Aus der medizinischen Klinik mit
Schwerpunkt Kardiologie und Angiologie
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Rechtsherzfunktion in der präklinischen
diastolischen Dysfunktion

zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von

Marny Bathe

aus Oberkrämer

Datum der Promotion: 23.06.2019
Vorwort

Inhaltsverzeichnis

Vorwort .. 3
Abkürzungsverzeichnis .. 8
Tabellenverzeichnis ... 12
Abbildungsverzeichnis ... 14
Zusammenfassung .. 15
Abstract ... 16
1. Einleitung ... 17
 1.1. Rechtsherzfunktion in der präklinischen diastolischen Dysfunktion 17
 1.2. Herzinsuffizienz ... 17
 1.3. Präklinische diastolische Dysfunktion ... 18
 1.3.1. Epidemiologie der präklinischen diastolischen Dysfunktion 18
 1.3.2. Progredienz der präklinischen diastolischen Dysfunktion zur Herzinsuffizienz ... 19
 1.3.3. Diagnostik der präklinischen diastolischen Dysfunktion 20
 1.4. Deformationsbildgebung ... 25
 1.4.1. Deformationsanalyse mittels Speckle Tracking Echokardiographie 25
 1.4.2. Deformationsbildgebung in der Untersuchung des rechten Ventrikels 27
 1.4.3. Deformationsbildgebung in der Untersuchung des rechten Vorhofes 28
 1.5. Fragestellung .. 30
2. Methoden ... 31
 2.1. Studiendesign ... 31
 2.2. Studienpopulation und Rekrutierung .. 31
 2.2.1. Allgemein .. 31
 2.2.2. Teilnehmerinnen der echokardiographischen Untersuchung 33
 2.3. Untersuchungen .. 34
 2.3.1. transthorakale Echokardiographie ... 34
2.3.1.1. Einteilung der diastolischen Funktion .. 34
2.3.1.2. Diameter und Flächen des rechten Herzens ... 34
2.3.1.3. Volumetrische Beurteilung des rechten Ventrikels 37
2.3.1.4. Echokardiographische Abschätzung des maximalen systolischen
Druckunterschiedes zwischen rechtem Vorhof und rechtem Ventrikel über die
vereinfachte Bernoulli-Gleichung .. 38
2.3.1.5. Nichtvolumetrische Beurteilung der Funktion des rechten Ventrikels 39
2.3.1.6. Rechtsventrikuläre diastolische Funktion ... 40
2.3.2. Offline Analysen mittels Speckle Tracking Echokardiographie 42
 2.3.2.1. 2D Speckle Tracking Analyse des rechten Ventrikels 42
 2.3.2.2. 2D Speckle Tracking Analyse des rechten Vorhofes 44
 2.3.2.3. 2D Speckle Tracking Analyse des linken Herzens 45
2.3.3. Intra- und Interuntersuchervariabilität ... 45
2.4. Auswertung und statistische Analyse ... 46
2.5. Ethische und rechtliche Grundlagen ... 46
3. Ergebnisse ... 47
 3.1. Deskriptive Statistik ... 47
 3.1.1. Demographische Daten und körperliche Untersuchung 47
 3.2. Echokardiographische Ergebnisse ... 50
 3.2.1. Linksventrikuläre Parameter ... 50
 3.2.2. Rechtsventrikuläre Parameter ... 52
 3.2.3. Myokardfunktion ... 54
 Strain der rechtsventrikulären freien Wand ... 55
 Strain des rechten Vorhofes ... 56
 Durchschnittlicher Strain der drei Einzelsegmente der rechtsventrikulären freien
Wand ... 57
 Durchschnittlicher Strain des rechten und linken Atriums 58
 Durchschnittlicher Strain des rechten und linken Ventrikels 59
3.3. Zusammenhang zwischen der Funktion des rechten Herzens und kardiovaskulären Risikofaktoren

3.3.1. Korrelation verschiedener kardiovaskulärer Risikofaktoren mit der rechtsatrialen Funktion

3.3.2. Korrelation verschiedener kardiovaskulärer Risikofaktoren mit der rechtsventrikulären Funktion

3.4. Zusammenhang zwischen der diastolischen Dysfunktion und klinischen sowie echokardiographischen Parametern mittels logistischer Regression

3.5. Intra-Klassen-Korrelation

4. Diskussion

4.1. Speckle Tracking Echokardiographie des rechten Vorhofes

4.1.1. Vergleich der vorliegenden Ergebnisse im Kontext anderer Studien

4.1.2. Einflussfaktoren auf den rechtsatrialen Strain

4.1.3. Pathophysiologische Überlegungen

4.1.4. Vergleich der myokardialen Funktionsveränderungen beider Vorhöfe

4.2. Speckle Tracking Echokardiographie des rechten Ventrikels

4.2.1. Funktionsanalyse des rechten Ventrikels

4.2.2. Vergleich der myokardialen Funktionsveränderung beider Ventrikel

4.3. Veränderung konventioneller echokardiographischer Parameter des rechten Ventrikels in der diastolischen Dysfunktion

4.4. Übergang der präklinischen diastolischen Dysfunktion zu einer manifesten Herzinsuffizienz

4.5. Vergleich zwischen konventionellen und neuen echokardiographischen Parametern

5. Limitationen dieser Arbeit

6. Schlussfolgerung und Ausblick

7. Literaturverzeichnis

8. Eidesstattliche Erklärung

9. Lebenslauf
10. Veröffentlichungen ... 98
 10.1. Publikationen .. 98
 10.2. Posterpräsentationen .. 99
11. Danksagung .. 100
Abkürzungsverzeichnis

2D STE 2D Speckle Tracking Echocardiography
A reverse-Welle Rückwärtsfluss in die Pulmonalvenen während der atrialen Kontraktion
A atrial, transmitrale Flussgeschwindigkeit während der atrialen Kontraktion in der Spätdiastole
A' Verformungsgeschwindigkeit des Mitralklappenanulus während der atrialen Kontraktion
ACC American College of Cardiology
ACE-Hemmer Angiotensin Converting Enzyme-Hemmer
A\textsubscript{dur} Dauer der A-Welle während des transmitralen Einflusses
AHA American Heart Association
AR\textsubscript{dur} Verhältnis der Dauer des atrialen Rückstroms zu der Dauer der A-Welle
ASE American Society of Echocardiography
BEFRI Berliner Frauen Risikoevaluationsstudie
BMI Body-Mass-Index
BNP brain natriuretic peptide
Bpm Beats per minute
CW Continuous-wave
DD 0 normale diastolische Funktion
DD diastolische Dysfunktion
DT Dezelerationszeit
D-Welle diastolischer Vorwärtsfluss aus den Pulmonalvenen
E early, transmitrale Flussgeschwindigkeit während der frühdiastolischen Ventrikelfüllung
E/A Verhältnis der transmitralen Flussgeschwindigkeiten E und A zueinander
E/E' Ratio aus frühdiastolischer transmitraler Flussgeschwindigkeit und Mitralklappenringgeschwindigkeit
E' Verformungsgeschwindigkeit des Mitralklappenanulus während der frühdiastolischen Ventrikelfüllung
EACVI European Association of Cardiovascular Imaging
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td>enddiastolisch</td>
</tr>
<tr>
<td>EF</td>
<td>Ejektionsfraktion (Auswurffraktion)</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>ES</td>
<td>endsystolisch</td>
</tr>
<tr>
<td>ET</td>
<td>Ejektionszeit</td>
</tr>
<tr>
<td>FAC</td>
<td>fractional area change</td>
</tr>
<tr>
<td>GFR</td>
<td>glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>GIM</td>
<td>Institut für Geschlechterforschung in der Medizin</td>
</tr>
<tr>
<td>GLPS</td>
<td>globaler longitudinaler peak systolic Strain</td>
</tr>
<tr>
<td>HbA1c</td>
<td>Glykohämoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>High-Density-Lipoprotein-Cholesterin</td>
</tr>
<tr>
<td>HFpEF</td>
<td>Heart failure with preserved ejection fraction</td>
</tr>
<tr>
<td></td>
<td>(Herzinsuffizienz mit erhalten Auswurffraktion)</td>
</tr>
<tr>
<td>HFrEF</td>
<td>Heart failure with reduced ejection fraction (Herzinsuffizienz mit reduzierter Auswurffraktion)</td>
</tr>
<tr>
<td>ICC</td>
<td>intraclass correlation coefficient</td>
</tr>
<tr>
<td>IVRT</td>
<td>isovolumetrische Relaxationszeit</td>
</tr>
<tr>
<td>KHK</td>
<td>koronare Herzerkrankung</td>
</tr>
<tr>
<td>LA</td>
<td>linker Vorhof</td>
</tr>
<tr>
<td>LAVI</td>
<td>linksatrialer Volumenindex</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-Density-Lipoprotein-Cholesterin</td>
</tr>
<tr>
<td>LV</td>
<td>linksventrikulär, linker Ventrikel</td>
</tr>
<tr>
<td>LVEDD</td>
<td>linksventrikulärer enddiastolischer Diameter</td>
</tr>
<tr>
<td>LVEDP</td>
<td>linksventrikulärer enddiastolischer Druck</td>
</tr>
<tr>
<td>LVEDVI</td>
<td>linksventrikulärer enddiastolischer Volumenindex</td>
</tr>
<tr>
<td>LVEF</td>
<td>linksventrikuläre Ejektionsfraktion</td>
</tr>
<tr>
<td>MPI</td>
<td>myocardial performance index</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>N-terminales pro brain natriuretic peptide</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association</td>
</tr>
<tr>
<td>OAK</td>
<td>orale Antikoagulation</td>
</tr>
<tr>
<td>PAP</td>
<td>pulmonaler arterieller Druck</td>
</tr>
<tr>
<td>PCWP</td>
<td>pulmonalkapillärer Verschlussdruck (mean pulmonary capillary wedge pressure)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>PDD</td>
<td>präklinische diastolische Dysfunktion</td>
</tr>
<tr>
<td>PW</td>
<td>Pulsed-wave</td>
</tr>
<tr>
<td>RA</td>
<td>rechtsatrial/rechter Vorhof</td>
</tr>
<tr>
<td>RAP</td>
<td>rechtsatrialer Druck</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>RV A'</td>
<td>spätdiastolische Trikuspidalklappenringgeschwindigkeit</td>
</tr>
<tr>
<td>RV AT</td>
<td>rechtsventrikuläre Beschleunigungszeit</td>
</tr>
<tr>
<td>RV E</td>
<td>frühdiastrale trikuspidale Flussgeschwindigkeit</td>
</tr>
<tr>
<td>RV E'</td>
<td>frühdiastolische Trikuspidalklappenringgeschwindigkeit</td>
</tr>
<tr>
<td>RV EDV</td>
<td>rechtsventrikuläres enddiastolisches Volumen</td>
</tr>
<tr>
<td>RV EF</td>
<td>rechtsventrikuläre Ejektionsfraktion</td>
</tr>
<tr>
<td>RV ESV</td>
<td>rechtsventrikuläres endsystolisches Volumen</td>
</tr>
<tr>
<td>RV IVA</td>
<td>rechtsventrikuläre isovolumetrische Beschleunigung</td>
</tr>
<tr>
<td>RV IVCT</td>
<td>rechtsventrikuläre isovolumetrische Kontraktionszeit</td>
</tr>
<tr>
<td>RV IVRT</td>
<td>rechtsventrikuläre isovolumetrische Relaxationszeit</td>
</tr>
<tr>
<td>RV IVV</td>
<td>rechtsventrikuläre myokardiale Spitzengeschwindigkeit der isovolumetrischen Kontraktion</td>
</tr>
<tr>
<td>RV S'</td>
<td>rechtsventrikuläre systolische Exkursionsgeschwindigkeit</td>
</tr>
<tr>
<td>RV</td>
<td>rechter Ventrikel</td>
</tr>
<tr>
<td>RVLS</td>
<td>longitudinaler systolischer rechtsventrikulärer Strain</td>
</tr>
<tr>
<td>RVMPI</td>
<td>rechtsventrikulärer myokardialer performance index/Tei-Index</td>
</tr>
<tr>
<td>RVOT</td>
<td>rechtsventrikulärer Ausflusstrakt</td>
</tr>
<tr>
<td>RVSP</td>
<td>rechtsventrikulärer systolischer Druck</td>
</tr>
<tr>
<td>S Welle</td>
<td>atriale Füllung aus den Pulmonalvenen während der ventrikulären Systole</td>
</tr>
<tr>
<td>S/D Ratio</td>
<td>Verhältnis der atrialen Füllung aus den Pulmonalvenen während der ventrikulären Systole und dem diastolischen Vorwärtsfluss aus den Pulmonalvenen</td>
</tr>
<tr>
<td>sPAP</td>
<td>systolischer pulmonalarterieller Druck</td>
</tr>
<tr>
<td>SPSS</td>
<td>statistical package for social sciences</td>
</tr>
<tr>
<td>SR</td>
<td>Strainrate</td>
</tr>
<tr>
<td>STE</td>
<td>Speckle Tracking Echokardiographie</td>
</tr>
<tr>
<td>TAPSE</td>
<td>tricuspid annular plane systolic excursion</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>TDI</td>
<td>tissue doppler imaging</td>
</tr>
<tr>
<td>Tei-Index</td>
<td>myocardial performance index, MPI</td>
</tr>
<tr>
<td>TPVI</td>
<td>kathetergestützte Pulmonalklappenimplantation (transcatheter pulmonal valve implantation)</td>
</tr>
<tr>
<td>WHO</td>
<td>Weltgesundheitsorganisation</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

Tabelle 1: Darstellung der dopplerechokardiographischen Kriterien zur Klassifikation der diastolischen Dysfunktion .. 23

Tabelle 2: Darstellung der Normwerte der echokardiographischen Parameter des rechten Herzens ... 41

Tabelle 3: Klinische Charakteristika der gesamten Studienpopulation 47

Tabelle 4: Übersicht der echokardiographischen Untersuchungsergebnisse des linken Herzens ... 50

Tabelle 5: Übersicht der echokardiographischen Untersuchungsergebnisse des rechten Herzens ... 52

Tabelle 6: Übersicht der myokardialen Funktionsparameter mittels Speckle Tracking Analyse ... 54

Tabelle 7: Korrelation zwischen der Funktion des rechten Vorhofes und verschiedenen kardiovaskulären Risikofaktoren .. 60

Tabelle 8: Korrelation verschiedener kardiovaskulärer Risikofaktoren mit dem Strain der rechtsventrikulären freien Wand .. 61

Tabelle 9: Korrelation des rechtsventrikulären und rechtsatrialen Strain mit dem pulmonalarteriellen Druck ... 61

Tabelle 10: Univariate logistische Regression zwischen der diastolischen Dysfunktion und ausgewählten echokardiographischen Parametern 62

Tabelle 11: Multivariate logistische Regression zwischen der diastolischen Dysfunktion und ausgewählten echokardiographischen Parametern 63
Tabelle 12: Univariate logistische Regression zwischen der diastolischen Dysfunktion und ausgewählten echokardiographischen Messwerten sowie klinischen Parametern. 64

Tabelle 13: Multivariate logistische Regression zwischen der diastolischen Dysfunktion und ausgewählten echokardiographischen Messwerten sowie klinischen Parametern. 65
Abbildungsverzeichnis

Abbildung 1: Echokardiographische Darstellung eines apikalen vier-Kammer-Blicks. ..36

Abbildung 2: Beispielhafte Darstellung der Vermessung des rechtsventrikulären Ausflusstraktes ...36

Abbildung 3: Darstellung eines apikalen vier-Kammer-Blicks zur Ermittlung der fractional area change (FAC) ..37

Abbildung 4: Darstellung eines M-Mode Bildes zur Abmessung von TAPSE39

Abbildung 5: Beispielhafte Darstellung einer Speckle Tracking Analyse des rechten Ventrikels ..43

Abbildung 6: Beispielhafte Darstellung einer Speckle Tracking Analyse des RA44

Abbildung 7: Vergleich des durchschnittlichen Strains der rechtsventrikulären freien Wand ...55

Abbildung 8: Vergleich des durchschnittlichen rechtsatrialen Strains56

Abbildung 9: Vergleichende Darstellung des basalen, mittleren und apikalen Strains der rechtsventrikulären freien Wand ...57

Abbildung 10: Vergleichende Darstellung der Reservoirfunktion des linken und rechten Vorhofes ..58

Abbildung 11: Vergleichende Darstellung des globalen longitudinalen peak Strains (GLPS) des linken Ventrikels sowie des rechtsventrikulären longitudinalen Strains der freien Wand ..59
Zusammenfassung

152 Frauen (34,7%) zeigten eine relevant verminderte diastolische Funktion. Verglichen mit den Studienteilnehmerinnen ohne DD (DD 0) hatten die Frauen mit DD einen signifikant weniger negativen Strain der rechtsventrikulären (RV) freien Wand (DD 0 -26,5 ± 5,4% vs. DD -24,1 ± 5,5%; p ≤ 0,05) sowie einen verminderten rechtsatrialen (RA) Strain (DD 0 44 ± 12,7% vs. DD 34,9 ± 11,2%; p ≤ 0,001). In den vergleichenden Deformationsanalysen des linken Herzens stellte sich eine isomorphe Reduktion des linksatrialen (LA) und linksventrikulären (LV) Strains dar. Durchgeführte Korrelationsanalysen zeigten den größten Einfluss des Parameters Body Mass Index (BMI) auf den RA und RV Strain (p ≤ 0,001). In der logistischen Regressionsanalyse konnte für die klinischen Einflussgrößen Alter und BMI der größte Zusammenhang mit der DD (p ≤ 0,001) dargelegt werden.

Die dargestellten Ergebnisse zeigen eine Einschränkung der myokardialen Funktion, noch bevor es zu einem Auftreten erster klinischer Beschwerden oder einem Anstieg der Füllungsdrücke beziehungsweise erhöhter Volumina kommt. Die Reduktion der myokardialen Deformation findet gleichermassen in allen vier Herzkammern statt, was einen globalen fibrotischen Umbauprozess vermuten lässt. Wahrscheinliche Ursache dieses umfassenden Remodelingprozesses ist die Kumulation kardiovaskulärer Risikofaktoren. Die Deformationsbildgebung stellt sich als sensitiver Parameter zur Evaluation dieser frühen Funktionsverluste dar.
Abstract

Patients with preclinical diastolic dysfunction (PDD) are prone to develop heart failure with preserved ejection fraction. Previous studies described only the functional and structural impairment of the left heart in PDD. In this study we investigated changes of the right heart in a well phenotyped cohort of woman.

473 women from the BErlin Femal RIsk evaluation (BEFRI) study, a cross-sectional trial from the general population in Berlin, Germany, were prospectively enrolled. We analyzed echocardiographic parameters of diastolic dysfunction (DD), right atrial and right ventricular Strain using standard and two-dimensional speckle tracking echocardiography.

152 women showed a significant impairment of diastolic function. Compared to women with normal diastolic function (DD 0), those with DD presented a less negative Strain of the right ventricular (RV) free wall (DD 0 -26,5 ± 5,4 vs. DD -24,1 ± 5,5%; p ≤ 0,05), and a markedly reduced right atrial (RA) Strain (DD 0 44 ± 12,7 vs. DD 34,9 ± 11,2%; p ≤ 0,001). Related deformation analysis of the left heart revealed an isomorph reduction of the left atrial (LA) and left ventricular (LV) Strain. In correlation analysis, strongest impact for reduction of RA and RV Strain was shown for Body Mass Index (BMI) (p ≤ 0,001). In logistic regression analysis, clinical parameters BMI and age showed the greatest effect on DD (p ≤ 0,001).

Our results demonstrate an impairment of myocardial function before clinical symptoms, a significant increase of RV filling pressure or elevated volume arise. The reduction of myocardial deformation capacity occurs simultaneously in all chambers of the heart, so that one might assume a global fibrotic process due to the accumulation of cardiovascular risk factors. Strain imaging is a sensitive tool to evaluate early impairment of myocardial function in patients with PDD.
1. Einleitung

1.1. Rechtsherzfunktion in der präklinischen diastolischen Dysfunktion

Die präklinische diastolische Dysfunktion (PDD) ist definiert als diastolische Dysfunktion (DD) in Abwesenheit von Symptomen einer Herzinsuffizienz und mit normaler systolischer Pumpfunktion des linken Ventrikels.\(^1\) Das American College of Cardiology (ACC) und die American Heart Association (AHA) haben die Herzinsuffizienz in 4 Stadien kategorisiert. Stadium A ist beschrieben als ein hohes Risiko für die Entstehung einer Herzinsuffizienz ohne strukturelle Veränderungen des Herzens, in Stadium B stellt sich bereits eine strukturelle Herzerkrankung ohne Anzeichen oder Symptomatik einer Herzinsuffizienz dar. Stadium C ist definiert als symptomatische Herzinsuffizienz und Stadium D als therapierefraktäre Herzinsuffizienz. Die Krankheitsentität der PDD fällt somit in Stadium B der Herzinsuffizienz.\(^1\) Vogel et al. beschrieben in ihrer Studie ein 3-Jahres Risiko von 11,6% für die Progression einer PDD zu einer symptomatischen Herzinsuffizienz.\(^2\) Etablierte echokardiographische Parameter in der Diagnostik der PDD beziehen sich gegenwärtig ausschließlich auf funktionelle Veränderungen des linken Herzens.\(^1\) Untersuchungen der Funktion des rechten Herzens in der PDD sind bislang nicht beschrieben.

1.2. Herzinsuffizienz

Der Begriff Herzinsuffizienz beschreibt das Unvermögen des Herzens, bei normalem linksventrikulären Füllungsdruck das für den Erhalt des Stoffwechsels notwendige Herzzeitvolumen aufzubringen. Hierbei wird zwischen einer Einschränkung der systolischen Funktion (heart failure with reduced ejection fraction, HFrEF), also einer verminderten Auswurflistung, und einer Störung der diastolischen Funktion (heart failure with preserved ejection fraction, HFpEF), also einer erschwerten diastolischen Füllung durch Störung der Relaxation beziehungsweise der Compliance, unterschieden. Der Grenzwert für das Vorliegen einer normalen bzw. annähernd normalen systolischen Funktion liegt bei einer Auswurffraktion (Ejektionsfraktion, EF) von 50%.\(^3\) Etwa 2% der Bevölkerung leiden an einer chronischen Herzinsuffizienz, wobei mehr als die Hälfte der Betroffenen eine Herzinsuffizienz mit erhaltener EF aufweist.\(^4\)\(^-\)\(^7\) Diese Patienten sind im Durchschnitt älter, oft weiblich, haben im Mittel einen höheren BMI, häufiger einen arteriellen Hypertonus, Vorhofflimmern sowie einen niedrigeren
Hämoglobinwert. Dagegen wird seltener eine koronare Herzerkrankung (KHK) beschrieben. Meist fällt das brain natriuretic peptide (BNP) bei Menschen mit HFpEF geringer aus als bei Betroffenen mit HFrEF. Durch effiziente Therapiemöglichkeiten steigt die Überlebensrate der Patienten mit HFrEF kontinuierlich an, während die Mortalitäts- sowie die Hospitalisierungsrate der Patienten mit HFpEF sich nicht signifikant verändert hat.7, 8

1.3. Präklinische diastolische Dysfunktion

1.3.1. Epidemiologie der präklinischen diastolischen Dysfunktion

Es gibt nur eine geringe Anzahl an Studien, die diese frühe Form der Herzinsuffizienz untersucht haben. Bislang erhobene epidemiologische Daten sprechen für eine hohe Prävalenz besonders in der älteren Bevölkerungsschicht.

In einer australischen Studie an 1275 Frauen und Männern im Alter von 65-85 Jahren zeigte sich eine Prävalenz der leichten PDD von 23,5%, sowie der mäßig bis schweren PDD von 5,6%.6 Die Kategorisierung der PDD erfolgte dabei anhand echokardiographischer Parameter, welche im weiteren Verlauf detailliert erläutert werden. Ähnliche Ergebnisse erzielten Redfield et al. 2003 bei der Untersuchung von 2042 Männern und Frauen aus Minnesota. Hierbei fand sich eine Prävalenz der leichten PDD von 20,6% und der mäßig bis schweren PDD von 6,8%. In der Hochrisikogruppe, definiert durch die Parameter Alter ≥ 65 Jahre und Hypertonus oder KHK, ergab sich ein Aufkommen der leichten PDD von 47,6% und der mäßig bis schweren PDD von 16,5%.4 Ebensolche Ergebnisse stellten sich auch in den Publikationen von Mureddu et al. sowie Lam et al. dar. Hier ergab sich eine Prävalenz der PDD in der älteren Bevölkerung von 35,4% bzw. 36% der Studienteilnehmer.9, 10
1.3.2. Progredienz der präklinischen diastolischen Dysfunktion zur Herzinsuffizienz

1.3.3. Diagnostik der präklinischen diastolischen Dysfunktion

Das Verständnis für die Veränderungen der echokardiographischen Funktions- und Strukturparameter setzt einen Einblick in die Physiologie der Herzaktion und der pathophysiologischen Veränderungen in der diastolischen Dysfunktion voraus.

Der Herzzyklus setzt sich aus den Komponenten Diastole und Systole zusammen. Der regelrechte Ablauf dieser Phasen ist abhängig von der Fähigkeit der Ventrikel, sich den Erfordernissen dieses Wechsels anzupassen. Während der Diastole müssen sich die Ventrikel entspannen, um auch bei verhältnismäßig geringem Druck in den Vorhöfen ausreichend gefüllt zu werden. Während der Systole ist ein schneller Druckanstieg notwendig um genügend Schlagvolumen gegen den arteriellen Druck auszuwerfen.12, 13

Als nichtinvasive und reproduzierbare diagnostische Methode hat sich die transthorakale Echokardiographie etablier t.15, 16 Die Diagnose einer PDD setzt eine normale bzw. maximal leicht reduzierte linksventrikuläre Ejektionsfraktion (LVEF) voraus sowie ein normales linksventrikuläres Volumen.17 Ein arterieller Hypertonus, als zentraler Risikofaktor der diastolischen Dysfunktion, führt zu einer konzentrischen linksventrikulären Hypertrophie und myokardialem Remodeling. Messbar werden diese strukturellen Veränderungen über den LV-Massenindex.12, 17, 18 Mehrere Studien haben gezeigt, dass das linksatriale Remodeling einen zentralen Marker in der Diagnostik der
diastolischen Dysfunktion darstellt. Als struktureller Parameter kann hier das LA Volumen herangezogen werden.6, 19 Verschiedene große Studien haben dargestellt, dass ein linksatrialer Volumenindex (LAVI) \(\geq 34 \text{ ml/m}^2 \) unter anderem ein unabhängiger Risikofaktor für die Entwicklung einer Herzinsuffizienz ist.12

Durch Abnahme der frühdiastolischen transmitralen Flussgeschwindigkeit verzögert sich der passive Druckausgleich zwischen linkem Vorhof und linkem Ventrikel. Damit einhergehend kommt es zu einer Verlängerung der Dezelerationszeit (DT), welche das Zeitintervall von der Spitze der E-Welle bis zum Schnittpunkt des abfallenden Schenkels mit der Nulllinie abbildet.14

Die linksventrikuläre Füllung ist zunehmend abhängig vom Druckgradienten zwischen Vorhof und Ventrikel. Um auch bei Progredienz der diastolischen Dysfunktion eine ausreichende ventrikuläre Füllung aufrecht zu erhalten, muss der linksatriale Druck ansteigen. Konsekutiv kommt es zu einer Zunahme der frühen transmitralen Einflussgeschwindigkeit (Anstieg der E-Welle) und einer Verkürzung der DT. Das

Mittels Gewebedoppler können Geschwindigkeiten der myokardialen Bewegung gemessen werden. Analog zum transmitralen Einflussprofil findet sich in der Diastole eine frühe myokardiale Bewegung E' und eine späte Bewegung A', welche durch die Vorhofkontraktion ausgelöst wird.14 Zu Beginn der diastolischen Dysfunktion fällt E' ab, und verbleibt auf reduziertem Niveau über alle Stadien der DD. Ein septales E' < 8 cm/s gilt als Grenzwert für eine normale diastolische Funktion. Mehrere Untersuchungen haben gezeigt, dass aus der Ratio (E/E') der transmitralen Flussgeschwindigkeit (E) und der Mitralklappenringgeschwindigkeit im Gewebedoppler (E') der linksventrikuläre Füllungsdruck geschätzt werden kann.22, 23 Durch dieses Verhältnis kann man zwischen normaler und pseudonormaler Funktion unterscheiden.

zwischen AR\textsubscript{dur} und A\textsubscript{dur} über 30 ms gilt als sicheres Zeichen für eine moderate bis schwere DD14.

Tabelle 1 stellt in Anlehnung an die Leitlinie der American Society of Echocardiography (ASE) die Graduierung der diastolischen Dysfunktion dar24.

Tabelle 1: Darstellung der dopplerechokardiographischen Kriterien zur Klassifikation der diastolischen Dysfunktion; zusammengestellt aus4, 12

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normale diastolische Funktion</th>
<th>DD I (gestörte Relaxation)</th>
<th>DD II (pseudonormales Flussprofil)</th>
<th>DD III (restriktive Füllung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A (cm/s)</td>
<td>0,8 - 1,5</td>
<td>< 0,8</td>
<td>0,8 - 1,5</td>
<td>> 2</td>
</tr>
<tr>
<td>DT (ms)</td>
<td>160 – 200</td>
<td>> 200</td>
<td>160 - 200</td>
<td>< 160</td>
</tr>
<tr>
<td>E/E'</td>
<td>≤ 8</td>
<td>≤ 8</td>
<td>≥ 9 - 15</td>
<td>≥ 15</td>
</tr>
<tr>
<td>LAVI (mL/m²)</td>
<td>< 34</td>
<td>≥ 34</td>
<td>> 34</td>
<td></td>
</tr>
</tbody>
</table>

DD, diastolische Dysfunktion; E/A, Verhältnis der frühen und späten diastolischen transmitralen Einflussgeschwindigkeit; DT, Dezelerationszeit; E/E', Relation der frühen transmitralen Einflussgeschwindigkeit und der durchschnittlichen frühen Mitralklappenringgeschwindigkeit; LAVI, linksatrialer Volumenindex;
Weitere Parameter zur Evaluierung der diastolischen Funktion können durch invasive Untersuchungen ermittelt werden. Im Rechtsherzkatheter kann der pulmonalkapilläre Verschlussdruck (mean pulmonary capillary wedge pressure, PCWP) gemessen werden. Messwerte über 12 mmHg weisen auf erhöhte Füllungsdrücke hin. Im Linksherzkatheter kann der linksventrikuläre enddiastolische Druck (LVEDP) ermittelt werden, Drücke über 16 mmHg gelten hier als pathologisch. In Zusammenschau mit einer normalen LVEF und einem normalen linksventrikulären enddiastolischen Volumenindex (LVEDVI) kann eine Verminderung der LV Compliance diagnostiziert werden.\(^3,\)\(^{12}\)

Die Bestimmung der Zeitkonstanten des isovolumetrischen Druckabfalls Tau und des maximalen Druckabfalls pro Zeiteinheit (-dP/dt\(_{\text{min}}\)) lassen Aussagen zur Relaxationsfähigkeit des Ventrikels zu. Bei einer Abnahme des maximalen Druckabfalls und einer Zunahme von Tau (Tau > 48 ms), ist von einer Relaxationsstörung auszugehen.\(^3,\)\(^{21}\) Zur Ermittlung dieser Parameter ist allerdings die Verwendung eines speziellen Conductance-Katheters notwendig, der gleichzeitig Druckbestimmungen und intrakavitäre Volumenmessungen ermöglicht.\(^{25}\)

Biomarker wie das BNP und das N-terminale pro brain natriuretic peptide (NT-proBNP) sind etablierte Parameter in der Diagnostik der Herzinsuffizienz. NT-proBNP korreliert in der diastolischen Dysfunktion gut mit Tau und dem LVEDP\(^{26}\) sowie dem echokardiographisch erhobenen Grad der DD.\(^{27}\) Ein BNP < 100 pg/ml beziehungsweise ein NT-proBNP < 120 pg/ml schließt das Vorliegen einer DD mit großer Wahrscheinlichkeit aus.\(^3\) Ein BNP > 200 pg/ml bzw. ein NT-proBNP > 220 pg/ml gelten als wichtiger Hinweis für die Diagnosestellung einer Herzinsuffizienz, differentialdiagnostisch kann allerdings nicht zwischen HFrEF und HFpEF unterschieden werden.\(^{28}\) Als Screeningparameter in der Phase der PDD ist die Wertigkeit von BNP jedoch nur als begrenzt anzusehen.\(^{29}\)

1.4. Deformationsbildgebung

1.4.1. Deformationsanalyse mittels Speckle Tracking Echokardiographie

besten abgebildet werden. In der DD kommt es zu Veränderungen in der frühen diastolischen linksventrikulären Drehbewegung. Hierbei ist eine Verringerung der frühen diastolischen apikalen Rotation ebenso wie eine Verkürzung der Zeit vom Höhepunkt der apikalen Enddrehung bis zum Öffnen der Mitralklappe zu beobachten.

Verglichen mit der mittlerweile als Goldstandard in der LV Funktionsanalyse etablierten MRT stellt sich die STE durch eine bessere Verfügbarkeit, höhere Kosteneffizienz, kürzere Untersuchungs- und Nachbearbeitungsdauer, sowie der Möglichkeit zur Bedside-Diagnostik dar. Kontraindikation wie Klaustrophobie oder nicht MRT-taugliche Implantate müssen in der STE nicht berücksichtigt werden.

In den letzten Jahren wurde die Methode der Speckle Tracking Echokardiographie zunehmend erfolgreich auf den Bereich des linken Vorhofes angewendet sowie zur Funktionsanalyse im Rahmen verschiedener kardialer Krankheitsbilder etabliert und zeigte sich hier als hochsensitiver Parameter.
1.4.2. Deformationsbildgebung in der Untersuchung des rechten Ventrikelns

In den letzten Jahren wurden erste Veröffentlichungen zum Thema Deformationsbildgebung in der Beschreibung der Rechtsherzfunktion publiziert. Hierbei erwies sich in mehreren Studien die Analyse des longitudinalen systolischen RV Strains (RVLS) mittels STE im Vergleich mit etablierten RV Parametern als valide und prognostisch relevante Methode zur Beurteilung der RV Funktion.

Die etablierten Parameter wie RV fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE), E, E/A, E/E' zeigten keine Korrelation. Somit ergaben sich Strain und SR als überlegene Funktionsmesswerte, mit hohem klinischen Nutzen als Verlaufsparameter vor und nach TPVI.59

Fine et al. publizierten im ihrem Review 2015 Referenzwerte des RVLS bei kardiopulmonal gesunden Patienten. Hierbei wurde die durchschnittliche Deformation der rechtsventrikulären freien Wand mit einem Strain von -27\% ± 2\% (95\% CI -29\% bis -24\%) ermittelt.60

1.4.3. Deformationsbildgebung in der Untersuchung des rechten Vorhofes

Etablierte konventionelle echokardiographische Parameter zur Evaluation der rechtsatrialen Funktion sind rar. Das rechtsatriale Volumen und die trikuspide Einflussgeschwindigkeit (A-Welle), ebenso wie die atriale EF, sind stark vorlastabhängig.62

Es gibt wenige Studien, die im Bereich des rechten Vorhofes durchgeführte Deformationsanalysen mittels STE beschreiben. D’Andrea et al untersuchten Patienten mit dilatativer Kardiomyopathie nach Implantation eines biventrikulären Schrittmachers zur kardialen Resynchronisationstherapie. Hierbei konnte eine signifikante Verbesserung des rechtsatrialen Strains der lateralen Wand in der Gruppe der Responder gegenüber den Non-Respondern gemessen werden.63

Padeletti et al. untersuchten den rechtsatrialen Strain und die SR bei Patienten mit HFrEF im Vergleich mit dem invasiv ermittelten pulmonalarteriellen Druck (PAP). Es zeigte sich eine signifikante inverse Korrelation des RA peak longitudinalen Strains mit dem invasiv gemessenen systolischen PAP (sPAP) und eine direkte Korrelation der SR mit dem sPAP. Somit kann mittels echokardiographischer Deformationsbildgebung des rechten Vorhofes...
Vorhofes unter Berücksichtigung weiterer klinischer und echokardiographischer Aspekte auf einen pulmonalen Hypertonus geschlossen werden.64

Auch Peluso et al. zeigten 2013 in ihrer Studie Referenzwerte für den longitudinalen RA Strain auf. Hierbei konnten geschlechtsspezifisch nur marginale Unterschiede eruiert werden. Es fand sich bei Männern ein mittlerer longitudinaler RA Strain von 42 ± 9\% und bei Frauen von 45 ± 10\%. In dieser Untersuchung wies sich das RA Volumen als geschlechtsabhängiger Parameter aus.66
1.5. Fragestellung

Im Rahmen dieser Dissertation soll in einer gut charakterisierten Gruppe von zufällig ausgewählten Frauen untersucht werden, ob sich parallel zur Linksherzfunktion auch die Funktion des rechten Herzens verschlechtert, trotz normaler Rechtsherzvolumina und Füllungsdrücke.

Die Ergebnisse dieser Arbeit könnten somit zum pathophysiologischen Verständnis der Entstehung der PDD und der HFpEF beitragen.
2. Methoden

2.1. Studiendesign

2.2. Studienpopulation und Rekrutierung

2.2.1. Allgemein

Insgesamt erklärten 1199 Frauen ihr Interesse an einer Studienteilnahme. Allen potentiellen Probandinnen wurde nun ein Fragebogen, eine Einverständniserklärung und weitere Informationen schriftlich zugesandt. Von diesen Frauen erklärten sich schließlich

Anhand des umfassenden Fragebogens erfolgte die Erhebung einer ausführlichen Krankengeschichte. Schwerpunkte waren hierbei die Dokumentation von kardiovaskulären Vorerkrankungen wie Hypertonus, stattgehabter Myokardinfarkt, Schlaganfall oder thromboembolische Ereignisse in der Eigen- und Familienanamnese, sowie die Erfassung kardiovaskulär wirksamer Medikamente wie beispielweise Angiotensin Converting Enzyme-Hemmer (ACE-Hemmer), Statine oder Betablocker und Risikofaktoren wie Nikotinkonsum.

Die klinischen Daten wurden im Rahmen der BEFRI-Studie nach standardisierten Methoden erhoben und folgendermaßen definiert:

2.2.2. Teilnehmerinnen der echokardiographischen Untersuchung

Alle Teilnehmerinnen der BEFRI-Studie wurden abermals angeschrieben und zu einer echokardiographischen Untersuchung eingeladen. Im Rahmen der erneuten Rekrutierung erklärte sich von vormals 1062 Probandinnen eine Subgruppe von 473 Frauen zu einer Teilnahme bereit. Diese erhielten eine ausführliche echokardiographische Untersuchung, die neben der Bestimmung von standardmäßigen echokardiographischen Parametern eine gezielte Untersuchung der diastolischen linksventrikulären Funktion sowie allgemeiner und neuer Rechtsherzparameter umfasste (siehe Tabellen 4-6).

2.3. Untersuchungen

2.3.1. transthorakale Echokardiographie

Für die transthorakalen echokardiographischen Untersuchungen wurden 473 Frauen prospektiv eingeschlossen. Die Durchführung der echokardiographischen Untersuchungen fand im Zeitraum April 2013 bis Februar 2014 statt. Es erfolgte eine standardisierte echokardiographische Untersuchung mittels eines Vivid E9 Echokardiographierätes (GE Vingmed, Horton, Norway) mit einem M5S 1.5-4.5 MHz Schallkopf. Während der Untersuchung wurde zeitsynchron die Aufzeichnung eines Elektrokardiogramms durchgeführt.

Die Grundlage der echokardiographischen Untersuchung bildeten die Richtlinien der European Association of Cardiovascular Imaging (EACVI) und der ASE. Hierzu erfolgte der transthorakale Ultraschall in Linksseitenlage der Probandinnen, wobei jede Aufzeichnung über eine Mindestdauer von zwei Herzzyklen stattfand.

2.3.1.1. Einteilung der diastolischen Funktion

2.3.1.2. Diameter und Flächen des rechten Herzens

Die Dimensionen des rechten Herzens wurden im B-Mode mittels 2D Echokardiographie im apikalen vier-Kammer-Blick aufgenommen. Bei der echokardiographischen Darstellung des rechten Ventrikels mangelt es an orientierenden Referenzpunkten, um
Eine sicher achsengerechte und reproduzierbare Einstellung zu erhalten. Es empfiehlt sich eine Orientierung in Bezug auf den linken Ventrikel. In der korrekten Ansicht sollte sich dieser als apexformend abbilden. Weiterhin erwartet man physiologisch in exakter Darstellung einen rechten Ventrikel, dessen Größe in etwa 2/3 des linken Ventrikels ausmacht.50

Abbildung 1: Echokardiographische Darstellung eines apikalen vier-Kammer-Blicks. RA, rechter Vorhof; LA, linker Vorhof; RV, rechter Ventrikel; LV, linker Ventrikel; RVD1, basaler rechtsventrikulärer Diameter; RVD2, mittlerer rechtsventrikulärer Diameter; RVD3, longitudinaler rechtsventrikulärer Diameter

Abbildung 2: Beispielhafte Darstellung der Vermessung des rechtsventrikulären Ausflusstraktes (RVOT 1 und RVOT 2) in parasternaler kurzer Achse
2.3.1.3. Volumetrische Beurteilung des rechten Ventrikels

Abbildung 3: Darstellung eines apikalen vier-Kammer-Blicks zur Ermittlung der fractional area change (FAC) als Maß für die systolische Funktion des rechten Ventrikels
2.3.1.4. Echokardiographische Abschätzung des maximalen systolischen Druckunterschiedes zwischen rechtem Vorhof und rechtem Ventrikel über die vereinfachte Bernoulli-Gleichung

Die Abschätzung des pulmonalarteriellen Druckes fand über die maximale trikuspidale Regurgitationsgeschwindigkeit statt. Die Bestimmung erfolgte im apikalen Vier-Kammerblick in der Farb-Doppler-Echokardiographie mittels Continuous-wave-Doppler (CW-Doppler). Über die vereinfachte Bernoulli-Gleichung konnte der maximale Gradient vom rechten Ventrikel zum rechten Vorhof ermittelt werden. Die vereinfachte Bernoulli-Gleichung stellt sich folgendermaßen dar: rechtsventrikulärer systolischer Druck (RVSP) = 4(V)^2 + RA-Druck (V ist die maximale Geschwindigkeit in m/s; der RA-Druck entspricht dem zentralvenösen Druck in mmHg). Normale Ruhewerte sind definiert als ein maximaler systolischer Druck von 35 mmHg unter Berücksichtigung eines RA-Drucks von 3-5 mmHg.
2.3.1.5. Nichtvolumetrische Beurteilung der Funktion des rechten Ventrikels

TAPSE ist eine Messung der rechtsventrikulären longitudinalen Funktion. Hierbei wird die Distanz der maximalen systolischen Exkursion des Trikuspidalklappenanulus entlang seiner longitudinalen Achse im Vier-Kammer-Blick vermessen. Je größer der Abstand zwischen diastolischer Ausgangslage und systolischer Endlage ist, desto besser ist die systolische Funktion des rechten Ventrikels. Mittels Platzierung des Cursors im M-Mode auf den Trikuspidalklappenanulus misst man die Höhe der maximalen longitudinalen Auslenkung in der Systole (siehe Abbildung 4). Eine TAPSE zwischen 16-30 mm gilt als normwertig in der Beschreibung der rechtsventrikulären systolischen Funktion.\(^{50}\)

Abbildung 4: Darstellung eines M-Mode Bildes zur Abmessung von TAPSE; mittels Elektrokardiogramm erfolgt die Ermittlung des Zeitpunktes zur Vermessung der maximalen endsystolischen Höhe des tricuspidalen Klappensegments

Die rechtsventrikuläre isovolumetrische Beschleunigung (RV IVA) wurde mittels Gewebedoppler am lateralen Trikuspidalklappenanulus ermittelt. Die Berechnung erfolgte über die Formel RV IVA = RV IVV/RV AT (myokardiale Spitzengeschwindigkeit der isovolumetrischen Kontraktion / Beschleunigungszeit).\(^{73}\) Die RV IVA gilt als in zahlreichen klinischen Studien evaluiert, robuster, wenig vor- und nachlastabhängiger Parameter zur Ermittlung der systolischen Funktion des rechten Ventrikels.\(^{74, 75}\)
Der Tei-Index (myocardial performance index, MPI) ist eine Größe zur Abschätzung der rechtsventrikulären systolischen und diastolischen Funktion. Mittels Gewebedoppler wurden die rechtsventrikuläre isovolumetrische Kontraktions- (IVCT) und Relaxationszeit (IVRT) sowie die Ejektionszeit (ET) erfasst; der Tei-Index berechnet sich aus der Formel \((\text{IVCT} + \text{IVRT})/\text{ET}\). Erwartet werden Werte im Bereich zwischen 0,24-0,55.\(^{50}\)

Die rechtsventrikuläre systolische Exkursionsgeschwindigkeit (RV S') ist ein einfacher und reproduzierbarer Messwert, welcher die Abschätzung der Funktion der rechtsventrikulären basalen freien Wand erlaubt und somit Rückschlüsse auf die systolische Funktion des rechten Ventrikels ziehen lässt.\(^{50}\) Die Messung erfolgte im apikalen Vier-Kammer-Blick mittels Gewebedoppler. Das Messvolumen wurde dabei in Höhe des Trikuspidalklappenanulus gelegt und anschließend die systolische Exkursionsgeschwindigkeit des rechtsventrikulären Myokards gemessen. Mittels Vergleich mit dem EKG wurde in der graphischen Darstellung der maximale systolische Ausschlag abgelesen. Ein RV S' < 10 cm/s deutet auf eine Funktionsstörung des rechten Ventrikels hin.\(^{50}\)

2.3.1.6. Rechtsventrikuläre diastolische Funktion

Analog zur diastolischen Funktionsbeurteilung des linken Ventrikels, erfolgte die Beurteilung der diastolischen Funktion des rechten Ventrikels. Hierzu zählt die Ermittlung der maximalen frühen (RV E') und späten (RV A') diastolischen Trikuspidalklappengeschwindigkeit, sowie die Beurteilung der isovolumetrischen Relaxationszeit mittels Gewebedoppler.\(^{50}\)

Die Messung der RV IVRT beschreibt den Zeitraum vom Schluss der Pulmonalklappe bis zur Öffnung der Trikuspidalklappe,\(^{76}\) also dem Ende der systolischen myokardialen Verkürzung bis zum Übergang in die diastolische Deformation der freien RV Wand; bei gesunden Probanden ist dieses Zeitintervall meist kürzer als 40 ms. Die IVRT gilt als sensitiver Parameter zur Erfassung möglicher rechtsventrikulärer Funktionsstörungen.\(^{77}\)
Tabelle 2: Darstellung der Normwerte der echokardiographischen Parameter des rechten Herzens; zusammengestellt nach50,66,78

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV Diameter basal (mm)</td>
<td>24 - 42</td>
</tr>
<tr>
<td>RV Diameter mitte (mm)</td>
<td>20 - 35</td>
</tr>
<tr>
<td>RV Diameter longitudinal (mm)</td>
<td>56 - 86</td>
</tr>
<tr>
<td>RVOT 1 (mm)</td>
<td>21 - 35</td>
</tr>
<tr>
<td>RVOT 2 (mm)</td>
<td>17 - 27</td>
</tr>
<tr>
<td>RV ED area (cm2)</td>
<td>10 - 25</td>
</tr>
<tr>
<td>RV ED Volumen Index (ml/m2)</td>
<td>44 - 80</td>
</tr>
<tr>
<td>RV ES area (cm2)</td>
<td>4 - 14</td>
</tr>
<tr>
<td>RV ES Volumen Index (ml/m2)</td>
<td>19 - 46</td>
</tr>
<tr>
<td>FAC (%)</td>
<td>35 - 63</td>
</tr>
<tr>
<td>RV EF (%)</td>
<td>44 - 71</td>
</tr>
<tr>
<td>PAP (mmHg)</td>
<td>≤ 35</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>16 - 33</td>
</tr>
<tr>
<td>RV IVA (m/s2)</td>
<td>2,2 - 5,2</td>
</tr>
<tr>
<td>RV S’ (cm/s)</td>
<td>6 - 14</td>
</tr>
<tr>
<td>RV MPI (Tei-Index)</td>
<td>0,24 - 0,55</td>
</tr>
<tr>
<td>RV IVRT (ms)</td>
<td>< 73</td>
</tr>
<tr>
<td>RV E’ (cm/s)</td>
<td>8 - 20</td>
</tr>
<tr>
<td>RV A’ (cm/s)</td>
<td>7 - 20</td>
</tr>
<tr>
<td>RV Strain basal (%)</td>
<td>18 - 39</td>
</tr>
<tr>
<td>RV Strain mittventrikulär (%)</td>
<td>20 - 38</td>
</tr>
<tr>
<td>RV Strain apikal (%)</td>
<td>19 - 39</td>
</tr>
<tr>
<td>RV free wall Strain average (%)</td>
<td>- 30,5 (± 3,9 SD)</td>
</tr>
<tr>
<td>RV Strain average (%)</td>
<td>- 25,8 (± 3,0 SD)</td>
</tr>
<tr>
<td>RA Reservoir Funktion (%)</td>
<td>44 ± 13</td>
</tr>
</tbody>
</table>

RV, rechtsventrikulär; RVOT, rechtsventrikulärer Ausflusstrakt; ED, enddiastolisch; ES, endsystolisch; FAC, fractional area change; EF, Ejektionsfraktion; PAP, pulmonaler Druck; TAPSE, tricuspid annular plane systolic excursion; RV IVA, rechtsventrikuläre isovolumetrische Beschleunigung; RV S’, systolische
Trikuapidalklappenringgeschwindigkeit; RV MPI, rechtsventrikulärer myokardialer performance index/Tei-Index; RV IVRT, rechtsventrikuläre isovolumetrische Relaxationszeit; RV E’ und A’, frühe und späte diastolische Trikuspidalklappenringgeschwindigkeit; RA, rechter Vorhof

2.3.2. Offline Analysen mittels Speckle Tracking Echokardiographie

2.3.2.1. 2D Speckle Tracking Analyse des rechten Ventrikels

Mit Hilfe der rechtsherzfokussierten apikalen Vier-Kammer-Blick-Aufnahmen erfolgte die Bestimmung des rechtsventrikulären longitudinalen maximalen Strains (peak Strain) der rechtsventrikulären freien Wand sowie der drei Einzelsegmente apikal, mittventrikulär und basal. Nach Umfahrung der Endokardgrenze durch den Untersucher kreierte die EchoPac Software die ROI, welche bei ungenauer Markierung manuell nachjustiert

Abbildung 5: Beispielhafte Darstellung einer Speckle Tracking Analyse des rechten Ventrikels die rote Linie markiert den ungefähren Mittelwert des Strains der freien rechtsventrikulären Wand
2.3.2.2. 2D Speckle Tracking Analyse des rechten Vorhofes

Abbildung 6: Beispielhafte Darstellung einer Speckle Tracking Analyse des RA
2.3.2.3. 2D Speckle Tracking Analyse des linken Herzens

2.3.3. Intra- und Interuntersuchervariabilität

Zur Analyse der Interuntersuchervariabilität der echokardiographischen Ergebnisse haben zwei Untersucher, ohne Wissen über klinische Patientendaten, unabhängig voneinander den RV und RA Strain von 20 beliebig ausgewählten Probandinnen gemessen. Der RA und RV Strain dieser 20 zufällig ausgewählten Probandinnen wurde von einem Untersucher zweimalig analysiert, um die Intrauntersuchervariabilität zu bestimmen.
2.4. Auswertung und statistische Analyse

Sowohl die echokardiographische Untersuchung als auch die Analyse der gespeicherten Bilder erfolgte verblindet in Bezug auf anamnestische Angaben und klinische Daten. Die statistische Analyse wurde mit der Software SPSS (statistical package for social sciences) Version 25 für Windows 7 durchgeführt. Zur deskriptiven Statistik der klinischen Charakteristika und echokardiographischen Untersuchungsergebnisse wurden Kreuztabellen für die Berechnung der prozentualen Verhältnisse verwendet. Die Berechnung signifikanter Unterschiede erfolgte für die kontinuierlichen Variablen mittels nicht-parametrischem Mann-Whitney-U-Test sowie mittels Fisher’s-exact-Test für kategoriale Variablen. Unterschiede galten als statistisch signifikant, wenn \(p < 0,05 \) war und als hochsignifikant wenn \(p < 0,001 \) war. Die Daten wurden als Mittelwert ± Standardabweichung angegeben für kontinuierliche Variablen, und in % für kategoriale Variablen.

Zur Bestimmung der Intra- und Interuntersuchervariabilität wurde der intraclass correlation coefficient (ICC) berechnet.

2.5. Ethische und rechtliche Grundlagen

Die Studie wurde durch die Ethikkommission der Charité Universitätsmedizin Berlin genehmigt. Alle Teilnehmer gaben ihr schriftliches Einverständnis zur Teilnahme an der Studie.
3. Ergebnisse

3.1. Deskriptive Statistik

3.1.1. Demographische Daten und körperliche Untersuchung

Tabelle 3: Klinische Charakteristika der gesamten Studienpopulation unterteilt nach diastolischer Funktion

<table>
<thead>
<tr>
<th></th>
<th>Anzahl der Werte (Gesamt n= 438)</th>
<th>Gesamt</th>
<th>DD 0 (n=286)</th>
<th>DD (n=152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil der Studienteilnehmerinnen [%]</td>
<td>65,3</td>
<td>34,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter in Jahren</td>
<td>438</td>
<td>50,8 ± 14,0</td>
<td>44,0 ± 11,5</td>
<td>63,6 ± 8,3**</td>
</tr>
<tr>
<td>Body Mass Index [kg/m²]</td>
<td>435</td>
<td>24,6 ± 4,8</td>
<td>23,4 ± 4,3</td>
<td>27,0 ± 4,7**</td>
</tr>
<tr>
<td>waist to hip ratio</td>
<td>436</td>
<td>0,8 ± 0,08</td>
<td>0,78 ± 0,08</td>
<td>0,84 ± 0,06**</td>
</tr>
<tr>
<td>systolischer Blutdruck [mmHg]</td>
<td>438</td>
<td>122 ± 17</td>
<td>118 ± 16</td>
<td>129 ± 16**</td>
</tr>
<tr>
<td>diastolischer Blutdruck [mmHg]</td>
<td>438</td>
<td>72,7 ± 11,4</td>
<td>71 ± 11</td>
<td>76 ± 11**</td>
</tr>
<tr>
<td>Herzfrequenz [bpm]</td>
<td>438</td>
<td>71 ± 10</td>
<td>70 ± 10</td>
<td>73 ± 10*</td>
</tr>
<tr>
<td>NYHA Grad II</td>
<td>434</td>
<td>59</td>
<td>22 (37,3%)</td>
<td>37 (62,7%)**</td>
</tr>
<tr>
<td>Parameter</td>
<td>Gruppe</td>
<td>Mean ± SD 1</td>
<td>Mean ± SD 2</td>
<td>Mean ± SD 3</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Diabetes mellitus [%]</td>
<td>436</td>
<td>4,8 ± 1,1</td>
<td>11,9 ± 4,8</td>
<td></td>
</tr>
<tr>
<td>Hypertonus [%]</td>
<td>436</td>
<td>22,5 ± 11,0</td>
<td>44,1 ± 11,0</td>
<td></td>
</tr>
<tr>
<td>Bekannte KHK [%]</td>
<td>436</td>
<td>0,9 ± 0,0</td>
<td>2,6 ± 0,0</td>
<td></td>
</tr>
<tr>
<td>BNP [pg/ml]</td>
<td>429</td>
<td>34,4 ± 31,6</td>
<td>29,2 ± 22,6</td>
<td>44,1 ± 42,1</td>
</tr>
<tr>
<td>Kreatinin [µmol/l]</td>
<td>438</td>
<td>63,0 ± 10,5</td>
<td>62,0 ± 8,6</td>
<td>65,0 ± 13,3</td>
</tr>
<tr>
<td>HbA1c [%]</td>
<td>438</td>
<td>5,4 ± 0,6</td>
<td>5,2 ± 0,4</td>
<td>5,7 ± 0,8</td>
</tr>
<tr>
<td>HDL [mg/dl]</td>
<td>438</td>
<td>60 ± 14</td>
<td>61 ± 13</td>
<td>59 ± 14</td>
</tr>
<tr>
<td>LDL [mg/dl]</td>
<td>433</td>
<td>129 ± 36</td>
<td>122 ± 35</td>
<td>140 ± 35</td>
</tr>
<tr>
<td>ACE-Hemmer und/oder AT1-Inhibitoren [%]</td>
<td>438</td>
<td>13,7 ± 5,9</td>
<td>28,3 ± 23,7</td>
<td></td>
</tr>
<tr>
<td>Betablocker [%]</td>
<td>438</td>
<td>11,4 ± 4,9</td>
<td>23,7 ± 13,4</td>
<td></td>
</tr>
<tr>
<td>Diuretika [%]</td>
<td>438</td>
<td>3,9 ± 1,4</td>
<td>8,6 ± 4,3</td>
<td></td>
</tr>
<tr>
<td>Calcium-Antagonisten [%]</td>
<td>438</td>
<td>3,9 ± 1,0</td>
<td>9,2 ± 4,5</td>
<td></td>
</tr>
<tr>
<td>Aspirin [%]</td>
<td>438</td>
<td>3,2 ± 1,4</td>
<td>6,6 ± 3,7</td>
<td></td>
</tr>
<tr>
<td>Statine [%]</td>
<td>438</td>
<td>4,8 ± 0,7</td>
<td>12,5 ± 5,4</td>
<td></td>
</tr>
<tr>
<td>OAK [%]</td>
<td>438</td>
<td>0,2 ± 0,0</td>
<td>0,3 ± 0,0</td>
<td></td>
</tr>
</tbody>
</table>

* p ≤ 0,05 vs. DD 0
** p ≤ 0,001 vs. DD 0

DD 0, normale diastolische Funktion; DD, diastolische Dysfunktion; bpm, beats per minute; NYHA, New York Heart Association; KHK, koronare Herzerkrankung; BNP, brain natriuretic peptide; HbA1c, Glykohämoglobin; HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein; ACE, Angiotensin Converting Enzyme; AT, Angiontensin; OAK, orale Antikoagulation

Etwa ein Drittel (34,7%) der Studienteilnehmerinnen zeigten Zeichen der diastolischen Dysfunktion in der echokardiographischen Untersuchung. Diese Frauen waren im Vergleich mit den Probandinnen mit normaler diastolischer Funktion älter und wiesen einen höheren BMI sowie eine höhere waist-to-hip Ratio auf. Kardiovaskuläre Risikofaktoren wie ein Diabetes mellitus, Hypertonus und ein erhöhter Low-Density-Lipoprotein (LDL)-Wert waren bei den Studienteilnehmerinnen mit einer DD signifikant häufiger vertreten als bei den Frauen mit einer normalen diastolischen Funktion. 59 von
438 Frauen (13,5%) beschrieben eine Dyspnoe bei stärkerer körperlicher Belastung (NYHA II); bei fast 2/3 dieser Frauen bot sich echokardiographisch eine diastolische Dysfunktion. Probandinnen mit DD nahmen in einem statistisch relevanten Maß häufiger kardiovaskulär wirksame Medikamente ein, als Frauen ohne diastolische Funktionsstörung (*Tabelle 3*).
3.2. Echokardiographische Ergebnisse

3.2.1. Linksvventrikuläre Parameter

Tabelle 4: Übersicht der echokardiographischen Untersuchungsergebnisse des linken Herzens

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Anzahl der Werte (n=438)</th>
<th>Gesamt</th>
<th>DD 0 (n=286)</th>
<th>DD (n=152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF [%]</td>
<td>407</td>
<td>60,2 ± 5,6</td>
<td>60,5 ± 5,2</td>
<td>59,5 ± 6,2</td>
</tr>
<tr>
<td>Septum [mm]</td>
<td>436</td>
<td>9,9 ± 1,8</td>
<td>9,1 ± 1,4</td>
<td>11,4 ± 1,6**</td>
</tr>
<tr>
<td>Hinterwand [mm]</td>
<td>436</td>
<td>9,4 ± 1,5</td>
<td>8,8 ± 1,3</td>
<td>10,5 ± 1,4**</td>
</tr>
<tr>
<td>LVEDD [mm]</td>
<td>436</td>
<td>45,1 ± 4,7</td>
<td>45,5 ± 4,5</td>
<td>44,5 ± 5,1*</td>
</tr>
<tr>
<td>E [cm/s]</td>
<td>438</td>
<td>0,75 ± 0,16</td>
<td>0,80 ± 0,15</td>
<td>0,65 ± 0,15**</td>
</tr>
<tr>
<td>A [cm/s]</td>
<td>438</td>
<td>0,63 ± 0,21</td>
<td>0,54 ± 0,15</td>
<td>0,80 ± 0,18**</td>
</tr>
<tr>
<td>E/A</td>
<td>438</td>
<td>1,32 ± 0,56</td>
<td>1,57 ± 0,50</td>
<td>0,85 ± 0,27**</td>
</tr>
<tr>
<td>DT [ms]</td>
<td>437</td>
<td>208 ± 47</td>
<td>196 ± 37</td>
<td>231 ± 54**</td>
</tr>
<tr>
<td>IVRT [ms]</td>
<td>435</td>
<td>78 ± 22</td>
<td>69 ± 16</td>
<td>95 ± 22**</td>
</tr>
<tr>
<td>E'[cm/s]</td>
<td>436</td>
<td>11,4 ± 3,4</td>
<td>13,3 ± 2,5</td>
<td>7,6 ± 1,3**</td>
</tr>
<tr>
<td>E/E'</td>
<td>436</td>
<td>7,0 ± 2,0</td>
<td>6,2 ± 1,5</td>
<td>8,7 ± 2,0**</td>
</tr>
<tr>
<td>LAVI [mL/m²]</td>
<td>385</td>
<td>28,7 ± 5,9</td>
<td>27,5 ± 4,5</td>
<td>31,0 ± 7,3**</td>
</tr>
</tbody>
</table>

* p ≤ 0,05 vs. DD 0
** p ≤ 0,001 vs. DD 0

DD 0, normale diastolische Funktion; DD, diastolische Dysfunktion; LVEF, linksventrikuläre Ejektionsfraktion; LVEDD, linksventrikulärer enddiastolischer Diameter; E und A, frühe und späte diastolische transmitrale Einflussgeschwindigkeit; E/A, Verhältnis von früher und später diastolischer transmitraler Einflussgeschwindigkeit; DT, Dezelerationszeit; IVRT, Isovolumetrische Relaxationszeit; E', Mittelwert der septalen und lateralen frühdiastolischen Mitralklappengeschwindigkeit; E/E', Relation der frühdiastolischen transmitralen Einflussgeschwindigkeit und der durchschnittlichen frühdiastolischen Mitralklappengeschwindigkeit; LAVI, linksatrialer Volumenindex

3.2.2. Rechtsventrikuläre Parameter

Tabelle 5: Übersicht der echokardiographischen Untersuchungsergebnisse des rechten Herzens

<table>
<thead>
<tr>
<th>Werte</th>
<th>Gesamt</th>
<th>DD 0 (n=286)</th>
<th>DD (n=152)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl der Werte (n=438)</td>
<td>29,2 ± 3,5</td>
<td>28,8 ± 3,6</td>
</tr>
<tr>
<td>RVOT 1 [mm]</td>
<td>424</td>
<td>29,2 ± 3,5</td>
<td>28,8 ± 3,6</td>
</tr>
<tr>
<td>RVOT 2 [mm]</td>
<td>399</td>
<td>20,6 ± 2,9</td>
<td>20,2 ± 2,9</td>
</tr>
<tr>
<td>TAPSE [mm]</td>
<td>431</td>
<td>24,1 ± 4,1</td>
<td>24,4 ± 4,2</td>
</tr>
<tr>
<td>PAP [mmHg] [+ RAP]</td>
<td>166</td>
<td>21,8 ± 6,2</td>
<td>20,7 ± 5,5</td>
</tr>
<tr>
<td>RV S’ [cm/s]</td>
<td>413</td>
<td>13,9 ± 2,2</td>
<td>14,1 ± 2,0</td>
</tr>
<tr>
<td>RV IVRT [ms]</td>
<td>407</td>
<td>15,2 ± 15,5</td>
<td>12,3 ± 14,4</td>
</tr>
<tr>
<td>RV E’ [cm/s]</td>
<td>408</td>
<td>13,9 ± 3,7</td>
<td>14,9 ± 3,6</td>
</tr>
<tr>
<td>RV A’ [cm/s]</td>
<td>408</td>
<td>15,3 ± 3,3</td>
<td>14,4 ± 4,2</td>
</tr>
<tr>
<td>RV IVCT [ms]</td>
<td>408</td>
<td>72,2 ± 19,1</td>
<td>69,2 ± 16,2</td>
</tr>
<tr>
<td>RV IVV [cm/s]</td>
<td>408</td>
<td>13,0 ± 3,8</td>
<td>11,9 ± 3,2</td>
</tr>
<tr>
<td>RV IVA [m/s²]</td>
<td>408</td>
<td>2,9 ± 0,9</td>
<td>2,8 ± 0,8</td>
</tr>
<tr>
<td>RV MPI</td>
<td>408</td>
<td>0,31 ± 0,10</td>
<td>0,28 ± 0,10</td>
</tr>
<tr>
<td>RV Base [mm]</td>
<td>386</td>
<td>26,1 ± 5,1</td>
<td>26,2 ± 4,6</td>
</tr>
<tr>
<td>RV Mid [mm]</td>
<td>336</td>
<td>21,7 ± 5,7</td>
<td>22,6 ± 5,5</td>
</tr>
<tr>
<td>RV Apex-Base [mm]</td>
<td>311</td>
<td>72,4 ± 7,3</td>
<td>73,5 ± 6,9</td>
</tr>
<tr>
<td>RV EDV [ml]</td>
<td>307</td>
<td>25,8 ± 11,5</td>
<td>27,3 ± 11,5</td>
</tr>
<tr>
<td>RV ESV [ml]</td>
<td>334</td>
<td>10,9 ± 4,8</td>
<td>11,4 ± 5,0</td>
</tr>
<tr>
<td>RV ED Area [cm²]</td>
<td>307</td>
<td>14,6 ± 3,6</td>
<td>15,2 ± 3,5</td>
</tr>
<tr>
<td>RV ES Area [cm²]</td>
<td>334</td>
<td>8,5 ± 2,3</td>
<td>8,7 ± 2,2</td>
</tr>
<tr>
<td>RA Area [cm²]</td>
<td>403</td>
<td>11,8 ± 2,5</td>
<td>12 ± 2,5</td>
</tr>
<tr>
<td>FAC (%)</td>
<td>301</td>
<td>40,9 ± 10,4</td>
<td>41,8 ± 9,9</td>
</tr>
<tr>
<td>RV EF (%)</td>
<td>301</td>
<td>55,2 ± 13,8</td>
<td>56,1 ± 13,3</td>
</tr>
</tbody>
</table>

* p ≤ 0,05 vs. DD 0
** p ≤ 0,001 vs. DD 0
DD 0, normale diastolische Funktion; DD, diastolische Dysfunktion; RVOT, rechtsventrikulärer Ausflusstrakt; TAPSE, tricuspid annular plane systolic excursion; PAP, pulmonalarterieller Druck; RAP, rechtsatrialer Druck; RV S’, systolische Trikuspidalklappenringgeschwindigkeit; RV IVRT, rechtsventrikuläre isovolumetrische Relaxationszeit; RV E’ und A’, frühe und späte diastolische Trikuspidalklappenringgeschwindigkeit; RV IVCT, rechtsventrikuläre isovolumetrische Kontraktionszeit; RV IVV, rechtsventrikuläre Spitzengeschwindigkeit während der isovolumetrischen Kontraktion; RV IVA, rechtsventrikuläre isovolumetrische Beschleunigung; RVMPI, rechtsventrikulärer myokardialer performance index/Tei-Index; RV EDV, rechtsventrikuläres enddiastolisches Volumen; RV ESV, rechtsventrikuläres endsystolisches Volumen; ED, enddiastolisch; ES, endsystolisch; RA, rechtsatrial; FAC, fractional area change; RF EF, rechtsventrikuläre Ejektionsfraktion

Studienteilnehmerinnen mit DD boten ein signifikant vermindertes enddiastolisches rechtsventrikuläres Volumen gegenüber den Probandinnen ohne diastolische Funktionsstörung. Äquivalent zu der Verkürzung der frühdiastolischen Mitralklappenanulusgeschwindigkeit des linken Herzen, fand sich in der DD auch eine verminderte früh- sowie eine verlängerte spätdiastolische Trikuspidalklappenringgeschwindigkeit. Die Parameter IVRT, IVV, IVCT und infolggedessen auch der Tei-Index nahmen relevant längere Zeitintervalle in Anspruch bei Frauen mit DD gegenüber den Probandinnen ohne diastolischer Funktionsstörung. Während sich für die RV EF kein signifikanter Unterschied ergab, zeigte sich für den Parameter FAC eine relevante Differenz zwischen den beiden betrachteten Gruppen.

Alle ermittelten Parameter der Studienteilnehmerinnen mit und ohne DD befanden sich im Normbereich.

53

3.2.3. Myokardfunktion

Tabelle 6: Übersicht der myokardialen Funktionsparameter mittels Speckle Tracking Analyse

<table>
<thead>
<tr>
<th>Anzahl der Werte (n=438)</th>
<th>Gesamt</th>
<th>DD 0 (n=286)</th>
<th>DD (n=152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchschnittlicher GLPS LV [%]</td>
<td>- 20,5 ± 2,5</td>
<td>- 21,1 ± 2,3</td>
<td>- 19,5 ± 2,6**</td>
</tr>
<tr>
<td>Basaler RV longitudinaler Strain [%]</td>
<td>- 27,4 ± 7,6</td>
<td>- 28,2 ± 7,7</td>
<td>- 25,7 ± 7,4</td>
</tr>
<tr>
<td>Mittlerer RV longitudinaler Strain [%]</td>
<td>- 29,8 ± 7,3</td>
<td>- 31,0 ± 7,3</td>
<td>- 27,5 ± 6,7*</td>
</tr>
<tr>
<td>Apikaler RV longitudinaler Strain [%]</td>
<td>- 22,3 ± 6,8</td>
<td>- 22,3 ± 7,0</td>
<td>- 20,8 ± 6,1*</td>
</tr>
<tr>
<td>Durchschnittlicher RVLS freie Wand [%]</td>
<td>- 25,6 ± 5,7</td>
<td>- 26,7 ± 5,6</td>
<td>- 23,9 ± 5,5*</td>
</tr>
<tr>
<td>RA Reservoir Funktion [%]</td>
<td>40,4 ± 12,0</td>
<td>43,1 ± 11,9</td>
<td>35,1 ± 10,4**</td>
</tr>
<tr>
<td>LA Reservoir Funktion [%]</td>
<td>39,5 ± 9,7</td>
<td>43,2 ± 8,5</td>
<td>32,6 ± 7,9**</td>
</tr>
</tbody>
</table>

* p ≤ 0,05 vs. DD 0
** p ≤ 0,001 vs. DD 0

DD 0, normale diastolische Funktion; DD, diastolische Dysfunktion; GLPS LV, globaler longitudinaler peak Strain des linken Ventrikels; RV, rechter Ventrikel; RVLS, longitudinaler systolischer rechtsventrikulärer Strain; RA, rechter Vorhof, LA linker Vorhof

Tabelle 6 stellt die myokardialen Funktionsparameter des rechten und linken Herzen vergleichend zwischen Studienteilnehmerinnen mit und ohne diastolischer Dysfunktion dar. Aufgrund ungenügender Schallbedingungen konnte der rechte Ventrikel zum Teil nicht vollständig dargestellt werden. Die Analyse-Technik hatte in diesen Fällen Probleme die Segmente der rechtsventrikulären freien Wand zu erfassen und zu verfolgen, sodass
wir die Daten für die betreffenden Probandinnen nicht erheben konnten. In Tabelle 6 wurde jeweils die Anzahl der Ergebnisse pro Messwert aufgezeigt.

Im Folgenden wurden die erhobenen Parameter der Deformationsbildgebung des rechten und linken Herzen mittels graphischer Veranschaulichung vergleichend dargestellt.

Strain der rechtsventrikulären freien Wand

Abbildung 7: Vergleich des durchschnittlichen Strains der rechtsventrikulären freien Wand zwischen Frauen ohne (DD 0) und mit (DD) diastolischer Dysfunktion. Es zeigte sich ein signifikant ($p \leq 0.05$) vermindelter (weniger negativer) Strain der freien rechtsventrikulären Wand bei den Studienteilnehmerinnen mit diastolischer Funktionsstörung.
Strain des rechten Vorhofes

Abbildung 8: Vergleich des durchschnittlichen rechtsatrialen Strains (rechtsatriale Reservoir Funktion) zwischen Frauen ohne (DD 0) und mit (DD) diastolischer Dysfunktion. Hierbei boten die Frauen mit einer diastolischen Dysfunktion einen signifikant \((p \leq 0,001)\) vermindelter Strain des rechten Vorhofes gegenüber den Frauen mit normaler diastolischer Funktion.
Durchschnittlicher Strain der drei Einzelsegmente der rechtsventrikulären freien Wand

Abbildung 9: Vergleichende Darstellung des basalen, mittleren und apikalen Strains der rechtsventrikulären freien Wand in Prozent zwischen den Frauen ohne (DD 0) und mit (DD) diastolischer Dysfunktion. Es zeigte sich ein relevant verminderter (weniger negativer) Strain der apikalen und mittleren Segmente der rechtsventrikulären freien Wand bei den Probandinnen mit einer diastolischen Dysfunktion, \(p < 0,05 \). Dieser Unterschied fand sich jedoch nicht an den basalen Segmenten der rechtsventrikulären freien Wand
Durchschnittlicher Strain des rechten und linken Atriums

Abbildung 10: Vergleichende Darstellung der Reservoirfunktion des linken und rechten Vorhofes in Prozent zwischen den Frauen ohne (DD 0) und mit (DD) diastolischer Dysfunktion. Die Deformation des rechten Vorhofes war in beiden Gruppen in einem etwas größeren Umfang möglich, als die des linken Vorhofes. Insgesamt zeigte sich jedoch eine isomorphe, statistisch signifikante Reduktion ($p \leq 0,001$) sowohl des linken als auch des rechten Vorhofstrains bei den Studienteilnehmerinnen mit einer diastolischen Dysfunktion.
Durchschnittlicher Strain des rechten und linken Ventrikels

Abbildung 11: Vergleichende Darstellung des globalen longitudinalen peak Strains (GLPS) des linken Ventrikels sowie des rechtsventrikulären longitudinalen Strains der freien Wand in Prozent zwischen den Frauen ohne (DD 0) und mit (DD) diastolischer Dysfunktion. Die Deformation des rechten Ventrikels ist in beiden Gruppen in einem etwas größeren Umfang möglich, als die des linken Ventrikels. Insgesamt fand sich jedoch eine gleichförmige Reduktion sowohl des linken ($p \leq 0,001$) als auch des rechten ventrikulären Strains ($p \leq 0,05$) bei den Studienteilnehmerinnen mit einer diastolischen Dysfunktion.
3.3. Zusammenhang zwischen der Funktion des rechten Herzens und kardiovaskulären Risikofaktoren

3.3.1. Korrelation verschiedener kardiovaskulärer Risikofaktoren mit der rechtsatrialen Funktion

Tabelle 7: Korrelation zwischen der Funktion des rechten Vorhofes und verschiedenen kardiovaskulären Risikofaktoren. Zwei Sterne (**) kennzeichnen die Signifikanz auf dem Niveau $p \leq 0,001$

<table>
<thead>
<tr>
<th></th>
<th>BMI</th>
<th>HbA1c</th>
<th>Lebensalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA Strain</td>
<td>Korrelationskoeffizient</td>
<td>-0,424**</td>
<td>-0,269**</td>
</tr>
<tr>
<td></td>
<td>nach Spearman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

BMI, Body Mass Index; HbA1c, Glykohämoglobin; RA, rechter Vorhof

In Tabelle 7 wurde der Zusammenhang zwischen verschiedenen kardiovaskulären Risikofaktoren und der rechtsatrialen Reservoirfunktion untersucht. Es fand sich eine signifikante Korrelation auf dem Niveau $p \leq 0,001$ zwischen der RA Funktion und den Parametern BMI, HbA1c und Lebensalter. Hierbei handelt es sich um einen negativen linearen Zusammenhang; demnach verringert sich der atriale Strain mit steigendem Wert der Parameter BMI, HbA1c und Lebensalter. Der BMI zeigte als einzige Größe einen mittelstarken Effekt auf die Funktion des rechten Vorhofes.
3.3.2. Korrelation verschiedener kardiovaskulärer Risikofaktoren mit der rechtsventrikulären Funktion

Tabelle 8: Korrelation verschiedener kardiovaskulärer Risikofaktoren mit dem Strain der rechtsventrikulären freien Wand. Zwei Sterne (**) kennzeichnen die Signifikanz auf dem Niveau $p \leq 0,001$

<table>
<thead>
<tr>
<th>BMI</th>
<th>HbA1c</th>
<th>Lebensalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV Strain</td>
<td>Korrelationskoeffizient nach Spearman</td>
<td>(0,5^{**})</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>(0,000)</td>
</tr>
</tbody>
</table>

BMI, Body Mass Index; HbA1c, Glykohämoglobin; RV, rechter Ventrikel

In Tabelle 8 wurde die Beziehung zwischen dem RV Strain und verschiedenen kardiovaskulären Risikofaktoren veranschaulicht. Es zeigte sich ein relevanter positiver linearer Zusammenhang zwischen den Parametern BMI, HbA1c und Lebensalter. Der RV Strain wird als negativer Prozentwert ausgedrückt. Infolgedessen bedeutet ein Anstieg der Risikofaktoren eine Reduktion des RV Strains trotz positivem linearen Zusammenhang. Der BMI zeigte als einziger Faktor eine hohe Effektstärke bezogen auf den RV Strain.

Tabelle 9: Korrelation des rechtsventrikulären und rechtsatrialen Strain mit dem pulmonalarteriellen Druck

<table>
<thead>
<tr>
<th>PAP</th>
<th>RV Strain</th>
<th>RA Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrelationskoeffizient nach Spearman</td>
<td>-0,13</td>
<td>0,084</td>
</tr>
<tr>
<td>Signifikanz</td>
<td>(0,152)</td>
<td>(0,177)</td>
</tr>
</tbody>
</table>

RV, rechter Ventrikel; RA, rechter Vorhof; PAP, pulmonalarterieller Druck

In Tabelle 9 erfolgte die Darstellung des Zusammenhangs zwischen dem RV- und RA Strain mit dem PAP. Für beide Parameter fand sich keine signifikante Beziehung in der Korrelationsanalyse.
3.4. Zusammenhang zwischen der diastolischen Dysfunktion und klinischen sowie echokardiographischen Parametern mittels logistischer Regression

Tabelle 10: Univariate logistische Regression zwischen der diastolischen Dysfunktion und ausgewählten echokardiographischen Parametern. Zwei Sterne (**) kennzeichnen die Signifikanz auf dem Niveau $p \leq 0,001$, ein Stern (*) gibt eine Signifikanz auf dem Niveau $p \leq 0,05$ an

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B (Regressionskoefizient)</th>
<th>OR</th>
<th>95% Konfidenzintervall für OR</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV S'</td>
<td>- 0,09</td>
<td>0,91</td>
<td>0,83 - 1,00</td>
<td>0,059</td>
</tr>
<tr>
<td>TAPSE</td>
<td>- 0,06*</td>
<td>0,95</td>
<td>0,90 - 0,99</td>
<td>0,033</td>
</tr>
<tr>
<td>RV E'</td>
<td>- 0,39**</td>
<td>0,68</td>
<td>0,62 - 0,75</td>
<td>0,000</td>
</tr>
<tr>
<td>RV IVA</td>
<td>0,37*</td>
<td>1,44</td>
<td>1,13 - 1,84</td>
<td>0,003</td>
</tr>
<tr>
<td>RV IVV</td>
<td>0,25**</td>
<td>1,29</td>
<td>1,20 - 1,38</td>
<td>0,000</td>
</tr>
<tr>
<td>RA Strain</td>
<td>- 0,06**</td>
<td>0,94</td>
<td>0,92 - 0,96</td>
<td>0,000</td>
</tr>
<tr>
<td>RVLS free wall</td>
<td>- 0,09*</td>
<td>1,10</td>
<td>1,02 - 1,17</td>
<td>0,011</td>
</tr>
<tr>
<td>LA Strain</td>
<td>- 0,15**</td>
<td>0,86</td>
<td>0,84 - 0,89</td>
<td>0,000</td>
</tr>
</tbody>
</table>

OR, Odds Ratio; RV S’, systolische Trikuapidalklappenringgeschwindigkeit; TAPSE, tricuspid annular plane systolic excursion; RV E’, frühe diastolische Trikuspidalklappenringgeschwindigkeit; RV IVA, rechtsventrikuläre isovolumetrische Beschleunigung; RV IVV, rechtsventrikuläre Spitzengeschwindigkeit während der isovolumetrischen Kontraktion; RA, rechtsatrial; RVLS, rechtsventrikulärer longitudinaler Strain; LA, linksatrial

In Tabelle 10 wurde die Wahrscheinlichkeit des Eintretens einer diastolischen Dysfunktion in Abhängigkeit der Ausprägung ausgewählter echokardiographischer Parameter dargestellt. Die Parameter RV E’, RV IVV, RA und LA Strain boten hierbei die größtmögliche Vorhersagekraft für das Auftreten einer DD, auch die Ausprägung der Parameter RV S’, TAPSE, RV IVA und der RVLS der freien Wand zeigten eine
signifikante Assoziation mit der Eintrittswahrscheinlichkeit einer diastolischen Dysfunktion.

Tabelle 11: Multivariate logistische Regression zwischen der diastolischen Dysfunktion und ausgewählten echokardiographischen Parametern. Ein Stern (*) kennzeichnet eine Signifikanz auf dem Niveau $p \leq 0,05$

<table>
<thead>
<tr>
<th></th>
<th>B (Regressionskoeffizient)</th>
<th>OR 95% Konfidenzintervall für OR</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV S'</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TAPSE</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RV E'</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RV IVA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RV IVV</td>
<td>0,34*</td>
<td>1,40</td>
<td>1,17 - 1,68</td>
</tr>
<tr>
<td>RA Strain</td>
<td>- 0,07*</td>
<td>0,93</td>
<td>0,88 - 0,98</td>
</tr>
<tr>
<td>RVLS free wall</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LA Strain</td>
<td>- 0,08*</td>
<td>0,93</td>
<td>0,86 - 0,99</td>
</tr>
</tbody>
</table>

OR, Odds Ratio; RV S', systolische Trikuspidalklappenringgeschwindigkeit; TAPSE, tricuspid annular plane systolic excursion; RV E', frühe diastolische Trikuspidalklappenringgeschwindigkeit; RV IVA, rechtsventrikuläre isovolumetrische Beschleunigung; RV IVV, rechtsventrikuläre Spitzengeschwindigkeit während der isovolumetrischen Kontraktion; RA, rechtsatrial; RVLS, rechtsventrikulärer longitudinaler Strain; LA, linksatrial

Im Rahmen der multivariaten logistischen Regressionsanalyse stellt sich in Tabelle 11 ein signifikanter Zusammenhang der Parameter RV IVV, RA und LA Strain mit der diastolischen Dysfunktion dar.
Tabelle 12: Univariate logistische Regression zwischen der diastolischen Dysfunktion und ausgewählten echokardiographischen Messwerten sowie klinischen Parametern. Zwei Sterne (**) kennzeichnen die Signifikanz auf dem Niveau $p \leq 0,001$

<table>
<thead>
<tr>
<th></th>
<th>B (Regressionskoeffizient)</th>
<th>OR</th>
<th>95% Konfidenzintervall für OR</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebensalter</td>
<td>0,17**</td>
<td>1,18</td>
<td>1,15 - 1,22</td>
<td>0,000</td>
</tr>
<tr>
<td>BMI</td>
<td>0,18**</td>
<td>1,20</td>
<td>1,14 - 1,26</td>
<td>0,000</td>
</tr>
<tr>
<td>RV IVV</td>
<td>0,25**</td>
<td>1,29</td>
<td>1,20 - 1,38</td>
<td>0,000</td>
</tr>
<tr>
<td>RA Strain</td>
<td>- 0,06**</td>
<td>0,94</td>
<td>0,92 - 0,96</td>
<td>0,000</td>
</tr>
<tr>
<td>LA Strain</td>
<td>- 0,15**</td>
<td>0,86</td>
<td>0,84 - 0,89</td>
<td>0,000</td>
</tr>
</tbody>
</table>

OR, Odds Ratio; BMI, Body-Mass-Index; RV IVV, rechtsventrikuläre Spitzengeschwindigkeit während der isovolumetrischen Kontraktion; RA, rechtsatrial; LA, linksatrial

Tabelle 12 stellt die Beziehung verschiedener klinischer sowie echokardiographisch erfasster Parameter mit der DD dar. Hierbei fand sich ein hochsignifikanter Zusammenhang zwischen den Parametern Lebensalter, BMI, RV IVV sowie dem rechts- und linksatrialen Strain mit der diastolischen Dysfunktion.
Tabelle 13: Multivariate logistische Regression zwischen der diastolischen Dysfunktion und ausgewählten echokardiographischen Messwerten sowie klinischen Parametern. Zwei Sterne (**) kennzeichnen die Signifikanz auf dem Niveau $p \leq 0,001$, ein Stern (*) gibt die Signifikanz auf dem Niveau $p \leq 0,05$ an.

<table>
<thead>
<tr>
<th>(Regressionskoeffizient)</th>
<th>B</th>
<th>OR</th>
<th>95% Konfidenzintervall für OR</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebensalter</td>
<td>0,16**</td>
<td>1,18</td>
<td>1,12 - 1,24</td>
<td>0,000</td>
</tr>
<tr>
<td>BMI</td>
<td>0,13*</td>
<td>1,14</td>
<td>1,04 - 1,25</td>
<td>0,007</td>
</tr>
<tr>
<td>RV IVV</td>
<td>0,26**</td>
<td>1,30</td>
<td>1,14 - 1,48</td>
<td>0,000</td>
</tr>
<tr>
<td>RA Strain</td>
<td>- 0,06*</td>
<td>0,94</td>
<td>0,90 - 0,99</td>
<td>0,010</td>
</tr>
<tr>
<td>LA Strain</td>
<td>- 0,07*</td>
<td>0,93</td>
<td>0,89 - 0,98</td>
<td>0,003</td>
</tr>
</tbody>
</table>

OR, Odds Ratio; BMI, Body-Mass-Index; RV IVV, rechtsventrikuläre Spitzengeschwindigkeit während der isovolumetrischen Kontraktion; RA, rechtsatrial; LA, linksatrial

Im Rahmen der multivariaten logistischen Regressionsanalyse stellt sich in Tabelle 13 ein hochsignifikanter Zusammenhang der Parameter Lebensalter sowie RV IVV dar. Doch auch der BMI, sowie der rechts- und linksatriale Strain zeigen eine relevante Assoziation zur diastolischen Dysfunktion.
3.5. Intra-Klassen-Korrelation

Der Intra-Klassen-Korrelationskoeffizient (ICC) für die Intrauntersuchervariabilität des echokardiographisch bestimmten Parameters RA Strain lag bei 0,98 (95% Konfidenzintervall 0,95-0,99), sowie bei 0,88 (Konfidenzintervall 0,73-0,95) für den Strain der rechtsventrikulären freien Wand, beziehungsweise bei 0,84 (Konfidenzintervall 0,65-0,93) für den durchschnittlichen Strain der gesamten rechtsventrikulären Wand. Der ICC für die Interuntersuchervariabilität der Parameter RA Strain, dem Strain der rechtsventrikulären freien Wand sowie dem durchschnittlichen Strain der gesamten rechtsventrikulären Wand lag bei 0,95 (Konfidenzintervall 0,88-0,98), sowie 0,93 (Konfidenzintervall 0,84-0,97), beziehungsweise 0,89 (Konfidenzintervall 0,76-0,96).
4. Diskussion

Im folgenden Abschnitt findet die Diskussion der vorliegenden Ergebnisse im Kontext der aktuellen Literatur statt. Insbesondere soll auf die STE als Methode zur Beschreibung der Rechtsherzfunktion eingegangen werden. Des Weiteren werden pathophysiologische Konzepte zur Entstehung der PDD kritisch erörtert.

4.1. Speckle Tracking Echokardiographie des rechten Vorhofes

Vorhandene Veröffentlichungen zur rechtsatrialen Strainanalyse zeigen eine signifikante Korrelation der rechtsatrialen Deformationsbildung mit invasiv gemessenen hämodynamischen Parametern und beschreiben den RA Strain als einfach bestimmmbaren und sicher reproduzierbaren Messwert. Die Ergebnisse der im Rahmen dieser Studie durchgeführten Inter- und Intrauntersuchervariabilitätsberechnungen unterstreichen dank der großen Probandenzahl die Reliabilität der STE für die Analyse der rechtsatrialen Funktion.

beschriebenen Studien verwendeten auch wir in unseren Analysen den Beginn des QRS-Komplexes als Startzeitpunkt der Strainanalysen. Dies sicherte uns eine ausreichende Menge an methodisch vergleichbaren Daten.

4.1.1. Vergleich der vorliegenden Ergebnisse im Kontext anderer Studien

In unserer Untersuchung fanden wir bei den Teilnehmerinnen ohne PDD einen durchschnittlichen RA Strain von 44 ± 12,7%.

Stellt man diese Ergebnisse den entsprechenden Daten gesunder Kontrollgruppen vergleichbarer Studien gegenüber, zeigt sich eine sehr heterogene Normwerteverteilung. Es finden sich eine Vielzahl von Untersuchungen mit einer äquivalenten Verteilung der ermittelten Messwerte (Peluso et al. 44 ± 10%; Saha et al. 44 ± 8,9%; Tadic et al. 43 ± 5%). Andere Untersuchungen zeigen deutlich höhere Normwerte in den Kontrollgruppen ihrer Studien, insbesondere wenn nur die laterale rechtsatriale Wand betrachtet wurde (Ojaghi-Haghighi et al. 189,3 ± 61,2%).

Padeletti et al. führten getrennte Analysen der lateralen und der septalen Wand des rechten Vorhofes durch und erhielten einen RA Strain von durchschnittlich 49 ± 9% für die laterale Wand und 39 ± 11% für die septale Wand. Dies bestätigt unsere Erfahrungen bei der Messung des Strains der Einzelsegmente der lateralen RA-Wand. Es ist anzunehmen, dass sich die vermehrte Deformation auf die besonders mobilen Anteile des RA, wie das rechte Vorhofohr zurückführen lässt.

Dennoch bleibt aktuell unklar, wie es trotz methodisch gleichem Vorgehen zu so stark divergierenden Unterschieden in der Deformationsanalyse der lateralen rechtsatrialen Wand kommen kann.

4.1.2. Einflussfaktoren auf den rechtsatrialen Strain

4.1.3. Pathophysiologische Überlegungen

In unseren Ergebnissen zeigte sich eine signifikante Reduktion des RA Strains in der Gruppe der Teilnehmerinnen mit diastolischer Dysfunktion gegenüber den Frauen ohne diastolische Funktionsstörung (34,9 ± 11,2% vs. 44 ± 12,7%). Diese Veränderungen traten auf, noch bevor es zu pathologisch veränderten Füllungsdrücken oder einer relevanten Größenzunahme des rechten Vorhofes kam. Jedoch muss kritisch angemerkt werden, dass ein marginaler, aber dennoch signifikanter, Unterschied des PAP (+RAP) zwischen beiden Gruppen festgestellt wurde. So hatten Frauen mit PDD im Durchschnitt einen etwas höheren PAP als die Studienteilnehmerinnen ohne diastolische Funktionsstörung. Bezüglich der Größe des rechten Vorhofes zeigte sich kein relevanter Unterschied in den beiden Gruppen. Frühere Studien fanden bislang nur bei nachgewiesenen strukturellen Veränderungen wie dilatativer Kardiomyopathie, HFrEF oder Trikuspidalklappeninsuffizienz sowie bei erhöhten Volumenbelastungen hypertensiver Patienten eine Beeinträchtigung des RA

In Zusammenschau mit den Ergebnissen unserer Studie deuten diese Befunde darauf hin, dass die veränderte myokardiale Funktion sich nicht nur als Folge erhöhter Füllungsdrücke erklären lässt, sondern vielmehr durch das komplexe Zusammenspiel von Risikofaktoren im Rahmen eines kardialen Remodelingprozesses entsteht. Vermutlich beeinflussen diese Prozesse die globale myokardiale Funktion simultan, bevor es durch relevant erhöhte Füllungsdrücke zu einer weiteren Beeinträchtigung der myokardialen Funktion kommt.

4.1.4. Vergleich der myokardialen Funktionsveränderungen beider Vorhöfe

In den vergleichenden Strainanalysen des rechten und linken Atriums stellte sich ein größerer Deformationsspielraum des RA gegenüber dem LA dar. Diese Ergebnisse waren sowohl in der Gruppe der Frauen mit PDD als auch bei den

4.2. Speckle Tracking Echokardiographie des rechten Ventrikels

4.2.1. Funktionsanalyse des rechten Ventrikels

In unseren Untersuchungen erfolgte eine differenzierte Betrachtung der myokardialen Funktionsveränderungen des rechten Ventrikels. So stellten wir neben der globalen rechtsventrikulären Funktion auch die Deformation der rechtsventrikulären freien Wand, insbesondere ihrer drei Einzelsegmente dar. Die Ergebnisse werteten wir jeweils für Frauen mit und ohne PDD aus. Bei den Studienteilnehmerinnen ohne PDD fand sich ein Strain der freien RV Wand von -26,5 ± 5,4%. Vergleichswerte gesunder Probanden anderer Untersuchungen zeigten eine äquivalente Verteilung der Normwerte. So ermittelten Menting et al. und Haeck et al. einen durchschnittlichen Strain der freien RV Wand von -26,5 ± 4,5% bzw. -25,86 ± 4,17%. Andere Untersuchungen wiesen deutlich höhere Vergleichswerte mit einem durchschnittlichen RVLS der freien Wand von -34,05 ± -4,29% auf. Fine et al. führten eine Metaanalyse unter Einbeziehung von acht relevanten Studien durch. Hierbei zeigte sich ein durchschnittlicher RVLS der freien Wand von -27 ± 2%. Die Übereinstimmungen der erhaltenen Werte mit den Messwerten anderer Studien sprechen für eine hohe Reliabilität unserer Ergebnisse. Gleichzeitig präsentieren sich die erhaltenen Resultate in Gegenüberstellung mit den Daten geschlechtsheterogener und
altersvariabler Vergleichsstudien als adäquat verwendbare Parameter mit Übertragbarkeit auf die Gesamtbevölkerung.92

Bei den Probandinnen unserer Studie mit PDD fand sich ein durchschnittlicher Strain der freien RV Wand von -24,1 ± 5,5%. Verglichen mit dem RVLS der Frauen ohne diastolische Funktionsstörung sahen wir somit eine relevante Verminderung der myokardialen Deformation. Dennoch liegen die ermittelten Strainwerte der Frauen mit PDD noch immer deutlich oberhalb des unteren Referenzniveaus von -19%.92, 93 Folglich bestätigt sich echokardiographisch anhand der ermittelten Ergebnisse eine Tendenz zu einer reduzierten RV Funktion bei Frauen mit PDD, ohne dass es bereits zu einer klinischen Manifestation der nachgewiesenen strukturellen Veränderungen gekommen ist.

Ein wichtiger Aspekt unserer Untersuchungen war die differenzierte Darstellung aller drei Segmente der freien RV Wand. Bei den Frauen ohne PDD zeigte sich ein durchschnittlicher Strain im Bereich der basalen rechtsventrikulären Wand von -28,2 ± 7,7%; im Bereich der mittleren RV Wand von -31,0 ± 7,3%; und der apikalen Wand von -23,3 ± 7,0%. Die mittleren Wandelemente der gesunden Probandinnen wiesen somit die größtmögliche myokardiale Deformation auf. Ähnliche Ergebnisse beschrieben auch Fine et al. in der Untersuchung von 116 gesunden Probanden. Hierbei fand sich ein durchschnittlicher Strain des basalen Wandsegmentes von -25 ± 6%; des mittleren Segmentes von -27 ± 5 %; und des apikalen Anteils von -24 ± 6%.60 Demgegenüber stehen Studienergebnisse, in denen der apikale Bereich die größtmögliche Deformation zeigt.88, 94 Menting et al. betrachteten eine deutlich jüngere Probandengruppe88; mutmaßlich ist in jüngerem Lebensalter die Deformation im apikalen Bereich ausgeprägter möglich und es kommt mit steigendem Lebensalter zu einer Verminderung der apikalen Deformation und demzufolge zu einer prozentual anderen Gewichtung des Deformationsspielraums in Richtung mittlere und basale Segmente. Dies könnte durch einen besonders fibroseanfälligen apikalen rechtsventrikulären Bereich erklärt werden.57, 95

Kosmala et al. benutzten zur Analyse der RV Deformation nur ein zwei-Segmente Modell, daher flossen in die Berechnung der apikalen Strainwerte die mittleren Wandbereiche anteilig mit ein.94 Beide Erklärungen sind denkbare Optionen für die Begründung der divergierenden Ergebnisse. Weitere Beobachtungen mit einem Fokus auf die altersabhängigen Veränderungen der segmentalen rechtsventrikulären myokardialen
Funktion sind notwendig um diese Fragestellung zu ergründen und ein umfassenderes Verständnis für die pathophysiologischen Modifikationen zu gewinnen.

Bei den Frauen mit PDD fanden wir eine Reduktion des Strains aller drei Segmente der rechtsventrikulären freien Wand (basal -25,7 ± 7,4%, mittventrikulär -27,5 ± 6,7%, apikal -20,8 ± 6,1%) gegenüber den Studienteilnehmerinnen ohne diastolische Funktionsstörung. Statistisch relevante Verluste zeigten sich vor allem im mittleren Segment, aber auch basal und apikal sahen wir eine deutliche Reduktion der Deformation. Verglichen mit der segmentalen Darstellung anderer Untersuchungen ergaben sich interessante Unterschiede. So beschrieben Menting et al. sowie Dragulescu et al. in ihren Studien zu Patienten nach operativer Korrektur einer TOF vor allem eine drastische Verminderung der apikalen Deformation gegenüber den gesunden Kontrollgruppen.58, 96

Möglicherweise begründen sich diese Unterschiede in der abweichenden Reaktion der einzelnen Wandsegmente zwischen PDD und operativ versorgter TOF auf den verschiedenen pathophysiologischen Veränderungen der beiden Krankheitsbilder. So besteht auch nach operativer Korrektur einer TOF eine erhöhte Druck- und Volumenbelastung des rechten Ventrikels durch pulmonale Insuffizienz und rechtsventrikuläre Dysfunktion.97 Die Anpassungsvorgänge an diese hämodynamischen Belastungen führen zu einer Dilatation und Abrundung der Herzspitze, welche vor allem aufgrund ihrer dünneren und stärker trabekulisierten Wand besonders anfällig für Veränderungen von Druck und Volumen im Vergleich zum Ein- und Ausflusstrakt ist.57, 95 Durch das Remodeling vermindert sich somit besonders die kontraktile Funktion im apikalen Bereich.98

Lange Zeit wurde als Ursache der gestörten RV Funktion allein die Erhöhung der Nachlast im Rahmen einer pulmonalen Druckerhöhung gesehen.100 Neuere Studien,
welche Patienten mit manifester HFpEF untersuchten, fanden bei einem Großteil der Patienten einen normalen bzw. allenfalls geringfügig erhöhten pulmonalarteriellen Druck.\footnote{101} Auch Bogaard et al. beschrieben in Ihren Untersuchungen, dass die pathophysiologischen Auswirkungen eines isoliert erhöhten PAP die myokardiale Fibrose und konsekutive rechtsventrikuläre Dysfunktion nicht allein erklären könnten, und sahen diese Veränderungen eher im Rahmen eines multifaktoriellen Prozesses.\footnote{102} Auch in unseren Ergebnissen fand sich kein Zusammenhang zwischen der Höhe des geschätzten pulmonalarteriellen Druckes und dem verminderten Deformationsvermögen des rechten Ventrikels. Dies unterstützt die These eines globalen fibrotischen Prozesses als Ursache der allgemeinen Verminderung der myokardialen Funktion. In der Literatur finden sich mehrere Untersuchungen, welche diesen Zusammenhang bereits beschrieben haben. So berichten Kosmala et al. sowie Tadic et al. von einer signifikanten Reduktion der myokardialen Deformation bei Probanden mit Diabetes mellitus (bei normaler linksventrikulärer Funktion).\footnote{83, 94} Kang et al. zeigten eine relevante Reduktion des Strains bei Studienteilnehmern mit arteriellem Hypertonus.\footnote{103} Auch Patienten mit bestehender KHK und normwertiger linksventrikulärer Funktion wiesen eine verminderte myokardiale Deformation auf.\footnote{104} Altekin et al. fanden eine signifikante Assoziation der Reduktion des Strains mit dem Grad der obstruktivem Schlafapnoe, wobei der Grad der obstruktiven Schlafapnoe proportional mit kardiovaskulären Risikofaktoren verknüpft ist.\footnote{91, 105}

4.2.2. Vergleich der myokardialen Funktionsveränderung beider Ventrikel

Der Vergleich des longitudinalen Strains beider Ventrikel zeigte in unseren Untersuchungen eine gleichförmige Beeinträchtigung der myokardialen Funktion der Frauen mit PDD gegenüber den Frauen ohne diastolische Dysfunktion. Die linksventrikuläre Deformation war im Durchschnitt in einem etwas geringeren Umfang möglich als die des rechten Ventrikels. Dies entspricht unseren Resultaten der atrialen Deformation. Bereits hier hatte sich ein größerer Deformationsspielraum des rechten Atriums gezeigt. Als Ursache ist erneut die vermutlich effizientere Relaxation des linken gegenüber des rechten Ventrikels anzuführen, sodass aufgrund der größeren Sogwirkung des linken Ventrikels eine geringe Deformation zur Erlangung des gleichen ventrikulären Füllungsvolumens notwendig ist.\footnote{85} In der durchgeführten Korrelationsanalyse fanden wir einen hochsignifikanten Zusammenhang zwischen der
Reduktion des Strains beider Ventrikel. Diese Ergebnisse unterstützen die These einer simultanen Verschlechterung der Funktion beider Ventrikel. Studienergebnisse von Morris et al., in denen eine deutliche Beziehung des Ausmaßes des myokardialen Strains zwischen beiden Ventrikel ermittelt wurde, unterstreichen diese Vermutung.59

4.3. Veränderung konventioneller echokardiographischer Parameter des rechten Ventrikels in der diastolischen Dysfunktion

4.4. Übergang der präklinischen diastolischen Dysfunktion zu einer manifesten Herzinsuffizienz

Wie eingangs bereits beschrieben, gibt es wenige Studien, welche die Progredienz der PDD hin zu einer klinisch manifesten HFpEF untersucht haben. Der Konsens dieser Daten weist darauf hin, dass vor allem kardiovaskuläre Risikofaktoren wie arterieller Hypertonus, Übergewicht und Diabetes mellitus die fassbaren Marker sind, welche ein Voranschreiten der strukturellen myokardialen Veränderungen bedingen.6 Insbesondere
4.5. Vergleich zwischen konventionellen und neuen echokardiographischen Parametern

Nach unserem Kenntnisstand gibt es bislang keine Studie, welche die Aussagekraft der mittels Deformationsbildgebung bestimmten neuen echokardiographischen Parameter den etablierten echokardiographischen Messwerten in der Diagnostik der PDD gegenüberstellt.

Es sind zahlreiche Veröffentlichungen vorhanden, welche die Validität der etablierter Parameter der RV Funktion mit dem durch STE ermittelten RVLS verglichen und als nützlichen und prognostisch relevanten Faktor bestätigt haben.52-55 Morris et al. verglichen die konventionellen Parameter der Rechtsherzfunktion FAC, S‘ und TAPSE mit dem longitudinalen Strain des RV und der RV freien Wand von Studienteilnehmern mit diastolischer und systolischer Herzensuffizienz. Hierbei zeigte sich, dass durch die myokardiale Deformationsbildgebung in Gegenüberstellung mit den herkömmlichen Parametern der Rechtsherzfunktion eine frühzeitige Diagnose auch in präklinischen Krankheitsstadien möglich ist.92

Zur Beschreibung des Zusammenhangs der neuen echokardiographischen Parameter sowie der herkömmlichen Messwerte in der PDD führten wir Regressionsanalysen durch. Hierbei ergab sich ein mittelstarker Zusammenhang78 zwischen der PDD und den rechtsventrikulären Größen RV E, RV IVV, Tei Index und RA Strain sowie dem LV Strain. Ein starker Zusammenhang bestand zwischen der PDD und der LA Reservoir Funktion. Zwar zeigte sich auch für TAPSE ein signifikanter Zusammenhang; jedoch mit einer deutlich geringeren Effektstärke78 zur diagnostischen Voraussage einer PDD. Diese geringe Verknüpfung ist bereits in anderen Studien auffällig geworden. Dabei ist maßgeblich zu berücksichtigen, dass TAPSE nur die regionale RV Funktion misst (systolische longitudinale Myokardbewegung in Höhe des Trikuspidalklappenanulus) und somit im Gegensatz zur Strainanalyse keine Auskunft über die globale myokardiale RV Funktion gibt.50

Gemessen am MRT zeigten Focardi et al. in ihren vergleichenden Untersuchungen die größte Vorhersagekraft des RVLS für die RV EF verglichen mit konventionellen Parametern. Für TAPSE ergab sich eine deutlich geringere Area under the curve.106 Chowdhury et al. demonstrierten in ihren Veröffentlichungen einen signifikanten Zusammenhang zwischen Veränderungen des Strains und den mittels Spiroergometrie erhobenen Parametern der körperlichen Belastung. Die etablierten Parameter wie RV

Unsere Resultate zeigen, dass für die Beschreibung der subklinischen strukturellen Modifikationen im Rahmen einer PDD die neuen Messwerte der myokardialen Funktion herangezogen werden sollten, da die frühen Veränderungen allein anhand der konventionellen Parameter nicht ausreichend fassbar scheinen. Zu dieser Schlussfolgerung kamen auch Horton et al., die in ihrer Übersichtsarbeiten die Verwendung konventioneller und neuer Parameter zur Beschreibung der Rechtsherzfunktion untersuchten und eine Empfehlung für die Nutzung sowohl etablierter als auch neuer Methoden aussprachen um die RV Funktion umfassend darstellen zu können.
5. Limitationen dieser Arbeit

Schlussendlich ist auch die alleinige Beschreibung der rechtsventrikulären Funktion durch die Echokardiographie ohne Verifizierung durch andere Untersuchungsmodalitäten, wie der MRT oder invasiver diagnostischer Verfahren, ein limitierender Faktor dieser Studie.
6. Schlussfolgerung und Ausblick

Die im Rahmen dieser Studie erhaltenen Ergebnisse zeigen eine Einschränkung der myokardialen Funktion, noch bevor es zu einem Auftreten erster klinischer Beschwerden oder einem Anstieg der Füllungsdrücke bzw. erhöhter Volumina kommt. Die Reduktion der myokardialen Deformationskapazität findet gleichermaßen in allen Kammern des Herzens statt, was einen globalen fibrotischen Umbauprozess vermuten lässt. Wahrscheinliche Ursache dieses umfassenden Remodelingprozesses ist die Kumulation kardiovaskulärer Risikofaktoren wie erhöhtes Lebensalter, gesteigerter BMI und Anstieg des HbA1c.

Die Deformationsbildgebung stellt sich als sensitiver Parameter zur Evaluation dieser frühen Funktionsverluste dar.

7. Literaturverzeichnis

85

8. Eidesstattliche Erklärung

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst.“

25.11.2017 Unterschrift
9. Lebenslauf

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
10. Veröffentlichungen

Folgende Veröffentlichungen sind im Rahmen dieser Dissertation erschienen:

10.1. Publikationen

Publikation 1: Brand A, Bathe M, Oertelt-Prigione S, Seeland U, Rücke M, Regitz-Zagrosek V, Stangl K, Knebel F, Stangl V, Dreger H. Right heart function in impaired left ventricular diastolic function: 2D speckle tracking echocardiography-based and Doppler-tissue imaging-based analysis of the right atrial and ventricular function, Echocardiography, 2017

10.2. Posterpräsentationen

ESC Congress, 27.08.-31.08. 2016, Rom, Poster Nr. 6490

11. Danksagung

Für die Bereitstellung des Themas sowie die hilfreichen und voranbringenden Anmerkungen möchte ich mich bei meinem Doktorvater Privatdozent Dr. Henryk Dreger sowie bei Professor Dr. Fabian Knebel herzlich bedanken. Vielen Dank für die immer motivierenden und vertrauensvollen Worte.

Weiterhin gilt mein Dank der medizinischen Klinik für Kardiologie und Angiologie der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin unter Leitung von Professor Dr. Karl Stangl sowie allen Mitarbeitern, die Anteil an der Erstellung des echokardiographischen Datensatzes hatten. Vielen Dank für die professionelle Zusammenarbeit.

Die Daten der Berliner Frauen Risikoevaluationsstudie wurden mir freundlicherweise von Professor Dr. Sabine Oertelt-Prigione, Dr. Ute Seeland und Mirjam Rücke des Instituts für Geschlechterforschung der Charité – Universitätsmedizin Berlin, Campus Mitte unter der Leitung von Professor Dr. Vera Regitz-Zagrosek zur Verfügung gestellt.

Mein besonderer Dank gilt meiner Betreuerin Dr. Anna Brand, die mich jederzeit in allen inhaltlichen, fachlichen sowie technischen Fragestellungen unterstützt und beraten hat. Vielen Dank für die vielen inspirierenden und persönlichen Gespräche, an die ich mich immer gern erinnern werde.

Für die Beratung im Rahmen der statistischen Fragestellungen möchte ich mich bei Gerda Siebert bedanken.

Mein großer Dank gilt meinen Eltern, die mich fortwährend unterstützt und mir für die Bearbeitung dieser Dissertation stets Raum und Zeit geschaffen haben.