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Abstract

We show, finitely generated rational VICQ–modules and SIQ–modules

are uniformly representation stable and all their submodules are finitely

generated. We use this to prove two conjectures of Church and Farb,

which state that the quotients of the lower central series of the Torelli sub-

groups of Aut(Fn) and Mod(Σg,1) are uniformly representation stable as

sequences of representations of the general linear groups and the symplec-

tic groups, respectively. Furthermore we prove an analogous statement

for their Johnson filtrations.
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1 Introduction

Church and Farb [CF13] define the notion of representation stability for se-

quences of representations of the symmetric groups Sn, the hyperoctahedral

groups ZoSn, the general linear groups GLnQ, the special linear groups SLnQ
and the symplectic groups Sp2nQ. Especially representation stability for the

symmetric groups has been the focus of a lot of research lately. It has been

intimately connected to functors from the category of finite sets and injections

FI to vector spaces by Church, Ellenberg and Farb [CEF15]. Wilson [Wil14]

developed a similar connection for the hyperoctahedral groups. In both cases

an amplitude of sequences were proved to be representation stable.

Representation stability over the symmetric groups. The representation

theory of the symmetric group Sn over the rationals Q is known to be semisim-

ple. The irreducible representations are indexed by partitions λ = (λ1 ≥ λ2 ≥
. . . ) of n = λ1 + λ2 + . . . , which we denote by

Sn(λ).

Let

V0
φ0−→ V1

φ1−→ V2
φ2−→ . . .

be a sequence of vector spaces over Q together with a linear Sn–action on Vn

such that φn is Sn–equivariant. Such a sequence is called consistent by Church–

Farb [CF13] and can easily be generalized to the other groups mentioned in the

first paragraph. They [CF13, Def 2.3] call a consistent sequence of representa-

tions of the symmetric groups representation stable if the following conditions

are satisfied:

Injectivity The map φn : Vn → Vn+1 is injective for all large enough n ∈ N.

Surjectivity The induced map Ind
Sn+1

Sn
φn : Ind

Sn+1

Sn
Vn → Vn+1 is surjective

for all large enough n ∈ N.

Multiplicity stability We can write

Vn ∼=
⊕
λ

Sn(λ)⊕cλ̃,n

where λ̃ = (λ2 ≥ λ3 ≥ . . . ) for λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . . ) and cλ̃,n is

independent of n for all large enough n ∈ N.

A consistent sequence is called uniformly representation stable if the multiplic-

ities cλ̃,n stabilize uniformly.

1



Functors from a category C to the category Q−mod of vector spaces over

Q are called C–modules. Every FI–module V : FI → Q−mod gives rise to a

consistent sequence, by taking

Vn = V ({1, . . . , n})

and

φn = V ({1, . . . , n} → {1, . . . , n+ 1}).

The connection to representation stability was provided by Church–Ellenberg–

Farb in the following theorem.

Theorem (Church–Ellenberg–Farb [CEF15, Thm 1.13]). An FI–module V is

finitely generated if and only if its consistent sequence is uniformly representa-

tion stable and Vn is finite dimensional for all n ∈ N.

This theorem depends on the following noetherian property of FI–modules.

Theorem (Church–Ellenberg–Farb [CEF15, Thm 1.3]). Every submodule of a

finitely generated FI–module is finitely generated.

Analogous theorems for the hyperoctahedral groups were proved by Wilson

[Wil14, Thm 4.21 + Thm 4.22].

Representation stability over the general linear groups and symplectic

groups. The rational representation theory for both GLnQ and Sp2nQ is

semisimple and the irreducibles are indexed by pairs of partitions (λ+, λ−) such

that the lengths `(λ+) + `(λ−) ≤ n and by partitions λ whose length `(λ) ≤ n,

respectively. We respectively denote these irreducibles by

GLn(λ+, λ−) and Sp2n(λ).

For a consistent sequence of rational representations of the general linear groups

or the symplectic groups Church–Farb [CF13, Def 2.3] define (uniform) repre-

sentation stability analogously to the symmetric groups—only the analogue of

the multiplicity stability condition is easier to state:

Multiplicity stability for general linear groups We can write

Vn ∼=
⊕
λ+,λ−

GLn(λ+, λ−)⊕c(λ+,λ−),n

and c(λ+,λ−),n is independent of n for all large enough n ∈ N.

2



Multiplicity stability for symplectic groups We can write

Vn ∼=
⊕
λ

Sp2n(λ)⊕cλ,n

and cλ,n is independent of n for all large enough n ∈ N.

The question of the analogue of FI for the general linear groups could be

naively answered with VI—the category of finite dimensional vector spaces and

injective homomorphisms. But this is not correct, it turns out that the correct

analogue is VIC—the category of finite dimensional vector spaces and injec-

tive homomorphisms together with a choice of a complement of the image (see

Definition 3.1). For the symplectic groups we use SI—the category of finite

dimensional symplectic vector spaces and isometries. This works well, because

isometries are always injective and come with a canonical complement. A ver-

sion of VIC and SI for finite rings has already been used by Putman–Sam [PS14].

Every VIC–module V : VIC→ Q−mod gives rise to a consistent sequence, by

taking

Vn = V (Qn)

and

φn = V (Qn → Qn+1).

Similarly for every SI–module V : SI→ Q−mod the sequence given by

Vn = V (Q2n)

and

φn = V (Q2n → Q2n+2)

is consistent. We call V rational if Vn is a rational representation for every

n ∈ N.

Our main technical results are the following theorems.

Theorem A. A rational VIC–module V is finitely generated if and only if its

consistent sequence is uniformly representation stable and Vn is finite dimen-

sional for all n ∈ N.

Theorem B. A rational SI–module V is finitely generated if and only if its con-

sistent sequence is uniformly representation stable and Vn is finite dimensional

for all n ∈ N.

We also prove the following noetherian condition.

Theorem C. Every submodule of a finitely generated rational VIC–module is

finitely generated.
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Theorem D. Every submodule of a finitely generated rational SI–module is

finitely generated.

Remark. (a) We may substitute any field of characteristic zero for Q and

the theorems remain true.

(b) Putman–Sam [PS14] proved analogues of Theorems C and D for finite

rings.

(c) Gan–Watterlond [GW16] proved an analogue of Theorem A for finite

fields.

Torelli groups. Let Fn denote the free group on n generators, then its abelian-

ization is Zn. The quotient map induces an epimorphism on their automorphism

groups. The Torelli subgroup IAn is defined as the kernel, so we get the following

short exact sequence.

1→ IAn → Aut(Fn)→ Aut(Zn) ∼= GLn Z→ 1

Let Σg,1 denote the compact, oriented genus g surface with one bound-

ary component. The mapping class group Mod(Σg,1) is the discrete group

π0 Homeo+(Σg,1, ∂Σg,1) of isotopy classes of orientation-preserving homeomor-

phisms of Σg,1 that fix the boundary pointwise. The action of Mod(Σg,1) on

H1(Σg,1;Z) ∼= Z2g is symplectic, and the Torelli subgroup Ig,1 is defined to be

the kernel of this action. In fact, there is a short exact sequence

1→ Ig,1 → Mod(Σg,1)→ Sp(H1(Σg,1;Z)) ∼= Sp2g(Z)→ 1.

Very little is known about the homology of both Torelli subgroups, except

in homological degree 1. The rational homology is conjectured to be uniformly

representation stable in [CF13, Conj 6.1, Conj 6.3]. This problem seems to

be too hard to tackle right now, as it is not even known whether the rational

homology groups are representations of GLnQ and Sp2g Q.

Another subject of study deals with central series of the Torelli groups, which

include the lower central series γ IAn = {γi IAn}i∈N and γIg,1 and the Johnson

filtration α IAn and αIg,1 (see Section 4 and the beginning of Section 6). The

information of these central series are compiled nicely in their graded rational

Lie algebra gr(γ IAn), gr(γIg,1), gr(α IAn) and gr(αIg,1) (see Definition 4.2). All

of these filtrations were considered before, for example by Andreadakis [And65],

Hain [Hai97], Habegger–Sorger [HS00], Satoh [Sat12, Sat16] and are known to
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be separating, ie⋂
i≥1

γi IAn =
⋂
i≥1

γiIg,1 =
⋂
i≥1

αi IAn =
⋂
i≥1

αiIg,1 = 1.

Church and Farb [CF13, Conj 6.2 and the paragraph below Conj 6.3] conjectured

that each degree of the Lie algebras corresponding to the lower central series

is uniformly representation stable. The following theorems address exactly the

conjectures as stated by Church and Farb.

Theorem E. For every fixed i ≥ 1 and n ∈ N, the natural GLn Z–representation

on the ith quotient of the lower central series gri(γ IAn) extends to a rational

GLnQ–representation.

Theorem F. For every fixed i ≥ 1 the sequence of the ith quotients of the lower

central series {gri(γ IAn)}n∈N of GLnQ–representations is uniformly represen-

tation stable.

Theorem G. For every fixed i ≥ 1 the sequence of the ith quotients of the

lower central series {gri(γIg,1)}g∈N of Sp2g Q–representations is uniformly rep-

resentation stable.

It is noteworthy that if a GLn Z–representation can be extended to a rational

GLnQ–representation, this extension is not unique. In Section 2.9 it is explained

how there are infinitely many different possible extensions. However, a sequence

of extensions that satisfies Theorem F is uniquely determined for all large enough

n ∈ N. To prove Theorem F, we will find the correct way to extend these

representations for large enough n ∈ N. For representations of the symplectic

groups this problem does not arise.

We are also able to prove similar results for the Lie algebras corresponding

to the Johnson filtrations.

Theorem H. For every fixed i ≥ 1 the sequence of the ith quotients of the

Johnson filtration {gri(α IAn)}n∈N of GLnQ–representations is uniformly rep-

resentation stable.

Theorem I. For every fixed i ≥ 1 the sequence of the ith quotients of the

Johnson filtration {gri(αIg,1)}g∈N of Sp2g Q–representations is uniformly rep-

resentation stable.

We also prove analogues of Theorem E for the filtrations γIg,1, α IAn and

αIg,1, although they can already be found in the literature (eg in [HS00, Thm

1.1] and [Sat16]).

This work has been published in parts as the ArXiv preprint [Pat16].
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2 Rational representation theory of the general

linear groups and the symplectic groups

Let us start by shortly recalling the rational (or algebraic) representation theory

of the algebraic groups GLnQ and Sp2nQ. More elaboration can be found in

the books of Fulton–Harris [FH91], Green [Gre07], Goodman–Wallach [GW09],

Jantzen [Jan87], Weyl [Wey39], and the paper of Koike [Koi89].

2.1 Algebraic groups, polynomial and rational represen-

tations

In general an algebraic group over a field k is a variety that has a compatible

group structure. That means multiplication and inverses are regular maps of

varieties. Two simple examples are the additive group (k,+) considered as the

affine variety A1 and the multiplicative group (k×, ·) considered as the subvariety

of A2 given by the polynomial xy = 1.

A more complicated example is the general linear group GLn(k). To de-

fine it, we consider a subvariety of An2+1. Let its coordinates be denoted by

{xij}i,j=1,...,n and t. Then the determinant det(xij) of the matrix given by

{xij}i,j=1,...,n is a polynomial. Let GLn(k) be the subvariety of An2+1 given as

the zero set of the polynomial det(xij) · t− 1. The multiplication given by ma-

trix multiplication and the inverse given by Cramer’s rule is polynomial. Thus

GLn(k) is an algebraic group.

The symplectic group Sp2n(k) is the subgroup of GL2n(k) given by those

matrices (xij) whose inverse is

(xij)
−1 = Ωn · (xTij) · ΩTn
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where Ωn is the Gram matrix of the standard symplectic form

Ωn =



0 1

−1 0

. . .

0 1

−1 0


.

Therefore the symplectic group is the zero set of the polynomials

(xij) · Ωn · (xTij) · ΩTn − 1.

Thus Sp2n(k) is an algebraic group.

A (finite dimensional) polynomial/rational representation of an algebraic

group G over k is a map

G −→ GLn(k)

for some n ∈ N that is a group homomorphism and a polynomial/rational map

of varieties. For infinite dimensional representations, one may construct the

algebraic group GL(V ) for infinite dimensional vector spaces V over k. Note

that every polynomial representation is by definition also rational.

Both for GLn(k) and Sp2n(k) there is a standard representation given by

GLn(k)
id−→ GLn(k)

and

Sp2n(k) ↪−→ GL2n(k)

respectively. Both are polynomial representations.

2.2 The representation theory of GLnQ

It turns out that both the polynomial representation theory and the rational

representation theory of GLnQ are semisimple and all irreducible representa-

tions are finite dimensional.

The standard representation Vn = Qn is irreducible. All other irreducible

polynomial representations can be constructed as subquotients of the r-fold

tensor product V ⊗rn for some r ∈ N on which GLnQ acts diagonally. We get a

right action of the symmetric group Sr on r letters on V ⊗rn , which makes it a

QGLnQ–QSr–bimodule. Let λ be a partition of r, then r is called the size of

λ and is denoted by |λ|. Let Sr(λ) be its associated irreducible Specht module

7



of QSr, then

GLn(λ) := V ⊗rn ⊗
QSr

Sr(λ)

is an irreducible GLnQ–representation if λ has at most n rows and zero oth-

erwise. We call this number the length of λ and denote it by `(λ). In fact,

all irreducible polynomial GLnQ–representations are isomorphic to GLn(λ) for

some partition λ with at most n rows and they are up to isomorphism uniquely

determined by it.

To get rational representations of GLnQ, we need to introduce the dual

representation V ∗n = HomQ(Qn,Q) of Vn, which is defined by g·f(v) = f(g−1·v).

Define furthermore V
{r,s}
n to be the intersection of the kernels of all contraction

maps

V ⊗rn ⊗ V ∗n
⊗s −→ V ⊗r−1n ⊗ V ∗n

⊗s−1

v1 ⊗ · · · ⊗ vr ⊗ f1 ⊗ · · · ⊗ fs 7−→ fj(vi) · v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vr ⊗ f1 ⊗ · · · ⊗ f̂j ⊗ · · · ⊗ fs.

Let λ+ be a partition of r and λ− a partition of s. We call r+ s the size of the

pair (λ+, λ−). Then

GLn(λ+, λ−) := V {r,s}n ⊗
QSr⊗QSs

(
Sr(λ

+)⊗Ss(λ
−)
)

is a rational GLnQ–representation. It is irreducible if the length of the pair

`(λ+) + `(λ−) ≤ n and zero otherwise. All irreducible rational GLnQ–rep-

resentations are isomorphic to GLn(λ+, λ−) for some partitions λ+, λ− which

together have at most n rows and they are up to isomorphism uniquely deter-

mined by it.

In terms of weights, if `(λ+) + `(λ−) ≤ n, the irreducible representation

GLn(λ+, λ−) has the highest weight

(λ+1 L1 + λ+2 L2 + . . . )− (λ−1 Ln−1 + λ−2 Ln−2 + . . . ).

Here Li ∈ h∗ are elements of the dual vector space of the n×n diagonal matrices

h ∼= Qn. The matrices Ei,i sending ei to itself and all other ej to zero gives a

basis of h and

Li(Ej,j) = δi,j

gives its dual basis. For more details on the notation see Fulton–Harris [FH91,

§15].

Note that GLn(λ, ∅) = GLn(λ) is polynomial and GLn(∅) is the trivial rep-

resentation. Another significant representation is the one-dimensional determi-

8



nant representation D given by

g · 1 = det g · 1.

For each k ∈ Z let Dk be the one-dimensional representation given by

g · 1 = (det g)k · 1.

The highest weight of Dk is

k(L1 + · · ·+ Ln).

Interestingly, if V is the irreducible GLnQ–representation with highest weight

λ1L1 + · · ·+ λnLn

for some integers λ1 ≥ · · · ≥ λn, then V ⊗Dk is irreducible and has the highest

weight

(λ1 + k)L1 + · · ·+ (λn + k)Ln.

2.3 The representation theory of SpnQ

For the symplectic groups every rational representation is already polynomial.

As for the general linear groups, the rational representation theory of Sp2nQ is

semisimple and every irreducible representation is finite dimensional.

The standard representation Vn = Q2n is irreducible. All other irreducible

rational representations can be constructed as subquotients of the r-fold tensor

product V ⊗rn for some r ∈ N on which Sp2nQ acts diagonally. Let 〈 , 〉 denote

the symplectic form on Vn. Then for r ≥ 2 there are contractions

V ⊗rn −→ V ⊗r−2n

v1 ⊗ · · · ⊗ vr 7−→ 〈vi, vj〉 · v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ vr.

Let V
〈r〉
n denote the intersection of the kernels of all these maps. Then

Sp2n(λ) := V 〈r〉n ⊗
QSr

Sr(λ)

is a rational Sp2nQ–representation. It is irreducible if λ has at most n rows and

zero otherwise. All irreducible rational Sp2nQ–representations are of this form.

In terms of weights, if `(λ) ≤ n, the irreducible representation Sp2n(λ) has

the highest weight

λ1L1 + λ2L2 + · · ·+ λnLn.

9



Here Li ∈ h∗ are elements of the dual vector space of the Cartan subalgebra

h ∼= Qn of the 2n×2n matrices generated by the basis Hi = (E2i−1,2i−1−E2i,2i)

with i = 1, . . . , n. Then Li is the dual basis with

Li(Hj) = δi,j .

For more details on the notation see [FH91, §16+§17].

2.4 Littlewood–Richardson coefficients

Subsequently, we will make extensive use of the Littlewood–Richardson coeffi-

cients cλµν . These arise in various situations, especially in the context of branch-

ing rules, which we wish to cover in the next subsections. An introduction to

these coefficients can be found in Fulton [Ful97]. For our purpose the following

two propositions suffice.

The first proposition showcases the role of the Littlewood–Richardson coef-

ficients in branching rules. Throughout the paper we use the abbreviation

[V,W ] = dim HomG(V,W )

for G–representations V and W . If V is simple and W semisimple, [V,W ] =

[W,V ] counts the multiplicity of V in W .

Proposition 2.1. Let λ, µ, ν be partitions. Then the Littlewood–Richardson

coefficient cλµν computes the following multiplicities.

[Res
Sm+n

Sm×Sn Sm+n(λ),Sm(µ)⊗Sn(ν)] = cλµν

if |λ| = m+ n, |µ| = m, |ν| = n.

[Res
GLm+n Q
GLm Q×GLn Q GLm+n(λ),GLm(µ)⊗GLn(ν)] = cλµν

if `(λ) ≤ m+ n, `(µ) ≤ m, `(ν) ≤ n.

[GLn(µ)⊗GLn(ν),GLn(λ)] = cλµν

if `(λ), `(µ), `(ν) ≤ n.

The second proposition implies that all sums over partitions that appear in

this paper are finite sums.

Proposition 2.2. The Littlewood–Richardson coefficient cλµν is zero unless

|µ|+ |ν| = |λ|

10



and both µ and ν are subdiagrams of λ.

2.5 Some simple branching rules

The main tool of this paper will be the branching rules for rational represen-

tations. For the restrictions ResGLn Q
GLn−1 Q GLn(λ+, λ−) and Res

Sp2n Q
Sp2n−2 Q Sp2n(λ)

there are some simple rules that can be found in Goodman–Wallach [GW09,

Thm 8.1.1, Thm 8.1.5]. To phrase these for the rational representations of the

general linear groups, let λ ∈ Zn with

λ1 = λ+1 ≥ λ2 = λ+2 ≥ · · · ≥ λn−1 = −λ−2 ≥ λn = −λ−1

for a pair of partitions (λ+, λ−) with length `(λ+) + `(λ−) ≤ n.

Theorem 2.3. The multiplicity

[ResGLn Q
GLn−1 Q GLn(λ+, λ−),GLn−1(µ+, µ−)] = 1

if and only if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

Otherwise it is zero.

Theorem 2.4. The multiplicity

[Res
Sp2n Q
Sp2n−2 Q Sp2n(λ),Sp2n−2(µ)]

is nonzero if and only if

λi ≥ µi ≥ λi+2

for all 1 ≤ i ≤ n− 1. (λn+1 is always zero.)

In both cases, we obtain a corollary, which will prove useful later.

Corollary 2.5. If

[ResGLn Q
GLn−m Q GLn(λ+, λ−),GLn−m(µ+, µ−)] 6= 0

then

`(µ+) + `(µ−) ≥ `(λ+) + `(λ−)− 2m.

Proof. First assume m = 1. Let r+ = `(λ+), r− = `(λ−). Then from Theo-

rem 2.3, we know that

µ+
r+−1 ≥ λ

+
r+ > 0 > −λ−r− ≥ µ

−
r−−1.

11



This implies

`(µ+) + `(µ−) ≥ r+ − 1 + r− − 1 = `(λ+) + `(λ−)− 2

and proves the assertion form = 1. Form > 1 the corollary follows by induction.

Corollary 2.6. If

[Res
Sp2n Q
Sp2n−2m Q Sp2n(λ),Sp2n−2m(µ)] 6= 0

then

`(µ) ≥ `(λ)− 2m.

Proof. For m = 1 this follows from Theorem 2.4, because

µr−2 ≥ λr > 0

for r = `(λ). For m > 1 the corollary follows by induction.

For relatively small partitions λ+, λ−, λ, the multiplicities of some irre-

ducible GLmQ×GLnQ–representations and Sp2mQ× Sp2nQ–representations

of Res
GLm+n Q
GLm Q×GLn Q GLn(λ+, λ−) and Res

Sp2m+2n Q
Sp2m Q×Sp2n Q Sp2n(λ) can be expressed

nicely in the stable branching rules. For the following results we quote Howe–

Tan–Willenbring [HTW05, 2.2.1, 2.2.3].

Theorem 2.7. Let m,n, p, q ∈ N such that p+ q ≤ min(m,n). Let λ+, µ+, ν+

be partitions with at most p rows and λ−, µ−, ν− with at most q rows. Then

[Res
GLm+n Q
GLm Q×GLn Q GLm+n(λ+, λ−) , GLm(µ+, µ−)⊗GLn(ν+, ν−)]

=
∑

γ+,γ−,δ

cγ
+

µ+ν+c
γ−

µ−ν−c
λ+

γ+δc
λ−

γ−δ.

Theorem 2.8. Let λ, µ, ν be partitions with at most min(m,n) rows. Then

[Res
Sp2m+2n Q
Sp2m Q×Sp2n Q Sp2m+2n(λ) , Sp2m(µ)⊗ Sp2n(ν)] =

∑
γ,δ

cγµνc
λ
γ(2δ)′

where (2δ)′ is a partition with only even column lengths.

2.6 Modification rules for GLnQ

In order to state the branching rules more generally, we need modification rules.

To that effect we will use Koike and Tereda’s theory of universal characters

introduced in [KT87, Koi89].
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Let

Λx = lim←−
n

Z[x1, . . . , xn]Sn

denote the ring of symmetric functions and

Λxy = Λx ⊗ Λy.

The Schur functions

{sλ(x)}λ a partition

form a basis of the free abelian group Λx and thus the tensor products

{sλ(x)⊗ sµ(y)}λ,µ partitions

form a basis of Λxy. Koike [Koi89, Sec 2] defines a ring homomorphism

π̃n : Λxy −→ R(GLnQ)

to the representation ring R(GLnQ) of the rational representations of GLnQ.

We denote

modGLn(λ+, λ−) = π̃n(sλ+(x)⊗ sλ−(y)).

The “mod” stands for modification and and the laws that govern these “mod-

ified representations” are known under the name modification rules.

The idea is that the ring structure of Λxy controls the branching rules of the

rational representations of the general linear group. By design

modGLn(λ+, λ−) = GLn(λ+, λ−)

if `(λ+) + `(λ−) ≤ n. In general, modGLn(λ+, λ−) is zero or a virtual repre-

sentation ±GLn(µ+, µ−) for some partitions µ+, µ− with `(µ+) + `(µ−) ≤ n.

These two statements are precisely [Koi89, Prop 2.2].

Sam–Snowden–Weyman [SSW13, Sec 5.4] give the following combinatorial

construction of the modification rules. A border strip is a skew Young diagram

that does not contain a 2 × 2 square. Its length is the number of boxes it

contains. Assume `(λ+) + `(λ−) > n. Let, if they exist, Rλ+ and Rλ− be the

connected border strips of length `(λ+)+`(λ−)−n−1 in λ+ and λ− containing

the first box in the last row, respectively. If λ+ \ Rλ+ and λ− \ Rλ− are both

Young diagrams again then

modGLn(λ+, λ−) = (−1)c(Rλ+ )+c(Rλ− )−1 ·modGLn(λ+ \Rλ+ , λ− \Rλ−),

where c(R) denotes the number of columns the skew diagram R occupies. If

13



Rλ+ or Rλ− do not exist or are empty, or λ+ \Rλ+ or λ− \Rλ− are not Young

diagrams then

modGLn(λ+, λ−) = 0.

In this construction

`(λ+ \Rλ+) + `(λ− \Rλ−) < `(λ+) + `(λ−).

Therefore it terminates after finitely many steps.

We reproduce [SSW13, Ex 5.17]. Let n = 3, λ+ = (4, 3, 2, 2) and λ− =

(5, 2, 2, 1, 1). Then `(λ+)+`(λ−) = 9 and the border strips of length 9−3−1 = 5

are marked by bullet points in following diagrams:

λ+ = • •
•

• •

λ− =
•

• •
•
•

Because Rλ+ occupies 3 columns and Rλ− occupies 4 columns,

modGL3

(
,

)
= modGL3

(
,

)
.

We again mark the border strips of length 5− 3− 1 = 1 by bullet points:

• •

In the end we get

modGL3

(
,

)
= −modGL3

(
,

)
= −GL3

(
,

)
.

We summarize all that we will need in the later discussion in the following

Proposition.

Proposition 2.9 (Modification rules for GLnQ). Let λ+, λ− be partitions.

Then:

(a) modGLn(λ+, λ−) = GLn(λ+, λ−) if `(λ+) + `(λ−) ≤ n.

(b) modGLn(λ+, λ−) is zero or a virtual representation ±GLn(µ+, µ−) for

some partitions µ+, µ− with `(µ+) + `(µ−) ≤ n.

(c) If modGLn(λ+, λ−) = ±GLn(µ+, µ−) then µ+, µ− are contained in λ+, λ−,

respectively.

14



2.7 Modification rules for Sp2nQ

Koike–Tereda [KT87, Sec 2.1] denote by

{χSp(λ)(x)}λ a partition

another basis of Λx. They define in [KT87, Sec 2.2] a ring homomorphism

πSp2n
: Λx −→ R(Sp2nQ)

to the representation ring R(Sp2nQ) of the rational representations of Sp2nQ.

We denote

modSp2n(λ) = πSp2n
(χSp(λ)(x)).

Similar to the modification rules of the general linear group

modSp2n(λ) = Sp2n(λ)

if `(λ) ≤ n and otherwise modSp2n(λ) is zero or a virtual representation of the

form ± Sp2n(µ) for some partition µ with `(µ) ≤ n. Koike–Tereda prove this in

[KT87, Prop 2.2.1(1)+Prop 2.4.1(ii)].

Sam–Snowden–Weyman [SSW13, Sec 3.4] give the following combinatorial

construction of the modification rules. Assume `(λ) > n. Let, if it exists, Rλ

be the connected border strip of length 2(`(λ)− n− 1) in λ containing the first

box in the last row. If λ \Rλ is a Young diagram again then

modSp2n(λ) = (−1)c(Rλ) ·modSp2n(λ \Rλ).

If Rλ does not exist or is empty, or λ \Rλ is not a Young diagram then

modSp2n(λ) = 0.

Again

`(λ \Rλ) < `(λ)

implies that this procedure terminates after finitely many steps.

The following example is [SSW13, Ex 3.20]. Let n = 2 and consider the

partition λ = (6, 5, 4, 4, 3, 3, 2). We give the border strips of all steps in the
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following picture:

•
• •
•

• •
• •

 • •
•

• •
•

 •
•

 

Therefore

modSp4


 = −modSp4

  = −modSp4

( )
= −modSp4

( )
.

We summarize all that we will need in the later discussion in the following

Proposition.

Proposition 2.10 (Modification rules for Sp2nQ). Let λ be a partition. Then:

(a) modSp2n(λ) = Sp2n(λ) if `(λ) ≤ n.

(b) modSp2n(λ) is zero or a virtual representation ±Sp2n(µ) for some parti-

tion µ with `(µ) ≤ n.

(c) If modSp2n(λ) = ±Sp2n(µ) then µ is contained in λ.

2.8 Branching rules

The main technical tool of this paper will be branching rules of rational rep-

resentations. We will need formulas for inner and outer tensor products and

a stability statement for plethysms. These are corollaries of the modification

rules.

Theorem 2.11 (Koike [Koi89, Thm 2.4]). Let µ+, µ−, ν+, ν− with `(µ+) +

`(µ−), `(ν+) + `(ν−) ≤ n. Then

GLn(µ+, µ−)⊗GLn(ν+, ν−) ∼=⊕
λ+,λ−

modGLn(λ+, λ−)
⊕

∑
α+,α−,β+,β−,γ,δ

cλ
+

α+β+
cµ

+

α+γ
cν

+

β+δ
cλ
−
α−β−c

µ−

α−δ
cν
−
β−γ

.

Theorem 2.12 (Koike [Koi89, Thm 3.1]). Let µ, ν with `(µ), `(ν) ≤ n. Then

Sp2n(µ)⊗ Sp2n(ν) ∼=
⊕
λ

modSp2n(λ)
⊕

∑
α,β,γ

cλαβc
µ
αγc

ν
βγ

.
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Theorem 2.13 (Koike [Koi89, Prop 2.6]). Let λ+, λ− with `(λ+) + `(λ−) ≤
m+ n. Then

Res
GLm+n Q
GLm Q×GLn Q GLm+n(λ+, λ−) ∼=⊕

µ+,µ−,ν+,ν−

(
modGLm(µ+, µ−)⊗modGLn(ν+, ν−)

)⊕ ∑
γ+,γ−,δ

cγ
+

µ+δ
cγ
−

µ−δ
cλ

+

γ+ν+
cλ
−
γ−ν+

.

Theorem 2.14. Let λ be a partition with `(λ) ≤ m+ n. Then

Res
Sp2m+2n Q
Sp2m Q×Sp2n Q Sp2m+2n(λ) ∼=

⊕
µ,ν

(
modSp2m(µ)⊗modSp2n(ν)

)⊕∑
γ,δ

cγµνc
λ
γ(2δ)′

.

Proof. In the philosophy of the proof of [Koi89, Prop 2.6], we consider two

variable sets x, y and the natural embedding

Λx∪y −→ Λx ⊗ Λy

where x ∪ y is the union of the variable sets x and y. Then there is a unique

way to write

χSp(λ)(x ∪ y) =
∑

mλ
µνχSp(µ)(x)⊗ χSp(ν)(y).

Let N ≥ max(`(λ), `(µ) + `(ν)). Consider the following commutative diagram.

Λx∪y //

��

Λx ⊗ Λy

��
R(Sp4N Q) // R(Sp2N Q)⊗R(Sp2N Q)

Then the stable branching rule Theorem 2.8 and Proposition 2.10(a) imply

mλ
µν =

∑
γ,δ

cγµνc
λ
γ(2δ)′ .

Then the following commutative diagram proves the assertion.

Λx∪y //

��

Λx ⊗ Λy

��
R(Sp2m+2nQ) // R(Sp2mQ)⊗R(Sp2nQ)

In the last paragraph of [Koi89, Sec 2] plethysms in the universal character

ring Λxy are introduced. That is if λ, µ+, µ− are partitions then there is an
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element sλ(x) ◦ (sµ+(x)⊗ sµ−(y)) ∈ Λxy such that

π̃n(sλ(x) ◦ (sµ+(x)⊗ sµ−(y))) = GLn(µ+, µ−)⊗|λ| ⊗
QS|λ|

S|λ|(λ)

for all n ≥ `(µ+) + `(µ−). We need the following consequence.

Proposition 2.15. Let λ+, λ− be partitions and k ∈ N then there is a large

N ∈ N and fixed coefficients mµ+µ− such that

∧k
GLn(λ+, λ−) ∼=

⊕
µ+,µ−

GLn(µ+, µ−)⊕mµ+µ−

for all n ≥ N .

Proof. Let us write

s(1k)(x) ◦ (sλ+(x)⊗ sλ−(y)) =
∑
µ+,µ−

mµ+µ− · sµ+(x)⊗ sµ−(y)

in Λxy. This is a finite sum and let N be the maximal value `(µ+) + `(µ−) of

those pairs (µ+, µ−) for which mµ+µ− 6= 0. Then applying π̃n gives

∧k
GLn(λ+, λ−) ∼=

⊕
µ+,µ−

GLn(µ+, µ−)⊕mµ+µ−

for all n ≥ N as asserted.

The analogous statement for Sp2nQ can be found in [CF13] or can be proved

analogously.

Proposition 2.16 (Church–Farb [CF13, Thm 3.1]). Let λ be a partition and

k ∈ N then there is a large N ∈ N and fixed coefficients mµ such that

∧k
Spn(λ) ∼=

⊕
µ

Spn(µ)⊕mµ

for all n ≥ N .

The following corollaries are needed in Section 3.

Corollary 2.17. Let λ+, λ− be partitions with `(λ+)+`(λ−) ≤ n and let µ+, µ−

be partitions with `(µ+)+`(µ−) ≤ m. Assume further |λ+|+ |λ−| ≤ |µ+|+ |µ−|,
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then

[ResGLn Q
GLm Q×GLn−m Q GLn(λ+, λ−),GLm(µ+, µ−)⊗GLn−m(ν+, ν−)]

=

1 if µ+ = λ+, µ− = λ− and ν+ = ν− = ∅

0 otherwise.

In particular, if |λ+|+ |λ−| < |µ+|+ |µ−| then

HomGLm Q(GLm(µ+, µ−),ResGLn Q
GLm Q GLn(λ+, λ−)) = 0.

Similarly if `(λ+) < `(µ+) or `(λ−) < `(µ−) then

HomGLm Q(GLm(µ+, µ−),ResGLn Q
GLm Q GLn(λ+, λ−)) = 0.

Proof. From Proposition 2.9(c), we know that |modGLm(η+, η−)| ≤ |η+|+|η−|.
Thus if modGLm(η+, η−) = (µ+, µ−), we also know |η+| + |η−| ≥ |λ+| + |λ−|.
For such η+, η− we can calculate the multiplicity from Theorem 2.13.

cγ
+

η+ν+c
γ−

η−ν−c
λ+

γ+δc
λ−

γ−δ =

1 if η+ = γ+ = λ+, η− = γ− = λ− and ν+ = ν− = δ = ∅

0 otherwise.

Therefore the only constituent

modGLm(η+, η−)⊗modGLn−m(ν+, ν−)

in Res
GLm+n Q
GLm Q×GLn Q GLm+n with |η+|+ |η−| ≥ |λ+|+ |λ−| is

modGLm(µ+, µ−)⊗modGLn−m(∅, ∅) = GLm(µ+, µ−)⊗GLn−m(∅).

Corollary 2.18. Let λ be a partition with `(λ) ≤ n and let µ be a partition

with `(µ) ≤ m. Assume further |λ| ≤ |µ|, then

[Res
Sp2n Q
Sp2m Q×Sp2n−2m Q Sp2n(λ),Sp2m(µ)⊗Sp2n−2m(ν)] =

1 if µ = λ and ν = ∅

0 otherwise.

In particular, if |λ| < |µ| then

HomSp2m Q(Sp2m(µ),Res
Sp2n Q
Sp2m Q Sp2n(λ)) = 0.

Proof. Analogous to Corollary 2.17 we calculate the multiplicity from Theo-
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rem 2.14 for |η| ≥ |λ|.

cγηνc
λ
γ(2δ)′ =

1 if η = γ = λ and ν = δ = ∅

0 otherwise.

2.9 Restriction to GLn Z and Sp2n Z

We will later need to understand the restrictions ResGLn Q
GLn Z GLn(λ+, λ−) and

Res
Sp2n Q
Sp2n Z Spn(λ). The information we need is provided by Borel in the context

of his density theorem:

Theorem 2.19 (Borel [Bor60, Prop 3.2]). Let G be a simple non-compact con-

nected real Lie group and V a finite dimensional irreducible G–representation.

Let H be a subgroup of G such that for every neighborhood U of the identity in

G and every g ∈ G there exists an integer n > 0 with gn ∈ U ·H · U . Then V

is an irreducible H–representation.

This theorem directly applies to the symplectic groups G = Sp2nR and

H = Sp2n Z and can also be transferred to stating that

Res
Sp2n Q
Sp2n Z Sp2n(λ)

is an irreducible Sp2n Z–representation for all partitions λ of length `(λ) ≤ n.

Furthermore becauseH is Zariski dense inG (which is the main result of [Bor60])

all of these Sp2n Z–representations are pairwise nonisomorphic.

To understand the situation for the general linear group, we need to take a

look at the representation theory of the special linear group. Essentially, the

difference between the rational representation theory of these two groups is the

determinant representation, which restricts to the trivial SLnQ–representation.

In fact, all irreducible polynomial (which is the same as rational) SLnQ–rep-

resentations are given by and are uniquely (up to isomorphism) determined

by

ResGLn Q
SLn Q GLn(λ) = V ⊗rn ⊗

QSr
Sr(λ)

for some partition λ with length `(λ) ≤ n− 1. In general, the restriction is not

much harder. Every irreducible rational GLnQ–representation can be written

as a tensor product

GLn(λ+, λ−) ∼= GLn(λ)⊗Dk

for a uniquely determined partition λ with length `(λ) ≤ n− 1 and k = λ−1 ∈ Z
or k = −λ+n ∈ Z if λ− is empty. Because

ResGLn Q
SLn Q Dk
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is the trivial representation, we have completely described the restriction of

irreducible rational GLnQ–representations to SLnQ.

Theorem 2.19 is now applicable to G = SLn R and H = SLn Z and can be

transferred to the statement that

ResSLn Q
SLn Z SLn(λ)

is an irreducible SLn Z–representation for all partitions λ of length `(λ) ≤ n−1.

Again all these SLn Z–representations are pairwise nonisomorphic.

For the general linear group this implies that

ResGLn Q
GLn Z GLn(λ+, λ−)

is an irreducible GLn Z–representation. Note that

ResGLn Q
GLn Z Dk

∼= ResGLn Q
GLn Z Dk+2

and thus all restrictions of irreducible rational GLnQ–representations to GLn Z
have the form

ResGLn Q
GLn Z

(
GLn(λ)⊗Dk

)
for some partition λ = (λ1, . . . , λr) of length r = `(λ) ≤ n− 1 and k ∈ {0,−1}.
Such a GLnQ–representation has the highest weight

(λ1 + k)L1 + · · ·+ (λr + k)Lr + kLr+1 + · · ·+ kLn

so it is exactly one

GLn(λ+, λ−)

such that `(λ+) ≤ n− 1 and λ− is contained in (1n).

Assume

ResGLn Q
GLn Z

(
GLn(λ)⊗Dk

) ∼= ResGLn Q
GLn Z

(
GLn(λ′)⊗Dk′

)
are isomorphic, then by restriction to SLn Z, we see that λ = λ′. By an argument

communicated to the author by David Speyer we can prove that

ResGLn Q
GLn Z

(
GLn(λ)⊗D−1

)
6∼= ResGLn Q

GLn Z GLn(λ).

The argument goes as follows. Let ρ denote the representation of GLn Z on

GLn(λ). If we assume there exists an isomorphism then its characters must

coincide:

(det g)−1 · tr ρ(g) = tr ρ(g)
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Thus all g ∈ GLn Z with negative determinant must have vanishing value of the

character of ρ. The character can be described by the (complex) eigenvalues

α1, . . . , αn of g as

tr ρ(g) = sλ(α1, . . . , αn)

where sλ is the Schur polynomial, which is symmetric and homogeneous of

degree |λ|. Therefore sλ can not be divisible by the inhomogeneous polynomial

1 + x1 · · ·xn. Let us write sλ as a polynomial p in the elementary symmetric

polynomials e1, . . . , en. Then the previous statement is precisely that p is not

divisible by 1 + en. Because Zn is Zariski closed in Qn, there are integers

(f1, . . . , fn) such that p(f1, . . . , fn) 6= 0 but 1 + fn = 0. Let

g =


0 · · · 0 (−1)n+1fn

1
. . .

... (−1)nfn−1
. . . 0

...

0 1 f1

 ∈ GLn Z

be the companion matrix to the characteristic polynomial

xn − f1xn−1 + · · ·+ (−1)nfn.

Say α1, . . . , αn are the (complex) roots of the characteristic polynomial, that

are the eigenvalues of g, then

tr ρ(g) = sλ(α1, . . . αn) = p(f1, . . . , fn) 6= 0

even though the determinant det g = fn = −1. Contradiction.

3 Representation stability for general linear groups

and symplectic groups

When Church–Ellenberg–Farb [CEF15] study representation stable sequences

of representations of the symmetric groups, they consider modules over the cat-

egory FI of finite sets and injections. When we want to generalize their work to

the general linear groups and symplectic groups, the obvious generalizations of

FI would be VI and SI, the category of finite dimensional vector spaces and in-

jections and the category of symplectic vector spaces and (injective) isometries.

For the symplectic groups this turns out to be correct but for the general linear

groups we need a different notion. The following definition of VIC, which stands

for vector spaces with injections and complements, was related to representation
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stability by Putman–Sam [PS14].

3.1 VIC and SI

Definition 3.1. Fix a commutative ring R. Let VICR be the category whose

objects are finite rank free modules over R and its morphisms are given by a

monomorphism together with a free complement of the image. That is

HomVICR(V,W ) = {(f, C) | f : V ↪−→W, im f ⊕ C = W,C free}.

The composition is given by

(g,D) ◦ (f, C) = (g ◦ f,D ⊕ g(C)).

Let SIR be the category whose objects are finitely generated symplectic free

modules over R and its morphisms are given by isometries. Here a free mod-

ule of rank 2n together with a bilinear form 〈 , 〉Sp is symplectic if there is a

basis {e1, e′1, . . . , en, e′n} such that 〈ei, ej〉Sp = 〈e′i, e′j〉Sp = 0 and 〈ei, e′j〉Sp =

−〈e′i, ej〉Sp = δij. Isometries are always injective but not necessarily bijective.

The property by which we chose VIC and SI for our purpose is pointed out

by the following remark.

Remark 3.2. A skeleton of VICR is given by the full subcategory on the objects

{Rn}n∈N and

HomVICR(Rm, Rn) ∼=

GLnR/GLn−mR if n ≥ m,

∅ otherwise.

Composition is given by group multiplication:

GLnR
/

GLn−mR ×GLmR
/

GLm−lR −→ GLnR
/

GLn−lR

(gGLn−mR, hGLm−lR) 7−→ ghGLn−lR

Similarly a skeleton of SIR is given by the full subcategory on the objects

{R2n}n∈N and

HomSIR(R2m, R2n) ∼=

Sp2nR/Sp2n−2mR if n ≥ m,

∅ otherwise.

Composition is also given by group multiplication.
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3.2 VIC– and SI–modules

Let us fix a commutative ring R.

Definition 3.3. Let C be a category, then C–modules are functors from C to the

category Q−mod of vector spaces over Q. Note that for C = VICR and C = SIR,

it is enough to consider the effect of such a functor V on the skeleton which is

indexed by the natural numbers. By these means we will write Vn for image of

Rn or R2n under V , respectively. Furthermore we will denote the image of the

standard embedding Rn → Rn+1 and R2n → R2n+2 by φn : Vn → Vn+1.

We call VICQ– and SIQ–modules V rational if all group homomorphisms

GLnQ→ GL(Vn) and Sp2nQ→ GL(Vn) are rational.

We will consider representable C–modules as free.

Definition 3.4. Denote the representable functors Q[HomVICR(Rm,−)] and

Q[HomSIR(R2m,−)] uniformly by M(m).

We call VICR– and SIR–modules V generated in ranks ≤ m if there is a

surjection ⊕
i∈I

M(mi) −� V

where mi ≤ m for all i ∈ I. (The index set I is allowed to be infinite.)

We say V is generated in finite rank if it is generated in ranks ≤ m for some

m ∈ N.

There is a good reason to consider M(m) free. By the Yoneda Lemma, a

homomorphism

M(m) −→ V

for some C–module V is determined by the image of id ∈ M(m)m in Vm. Also

if ⊕
i∈I

M(mi) −� V,

the smallest submodule of V that contains the images of id ∈ M(mi)mi is V

itself. Thus V is generated by those images, which all lie in ranks ≤ m.

We will need the following propositions later to provide sequences of repre-

sentations with a functorial structure. They are the natural generalizations

of Church–Ellenberg–Farb [CEF15, Rem 3.3.1] to VICR and SIR. Randal-

Williams–Wahl [RWW15, Prop 4.2] prove it in a more general setup.

Proposition 3.5. Let {Vn}n∈N be a sequence of GLnR–representations and let

φn : Vn → Vn+1 be GLnR–equivariant maps. Then GLn−mR acts trivially on

the image of Vm in Vn if and only if there is a VICR–module V with V (Rn) = Vn

and φn is the image of the standard embedding Rn → Rn+1.
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Proposition 3.6. Let {Vn}n∈N be a sequence of Sp2nR–representations and let

φn : Vn → Vn+1 be Sp2nR–equivariant maps. Then Sp2n−2mR acts trivially on

the image of Vm in Vn if and only if there is a VICR–module V with V (R2n) = Vn

and φn is the image of the standard embedding R2n → R2n+2.

In what follows we often want to treat VICQ and SIQ uniformly. To that end we

will write C instead of VICQ and SIQ when we want to make a statement that is

true for both categories. We will also write Gn for GLnQ or Sp2nQ depending

on the setting.

3.3 Stability degree

Analogous to the approach by Church–Ellenberg–Farb [CEF15, Sec 3.2] we want

to introduce the stability degree of C–modules. We first make the observation

that there is an injection Ga×Gn−a → Gn given by a block sum. Therefore we

can consider the coinvariants

Q ⊗
QGn−a

ResGnGa×Gn−a Vn

as a QGa–module for any QGn–module Vn. Furthermore φ : Vn → Vn+1 induces

a Ga-map

Q ⊗
QGn−a

Vn
φ∗ // Q ⊗

QGn−a
Vn+1

// // Q ⊗
QGn+1−a

Vn+1 .

Definition 3.7. Let τn,a be the functor

τn,aVn = Q ⊗
QGn−a

ResGnGa×Gn−a Vn

from QGn–modules to QGa–modules. We say a C–module V has injectivity

degree, surjectivity degree or stability degree ≤ s if the map

τa+n,aVa+n
φ∗ // τa+n+1,aVa+n+1

is injective, surjective or bijective, respectively, for all nonnegative integers a

and all n ≥ s.

Remark 3.8. Note that if

ResGnGa×Gn−a Vn
∼=
⊕

Wi ⊗W ′i ,
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with simple QGa ⊗QGn−a–modules Wi ⊗W ′i , then

τn,aVn ∼=
⊕

W ′i trivial

Wi.

The following two propositions are analogues to [CEF15, Lem 3.2.7] and

follow immediately from the previous remark and Corollaries 2.17 and 2.18,

respectively.

Proposition 3.9. Let λ+, λ− be partitions with `(λ+) + `(λ−) ≤ n and let

µ+, µ− be partitions with `(µ+) + `(µ−) ≤ m. Assume further |λ+| + |λ−| ≤
|µ+|+ |µ−|, then

[τn,m GLn(λ+, λ−),GLm(µ+, µ−)] =

1 if µ+ = λ+ and µ− = λ−

0 otherwise.

Proposition 3.10. Let λ be a partition with `(λ) ≤ n and let µ be a partition

with `(µ) ≤ m. Assume further |λ| ≤ |µ|, then

[τn,m Sp2n(λ),Sp2m(µ)] =

1 if µ = λ

0 otherwise.

The next proposition is the analogue of [CEF15, Prop 3.1.7]. It turns out

to be much more complicated than in the case of symmetric groups studied in

[CEF15]. Later we will only need finite surjectivity degree of M(m), but we

give both injectivity degree and surjectivity degree for completeness sake.

Proposition 3.11. M(m) has injectivity degree ≤ 0 and surjectivity degree

≤ 2m.

Proof. From Remark 3.2 we get that

M(m)a+n ∼= Q[Ga+n/Ga+n−m].

The functor τa+n,a takes coinvariants with respect to the Gn-action from the

left, so

τa+n,aM(m)a+n ∼= Q[Ga+n/Ga+n−m]Gn
∼= Q

[
Gn
∖
Ga+n

/
Ga+n−m

]
.

To understand the actions better, let us specify to the general linear case and

let Ga+n = GLa+nQ act on the (a+n)-dimensional vector space with the basis

Qa+n = Q[e1, . . . , ea, ea+1, . . . , ea+n].
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Then Gn = GLnQ is the subgroup acting on the subspace

Qn = Q[ea+1, . . . , ea+n]

and fixing e1, . . . , ea. Similarly Ga+n−m = GLa+n−mQ is the subgroup acting

on

Qa+n−m = Q[em+1, . . . , ea+n]

and fixing e1, . . . , em.

The map φ∗ : τa+n,aM(m)a+n → τa+n+1,aM(m)a+n+1 from Definition 3.7

is then given by

Q
[
Gn
∖
Ga+n

/
Ga+n−m

]
−→ Q

[
Gn+1

∖
Ga+n+1

/
Ga+n+1−m

]
which is in fact induced by the natural map

Gn
∖
Ga+n

/
Ga+n−m −→ Gn+1

∖
Ga+n+1

/
Ga+n+1−m

on the basis. Here we think of Ga+n = GLa+nQ as a subgroup of Ga+n+1 =

GLa+n+1 by the standard inclusion

Q[e1, . . . , ea, ea+1, . . . , ea+n] ⊂ Q[e1, . . . , ea, ea+1, . . . , ea+n, ea+n+1].

Hence it suffices to consider injectivity and surjectivity for the mapping between

bases.

We start with injectivity. Let g ∈ Ga+n, x ∈ Gn+1, y ∈ Ga+n+1−m and

assume g′ = xgy ∈ Ga+n. We want to prove that g and g′ represent the same

element in Gn\Ga+n/Ga+n−m. To do so, we use the following block matrix

form.(
g′ 0

0 1

)
=

(
x̄ x̃

˜̃x x0

)
︸ ︷︷ ︸

x

(
g 0

0 1

)(
ȳ ỹ

˜̃y y0

)
︸ ︷︷ ︸

y

=

(
x̄gȳ + x̃˜̃y x̄gỹ + x̃y0
˜̃xgȳ + x0 ˜̃y ˜̃xgỹ + x0y0

)

Now let us consider C = VICQ. Assume first x̄ is invertible. Then

x̄gỹ + x̃y0 = 0 =⇒ ỹ + (x̄g)−1x̃y0 = 0 =⇒ −y−10 ỹ = (x̄g)−1x̃.

The second implication is because not both y0 and ỹ can be zero as y is invertible.

Thus

x̄ · g · (ȳ − y−10 ỹ ˜̃y) = x̄gȳ + (x̄g)(x̄g)−1x̃˜̃y = g′,

where x̄ ∈ GLnQ and (ȳ − y−10 ỹ ˜̃y) ∈ GLa+n−mQ. The same argument works,
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when ȳ is invertible. So assume that both x̄ and ȳ are not invertible. Then

x̃ 6∈ im x̄ and ˜̃yT 6∈ im ȳT .

Then

x̄(gỹ) = −y0x̃

implies y0 = 0 and x̄gỹ = 0 and

(˜̃xg)ȳ = −x0 ˜̃y

implies x0 = 0 and ˜̃xgȳ = 0. Also

1 = ˜̃xgỹ + x0y0 = ˜̃xgỹ.

Thus

(x̄+ x̃˜̃x) · g · (ȳ + ỹ ˜̃y) = x̄gȳ + x̄gỹ ˜̃y + x̃˜̃xgȳ + x̃˜̃xgỹ ˜̃y = g′.

Now consider C = SIQ. Denote by

Ωn =



0 1

−1 0

. . .

0 1

−1 0


the Gram matrix of the standard symplectic form on a 2n-dimensional vector

space. Then

x ·

(
gỹ

y0

)
=

(
0

1

)
implies that (

gỹ

y0

)
= Ωn+1x

TΩ−1n+1

(
0

1

)
= Ωn+1

(
˜̃x x0

)T
Ω−11 .

Thus

y0 = Ω1x
T
0 Ω−11 , gỹ = Ωn ˜̃xTΩ−11 and ˜̃xg = Ω1ỹ

TΩ−1n .

Because x and y are symplectic we derive

ỹTΩnȳ = −yT0 Ω1
˜̃y, x̄Ωn ˜̃xT = −x̃Ω1x

T
0 and ˜̃xΩn ˜̃xT = Ω1 − x0Ω1x

T
0 .

One can check that we can find an α ∈ Sp2 Q = SL2 Q such that α − x0 is
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invertible. This is equivalent to α−1 − y0 being invertible. Let β, γ ∈ GL2nQ
such that

βx̃ = x̃(α− x0)−1 and ˜̃yγ = (α−1 − y0)−1 ˜̃y.

Then

x̃+ βx̃x0 = βx̃α and ˜̃y + y0 ˜̃yγ = α−1 ˜̃yγ.

We can now calculate:

(
x̄+ βx̃˜̃x

)
g
(
ȳ + ỹ ˜̃yγ

)
= x̄gȳ + βx̃˜̃xgȳ + x̄gỹ ˜̃yγ + βx̃˜̃xgỹ ˜̃yγ

= x̄gȳ + βx̃Ω−11 ỹTΩnȳ + x̄Ωn ˜̃xTΩ−11
˜̃yγ + βx̃˜̃xΩn ˜̃xTΩ−11

˜̃yγ

= x̄gȳ − βx̃Ω−11 yT0 Ω1
˜̃y − x̃Ω1x

T
0 Ω−11

˜̃yγ + βx̃(Ω1 − x0Ω1x
T
0 )Ω−11

˜̃yγ

= x̄gȳ − βx̃x0 ˜̃y − x̃y0 ˜̃yγ + βx̃(1− x0y0)˜̃yγ

= x̄gȳ + x̃˜̃y + βx̃˜̃yγ − (x̃+ βx̃x0)(˜̃y + y0 ˜̃yβ)

= x̄gȳ + x̃˜̃y = g′

Also:

(
x̄+ βx̃˜̃x

)
Ωn
(
x̄+ βx̃˜̃x

)T
= x̄Ωnx̄

T + x̄Ωn ˜̃xT x̃TβT + βx̃˜̃xΩnx̄
T + βx̃˜̃xΩn ˜̃xT x̃TβT

= x̄Ωnx̄
T − x̃Ω1x

T
0 x̃

TβT − βx̃x0Ω1x̄
T + βx̃(Ω1 − x0Ω1x

T
0 )x̃TβT

= x̄Ωnx̄
T + x̃Ω1x̃

T + βx̃Ω1x̃
TβT − (x̃+ βx̃x0)Ω1(x̃+ βx̃x0)T

= x̄Ωnx̄
T + x̃Ω1x̃

T + βx̃Ω1x̃
TβT − βx̃αΩ1(βx̃α)T

= x̄Ωnx̄
T + x̃Ω1x̃

T = Ωn

And analogously: (
ȳ + ỹ ˜̃yγ

)T
Ωn
(
ȳ + ỹ ˜̃yγ

)
= Ωn

This proves injectivity degree ≤ 0.

For surjectivity consider first C = SIQ. Let g ∈ Sp2(a+n+1) Q. Because

2(n + 1) + 2(a + n + 1 − m) = 2(a + n + 1) + 2(n + 1 − m), the intersection

Q2(n+1) ∩ gQ2(a+n+1−m) is at least 2(n+ 1−m)-dimensional. Assume n ≥ 2m,

then 2(n + 1 − m) ≥ n + 2. Therefore it cannot be an isotropic subspace

of Q2(n+1). In particular, there are vectors v, v′ ∈ Q2(n+1) ∩ gQ2(a+n+1−m)

such that 〈v, v′〉 = 1. We hence may find an h1 ∈ Sp2(a+n+1−m) Q that sends

(ea+n+1, e
′
a+n+1) to (g−1v, g−1v′) and an h2 ∈ Sp2(n+1) Q that sends (v, v′) to

(ea+n+1, e
′
a+n+1). Then h2gh1 ∈ Sp2(a+n) Q, thus Sp2(n+1) Qg Sp2(a+n+1−m) Q

is the image of Sp2nQh2gh1 Sp2(a+n−m) Q and surjectivity degree is ≤ 2m.

And finally for C = VICQ let g ∈ GLa+n+1 Q and n ≥ 2m. We need to find
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a g′ ∈ GLa+n such that

GLn+1 Q · g ·GLa+n+1−mQ = GLn+1 Q · g′ ·GLa+n+1−mQ.

That means we may do matrix transformations on g from the left by GLn+1 Q
and from the right by GLa+n+1−mQ to transform to g′.

Because n ≥ 2m, we have (n+ 1) + (a+ n+ 1−m) ≥ (a+ n+ 1) +m+ 1.

Thus the intersection g−1Qn+1∩Qa+n+1−m is at least (m+1)-dimensional. Let

V be an (m+ 1)-dimensional subspace of this intersection. We can g transform

such that

V = 〈ea+n+1−m, . . . , ea+n+1︸ ︷︷ ︸
m+1

〉,

g is the identity on V and sends 〈em+1, . . . , ea+n−m〉 to 〈e1, . . . , ea+n−m〉. Be-

cause (
g〈e1, . . . , em〉

)⊥ ∩ V
is not trivial, we may transform g that it sends 〈e1, . . . , em〉 to Qa+n. In sum-

mary we transformed g to have the form
A B 0 0

C D 0 0

E 0 1 0

0 0 0 1


where the matrices A,B,C,D,E have the dimensions a×m, a× (a+ n− 2m),

(n−m)×m, (n−m)× (a+ n−m), m ×m, respectively. And therefore g ∈
GLa+nQ, which proves surjectivity degree ≤ 2m.

Corollary 3.12. A C–module V that is generated in ranks ≤ m has surjectivity

degree ≤ 2m.

Proof. Note that τ is right exact, thus the following commutative diagram yields

the assertion.

τa+n,a
⊕

i∈IM(mi)a+n // //

����

τa+n,aVa+n

��
τa+n+1,a

⊕
i∈IM(mi)a+n+1

// // τa+n+1,aVa+n+1

3.4 Noetherian property

Definition 3.13. Let

ΦaV =
⊕
n∈N

τa+n,aVa+n
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be the graded module over the graded polynomial ring Q[T ]. T acts via

φ∗ : τa+n,aVa+n −→ τa+n+1,aVa+n+1

from Definition 3.7.

Proof of Theorems C and D. Let V be a rational SIQ–module that is finitely

generated in ranks ≤ a. Then the Q[T ]–module

ΦaV =
⊕
n∈N

τa+n,aVa+n

is finitely generated in degrees ≤ 2a. The submodule

ΦaW ⊂ ΦaV

is a finitely generated Q[T ]–module because Q[T ] is a noetherian ring. Let

x1 ∈ ΦaWn1
, . . . , xr ∈ ΦaWnr be homogeneous generators and w1 ∈ Wa+n1

,

. . . , wr ∈ Wa+nr their respective preimages. Denote the submodule generated

by w1, . . . , wr by W̃ ⊂W . Then

ΦaW/W̃ = 0.

Let n ≥ a. We want to conclude that (W/W̃ )n = 0 to prove the assertion.

Assume otherwise that Sp2n(λ) is an irreducible constituent of (W/W̃ )n. Then

τn,a Sp2n(λ) = 0

which implies that

[Res
Sp2n Q
Sp2a Q×Sp2n−2a Q Sp2n(λ),Sp2a(µ)⊗ Sp2n−2a(∅)] = 0

for all µ. On the other hand, we know that the image of Va in Vn generates Vn

as an Sp2nQ–representation. Because Sp2n−2aQ acts trivially on that image,

the statement is equivalent to

Ind
Sp2n Q
Sp2a Q×Sp2n−2a Q Va ⊗ Sp2n−2a(∅) −� Vn

being surjective. But as seen above

[Ind
Sp2n Q
Sp2a Q×Sp2n−2a Q Va ⊗ Sp2n−2a(∅),Sp2n(λ)] = 0.

Contradiction to Sp2n(λ) being a constituent of Vn.

The argument goes through exactly the same for a VICQ–module V that is

31



finitely generated in ranks ≤ a.

3.5 Representation stability

We will prove the main technical result of this paper. The idea for the proof

stems from the proof of [CEF15, Prop 3.3.3].

Lemma 3.14. Let V be a rational C–module and s ∈ N. Then there is a

submodule W such that Wn contains all irreducible constituents of Vn that are

indexed by (pairs of) partitions of size at least s.

Proof. By Corollaries 2.17 and 2.18 irreducible constituents of Vm that are in-

dexed by partitions of size at least s only map to irreducible constituents of Vn

that are indexed by partitions with size at least s. Therefore the described W

is a submodule of V .

Theorem 3.15. Let V be a rational VICQ–module or SIQ–module that is gen-

erated in finite rank, then V is multiplicity stable.

Proof. Let V be an SIQ–module that is generated in finite rank. Let us write

Vn ∼=
⊕

Sp2n(λ)⊕cλ,n .

We want to prove that cλ,n is independent of large n.

Fix a partition µ with length m = `(µ) and let W be the submodule of all

constituents of V with size at least |µ|+ 1 as described in Lemma 3.14. Then

(V/W )n = Vn/Wn
∼=
⊕
|λ|≤|µ|

Sp2n(λ)⊕cλ,n .

Now we want to count the multiplicity of the constituent Sp2m(µ) in

τn,m(V/W )n ∼=
⊕
|λ|≤|µ|

τn,m Sp2n(λ)⊕cλ,n .

By Proposition 3.10, we get the equation:

[τn,m(V/W )n,Sp2m(µ)] = cµ,n

Because V is generated in finite rank, so is V/W , which therefore has finite

surjectivity degree. Thus

cµ,n = [τn,m(V/W )n,Sp2m(µ)]
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is a sequence of decreasing cardinal numbers once n is large enough. Because

the cardinal numbers are well ordered (see for example Hönig [Hön54]), this

sequence stabilizes.

By the exact same argument we prove that if V is a VICQ–module that is

generated in finite rank, [Vn,GLn(µ+, µ−)] is independent of large n.

Lemma 3.16. Let V be a rational C–module that is generated in ranks ≤ m,

then for an irreducible constituent

GLn(λ+, λ−) ⊂ Vn

or

Spn(λ) ⊂ Vn

the length is bounded

`(λ+) + `(λ−) ≤ 2m

or

`(λ) ≤ 2m,

respectively.

Proof. We will prove this lemma in the symplectic case using Corollary 2.6. The

proof for the general linear groups goes analogously using Corollary 2.5.

The image of Vm generates Vn as an Sp2nQ–representation, and Sp2n−2mQ
acts trivial on it. If Sp2n(λ) is a constituent of Vn, there must therefore be a

constituent Sp2m(µ) of Vm such that

Sp2m(µ)⊗ Sp2n−2m(∅) ⊂ Res
Sp2n Q
Sp2m Q×Sp2n−2m Q Sp2n(λ).

Thus

[Res
Sp2n Q
Sp2n−2m Q Sp2n(λ),Sp2n−2m(∅)] 6= 0

which by Corollary 2.6 implies that

0 = `(∅) ≥ `(λ)− 2m.

Proof of Theorems A and B. Let V be finitely generated in ranks ≤ m. By

Theorem 3.15, V is multiplicity stable. Let kerφ be the submodule of V given

by

kerφn ⊂ Vn.

Then by Theorem D, kerφ is also finitely generated, which implies that kerφn =

0 for all n ∈ N large enough. This is injectivity.
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Surjectivity is equivalent to being generated in finite rank.

Let us finally specialize to the symplectic groups. The proof for the general

linear groups is the same. We want to prove that there are only finitely many

partitions λ such that Sp2n(λ) is a constituent of Vn for some n ∈ N. From

Lemma 3.16, we already know that `(λ) must be at most 2m. For every fixed

n ∈ N, there are certainly only finitely many partitions λ such that Sp2n(λ) is

a constituent of Vn, because the submodule W ⊂ V defined by

Wm =

0 m < n

Vm m ≥ n

would not be finitely generated otherwise. We now consider

τn,2mVn

for n ≥ 2m. For all constituents Sp2n(λ) of Vn, we know from Proposition 3.10

that

Sp4m(λ) ⊂ τn,2mVn.

Because V has surjectivity degree ≤ 2m, we also know that all constituents of

Vn for n ≥ 4m must already be included in the finitely generated

τ4m,2mV4m.

This finishes the proof that V is uniformly representation stable.

4 N–series and their associated Lie algebras

The following definitions follow Lazard [Laz54]. He defines a generalization of

a central series, such that as for the lower central series, we get a graded Lie

algebra structure on the associated graded of the filtration.

Definition 4.1. For a group Γ a filtration νΓ

· · · ≤ ν2Γ ≤ ν1Γ = Γ

is called an N–series if [νiΓ, νjΓ] ≤ νi+jΓ.

Definition 4.2 (Lazard [Laz54, Thm I.2.1]). The rationalized graded Lie alge-

bra

gr(νΓ) =
⊕
i≥1

gri(νΓ)
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associated to an N-series ν is defined by

gri(νΓ) = νiΓ/νi+1Γ⊗
Z
Q.

The bracket is given by the (group) commutator.

Remark 4.3. Let ν be an N–series of a group Γ. Then Γ acts via conjugation

on νiΓ for every i ∈ N because

[g, n] ∈ νi+1Γ ≤ νiΓ

for g ∈ Γ and n ∈ νiΓ. The same argument shows that Γ acts trivially on

gri(νΓ).

Definition 4.4. For every group Γ its lower central series γΓ defined by

γ1Γ = Γ and γi+1 = [Γ, γiΓ]

is an N-series. gr(γΓ) is sometimes called the Malcev Lie algebra associated to

Γ.

Example 4.5. Let Γ = Fn be the free group with n generators. Then its Malcev

Lie algebra is the free Lie algebra Ln with n generators.

Definition 4.6. For the automorphism group Aut(Γ) of a group Γ,

αi Aut(Γ) = ker(Aut(Γ)→ Aut(Γ/γi+1Γ))

is called the Andreadakis filtration.

Andreadakis [And65, Thm 1.1(ii)] showed that α is an N -series of α1 Aut(Γ).

5 Torelli subgroups of the automorphism groups

of free groups

Let Fn denote the free group on n generators, then its abelianization is

Zn ∼= Fn/[Fn, Fn].

The quotient map induces a group homomorphism

Aut(Fn) −→ Aut(Zn) = GLn(Z)
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on their automorphism groups because the commutator subgroup [Fn, Fn] ≤
Fn is characteristic. Nielsen [Nie18] proved that Aut(Fn) is generated by the

permutations of the generators x1, . . . , xn and the following two automorphisms.

xi 7→

x
−1
1 i = 1

xi i 6= 1
and xi 7→

x1x2 i = 1

xi i 6= 1

The images of these automorphisms also generate GLn Z. Hence the homomor-

phism between the automorphism groups is surjective.

The Torelli subgroup IAn is defined as the kernel, so we get the following

short exact sequence.

1→ IAn → Aut(Fn)→ GLn Z→ 1

As for every short exact sequence, we get an outer action of GLn Z on IAn, ie a

group homomorphism

GLn Z −→ Out(IAn) = Aut(IAn)/ Inn(IAn).

This homomorphism is given as follows. Let g ∈ GLn Z and g̃ ∈ Aut(Fn) a

preimage of g. Then conjugation by g̃ is an automorphism of IAn. Another

preimage of g is g̃h for some h ∈ IAn. Then conjugation by g̃h is conjugation

by g̃ composed with the inner automorphism defined by h.

This outer action gives rise to a GLn Z–representation on the abelianization

H1(IAn;Z) of IAn because inner automorphisms act trivially. After rationalizing

the GLn Z–representation

H1(IAn;Q) ∼=
∧2

Qn ⊗ (Qn)
∗

was computed for example by Kawazumi [Kaw06, Thm 6.1]. It is clearly a

restriction of a GLnQ–representation.

Even more, for every morphism

(f, C) ∈ HomVICQ(Qm,Qn)

we get a unique section s : Qn → Qm of f such that C = ker s and therefore a

well-defined map

H1(IAm;Q) ∼=
∧2

Qm ⊗ (Qm)
∗ −→ H1(IAn;Q) ∼=

∧2
Qn ⊗ (Qn)

∗
,

which turns {H1(IAn;Q)}n∈N into a VICQ–module.
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For a morphism

(f, C) ∈ HomVICZ(Zm,Zn) ∼= GLn Z/GLn−m Z

this can be traced to a group homomorphism

IAm → IAn

up to inner automorphism of IAn. Here is the reason. Let K ⊂ Aut(Fn) be the

preimage of GLn−m Z of the composition

Aut(Fn) −� GLn Z −� HomVICZ(Zm,Zn) ∼= GLn Z/GLn−m Z.

For (f, C) we find an automorphism g ∈ Aut(Fn), which is uniquely determined

up to right multiplication by an element of K. Conjugating by g gives an

automorphism of IAn which can be restricted to a map IAm → IAn. Because

Aut(Fn−m) ⊂ K surjects to GLn−m Z, we can find for every k ∈ K an h ∈ IAn

such that hk−1 ∈ Aut(Fn−m). Since Aut(Fn−m) commutes with IAm, the

conjugation by gk is the same as the conjugation by gh when restricted to IAm.

Thus IAm → IAn is well defined up to inner automorphism of IAn.

This group monomorphism induces a map

H1(IAm;Z) −→ H1(IAn;Z).

This map is well defined and natural because the group monomorphism is well

defined up to inner automorphisms of IAn.

As already been pointed out in [CF13, Sec 6.2]

H1(IAn;Q) ∼=
∧2

Qn ⊗ (Qn)
∗ ∼= GLn( , ∅)⊕GLn

(
,
)

for all n ≥ 3 is uniformly representation stable.

5.1 Lower central series of IAn

Let us first consider the lower central series γ IAn (see Definition 4.4) of the

Torelli subgroups IAn.

Proposition 5.1. {gri(γ IAn)}n∈N gives rise to a VICZ–module.

Proof. Because γi IAn is a characteristic subgroup of IAn which is normal in

Aut(Fn), the latter acts on γi IAn by conjugation. Form ≤ n, the automorphism
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group Aut(Fn) gives a group homomorphism

γi IAm −→ γi IAn

that descends to the quotients

gri(γ IAm) −→ gri(γ IAn).

Given g ∈ Aut(Fn) and h ∈ Aut(Fm) each, the composition

gri(γ IAl)
h−→ gri(γ IAm)

g−→ gri(γ IAn)

is given by gh ∈ Aut(Fn).

Clearly Aut(Fn−m) ⊂ Aut(Fn) acts trivially on

gri(γ IAm) ⊂ gri(γ IAn)

because is commutes with all subquotients of Aut(Fm). Furthermore, by defi-

nition

[IAn, γi IAn] = γi+1 IAn .

Thus also IAn ⊂ Aut(Fn) acts trivially on

gri(γ IAm) ⊂ gri(γ IAn).

Therefore

Aut(Fn)
/

IAn ·Aut(Fn−m)

gives rise to a homomorphism

gri(γ IAm) −→ gri(γ IAn).

But this is isomorphic to

Aut(Fn)
/

IAn

/(
IAn ·Aut(Fn−m)

)/
IAn

∼= GLn Z
/

GLn−m Z

because IAn ∩Aut(Fn−m) = IAn−m.

This defines a functor V : VICZ → Q−mod with

Vn = gri(γ IAn).

Proposition 5.2. Let V be a rational VICQ–module which is uniformly repre-

sentation stable and assume Vn is finite dimensional for every n ∈ N. Then
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the kth degrees Lk(V ) of the free Lie algebra generated by V is a rational VICQ–

module which is uniformly representation stable and Lk(Vn) is finite dimensional

for all n ∈ N.

Proof. Clearly Lk is a functor thus Lk(V ) is certainly a VICQ–module. For the

other assertions we adopt the methods used in the proof of [CF13, Thm 5.3].

Because the Chevalley–Eilenberg homology of a free Lie algebra L(V ) is

given by

Hi(L(V )) =


Q i = 0,

L1(V ) = V i = 1,

0 i > 1,

for every k ≥ 2 there is an exact sequence

0 −→
(∧k

L(V )

)
k

−→
(∧k−1

L(V )

)
k

−→ · · · −→
(∧2

L(V )

)
k

−→ Lk(V ) −→ 0,

where
(∧iL(V )

)
k

is the kth degree part of
∧iL(V ), which is given by all direct

summands ∧i1
Lk1(V )⊗ · · · ⊗

∧ir
Lkr (V )

with k1 < · · · < kr and
∑
ij · kj = k and

∑
ij = i.

We can use Theorem 2.11 and Proposition 2.15 to deduce by induction that

every term except the last of the exact sequence are sequences of finite dimen-

sional rational GLnQ–representations that are uniformly representation stable.

This implies that the last term Lk(V ) is also a sequence of finite dimensional

rational GLnQ–representations that is uniformly representation stable.

Proof of Theorem E. gr(γ IAn) is generated in the first degree

gr1(γ IAn) ∼= H1(IAn;Q).

Thus there is a graded epimorphism

L(H1(IAn;Q)) −� gr(γ IAn)

from the free Lie algebra on H1(IAn;Q).

The epimorphism

Li(H1(IAn;Q)) −� gri(γ IAn)

is a GLn Z–equivariant map because it is induced by the (group) commuta-

tor, which commutes with group homomorphisms. Then because restrictions of
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irreducible rational GLnQ–representations to GLn Z are irreducible (see Sec-

tion 2.9), the quotient gri(γ IAn) is also a finite dimensional rational GLnQ–

representation.

We were not able to construct a VICQ–module structure on {gri(γ IAn)}n∈N.

We can however find a VICQ–module V for every i ∈ N such that Vn ∼= gri(γ IAn)

for all large enough n ∈ N. To do so we appeal to Proposition 3.5.

Theorem 5.3. Fix i ∈ N. There is a rational VICQ–module V such that Vn and

gri(γ IAn) are isomorphic GLnQ–representations for all large enough n ∈ N.

Proof. We have already observed that

Li(H1(IA?;Q)) −� gri(γ IA?)

is an epimorphism of VICZ–modules. Also Li(H1(IA?;Q)) is a uniformly repre-

sentation stable VICQ–module. Let N+ be the maximum of all values `(λ+) such

that GLn(λ+, λ−) (for some λ−) appears as a constituent in Li(H1(IAn;Q))

for some n ∈ N. Similarly let N− be the maximum of all λ− for which a

GLn(λ+, λ−) is a constituent in Li(H1(IAn;Q)) for some n ∈ N. Then for all

n ≥ N = N+ + N− + 1 by the analysis of Section 2.9 two nonisomorphic irre-

ducible constituent of the GLnQ–representation Li(H1(IAn;Q)) cannot restrict

to isomorphic GLn Z–representations. This means for n ≥ N , there is a unique

way to extend gri(γ IAn) to a rational GLnQ–representation such that

Li(H1(IAn;Q)) −� gri(γ IAn)

is GLnQ–equivariant.

Let

Vn =

0 n < N

gri(γ IAn) n ≥ N

be a sequence of GLnQ–representations and let

φn : Vn −→ Vn+1

be the image of the standard embedding Zn → Zn+1 if n ≥ N and zero other-

wise. Vn+1 only has irreducible constituents GLn+1(λ+, λ−) with `(λ+) ≤ N+

and `(λ−) ≤ N− and by Corollary 2.17 the restriction Res
GLn+1 Q
GLn Q Vn+1 has

therefore also only constituents GLn(µ+, µ−) with `(µ+) ≤ N+ and `(µ−) ≤
N−. Therefore φn is GLnQ–equivariant.

Using Proposition 3.5, it remains to show that GLn−mQ acts trivially on

the image of Vm in Vn. This property is transferred from the VICQ–module
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Li(H1(IA?;Q)) by the following argument. We already know that the image of

Li(H1(IAm;Q)) is inside

Li(H1(IAn;Q))GLn−m Q

which maps to

V GLn−m Q
n .

Because

Li(H1(IAm;Q)) −� Vm

is surjective, Vm, too, must map to V
GLn−m Q
n .

Proof of Theorem F. Let V be the VICQ–module from Theorem 5.3 such that

Vn = gri(γ IAn) for all large enough n ∈ N. Then by its description as a VICZ–

module it restricts to the truncation of the FI–module described in [CEF15, Ex

7.3.6].

We will use the result [CEF15, Thm 7.3.8] that V is (the submodule of)

a finitely generated FI–module and thereby a finitely generated VICQ–module.

(Djament [Dja16, Prop 7.2] proves that gri(γ IA?) is a VICZ–module generated

in finite rank.)

Our Theorem A implies then that V is uniformly representation stable.

5.2 Johnson filtration of IAn

Let us consider the Andreadakis filtration αAut(Fn) (see Definition 4.6) of the

automorphism group Aut(Fn). This is an N–series of

α1 Aut(Fn) = ker(Aut(Fn)→ Aut(Fn/γ2Fn)) = IAn

and is often called the Johnson filtration α IAn of IAn because of Johnson’s work

on the Torelli subgroups of the mapping class groups of surfaces that started

out with [Joh80].

Proposition 5.4. {gri(α IAn)}n∈N gives rise to a VICZ–module.

Proof. We follow the same strategy as in the proof of Proposition 5.1. Aut(Fn)

acts on its normal subgroup αi IAn by conjugation. For m ≤ n, this action

induces group homomorphisms

αi IAm −→ αi IAn

and

gri(α IAm) −→ gri(α IAn).
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It is clear that Aut(Fn−m) ⊂ Aut(Fn) acts trivially on

gri(α IAm) ⊂ gri(α IAn).

Further

[IAn, αi IAn] ⊂ αi+1 IAn

follows from [And65, Thm 1.1(ii)]. Thus also IAn ⊂ Aut(Fn) acts trivially on

gri(α IAm) ⊂ gri(α IAn).

By same argument as in the proof of Proposition 5.1, this construction gives

a functor V : VICZ → Q−mod with

Vn = gri(α IAn).

In the case of the Johnson filtration we do not know whether gr(α IAn) is

generated in degree one as a Lie algebra. (Although it was conjectured by

Andreadakis that αi IAn = γi IAn for all i, n ∈ N.) Luckily we have another

tool at hand—the Johnson homomorphism. As explained by Satoh [Sat16, Sec

3.4] there is a GLn Z–equivariant monomorphism

gri(α IAn) ↪−→ HomQ(H1(Fn;Q), gri+1(γFn)) ∼= (Qn)∗ ⊗ Li+1(Qn).

By the same arguments used for Theorem E, we can infer the following propo-

sition that also has been stated in the introduction of [Sat16, Sec 4] without a

proof.

Proposition 5.5. The natural GLn Z–representation on gri(α IAn) extends to

a rational GLnQ–representation.

As for the lower central series we can combine Proposition 5.4 and Proposi-

tion 5.5 to get the following theorem.

Theorem 5.6. Fix i ∈ N. There is a rational VICQ–module V such that Vn and

gri(α IAn) are isomorphic GLnQ–representations for all large enough n ∈ N.

Proof of Theorem H. Let V be the VICQ–module from Theorem 5.6 such that

Vn = grk(α IAn) for all large enough n ∈ N.

Church and Putman [CP15] consider the groups IAn as an FI–group. They

apply their [CP15, Thm G] to prove their [CP15, Thm C]. In the proof of the

former theorem in [CP15, Claim 2] it is stated that W (k) is boundedly gener-

ated. But W (k)n ⊗Z Q is grk(α IAn) = Vn for all large enough n ∈ N. Because
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every Vn is finite dimensional (see [CP15, Prop 3.2]), V is a finitely gener-

ated FI–module and thus certainly a finitely generated VICQ–module. (Djament

[Dja16, Prop 7.3] proves that gri(α IA?) is a VICZ–module generated in finite

rank independently.)

Our Theorem A implies then that V is uniformly representation stable.

6 Torelli subgroups of the mapping class groups

of surfaces

Let Σg,1 denote the compact, oriented genus g surface with one boundary com-

ponent. The mapping class group Mod(Σg,1) is defined as the discrete group

π0 Homeo+(Σg,1, ∂Σg,1) of isotopy classes of orientation-preserving homeomor-

phisms of Σg,1 that fix the boundary pointwise. The action of Mod(Σg,1) on

H1(Σg,1;Z) ∼= Z2g is symplectic and the Torelli subgroup Ig,1 is defined to be

the kernel of this action. In fact, there is a short exact sequence

1→ Ig,1 → Mod(Σg,1)→ Sp(H1(Σg,1;Z)) ∼= Sp2g Z→ 1.

Thus we get an Sp2g Z–representation on the abelianzation H1(Ig,1;Z) of Ig,1,

which after rationalizing can be seen to be a restriction of a Sp(H1(Σg,1;Q)) ∼=
Sp2g Q–representation

H1(Ig,1;Q) ∼=
∧3

H1(Σg,1;Z)⊗Q =
∧3

H1(Σg,1;Q)

as it has been computed by Johnson [Joh85, Thm 3(a)]. And for every isometry

H1(Σg,1;Q) −→ H1(Σg′,1;Q)

there is map

H1(Ig,1;Q) ∼=
∧3

H1(Σg,1;Q) −→ H1(Ig′,1;Q) ∼=
∧3

H1(Σg′,1;Q),

which turns {H1(Ig,1;Q)}g∈N into an SI–module.

As it has already been pointed out by in [CF13, Sec 6.1]

H1(Ig,1;Q) ∼=
∧3

H1(Σg,1;Q) ∼= Sp2g

( )
⊕ Sp2g( )

for all g ≥ 3 is uniformly representation stable.

We will consider two N-series of Ig,1. Denote the lower central series by γIg,1.
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To construct the Johnson filtration of Ig,1, consider the classical inclusion

Mod(Σg,1) ↪−→ Aut(F2g)

and define

αiIg,1 = Mod(Σg,1) ∩ αi IA2g = ker(Mod(Σg,1)→ Aut(F2g/γi+1F2g)).

This construction immediately implies that αIg,1 is an N-series of Ig,1 because

α IA2g is an N-series of IA2g.

6.1 Lower central series of Ig,1
Analogous to Section 5.1 we derive the following results.

Proposition 6.1. {gri(γIg,1)}g∈N gives rise to an SIZ–module.

Proposition 6.2. Let V be a rational SIQ–module which is uniformly represen-

tation stable and assume Vn is finite dimensional for every n ∈ N. Then the kth

degrees Lk(V ) of the free Lie algebra generated by V is a rational SIQ–module

which is uniformly representation stable and Lk(Vn) is finite dimensional for all

n ∈ N.

Note that the following result can also be derived from the explicit descrip-

tion of Habegger–Sorger [HS00, Thm 1.1].

Theorem 6.3. {gri(γIg,1)}g∈N gives rise to a rational SIQ–module.

Proof. Again we have an epimorphism

Li(H1(I?,1;Q)) −� gri(γI?,1)

of SIZ–modules. Because Li(H1(I?,1;Q)) is also a rational SIQ–module, we get

a unique rational Sp2g Q–representation structure on gri(γIg,1) that restricts to

the given Sp2g Z–representation. Therefore

Li(H1(Ig,1;Q)) −� gri(γIg,1)

is Sp2g Q–equivariant. We can then as in the proof of Theorem 5.3 lift the

SIZ–module structure to an SIQ–module structure.

Proof of Theorem G. Let V be the SIQ–module from Theorem 6.3 such that

Vg = gri(Ig,1). Then by its description as an SIZ–module it restricts to the

FI–module described in [CEF15, Ex 7.3.6].
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We will use the result [CEF15, Thm 7.3.7] that V is a finitely generated

FI–module and thereby a finitely generated SIQ–module.

Our Theorem B implies then that V is uniformly representation stable.

6.2 Johnson filtration of Ig,1
Next we consider the Johnson filtration αIg,1 of the Torelli subgroups Ig,1. The

proof of Proposition 5.4 can be used to prove the following analogue.

Proposition 6.4. {gri(α IAn)}n∈N gives rise to a VICZ–module.

Similar to the Johnson filtration of IAn, we also get information from the

(original) Johnson homomorphism. As explained by Satoh [Sat16, Sec 8] there

is an Sp2g Z–equivariant monomorphism

gri(αIg,1) ↪−→ HomQ(H1(Σg,1;Q), gri+1(γF2g)) ∼= Q2g ⊗ Li+1(Q2g).

By the same arguments used in the proof of Theorem 6.3, we can deduce the

following result.

Theorem 6.5. {gri(αIg,1)}g∈N gives rise to a rational SIQ–module.

Proof of Theorem I. Let V be the SIQ–module from Theorem 6.5 such that Vg =

grk(αIg,1).

Church and Putman [CP15] consider the groups Ig,1 as a weak FI-group.

They apply their [CP15, Thm G] to prove their [CP15, Thm A]. In the proof

of the former theorem in [CP15, Claim 2] it is stated that W (k) is boundedly

generated. But W (k)g ⊗Z Q is grk(αIg,1) = Vg. Because every Vg is finite

dimensional (see [CP15, Prop 4.4]), V is a finitely generated FI–module and

thus certainly a finitely generated SIQ–module.

Our Theorem B implies then that V is uniformly representation stable.
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Zusammenfassung

Wir zeigen, dass endlich erzeugte rationale VICQ– und SIQ–Moduln uniform

darstellungsstabil und all ihre Untermoduln endlich erzeugt sind. Wir benutzen

diese Aussagen, um zwei Vermutungen von Church und Farb zu zeigen: Die

Quotienten der absteigenden Zentralreihe der Torelliuntergruppen von Aut(Fn)

und Mod(Σg,1) sind uniform darstellungsstabil als Folgen von Darstellungen

der allgemeinen linearen Gruppen bzw. symplektischen Gruppen. Außerdem

beweisen wir eine analoge Behauptung für ihre Johnsonfiltrierungen.
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motionsverfahren eingereicht worden ist.

Berlin, den Peter Patzt

51


	Introduction
	Rational representation theory of the general linear groups and the symplectic groups
	Algebraic groups, polynomial and rational representations
	The representation theory of `39`42`"613A``45`47`"603AGLnQ
	The representation theory of `39`42`"613A``45`47`"603ASpnQ
	Littlewood–Richardson coefficients
	Some simple branching rules
	Modification rules for `39`42`"613A``45`47`"603AGLnQ
	Modification rules for `39`42`"613A``45`47`"603ASp2nQ
	Branching rules
	Restriction to `39`42`"613A``45`47`"603AGLnZ and `39`42`"613A``45`47`"603ASp2nZ

	Representation stability for general linear groups and symplectic groups
	VIC and SI
	VIC– and SI–modules
	Stability degree
	Noetherian property
	Representation stability

	N–series and their associated Lie algebras
	Torelli subgroups of the automorphism groups of free groups
	Lower central series of `39`42`"613A``45`47`"603AIAn
	Johnson filtration of `39`42`"613A``45`47`"603AIAn

	Torelli subgroups of the mapping class groups of surfaces
	Lower central series of Ig,1
	Johnson filtration of Ig,1

	References

