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1. Abstract 

 

The dentate gyrus (DG) is considered as the hippocampal input gate for the information arriving 

from the entorhinal cortex. Embedded into the DG network are two excitatory cell types –granule 

cells (GCs), which receive inputs from the entorhinal cortex, and hilar mossy cells (MCs), which 

receive input from GCs and feedback projections from CA3 pyramidal cells (PCs). The 

postsynaptic targets of MC projections are the GCs and hilar interneurons in both ipsilateral and 

contralateral hemispheres of the brain. The role of MCs during rhythmic population activity, and 

in particular during sharp-wave/ripple complexes (SWRs), has remained largely unexplored. 

SWRs are prominent field events in the hippocampus during slow wave sleep and quiet 

wakefulness, and are involved in memory consolidation and future planning. In this study, we 

sought to understand whether MCs participate during CA3 SWRs using an in vitro model of SWRs. 

With simultaneous CA3 field potential– and cell-attached recordings from MCs, we observed that 

a significant fraction of MCs (47%) are recruited into the active neuronal network during SWRs. 

Moreover, MCs receive pronounced, compound, ripple-associated synaptic input where both 

excitatory and inhibitory components are phase-coherent with and delayed to the CA3 ripple. 

Simultaneous patch recordings from CA3 pyramidal neurons and MCs revealed longer excitatory 

and inhibitory latencies in MCs, supporting a feedback recruitment from CA3. Our data also show 

that the excitatory to inhibitory charge transfer (E/I) ratio in MCs is higher than in the CA3 PCs, 

making the MCs more likely to spike during SWRs. Finally, we demonstrate that a significant 

fraction (66%) of tested GCs receive SWR-associated excitatory inputs that are delayed compared 

to MCs, indicating an indirect activation of GCs by CA3 PCs via MCs. Together, our data suggest 

the involvement of mossy cells during SWRs and their importance as a relay for CA3-dentate gyrus 

networks in this important physiological network state. 

. 
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2. Zusammenfassung 

 

 

Der Gyrus dentatus (DG) des Hippokampus wird als Eingangsstation für Informationen aus dem 

entorhinalen Kortex betrachtet. In das DG-Netzwerk sind zwei exzitatorische Zelltypen 

eingebettet: Körnerzellen, die Signale von dem entorhinalen Kortex empfangen, und Hilus-

Mooszellen (MCs), die Signale von Körnerzellen als auch von feedback-Projektionen von CA3-

Pyramidenzellen (PCs) empfangen. Postsynaptische Ziele von MC-Projektionen umfassen DG 

Körnerzellen und verschiedene Interneurone in der selben und in der kontralateralen Hemisphäre 

des Gehirns. Die Rolle von MCs während rhythmischer Populationsaktivität, und insbesondere 

während Sharp-Wave / Ripple-Komplexen (SWRs), ist bisher weitgehend unerforscht. SWRs sind 

prominente Ereignisse im Hippocampus während des Tiefschlafs (Slow wave sleep) und des 

ruhigen Wachzustandes, und sie sind an der Gedächtniskonsolidierung beteiligt. In der 

vorliegenden Arbeit, untersuchen wir mithilfe eines in-vitro-Modells von SWRs, inwieweit 

Mooszellen an SWRs in CA3 beteiligt sind. Mit CA3-Feldpotential-Ableitungen und 

gleichzeitigen ‚cell-attached‘ Messungen von einzelnen MCs konnten wir beobachten, dass ein 

wesentlicher Anteil von MCs (47%) während der SWRs in das aktive neuronale Netzwerk 

rekrutiert werden. Darüber hinaus fanden wir in MCs SWR-assoziierte synaptische Aktivität, bei 

denen sowohl die exzitatorischen als auch die inhibitorischen Komponenten phasenkohärent und 

verzögert zur Ripple Oszillation in CA3 auftreten. Simultane Patch-clamp Messungen von CA3-

Pyramidenzellen und MCs zeigten längere exzitatorische und inhibitorische Latenzzeiten bei MCs, 

was die Hypothese einer von CA3 ausgehenden Feedback-Rekrutierung unterstützt. Unsere Daten 

zeigen zusätzlich, dass das Verhältnis exzitatorischer zu inhibitorischer Aktivität in MCs höher ist 

als in CA3-Pyramidenzellen, wodurch die MCs mit höherer Wahrscheinlichkeit während SWRs 

überschwellig aktiviert werden. Schließlich zeigen wir, dass ein signifikanter Anteil (66%) der 

getesteten Körnerzellen SWR-assoziierte exzitatorische Signale erhalten, im Vergleich zu MCs 

zeitlich verzögert, was auf eine indirekte Aktivierung von Körnerzellen durch CA3 PCs über MCs 

hinweist. Zusammengefasst zeigen unsere Daten die aktive Beteiligung von Mooszellen an SWRs 

und deuten auf eine funktionelle Bedeutung als Schaltstelle für das CA3- Gyrus dentatus Netzwerk 

in diesem wichtigen physiologischen Netzwerkzustand hin.
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3. Introduction 

 

The hippocampal formation is involved in higher brain functions such as spatial navigation, 

encoding of episodic memories, consolidation and future planning (Ólafsdóttir et al., 2018). The 

dentate gyrus (DG), the input region of the hippocampus, acts as a preprocessor receiving 

information from the entorhinal cortex and providing the major excitatory input to the CA3 region 

via the mossy fibers of granule cells (GCs) (Cajal, 1911; Henze et al., 2000). Mossy cells (MCs), 

the major glutamatergic cells located in the hilar region, receive synaptic inputs mainly from the 

GCs, hilar interneurons, and also excitatory projections from CA3 pyramidal cells (PCs) (Amaral, 

1978; Soriano and Frotscher, 1994; Scharfman et al., 1990; Acsády et al., 2000; Scharfman, 1994). 

These cells have their dendrites confined mostly to the hilar region (Frotscher et al., 1991). 

However, dendrites of some MCs extend into the molecular layer where they are likely to receive 

inputs from entorhinal cortex directly (Scharfman, 1991) or indirectly via semilunar granule cells 

(Williams et al., 2007; Larimer and Strowbridge, 2010). The MC axons project to the local hilar 

interneurons (Larimer and Strowbridge, 2008) and to the inner molecular layer of the ipsilateral 

and contralateral DG (Berger et al., 1981, Ribak et al., 1985; Buckmaster et al., 1996; Hsu et al., 

2016). These anatomical features place the mossy cells in a strategic location to mediate a distinct 

excitatory feedback loop in the DG-CA3 network. The important functional role of mossy cells is 

evident from the significant neuronal loss observed in temporal lobe epilepsy (Margerison J and 

Corsellis J, 1966; Ratzliff et al., 2002; Scharfman, 2016).  

 

Figure 1: Schematic showing DG-hilar-CA3 network and the anatomical connections between different cell types. 
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Discrete spatial representations from the entorhinal cortex are thought to be decorrelated by GCs 

in DG by the process of ‘pattern separation’, which in turn recruits different CA3 cell assemblies 

(Leutgeb et al., 2007). The hilus, especially MCs, plays a crucial role in distinguishing closely 

related patterns as shown by computational models (Myers and Scharfman, 2009; Danielson et al., 

2017). Indeed, targeted removal of MCs in mice showed impaired contextual discrimination and 

increased anxiety-like behaviors (Jinde et al., 2012). During spatial exploration, MCs have been 

shown to exhibit multiple place fields and undergo remapping of place fields in response to 

different environments (Senzai and Buzsaki, 2017; Goodsmith et al., 2017; Danielson et al., 2017).  

Recent studies have shed more light on the activity of dentate GCs and hilar MCs during different 

sleep stages in behaving rodents (Neunuebel and Knierim, 2012; Senzai and Buzsaki, 2017; 

Goodsmith et al., 2017). In particular, MCs have been shown to have higher firing rates during 

non-rapid eye movement (NREM) states than awake or rapid eye movement (REM) states (Senzai 

and Buzsaki, 2017; Goodsmith et al., 2017). NREM or slow wave sleep and quiet wakefulness are 

characterized by transient field events in the CA3 and CA1 regions of the hippocampus termed 

sharp-waves, which are accompanied by high-frequency (~120-300 Hz) ripple oscillations (Sharp 

wave ripple complexes [SWRs]) (Buzsáki, 1986; Buzsáki 2015). Neuronal sequences, previously 

active during behavior, are reactivated during SWRs in the CA1 and CA3 regions (Wilson and 

McNaughton, 1994; Lee and Wilson 2002). This replay is believed to be the basis for memory 

consolidation involving information transfer from hippocampus to the neocortex (Girardeau et al., 

2009). It remains elusive how the input gate of the hippocampus, the DG and hilus, might mediate 

entorhinal cortex- hippocampal interactions during NREM sleep. The activity of MCs in the 

context of different brain rhythms remains to be investigated, with only few studies carried out in 

anesthetized rats (Soltesz et al., 1993; Henze et al., 2007).  

Aims of the project:  

During the course of the project, we aimed to understand the involvement of mossy cells during 

SWRs by studying the firing properties and synaptic inputs in MCs during spontaneous SWRs in 

vitro. To this end, we carried out cell attached/on-cell recordings and whole cell recordings from 

MCs. In addition, we performed simultaneous whole-cell recordings in CA3 PCs and MCs to 

determine the timing of synaptic inputs in mossy cells with respect to CA3 PCs. Finally, we 

recorded from dentate GCs to study the propagation of SWRs into the dentate gyrus possibly via 

MCs. 
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4. Materials and Methods 
4.1. Slice Preparation 

C57BL/6N male mice (3–5 weeks) were decapitated in isoflurane anesthesia in accordance with 

the institutional guidelines (as approved by the State Office of Health and Social Affairs Berlin 

LaGeSo (T0100/03), the animal welfare regulations of Charité and the EU Council Directive 

2010/63/EU). Brains were transferred to ice-cold sucrose-based ACSF containing (in mM): 87 

NaCl, 2.5 KCl, 3 MgCl2·6H2O, 0.5 CaCl2, 10 glucose, 50 sucrose, 1.25 NaH2PO4, and 26 NaHCO3 

(pH 7.4). Horizontal slices (400 μm) of ventral to mid-hippocampus were cut on a vibratome 

(VT1200S, Leica) and stored in an interface chamber perfused with ACSF containing (in mM): 

119 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2, 10 glucose, 1.25 NaH2PO4, and 26 NaHCO3, at pH 7.4; 

osmolarity of 290 to 310 mOsmol/l. The temperature was kept at 32-34°C, and slices were 

superfused at a flow rate of ∼1 ml/min. ACSF was equilibrated with carbogen (95% O2, 5% CO2). 

Before revordings, slices recovered for at least 1.5 h after the preparation. 

4.2.  Electrophysiology 

Recordings were performed in ACSF at 31-32°C in a submerged-type recording chamber perfused 

at 5-6 ml/min (Maier et al., 2009). For local field potential (LFP) recordings, glass microelectrodes 

(tip opening ∼5-10 μm; 0.2-0.3 MΩ) were filled with ACSF. Whole-cell recordings were 

performed with glass electrodes (2-5 MΩ) filled with either of two solutions, containing (in mM): 

(i) 120 K-gluconate, 10 HEPES, 10 KCl, 5 EGTA, 2 MgSO4·7H2O, 3 MgATP, 1 Na2GTP, 14 

phosphocreatine, and 5.4 biocytin (0.2 %); pH adjusted to 7.4 with KOH, or (ii) 117.5 gluconic 

acid, 8 NaCl, 10 TEA, 10 HEPES, 0.2 EGTA, 5 QX-314, 2.5 CsCl, 0.3 Na2GTP, and 4 MgATP, 

5.4 biocytin (0.2%); pH adjusted to 7.4 with CsOH.  MC spiking was recorded for at least 10 min 

either in the cell-attached configuration (voltage clamp, VC, at -60 mV) using solution (i) or in on-

cell configuration using ACSF-filled patch pipettes. LFPs were amplified 1000× and whole-cell 

data were amplified 5× for VC and 10× for current-clamp recordings using a Multiclamp 700A or 

B amplifier (Molecular Devices). Data were low-pass filtered at 4 kHz (Bessel filter) and digitized 

at 20 kHz with 16-bit resolution using an A/D converter (BNC-2090 board, National Instruments, 

or Axon Digidata 1550A, Molecular Devices). Data were stored using Igor Pro 6.12 (Wavemetrics) 

or pClamp (Molecular Devices). Series resistance (Rs) was monitored continuously; recordings 

were rejected if Rs exceeded 20 MΩ or varied >30%. No Rs compensation was used; no liquid 

junction potential correction was applied. In on-cell recordings, a candidate MC was chosen, and 

an ACSF-filled patch pipette placed on its soma. After recording of a sufficient amount of data, 
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the pipette was removed and the cell re-approached with a new pipette filled with intracellular 

solution and subsequently recorded in the whole-cell configuration. The depth distribution of the 

recorded cells from the surface of the slice ranged from 32 to 80 μm. 

4.3.  Anatomical identification and immunostainings. 

Mossy cells were putatively identified using DIC (differential interference contrast) imaging as 

multipolar cells with large soma located deep in the hilus and away from CA3c pyramidal layer as 

described previously (Buckmaster et al., 1993). Cells were routinely filled with 0.2% biocytin and 

slices were transferred to 4% paraformaldehyde for at least 3 h and maintained at 4° C in 0.1 M 

phosphate-buffered saline (PBS) with 0.1% sodium-azide. For immunostainings, slices were 

washed 3 times, 5min each with 0.1 M PBS. The slices were blocked with 5% normal goat serum, 

followed by overnight incubation with Streptavidin (1:500, Invitrogen) and mouse anti-GAD67 

antibody (Ab) (1:500, Millipore) at 4° C. Slices were then washed 3 times 5 min each in 0.1M PBS 

and incubated in Alexa 488 goat anti-mouse secondary Ab (1:500, Invitrogen), and Alexa 647 goat 

anti-mouse Ab (1:500, Invitrogen) for 2-4 h at room temperature. After washes in 0.1 M PBS, 

slices were mounted on slides and embedded in a mounting medium (Mowiol). Z-stack images 

were taken using a confocal microscope (Leica DMI 6000) with a 20× oil immersion objective and 

maximum intensity projection images were obtained. Reconstructions were performed using the 

Simple Neurite Tracer plugin in ImageJ (V 1.51). The identity of the recorded MCs was 

morphologically confirmed, with many cells having an axon collateral extending towards the 

s.oriens of CA3c as shown previously (Scharfman, 2013; Soltesz 1993). In addition, 

immunostainings against GAD67 were carried out to exclude hilar interneurons. Neurons labeled 

positive for GAD67 were excluded from further analysis.  

4.4.  Data Analyses 

4.4.1 Analyses of intrinsic cellular parameters 

Initial resting membrane potential (RMP) was determined in current-clamp immediately after 

rupturing the cell membrane. Input resistance (Ri) was calculated based on -4 mV steps (50 ms 

duration) in voltage-clamp, repeated 100 times to minimize the influence of spontaneous synaptic 

inputs. Trace segments of 10 ms duration with minimal standard deviations (SD) for baseline and 

steady-state were chosen, averaged, and the difference was determined (ΔI). The voltage step size 

(-4 mV) was then divided by ΔI to calculate the cell’s Ri. Action potential (AP) parameters were 

determined from spikes recorded at rheobase. AP threshold, Vthres: the membrane potential where 

dV/dt of the rising phase exceeded 20 mV/ms; peak amplitude of APs: measured from Vthres to the 

peak; width of APs: the difference between the time points where the rise- and the decay phases 
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intersected 50% of the AP peak amplitude; after hyperpolarization amplitude: the voltage 

difference between Vthres and the most negative deflection immediately following the peak of the 

AP; sag potential amplitude: the voltage difference between the minimum voltage in response to 

the current injection (-120 pA, 1 s) from the RMP and the steady-state response. The intrinsic 

properties are comparable to those described (Kowalski et al., 2010) and distinct from those of the 

hilar interneurons (Hosp et al., 2014). 

 

4.4.2 SWR detection  

SWR detection was performed in Matlab (Mathworks) as described previously (Maier et al., 2009). 

Time windows of 300 ms (55 ms for spike analysis) aligned to the peak of identified SWRs were 

cut out from LFP- and corresponding intracellular traces and were baseline-corrected by 

subtracting the respective means. Digital filtering was performed with a 2nd order Butterworth filter 

at the indicated frequencies. 

4.4.3 Analysis of spiking 

Spike times were determined using a threshold algorithm (8 times SD of the spike-free baseline). 

To quantify SWR-related spiking, the number of spikes in n SWR epochs of 55 ms centered on 

the ripple maxima were determined. This dataset (N1) was compared with spiking in n periods of 

trace with identical duration, randomly sampled from the entire spike-train (N2) (periods with or 

without SWR epochs; Mann-Whitney U test; α=0.001). As a result, MCs were classified as 

responding or nonresponding during SWRs. The SWR maximum is the temporal reference in peri-

event time histograms (PETHs) (bin width 5 ms; Fig. 2H). The sum of spike counts S per time bin 

were divided by the sum of SWRs m observed, and the bin width Δt, indicating spike rates 

(SR=S/m/Δt, i.e. the probability to observe a spike in a single trial for the chosen 5 ms time interval). 
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4.4.4  Analysis of synaptic inputs  

Synaptic inputs were detected by a derivative-peak time method (Fig. 5). SWR-related cEPSCs 

and inverted cIPSCs were low-pass filtered at 400 Hz and the derivative calculated. Of all 

derivative minima detected within a 60 ms window centered on the maximum of the ripple, the 

top 10% slopes (i.e., 10% steepest slopes) were accepted as synaptic inputs. LFP signals were 

filtered at 127–300 Hz. Envelope and phase of the filtered signals were obtained by applying the 

Hilbert transform. The phase of excitatory or inhibitory inputs was determined as the respective 

Hilbert phase of the LFP at the time point of the steepest slopes. For each cell, an average phase 

vector described by its phase angle and strength was determined; the polar plots represent the 

resultant phase vectors of all analyzed cells. 

Timing of cPSCs in double recordings was analyzed in a window of 15 ms surrounding the SWR 

maximum. Only significant SWR-related inputs were considered, and their delays at the time 

points of half-maximum amplitudes determined. The time-dependent power spectrum of the signal 

was computed by Morlet wavelet transform (Torrence and Compo, 

http://atoc.colorado.edu/research/wavelets/). Data are plotted as log(1+power). Frequency at 

maximum power is defined as the local maximum in the 127-300 Hz range. 

4.4.5 Input- and Amplitude-time-histograms 

Input-time histograms : For all cells, the mean histogram over events (bin size = 0.1 ms, 400  bins) 

was generated and normalized, corresponding to the empirical time-dependent input rate (number 

of inputs/ms). The resulting histograms were averaged and smoothed with a Gaussian kernel (black 

lines, variance 0.2 ms). Amplitude-time histograms: Following the detection of the steepest slopes, 

the absolute amplitudes within the cPSCs were defined as the maximum values of the raw signal 

in the interval between the steepest increase (i.e., the peak of the cPSC derivative) and the onset 

of the next synaptic input (i.e., the following minimum of the cPSC derivative). The data were 

then binned in 2D histograms (Fig. 5C-D, bottom): The x-axis is the time difference of the steepest 

increase and the maximum peak of the LFP ripple signal (bin size 0.4 ms, 100 bins). The y-axis is 

the absolute amplitude (bin size 14 pA, 100 bins). The histogram was smoothed by convolution 

with a 2D Gaussian kernel (kernel width=1.5 bins; variance: 0.6 ms in x-axis and 21 pA in y-axis). 

To average over all cells, a histogram was generated for each cell with the sum over all bins 

normalized to 1, and then the average of all individual histograms was calculated. For calculation 

of the temporal evolution of cEPSC-to-cIPSC phase difference, the excitatory and inhibitory traces 

were averaged and their Hilbert phases subtracted for each slice (Fig. 5E). 
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4.4.6  Synaptic inputs in Granule cells 

Synaptic inputs in GCs associated with SWRs are smaller on average than those observed in MCs. 

To separate spontaneous (not SWR-associated) and SWR-associated synaptic inputs, we used the 

following unbiased procedure to identify ‘significant’, i.e., SWR-driven synaptic responses. We 

considered time periods of 2 s centered on the maximum of the ripple peak (127-300 Hz filtered 

signal). Following baseline offset correction, the current sweeps were divided into 20 ms bins and 

the mean values were determined in each of the resulting 100 bins. With these values, a matrix of 

dimension 100× the number of SWR events in the given recording was created. Using repeated 

measures one-way ANOVA, all matrix elements were pair-wise compared. If the matrix entries 

within SWR-related bins were determined larger than those in the surrounding bins (determined 

with Tukey’s post-hoc test at a level of α = 0.05), the given GC was categorized as significantly 

modulated by SWR-related activity (Fig. 9A, B).  

4.4.7 Synaptic input fidelity.  

To quantify whether a given individual SWR event evoked a synaptic response in a cell (MC or 

GC) or not, we statistically compared the current trace surrounding the SWR peak time (-20 ms to 

+45 ms) to a concatenated current trace containing data clearly separate from this SWR event (-

120 ms to -20 ms, and +45 ms to +120 ms with respect to the SWR peak; 175 ms duration). An 

unpaired two-sample, one-tailed t test, with α set to 0.1 was applied (right- and left tailed testing 

for cEPSCs and cIPSCs, respectively). If the null hypothesis was rejected at α = 0.1, the current 

sweep was classified as containing a synaptic event caused by the given SWR event or was 

otherwise categorized uncoupled.  

4.4.8 Statistics 

Statistical analysis was performed in Matlab (Mathworks) or GraphPad Prism. Data are reported 

as means ± SEM, or medians. Boxplots display the median and margin of error as the 10th and 90th 

percentiles. Comparisons were made using the two-tailed unpaired or paired t-test, the Mann-

Whitney U-test, or by ANOVA. The uniformity of phase angles was tested using Rayleigh’s test 

with the CircStat toolbox (Berens, 2009) in Matlab. Fisher’s Z transform was applied before 

comparing populations of correlation coefficients (Bortz and Schuster, 2010). Statistical 

significance is given as exact P values with α≤0.05 regarded as significant, unless stated otherwise. 

 

 



8 
 

5. Results 

5.1 Activation of mossy cells during CA3 sharp wave-ripples 

Mossy cells in the hilus have been recently described to be active during spatial exploration and 

slow wave sleep (Senzai and Buzsaki, 2017). However, the activity of these cells during 

hippocampal SWRs has not been elucidated, given the anatomical back projection from the CA3 

region to MCs (Scharfman, 1994). We used an acute hippocampal slice model of SWRs to study 

neuronal network mechanisms underlying MC activity. The identity of the recorded cells was 

confirmed based on morphological (characteristic thorny excrescences on the proximal dendrites) 

and electrophysiological features (Fig. 2). To study the spiking of the MCs without affecting the 

intracellular millieu, we performed simultaneous cell-attached or on-cell recordings from MCs 

with the local field potential (LFP) in the pyramidal cell layer of area CA3c closer to the hilus (as 

described by Lorente de Nó, 1934) (Fig. 3A). The MCs showed a wide range of overall firing rates 

(mean: 0.5±0.1/s; median: 0.2/s, range: 0 to 3.6/s; n=38 cells).  

 

Figure 2: Identification of MCs. A. Reconstruction of a biocytin-filled mossy cell with dendrites in black, and axon 

in red extending towards stratum oriens. Below: Firing pattern during a 40 pA (1 s) current injection. B. Maximum 

projection image of a MC showing complex spines on the proximal dendrites. Arrowheads mark the axon. C. 

Magnification of the boxed areas in B to visualize spines at higher resolution.  

We wondered if the spiking observed in MCs was linked to network activity in the neighbouring 

CA3 region. Indeed, we observed spikes coinciding with SWRs in a substantial fraction of MCs 

(47%), suggesting recruitment of these neurons by population activity in the CA3. The coupling 

of MC spiking during SWRs was statistically evaluated by comparing the spiking during SWRs 

with spiking during randomly sampled periods using Mann-Whitney U test. The spiking in 18 cells 

(47%) was significantly coupled with SWRs (‘responding’), while for the remaining 20 cells 

(53%), no coupling could be found, or they were mostly silent (‘non-responding’; Fig. 3C). In the 

responding MCs, SWR-linked spiking for individual cells varied between ~5% and 100% (Fig. 
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3D), independent of the recording depth from the slice surface. The number of spikes per SWR 

ranged from one to four (mean: 1.4±0.02, Fig. 3E), with some cells showing bursts (Fig. 3B). The 

spike times in MCs were analyzed with respect to the SWR peak time as a temporal reference 

across cells. The SWR-locked peri-event time histograms (PETHs) and the averaged PETH after 

normalization revealed a delayed spiking in MCs (6.4 ms) with respect to the CA3 SWRs (Fig. 

3G-H).  

We next asked what could account for the differences in responding and non-responding MCs. 

Therefore, we tested several intrinsic parameters such as resting membrane potential, input 

resistance, action potential (AP) threshold, AP half duration, after-hyperpolarization amplitude, 

sag potential amplitude and network parameters such as excitatory, and inhibitory charge transfers, 

excitatory to inhibitory charge transfer (E/I) ratio. None of these measures was different  (see  

Suppl. Fig. 2  in  the  paper)  with  the  exception  of  AP  threshold,  which  was  

 

Figure 3: Spiking in MCs during CA3 SWRs. A1. Schematic of parallel LFP- cell attached MC recordings. A2. 

Example showing the CA3 LFP and MC spiking concurrently with SWRs (asterisks). B. Discharge patterns of an MC 

during CA3 SWRs. Successive sweeps (25, 400 ms) centered to the SWR peak (average top). C. Spiking of MCs 

within- and outside SWR epochs was compared (Mann-Whitney U test). Left: display of P values (x-axis, order of 

experiments). Red and orange dots indicate responding and non-responding cells respectively; dotted line: α=0.001. 

Right: percentage of responding and non-responding MCs. D. Percentage of SWR epochs with MC spiking (x-axis 
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and colour as in B). E. Distribution of mean spike counts per SWR for responding cells (order as in B and C). F. Left, 

Correlation of MC spiking and AP threshold (n=21). Right: Comparison of AP threshold in responding and non-

responding cells. G. PETHs of responding MCs, 5 ms binsize. Top: grand average SWR. H. Average PETH after 

normalization (peak at 6.4 ms). 

negatively correlated with SWR-related spiking (Fig. 3F). The AP threshold was more negative in 

responding MCs, implying that these MCs have a higher propensity to spike during SWR- related 

synaptic inputs (P=0.017, two-tailed unpaired t-test, Fig. 3F).  

5.2 SWR-associated synaptic inputs in mossy cells 

Given the SWR-coupled spiking, we were interested to study the underlying synaptic inputs in 

MCs. Following the cell-attached or on-cell recordings, we recorded compound excitatory and 

inhibitory postsynaptic currents (cEPSCs at -60 mV, cIPSCs at +6 mV) from the same cells 

concurrently with CA3 SWRs. MCs received prominent SWR-associated excitatory and inhibitory 

cPSCs (cEPSCs: mean: 644±70 pA, median: 679 pA; cIPSCs: mean: 509±50 pA, median: 520 pA; 

n=25 cells, Fig. 4A1,B1). Moreover, SWR-related cPSCs in MCs were highly reliable with success 

rates of 100% and 97% for cEPSCs and cIPSCs. Frequency spectra of cEPSCs and cIPSCs, 

computed using Morlet wavelet transform, revealed components in the ripple frequency range 

(cEPSCs vs cIPSCs, mean: 144±1 Hz vs 144±2 Hz; medians: 143 Hz vs 142 Hz; P=0.9, Mann-

Whitney U-test; Fig. 4A2,B2).  

 

Figure 4: SWR-associated synaptic inputs in MCs. A1,B1. SWRs in CA3c (top) linked with cEPSCs and cIPSCs 

in MCs (red and blue). A2,B2. Events marked in A at higher resolution; top to bottom: LFP SWR, filtered version, 

and cEPSC (red) and cIPSC (blue). Below: Wavelet spectrograms of the cEPSC and cIPSC, warmer colours represent 

higher power.  
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The reversal of these SWR-linked cPSCs was calculated by extrapolating cPSC charge transfer 

values from different holding potentials -70, -60, -50 and -40 mV (with K gluconate-based 

intracellular solution) and was found to be -41.2mV (Fig. 5). 

 

Figure 5: Reversal potential of SWR-associated currents in MCs. A. Representative mean SWR-associated 

currents at different holding potentials from a MC. B. Plot of charge transfer (pC) (n=12) determined at different 

holding potentials to calculate the potential of reversal of SWR-associated currents. 

The phases of cEPSCs and cIPSCs, determined using a derivative peak time method (Fig. 6A), 

were found to be clustered with respect to the CA3 ripple (P<1×10-8 and P<9×10-7, Rayleigh test; 

Fig. 6B). Comparison of the resultant phases showed a lead of excitatory over inhibitory synaptic 

inputs (cEPSC- and cIPSC-to-ripple phase: 14.3°±8.2°, vector strength 0.29 vs 39.2°±9.9°, vector 

strength 0.26). To disentangle the individual ripple-related synaptic inputs along the temporal 

dimension, the time points or the absolute amplitude of 10% steepest slopes of each ripple-related 

input was plotted against time in a 2-D histogram (See Materials and Methods). The input- and 

amplitude-time histograms of excitatory and inhibitory cPSCs revealed a rhythmic occurrence 

(peaks at intervals ~5ms); with strongest cluster of inputs occurring close to the LFP ripple peak 

(0 represents the peak of the LFP ripple; Fig. 6C-D).  
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Figure 6:  Analysis of cPSC-to-ripple phases. A. Top: Time points of steepest rising slopes in cPSC identified by 

their first derivatives (middle). The phases of these time points were determined with respect to the ripple (LFP) using 

its Hilbert phase (red dots, bottom). B. Polar plots of average phases of excitatory (red) and inhibitory (blue) PSCs of 

each cell with respect to CA3 ripples, black arrows: resultant phase vectors. C-D. Upper: Histograms of the time 

points of the strongest 10% slopes of synaptic inputs, for excitatory (C, n=2770) and inhibitory (D, n=3012) cPSCs. 

Lower: corresponding amplitude-time histograms E. Temporal evolution of cEPSC-to-cIPSC phase difference. 

The temporal relation between excitatory and inhibitory inputs was analyzed by comparing the 

phase difference between cEPSCs and cIPSCs. The phase difference uncovers that the cIPSCs 

were almost phase-locked with the cEPSCs in the initial phase of the SWR event but start to lag 

increasingly behind the cEPSCs after the peak of the ripple phase (Fig. 6E). This phase shift in 

SWR-coupled excitation and inhibition could likely explain the spiking of cells in the period after 

the maximum of ripple peak (Fig. 3H). In addition, current clamp recordings revealed ripple-

coherent EPSPs in MCs during CA3 SWRs (Fig. 7), indicating that SWR-related excitatory inputs 

result in EPSPs leading to APs in MCs.  

 

Figure 7: Membrane potential changes in MCs during SWRs. A. Representative trace of CA3 SWRs and 

corresponding current-clamp recording from a responding MC. B. Magnification of the marked event from A showing 

APs in MC. C. EPSPs in a non-responding MC during SWR event. D. Time-frequency-coherence plot of the mean 

LFP and the corresponding mean EPSP in a non-responding MC (n=59 sweeps, same as C). Note the strong coherence 

of EPSP with respect to the LFP in the ripple frequency range. 

To quantify the propagation time of SWR-related synaptic activity to MCs, we performed cross-

correlation analyses of cPSCs with CA3 SWRs.  Consistent with the monosynaptic delays reported 

by Scharfman (1994), we found time lags of ~5 ms for cEPSCs (mean: 4.8±0.3 ms, median: 4.9 

ms; 1214 events; Fig. 8A1), while time lags for cIPSCs were prolonged (mean: 5.9±0.4 ms, 
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median: 5.7 ms, 1187 events; P=0.0005, paired two-tailed t-test, n=25 cells; Fig. 8A2). We then 

performed simultaneous recordings from PCs and MCs with the CA3 LFP to confirm the LFP-

cPSC propagation delays with CA3 cPSC- MC cPSC latencies. Figure 7B displays the ripple-

triggered averages of SWRs and corresponding cEPSCs and cIPSCs in both, a PC and an MC 

(green and orange; reconstructions, Fig. 8C). We found consistently delayed cPSCs in MCs 

compared with PCs (cEPSC delays: mean: 3.8±0.5 ms, median: 3.6 ms; cIPSC delays: mean: 

5.9±0.7 ms, median: 5.7 ms; n=15). Moreover, inhibitory latencies were prolonged, compared to 

excitatory latencies (P=0.006, paired two-tailed t-test, Fig. 8D). These findings confirm a reliable 

and delayed propagation of CA3 ripple-related synaptic activity to MCs. 

 

Figure 8: Timing of SWR-linked synaptic inputs in MCs. A. Crosscorrelation (CC) of LFP-cEPSCs (Left, A1) and 

LFP-cIPSCs (A2); single (grey) and averaged (red and blue) CC functions, aligned to peak of SPW envelope (top). 

Right: Median SPW-cPSC time lags for cEPSCs (red) and cIPSCs (blue). Bottom: cIPSCs are delayed compared to 

cEPSCs. B. Ripple peak-triggered averages of 100 SWRs (top) and their excitatory (left) and inhibitory (right) cPSCs 

in simultaneous PC-MC recordings (PC green, MC orange) C. Reconstructions of a CA3 PC and a MC D. Median 

latencies for cEPSCs (red) and cIPSCs (blue). Inhibitory latencies, compared to excitatory latencies, are consistently 

delayed in simultaneously recorded PCs and MCs (bottom). 

5.3 Comparison of SWR-related synaptic inputs in mossy cells and CA3 pyramidal cells 

To gain insights into the factors accounting for the higher fraction of MCs recruited during SWRs 

compared with the neighbouring CA3 PCs, we asked whether there are differences in the excitatory 

to inhibitory charge transfer (E/I) ratio of SWR-related inputs or intrinsic properties between MCs 

and CA3 PCs. We recorded cEPSCs and cIPSCs from both MCs and CA3c PCs at -60mV and 

+6mV respectively with the field in the CA3c area (Fig. 9A-B). Figure 9C represents the average 

LFP and the corresponding cEPSC/cIPSC in PC (green) and MC (orange). The excitatory or 
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inhibitory charge transfer values were calculated by integrating the cPSCs with varying time 

windows computed for each event. The E/I ratio was then calculated by dividing the excitatory to 

the inhibitory charge transfer values. The SWR-associated excitation and inhibition in CA3c PCs 

was larger compared to that of the MCs (MC vs CA3 PC- Excitation: -10.2 ± 2 pC vs -21.7 ± 3 pC, 

P=0.007, two-tailed unpaired t-test; Inhibition: 10.8 ± 2 pC vs 34.5 ± 4 pC, P=0.0003, two-tailed 

unpaired t-test; Fig. 9D). However, the E/I ratio was larger in MCs compared to CA3c pyramidal 

cells (mean: -1.36 ± 0.3 vs -0.65 ± 0.1, P = 0.04, two-tailed unpaired t-test; Fig. 9E), revealing a 

bias towards excitation in MCs. The input resistance of MCs was also larger compared to that of 

CA3 PCs (mean: 312.8 ± 31 MΩ vs 192.7 ± 35 MΩ Mann-Whitney U-Test, P=0.02; Fig. 9F; also 

shown by Scharfman and Schwartzkroin, 1988). Taken together, these factors might account for 

higher likelihood of SWR-linked spiking in MCs compared to CA3 PCs. 

 

Figure 9: Comparison of SWR-associated excitatory and inhibitory synaptic inputs in MCs and CA3 PCs. An 

example LFP recording from CA3c (green) together with excitatory cPSCs and inhibitory PSCs in MC (orange) (A) 

and CA3 PC (B) recorded sequentially in the same slice. C. Ripple-triggered average cEPSC and cIPSC in MC and 

CA3 PC with the CA3 SWR. D. Comparison of charge transfer values of SWR-linked EPSCs and IPSCs in MCs and 

CA3 PCs shows stronger inhibition in CA3 PCs than in MCs. E. Excitatory to inhibitory charge transfer ratios in MCs 

and CA3 PCs. F. Comparison of input resistance in MCs and CA3 PCs as calculated from 100 sweeps of -4mV voltage 

deflections. 

5.4 SWR-linked excitatory synaptic activity is routed to granule cells via mossy cells   

Since the major output of mossy cells is onto the granule cells (Scharfman, 1995), we investigated 

whether the activation of MCs during SWRs has influence on the GCs. Indeed, GCs received 
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SWR-associated excitatory synaptic inputs but displayed a high variability in the occurrence of 

inputs compared to MCs (Fig. 10A,C). We therefore sought to quantify statistically whether a 

given cell received synaptic input causally linked to CA3 SWRs. The SWR-associated cEPSCs 

were quantified by comparing the amplitudes of SWR-related bins to the outside SWR-related bins 

(20ms) using one-way repeated measures ANOVA (Fig. 10A, bottom). We found 19 out of 29 

GCs, i.e, 66% received significant SWR-associated cEPSCs (P < 0.0001) with mean failure rate 

of 49%. The low reliability of cEPSCs is suggestive of either a failure of transmission at the 

MC→GC synapse or local inhibition of GCs (Scharfman, 1995). In a subset of experiments, we 

recorded SWR-linked inhibitory synaptic currents in GCs. We found 13 out of 22, i.e, 60% GCs 

show significant cIPSCs (P < 0.0001) with mean failure rate of 66% (Fig. 10B).  

 

Figure 10: SWR-related synaptic activity in DG GCs and comparison to MCs. A and B. Synaptic activity in GCs 

during CA3 SWRs. Top row: reconstructed GCs. A. 20 successive sweeps of cEPSCs in GCs centered on the peak of 

CA3 SWRs. Green trace: average of 50 sweeps. Bottom: boxplot representation of cEPSC amplitudes in 20 ms time 

bins of all 50 sweeps. B. 20 successive sweeps of cIPSCs in GCs centered on the peak of CA3 SWRs. Green trace: 

average of 100 cIPSCs. C. Colour plots of individual z-scored SWR-linked baseline-corrected cEPSCs in GCs (above, 

n = 19) and MCs (below, n = 25) displayed from -20 ms to +60 ms with respect to the SWR peak (top: z-scored grand 

averages of CA3 SWRs (black and grey)). The colour bar (right) represents the z-scored amplitude values. D1. 

Comparison of median LFP-cEPSC median time lags. D2. Comparison of LFP-to-cIPSC median time lags.  
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Having observed SWR-related cEPSCs, we next investigated the timing of cEPSCs in GCs. The 

cross-correlation based LFP-cEPSC time lags in GCs were delayed compared to MCs (9.8 ± 1.04 

ms vs 4.8 ± 0.3 ms; GC vs MC; Fig. 10D1). The LFP-cIPSC time lags based on cross correlation 

revealed a more complex SWR-mediated inhibition involving more than one synapse (9.4 ± 9.2 

ms vs 5.9 ± 0.4 ms; GC vs MC; Fig. 10D2). The excitatory time lags were further substantiated by 

comparison of cEPSC timings from simultaneously recorded GCs and MCs (Fig. 11A1-2). We 

found that SWR-related cEPSCs in GCs consistently lagged behind those detected in MCs, with 

an average delay of 4.2 ± 0.6 ms (median: 4.1 ms, n=16 cells, Fig. 11B,C), implying a propagation 

of SWR-related activity from CA3 to DG via MCs. This hypothesis was strengthened by applying 

a different approach: based on the anatomical projections (CA3→MC→GC) and the high failure 

rates at the MC→GC synapse (22% on average; Scharfman, 1995), we reasoned that the cEPSCs 

in MCs might be more tightly coupled with CA3 SWRs than those in GCs. We, therefore, 

correlated individual CA3 SWR amplitudes with the corresponding cEPSC amplitudes in CA3 

PCs (31 slices), MCs (56 slices) and GCs (38 slices). The medians of the distributions are similar 

for PCs and MCs (0.58 vs 0.56, red lines), but considerably lower for GCs (0.18). We obtained 

transformed Fisher’s Z values to statistically compare these data and found no difference for Z 

values representing LFP–PC and LFP–MC correlations (P=0.94, Tukey’s multiple comparisons 

test), while Z values representing LFP–GC correlations were significantly smaller (P<0.0001 for 

both comparisons, Tukey’s multiple comparisons test; Fig. 11D). 

 

Figure 11: Ripple-associated functional coupling of CA3 and GCs via MCs. A1. Reconstruction of simultaneously 

recorded MC and GC. A2. Example sweeps, same experiment as A1. Top: CA3 SWR and corresponding cEPSCs in 

MC (orange) and GC (blue). B Ripple peak-triggered average of 100 SWRs (top) and corresponding cEPSCs (as A1-

2). C. Median latencies (16 MC-GC recordings; diamond, average). D. Correlation of CA3c SWR and cEPSC 

amplitudes in PCs, MCs and GCs. Comparison of Fisher’s Z values. Dots, Z-transformed correlation coefficients from 

the histograms in C. 

Together, these results demonstrate an indirect propagation of SWR-related excitatory activity 

from CA3 PCs onto GCs via MCs. 
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6. Discussion 

 

Until now, the role of mossy cells in the dentate gyrus- CA3 network during SWRs has not been 

explored in detail and could shed light on the DG-CA3 interactions during SWRs. The low density 

of MCs deep in the hilus (~10,000 MCs in the rat; Henze and Buzsáki, 2007; Myers and 

Scharfman, 2009) and their particular sensitivity to excitotoxicity (Ratzliff et al., 2002; Scharfman, 

2016) pose a technical challenge for studying their behavior during different brain states 

(Scharfman and Myers, 2012; GoodSmith et al., 2017). In the present study, we used an in vitro 

slice model of SWRs to study MCs in a targeted way. We find that a significant fraction of MCs 

are recruited during spontaneous SWRs in vitro, with spiking delayed with respect to the CA3 

ripple peak. The results of our study corroborate with recent studies in vivo in behaving rodents 

showing that the MCs are more active during the NREM state than wake or REM states (Senzai 

and Buzsaki, 2017; Goodsmith et al 2017).  

Underlying the spiking, we observed prominent, reliable and ripple-coherent SWR-associated 

excitatory synaptic inputs in MCs, implying a functional coupling between CA3c area and MCs 

during SWRs. This functional coupling is in line with the excitatory monosynaptic back-projection 

from CA3 pyramidal neurons onto MCs (Scharfman, 1994). The cross-correlation based CA3 LFP-

cEPSC time lags in MCs were prolonged, which was validated by cEPSC latencies in MCs 

determined from simultaneous CA3 PC-MC recordings. These latencies were comparable to the 

CA3-MC unitary connections shown previously by Scharfman. In addition, EPSC amplitudes were 

significantly correlated to the SWR amplitudes suggesting a direct influence of active CA3c 

pyramidal cells on the excitation of MCs.  

Similar to excitation, we also observed prominent and ripple-coherent SWR-associated inhibitory 

synaptic inputs in MCs. The cross-correlation based LFP -cIPSC time lags were prolonged 

compared to those of excitatory cPSCs, further validated by latencies determined in simultaneous 

cIPSC recordings from PCs and MCs. Moreover, in contrast to the excitation, the IPSC amplitudes 

were not correlated to the SWR amplitudes implying a more complex inhibition in place. The 

possible sources of SWR-associated inhibition in MCs could arise directly from the CA3 

interneurons such as basket, bistratified, O-LM interneurons, known to be active during SWRs 

(Lasztóczi et al., 2011; Hájos et al., 2013; Tukker et al., 2013), or CA1/CA3 boundary- crossing 

interneurons (Szabo et al., 2017) or mossy-fiber associated interneurons (Vida and Frotscher, 

2000) projecting to the DG or indirectly through disynaptic inhibition by hilar interneurons 
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targeted by CA3 pyramidal cells (Sík et al., 1997; Hosp et al., 2014). A direct inhibition seems to 

be more likely, given the reliable and rhythmic occurrence of cIPSCs in MCs.  

The observation that a significant fraction of MCs are active during SWRs is in stark contrast to 

only a small fraction of the neighbouring CA3 pyramidal cells active in vitro (Hajos et al., 2013). 

Are these two neuron populations different in their intrinsic properties or network excitability? 

Our data reveal a higher E/I ratio of SWR-associated inputs and higher input resistance in MCs 

compared to CA3 pyramidal cells, increasing the propensity of MCs to spike during SWRs (see 

also, Scharfman and Schwartzkroin, 1988). Another characteristic feature of MCs is the 

spontaneous barrage of excitatory synaptic activity at rates higher than in CA3 PCs (Scharfman 

and Schwartzkroin, 1988; Strowbridge et al., 1992), making the MCs more excitable. 

The main target of the mossy cells are the dentate granule cells in ipsilateral and contralateral DG 

and hilar interneurons (Scharfman, 1995, 1996, Larimer and Strowbridge, 2008, Berger et al., 

1981; Ribak et al., 1985; Hsu et al., 2016). What could be the consequences of MC spiking in the 

DG network? Dentate GCs have been shown to be active during SWRs (Buzsáki, 1986; Ylinen et 

al., 1995; Hulse et al., 2017) and slow wave sleep (SWS, Senzai and Buzsáki, 2017). We speculated 

whether SWR activity in CA3 could propagate to the DG via active MCs. We indeed found that 

~66% of the recorded GCs receive significant SWR-associated excitatory synaptic inputs. The 

LFP-cEPSC latencies in GCs were consistently delayed compared to those of simultaneously 

recorded MCs, indicating a disynaptic excitatory chain from CA3 pyramidal cells to granule cells 

mediated by MCs. This is further supported by strong correlations between CA3 SWR amplitudes 

and cEPSC amplitudes in both PCs and MCs, but not in GCs, demonstrating a direct coupling of 

the CA3 PCs and MCs, but not GCs. 

 

MCs are located in a strategic position in the dentate-hilar-CA3 network, enabling them to 

integrate information from GCs and CA3 PCs and project both ipsilaterally and contralaterally to 

the inner molecular layer of DG. What functional role could the MCs play in the network? In the 

context of spatial processing, recent findings show multiple place fields and pronounced 

remapping in MCs compared to GCs, leading to the hypothesis that MCs might receive spatial 

information from CA3 PCs (Senzai and Buzsaki, 2017; Danielson et al., 2017). In addition, the 

current study and several in vivo studies demonstrate that MCs have high firing rates during SWRs 

and SWS. It has been proposed by Lisman (1999) that the feedback information from CA3 routed 

to DG by MCs could enable error correction, which is important for accurate sequential memory 

recall.  
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How could the MCs mediate such function in the DG network? There is evidence showing the net 

effect of MC projection onto GCs is inhibition (Buzsaki and Czeh, 1981; Hsu et al., 2016; 

Scharfman 1995, 2016). However, because of the wide extent of septo-temporal connectivity to 

GCs (Buckmaster et al., 1996), MCs have, therefore, been speculated to activate spatially distinct 

sparse subsets of granule cells by feedback excitation, possibly from CA3, and simultaneously 

suppress other granule cells via local hilar interneurons (Soltesz et al., 1993; Henze 2007; 

Scharfman, 2013; Senzai and Buzsaki, 2017). These features place MCs as a neuronal hub linking 

local and distal compartments of both hippocampi. One could, therefore, speculate that in the 

context of hippocampal oscillations, MCs might be involved in synchronizing neuronal assemblies 

along the septo-temporal axis and between the two hippocampi during different brain states. 

Indeed, it has been shown that the theta coherence during REM sleep is higher between 

hemispheres than within a hemisphere and CA3/mossy projections to contralateral hemisphere are 

thought to be a major determinant underlying this coherence (Sabolek et al., 2009). Elucidating 

the function of mossy cells in the DG-hilar-CA3 network is thus crucial for understanding normal 

hippocampal functions and also during diseased states such as epilepsy and psychiatric disorders 

(Scharfman, 2016).  

Conclusion and Outlook 

In conclusion, our results provide a first description of the involvement of mossy cells during 

SWRs and suggest a major role for these cells in the SWR-related hippocampal functions and 

memory consolidation process. In the next steps, we hope to expand the current knowledge to 

understand the ripple-related function of mossy cells and address these questions: 

1. What are the functions of mossy cells during SWRs in vivo?  

2. How are mossy cells involved in encoding spatial information?  

3. What is the role of neuromodulators in influencing mossy cell activity? 

We hope our study will form basis for future research on mossy cell/hilar function in different 

brain rhythms during physiological and pathophysiological states.  
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SUMMARY

The role of mossy cells (MCs) of the hippocampal
dentate area has long remained mysterious. Recent
research has begun to unveil their significance in
spatial computation of the hippocampus. Here, we
used an in vitro model of sharp wave-ripple com-
plexes (SWRs), which contribute to hippocampal
memory formation, to investigate MC involvement
in this fundamental population activity. We find that
a significant fraction of MCs (�47%) is recruited
into the active neuronal network during SWRs in
the CA3 area. Moreover, MCs receive pronounced,
ripple-coherent, excitatory and inhibitory synaptic
input. Finally, we find evidence for SWR-related
synaptic activity in granule cells that is mediated
by MCs. Given the widespread connectivity of
MCs within and between hippocampi, our data
suggest a role for MCs as a hub functionally coupling
the CA3 and the DG during ripple-associated
computations.
INTRODUCTION

The hippocampal dentate gyrus (DG) is considered the input

structure where information from the entorhinal cortex is pro-

cessed. The most abundant excitatory neurons in the DG, the

granule cells (GCs), forward this input to the CA3 region via

mossy fibers (Lorente de Nó, 1934; Henze et al., 2000). On their

way to the CA3 area, mossy fibers contact the second popula-

tion of glutamatergic cells in the DG, mossy cells (MCs), whose

somata reside in the hilus (Amaral, 1978; Berger et al., 1981;

Scharfman et al., 1990; Soriano and Frotscher, 1994). In addition

to excitatory inputs fromGCs,MCs receive inhibitory inputs from

local interneurons and excitatory ‘‘back’’ projections from CA3

pyramidal cells (PCs) (Scharfman, 1994c; Acsády et al., 2000;

Larimer and Strowbridge, 2008). The dendrites of MCs are
Cell
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confined mostly to the hilus, but some extend to the molecular

layer of the DG (Frotscher et al., 1991). MC axons ramify within

the hilus and project to the inner molecular layers of both the

ipsi- and the contralateral DG (Berger et al., 1981; Ribak et al.,

1985; Buckmaster et al., 1996; Hsu et al., 2016). Taken together,

these anatomical features suggest a strategic role for MCs in

relaying information in the CA3-DG network, within and between

hemispheres.

Recent studies have started to elucidate the activity of MCs

across different behaviors (Neunuebel and Knierim, 2012; Dan-

ielson et al., 2017; GoodSmith et al., 2017). Specifically, MCs

were shown to display higher firing rates during slow-wave sleep

(SWS) compared with rapid eyemovement (REM) sleep and alert

behaviors (Senzai and Buzsáki, 2017). In the hippocampal elec-

troencephalogram (EEG), SWS and quiet wakefulness are char-

acterized by transient field events in the CA3 to CA1 regions,

termed sharp waves, that occur in association with high-fre-

quency (�120–250 Hz) ripple oscillations (sharp wave-ripple

complexes [SWRs]; Buzsáki, 1986; for review see Buzsáki,

2015). During SWRs, neuron sequences previously active during

behavior are re-activated, and this ‘‘replay’’ of activity is thought

to support memory consolidation (Lee and Wilson, 2002; Girar-

deau et al., 2009; Jadhav et al., 2012).

The role of MCs in the context of SWRs remains unclear.

Given the technical challenges of targeting MCs in vivo, a slice

model of SWRs provides an attractive experimental system to

investigate MCs during SWRs. Acute hippocampal slices can

express sharp waves and ripples autonomously, in physiolog-

ical bathing solutions, without drugs that elevate the network

excitability (Maier et al., 2003, 2009, 2011; Both et al., 2008;

Hájos et al., 2009, 2013; Papatheodoropoulos and Kostopoulos,

2002; Kubota et al., 2003; for review, see Maier and Kempter,

2017).

Here, we used this in vitro tool to elucidate MC activity during

SWRs in acute slices of the mouse hippocampus. We identified

SWR-associated synaptic currents in MCs and the recruitment

of MCs into the active network. Taken together, our results sug-

gest that SWR-associated information is relayed by MCs from

CA3 ‘‘backward’’ into the network of the DG.
Reports 23, 2541–2549, May 29, 2018 ª 2018 The Author(s). 2541
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Figure 1. Spontaneous MC Activity in Mouse Hippocampal Slices

(A1) Reconstruction of a biocytin-filled MC. Dendrites in black, the axon in red. Below: the firing pattern during a 40 pA (1 s) current injection.

(A2) Confocal image showing complex spines on the proximal dendrites. Arrowheads mark the axon.

(A3) Magnification of the boxed areas in (A2) to visualize spines at higher resolution (arrows).

(B) Example recordings (top) and raster plots of successive sweeps show varied discharge behaviors in MCs.

(C) Histogram of overall spike rates. Inset: cumulative distribution of firing rates; red arrows indicate the cells shown in (B).

(D1) Sketch to illustrate parallel LFP-MC recordings.

(D2) Example showing the CA3 LFP and MC spiking. Asterisks indicate MC discharge concurrent with SWRs.
RESULTS

Properties of MCs
Across species and behavioral conditions, MCs have been

shown to be a highly active class of hippocampal excitatory neu-

rons (Henze and Buzsáki, 2007; GoodSmith et al., 2017; Senzai

and Buzsáki, 2017).We used acute brain slices to study neuronal

network mechanisms underlying MC activity. With differential

interference contrast microscopy, we identified putative MCs

as multipolar cells located in the hilus and outside the CA3c

PC layer (Buckmaster et al., 1993; Figure 1A1). To identify

MCs, all cells were biocytin labeled during recording and

confirmed post hoc on the basis of morphological features. In
2542 Cell Reports 23, 2541–2549, May 29, 2018
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particular, MCs exhibit a high density of large, complex spines

(‘‘thorny excrescences’’) on their proximal dendrites and soma

(Figures 1A2 and 1A3; Amaral, 1978; Ribak et al., 1985). We

used this property as a defining criterion, and consequently,

only cells expressing thorny excrescences were included in our

analysis. In addition, none of the included cells expressed the

GABAergic marker GAD67 (Figure S1A). Stained axon collaterals

of MCs were found in the hilus and the inner molecular layer, and

often, cells displayed a major axon collateral extending toward

the stratum oriens of CA3 (Figure 1A1; Amaral, 1978; Buckmas-

ter et al., 1996). Electrophysiological properties of MCs are sum-

marized in Figure S1B and were comparable with those of

murine MCs reported by others (Kowalski et al., 2010).



Figure 2. Analysis of MC Activity during CA3 SWRs

(A1–A3) Discharge patterns of three MCs during CA3 SWRs. Successive sweeps (25 and 400 ms) centered to the SWR peak (average top).

(B) Spiking of MCs within and outside SWR epochs was compared (Mann-Whitney U test). Left: display of p values (x axis, order of experiments). Red and orange

dots indicate a significant increase (responding) or no significant increase (nonresponding) in spike rate during SWRs; dotted line, a = 0.001; arrows, cells shown

in (A1–A3). Right: distribution of responding and nonresponding MCs.

(C) Numbers of SWR epochs with MC spiking divided by total number of SWR epochs per experiment shown as percentages (x axis and color as in B).

(D) Distribution of mean spike counts per SWR for responding cells (order as in B and C).

(E) Left: correlation analysis of MC spiking and AP threshold (n = 21). Right: lower AP threshold in responding cells; error bars represent 10th and 90th

percentiles.

(F1) PETHs of responding MCs, 5 ms bin size. Top: grand average SWR.

(F2) Average PETH after normalization (peak at 6.4 ms). Error bars represent SEM.
Non-invasive recordings from MCs (depth 32–80 mm; Figures

S1C–S1D) revealed spontaneous and heterogeneous action

potential (AP) firing as illustrated in raster plots of three cells (Fig-

ure 1B). The distribution of the overall spike rates is given in Fig-

ure 1C (mean 0.5 ± 0.1/s, median 0.2/s, range 0–3.6/s; n = 38

cells).

MCs are known to receive excitatory synaptic input at high

rates, mostly from GC axons (Scharfman et al., 1990; Strow-

bridge et al., 1992) but potentially also from ‘‘feedback’’ projec-

tions originating from CA3 pyramidal neurons (Scharfman,

1994c). We asked whether the observed MC spiking could

potentially reflect SWR-associated activity arising from CA3.
2

MC Activation during SWRs
We recorded the local field potential (LFP) in the PC layer of area

CA3c (Lorente de Nó, 1934) together with activity fromMCs, and

we indeed observed spikes coinciding with SWRs in a substan-

tial fraction of MCs (Figure 1D), suggesting recruitment of these

neurons by population activity in the adjacent CA3.

Patterns of MC spiking observed in peri-SWR epochs are

shown in Figure 2A. To statistically evaluate a causal relation be-

tween MC spiking and SWRs in CA3, we compared the spiking

during SWRs with spiking during randomly sampled periods

(Mann-Whitney U test; Figure 2B). Of 38 MCs, the spiking in 18

cells (47%) was significantly coupled with SWRs (‘‘responding’’),
Cell Reports 23, 2541–2549, May 29, 2018 2543
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while for the remaining cells (53%), no coupling could be found, or

they were mostly silent (‘‘nonresponding’’; Figures S2A–S2E). In

the respondingMCs,SWR-linkedspiking for individual cells varied

between �5% and 100% (Figure 2C), independent of the

recording depth from the slice surface (Figure S2F). In addition,

the number of spikes per SWR ranged from one to four (mean

1.4 ± 0.02; Figure 2D).We tested several intrinsic and network pa-

rameters that might account for differences in responding and

nonrespondingMCs. None of thesemeasures were different (Fig-

ures S2G and S2H) with the exception of AP threshold, which was

negatively correlated with SWR-related spiking (Figure 2E, left).

Specifically, the AP threshold was more negative in responding

MCs, implying that synapticactivitywouldevokespikesatahigher

probability (Figure 2E, right; p = 0.017, two-tailed unpaired t test).

We analyzed the distribution of spike times with respect to the

SWR peak time as a common temporal reference across cells.

Figure 2F displays the SWR-locked peri-event time histograms

(PETHs), individually for all responding cells (trial-averaged spike

rates; Figure 2F1) and the average after normalization (Fig-

ure 2F2). Across cells, the peak firing of MCs was delayed with

respect to the SWR peak (6.4 ms; Figure 2F2), demonstrating a

delayed recruitment of MCs into the active neuronal network

during SWRs in the adjacent CA3 area.

SWR-Related Synaptic Inputs in MCs Are Reliable and
Phase Locked
Given the substantial fraction of active MCs, we were interested

in exploring the underlying synaptic activity. We sequentially re-

corded, from the same cells, compound excitatory postsynaptic

currents (cEPSCs) and compound inhibitory postsynaptic cur-

rents (cIPSCs) (cEPSCs at �60 mV, cIPSCs at +6 mV) concur-

rently with CA3 SWRs. Figure 3 illustrates features of these

currents: excitatory and inhibitory compound postsynaptic cur-

rent (cPSC) amplitudes were in the range of several hundreds

of picoamperes (cEPSCs: mean 644 ± 70 pA, median 679 pA;

cIPSCs: mean 509 ± 50 pA, median 520 pA; n = 25 cells; see

also Figure S3A). In addition, SWR-related cPSCs in MCs were

highly reliable, with success rates of 100% and 97% for cEPSCs

and cIPSCs (Figure S3A). Spectral analysis of both components

revealed frequencies consistent with the ripple frequency

(cEPSCs versus cIPSCs: mean 144 ± 1 Hz versus 144 ± 2 Hz,

median 143Hz versus 142Hz, p = 0.9,Mann-Whitney U test; Fig-

ure 3B), supported by amplitude-time histograms of cPSCs indi-

cating �5 ms rhythmicity (Figure S3B).

We have previously shown the coherence of synaptic inputs in

CA1 PCs, and in oriens-lacunosum moleculare (O-LM) interneu-

rons with ripples in vitro (Maier et al., 2011; Pangalos et al., 2013;

see Hájos et al., 2013, for similar results in CA3). We wondered

whether such coupling was also present between CA3 ripples

and related synaptic input in MCs (Figure 3C). In data obtained

from25MCs, we found significant phase lockingwith the CA3 rip-

ple for both cEPSCs and cIPSCs (p < 13 10�8 and p < 93 10�7,

Rayleigh test; Figure 3D). Comparison of the average phases re-

vealed a lead of excitatory over inhibitory synaptic inputs (cEPSC-

and cIPSC-to-ripple phase: 14.3 ± 8.2� [vector strength 0.29]

versus 39.2 ± 9.9� [vector strength 0.26]; see also Figure S3C).

Scharfman (1994c) showed unitary synaptic connections from

CA3 PCs onto MCs with time-to-peak latencies in the range of
2544 Cell Reports 23, 2541–2549, May 29, 2018
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3.5–8.5 ms. To quantify the propagation time of SWR-related

synaptic activity to MCs, we performed cross-correlation ana-

lyses of cPSCs with CA3 SWRs. Consistent with the previously

reported monosynaptic delays, we found time lags of �5 ms

for cEPSCs (mean 4.8 ± 0.3 ms, median 4.9 ms; 1,214 events;

Figure 3E1), while time lags for cIPSCs were prolonged (mean

5.9 ± 0.4 ms, median 5.7 ms, 1,187 events; p = 0.0005, paired

two-tailed t test; n = 25 cells; Figure 3E2).

To corroborate these propagation delays with an additional

approach, we performed simultaneous recordings from PCs and

MCs with the CA3 LFP. Figure 3F1 displays the ripple peak-trig-

gered averages of SWRs and corresponding cEPSCs and cIPSCs

in both a PC and an MC (green and orange; reconstructions;

Figure 3F2). In 15 such recordings, we found consistently delayed

cPSCs in MCs compared with PCs (cEPSC delays: mean

3.8 ± 0.5 ms, median 3.6 ms, 1,224 events; cIPSC delays: mean

5.9± 0.7ms,median 5.7ms, 1,598 events; Figure 3F3).Moreover,

inhibitory latencies were prolonged compared with excitatory la-

tencies (p = 0.006, paired two-tailed t test; Figure 3F3, bottom).

Together, these findings confirm the precise signaling and de-

layed propagation of ripple-related synaptic activity from the

CA3 network to MCs.

SWR-Linked Excitatory Synaptic Activity Is Routed to
GCs via MCs
Within the local network, MC spiking has been shown to evoke

excitatorypostsynaptic responses inDGGCsand inhilar interneu-

rons (Scharfman, 1995; Larimer and Strowbridge, 2008).Wewere

thus interested in testing whether SWR-related activity in CA3 is

relayed on to GCs, potentially via active MCs. Indeed, we

observed significant SWR-associated excitatory and inhibitory

synaptic inputs in GCs (cEPSCs and cIPSCs: 19 of 29 [66%] and

13 of 22 [60%] GCs; Figure S4A). To investigate the timing of

SWR-related synaptic activity in MCs and in GCs, we simulta-

neously recorded from cells of both groups, together with the

CA3c LFP (Figure 4A). We found that SWR-associated cEPSCs

inGCs consistently laggedbehind those detected inMCs (Figures

4A2 and 4A3), with an average delay of 4.2 ± 0.6 ms (median

4.1 ms; 1,266 events in 16 simultaneous recordings; Figure 4B).

This delay is consistent with prolonged cross-correlation derived

LFP-cEPSC time lags determined in GCs compared with MCs

(Figures S4B and S4C). It supports the idea of backpropagation

of SWR-linked excitatory activity from the CA3 area to the GC/

dentate network via a disynaptic pathway involving MCs.

We sought to test this hypothesis using a different approach.

We reasoned that the ripple-associated population activity in

CA3might bemore tightly coupled with excitatory synaptic input

in MCs than in GCs, given the disynaptic chain of propagation

(CA3 / MC / GC) and the reported failure rates at the

MC / GC synapse (22% on average; Scharfman, 1995). We

used CA3 SWR amplitude as a readout parameter of the local

network excitability. In 31 slices, we correlated individual SWR

amplitudes with corresponding cEPSC amplitudes in PCs (see

histogram of correlation coefficients in Figure 4C1). Similarly,

we obtained correlation coefficients for MCs (56 slices; Fig-

ure 4C2) and GCs (38 slices; Figure 4C3). The medians of the

distributions are similar for PCs and MCs (0.58 versus 0.56;

red lines) but considerably lower for GCs (0.18). We obtained



Figure 3. Timing of Ripple-Linked cPSCs in MCs

(A1 and A2) SWRs in CA3c (top) linked with cEPSCs and cIPSCs in MCs (red and blue).

(B1 and B2) Events marked in (A1) and (A2) at higher resolution; top to bottom: LFP SWR, filtered version, and cEPSC (red) and cIPSC (blue). Below: wavelet

spectrograms of the cEPSC and cIPSC; warmer colors represent higher power.

(C)Analysis of cPSC-to-ripple phases. Top: timepointsof steepest rising slopes incPSC identifiedby their first derivatives (middle). Thephasesof these timepoints

were determined with respect to the ripple (LFP) using its Hilbert phase (red dots, bottom). In total, 2,770 excitatory and 3,012 inhibitory slopes were analyzed.

(D) Polar plots of average phases of excitatory (red) and inhibitory (blue) PSCs (slopes) of each cell with respect to CA3 ripples; black arrows: resultant phase

vectors.

(E1 and E2) Left, cross-correlation (CC) analysis of cEPSCs (E1) and cIPSCs (E2); single (gray) and averaged (red and blue) CC functions, aligned to peak of SPW

envelope (top). Right: median SPW-cPSC time lags for cEPSCs (red) and cIPSCs (blue). Bottom: cIPSCs are delayed compared with cEPSCs.

(F1–F3) Simultaneous PC-MC recordings during CA3c SWRs. (F1) Ripple peak-triggered averages of 100 SWRs (top) and their excitatory (left) and inhibitory

(right) cPSCs (PC, green; MC, orange; reconstruction; F2). (F3)Median latencies for cEPSCs (red) and cIPSCs (blue). Inhibitory comparedwith excitatory latencies

are consistently delayed in simultaneously recorded PCs and MCs (bottom).

(E2) (bottom right) and (F3) (bottom): error bars represent 10th and 90th percentiles.
transformed Fisher’s Z values to statistically compare these data

and found no difference for Z values representing LFP-PC and

LFP-MC correlations (p = 0.94, Tukey’s multiple-comparisons

test), while Z values representing LFP-GC correlations were

significantly smaller (p < 0.0001 for both comparisons, Tukey’s

multiple-comparisons test; Figure 4D).

Together, these results demonstrate that during SWRs,

network activity is equally linked with excitatory signaling in

PCs and MCs but not in GCs. This rejects a strong role for direct
3

functional coupling of CA3 PCs and GCs (Li et al., 1994) during

ripples but supports an indirect propagation of SWR-related

excitatory activity onto GCs via MCs.

DISCUSSION

Despite recent progress in elucidating their behavioral relevance

(Jinde et al., 2012; Danielson et al., 2017; GoodSmith et al.,

2017; Senzai and Buzsáki, 2017), MCs remain a comparatively
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Figure 4. Ripple-Associated Functional Coupling of CA3 and GCs via MCs

(A1) Reconstruction of simultaneously recorded MC and GC.

(A2) Example sweeps, same experiment as (A1). Top: CA3 SWR and corresponding cEPSCs in MC (orange) and GC (blue).

(A3) Ripple peak-triggered average of 100 SWRs (top) and corresponding cEPSCs (as A1 and A2).

(B) Median latencies (16 MC-GC recordings; diamond, average). The error bar represents SEM.

(C1–C3) Correlation of CA3c SWR and cEPSC amplitudes in PCs (C1), MCs (C2), and GCs (C3). Histograms of Pearson correlation coefficients for amplitudes of

SWRs and cEPSCs in CA3 PCs (31 slices, 2,231 SWRs; C1), MCs (56 slices, 3,695 SWRs; C2), and GCs (38 slices, 2,326 SWRs; C3). Red lines, population

medians.

(D) Comparison of Fisher’s Z values. Dots, Z-transformed correlation coefficients from the histograms in (C1)–(C3). Error bars represent SEM.
unexplored neuron population, especially regarding their differen-

tial role in various brain states. This is due mainly to their relatively

low density deep in the hilus (1–5MCs per 100 GCs, i.e.,�10,000

MCs in the rat; Henze and Buzsáki, 2007; Myers and Scharfman,

2009) and their particular vulnerability, which impedes in vivo

recording and post hoc anatomical identification (Scharfman

and Myers, 2013; GoodSmith et al., 2017). Here, we took advan-

tage of an in vitro approach whereby SWRs can be studied in

isolation and at the single-cell level to investigate MCs in a tar-

geted way. In vitro SWRs share multiple properties with their

in vivo counterparts, including their spatial and spectral profiles,

pharmacology, and activation patterns of participating neurons

(Maier et al., 2009; Koniaris et al., 2011; Hájos et al., 2013; Panga-

los et al., 2013; for review, see Maier and Kempter, 2017).

We identified prominent excitatory postsynaptic currents in

MCs that consistently followed SWRs in CA3c. This finding

implies a transient functional coupling of MCs with the CA3

area during SWRs. As an anatomical substrate underlying this

coupling, a monosynaptic excitatory ‘‘back-projection’’ from

CA3 pyramidal neurons onto MCs has been demonstrated with

paired intracellular recordings (Scharfman, 1994c). In these uni-

tary connections, the time of spike to excitatory postsynaptic po-

tential (EPSP) was comparable with the time lags we observed

for CA3 LFP and cEPSCs inMCs, which we further substantiated
2546 Cell Reports 23, 2541–2549, May 29, 2018
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by simultaneous cEPSC recordings in PCs and MCs. Together,

these results suggest that ensembles of rhythmically active

CA3 pyramidal neurons directly provide input to MCs during

SWRs.

Beside phase-locked excitatory cPSCs, we observed pro-

nounced, phase-locked inhibitory cPSCs in MCs. Their time

lags with respect to the LFP were prolonged compared with

those of excitatory cPSCs. The inhibitory delays were confirmed

by latencies determined in simultaneous cIPSC recordings from

PCs and MCs.

Several possible explanations are conceivable for the origin of

ripple-locked inhibition in MCs. (1) Recently, a novel class of

GABAergic interneurons was shown to send axons from CA1/

CA3 to the DG and to increase spiking during SWRs (Szabo

et al., 2017). (2) In addition to these ‘‘boundary-crossing’’ projec-

tions, it is feasible that MCs are targeted by CA3 interneurons

that are known to discharge during ripples, namely, basket, bis-

tratified, and O-LM cells (Lasztóczi et al., 2011; Hájos et al.,

2013; Tukker et al., 2013). (3) The recruitment of local hilar inter-

neurons (Sı́k et al., 1997; Hosp et al., 2014) by axon collaterals of

CA3 PCs constitutes another possibility. In this framework,

spiking CA3 PCs activate hilar interneurons that in turn provide

inhibition in MCs, as the output of a disynaptic pathway (PC /

interneuron / MC). However, given the large amplitudes and



the ripple phase coupling of cIPSCs in MCs, (1) and (2) seem to

be the more likely explanations.

Synaptic inputs in MCs evoked by population activity gener-

ated in CA3 have been studied in vitro before, but in the context

of experimentally enhanced cellular excitability or epileptiform

activity (Scharfman, 1994a, 1994b; Hedrick et al., 2017). Epilep-

tiform discharges, compared with SWR activity, exhibit consid-

erably enhanced amplitude, duration, multi-unit activity, and

oscillation frequency (Karlócai et al., 2014; Aivar et al., 2014).

Thus, profound differences exist between the network mecha-

nisms that govern pathological network discharges as opposed

to physiological SWRs.

We found significant activation in 47% of probed MCs, which

is in contrast to the previously reported low activation of CA3

PCs during SWRs (Hájos et al., 2013). What could explain the

discrepancy in the activation of these two neighboring principal

neuron populations during SWRs? A characteristic feature of

MCs is an ongoing ‘‘bombardment’’ with excitatory synaptic ac-

tivity, at rates considerably higher than in CA3 PCs (Scharfman

and Schwartzkroin, 1988; Strowbridge et al., 1992). This back-

ground activity might serve as an excitatory ‘‘blanket,’’ raising

the likelihood of spiking during SWRs. In addition, Scharfman

and Schwartzkroin (1988) demonstrated higher input resistance

in MCs than in CA3 PCs, which contributes to cellular excitability

and hence a more likely recruitment of MCs during SWRs.

Although not addressed directly so far, recent work has pro-

vided indirect evidence for MC activation during SWRs: MCs

are active during SWS (Senzai and Buzsáki, 2017), which is the

sleep stage characterized by a high occurrence of SWRs in the

hippocampus. Our observations in vitro support this finding

and demonstrate that the SWR-associated increased network

excitability is sufficient to drive MCs.

What could be consequences of MC spiking in the neuronal

network? Previous research has shown that dentate GCs, a ma-

jor neural population targeted by MCs (Scharfman, 1995, 1996),

are also active during SWRs (Buzsáki, 1986; Ylinen et al., 1995)

and SWS (Senzai and Buzsáki, 2017). In awake mice, Hulse

and colleagues (2017) have directly shown that GCs depolarize

during SWRs.

We hypothesize that the discharge of MCs relays SWR-related

activity to GCs, thereby contributing to the activation of these

neurons. First, this reasoning is in agreement with our observa-

tion that excitatory synaptic inputs in GCs are often coupled

with SWRs. Second, it is in line with the consistent delay be-

tween ripple-related cPSCs in GCs and simultaneously recorded

MCs. And third, this is supported by strong correlations between

CA3 SWR amplitudes and cEPSC amplitudes in both PCs and

MCs, but not in GCs, demonstrating a direct connection of the

CA3 excitatory oscillation generator driving PCs and MCs, but

importantly not GCs. All these findings support a disynaptic

chain of activity propagation (CA3 PC/MC/GC; Scharfman,

1994b).

MCs are part of an excitatory recurrent feedback network (Lis-

man, 1999) and placed in a strategic position to integrate infor-

mation from the connected neuronal sub-networks, DG and

CA3. MCs receive converging excitatory inputs from CA3 PCs

and GCs and send projections in an eminently divergent fashion:

ipsilaterally, along the septotemporal axis of the hippocampus,
3

MC axons can span hundreds of micrometers, with a greater

concentration of proximal contacts in the hilus, presumably on

interneurons (Larimer and Strowbridge, 2008), as opposed to

an aggregation of more distant contacts in the inner molecular

layer, presumably on GCs (Buckmaster et al., 1996). As a conse-

quence, proximal GCs might be predominantly suppressed by

MC-driven disynaptic inhibition (Buzsáki and Eidelberg 1981;

Buckmaster et al., 1996), in contrast to distal GCs, which may

be entrained by enhancedMCactivity during SWRs. SWR-linked

MC spiking might represent the physiological trigger to induce

long-term potentiation (LTP) at the MC / GC synapse, as

shown for experimental activation of MC axons (Hashimotodani

et al., 2017). Contralaterally, MC axons contribute to commis-

sural terminals linking both hippocampi (Berger et al., 1981;

Ribak et al., 1985; Hsu et al., 2016). It is tempting to speculate

that the active MCs support, or mediate, the SWR-related syn-

chronization of hippocampus along the septotemporal axis

(Patel et al., 2013) or across hemispheres at the timescale of

several milliseconds (Buzsáki, 1986; Buzsáki et al., 2003). Given

the prominent innervation of GABAergic interneurons by MCs,

this synchronization could be mediated by local and/or contra-

lateral inhibitory neurons (Scharfman, 1995; Larimer and Strow-

bridge, 2008; Hsu et al., 2016).

Together, these features suggest the role ofMCs as a neuronal

hub linking local and distal compartments of both hippocampi in

a complex manner. Our findings on the ‘‘feedback’’ recruitment

of MCs strongly argue for a central role of these cells in SWR-

related hippocampal functions, which include the consolidation

of spatial and emotional memories (Jinde et al., 2012; Myers

and Scharfman, 2009; Scharfman, 2016).
EXPERIMENTAL PROCEDURES

Animal maintenance and experiments followed institutional guidelines, the

guidelines of the Berlin state (T0100/03), and European Union (EU) Council

Directive 2010/63/EU on the protection of animals used for experimental

and other scientific purposes. Male C57BL/6N mice (3–5 weeks of age)

were used.

Slice Preparation and Electrophysiology

Horizontal slices of ventral to mid-hippocampus were prepared as described

before (Maier et al., 2009). Slices were stored in an interface chamber, and

combined LFP and patch-clamp (cell-attached or whole-cell) recordings

were performed at 31�C–32�C in a submerged-type recording chamber.

Data Analysis

SWR detection was performed in MATLAB (The MathWorks) as described

before (Maier et al., 2009). Time windows of 300 ms (55 ms for spike analysis)

aligned to the peak of identified SWRs were cut out from LFP and correspond-

ing intracellular traces and were baseline-corrected by subtracting the respec-

tive means. Digital filtering was performedwith second-order Butterworth filter

at the indicated frequencies.

Spike times were detected using a threshold algorithm (83 SD of the spike-

free baseline). To quantify SWR-related spiking, the number of spikes in n SWR

epochs of 55ms centered on the ripplemaximawere determined. This dataset

(N1) was compared with spiking in n periods of identical duration (N2) randomly

sampled from the entire spike train, including periods with SWR epochs

(Mann-Whitney U test; a = 0.001). As a result, MCs were classified as respond-

ing or nonresponding during SWRs. The SWR maximum is the temporal refer-

ence in PETHs (bin width 5 ms; Figure 2F). The sum of spike counts S per time

bin was divided by the sum m of SWRs observed and the bin width Dt,
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indicating spike rates (SR = S/m/Dt, i.e., the probability to observe a spike in a

single trial for the chosen 5 ms time interval).

Individual synaptic inputs during cPSCs were detected by a derivative-peak

time method (Figures 3C, S3B, and S3C): SWR-related cEPSCs and inverted

cIPSCswere low-pass-filtered at 400Hz and the derivative calculated. Of all de-

rivative minima detected within a 60 ms window centered on the maximum of

the ripple, the strongest 10% (i.e., 10% steepest slopes) were accepted as syn-

aptic inputs. LFP signals were filtered at 127–300Hz. Envelope and phase of the

filtered signals were obtained by applying the Hilbert transform. The phase of

excitatory or inhibitory inputs was determined as the respective Hilbert phase

of the LFP at the time point of the steepest slopes. For each cell, an average

phase vector described by its phase angle and strength was determined; the

polar plots represent the resultant phase vectors of all analyzed cells.

Timing of cPSCs in double recordings was analyzed in a window of 15 ms

surrounding the SWR maximum. Only significant SWR-related inputs were

considered, and their delays at the time points of half-maximum amplitudes

determined (see also Figures S3A and S4A).

The time-dependent power spectrum of the signal was computed using

Morlet wavelet transform (Torrence and Compo, http://atoc.colorado.edu/

research/wavelets/). Data are plotted as log(1 + power). Frequency at

maximum power is defined as the local maximum in the 127–300 Hz range.

Statistical analysis was performed in MATLAB or GraphPad Prism

(GraphPad Software). Data are reported as mean ± SEM or as medians. Box

plots display the median and margin of error as the 10th and 90th percentiles.

Comparisons were made using the two-tailed unpaired or paired t test, the

Mann-Whitney U test, or ANOVA. The uniformity of phase angles was tested

using Rayleigh’s test with the CircStat toolbox (Berens, 2009). Fisher’s Z trans-

form was applied before comparing populations of correlation coefficients

(Bortz and Schuster, 2010). Statistical significance is given as exact p values,

with a % 0.05 regarded as significant, unless stated otherwise.
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Buzsáki, G., and Eidelberg, E. (1981). Commissural projection to the dentate

gyrus of the rat: evidence for feed-forward inhibition. Brain Res. 230, 346–350.
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Figure S1. Additional analyses of mossy cell properties. Related to Figure 1. 
A GAD67 staining demonstrates the absence of this inhibitory marker on MCs in our sample. The asterisk marks the cell displayed in 
the main Figure 1A. B Intrinsic physiological properties of the recorded MCs (n = 12). Initial resting membrane potential (RMP) was 
determined in current-clamp immediately after rupturing the cell membrane. Input resistance (Ri) was calculated based on -4 mV 
steps (50 ms duration) in voltage-clamp, repeated 100 times to minimize the influence of spontaneous synaptic inputs. Trace segments 
of 10 ms duration with minimal SDs for baseline and steady-state were chosen, averaged, and their means subtracted (ΔI). The voltage 
step size (-4 mV) was then divided by ΔI to calculate the cell’s Ri. Action potential (AP) parameters were determined from spikes 
recorded at rheobase. AP threshold, Vthres: the membrane potential where dV/dt of the rising phase exceeded 20 mV/ms; peak 
amplitude of APs: measured from Vthres to the peak; width of APs: the time difference between the points where the rising- and the 
decaying phases of the AP crossed 50% of its peak amplitude; afterhyperpolarization amplitude: the voltage difference between Vthres 
and the most negative deflection immediately following the peak of the AP; sag potential amplitude: the voltage difference between the 
minimum voltage in response to the current injection (-120 pA, 1 s) from the RMP and the steady-state response. C Histogram 
showing the depth distribution of the recorded cells from the surface of the slice (range: 32 to 80 μm). D Comparison of the overall 
spike rates, i.e., the total number of spikes divided by the recording time of the individual experiment (on-cell recordings: mean: 0.44 
± 0.12/s; median: 0.08/s, n = 22 cells, N = 11 mice; cell-attached recordings: mean: 0.66 ± 0.22/s; median: 0.3/s, n = 16 cells, N = 9 
mice; not different, P = 0.067, two-tailed Mann-Whitney U test). 
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Figure S2. Analysis of SWR-related spiking in MCs in vitro. Related to Figure 2.  
A Sketch of the recording location within the hilus of analyzed MCs. Abbreviations: GCL, granule cell layer; PCL, pyramidal cell layer. 
B Histogram summarizing the distribution of distances between the LFP electrode in CA3c and the recorded MCs (range: 149 to 529 
μm). For all cell-attached recordings, data of at least 6 min after GΩ seal formation were discarded to ensure stabilization of the LFP. C 
Histogram of responding and nonresponding MCs within the range of ages tested (P 22-35; each bin represents the sum of 
observations in two days). D Control related to the analysis shown in the main Figure 2B. Comparison of spiking in shuffled data: In 
each cell, two spike distributions N1 and N2 of n randomly sampled periods from the entire trace (where n matched the number of 
detected SWRs in the respective experiment) were compared (Mann-Whitney U test). The distribution of P values lies clearly above 
the chosen significance threshold α = 0.001, demonstrating the robustness of SWR-related spiking in MCs (see main Figure 2B) 
against data shuffling. Values are plotted according to the order of recordings (x-axis, as in the main Figure 2B-C). E Plots related to 
the histogram shown in the main Figure 2F to demonstrate the spike-time distribution with reference to the SWR peak (LFP average, 
top); however, here, data were separated according to the recording technique applied (green: cell-attached, and grey: on-cell). F No 
correlation between SWR-related spiking and depth of the recordings was found. G and H Comparisons of different intrinsic and 
synaptic parameters in responding (resp.) and nonresponding (nonresp.) cells; an unpaired nonparametric test (Mann Whitney U 
test) was applied in all cases. G Left: Resting membrane potential (RMP, P = 0.25, n = 10 and n = 11 for responding and 
nonresponding cells). Right: Input resistance (Ri, P = 0.32, n = 10 and n = 10 for responding and nonresponding cells). H Left: SWR-
associated cEPSC amplitudes (P = 0.67, n = 7 and n = 11 for responding and nonresponding cells); Middle: SWR-associated cIPSC 
amplitudes (P = 0.81, n = 7 and n = 11 for responding and nonresponding cells); Right: For each cell, charge transfer values of 
excitatory and inhibitory SWR-associated PSCs were determined and their ratios plotted (E/I ratio, P = 0.54, n = 7 and n = 11 for 
responding and nonresponding cells). 
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Figure S3. Amplitude and phase analysis of ripple-associated cPSC in MCs. Related to Figure 3.  
A Peak current amplitudes of SWR-associated cIPSCs (recorded at +6 mV, A1, top) and cEPSCs (recorded at -60 mV, A2, top) were 
sorted by the medians of cEPSC amplitudes; Bottom: observation likelihoods (success rates) of cIPSCs and cEPSCs. We statistically 
compared the current trace surrounding the SWR peak (-20 ms to +45 ms) with a concatenated current trace containing data clearly 
separate from the given SWR event (-120 ms to -20 ms, and +45 ms to +120 ms with respect to the SWR peak; 175 ms duration in 
total). An unpaired two-sample, one-tailed t test, with α set to 0.1 was applied (right- and left-tailed testing for cEPSCs and cIPSCs, 
respectively). If the null hypothesis was rejected at α = 0.1, the current sweep was classified as containing a synaptic event caused by 
the given SWR event, otherwise it was categorized uncoupled. For both, excitatory and inhibitory cPSCs, high success rate values were 
found. B1 Grand averages, upper traces show LFPs, and lower the respective cPSCs, for excitatory (red, inverted) and inhibitory (blue) 
events. The ripple peak is the time reference in B1-B4 (time point zero in B4). B2 and B3 Upper: histograms (binsize = 0.1 ms, 400 
bins) of the time points of the 10% strongest slopes of synaptic inputs, for excitatory (B2) and inhibitory (B3) PSCs. For all cells, the 
mean histogram over events was generated and normalized, corresponding to the empirical time-dependent input rate (number of 
inputs/ms). The resulting histograms were averaged and additionally smoothed with a Gaussian kernel (black lines, variance 0.2 ms). 
Lower: Amplitude-time histograms: Following the detection of the steepest slopes, the absolute amplitudes within the cPSCs were 
defined as the maximum values of the raw signal in the interval between the steepest increase (i.e., the peak of the cPSC derivative) 
and the onset of the next synaptic input (i.e., the following minimum of the cPSC derivative). The data were then binned in 2D 
histograms: The x-axis is the time difference of the steepest increase and the maximum peak of the LFP ripple signal as in the upper 
histogram (binsize 0.4 ms, 100 bins). The y-axis is the absolute amplitude (binsize 14 pA, 100 bins). The histogram was smoothed by 
convolution with a 2D Gaussian kernel (kernel width=1.5 bins; variance: 0.6 ms in x-axis and 21 pA in y-axis). To average over all 
cells, a histogram was generated for each cell with the sum over all bins normalized to 1, and then the average of all individual 
histograms was calculated. B4 Temporal evolution of cEPSC-to-cIPSC phase difference. The excitatory and inhibitory traces were 
averaged and their Hilbert phases subtracted for each slice (Grey lines, SD). The cEPSC-to-cIPSC phase difference increased by 27.4° 
within the course of the LFP ripple (i.e. from -5 to +5 ms with respect to the ripple peak), corresponding to 0.53 ms on average 
(assuming 143 Hz median oscillation frequency in MC cEPSCs, as estimated by wavelet analysis; see main text). C Dependence of 
resulting phase and phase lock on the proportion of included events: a relative threshold was defined to decide whether a slope should 
be accepted as synaptic input or not, so that it would cover a fixed proportion of the possible extrema. To determine a reasonable value 
for this proportion, for all cells (C1, excitatory events; C2, inhibitory events), the average phase (upper panel) and phase lock (lower 
panel) were calculated for varying proportions (x-axis). Crosses denote the percentage for each cell that corresponds to 50 considered 
events; the bold black lines represent the averages over cells. Dotted lines correspond to the used proportion of events (10%). The 
average phase is robust with respect to changes in this percentage. The proportion of 10% was therefore chosen for the following two 
reasons: First, it is large enough to include a sufficient number of events (>50) for each cell; second, the phase lock at this percentage is 
high, indicating a low number of false-positive extrema. 
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Figure S4. SWR-associated synaptic inputs in dentate gyrus GCs. Related to Figure 4.  
A Examples displaying excitatory and inhibitory synaptic activity in GCs during CA3 SWRs in two independent recordings. Twenty 
successive sweeps of cEPSCs (Vhold, -60 mV, A1) and cIPSCs (Vhold, +6 mV, A2), centered on the peak of CA3 SWRs. Green traces: 
average of 50 and 100 sweeps for cEPSCs and cIPSCs, respectively. Synaptic inputs in GCs associated with SWRs are smaller on 
average than those observed in MCs. To separate spontaneous (not SWR-associated) and SWR-associated synaptic inputs, we used the 
following unbiased procedure to identify ‘significant’, i.e., SWR-driven synaptic responses. We considered periods of 2 s centered on 
the maximum of the ripple peak (127-300 Hz filtered signal). Following baseline offset correction, the current sweeps were divided 
into 20 ms bins and the mean values were determined in each of the resulting 100 bins. With these values, a matrix of dimension 100× 
the number of SWR events in the given recording was created, where the row dimension corresponded to time and the column 
dimension corresponded to sweep numbers. Using repeated measures one-way ANOVA, all columns were pairwise compared. If the 
values in the SWR-related column were determined larger than those in the surrounding columns (determined with Tukey’s post-hoc 
test at a level of α = 0.05), the given cell was categorized as significantly modulated by SWR-related activity. Even in significantly 
modulated GCs, we found a high variability in amplitudes of both excitatory and inhibitory synaptic inputs (see examples in the main 
Figure 4). B1 Color plots of individual SWR-modulated baseline-corrected cEPSC events in GCs (above, n = 19) and MCs (below, n = 
25) displayed from -20 ms to 60 ms with respect to the SWR peak (top: z-scored grand averages of CA3 SWRs (black and grey) 
recorded simultaneously with GCs and MCs, respectively). The color bar (bottom) represents the z-scored amplitude values of 
cEPSCs. Cells were sorted according to their median time lag as shown in panel B2. The numbers of recorded cEPSCs varied between 
cells and hence the spacing between y-axis ticks is not equidistant. B2 As for the analysis displayed in the main Figure 3E1, excitatory 
and inhibitory PSCs were low-pass filtered at 100 Hz (2nd order Butterworth filter) and cross-correlated with the corresponding 
envelope of 100 Hz low-pass filtered SWRs (xcorr function in Matlab). The distribution of sorted cross-correlation derived median 
LFP-cEPSC time lags in GCs (top) and MCs (bottom, same as in the main Fig. 3E1) is displayed, corresponding to the colorplots 
shown in B1. C Comparison of median LFP-cEPSC time lags. SWR-cEPSC time lags are significantly prolonged in GCs compared to 
MCs (P = 0.0008, unpaired two-tailed t test). 
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Supplemental Experimental Procedures 
 

Slice preparation. Following isoflurane-anesthesia, brains were transferred to ice-cold sucrose-based ACSF 

containing (in mM): 87 NaCl, 2.5 KCl, 3 MgCl2·6H2O, 0.5 CaCl2, 10 glucose, 50 sucrose, 1.25 NaH2PO4, and 

26 NaHCO3 (pH 7.4). Horizontal slices (400 μm) of ventral to mid-hippocampus were cut on a vibratome 

(VT1200S, Leica) and stored in an interface chamber perfused with ACSF containing (in mM): 119 NaCl, 2.5 

KCl, 1.3 MgCl2, 2.5 CaCl2, 10 glucose, 1.25 NaH2PO4, and 26 NaHCO3, at pH 7.4; osmolarity of 290 to 310 

mosmol/l. The temperature was kept at ~32°C, and slices were superfused at a rate of ∼1 ml/min. ACSF was 

equilibrated with carbogen (95% O2, 5% CO2). Slices recovered for >1.5 h after preparation. 
 

Electrophysiology. Recordings were done in ACSF at 31-32°C in a submerged-type recording chamber 

perfused at 5-6 ml/min (Maier et al., 2009). For LFP recordings, glass microelectrodes (tip opening ∼5-10 

μm; 0.2-0.3 MΩ) were filled with ACSF. Whole-cell recordings were done with glass electrodes (2-5 MΩ) 

filled with either of two solutions containing (in mM): (i) 120 K-gluconate, 10 HEPES, 10 KCl, 5 EGTA, 2 

MgSO4·7H2O, 3 MgATP, 1 Na2GTP, 14 phosphocreatine, and 5.4 biocytin (0.2 %); pH adjusted to 7.4 with 

KOH, or (ii) 117.5 gluconic acid, 8 NaCl, 10 TEA, 10 HEPES, 0.2 EGTA, 5 QX-314, 2.5 CsCl, 0.3 Na2GTP, and 

4 MgATP, 5.4 biocytin (0.2%); pH adjusted to 7.4 with CsOH. MC spiking was recorded for at least 10 min 

either in the cell-attached configuration (voltage clamp, VC, at -60 mV) using solution (i) or in on-cell 

recordings using ACSF-filled patch pipettes. 
LFPs were amplified 1000× and whole-cell data were amplified 5× for VC and 10× for current-clamp 

recordings using a Multiclamp 700A or B amplifier (Molecular Devices). Data were low-pass filtered at 4 kHz 

(Bessel filter) and digitized at 20 kHz with 16-bit resolution using an A/D converter (BNC-2090 board, 

National Instruments, or Axon Digidata 1550A, Molecular Devices). Data were stored using Igor Pro 

(Wavemetrics) or pClamp (Molecular Devices). Series resistance (Rs) was monitored continuously; recordings 

were rejected if Rs exceeded 20 MΩ or varied >30%. No Rs compensation was used; no liquid junction 

potential correction was applied. For on-cell recordings, a candidate MC was chosen, and an ACSF-filled 

patch pipette placed on its soma. After recording of a sufficient amount of data, the pipette was removed and 

the cell re-approached with another pipette filled with intracellular solution and subsequently recorded in the 

whole-cell configuration, as described above. 
 

Immunostainings and anatomical identification. Cells were routinely filled with 0.2% biocytin and slices 

were transferred to 4% paraformaldehyde for at least 3 h and maintained at 4° C in 0.1 M phosphate-buffered 
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saline (PBS) with 0.1% sodium-azide. For immunostainings, slices were washed 3× with 0.1 M PBS. The slices 

were blocked with 5% normal goat serum, followed by overnight incubation with streptavidin (1:500, 

Invitrogen) and mouse anti-GAD67 Ab (1:500, Millipore) at 4° C. Slices were then washed 3× in 0.1M PBS 

and incubated in Alexa 488 goat anti-mouse secondary Ab (1:500, Invitrogen), and Alexa 647 goat anti-mouse 

Ab (1:500, Invitrogen) for 2-4 h at room temperature. After washes in 0.1 M PBS, slices were mounted on 

slides and embedded in a mounting medium (Mowiol). Maximum intensity z-stack images were taken using 

a confocal microscope (Leica DMI 6000) with a 20× oil immersion objective. Reconstructions were done 

using the Simple Neurite tracer plugin in ImageJ (V 1.51). 
 

Terminology. Hippocampal sharp waves (SPWs; Buzsáki, 1986) and ripples (O’Keefe and Nadel, 1978) were 

first characterized in behaving rats as fundamental signatures of normal EEG. However, the term sharp wave 

is also used in the context of clinical literature signifying a specific EEG graphoelement related to interictal 

epileptiform discharges (IED; Niedermeyer, 2005). Even though mechanistic properties, oscillation frequency, 

and information content carried by PC discharge during SWRs change in epilepsy (Aivar et al., 2014; Karlócai 

et al., 2014; Valero et al., 2017), physiological and epileptic sharp waves/ripples are likely to form a continuum 

of electrographic patterns expressed by the hippocampal network. Based on these studies, we follow a 

terminology where sharp waves (SPWs) and ripples (or sharp wave-ripple complexes, SWRs) refer to 

physiological activity patterns as opposed to IED and fast ripples or pathological ripples (p-ripples) (see also 

Traub and Whittington, 2010; Buzsáki, 2015). 
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