equivalent to (1.3)
up to tangential
diffeomorphisms.

∂u
∂t

=
√

1 + |Du|2 div

(
Du√

1 + |Du|2

)
. (1.3)

In [6] the authors have proved long time existence and uniqueness of
a solution to (1.3) provided the initial data u(·, 0) = u0(·) grows at most
linearly. Of particular interest are the asymptotic properties of solutions to
mean curvature ow. Huisken has shown that convex closed hypersurfaces
asymptotically converge to spheres [11]. Ecker and Huisken have shown in
the case of entire graphs and under some condition on the growth of the
initial hypersurface and some condition near in nity, the solution becomes
asymptotically self-similar.

4



CHAPTER 1. INTRODUCTION 1.4. SELF-SIMILAR EXPANDING SOLUTIONS

1.4 Self-similar expanding solutions

A self-similar or homothetic solution to mean curvature ow is one which
moves by scaling and is given by the general form

Mt = λ(t)Mt1 (1.4)

for a given time t1 and a positive λ(t) which needs to be speci ed. We can

The “grim reaper”
or translating
soliton solution of
mean curvature
flow.

then specify the ansatz, for a family of embeddings F̃(·, t) : Mn → Rn+1,
namely:

F̃(q, t) = λ(t)F̃(q, t1)

which satis es the evolution equation(
∂F̃
∂t

(q, t)
)⊥

= H⃗(F̃(q, t))

for q ∈ Mn. This says that up to tangential di eomorphisms, the motion
described by F̃ is equivalent to its normal motion along the mean curvature
vector given by F.

Using the fact that the mean curvature scales like 1/λ(t) we have from
the above evolution equation:

λ′(t)F̃(q, t1)
⊥ =

1
λ(t)

H⃗(F̃(q, t1))

from which we see that

α ≡ d
dt

λ2(t) = 2λ(t)λ′(t)

is independent of t. Setting the condition λ(t1) = 1 from our ansatz we obtain
the following positive solution to our ODE:

λ(t) =
√

1 + α(t − t1) (1.5)

for t satisfying 1 + α(t − t1) > 0. Thus setting x = F̃(q, t) for x ∈ Mn, we
have from our ansatz F̃(q, t1) = x/λ(t), which when substituted into the
above equation gives:

H⃗(x) =
αx⊥

2λ2(t)

for 1+ α(t− t1) > 0, describing expanding homothetic solutions for α > 0 and
contracting homothetic solutions for α < 0.

5
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1.4.1 Self-similar solutions in the graph setting

In the graph setting expanding homothetic solutions to (1.3) arise quite nat-
urally as solutions “coming out of a cone” i.e. when the initial surface M0 is
a cone. Suppose that if u0 is a cone with vertex at 0 then we can write:

The solution of
mean curvature
flowwith a cone as
initial data.

u0(λp) = λu0(p)

for all λ ≥ 0 and p ∈ Rn. Now if we de ne

uλ
0 (p) :=

1
λ

u0(λp)

for λ > 0, then

uλ(p, t) =
1
λ

u(λp, λ2t)

solves (1.3) with the initial condition uλ(p, 0) = uλ
0 (λp)/λ = u0(p) for λ > 0.

By the uniqueness of solutions at least in the class of functions with at most
linear growth, we get that

u(p, t) =
1
λ

u(λp, λ2t)

and setting λ = 1/
√

t in the above gives

u(p, t) =
√

tu
(

p√
t
, 1
)

.

Di erentiate both sides with respect to t we get:

∂u
∂t

=
1
2

t−1/2u(
p√

t
, 1)− 1

2
t−3/2Du(

p√
t
, 1) · p.

Since we know from (1.3) that ∂u/∂t = −
√

1 + |Du|2H, we conclude that:

H +
1
2t

F · ν = 0,

which corresponds to α = 1 and t1 = 1 in (1.5). Therefore for all p ∈ M1 the
identity

H +
1
2

F · ν = 0

holds.
This together with the initial condition limt→0 Mt = M0 implies that every

Mt is asymptotic to the initial cone as |p| → ∞ for p ∈ Mt in the sense

lim
|p|→∞

|u(p, t)− u0(p)|
|p| = 0

for every t > 0.

6



CHAPTER 1. INTRODUCTION 1.5. INTEGRAL FORM OF MEAN CURVATURE FLOW

1.5 Integral form of mean curvature flow

We can also study the equation (1.2) in the integral setting. This method of
using energy estimates provide us with the most important tools in under-
standing the formation of singularities and their asymptotics. These tools
where rst established for (1.2) by Huisken and also generalised by Huisken
and Ecker in their work.

To begin with we will need to show how the area element evolves as the
surface ows by its mean curvature. Recall that:

dµt(p) =
√

det gij(p, t)dµMn(p)

where dµMn is the volume form on the parameter manifold Mn and themetric
at (p, t) is

gij(p, t) = ∂iF(p, t) · ∂jF(p, t).

Then we use the fact that the coordinate derivatives of F(p, t) commute
to calculate:

∂tgij = 2∂t∂iF · ∂jF = 2∂i∂tF · ∂jF.

Next we use the evolution equation ∂tF = −Hν, and ν being the normal
implies ν · ∂jF = 0 for 1 ≤ j ≤ n to get

∂tgij = 2∂i(−Hν) · ∂jF = −2H∂iν · ∂jF = −2HAij

and also
∂tgij = 2HAij.

The derivative of g := det[gij], the determinate of a matrix [gij], is ∂tg =

trace([gij]
−1∂t[gij])g or ∂tg = ggij∂tgij and so the area element evolves by:

∂t
√

g = −H2√g = −|H⃗|2√g

which proves the following lemma:

Lemma 1.1 (Evolution of Area Element). The area element of a solution (Mt)t∈I
of (1.2) satis es the equation

∂

∂t
dµt = −|H⃗|2dµt

for all t ∈ I.

The fact that we consider smooth, properly embedded solutions of mean
curvature ow implies that the n-dimensional Hausdor measure on the fam-
ily of surfaces satis es

Hn(Mt ∩ K) < ∞

7
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for all K ⊂⊂ Rn+1 and for all t ∈ I. This is needed for us to integrate test
functions on Rn+1 which have compact support over Mt. Another assump-
tion in view of the divergence theorem is that our family of solutions has no
boundary inside the set in which we integrate over them. With this in mind
and by using the chain-rule and the above lemma, we can state the integral
form of mean curvature ow as:

Proposition 1.1 (Mean Curvature Flow in Integral Form). For any smooth,
properly embedded family of solutions (Mt)t∈I of (1.2) in an open subset U ⊂
Rn+1, the following holds

d
dt

∫
Mt

ϕ =
∫

Mt
H⃗ · Dϕ − |H⃗|2ϕ

for all t ∈ I and ϕ ∈ C1
0(U).

Similarly for time dependent test functions ϕ ∈ C1(U × I), we can specify
that ϕ(·, t) ∈ C2

0(U) and ϕt(·, t) ∈ C0
0(U) for all t ∈ I. This implies then that

the time derivative ϕt is integrable on Mt and by the divergence theorem we
have

∫
Mt

∆Mt ϕ = 0 for all t ∈ I. This together with the above equations then
give us the following given the assumptions on our test function:

Proposition 1.2 (Time-Dependent Test Function). A smooth, properly embed-
ded solution (Mt)t∈I of (1.2) in U ⊂ Rn+1 satis es

d
dt

∫
Mt

ϕ =
∫

Mt

dϕ

dt
− |H⃗|2ϕ =

∫
Mt

∂ϕ

∂t
+ H⃗ · Dϕ − |H⃗|2ϕ

which due to the Divergence Theorem gives:

d
dt

∫
Mt

ϕ =
∫

Mt

∂ϕ

∂t
± divMt Dϕ − |H⃗|2ϕ =

∫
Mt

(
d
dt

± ∆Mt

)
ϕ − |H⃗|2ϕ,

given test function ϕ de ned above.

1.5.1 Monotonicity formula

The monotonicity formula which was proved by Huisken describes the be-
haviour of the integral of the “backward heat-kernel” over our surface Mt. We
can de ne backward heat-kernel centered at the origin as

Φ(x, t) =
1

(−4πt)n/2 exp
(
|x|2
4t

)
for x ∈ Rn+1 and t > 0 and its translate for some xed x0 ∈ Rn+1 and time
t0 > t, as:

Φ(x0,t0)
(x, t) := Φ(x − x0, t − t0) =

1
(4π(t0 − t))n/2 exp

(
−|x − x0|2

4(t0 − t)

)
.

8
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Geometrically we can see that as t approached t0, the kernel is scaled and
concentrates at the point x0. The monotonicity formula then says that un-
der mean curvature ow the area of the hypersurface near any point in non-
increasing on any scale. It is in fact strictly decreasing, unless the hypersur-
face is homothetically contracting about this point.

Theorem 1.1 (Huisken’s Monotonicity Formula). If Mt is a surface satisfying
(1.2) for t < t0, then we have

d
dt

∫
Mt

Φ(x0,t0)
dµt = −

∫
Mt

∣∣∣∣∣H⃗ −
∇⊥Φ(x0,t0)

Φ(x0,t0)

∣∣∣∣∣
2

Φ(x0,t0)
dµt.

Proof. The proof uses the fact that Φ is an extrinsically de ned function of
Mt, in which case the total derivative of Φ along Mt equals:

dΦ
dt

=
∂Φ
∂t

+ DΦ · H⃗

and the Laplace-Beltrami given by (1.1). Thus if we assumewe are at the origin
(x0, t0) = (0, 0) we have the following pointwise result:(

d
dt

+ ∆Mt

)
Φ =

∂Φ
∂t

+ divMt DΦ + 2H⃗ · ∇⊥Φ,

where we use the fact that since H⃗ is a normal vector to Mt, then

H⃗ · DΦ = H⃗ · ∇⊥Φ.

Completing the square then gives us:(
d
dt

+ ∆
)

Φ =
∂Φ
∂t

+ divMt DΦ +
|∇⊥Φ|2

Φ

−
∣∣∣∣∣H⃗ − ∇⊥Φ

Φ

∣∣∣∣∣
2

Φ + |H⃗|2Φ.

Next we calculate from the de nition of Φ:

∂Φ
∂t

+ divMt DΦ +
|∇⊥Φ|2

Φ
=

(
∂

∂t
− ∆Rn+1

)
Φ − D2Φ(ν, ν) +

|DΦ · ν|2
Φ

= 0,

since (
∂

∂t
− ∆Rn+1

)
Φ =

Φ
2t

9
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and the remaining two terms using DΦ = xΦ/(2t) similarly gives −Φ/(2t).
Thus (

d
dt

+ ∆Mt

)
Φ − |H⃗|2Φ = −

∣∣∣∣∣H⃗ − ∇⊥Φ
Φ

∣∣∣∣∣
2

Φ, (1.6)

and in the case of compact Mt, by Proposition 1.2 we are done. In the general
case we use Theorem 1.2 given below, with f ≡ 1 to obtain the result.

Theorem 1.2 (Weighted Monotonicity Formula). Suppose (Mt)t∈I is a family
of solutions to (1.2), and that f is a su ciently smooth (possibly time-dependent)
function de ned on (Mt)t∈I , such that all integrals are nite and integration
by parts is permitted, i.e.∫

Mt
(| f |+ |∂ f

∂t
|+ |D f |+ |D2 f |)Φ(x0,t0)

< ∞

for all times t ∈ I with t < t0 and xed point (x0, t0) ∈ Rn+2. Then for these
times we have:

d
dt

∫
Mt

f Φ(x0,t0)
=
∫

Mt

( d
dt

− ∆Mt

)
f −

∣∣∣∣∣H⃗ −
∇⊥Φ(x0,t0)

Φ(x0,t0)

∣∣∣∣∣
2

f

Φ(x0,t0)
.

Proof. We consider a time-dependent compactly supported test function ϕ.
From Proposition 1.2 we have

d
dt

∫
Mt

Φϕ =
∫

Mt
Φ

dϕ

dt
+ ϕ

dΦ
dt

− |H⃗|2Φϕ

=
∫

Mt
Φ
(

d
dt

− ∆Mt

)
ϕ +

((
d
dt

+ ∆Mt

)
Φ − |H⃗|2Φ

)
ϕ,

where we have used the integration by parts formula∫
M

ϕ∆MΦ = −
∫

M
∇Mϕ · ∇MΦ =

∫
M

Φ∆Mϕ.

In view of (1.6) we have:

d
dt

∫
Mt

Φϕ =
∫

Mt
Φ
(

d
dt

− ∆Mt

)
ϕ −

∣∣∣∣∣H⃗ −
∇⊥Φ(x0,t0)

Φ(x0,t0)

∣∣∣∣∣
2

Φϕ.

Now we proceed as in [14] and choose ϕ = χR where

χBR ≤ χR ≤ χB2R ,

10
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χBR being the characteristic function for the ball BR and

R|DχR|+ R2|D2χR| ≤ C0.

We therefore have∣∣∣∣( d
dt

− ∆Mt

)
χR

∣∣∣∣ =

∣∣∣∣( ∂

∂t
− ∆Rn+1

)
χR + D2χR(ν, ν)

∣∣∣∣
≤ C(n, C0)

R2 χB2R\BR
.

Since we assumed that
∫

Mt
Φ ≤ ∞ we can therefore let R → ∞ and use

the standard converge theorems for integrals to conclude the Monotonicity
formula when Mt is not compact.

To prove the general case we use ϕ = f χR and proceed in the same way
as above.

1.6 Weak Maximum principle

In order to prove estimates for di erent geometric quantities, we will need
to use the following weak maximum principle which we will prove using the
monotonicity formula of the previous section. We will use the the maximum
principle in cases where our test function is extrinsically de ned, in which
case we can express a

h(p, t) = f (x, t) where x = F(p, t).

Here h : Mn × [t1, t0) → R and f : U × [t1, t0) → R and U is an open set
in Rn+1 containing the family of surfaces Mt. The maximum principle then
states:

Proposition 1.3 (Weak Maximum Principle). For (Mt)t∈(t1,t0)
, a family of so-

lutions to (1.2), suppose f : U × [t1, t0) → R is su ciently smooth for t > t1,
continuous on Mn × [t1, t0] and satis es the inequality(

d
dt

− ∆Mt

)
f ≤ a⃗ · ∇Mt f ,

for some vector eld a⃗ : Mn × [t1, t0) → Rn+1 which is well-de ned in the sense
a0 = supM×[t1,t0)

|⃗a| < ∞. Then

sup
Mt

f ≤ sup
Mt1

f

for all t ∈ [t1, t0].

11
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Proof. Let k = supMt1
f and de ne fk := max ( f − k, 0). Then from our as-

sumption on f , we have(
d
dt

− ∆Mt

)
f 2
k = 2 fk

(
d
dt

− ∆Mt

)
fk − 2|∇ fk|2

≤ 2 fk⃗a · ∇ fk − 2|∇ fk|2.

By Young’s inequality and our assumption on the vector eld a⃗ we obtain(
d
dt

− ∆Mt

)
f 2
k ≤ 1

2
a2

0 f 2
k .

We now use Theorem 1.2 with f = f 2
k to obtain the inequality

d
dt

∫
Mt

f 2
k Φ dµt ≤

1
2

a2
0

∫
Mt

f 2
k Φ dµt

which implies that fk is constant in time t. But initially at t = t1, fk = 0 so we
have that fk ≡ 0, which gives us our result.

12



Chapter 2

Comparison with the Heat
Equation

Since we have an explicit form for the solution of the heat equation, we use
it to calculate the rate of convergence of rescaled solutions for di erent

assumptions on the growth rate of conic initial data.

2.1 Simplest case

When n = 1, the equation (1.3) is just

∂u
∂t

=
∆u

1 + Du2 , (2.1)

and its linearization is just the heat equation

∂u
∂t

= ∆u, (2.2)

with the initial data given by u(p, 0) = u0(p). The solution of (2.2) for a
u ∈ C2 is given by:

u(p, t) =
1√
4πt

∫
R

u0(z)e−(p−z)2/4t dz.

If we de ne q = (z − p)/
√

4t then we get

u(p, t) =
1√
π

∫
R

u0(p + q
√

4t)e−q2
dq.

13
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Rescaling the solution parabolically, i.e.

Φ(y, τ) =
u(p, t)√

2t
, y =

p√
2t

, τ = log
√

2t,

then gives

Φ(y, τ) =
1√
π

∫
R

e−τu0

(
eτ(y + q

√
2)
)

e−q2
dq.

Notice that the solution coming out of the cone u0(y) = |y| is given by

u(y, t) =
1√
π

∫
R
|y + q

√
4t|e−q2

dq,

which at time t = 1/2 it is independent of t and so is equal to

u(y, 1/2) =
1√
π

∫
R
|y + q

√
2|e−q2

dq = Φ∞(y) := lim
τ→∞

Φ(y, τ).

Thus we call Φ∞(·) the self-similar solution to the heat equation coming out
of this cone u0(y) = |y|.

If we now stipulate how our initial data u0(p) converges to its tangent
cone at in nity, then we can calculate the rate at which the solutions to the
heat equation become self-similar as t → ∞.

2.2 Ecker and Huisken condition

In their paper [6], Ecker and Huisken consider an initial surface which grows
linearly and has bounded curvature. In the simpli ed case when n = 1 we
can write our initial surface as x0 = (p, u0(p)). The unit normal is then given
by

ν0 =
(−u′

0, 1)√
1 + (u′

0)
2

.

The linear growth condition is then

v0 = ⟨ν0, e2⟩−1 =
√

1 + (u′
0)

2 ≤ c1

for some xed constant c1 ≥ 1. The bounded curvature then implies that the
second derivative of u0 is bounded too.

In addition Ecker and Huisken require that their initial surface satisfy the
following estimate

⟨x0, ν0⟩2 ≤ c3(1 + |x0|2)1−δ

14



CHAPTER 2. COMPARISONWITH THE HEAT EQUATION 2.3. RATE OF CONVERGENCE

for some constant c3 < ∞ and δ > 0. We write this condition in terms of u0
to get

|pu′
0 − u0|2

1 + (u′
0)

2 ≤ c3

(1 + p2 + u2
0)

δ−1
.

Note that the linear growth condition implies

|pu′
0 − u0|2

c2
1

≤
|pu′

0 − u0|2
1 + (u′

0)
2 ≤ c3

(1 + p2 + u2
0)

δ−1
≤ C

p2δ−2

which is just the following, after we divide both sides by p2

|pu′
0 − u0|
p2 ≤ C

pδ+1 .

Note that the left hand side is just the derivative of u0/p, so we have∣∣∣∣ d
dp

u0(p)
p

∣∣∣∣ ≤ C
pδ+1 ,

which nally gives us the Ecker and Huisken condition:∣∣∣∣ limr→∞

u0(r)
r

− u0(p)
p

∣∣∣∣ ≤ C
pδ

.

2.3 Rate of convergence to self-similar solutions

If the initial data u0(p) is a cone tangent to the standard cone at in nity, then
it satis es all the assumptions of the previous section if∣∣∣∣u0(p)

p
− 1
∣∣∣∣ ≤ C

|p|δ
,

i.e. it approaches its tangent cone at in nity at a rate proportional to |x|δ, for
some δ > 0. This then implies that

|u0(p)− |p|| ≤ C|p|1−δ

which we use to get:

|Φ(y, τ)− Φ∞(y)| =

∣∣∣∣ 1√
π

∫
R

e−τu0

(
eτ(y + q

√
2)
)

e−q2
dq − 1√

π

∫
R
|y + q

√
2|e−q2

dq
∣∣∣∣

≤ 1√
π

∫
R

e−τ
∣∣∣u0

(
eτ(y + q

√
2)
)
− |eτ(y + q

√
2)|
∣∣∣ e−q2

dq

≤ Ce−δτ

√
π

∫
R
|y + q

√
2|1−δe−q2

dq = Ce−δτ .
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Thus we see that the convergence to the self-similar solution coming out
of the cone is exponential—at least in the linear case of the heat equation.

Now if we assume our initial data satis es for some δ > 0 a condition of
the form ∣∣∣∣u0(p)

p
− 1
∣∣∣∣ ≤ C

logδ|p|
,

which implies that

|u0(p)− |p|| ≤ C|p|
logδ|p|

and we see that

|Φ(y, τ)− Φ∞(y)| ≤ 1√
π

∫
R

e−τ
∣∣∣u0

(
eτ(y + q

√
2)
)
− |eτ(y + q

√
2)|
∣∣∣ e−q2

dq

≤ C√
π

∫
R

|y + q
√

2|
τδ + logδ|y + q

√
2|

e−q2
dq

≤ Cτ−δ.

In other words we have a slower (τδ) rather than exponential, rate of conver-
gence to a self-similar solution.

We can thus reverse the above process to recover the condition analogous
to that of Ecker and Huisken so that we have a slower convergence to self-
similar solutions in this simpli ed case. Doing this gives that:

⟨x0, ν0⟩2 ≤ c3
|p|2

logδ|x0|2

for some δ > 0.
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Chapter 3

Height Estimate

We wish to show in this chapter that any initial smooth graphwith bounded
gradient that satis es the logarithmic convergence to its tangent cone

at in nity, stays in such a class under mean curvature ow.
We de ne the height of Mt with respect to the hyperplane Rn × {0} by

u(p, t) = ⟨x(p, t), en+1⟩

In particular we have the following lemma, since x(p, t) is the solution to
mean curvature ow and so (

d
dt

− ∆
)

u = 0.

Lemma 3.1. The function η(x, t) given by

η(x, t) = 1 + |x|2 − u2 + (2n + m)t

satis es (
d
dt

− ∆
)

η = 2|∇u|2 + m,

for some constant m.

Proof. Since (
d
dt

− ∆
)
(|x|2 + 2nt) = 0

and (
d
dt

− ∆
)

u2 = −2|∇u|2,

we have the implied result.
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We have, by the Chain-rule for the Heat operator, for two twice di eren-
tiable functions f : R → R and η : Rn → R, the composite f (η) satis es(

d
dt

− ∆
)

f (η) = f ′(η)
(

d
dt

− ∆
)

η − f ′′(η)|∇η|2,

where f ′ denotes the derivative of f . We use this fact together with the Product-
rule for the Heat operator:(

d
dt

− ∆
)

f g = f
(

d
dt

− ∆
)

g + g
(

d
dt

− ∆
)

f − 2∇ f · ∇g

for a twice di erentiable function g : R → R, to prove the following lemma:

Lemma 3.2. For any power δ and two twice di erentiable functions f : R → R

and η : Rn → R, the composite f δ(η) satis es(
d
dt

− ∆
)

f δ(η) = δ f δ−1
(

d
dt

− ∆
)

f (η)− δ(δ − 1) f δ−2( f ′)2|∇η|2

= δ f δ−1 f ′
(

d
dt

− ∆
)

η − δ f δ−1 f ′′|∇η|2

− δ(δ − 1) f δ−2( f ′)2|∇η|2.

Proof. By using the above product rule repeatedly and direct calculation we
have that:(

d
dt

− ∆
)

f δ = f
(

d
dt

− ∆
)

f δ−1 + f δ−1
(

d
dt

− ∆
)

f − 2∇ f δ−1 · ∇ f

= f
(

f
(

d
dt

− ∆
)

f δ−2 + f δ−2
(

d
dt

− ∆
)

f − 2∇ f δ−2 · ∇ f
)

+ f δ−1
(

d
dt

− ∆
)

f − 2∇ f δ−1 · ∇ f

= · · ·

= δ f δ−1
(

d
dt

− ∆
)

f

− 2 (1 + 2 + · · ·+ (δ − 1)) f δ−2( f ′)2|∇η|2

which gives the result since ∑δ−1
i=1 i = δ(δ − 1)/2.

Thus we have for our particular η, and general f ,(
d
dt

− ∆
)

f δ(η) = δ f δ−1 f ′(2|∇u|2 + m)− δ f δ−1 f ′′|∇η|2

− δ(δ − 1) f δ−2( f ′)2|∇η|2,
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and

(
d
dt

− ∆
)

u2 f δ(η) = δ f δ−1 f ′u2(2|∇u|2 + m)− δ f δ−1 f ′′u2|∇η|2

− δ(δ − 1) f δ−2( f ′)2u2|∇η|2 − 2 f δ|∇u|2

− 4δ f δ−1 f ′u∇u · ∇η.

We use this to prove the following lemma:

Lemma 3.3. For any power δ and two twice di erentiable functions functions
f : R → R and η : Rn → R we have:

(
d
dt

− ∆
)(

u2 f δ(η)

η
− f δ(η)

)
=

(
u2

η
− 1
)

δ f δ−1
(

f ′(2|∇u|2 + m)− f ′′|∇η|2
)

−
(

u2

η
− 1
)

δ(δ − 1) f δ−2( f ′)2|∇η|2

− 2
f δ

η
|∇u|2 − u2 f δ

η2 (2|∇u|2 + m)

− 2
u2 f δ

η3 |∇η|2 + 2δ
u2 f δ−1

η2 f ′|∇η|2

− 4δ
u f δ−1

η
f ′∇u · ∇η + 4

u f δ

η2 ∇u · ∇η.

Proof. To begin with we use the previous lemma to calculate:

(
d
dt

− ∆
)

η−1 = −η−2
(

d
dt

− ∆
)

η − 2
|∇η|2

η3 = −2|∇u|2 + m
η2 − 2

|∇η|2
η3 .

Thus we have the following:

(
d
dt

− ∆
)

u2

η
=

1
η

(
d
dt

− ∆
)

u2 + u2
(

d
dt

− ∆
)

η−1

− 2∇η−1 · ∇u2
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and(
d
dt

− ∆
)(

u2

η
− 1
)

f δ =

(
u2

η
− 1
)(

d
dt

− ∆
)

f δ + f δ

(
d
dt

− ∆
)

u2

η

− 2∇u2

η
· ∇ f δ

=

(
u2

η
− 1
)(

d
dt

− ∆
)

f δ +
f δ

η

(
d
dt

− ∆
)

u2

+ u2 f δ

(
d
dt

− ∆
)

η−1 − 2 f δ∇η−1 · ∇u2

− 2∇u2

η
· ∇ f δ

which when expanded gives us the result.

3.1 Logarithmic growth

Now we would like to study Mt, a smooth solution to (1.2), which grows
logarithmically. We would like to show that that height u(·, t) satis es the
same logarithmic growth estimates as u(·, 0). Note in particular that the non-
negative function |x|2 − u2 measures distance in the hyperplane orthogonal
to en+1. Our proposition then states:

Proposition 3.1. If for some negative constant −∞ < c0 ≤ 0 and positive
power δ ≥ 1, the inequality

u2

e + |x|2 − u2 − 1 ≤ c0

logδ(e + |x|2 − u2)

is satis ed on M0, then for all t > 0,

u2

e + |x|2 − u2 + (2n + m)t
− 1 ≤ c0

logδ(e + |x|2 − u2 + (2n + m)t)
,

and a positive constant m ≥ 4(δ − 1).

Proof idea. The proof involves calculating the evolution of(
u2

e + |x|2 − u2 + (2n + m)t
− 1
)

logδ(e + |x|2 − u2 + (2n + m)t)
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and then using the Weak Maximum Principle to obtain the result. In the cal-
culation below, we will abuse our notations and denote η also by the term
with the exponential e,

η(x, t) = e + |x|2 − u2 + (2n + m)t,

as the constant does not a ect the prior calculations.

Thus when we have for our particular case

f (η) = log(η), f ′(η) =
1
η

, f ′′(η) = − 1
η2

then the above lemma gives:(
d
dt

− ∆
)(

u2 f δ(η)

η
− f δ(η)

)
=

(
u2

η
− 1
)

δ f δ−1
(

2|∇u|2 + m
η

+
|∇η|2

η2

)
−
(

u2

η
− 1
)

δ(δ − 1)
f δ−2

η2 |∇η|2

− 2
f δ

η
|∇u|2 − u2 f δ

η2 (2|∇u|2 + m)

− 2
u2 f δ

η3 |∇η|2 + 2δ
u2 f δ−1

η3 |∇η|2

− 4δ
u f δ−1

η2 ∇u · ∇η + 4
u f δ

η2 ∇u · ∇η.

Using Young’s inequality we obtain:∣∣∣∣4 u f δ

η2 ∇u · ∇η

∣∣∣∣ ≤ 2
f δ

η
|∇u|2 + 2

u2 f δ

η3 |∇η|2. (3.1)

Also note that in terms of a local orthonormal frame {ei}1≤i≤n on M we have

∇iu = ∇i⟨x, en+1⟩ = ⟨ei, en+1⟩
which implies that

∇iη = 2|x| ⟨x, ei⟩
|x| − 2⟨x, en+1⟩⟨ei, en+1⟩ = 2⟨ei, x − ⟨x, en+1⟩en+1⟩

so that:

|∇η|2 = 4 ∑
i
(⟨x, ei⟩ − ⟨x, en+1⟩⟨ei, en+1⟩)2

= 4 ∑
i
(⟨x, ei⟩2 − 2⟨x, en+1⟩⟨ei, en+1⟩⟨x, ei⟩+ ⟨x, en+1⟩2⟨ei, en+1⟩2)

= 4
(
|x|2 − ⟨ν, x⟩2 − 2⟨x, en+1⟩2 + u2(1 − ⟨ν, en+1⟩2)

)
≤ 4η. (3.2)
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Also by the rst derivative test for an extrema, we have at such a point
∇(u2 f δ/η − f δ) = 0. This expands out to give:

0 = ∇
(

u2 f δ(η)

η
− f δ(η)

)
= 2

u f δ∇u
η

+ δ
u2 f δ−1∇η

η2

− u2 f δ∇η

η2 − δ
f δ−1∇η

η
,

which we rearrange to get:

2δ
u2 f δ−1

η3 |∇η|2 − 4δ
u f δ−1

η2 ∇u · ∇η = −2δ2 f δ−2|∇η|2
η2 + 2δ2 u2 f δ−2|∇η|2

η3

≤ −2δ2 f δ−2|∇η|2
η2 + 2δ2 f δ−2|∇η|2

η2

= 0. (3.3)

The last inequality above comes if we assume that initially

u2

η
≤ 1

which is preserved during mean curvature ow as shown by the following
adaption of Proposition 2.2 of Ecker and Huisken in [6]:

Proposition 3.2 (A priori Height Estimate). If for some c0 < ∞, the inequality

u2

1 + |x|2 − u2 ≤ C0

is satis ed on M0, then for all t > 0, and some constant m ≥ 0,

u2

1 + |x|2 − u2 + (2n + m)t
≤ C0.

Proof. We calculate the evolution equation(
d
dt

− ∆
)

u2

η
= −2

|∇u|2
η

− u2

η2 (2|∇u|2 + m)− 2u2 |∇η|2
η3

+ 4u
∇η · ∇u

η2 .

By Young’s inequality we have:∣∣∣∣4u
∇η · ∇u

η2

∣∣∣∣ ≤ 2
|∇u|2

η
+ 2u2 |∇η|2

η3
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which then implies that(
d
dt

− ∆
)

u2

η
≤ −u2

η2 (2|∇u|2 + m) ≤ 0.

Therefore by the Weak Maximum Principle (Proposition 1.3) the result fol-
lows.

We are now ready to prove our proposition, namely if Mt is a smooth
solution of mean curvature ow and if initially M0 converges to its tangent
cone logarithmically, then such a rate is preserved during the evolution. In
other words the solutions remain in the same growth class they started in.

Proof of Proposition 3.1. By using the inequalities (3.1) and (3.3) we obtain
from the evolution equation for some positive power δ, the following inequal-
ity at the maximum point:(

d
dt

− ∆
)(

u2

η
− 1
)

f δ ≤ −δ

(
1 − u2

η

)
f δ−1

(
2|∇u|2 + m

η
+

|∇η|2
η2

)
+ δ(δ − 1)

(
1 − u2

η

)
f δ−2

η2 |∇η|2

− u2 f δ

η2 (2|∇u|2 + m).

Note that since u2/η − 1 by our initial assumption is negative, the only pos-
itive term we have in the above inequality is

δ(δ − 1)
(

1 − u2

η

)
f δ−2

η2 |∇η|2 ≤ 4δ(δ − 1)
(

1 − u2

η

)
f δ−2

η
,

since by (3.2) |∇η|2 ≤ 4η. Now we will choose a positive constant m so that
we can control this term. In particular we see that m must be chosen so that

δ

(
1 − u2

η

)
f δ−1

η

(
4

δ − 1
f

− m
)
≤ 0.

Thus since f (η) ≥ log e = 1, if we choose m ≥ 4(δ − 1), we can drop this
remaining negative term to obtain(

d
dt

− ∆
)(

u2

η
− 1
)

f δ ≤ 0.

Therefore once again by the Weak Maximum Principle in Proposition 1.3, the
result we need is obtained.
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Chapter 4

Gradient Function Estimates

In this chapter we wish to show that our family of surfaces Mt remains a
graph for all times. We thus need to estimate ν · en+1 from below or equiv-

alently the term

v =
1

ν · en+1
=
√

1 + |Du|2,

de ned as the gradient function, from above.
We recall from Appendix A that(

d
dt

− ∆
)

ν = |A|2ν,

which we use to prove the following lemma from [6]:

Lemma 4.1. The quantity v satis es the evolution equation(
d
dt

− ∆
)

v = −|A|2v − 2
|∇Mt v|2

v
.

Proof. We have that (
d
dt

− ∆
)
(ν · en+1) = |A|2v−1,

which gives us the result(
d
dt

− ∆
)

v = −|A|2v − 2
|∇Mt v|2

v

by using Lemma 3.2.
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An immediate corollary of the above lemma in view of the Maximum Prin-
ciple is that

Corollary 4.1. If v is bounded at time t = 0, it remains bounded by the same
constant.

We have form the work of Ecker and Huisken the following proposition

Proposition 4.1. If for some constant c1 < ∞, p ≥ 0,

v ≤ c1(1 + |x|2 − u2)p

at time t = 0, then for t > 0 the inequality holds

v(x, t) ≤ c1

(
1 + |x|2 − u2 + (2n + m)t

)p

holds for some positive constant m ≥ 0.

Proof. Setting
η(x, t) = 1 + |x|2 − u2 + (2n + m)t,

we compute from the previous lemmas:(
d
dt

− ∆
)

vη−p = v
(

d
dt

− ∆
)

η−p + η−p
(

d
dt

− ∆
)

v

− 2∇v · η−p

= −p(p + 1)|∇η|2vη−p−2 − 2p(|∇u|2 + m)vη−p−1

− |A|2vη−p − 2
|∇v|2
vηp + 2pη−p−1∇v · ∇η.

The last term we estimate via Young’s inequality as

|2pη−p−1∇v · ∇η| ≤ 2
|∇v|2
vηp +

1
2

p2|∇η|2vη−p−2,

which gives us for positive p and m(
d
dt

− ∆
)

vη−p = −p(
p
2
+ 1)|∇η|2vη−p−2 − 2p(|∇u|2 + m)vη−p−1

− |A|2vη−p

≤ 0,

and the conclusion follows by the Maximum Principle.

Indeed we can also derive logarithmic estimates for v similar to those
derived in the previous section for the height. More precisely we have that
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Proposition 4.2. If for come constant c1 < ∞, and δ ≥ 0,

v ≤ c1 logδ(e + |x|2 − u2)

at time t = 0, then for t > 0 the inequality

v ≤ c1 logδ(e + |x|2 − u2 + 2nt)

holds.

Proof. We have from the previous lemma for m = 0 that:(
d
dt

− ∆
)

v log−δ η = log−δ η

(
d
dt

− ∆
)

v + v
(

d
dt

− ∆
)

log−δ η

− 2∇ log−δ η · ∇v

= −|A|2v log−δ η − 2
|∇v|2

v
log−δ η − 2δv

log−δ−1 η

η
|∇u|2

− δv
log−δ−1 η

η2 |∇η|2 − δ(δ + 1)v
log−δ−2 η

η2 |∇η|2

+ 2δ
log−δ−1 η

η
∇η · ∇v.

Now we estimate∣∣∣∣∣2δ
log−δ−1 η

η
∇η · ∇v

∣∣∣∣∣ ≤ 2
|∇v|2

v
log−δ η +

1
2

δ2v
log−δ−2 η

η2 |∇η|2

and the result follows after we drop all the remaining negative terms because
of the positive δ ≥ 0.

Proposition 4.3. If for some negative constant −∞ < c1 ≤ 0, and δ ≥ 1,

v
e + |x|2 − u2 − 1 ≤ c1

logδ(e + |x|2 − u2)

at time t = 0, then for t > 0 the inequality

v(x, t)
e + |x|2 − u2 + 2nt

− 1 ≤ c1

logδ(e + |x|2 − u2 + 2nt)

holds.

27



CHAPTER 4. GRADIENT FUNCTION ESTIMATES

Proof. From the previous lemmas we have that(
d
dt

− ∆
)

v
η

=
1
η

(
d
dt

− ∆
)

v + v
(

d
dt

− ∆
)

1
η

− 2∇η−1 · ∇v

= −|A|2v
η

− 2
|∇v|2

ηv
− 2v

|∇u|2
η2 − 2v

|∇η|2
η3

+ 2η−2∇η · ∇v,

which because of Young’s inequality

|2η−2∇η · ∇v| ≤ 2
|∇v|2

ηv
+ 2v

|∇η|2
η3 ,

gives us (
d
dt

− ∆
)(

v
η
− 1
)
≤ −|A|2v

η
− 2v

|∇u|2
η2 ≤ 0.

Similarly(
d
dt

− ∆
)

logδ η = 2δ
logδ−1 η

η
|∇u|2 + δ

logδ−1 η

η2 |∇η|2

− δ(δ − 1)
logδ−2 η

η2 |∇η|2.

Therefore we have the following evolution equation(
d
dt

− ∆
)(

v
η
− 1
)

logδ η ≤ 2δ

(
v
η
− 1
)

logδ−1 η

η
|∇u|2

+ δ

(
v
η
− 1
)

logδ−1 η

η2 |∇η|2

− δ(δ − 1)
(

v
η
− 1
)

logδ−2 η

η2 |∇η|2

− 2∇ logδ η · ∇ v
η

,

and at an extrema we have

∇
(

v
η
− 1
)

logδ η = 0,

which after expanding and re-arranging gives us:

2δ2
(

v
η
− 1
)

logδ−2 η

η2 |∇η|2 = −2∇ logδ η · ∇ v
η

.

28



CHAPTER 4. GRADIENT FUNCTION ESTIMATES

Substituting this into our evolution equation above and noting also that by
our initial assumption on the constant c1 begin negative, and the fact that
logδ η ≥ 1, we have that initially(

v
η
− 1
)
≤ 0,

which by the above proposition remains so during the course of the evo-
lution, we therefore obtain after dropping the obvious negative terms the
following(

d
dt

− ∆
)(

v
η
− 1
)

logδ η ≤ (δ2 + δ)

(
v
η
− 1
)

logδ−2 η

η2 |∇η|2 ≤ 0

where the last term is also negative for δ ≥ 0. Thus using the Maximum
principle we obtain our result.
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Chapter 5

Curvature Estimates

Here we present the work of Ecker and Huisken, which guarantee’s long-
time existence of a solution to mean curvature ow, for which it is cru-

cial to obtain a priori bounds for the second fundamental form on Mt.
We shall only look at the case of linear growth by assuming that for some

xed constant c1 ≥ 1, the inequality

v ≤ c1 (5.1)

holds everywhere initially on M0, and by the result in the previous chapter,
hence holds for all time t ≥ 0.

Lemma 5.1. The curvature satis es the inequality(
d
dt

− ∆
)
|A|2v2 ≤ −2

1
v
∇v · ∇(|A|2v2).

Proof. We have the evolution equation(
d
dt

− ∆
)
|A|2 = −2|∇A|2 + 2|A|4 ≤ −2|∇|A||2 + 2|A|4,

where we have used Kato’s inequality |∇|A||2 ≤ |∇A|2. We also have(
d
dt

− ∆
)

v2 = −2|A|2v2 − 6|∇v|2,

and nally,

2∇|A|2 · ∇v2 = ∇|A|2 · ∇v2 + 4v|A|∇|A| · ∇v,
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which we can re-write in terms of ∇(|A|2v2) since

∇(|A|2v2) = |A|2∇v2 + v2∇|A|2

which after re-arranging gives

∇|A|2 · ∇v2 =
1
v2 ∇v2 · ∇(|A|2v2)− 1

v2 |∇v2|2|A|2

= 2
1
v
∇v · ∇(|A|2v2)− 1

v2 |∇v2|2|A|2.

Therefore we have by Young’s inequality

2∇|A|2 · ∇v2 = 2
1
v
∇v · ∇(|A|2v2)− 1

v2 |∇v2|2|A|2 + 4v|A|∇|A| · ∇v

= 2
1
v
∇v · ∇(|A|2v2)− 4|∇v|2|A|2 + 4v|A|∇|A| · ∇v

≥ 2
1
v
∇v · ∇(|A|2v2)− 6|∇v|2|A|2 − 2|∇|A||2v2.

This then gives us that(
d
dt

− ∆
)
|A|2v2 = v2

(
d
dt

− ∆
)
|A|2 + |A|2

(
d
dt

− ∆
)

v2

− 2∇|A|2 · ∇v2

≤ −2
1
v
∇v · ∇(|A|2v2),

as stated in the lemma.

An immediate corollary in view of the above lemma is an a priori estimate
for solutions of mean curvature ow with bounded gradient and bounded
curvature, together with the fact that

1
v
|∇v| ≤ |A|v,

which implies that the vector given by a⃗ = −2v−1∇v is bounded. The exact
statement of the corollary is given by:

Corollary 5.1. If Mt is a smooth solution of (1.2) with bounded gradient and
bounded curvature on each Mt, then there is the a priori estimate

sup
Mt

|A|2v2 ≤ sup
M0

|A|2v2.
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5.1 Higher derivatives of the curvature

Following the work of Huisken, we wish to use the uniform estimates on |A|2
to estimate all derivatives of A in terms of their initial data.

To begin with we have the following theorem of Huisken from [11]:

Theorem 5.1. For any m we have an equation(
d
dt

− ∆
)
|∇m A|2 ≤ C(n, m) ∑

i+j+k=m
|∇i A||∇j A||∇k A||∇m A|

− 2|∇m+1 A|2

≤ Cm(1 + |∇m A|2)− 2|∇m+1 A|2,

where Cm depends on n, m, and on upper bounds for |A|2, . . . , |∇m−1 A|2.

Note the last inequality comes from the applying Young’s inequality to
the expression

C(n, m) ∑
i+j+k=m

|∇i A||∇j A||∇k A||∇m A|,

which shows that the dependency on the lower order derivatives is polyno-
mial.

The proof follows as in Hamilton’s paper [10], where we use the notation
S ∗ T for any linear combination of tensors formed by contraction on S and
T by g. The covariant derivative involves the Christo el symbols, and we
observe that the time derivative of the Christo el symbols Γi

jk is given by

∂tΓi
jk =

1
2

gil
(
∇j∂tgkl +∇k∂tgjl −∇l∂tgjk

)
= −gil

(
∇j(HAkl) +∇k(Hhjl)−∇l(HAjk)

)
= A ∗ ∇A,

since the evolution equation of g is given by ∂tgij = −2HAij.
As in Hamilton, we have the following lemma:

Lemma 5.2. If S and T are tensors satisfying the evolution equation(
d
dt

− ∆
)

S = T,

then the covariant derivative ∇S satis es an equation of the form(
d
dt

− ∆
)
∇S = ∇T + A ∗ ∇A ∗ S + A ∗ A ∗ ∇S.
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Proof. In view of the time derivative of the Christo el symbol, we have that

d
dt
∇S = ∇ d

dt
S + A ∗ ∇A ∗ S,

since

d
dt
∇iSi =

d
dt

∂iSi +
d
dt

Γj
ikSk

= ∂i
d
dt

Si + Γj
ik

d
dt

Sk + Sk d
dt

Γj
ik

= ∇i
d
dt

Si + A ∗ ∇A ∗ S.

Substituting the evolution of S then gives us:

d
dt
∇S = ∇∆S +∇T + A ∗ ∇A ∗ S.

Finally interchanging the derivatives

∇∆S = ∆∇S + A ∗ A ∗ ∇S + A ∗ ∇A ∗ S,

and this completes the proof.

Following exactly like in Hamilton, we thus have the following theorem

Theorem 5.2. The m-th covariant derivative ∇m|A| of the second fundamen-
tal form satis es an evolution equation of the form(

d
dt

− ∆
)
∇m A = ∑

i+j+k=m
∇i A ∗ ∇j A ∗ ∇k A.

Proof. If m = 0 we have that(
d
dt

− ∆
)

Aij = |A|2 Aij

which gives us the explicit form of the cubic term. We proceed by induction
on m, using the previous lemma. This gives

d
dt
∇m+1 A = ∆∇m+1 A + A ∗ A ∗ ∇m+1 A + A ∗ ∇A ∗ ∇m A

+∇
(

∑
i+j+k=m

∇i A ∗ ∇j A ∗ ∇k A

)
,

and the result follows by the distributive rule for the covariant derivative.
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As a corollary we thus have the following result also from Hamilton:

Corollary 5.2. For any m we have an evolution equation(
d
dt

− ∆
)
|∇m A|2 = −2|∇m+1 A|2

+ ∑
i+j+k=m

∇i A ∗ ∇j A ∗ ∇k A ∗ ∇m A.

Proof. From the previous theorem we have that

d
dt
|∇m A|2 = 2⟨∇m A,

d
dt
∇m A⟩+ A ∗ ∇m A ∗ ∇m A,

where the extra term comes from the variation of the gij de ning the norm
|·|2. The Laplace-Beltrami operator also gives

∆|∇m A|2 = 2⟨∇m A, ∆∇m A⟩+ 2|∇m+1 A|2.

which then gives:(
d
dt

− ∆
)
|∇m A|2 = 2⟨∇m A,

(
d
dt

− ∆
)
∇m A⟩ − 2|∇m+1 A|2

+ A ∗ ∇m A ∗ ∇m A,

and the result follows.

We can now follow exactly as in Huisken’s paper [12], to show that all
higher derivatives of the curvature on Mt are bounded, by using the uniform
estimate on |A|2 and Theorem 5.1, we have the following proposition:

Proposition 5.1. If Mt is a smooth solution to (1.2) such that v, |A|2, |∇A|2,
…, |∇m A|2 are bounded on each Mt, then we have for all t ≥ 0 the a priori
estimate:

sup
Mt

|∇m A| ≤ C(m)

where C(m) depends on m, n, c1 the gradient bound, and supM0
|∇j A| for 0 ≤

j ≤ m.

Proof. We know by Corollary 5.1 that result holds for m = 0. So we proceed
by induction on m. Suppose we have the result for m − 1. Then there is a
constant B, depending on m, n, C0, and M0 such that(

d
dt

− ∆
)
|∇m A|2 ≤ B(1 + |∇m A|2).
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Now we add enough of the evolution equation of |∇m−1 A|2 to control the
right hand side. By Theorem 5.1 we have that(

d
dt

− ∆
)
(|∇m A|2 + B|∇m−1 A|2) ≤ −B|∇m A|2 + B1,

where B1 depends on B and C(j) for 0 ≤ j ≤ m− 1. Since |∇m−1 A|2 is already
bounded, this inequality implies that |∇m A|2 can be estimated uniformly in
t by a constant depending on its initial data and on B and B1.

5.2 Longtime existence

To derive existence of a longtime solution for Lipschitz initial data, we will
rst need the following estimates interior in time for the curvature and all

its derivatives, as done by the work of Ecker and Huisken.

Proposition 5.2. Let Mt be a smooth solution of (1.2) with bounded gradient,
v ≤ c1. Then for each m ≥ 0 there is a constant C(m) depending on c1, n, and
m such that

tm+1|∇m A|2 ≤ C(m)

holds uniformly on Mt.

Proof. For the case m = 0 we compute from the results above, the evolution
equation(

d
dt

− ∆
)
(2t|A|2v2 + v2) ≤ −2

v
∇v · ∇(2t|A|2v2)− 6|∇v|2

≤ −2
v
∇v · ∇(2t|A|2v2)− 4|∇v|2

= −2
v
∇v · ∇(2t|A|2v2 + v2).

By the maximum principle we thus have that the estimate

2t|A|2v2 + v2 ≤ c2
1

holds uniformly on Mt. We now proceed by induction on m. We have that for
arbitrary power l ≥ 0 the estimate:(

d
dt

− ∆
)
(tl+1|∇l A|2) ≤ (l + 1)tl |∇l A|2 − 2tl+1|∇l+1 A|2

+ C(n, l)tl+1 ∑
i+j+k=l

|∇i A||∇j A||∇k A||∇l A|.
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Suppose the result holds for m − 1, then we can estimate the last term as

tl+1 ∑
i+j+k=l

|∇i A||∇j A||∇k A||∇l A| ≤ Ctl+1 ∑
i+j+k=l

t−i/2−j/2−1|∇k A||∇l A|

≤ Ctl/2 ∑
k≤l

tk/2|∇k A||∇l A|

≤ C ∑
k≤l

tk|∇k A|2,

where the constant C = C(n, l, c1). Then we obtain for l ≤ m the estimate(
d
dt

− ∆
)
(tl+1|∇l A|2) ≤ −2tl+1|∇l+1 A|2 + C ∑

k≤l
tk|∇k A|2.

We can therefore choose a constant k1 big enough so that(
d
dt

− ∆
)
(tm+1|∇m A|2 + k1tm|∇m−1 A|2) ≤ C ∑

k≤m
tk|∇k A|2 − 2k1tm|∇m A|2

+ C ∑
k≤m−1

tk|∇k A|2

≤ C ∑
k≤m−1

tk|∇k A|2.

We then proceed similarly choosing constants k2, k3, . . . , km such that(
d
dt

− ∆
)(

tm+1|∇m A|2 +
m

∑
i=1

kitm+1−i|∇m−i A|2
)

≤ C|A|2.

The last term we can control by using the evolution equation of v2 and se-
lecting a constant km+1 big enough such that:(

d
dt

− ∆
)(

tm+1|∇m A|2 +
m

∑
i=1

kitm+1−i|∇m−i A|2 + km+1v2

)
≤ 0.

The result then follows from the Maximum principle.

Using the above proposition, Ecker and Huisken obtain the existence of a
longtime solution for Lipschitz initial data:

Theorem 5.3. If the initial hypersurface M0 is Lipschitz continuous and sat-
is es

sup
M0

v ≤ c1,

then the mean curvature ow problem (1.2) has a longtime solution for all t > 0
and satis es a priori estimates in Corollary 4.1 and Proposition 5.2.
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5.3 Spatial decay

After obtaining decay estimates in time we are now able to show also that ini-
tial spatial decay behaviour is preserved during the course of the evolution.
If we consider scaled solutions (Mρ

s )s∈(0,1), where

Mρ
s =

1
ρ

Mρ2s

where we may choose ρ = 1, then the second fundamental form of (Mρ
s )

given by Aρ satis es a scaling property which we obtain by setting x = ρy
and t = ρ2s. We then have for x ∈ Mt and y ∈ Mρ

s that

|∇m Aρ(y)|2 = ρ2(m+1)|∇m A(x)|2,

so that the statements

|∇m Aρ(y)|2 ≤ c2(m)

for y ∈ Mρ
s ∩ B1/2, s ∈ (3/4, 1) and

|∇m A(x)|2 ≤ c2(m)

ρ2(m+1)

for x ∈ Mt ∩ Bρ/2, t ∈ (3/4ρ2, ρ2) are equivalent. In view of this we propose
the following proposition which satis es the correct scaling of the second
fundamental form:

Proposition 5.3. Let Mt be a smooth solution of (1.2), satisfying v ≤ c1, and
the additional assumption

|∇m A|2 ≤ c2(m)
logδ(m+1)(e + |x|2)

(e + |x|2)m+1

at time t = 0, m ≥ 0 and δ ≥ 0. Then for all t > 0

|∇m A|2 ≤ Cm

logδ(m+1)
(

e +
(√

|x|2 + 2nt −
√

βt
)2
)

(
e +

(√
|x|2 + 2nt −

√
βt
)2
)m+1

where β = β(c1) > 0 and Cm = Cm(n, m, c1, c2(0), . . . , c2(m)).

38



CHAPTER 5. CURVATURE ESTIMATES 5.3. SPATIAL DECAY

Proof idea. Let g = |A|2v2 f (η) + Lv2 where f (η) is an arbitrary non-negative
function and L > 0 to be determined later. For the case m = 0 we thus have:(

d
dt

− ∆
)

g = f (η)
(

d
dt

− ∆
)
|A|2v2 + |A|2v2

(
d
dt

− ∆
)

f (η)

− 2∇ f (η) · ∇(|A|2v2) + L
(

d
dt

− ∆
)

v2

≤ −2
f (η)

v
∇v · ∇(|A|2v2) + |A|2v2

(
d
dt

− ∆
)

f (η)

− 2∇ f (η) · ∇(|A|2v2)− 2L(|A|2v2 − 3|∇v|2).

Note that we have

∇g = f (η)∇(|A|2v2) + |A|2v2∇ f (η) + 2vL∇v,

so that we if we multiply both sides by −2(∇v)/v we end up with:

−2
v
∇v · ∇g = −2

f
v
∇v · ∇(|A|2v2)− 2|A|2v∇v · ∇ f − 4L|∇v|2.

Similarly multiplying both sides by −2(∇ f )/ f gives:

− 2
f
∇ f · ∇g = −2∇ f · ∇(|A|2v2)− 2

|∇ f |2
f

|A|2v2 − 4L
v
f
∇v · ∇ f .

Substituting the above equations into the estimate thus gives(
d
dt

− ∆
)

g ≤ −2
(
∇v
v

+
∇ f

f

)
· ∇g + |A|2v2

(
2
v
∇ f · ∇v +

2
f
|∇ f |2

+

(
d
dt

− ∆
)

f − 2L
)
+ 4L

v
f
∇v · ∇ f − 2L|∇v|2.

By Young’s inequality we have that∣∣∣∣4L
v
f
∇v · ∇ f

∣∣∣∣ ≤ 2L
v2

f 2 |∇ f |2 + 2L|∇v|2,

and we estimate the vector 2v−1∇v using the inequality v−1|∇v| ≤ |A|v, and
from the Proposition for the long-time existence for the case m = 0 and the
fact C(0) = c2

1/2. This together then implies that

2
v
∇v · ∇ f ≤ c1

√
2
t
|∇ f |.
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Thus we nally have the estimate(
d
dt

− ∆
)

g ≤ −2
(
∇v
v

+
∇ f

f

)
· ∇g + |A|2v2

(
c1

√
2
t
|∇ f |+ 2

f
|∇ f |2

+

(
d
dt

− ∆
)

f − 2L
)
+ 2L

v2

f 2 |∇ f |2. (5.2)

Now we de ne

η(x, t) = e +
(√

|x|2 + 2nt −
√

βt
)2

where β > 0 will be chosen later. Recall that we have the inequality (3.2)

|∇η|2 ≤ 4η

and also in view of the fact that (d/dt − ∆)(|x|2 + 2nt) = 0 we have(
d
dt

− ∆
)

η = 2
(√

|x|2 + 2nt −
√

βt
)(

d
dt

− ∆
)√

|x|2 + 2nt

− 2
∣∣∣∣∇√|x|2 + 2nt

∣∣∣∣2 + β −
√

β

t
(|x|2 + 2nt)

=

(√
|x|2 + 2nt −

√
βt
) ∣∣∇|x|2

∣∣2
2(|x|2 + 2nt)3/2

−
∣∣∇|x|2

∣∣2
2(|x|2 + 2nt)

+ β −
√

β

t
(|x|2 + 2nt)

=

∣∣∇|x|2
∣∣2

2(|x|2 + 2nt)
−
√

βt

∣∣∇|x|2
∣∣2

2(|x|2 + 2nt)3/2

−
∣∣∇|x|2

∣∣2
2(|x|2 + 2nt)

+ β −
√

β

t
(|x|2 + 2nt)

≤ β −
√

β

t
(|x|2 + 2nt). (5.3)

Proof of Proposition 5.3. As stated above, for the case m = 0 if g = |A|2v2 f (η)+
Lv2, where f (η) is an arbitrary non-negative function and L > 0 to be deter-
mined later, we have the evolution equation of g given by (5.2). Nowwe de ne

f (η(x, t)) =
η(x, t)

logδ η(x, t)
, f ′(η) =

log η − δ

logδ+1 η
, f ′′(η) =

δ(1 + δ − log η)

η logδ+2 η
,
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and for some β > 0 to be chosen later and η(x, t) whose evolution equation
is given by (5.3).

Thus we begin by estimating the terms in (5.2) by rst calculating the
evolution of f (η):(

d
dt

− ∆
)

f (η) = η

(
d
dt

− ∆
)

log−δ η + log−δ η

(
d
dt

− ∆
)

η

− 2∇η · ∇ log−δ η

= −δ log−δ−1 η

(
d
dt

− ∆
)

η − δ

η
|∇η|2 log−δ−1 η

− δ(δ + 1)
η

|∇η|2 log−δ−2 η + log−δ η

(
d
dt

− ∆
)

η

+ 2
δ

η
|∇η|2 log−δ−1 η

=

(
1 − δ

log η

)
log−δ η

(
d
dt

− ∆
)

η

+ δ

(
1 − δ + 1

log η

)
|∇η|2

η
log−δ−1 η

≤
(

d
dt

− ∆
)

η + 4δ ≤ 4δ + β −
√

β

t
(|x|2 + 2nt),

where we use the inequality (3.2) |∇η|2 ≤ 4η and the fact that log η ≥ 1. The
next term we estimate is:

2
f
|∇ f |2 = 2

f
η2 |∇η|2 + 2δ2 f

η4 log2 η
|∇η|2

− 4δ
f

η3 log η
|∇η|2

≤ 8
f
η
+ 8δ2 f

η3 log2 η
≤ 8(1 + δ2/e2),

which also gives us that

2L
v2

f 2 |∇ f |2 ≤ 8(1 + δ2/e2)L
v2

f
.

Finally we estimate

|∇ f | ≤ |∇η| log−δ η − δ

η
|∇η| log−δ−1 η ≤ |∇η| ≤ 2

√
|x|2 + 2nt + 2

√
βt,
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which we use to get

c1

√
2
t
|∇ f | ≤ c1

√
2
t
|∇η| ≤ 2c1

√
2
t
(|x|2 + 2nt) + 2c1

√
2β.

We therefore have the nal estimate for g by substituting the above esti-
mates into (5.2):(

d
dt

− ∆
)

g ≤ −2
(
∇v
v

+
∇ f

f

)
· ∇g + |A|2v2

(
2c1
√

2β + β + 4δ

+8(1 + δ2/e2)− 2L
)
−
√

|x|2 + 2nt
t

(√
β − 2

√
2c1

)
|A|2v2

+ 8(1 + δ2/e2)L
v2

f (η)

≤ b⃗ · ∇g + |A|2v2
(

2c1
√

2β + β + 4δ + 8(1 + δ2/e2)− 2L
)

+ 8(1 + δ2/e2)L
v2

f (η)
,

for some large enough β = β(c1), where we de ne

b⃗ = −2
(
∇v
v

+
∇ f

f

)
.

If we now choose L large depending on β, c1 and δ, and de ne k = supM0
g +

9(1 + δ2/e2)Lc2
1, we obtain(

d
dt

− ∆
)

g ≤ b⃗ · ∇g − g − k
f (η)

where we have used the estimate v(x, t) ≤ c1 once again. Now let gk =
max(g − k, 0), and since gk · (g − k) = g2

k , we obtain the result using the

Maximum Principle with g2
k .

For the case m = 1, we compute as in the previous proposition the evolu-
tion(

d
dt

− ∆
)
|∇A|2 f 2(η) = f 2

(
d
dt

− ∆
)
|∇A|2 + |∇A|2

(
d
dt

− ∆
)

f 2(η)

− 2∇ f 2 · ∇|∇A|2

≤ c(n)|A|2|∇A|2 f 2(η)− 2|∇2 A|2 f 2(η)

+ 8

(
log η − δ

logδ+1 η

)2

|∇η|2|∇A|2 + 2|∇2 A|2 f 2.
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Since by (3.2) |∇η|2 ≤ 4η and |A|2 f (η) ≤ C0 (recall that v ≤ 1) we estimate(
d
dt

− ∆
)
|∇A|2 f 2(η) ≤ c(n, δ, C0)|∇A|2 f (η).

Similarly we derive(
d
dt

− ∆
)
|A|2 f (η) ≤ −|∇A|2 f (η) + c(n, δ, C0)|A|2.

Also recall that for v ≥ 1 one has(
d
dt

− ∆
)

v2 ≤ −2|A|2

so that if we choose large enough positive constants K and L depending on
n, δ and C0 we have that(

d
dt

− ∆
)
(|∇A|2 f 2(η) + K|A|2 f (η) + Lv2) ≤ 0.

The proposition for m = 1 then follows from the Maximum Principle. We
iterate over m similarly to prove the general statement.
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Chapter 6

Asymptotic behaviour

In this chapter we study the behaviour of our surfaces as the time t goes
to in nity. Through out this chapter we will assume certain conditions on

our initial hypersurface. We will state these assumptions before we use them
below.

As our initial graph evolves under mean curvature ow, it will move o
to in nity with speed proportional to 1/

√
t, so studying their global shape

as time goes to in nity will give us no insight, unless we rescale the surfaces
back and prevent them from diverging to in nity.

We therefore de ne the following rescaling:

F̃(s) =
F(t)√
2t + 1

where the new time variable is given by

s =
1
2

log(2t + 1)

for 0 ≤ s < ∞. The rescaled mean curvature ow then becomes

∂F̃
∂s

= ⃗̃H − F̃ (6.1)

with the same initial condition

F̃(·, 0) = F(·, 0).

Now for the rescaled surfaces denoted by M̃s = F̃(·, s)(M) we have the
following result:
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Theorem 6.1. Suppose M0 satis es the linear growth condition (5.1) and has
bounded curvature. If in addition it satis es

⟨x, ν⟩2 ≤ c
1 + |x|2 − u2

logδ(e + |x|2)
(6.2)

for some constant c < ∞ and some power δ > 0 then the solutions M̃s of the
rescaled mean curvature ow (6.1) converge as s → ∞ to a limiting surface
M̃∞ which is self-similar, i.e. it satis es

F⊥ = H⃗.

Before we prove this we show that the up to a time dependent factor, the
condition (6.2) is preserved for all time.

Lemma 6.1. Suppose our initial graph M0 has bounded gradient and curva-
ture and we have

⟨x, ν⟩2 ≤ c
1 + |x|2 − u2

logδ(e + |x|2)
for some constant c < ∞ and positive δ ≥ 0, then for all t > 0, Mt also satis es

⟨x, ν⟩2 ≤ c(t)
1 + |x|2 − u2 + 2nt
logδ(e + |x|2 + 2nt)

.

Proof. Let f = ⟨x, ν⟩, then we have(
d
dt

− ∆
)

f 2 = 2 f 2|A|2 − 4H f − 2|∇ f |2

≤ C( f 2 + 1)− 2|∇ f |2.

Also if we de ne

η1 = e + |x|2 + 2nt and η2 = 1 + |x|2 − u2 + 2nt

then by the product-rule for the Heat operator,(
d
dt

− ∆
)

logδ η1 = δ
|∇η1|2

η2
1

logδ−1 η1 − δ(δ − 1)
|∇η1|2

η2
1

logδ−2 η1

= δ

(
1

log η1
− δ − 1

log2 η1

)
|∇η1|2

η2
1

logδ η1

≤ 4δ

(
1

log η1
− δ − 1

log2 η1

)
1
η1

logδ η1 ≤ C logδ η1,
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where we have used the inequality |∇η1|2 ≤ 4η1 and denoted all constants
which depend on the curvature bound and t by C. Similarly we have(

d
dt

− ∆
)

η−1
2 = −2

|∇η2|2

η3
2

− 2
|∇u|2

η2
2

,

so that(
d
dt

− ∆
)

f 2

η2
=

1
η2

(
d
dt

− ∆
)

f 2 + f 2
(

d
dt

− ∆
)

1
η2

− 2∇ f 2 · ∇ 1
η2

≤ C
η2

( f 2 + 1)− 2
|∇ f |2

η2
− 2 f 2 |∇η2|2

η3
2

− 2 f 2 |∇u|2

η2
2

+ 4
f

η2
2
∇ f · ∇η2

≤ C
η2

( f 2 + 1)− 2 f 2 |∇u|2

η2
2

≤ C
η2

( f 2 + 1),

where we have used Young’s inequality∣∣∣∣∣4 f
η2

2
∇ f · ∇η2

∣∣∣∣∣ ≤ 2
|∇ f |2

η2
+ 2 f 2 |∇η2|2

η3
2

.

Therefore since η−1
2 logδ η1 ≤ c, some constant c > 0 we have:(

d
dt

− ∆
)

f 2

η2
logδ η1 =

f 2

η2

(
d
dt

− ∆
)

logδ η1 + logδ η1

(
d
dt

− ∆
)

f 2

η2

− 2∇ f 2

η2
· ∇ logδ η1

≤ C
(

f 2

η2
logδ η1 + 1

)
− 2∇ f 2

η2
· ∇ logδ η1.

Now we calculate

−2∇ f 2

η2
· ∇ logδ η1 = 2δ

f 2 logδ−1 η1

η1η2
2

∇η1 · ∇η2 − 4δ
f logδ−1 η1

η1η2
∇ f · ∇η1,

and once again by Young’s inequality we can estimate the rst term by∣∣∣∣∣2δ
f 2 logδ−1 η1

η1η2
2

∇η1 · ∇η2

∣∣∣∣∣ ≤ f 2

η2
logδ η1

(
4δ2 |∇η1|2

η2
1 log2 η1

+
|∇η2|2

η2
2

)

≤ C
f 2

η2
logδ η1,

47



CHAPTER 6. ASYMPTOTIC BEHAVIOUR

since |∇η1|2 ≤ 4η1 and similarly |∇η2|2 ≤ 4η2. Thus dropping the negative
term gives us the following estimate:(

d
dt

− ∆
)

f 2

η2
logδ η1 ≤ C

(
f 2

η2
logδ η1 + 1

)
,

which by the Maximum Principle implies the result that we require.

In order to prove the theoremwe will need to know the evolution equation
of a test-function in the rescaled case. The test function we use will have the
following general form

ρ̃(x̃, s) = g(x̃, s)h(s)

where

g(x̃, s) =
logδ(η̃1)

η̃
p
2

,

for some positive powers δ > 0 and p > 0 to be speci ed later.
The heat operator of ρ̃ is(

d
ds

− ∆̃
)

ρ̃(x̃, s) = h(s)
(

d
ds

− ∆̃
)

g(x̃, s) + h′(s)g(x̃, s)

and since(
d
ds

− ∆̃
)

g(x̃, s) =
1

η̃
p
2

(
d
ds

− ∆̃
)

logδ η̃1 + logδ η̃1

(
d
ds

− ∆̃
)

1
η̃

p
2

− 2∇ logδ η̃1(η̃1) · ∇
1

η̃
p
2

= δ
logδ−1 η̃1

η̃
p
2

(
d
ds

− ∆̃
)

η̃1 − δ(δ − 1)
|∇η̃1|2

η̃2
1 η̃

p
2

logδ−2 η̃1

− p
logδ η̃1

η̃
p+1
2

(
d
ds

− ∆̃
)

η̃2 − p(p + 1)
|∇η̃2|2

η̃
p+2
2

logδ η̃1

− 2∇ logδ η̃1 · ∇η̃
−p
2

we get the following:

Proposition 6.1. For twice di erentiable functions η̃1(x̃, s) and η̃2(x̃, s) and
continuous h(s), such that

ρ̃(x̃, s) = g(x̃, s)h(s) =
logδ η̃1

η̃
p
2

h(s)
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for some positive powers δ > 0 and p > 0, we have(
d
ds

− ∆̃
)

ρ̃(x̃, s) ≤ δ
ρ̃

log η̃1

(
d
ds

− ∆̃
)

η̃1 − δ(
δ

2
− 1)

|∇η̃1|2

η̃2
1 log2 η̃1

ρ̃

− p
ρ̃

η̃2

(
d
ds

− ∆̃
)

η̃2 + p(p − 1)
|∇η̃2|2

η̃2
2

ρ̃

+ h′(s)g(x̃, s).

Proof. The crucial ingredient of the proof comes from expanding the term

−2h(s)∇ logδ η̃1 · ∇η̃
−p
2 = 2δp

ρ̃

η̃1η̃2 log η̃1
∇η̃1 · ∇η̃2,

which by Peter-Paul’s inequality gives:∣∣∣∣2δp
ρ̃

η̃1η̃2 log η̃1
∇η̃1 · ∇η̃2

∣∣∣∣ ≤ 2p2 |∇η̃2|2

η̃2
2

ρ̃ +
1
2

δ2 |∇η̃1|2

η̃2
1 log2 η̃1

ρ̃.

Therefore since(
d
ds

− ∆̃
)

ρ̃(x̃, s) = δ
ρ̃

log η̃1

(
d
ds

− ∆̃
)

η̃1 − δ(δ − 1)
|∇η̃1|2

η̃2
1 log2 η̃1

ρ̃

− p
ρ̃

η̃2

(
d
ds

− ∆̃
)

η̃2 − p(p + 1)
|∇η̃2|2

η̃2
2

ρ̃ + h′(s)g(x̃, s)

− 2∇ logδ η̃1 · ∇
h(s)
η̃

p
2

,

we obtain our result by using the above estimate.

6.1 Proof of Theorem 6.1

The result of the Theorem will follow from the following estimate for some
0 < γ < 2:

sup
M̃s

(H̃ + ⟨x̃, ν̃⟩)2ṽ2

η̃
p
2 log−ϵ η̃1

≤ (1 + s)−γ sup
M0

(H + ⟨x, ν⟩)2v2

η
p
2 log−ϵ η1

where 0 < ϵ < δ, 0 < p < 1, and for some choice of test functions η1 and η2.
Note that this implies polynomial convergence on compact subsets, instead
of exponentially fast convergence, obtained in regard to the corresponding
estimate of Ecker and Huisken.

We will make use of the following lemma from Ecker and Huisken [6]:
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Lemma 6.2. The normalised quantity H̃ + ⟨x̃, ν̃⟩ satis es the evolution equa-
tion (

d
ds

− ∆̃
)
(H̃ + ⟨x̃, ν̃⟩) = (|Ã|2 − 1)(H̃ + ⟨x̃, ν̃⟩).

Proof. To begin with note that H̃ = ψ−1(t)H and ⟨x̃, ν̃⟩ = ψ(t)⟨x, ν⟩ where
ψ(t) = 1/

√
2t + 1 is the rescaling factor. As in Appendix B, we therefore say

that H is of “degree” −1 and ⟨x, ν⟩ is of “degree” 1. This together with the
evolution equations(

d
dt

− ∆
)

H = |A|2H and

(
d
dt

− ∆
)
⟨x, ν⟩ = |A|2⟨x, ν⟩ − 2H,

and Lemma B.1 for calculating rescaled evolution equations gives us(
d
ds

− ∆̃
)
(H̃ + ⟨x̃, ν̃⟩) = |Ã|2(H̃ + ⟨x̃, ν̃⟩)− 2H̃ + H̃ − ⟨x̃, ν̃⟩

= (|Ã|2 − 1)(H̃ + ⟨x̃, ν̃⟩),

which is the result we want.

Similarly we have(
d
ds

− ∆̃
)

ṽ2 = −2|Ã|2ṽ2 − 6|∇ṽ|2

which gives us the following inequality for f 2 = (H̃ + ⟨x̃, ν̃⟩)2ṽ2(
d
ds

− ∆̃
)

f 2 ≤ −2 f 2 − 2
1
ṽ
∇ṽ · ∇ f 2.

Multiplying this with a test function ρ̃(x̃, s) we derive(
d
ds

− ∆̃
)

f 2ρ̃(x̃, s) ≤ −2 f 2ρ̃ − 2
ρ̃

ṽ
∇ṽ · ∇ f 2 + f 2

(
d
ds

− ∆̃
)

ρ̃

− 2∇ρ̃ · ∇ f 2.

Note that since ∇( f 2ρ̃) = ρ̃∇ f 2 + f 2∇ρ̃, we can write

−2
ρ̃

ṽ
∇ṽ · ∇ f 2 − 2∇ρ̃ · ∇ f 2 = −2

(
∇ṽ
ṽ

+
∇ρ̃

ρ̃

)
∇( f 2ρ̃) + 2

f 2

ṽ
∇ρ̃ · ∇ṽ

+ 2
f 2

ρ̃
|∇ρ̃|2,
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so that we end up with( d
ds

− ∆̃
)

f 2ρ̃(x̃, s) ≤ −2 f 2ρ̃ + f 2
(

d
ds

− ∆̃
)

ρ̃ + 2
f 2

ρ̃
|∇ρ̃|2

− 2
(
∇ṽ
ṽ

+
∇ρ̃

ρ̃

)
∇( f 2ρ̃) + 2

f 2

ṽ
∇ρ̃ · ∇ṽ. (6.3)

Proof of Theorem 6.1. When we set h(s) = (1 + s)γ for some positive γ, then
we have that:

h′(s) =
γ

1 + s
h(s),

thus giving us the following estimate for the evolution of ρ̃ via Proposition 6.1(
d
ds

− ∆̃
)

ρ̃(x̃, s) ≤ ϵ
ρ̃

log η̃1

(
d
ds

− ∆̃
)

η̃1 + ϵ(1 − ϵ

2
)

|∇η̃1|2

η̃2
1 log2 η̃1

ρ̃

− p
ρ̃

η̃2

(
d
ds

− ∆̃
)

η̃2 + p(p − 1)
|∇η̃2|2

η̃2
2

ρ̃

+
γ

1 + s
ρ̃.

Now de ne η̃1 and η̃2 as

η̃1 = e + α|x̃|2 and η̃2 = 1 + β|x̃|2 − βũ2,

for some positive constants α and β to be determined later. We have that
since both |x|2 and u2 are of “degree” 2, together with the fact that(

d
dt

− ∆
)
|x|2 = −2n and

(
d
dt

− ∆
)

u2 = −2|∇u|2,

the heat operator of η̃1 is given by:(
d
ds

− ∆̃
)

η̃1 = −2α(|x̃|2 + n),

and that of η̃2 by:(
d
ds

− ∆̃
)

η̃2 = −2β(|x̃|2 + n) + 2β(|∇ũ|2 + ũ2).

This then implies the following estimate for 0 < p < 1, 0 < ϵ < δ, and s > 0:(
d
ds

− ∆̃
)

ρ̃ ≤ 2
(

pβ − ϵα

log η̃1

)
(|x̃|2 + n)ρ̃

+
1
2

|∇η̃1|2

η̃2
1 log2 η̃1

ρ̃ +
γ

1 + s
ρ̃

≤ 1
2

|∇η̃1|2

η̃2
1 log2 η̃1

ρ̃ + γρ̃,
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where we have chosen β such that β ≤ ϵα/p log η1 so that we can drop rst
term in the above inequality and that ϵ − ϵ2/2 ≤ 1/2 for ϵ > 0.

Moreover we obtain from the estimates

|∇η̃1|2 ≤ 4αη̃1 and |∇η̃2|2 ≤ 4βη̃2,

the following estimates: (
d
ds

− ∆̃
)

ρ̃ ≤ (2α + γ)ρ̃,

and

|∇ρ̃| ≤
(

ϵ
|∇η̃1|

η̃1 log η̃1
+ p

|∇η̃2|
η̃2

)
ρ̃

≤ 2(ϵ
√

α + p
√

β)ρ̃ ≤ 2
√

ϵα(
√

ϵ +
√

p)ρ̃.

which then gives

2
f 2

ρ̃
|∇ρ̃|2 ≤ 8ϵα(

√
ϵ +

√
p)2 f 2ρ̃,

and together with the estimate |∇ṽ|/ṽ ≤ |Ã|ṽ ≤ c1c(0) also gives:

2
f 2

ṽ
∇ρ̃ · ∇ṽ ≤ c(c1, c(0), n)

√
ϵα(

√
ϵ +

√
p) f 2ρ̃.

Thus we nally have after substituting the above estimate into (6.3):(
d
ds

− ∆̃
)

f 2ρ̃ ≤ a⃗ · ∇( f 2ρ̃) +
(
2α + γ + c

√
ϵα(

√
ϵ +

√
p)

+ 8ϵα(
√

ϵ +
√

p)2 − 2
)

f 2ρ̃,

where

a⃗ = −2
(
∇ṽ
ṽ

+
∇ρ̃

ρ̃

)
.

Choosing α, β, and γ suitably small depending on ϵ, p and c, we see that:(
d
ds

− ∆̃
)

f 2ρ̃ ≤ a⃗ · ∇( f 2ρ̃)

for all s > 0. Lemma 6.1 ensures that f 2ρ̃ vanishes at in nity which enables us
to apply the parabolic maximum principle to conclude that f 2ρ̃ is uniformly
bounded by its initial data.

Finally we use the result of Stavrou [16] to conclude uniform convergence
to self-similar solutions, since our assumption is stronger than his.
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Appendix A

Derivation of Equations

In this chapter we wish to investigate the equation for mean curvature ow
and derive some results which we will need.
Recall that for a properly embedded map F : Ω → Rn+1, where Ω ⊂ Rn,

the coordinate tangent vectors are denoted by ∂iF(p) and they form a basis
of the tangent space Tx M at x = F(p) at every p ∈ Ω. The metric on M is
then de ned by gij.

The Riemann curvature tensor of M is de ned by

∇M
i ∇M

j Xk −∇M
j ∇M

i Xk = RM
ijkl X

l

where X is a tangent vector eld on M and the Hessian operator ∇M
i ∇M

j is

de ned as

∇M
i ∇M

j := ∇M
τi
∇M

τj
−∇M

∇M
τi

τj

where τ1, . . . , τn are the basis of a local orthonormal frame. The Riemann ten-
sor has the property that RM

ijkl = −RM
jikl and RM

ijkl = −RM
klij, and the Gauss

equations express this tensor in terms of the second fundamental form of M
by:

RM
ijkl = Aik Ajl − Ail Ajk.

The Codazzi equations then says that the 3-tensor of covariant derivatives of
the second fundamental form given by ∇M A = {∇M

i Ajk} is totally symmet-
ric.

In the case of tensor elds, we denote the covariant derivatives, Hessian,
and Laplacian operator analogously to the vector elds case. For instance in
an orthonormal frame τ1, . . . , τn, we denote the component of ∇M

i ∇M
j A with

respect to τi by ∇M
i ∇M

j Akl.

53
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A.1 Preliminary Results

To begin with, we wish to calculate the Laplacian of the mean curvature,
Laplacian of the second fundamental form and its squared norm and nally
the Laplacian of the unit normal vector eld. Recall that the mean curvature
and the square of the second fundamental form are given by

H = Ai
i = gij Aij and |A|2 = Ai

j A
j
i = gijgkl Aik Ajl .

By working in a local orthonormal frame we can simply use the lower in-
dices only, and we also use subscripts to denote derivatives where there use
will be clear from the context of the computation. For example the Riemann
curvature tensor can then be written as

Xijk − Xikj := ∇M
k ∇M

j Xi −∇M
j ∇M

k Xi = RM
kjilXl = Xl Rlijk

by the symmetry of the Riemann tensor. Similarly

Aijkl − Aijlk := ∇M
l ∇M

k Aij −∇M
k ∇M

l Aij = AimRM
mjkl + AmjRM

imkl .

Now by the Codazzi equations we have

∆M Aij = Aijkk = Aikjk = Akijk,

which by the above identity for the second fundamental form gives

∆M Aij = Akikj + AkmRM
mijk + AmiRmkjk.

Once again by the Codazzi equations and Gauss equation we get

∆M Aij = Akkij + Akm(Amj Aik − Amk Aij) + Ami(Amj Akk − Amk Akj)

= Hij − |A|2 Aij + HAik Akj,

which is referred to as Simons’ identity in its standard notation

∆M Aij = ∇M
i ∇M

j H − |A|2 Aij + HAik Ak
j .

Contracting the Simons’ identity with Aij = gikgjl Akl then gives us the for-
mula

1
2

∆M|A|2 = Aij∇M
i ∇M

j H + |∇M A|2 + HAij Ai
k Ak

j − |A|4,

where |∇M A|2 is the squared norm of the tensor {∇M
k Aij}.

In order to calculate the Laplacian of the vector eld ν, it is more con-
venient to work with geodesic normal coordinates on M, i.e. the metric is
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gij = δij and the tangential component of ∂i∂jF, at a point x = F(p) ∈ M
where we compute, is (∂i∂jF)T = 0. Recall we have from the de nition of the
second fundamental form, Aij = −∂i∂jF · ν, that ∂iν = ∂iν∂jF · ∂jF = Aij∂jF.
The Codazzi equations are simply ∂i Aij = ∂j Aii. Thus pointwise we have

∂i∂jν = ∂i(Aij∂jF) = ∂i Aij∂jF + Aij∂i∂jF = ∂j Aii∂jF − Aij Aijν

from the Codazzi identity and de nition. Thus we get:

∆Mν = −|A|2ν +∇M H,

which is referred to as the Jacobi eld equation.

A.2 Metric and curvature

We will need to derive the time derivatives of the geometric quantities whose
Laplacian we calculated in the previous section. This together with the Lapla-
cian will then all us to calculate the Heat operator of various expressions,
which we will need in our study.

Recall that if our manifold satis es (1.2) then the metric evolves as

∂tgij = −2HAij,

the inverse metric by contracting the above equation with gij gives

∂tgij = 2HAij,

and the area element
√

g, then satis es

∂t
√

g = −H2√g = −|H⃗|2√g.

To calculate the derivative of the second fundamental form Aij, we once
again do the calculation in geodesic normal coordinates, i.e. gij = δij and

(∂i∂jF)T = 0 at the point x = F(p, t) ∈ M. Since Aij = −∂i∂jF · ν we get

∂t Aij = −∂t(∂i∂jF · ν) = −∂i∂j∂tF · ν − ∂i∂jF · ∂tν,

but since by ∂tν is tangential, the last term drops out. We use the evolution
equation (1.2) to get:

∂t Aij = ∂i∂jH + H∂i∂jν · ν = ∂i∂jH − H∂iν · ∂jν.

Since at the point x = F(p, t) in normal coordinates, ∇Mt
i ∇Mt

j H = ∂i∂jH, we

have:
∂t Aij = ∇Mt

i ∇Mt
j H − HAik Ak

j .
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To Calculate the deviate of the normal eld ν we use the fact that ∂tν is a
tangential eld in view of the fact that ν is a unit vector. We can then write
∂tν in terms of the the tangent vectors ∂jF to obtain

∂tν = gij∂tν · ∂jF∂iF = −gijν · ∂j(−Hν)∂iF = gij∂jH∂iF,

where we have used the identity ν · ∂iF = 0, the product rule and the evolu-
tion equation (1.2). By de nition the last term is the tangential gradient of H
denoted by

∂tν = ∇Mt H.

A.3 Heat operator of terms

We are now ready to calculate the Heat operator for the geometric terms we
are interested in. By combining the results of the previous two sections we
have in particular for H = gij Aij

(∂t − ∆Mt)H = H|A|2.

Contracting the evolution equation of Aij with Aij, we obtain

∂t|A|2 = 2Aij∇Mt
i ∇Mt

j H + 2HAik Ak
j Aij,

which combined with the Laplacian of |A|2 gives us

(∂t − ∆Mt)|A|2 = 2|A|4 − 2|∇Mt A|2.

The evolution of the unit normal ν is thus

(∂t − ∆Mt)ν = |A|2ν.
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Appendix B

Rescaled mean curvature flow

In order to study the asymptotic behaviour of Mt as t gets larger, we will
need to rescale the surface by keeping some geometric quantity xed, for

example the total area of the surfaces or the total enclosed volume. We do
this by multiplying the solution F of (1.2) for each time 0 ≤ t < ∞ with a
positive constant

ψ(t) =
1√

2t + 1
such that

F̃(s) = ψ(t)F(t)

where we have introduce a new time variable 0 ≤ s < ∞ given by

s(t) =
1
2

log(2t + 1),

such that
ds
dt

= ψ2.

The various geometric quantities then scale like

g̃ij = ∂i F̃ · ∂j F̃ = ψ2gij, Ãij = ψAij, H̃ = ψ−1H, |Ã|2 = ψ−2|A|2,

etc. and the rescaled evolution equation for F is given by

dF̃
ds

= ψ−2 dF̃
dt

= ψ−2 dψ

dt
F + ψ−1 dF

dt
= −H̃ν̃ − F̃. (B.1)

To calculate the evolution of the rescaled area element we note that

∂s g̃ = g̃g̃ij∂s g̃ij,
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thus giving us

∂s
√

g̃ =
√

g̃g̃ij∂i∂s F̃ · ∂j F̃ =
√

g̃ divM̃s

∂F̃
∂s

= −
√

g̃(H̃2 + n).

For other evolution equations we can use the following lemma to compute
the rescaled evolution.

Lemma B.1. Suppose the expressions P and Q, formed from g and A, satisfy

dP
dt

= ±∆P + Q,

and P has “degree” α, i.e. P̃ = ψαP. Then Q has degree α − 2 and

dP̃
ds

= ±∆̃P̃ + Q̃ − αP̃.

Proof. The proof follows from calculating

dP̃
ds

= ψα−2 dP
dt

+ αψα−3ψ′(t)P

= ±ψα−2∆P + ψα−2Q − αψαP
= ±∆̃P̃ + Q̃ − αP̃,

where we have used the fact that ψ′(t) = −ψ3(t).

Using this lemma, we can then convert unchanged many results to the
rescaled setting. For example a corollary to the above lemma and the Mono-
tonicity Theorem of Huisken is that:

Corollary B.1. If the surfaces M̃s satisfy the rescaled evolution equation (B.1),
then we have

d
ds

∫
M̃s

Φ̃ dµ̃s = −
∫

M̃s

∣∣∣∣∣−H̃ν̃ − ∇⊥Φ̃
Φ̃

∣∣∣∣∣
2

Φ̃ dµ̃s,

for Φ̃ = ψ−nΦ, the rescaled backward heat kernel, given by

Φ̃(x̃ − x̃0) = exp
(
−|x̃ − x̃0|2

2

)
.
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