Aus der Klinik für Neurochirurgie
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Vergleichende Untersuchung der klinischen Lebensdauer
von aktuell zur bilateralen tiefen Hirnstimulation genutzten
implantierbaren Pulsgeneratoren

A comparative study examining the battery life of
implantable pulse generators currently used for bilateral
deep brain stimulation

zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von

Marcel Niemann
aus Hannover

Datum der Promotion: 23.06.2019
Für meine Eltern.
Teilergebnisse der vorliegenden Arbeit wurden veröffentlicht in:

Inhaltsverzeichnis

1. Abkürzungsverzeichnis .. 6
2. Zusammenfassung .. 7
3. Abstract .. 8
4. Einleitung .. 9
5. Methodik .. 20
 5.1 Studienpopulation .. 20
 5.2 Datenerhebung .. 20
 5.3 Statistische Auswertung ... 21
6. Ergebnisse .. 23
 6.1 Lebensdauer von Kinetra® und Activa® PC IPGs ... 23
 6.2 IPG-Lebensdauer und TEED nach Implantation eines Pocket Adapters 24
 6.3 Einflussfaktoren auf die IPG-Lebensdauer ... 26
7. Zusammenfassung und Ausblick .. 28
8. Literaturverzeichnis .. 32
9. Eidesstattliche Versicherung ... 37
10. Ausführliche Anteilserklärung an der erfolgten Publikation ... 38
11. Journal Summary List .. 39
12. Ausgewählte Publikation ... 42
13. Curriculum Vitae .. 49
14. Publikationsliste ... 52
15. Danksagung ... 53
1. Abkürzungsverzeichnis

Ah Amperestunde (*ampere hour*)
BFMDRS Burke-Fahn-Marsden Dystonie Beurteilungsskala (*Burke-Fahn-Marsden Dystonia Rating Scale*)
CC Konstante Stromstärke (*constant current*)
CV Konstante Amplitude (*constant voltage*)
DBS Tiefe Hirnstimulation (*deep brain stimulation*)
EOS Ende der Stimulation (*end of service*)
ERI Elektiver Austauschindikator (*elective replacement indicator*)
ET Essentieller Tremor (*essential tremor*)
GPI Globus pallidus internus (*internal globus pallidus*)
ILS Verschränkte Einstellungen (*interleaving settings*)
IPG Implantierbarer Pulsgenerator (*implantable pulse generator*)
i. v. intravenös
PD Morbus Parkinson (*Parkinson’s disease*)
SEM Standardfehler des Mittelwertes (*standard error of the mean*)
STN Nucleus subthalamicus (*subthalamic nucleus*)
TEED Übertragene elektrische Energie (*total electric energy delivered*)
UPDRS-III Einheitliche Parkinson Beurteilungsskala Teil III (*Unified Parkinson’s Disease Rating Scale part III*)
VIM Nucleus ventralis intermedius thalami (*ventral intermediate nucleus of the thalamus*)
2. Zusammenfassung

Der folgende Text entspricht dem Abstract der Originalpublikation [1]:

„Hintergrund: Die tiefe Hirnstimulation (DBS, deep brain stimulation) ist eine erfolgversprechende Therapie für ansonsten schwer zu beherrschende Bewegungsstörungen. Bisher erhalten die meisten Patienten nicht wiederaufladbare implantierbare Pulsgeneratoren (IPG, implantable pulse generator), die aufgrund der begrenzten Lebensdauer zu einem späteren Zeitpunkt operativ ausgetauscht werden müssen.

Ziel: Das Ziel war es, die modellspezifische Lebensdauer von IPGs im Rahmen des elektiven Wechsels zu erfassen. Weiterhin sollte der Einfluss der übertragenen elektrischen Energie (TEED, total electric energy delivered), der Anzahl bisheriger IPG-Wechsel und der Einfluss zurückliegender Modellwechsel auf die Lebensdauer von IPGs untersucht werden.

Methoden: Eingeschlossen wurden 47 Patienten (19 mit Morbus Parkinson, sieben mit essentiellem Tremor, 21 mit Dystonie) mit implantiertem Kineta® (n = 16) oder Activa® PC (n = 31), Medtronic, zur bilateralen DBS. Die erhobenen Daten wurden mit dem Mann-Whitney-U-Test und der Rangkorrelation nach Spearman statistisch ausgewertet.

Ergebnisse: Activa® PC hatten eine signifikant kürzere Lebensdauer als Kineta® IPGs (40,16 ± 15,22 Monate vs. 70,35 ± 24,45 Monate, p < 0,001). Die IPG-Lebensdauer war invers mit der TEED (r = -0,529, p < 0,001) und der Anzahl bisheriger IPG-Wechsel (r = -0,588, p < 0,001) korreliert. Außerdem hatten Patienten mit häufigeren Wechseln eine höhere TEED (r = 0,501, p < 0,001). Nach einem Kinetta® implantierte Activa® PC IPGs wiesen eine kürzere Lebensdauer als primär implantierte Activa® PC IPGs auf (28,36 ± 9,82 Monate vs. 45,78 ± 14,19 Monate, p = 0,006).

Zusammenfassung: Activa® PC wiesen eine signifikant kürzere Lebensdauer als Kinetta® IPGs auf. Weiterhin schienen eine höhere TEED und häufigere IPG-Wechsel die Lebensdauer der IPGs zu reduzieren.“

(Übersetzung durch den Erstautor, Herrn Marcel Niemann)
3. Abstract

Der folgende Text entspricht dem Abstract der Originalpublikation [1]:

„Background: Deep brain stimulation (DBS) is a well-established therapy for otherwise intractable movement disorders. Thus far, most patients receive non-rechargeable implantable pulse generators (IPG). Eventually, another intervention in order to replace the IPG is inevitable.

Objective: We assessed IPG model-specific differences in longevity in patients planned for IPG replacement. Also, we evaluated the influence of the total electric energy delivered (TEED), the amount of previous IPG replacements, and previous IPG model changes on the longevity.

Methods: We collected the demographic data and DBS settings of 47 patients (19 with Parkinson’s disease, 7 with essential tremor, and 21 with dystonia) that were treated either with Medtronic’s Kinetra® (n = 16) or Activa® PC (n = 31). Statistical analysis was performed using Mann-Whitney U test and Spearman’s rank correlation.

Results: Battery longevity was shorter in the Activa® PC than in the Kinetra® (40.16 ± 15.22 vs. 70.35 ± 24.45 months; p < 0.001). Further analysis showed an inverse correlation of the longevity to TEED (r = -0.529; p < 0.001) and the number of previous IPG replacements (r = -0.588; p < 0.001). Furthermore, patients with more frequent replacements had higher TEED (r = 0.501; p < 0.001) and patients, whose Kinetra® was replaced with the Activa® PC before, had shorter IPG longevity (28.36 ± 9.82 vs. 45.78 ± 14.19 months; p = 0.006).

Conclusion: Our findings imply that IPG longevity is shorter in the Activa® PC compared to the Kinetra®. Higher TEED and more frequent IPG replacements might reduce IPG longevity.”
4. Einleitung

Der IPG steuert über die meist quadrupolaren Elektroden die DBS. Zweikanal-IPGs ermöglichen die Konnektion von zwei Verlängerungen und damit von zwei Elektroden an
zu 37,4 ± 8,9 präoperativ [15]. Diese Studienergebnisse deuten zwar an, dass die Motorik von Patienten durch die DBS mit CC grundsätzlich verbessert werden kann, jedoch erlauben sie keinen Rückschluss auf eine mögliche Überlegenheit gegenüber der DBS mit CV. Einzig Lettieri et al. verglichen die Ergebnisse von CC und CV direkt miteinander, jedoch erfolgte dies retrospektiv und nicht randomisiert, sodass ein Selektionsbias bei der Rekrutierung der Studiengruppen nicht auszuschließen ist [13]. Folglich bedarf es zur Beurteilung einer möglichen klinischen Überlegenheit der DBS mit CC gegenüber CV weiterhin prospektiver, randomisierter kontrollierter und doppelt verblindeter Studien.

Einer der größten Hersteller von DBS-Systemen ist Medtronic (Medtronic, Minneapolis, MN, USA). Zum Zeitpunkt der Studiendurchführung wurden in der Klinik für Neurochirurgie der Charité – Universitätsmedizin Berlin drei Zweikanal-Modelle von Medtronic zur bilateralen DBS genutzt.

Der Kinetra® (Modell 7428) ist ein nicht wiederaufladbarer IPG mit einer 6,4 Amperestunden (Ah, ampere hour) umfassenden 3,2 V Silber-Vanadiumoxid Zelle. Die Einstellungen können im Bereich von 0,0 – 10,5 V, 60 – 450 µs und 3,0 – 250,0 Hz gewählt werden. Es ist keine DBS mit CC möglich [8]. Retrospektive Studien beschrieben eine mittlere Lebensdauer von 19,7 – 66,0 Monaten [5,16–22]. Kinetra® IPGs sind an der Charité – Universitätsmedizin Berlin spätestens seit 2011 nicht mehr erhältlich.

Der Activa® PC (Modell 37601) ist ein nicht wiederaufladbarer IPG mit einer 6,3 Ah umfassenden 3,2 V Hybrid-Silber-Vanadiumoxid Zelle. Die Einstellungen können im Bereich von 0,0 – 10,5 V (CV) bzw. 0,0 – 25,5 mA (CC), 60 – 450 µs und 2,0 – 250,0 Hz (CV) bzw. 30 – 250 Hz (CC) gewählt werden [9]. Eine bisher veröffentlichte retrospektive Studie schätzte die mittlere Lebensdauer von Activa® PC auf 53,3 Monate [22].

Der Activa® RC (Modell 37612) ist ein wiederaufladbarer IPG mit einer Lithium-Ionen-Batterie und ermöglicht ebenfalls die DBS mit CV und CC in denselben Einstellungsspektren wie der Activa® PC. Bisher gibt es keine Studiendaten zur IPG-Lebensdauer vom Activa® RC, der Hersteller gibt hierfür jedoch 9 Jahre bei Auslieferung an [10].

Die bisherigen Studiendaten zur IPG-Lebensdauer sind nur eingeschränkt vergleichbar, da die Indikationen zum IPG-Wechsel nicht einheitlich gewählt wurden. Halpern et al. empfahlen generell den Wechsel von Kinetra® IPGs ab einer Restspannung von ≤ 2,50 V [19]. Stewart et al. hingegen führten IPG-Wechsel erst bei telemetrisch nicht mehr
auslesbaren IPGs durch [17]. Allert et al. wechselten Kinetra® IPGs üblicherweise bei 5 – 15 % Restkapazität der Batterien oder früher, wenn private Veranstaltungen der betroffenen Patienten bevorstanden und hierbei das Risiko eines plötzlichen IPG-Ausfalls bestand [20]. Lumsden et al. führten die Wechsel von Kinetra® IPGs erst bei einem Batterieausfall durch [18]. Die anderen Autoren gaben als Indikation zum Kinetra®-Wechsel eine nicht näher definierte Batterieerschöpfung [5,16] oder eine Restkapazität unter 5 % an [21]. Helmers et al. wechselten Activa® PC IPGs ab der Anzeige des elektiven Austauschindikators (ERI, elective replacement indicator) [22]. Tatsächlich empfiehlt Medtronic, Kinetra® frühestens ab 2,44 V und Activa® PC IPGs ab 2,6 V (ERI) Restspannung auszutauschen.

Ein weiterer Aspekt häufiger IPG-Wechsel sind die mit der Anzahl an Eingriffen zunehmend hohen Infektionsraten. Pepper et al. stellten bei der Analyse von 260 Primärimplantation und 80 IPG-Wechseln eine Infektionsrate von 3,1 % bei Primär- und von 10 % bei Wechseleingriffen fest [24]. Ähnliche Beobachtungen machten Thrane et al. in einer 112 Patienten mit 220 IPG-Wechseln einschließenden Kohorte. Sie beschrieben im Vergleich zu 5 % beim ersten IPG-Wechsel zunehmende Infektionsraten von bis zu 25 % beim vierten Wechsel, was acht Patienten betraf. Die Infektionsrate beim fünften IPG-Wechsel betrug 0 %, jedoch betraf diese Wechselhäufigkeit lediglich zwei Patienten [25]. Frizon et al. konnten in einer Analyse von 1537 IPG-Primärimplantationen und -Wechseln kein erhöhtes Infektionsrisiko infolge mehrfacher IPG-Wechsel feststellen. Während die Infektionsrate bei der Primärimplantation von 696 IPGs 2,01 % betrug, sank diese beim ersten Austausch von 450 IPGs auf 0,44 %. Im Rahmen von 218 IPG-Wechseln, die nach einem stattgehabten ersten Austausch durchgeführt wurden, betrug die Infektionsrate 1,83 % und bei 173 weiteren Wechseln 0 % [26]. In einer multizentrischen Studie von Fytagoridis et al. wurden 808 Patienten mit 1293 IPG-Wechseln analysiert. Die Infektionsrate betrug 2,3 % pro IPG-Wechsel, wobei jeder vorherige IPG-Wechsel das Infektionsrisiko um den Faktor 1,6 erhöhte [27].

Insbesondere die antibiotischen Maßnahmen zur Infektionsprophylaxe unterschieden sich zwischen den Studien. Gemeinhin wurde eine perioperative Antibiotikaprophylaxe verabreicht [24–27], wobei lediglich Pepper et al. mit 1,5 g Cefuroxim intravenös (i. v.) [24] sowie Frizon et al. mit einer gewichtsadaptierten Cefazolin-Dosis ein einheitliches perioperatives Prozedere beschrieben [26]. Einzig die letztgenannten Autoren ergänzten außerdem bei einem positiven präoperativen Screening auf Methicillin-resistente

beiden Fällen konnte die Symptomatik durch erhöhte Levodopa-Dosen nicht signifikant verbessert werden, sodass zeitnah unilaterale IPG-Wechsel durchgeführt werden mussten [29]. Somit sind die Wechsel der Stimulatoren aufgrund der scheinbar nicht linearen Abnahme der IPG-Restspannung und des damit einhergehenden Risikos eines plötzlichen Wirkverlustes der DBS bei IPG-Erschöpfung möglichst vor der vollständigen Batterieentleerung der IPGs durchzuführen. Hierbei sind jedoch die bereits beschriebenen Risiken infolge frühzeitiger und damit einhergehend häufiger IPG-Wechsel zu beachten.

54,66 Tagen (Mittelwert ± SEM) bei Dystonie-Patienten. Patienten mit Zwangsstörungen wiesen mit 431,5 ± 166,42 Tagen (Mittelwert ± SEM) die kürzeste IPG-Lebensdauer in dieser Kohorte auf [30]. Van Riesen et al. beschrieben ebenfalls eine signifikant verschiedene IPG-Lebensdauer zwischen den in ihrer Studie eingeschlossenen Erkrankungsgruppen. Während die Lebensdauer der Stimulatoren von 80 Dystonie-Patienten mit 37,0 ± 2,0 Monaten (Mittelwert ± SEM) am kürzesten ausfiel, betrug sie bei 87 PD-Patienten 51,5 ± 2,3 Monate (Mittelwert ± SEM) und bei fünf ET-Patienten 71,9 ± 6,7 Monate (Mittelwert ± SEM) [21]. Auch Rawal et al. beobachteten eine signifikant längere Soletra®-Lebensdauer bei PD- und ET- im Vergleich zu Dystonie-Patienten. Diese betrug für 250 IPGs zur DBS des STN bei PD-Patienten 47,2 ± 1,8 Monate (Mittelwert ± SEM), für 129 IPGs zur DBS des VIM bei ET-Patienten 47,8 ± 2,6 Monate (Mittelwert ± SEM) sowie für 49 IPGs zur DBS des GPi bei Dystonie-Patienten 28,1 ± 2,1 Monate (Mittelwert ± SEM) [31]. In diesen Studien unterschieden sich jedoch ebenso die Einstellungsparameter zwischen den Erkrankungsgruppen. Dystonie-Patienten wiesen höhere DBS-Einstellungen als PD- und ET-Patienten auf [21,30,31]. Fakhar et al. untersuchten in ihrer Studienkohorte den Zusammenhang zwischen der IPG-Lebensdauer, der Ladungsichte (Ladungsichte \(\mu C/cm^2 \) = (Amplitude \(V \) x Impulsstärke \(\mu s \) / Impedanz \(\Omega \)) / Elektrodenoberfläche \(cm^2 \)) und der Leistung (Leistung \(\mu W \) = (Amplitude\(^2 \) \(V \) / Impedanz \(\Omega \)) x Impulsstärke \(\mu s \) x Frequenz \(Hz \)). Sowohl die Ladungsichte als auch die Leistung waren invers mit der IPG-Lebensdauer korreliert [30].

Die am häufigsten in Studien zur Berechnung der vom IPG übertragenen elektrischen Energie (TEED, total electric energy delivered) verwendete Formel wurde ursprünglich von Moro et al. als Grundlage dafür veröffentlicht, durch verschiedene Kombinationen der Stimulationsparameter eine möglichst optimale Beschwerdekontrolle zu erreichen: TEED \([pA^2] = (Amplitude \times \text{Impulsstärke} \times \text{Frequenz} \times \text{Impedanz})^2 \) [32]. Koss et al. modifizierten die Formel zu der aktuell am häufigsten in Studien verwendeten Form: TEED \([\mu J] = ((Amplitude^2 \times \text{Impulsstärke} \times \text{Frequenz}) \times \text{Impedanz}) \times \text{1s} \) [33]. Ein weiterer Korrekturvorschlag folgte von Blahak et al., die aufgrund ihrer Studiendaten die Anwendbarkeit der TEED bei bipolaren DBS bezweifelten. Sie schlugen die Ergänzung eines Divisors von 1,5 für die bipolare DBS vor [23]. Dies fand bislang keine generelle Anwendung in weiteren Studien. Außerdem konnte ein wie von Moro et

5. Methodik

5.1 Studienpopulation

5.2 Datenerhebung

Die Datenerhebung fand jeweils am Vortag der Operation statt. Mit Hilfe der elektronischen Patientenakten wurden die Erkrankung, die die Indikation zur DBS war, das Geschlecht, das Alter, die Anzahl bisheriger IPG-Wechsel, die Elektrodenlokalisationen, das Datum der IPG-Primärimplantation sowie, insofern vorhanden, das Datum des letzten IPG-Wechsels für jeden Patienten erfasst.
Durch das Arzt-Programmiergerät N'Vision™ (Modell 8840) von Medtronic wurden die Einstellungen der DBS einschließlich der Amplitude [V], der Impulslänge [µs], der Frequenz [Hz] und des Stimulationsmodus (monopolar, doppelt monopolar, bipolar, tripolar) sowie die Restspannung [V] der IPGs erfasst. Anschließend erfolgte die Messung der Therapieimpedanzen [Ω] je Elektrode.

Die TEED wurde nach Koss et al. mit Hilfe der Mittelwerte der Einstellungsparameter der bilateralen DBS berechnet [33]. So wurde für alle o. g. Stimulationsmodi verfahren.

5.3 Statistische Auswertung

Die zu untersuchenden Daten wurden visuell mittels Histogrammen und Quantil-Quantil-Diagrammen sowie statistisch mit Hilfe des Shapiro-Wilk-Tests auf Normalverteilung geprüft. Zur Analyse nicht normalverteilter Daten wurden der Mann-Whitney-U-Test für nicht verbundene Stichproben sowie Spearman’s Rangkorrelationstest verwendet. Alle p-Werte sind zweiseitig. Signifikanz wurde für $p \leq 0,05$ angenommen. Sofern nicht anders
angegeben erfolgen alle Zahlenangaben in dem Format Mittelwert ± Standardabweichung.
Die statistische Datenauswertung erfolgte mit SPSS (SPSS Statistics für Mac OS, Version 25, IBM Corp., Armonk, NY, USA).
6. Ergebnisse

Von 128 Patienten mit IPG-Wechsel im Studienzeitraum konnten 47 Patienten (24 Frauen, 23 Männer) mit Kinetta® (n = 16) oder Activa® PC (n = 31) in die Studienergebnisse eingeschlossen werden. Für einen Patienten mit implantiertem Kinetta® konnte präoperativ die Restspannung nicht erfasst werden. Der Patient wurde für alle weiteren Auswertungen berücksichtigt.

Das mittlere Alter der Kohorte lag bei 61,79 ± 14,09 Jahren (Spannweite 20 – 81 Jahre). Es wurden 19 Patienten mit PD, sieben mit ET und 21 mit Dystonie eingeschlossen. Die Zielgebiete der bilateralen DBS waren der STN (n = 18), der GPi (n = 21) oder der VIM (n = 8). Die Anzahl der bisherigen IPG-Wechsel betrug 0,89 ± 1,43 (Spannweite 0 – 8), wobei Dystonie-Patienten die meisten (1,38 ± 1,86, Spannweite 0 – 8) und Patienten mit PD (0,63 ± 0,90, Spannweite 0 – 3) und ET (0,14 ± 0,38, Spannweite 0 – 1) die wenigsten zurückliegenden Wechsel hatten. Vierundfünfzig Elektroden waren monopolar, 27 doppelt monopolar, elf bipolar und zwei tripolar konfiguriert. Alle Patienten hatten eine bilaterale DBS mit CV. Drei Patienten (zwei mit PD, einer mit Dystonie) hatten ILS.

Vor dem IPG-Wechsel betrug die Restspannung aller IPGs 2,44 ± 0,17 V (Spannweite 2,08 – 2,69 V), Kinetta® wurden bei 2,25 ± 0,12 V (Spannweite 2,08 – 2,52 V) und Activa® PC IPGs bei 2,53 ± 0,10 V (Spannweite 2,27 – 2,69 V) Restspannung gewechselt. Die TEED betrug 154,06 ± 112,53 µJ (Spannweite 31,42 – 620,36 µJ), wobei die TEED der Kinetta® (157,37 ± 107,28 µJ, Spannweite 35,86 – 392,18 µJ) höher als die der Activa® PC IPGs (152,36 ± 116,85 µJ, Spannweite 31,42 – 620,36 µJ) war. In beiden IPG-Gruppen hatten Dystonie-Patienten eine höhere TEED (249,91 ± 144,70 µJ für Kinetta®, 172,13 ± 147,74 µJ für Activa® PC) als Patienten mit ET (160,65 ± 110,54 µJ für Kinetta®, 135,73 ± 60,52 µJ für Activa® PC) und PD (109,46 ± 54,12 µJ für Kinetta®, 126,35 ± 61,77 µJ für Activa® PC).

6.1 Lebensdauer von Kinetta® und Activa® PC IPGs

Die IPG-Lebensdauer betrug insgesamt 50,44 ± 23,56 Monate (Spannweite 10,68 – 120,74 Monate). Kinetta® IPGs hatten eine Lebensdauer von 70,35 ± 24,45 Monaten (Spannweite 31,11 – 120,74 Monate). Die Lebensdauer von Activa® PC IPGs betrug 40,16 ± 15,22 Monate (Spannweite 10,68 – 73,66 Monate). In beiden IPG-Gruppen war die IPG-Lebensdauer bei Dystonie-Patienten kürzer (54,82 ± 11,40 Monate für Kinetta®,
38,49 ± 17,22 Monate für Activa® PC) als bei Patienten mit ET (64,29 ± 29,57 Monate für Kinetra®, 40,70 ± 10,91 Monate für Activa® PC) und PD (81,15 ± 23,63 Monate für Kinetra®, 42,60 ± 13,62 Monate für Activa® PC).

Der Unterschied der Lebensdauer von Kinetra® und Activa® PC IPGs war statistisch signifikant (\(U = 80,000, p < 0,001\)) (Abbildung 1).

Abbildung 1. Lebensdauer von Kinetra® und Activa® PC IPGs. Die Lebensdauer der Kinetra® IPGs betrug 70,35 ± 24,45 Monate, die der Activa® PC IPGs 40,16 ± 15,22 Monate (*\(U = 80,000, p < 0,001\)).

6.2 IPG-Lebensdauer und TEED nach Implantation eines Pocket Adapters

Die Lebensdauer von Activa® PC IPGs, die zusammen mit einem Pocket Adapter implantiert waren (n = 10), betrug 28,36 ± 9,82 Monate (Spannweite 10,68 – 38,70 Monate). Activa® PC IPGs ohne implantierten Pocket Adapter (n = 21) hatten eine Lebensdauer von 45,78 ± 14,19 Monaten (Spannweite 26,51 – 73,66 Monate). Der Unterschied war statistisch signifikant (\(U = 40,500, p = 0,006\)).

Weiterhin war die TEED bei Activa® PC IPGs ohne Pocket Adapter mit 115,36 ± 62,10 \(µ\)J (Spannweite 31,42 – 242,53 \(µ\)J) niedriger als bei Activa® PC IPGs mit Pocket Adapter (230,05 ± 164,45 \(µ\)J, Spannweite 109,00 – 620,36 \(µ\)J). Dieser Unterschied war ebenfalls statistisch signifikant (\(U = 51,000, p = 0,022\)) (Abbildung 2).
Abbildung 2. Einfluss des Pocket Adapters auf die IPG Lebensdauer und die TEED. a stellt Box-Whisker-Plots der IPG Lebensdauer und b der TEED dar, jeweils Activa® PC IPGs ohne und mit Pocket Adapter vergleichend. Die IPG Lebensdauer betrug 45,78 ± 14,19 Monate für IPGs ohne im Vergleich zu 28,36 ± 9,82 Monaten mit Pocket Adapter (*U = 40,500, p = 0,006). Weiterhin war die TEED signifikant geringer für IPGs ohne im Vergleich zu IPGs mit Pocket Adapter (115,36 ± 62,10 µJ vs. 230,05 ± 164,45 µJ; **U = 51,000, p = 0,022) [1].

6.3 Einflussfaktoren auf die IPG-Lebensdauer

Die Höhe der TEED war invers mit der IPG-Lebensdauer korreliert ($r = -0,529$, $p < 0,001$). Außerdem war die Anzahl bisheriger IPG-Wechsel mit der IPG-Lebensdauer invers korreliert ($r = -0,588$, $p < 0,001$).

Die TEED und die Anzahl bisheriger IPG-Wechsel waren wiederum miteinander korreliert ($r = 0,501$, $p < 0,001$) (Abbildung 3).

Abbildung 3. Spearman’s Rangkorrelation der IPG Lebensdauer, TEED und Anzahl bisheriger IPG Wechsel. a IPG Lebensdauer und TEED, $r = -0.529$, $p < 0.001$. b IPG Lebensdauer und Anzahl bisheriger IPG Wechsel, $r = -0.588$, $p < 0.001$. c TEED und Anzahl bisheriger Wechsel, $r = 0.501$, $p < 0.001$ [1].

7. Zusammenfassung und Ausblick

In der vorliegenden Forschungsarbeit wurde eine Kohorte von 47 Patienten mit bilateraler DBS untersucht, deren IPGs elektiv ausgetauscht wurden. Es konnte gezeigt werden, dass die Lebensdauer der nicht mehr erhältlichen Kinetra® signifikant länger als die der Activa® PC IPGs war. Die Lebensdauer von Activa® PC IPGs war zudem signifikant kürzer, wenn die Patienten zu einem früheren Zeitpunkt einen Kinetra® implantiert hatten. Außerdem war die IPG-Lebensdauer invers mit der TEED und der Anzahl bisheriger IPG-Wechsel korreliert. Die TEED und die Anzahl bisheriger IPG-Wechsel waren wiederum miteinander korreliert.

Weiterhin bietet die bisher lediglich retrospektiv untersuchte Korrelation der TEED und der IPG-Lebensdauer das Potential, die zu erwartende Lebensdauer von

welche Patientenkolonnen wiederaufladbare IPGs sicher verwendbar sind, wird die klinische Relevanz von nicht wiederaufladbaren IPGs und deren Einstellungsoptimierung hoch bleiben. Nur so können sowohl ein bestmögliches klinisches Ergebnis als auch eine möglichst lange Lebensdauer erzielt und dabei die aus einer eingeschränkten Lebensdauer resultierenden Komplikationen reduziert werden.

Zusammenfassend ermöglicht die DBS eine effektive Therapie von Bewegungsstörungen, wobei sie durch die Lebensdauer der verwendeten IPGs zeitlich limitiert ist. Während die DBS-Einstellungen einen Einfluss auf die IPG-Lebensdauer haben, scheint ebenso die Verwendung von zusätzlicher Hardware die Lebensdauer der Pulsgeneratoren zu reduzieren. Neben einer Optimierung der Einstellungen zum Erreichen einer möglichst langen IPG-Lebensdauer bei gleichzeitig möglichst suffizienter Symptomreduktion kann sich langfristig die Verwendung von wiederaufladbaren IPGs anbieten. Die Langzeitergebnisse zur klinischen Wirksamkeit und tatsächlichen Lebensdauer von wiederaufladbaren IPGs stehen aktuell noch aus.
8. Literaturverzeichnis

9. Eidesstattliche Versicherung

„Ich, Marcel Niemann, versichere an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema: „Vergleichende Untersuchung der klinischen Lebensdauer von aktuell zur bilateralen tiefen Hirnstimulation genutzten implantierbaren Pulsgeneratoren - A comparative study examining the battery life of implantable pulse generators currently used for bilateral deep brain stimulation“ selbstständig und ohne nicht offengelegte Hilfe Dritter verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) werden von mir verantwortet.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst."

Ort, Datum

Marcel Niemann

37
10. Ausführliche Anteilserklärung an der erfolgten Publikation

Herr Marcel Niemann hatte folgenden Anteil an der folgenden Publikation:

Alle Autoren hatten vor dem endgültigen Einreichen des Manuskripts gleichberechtigt die Möglichkeit, Änderungsvorschläge anzumerken.

Ort, Datum

Prof. Dr. med. Peter Vajkoczy

Dr. med. Katharina Faust

Klinikstempel

Marcel Niemann
<table>
<thead>
<tr>
<th>Rank</th>
<th>Full Journal Title</th>
<th>Total Cites</th>
<th>Journal Impact Factor</th>
<th>Eigenfactor Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LANCET NEUROLOGY</td>
<td>28,671</td>
<td>27.138</td>
<td>0.069040</td>
</tr>
<tr>
<td>2</td>
<td>Nature Reviews Neurology</td>
<td>8,095</td>
<td>19.819</td>
<td>0.028090</td>
</tr>
<tr>
<td>3</td>
<td>ACTA NEUROPATHOLOGICA</td>
<td>18,783</td>
<td>15.872</td>
<td>0.041490</td>
</tr>
<tr>
<td>4</td>
<td>Alzheimers & Dementia</td>
<td>10,423</td>
<td>12.740</td>
<td>0.030040</td>
</tr>
<tr>
<td>5</td>
<td>JAMA Neurology</td>
<td>6,885</td>
<td>11.460</td>
<td>0.035270</td>
</tr>
<tr>
<td>6</td>
<td>BRAIN</td>
<td>52,061</td>
<td>10.840</td>
<td>0.075170</td>
</tr>
<tr>
<td>7</td>
<td>SLEEP MEDICINE REVIEWS</td>
<td>6,080</td>
<td>10.602</td>
<td>0.010720</td>
</tr>
<tr>
<td>8</td>
<td>ANNALS OF NEUROLOGY</td>
<td>37,251</td>
<td>10.244</td>
<td>0.053390</td>
</tr>
<tr>
<td>9</td>
<td>NEURO-ONCOLOGY</td>
<td>10,930</td>
<td>9.384</td>
<td>0.030350</td>
</tr>
<tr>
<td>10</td>
<td>Epilepsy Currents</td>
<td>790</td>
<td>9.333</td>
<td>0.001600</td>
</tr>
<tr>
<td>11</td>
<td>MOVEMENT DISORDERS</td>
<td>26,511</td>
<td>8.324</td>
<td>0.037980</td>
</tr>
<tr>
<td>12</td>
<td>Translational Stroke Research</td>
<td>2,202</td>
<td>8.266</td>
<td>0.005260</td>
</tr>
<tr>
<td>13</td>
<td>NEUROLOGY</td>
<td>88,493</td>
<td>7.609</td>
<td>0.115530</td>
</tr>
<tr>
<td>14</td>
<td>NEUROSCIENTIST</td>
<td>4,738</td>
<td>7.461</td>
<td>0.008730</td>
</tr>
<tr>
<td>15</td>
<td>JOURNAL OF NEUROLOGY AND PSYCHIATRY</td>
<td>29,695</td>
<td>7.144</td>
<td>0.032980</td>
</tr>
<tr>
<td>16</td>
<td>STROKE</td>
<td>65,854</td>
<td>6.239</td>
<td>0.088520</td>
</tr>
<tr>
<td>17</td>
<td>BRAIN PATHOLOGY</td>
<td>4,952</td>
<td>6.187</td>
<td>0.007750</td>
</tr>
<tr>
<td>18</td>
<td>Brain Stimulation</td>
<td>4,263</td>
<td>6.120</td>
<td>0.014510</td>
</tr>
<tr>
<td>19</td>
<td>NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY</td>
<td>3,654</td>
<td>6.059</td>
<td>0.006350</td>
</tr>
<tr>
<td>20</td>
<td>Neurotherapeutics</td>
<td>3,973</td>
<td>5.719</td>
<td>0.008980</td>
</tr>
<tr>
<td>21</td>
<td>PAIN</td>
<td>36,132</td>
<td>5.559</td>
<td>0.038000</td>
</tr>
<tr>
<td>22</td>
<td>Multiple Sclerosis Journal</td>
<td>10,675</td>
<td>5.280</td>
<td>0.021890</td>
</tr>
<tr>
<td>23</td>
<td>SLEEP</td>
<td>20,547</td>
<td>5.135</td>
<td>0.025870</td>
</tr>
<tr>
<td>24</td>
<td>EPILEPSIA</td>
<td>26,301</td>
<td>5.067</td>
<td>0.032490</td>
</tr>
<tr>
<td>25</td>
<td>Alzheimers Research & Therapy</td>
<td>2,192</td>
<td>5.015</td>
<td>0.008470</td>
</tr>
<tr>
<td>26</td>
<td>JOURNAL OF NEUROTRAUMA</td>
<td>14,508</td>
<td>5.002</td>
<td>0.021130</td>
</tr>
<tr>
<td>27</td>
<td>JOURNAL OF PAIN</td>
<td>9,264</td>
<td>4.859</td>
<td>0.016890</td>
</tr>
<tr>
<td>28</td>
<td>Journal of Stroke</td>
<td>694</td>
<td>4.750</td>
<td>0.002880</td>
</tr>
<tr>
<td>29</td>
<td>Therapeutic Advances in Neurological Disorders</td>
<td>1,004</td>
<td>4.750</td>
<td>0.002800</td>
</tr>
<tr>
<td>30</td>
<td>JOURNAL OF PSYCHOPHARMACOLOGY</td>
<td>5,808</td>
<td>4.738</td>
<td>0.010900</td>
</tr>
<tr>
<td>31</td>
<td>PARKINSONISM & RELATED DISORDERS</td>
<td>8,967</td>
<td>4.721</td>
<td>0.019910</td>
</tr>
<tr>
<td>32</td>
<td>NEUROREHABILITATION AND NEURAL REPAIR</td>
<td>5,032</td>
<td>4.711</td>
<td>0.009850</td>
</tr>
<tr>
<td>33</td>
<td>Annals of Clinical and Translational Neurology</td>
<td>1,377</td>
<td>4.649</td>
<td>0.006450</td>
</tr>
<tr>
<td>34</td>
<td>EUROPEAN JOURNAL OF NEUROLOGY</td>
<td>10,206</td>
<td>4.621</td>
<td>0.019350</td>
</tr>
<tr>
<td>35</td>
<td>BIPOLAR DISORDERS</td>
<td>5,070</td>
<td>4.490</td>
<td>0.007870</td>
</tr>
<tr>
<td>Rank</td>
<td>Full Journal Title</td>
<td>Total Cites</td>
<td>Journal Impact Factor</td>
<td>Eigenfactor Score</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>36</td>
<td>NEUROSURGERY</td>
<td>28,592</td>
<td>4.475</td>
<td>0.025930</td>
</tr>
<tr>
<td>37</td>
<td>JOURNAL OF NEUROSURGERY</td>
<td>34,561</td>
<td>4.318</td>
<td>0.030750</td>
</tr>
<tr>
<td>38</td>
<td>CNS DRUGS</td>
<td>4,364</td>
<td>4.206</td>
<td>0.007540</td>
</tr>
<tr>
<td>39</td>
<td>PROGRESS IN NEURO-Psychopharmacology & Biological Psychiatry</td>
<td>9,823</td>
<td>4.185</td>
<td>0.013170</td>
</tr>
<tr>
<td>40</td>
<td>EUROPANEUROPSYCHOPHARMACOLOGY</td>
<td>6,920</td>
<td>4.129</td>
<td>0.015110</td>
</tr>
<tr>
<td>41</td>
<td>CURRENT OPINION IN NEUROLOGY</td>
<td>5,344</td>
<td>4.010</td>
<td>0.010200</td>
</tr>
<tr>
<td>42</td>
<td>INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY</td>
<td>6,259</td>
<td>3.981</td>
<td>0.014550</td>
</tr>
<tr>
<td>43</td>
<td>CEPHALALGIA</td>
<td>8,721</td>
<td>3.882</td>
<td>0.013940</td>
</tr>
<tr>
<td>44</td>
<td>International Journal of Stroke</td>
<td>3,825</td>
<td>3.859</td>
<td>0.014880</td>
</tr>
<tr>
<td>45</td>
<td>NEUROGASTROENTEROLOGY AND MOTILITY</td>
<td>7,401</td>
<td>3.842</td>
<td>0.014960</td>
</tr>
<tr>
<td>46</td>
<td>JOURNAL OF AFFECTIVE DISORDERS</td>
<td>26,957</td>
<td>3.786</td>
<td>0.053380</td>
</tr>
<tr>
<td>47</td>
<td>JOURNAL OF NEUROLOGY</td>
<td>14,359</td>
<td>3.783</td>
<td>0.025160</td>
</tr>
<tr>
<td>48</td>
<td>NEUROEPIDEMIOLOGY</td>
<td>3,261</td>
<td>3.697</td>
<td>0.005640</td>
</tr>
<tr>
<td>49</td>
<td>Expert Review of Neurotherapeutics</td>
<td>3,888</td>
<td>3.692</td>
<td>0.006910</td>
</tr>
<tr>
<td>50</td>
<td>AMERICAN JOURNAL OF NEURORADIOLOGY</td>
<td>22,667</td>
<td>3.653</td>
<td>0.029840</td>
</tr>
<tr>
<td>51</td>
<td>Journal of Neurologic Physical Therapy</td>
<td>964</td>
<td>3.633</td>
<td>0.001530</td>
</tr>
<tr>
<td>52</td>
<td>EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE</td>
<td>3,837</td>
<td>3.617</td>
<td>0.005400</td>
</tr>
<tr>
<td>53</td>
<td>CLINICAL NEUROPHYSIOLOGY</td>
<td>18,399</td>
<td>3.614</td>
<td>0.023070</td>
</tr>
<tr>
<td>54</td>
<td>Frontiers in Neurology</td>
<td>4,272</td>
<td>3.508</td>
<td>0.015580</td>
</tr>
<tr>
<td>55</td>
<td>CNS SPECTRUMS</td>
<td>2,200</td>
<td>3.504</td>
<td>0.003180</td>
</tr>
<tr>
<td>56</td>
<td>Journal of Neurodevelopmental Disorders</td>
<td>1,106</td>
<td>3.500</td>
<td>0.003410</td>
</tr>
<tr>
<td>57</td>
<td>JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY</td>
<td>9,252</td>
<td>3.490</td>
<td>0.008680</td>
</tr>
<tr>
<td>58</td>
<td>Current Neurology and Neuroscience Reports</td>
<td>2,770</td>
<td>3.478</td>
<td>0.007410</td>
</tr>
<tr>
<td>59</td>
<td>Journal of Neurogastroenterology and Motility</td>
<td>1,207</td>
<td>3.438</td>
<td>0.002930</td>
</tr>
<tr>
<td>60</td>
<td>JOURNAL OF SLEEP RESEARCH</td>
<td>5,092</td>
<td>3.433</td>
<td>0.007460</td>
</tr>
<tr>
<td>61</td>
<td>JOURNAL OF HEAD TRAUMA REHABILITATION</td>
<td>4,282</td>
<td>3.406</td>
<td>0.005540</td>
</tr>
<tr>
<td>62</td>
<td>JOURNAL OF HEADACHE AND PAIN</td>
<td>2,624</td>
<td>3.403</td>
<td>0.005510</td>
</tr>
<tr>
<td>63</td>
<td>Journal of Clinical Sleep Medicine</td>
<td>5,329</td>
<td>3.396</td>
<td>0.011800</td>
</tr>
<tr>
<td>64</td>
<td>SLEEP MEDICINE</td>
<td>9,130</td>
<td>3.395</td>
<td>0.016270</td>
</tr>
<tr>
<td>65</td>
<td>Current Alzheimer Research</td>
<td>3,740</td>
<td>3.289</td>
<td>0.007910</td>
</tr>
<tr>
<td>66</td>
<td>DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY</td>
<td>11,671</td>
<td>3.289</td>
<td>0.013680</td>
</tr>
<tr>
<td>67</td>
<td>JOURNAL OF PAIN AND SYMPTOM MANAGEMENT</td>
<td>9,734</td>
<td>3.249</td>
<td>0.013980</td>
</tr>
<tr>
<td>Rank</td>
<td>Full Journal Title</td>
<td>Total Cites</td>
<td>Journal Impact Factor</td>
<td>Eigenfactor Score</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>68</td>
<td>JOURNAL OF NEUROSURGICAL ANESTHESIOLOGY</td>
<td>1,607</td>
<td>3.238</td>
<td>0.002370</td>
</tr>
<tr>
<td>69</td>
<td>CLINICAL JOURNAL OF PAIN</td>
<td>6,585</td>
<td>3.209</td>
<td>0.010350</td>
</tr>
<tr>
<td>70</td>
<td>Multiple Sclerosis and Related Disorders</td>
<td>1,238</td>
<td>3.199</td>
<td>0.004440</td>
</tr>
<tr>
<td>70</td>
<td>PSYCHIATRY AND CLINICAL NEUROSCIENCES</td>
<td>3,259</td>
<td>3.199</td>
<td>0.003780</td>
</tr>
<tr>
<td>72</td>
<td>Neurocritical Care</td>
<td>4,237</td>
<td>3.163</td>
<td>0.008630</td>
</tr>
<tr>
<td>73</td>
<td>ACTA NEUROLOGICA SCANDINAVICA</td>
<td>6,943</td>
<td>3.126</td>
<td>0.007770</td>
</tr>
<tr>
<td>74</td>
<td>Spine Journal</td>
<td>8,564</td>
<td>3.119</td>
<td>0.019380</td>
</tr>
<tr>
<td>75</td>
<td>HEADACHE</td>
<td>6,864</td>
<td>3.091</td>
<td>0.009690</td>
</tr>
<tr>
<td>76</td>
<td>NEUROGENETICS</td>
<td>1,199</td>
<td>3.090</td>
<td>0.002770</td>
</tr>
<tr>
<td>77</td>
<td>NEUROLOGIC CLINICS</td>
<td>2,130</td>
<td>3.072</td>
<td>0.003120</td>
</tr>
<tr>
<td>78</td>
<td>JOURNAL OF NEURO-ONCOLOGY</td>
<td>10,858</td>
<td>3.060</td>
<td>0.017330</td>
</tr>
<tr>
<td>79</td>
<td>EUROPEAN JOURNAL OF PAIN</td>
<td>6,537</td>
<td>2.991</td>
<td>0.010320</td>
</tr>
<tr>
<td>80</td>
<td>Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration</td>
<td>3,312</td>
<td>2.982</td>
<td>0.006140</td>
</tr>
<tr>
<td>81</td>
<td>CEREBROVASCULAR DISEASES</td>
<td>5,911</td>
<td>2.931</td>
<td>0.009520</td>
</tr>
<tr>
<td>82</td>
<td>DEMENTIA AND GERIATRIC COGNITIVE DISORDERS</td>
<td>4,507</td>
<td>2.886</td>
<td>0.004780</td>
</tr>
<tr>
<td>83</td>
<td>Behavioral Sleep Medicine</td>
<td>1,007</td>
<td>2.871</td>
<td>0.002420</td>
</tr>
<tr>
<td>84</td>
<td>Journal of Clinical Neurology</td>
<td>1,145</td>
<td>2.851</td>
<td>0.003080</td>
</tr>
<tr>
<td>85</td>
<td>SEIZURE-EUROPEAN JOURNAL OF EPILEPSY</td>
<td>5,113</td>
<td>2.839</td>
<td>0.008250</td>
</tr>
<tr>
<td>86</td>
<td>HUMAN PSYCHOPHARMACOLOGY-CLINICAL AND EXPERIMENTAL</td>
<td>2,238</td>
<td>2.806</td>
<td>0.003070</td>
</tr>
<tr>
<td>87</td>
<td>SPINE</td>
<td>46,984</td>
<td>2.792</td>
<td>0.035050</td>
</tr>
<tr>
<td>88</td>
<td>Clinical Neuroradiology</td>
<td>630</td>
<td>2.790</td>
<td>0.002090</td>
</tr>
<tr>
<td>89</td>
<td>Neurodegenerative Diseases</td>
<td>1,538</td>
<td>2.785</td>
<td>0.003400</td>
</tr>
<tr>
<td>90</td>
<td>JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY</td>
<td>6,711</td>
<td>2.777</td>
<td>0.007740</td>
</tr>
<tr>
<td>69</td>
<td>CLINICAL JOURNAL OF PAIN</td>
<td>6,585</td>
<td>3.209</td>
<td>0.010350</td>
</tr>
<tr>
<td>70</td>
<td>Multiple Sclerosis and Related Disorders</td>
<td>1,238</td>
<td>3.199</td>
<td>0.004440</td>
</tr>
<tr>
<td>70</td>
<td>PSYCHIATRY AND CLINICAL NEUROSCIENCES</td>
<td>3,259</td>
<td>3.199</td>
<td>0.003780</td>
</tr>
<tr>
<td>72</td>
<td>Neurocritical Care</td>
<td>4,237</td>
<td>3.163</td>
<td>0.008630</td>
</tr>
<tr>
<td>73</td>
<td>ACTA NEUROLOGICA SCANDINAVICA</td>
<td>6,943</td>
<td>3.126</td>
<td>0.007770</td>
</tr>
<tr>
<td>74</td>
<td>Spine Journal</td>
<td>8,564</td>
<td>3.119</td>
<td>0.019380</td>
</tr>
<tr>
<td>75</td>
<td>HEADACHE</td>
<td>6,864</td>
<td>3.091</td>
<td>0.009690</td>
</tr>
<tr>
<td>76</td>
<td>NEUROGENETICS</td>
<td>1,199</td>
<td>3.090</td>
<td>0.002770</td>
</tr>
<tr>
<td>77</td>
<td>NEUROLOGIC CLINICS</td>
<td>2,130</td>
<td>3.072</td>
<td>0.003120</td>
</tr>
<tr>
<td>91</td>
<td>JOURNAL OF NEURAL TRANSMISSION</td>
<td>6,623</td>
<td>2.776</td>
<td>0.008870</td>
</tr>
<tr>
<td>92</td>
<td>NEUROMODULATION</td>
<td>2,148</td>
<td>2.774</td>
<td>0.004860</td>
</tr>
<tr>
<td>93</td>
<td>JOURNAL OF NEUROSURGERY-SPINE</td>
<td>7,059</td>
<td>2.761</td>
<td>0.014050</td>
</tr>
</tbody>
</table>
12. Ausgewählte Publikation

https://doi.org/10.1111/ner.12743
13. Curriculum Vitae

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
14. Publikationsliste

Peer-reviewed Originalarbeiten

Kongressbeiträge

15. Danksagung
Zunächst möchte ich mich bei Herrn Prof. Dr. med. Peter Vajkoczy für das Überlassen dieses Themas und die Betreuung der Forschungsarbeit bedanken.
Besonders möchte ich mich weiterhin bei Frau Dr. med Katharina Faust für die kontinuierliche und professionelle Betreuung sowie das entgegengebrachte Vertrauen bedanken.
Auch gebührt mein Dank Herrn Dr. med. Gerd-Helge Schneider, der mir bei etwaigen Rückfragen stets mit Ratschlägen zur Seite stand.
Zuletzt bin ich meinen Eltern zu tiefstem Dank verpflichtet, da sie mich stets unterstützt und mir mein Studium und damit erst diese Promotion ermöglicht haben.