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Unbiased proteomic profiling was performed toward the identification of biological

parameters relevant in sIBM, thus giving hints about the pathophysiological processes

and the existence of new reliable markers. For that purpose, skeletal muscle biopsies

from 13 sIBM and 7 non-diseased control patients were analyzed with various methods,

including liquid chromatography coupled to tandem mass spectrometry (four patients).

Subsequent data analysis identified key molecules further studied in a larger cohort

by qPCR, immunostaining, and immunofluorescence in situ. Proteomic signature of

muscle biopsies derived from sIBM patients revealed the chaperone and cell surface

marker CD74, the macrophage scavenger molecule CD163 and the transcription

activator STAT1 to be among the highly and relevantly expressed proteins suggesting

a significant contribution of immune cells among the myofibers expressing these

markers. Moreover, in silico studies showed that 39% of upregulated proteins were

involved in type I or mixed type I and type II interferon immunity. Indeed, further

studies via immunohistochemistry clearly confirmed the prominent involvement of the

key type I interferon signature-related molecules, ISG15 as well as IRF8 with MHC

class II+ myofibers. Siglec1 colocalized with CD163+ macrophages and MHC class

II molecules also co-localized with CD74 on macrophages. STAT1 co-localized with

Siglec1+ macrophages in activemyofibremyophagocytosis while STAT6 colocalized with

endomysial macrophages. These combined results show involvement of CD74, CD163,

and STAT1 as key molecules of macrophage activation being crucially involved in mixed

and specific type I interferon, and interferon gamma associated-pathways in sIBM. On a

more general note, these results also highlight the type of immune-interaction between

macrophages and myofibers in the etiopathology of sIBM.
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INTRODUCTION

Inclusion body myositis is a chronic muscle-specific disease
of adulthood leading to progressive and very characteristic
hip flexor and quadriceps paresis, long finger flexor paresis,
and swallowing difficulties (1–4). Muscle biopsy reveals a
severe myopathic/dystrophic process with the characteristic
complex inflammatory infiltrate composed of different types of
T cells, macrophages and other mononuclear cells. Additional
degenerative changes with the presence of amyloidogenic protein
deposits, disturbed autophagy, and mitochondrial abnormalities
are present. Clinical and muscle biopsy characteristics are the
basis of a precise diagnosis of sIBM (1, 3, 5, 6). The autoantibody
cN1A can be used as a marker of severity in sIBM, however,
its role in the pathogenicity of this disease has not been fully
elucidated (7–9). Despite the characteristic clinical picture and
well-known biopsy findings, the pathogenesis of sIBM is still
elusive and not fully understood. So far, therapeutic approaches
have not been broadly successful, questioning the (auto)-
immune pathogenesis. Moreover, these therapeutic interventions
present attempts to address the degenerative autophagic
dysfunction (10).

Proteomics and subsequent specific data analysis of diseased
tissue such as skeletal muscle can help to identify key pathogenic
molecules or groups of molecules involved in certain processes,
which may be of relevance in inflammatory or genetic diseases
affecting muscle fiber integrity [exemplified in (11)].

In this study, we applied unbiased proteomic profiling and
identified CD74, CD163, and STAT1 among the highly expressed
proteins in muscle biopsies of sIBM patients. Notably, these
proteins were found to localize to macrophages and partially to
the sarcolemma of myofibers. Further analyses were performed
in the larger context of associated immune responses in skeletal
muscle tissue. These approaches revealed a specific and key role
of the cellular interaction of specifically activated macrophages
with myofibers.

MATERIALS AND METHODS

Patients
Clinical data of all IBM patients enrolled in this study are listed
inTable 1. We included patients with clinical, andmorphological
signs and symptoms consistent with sIBM, according to present
criteria (12), as well as sex- and age-matched patients defined
as non-diseased controls (NDCs). We chose as controls subjects
who had undergone a muscle biopsy, but who were found not
to have any inflammatory muscle disease. They had suffered
from non-specific complaints like myalgia, but objective muscle
weakness and morphological abnormalities on skeletal muscle
biopsy were absent. CK levels were normal and no signs
of systemic inflammation and no myositis-specific antibodies
(MSA) or myositis-associated antibodies (MAA) were detectable.
sIBM patients had moderate illness (still ambulatory) and
homogeneous muscle biopsy findings (not severely atrophic
muscle bulk). Informed consent was obtained from all patients

and the Charité ethics committee (EA2/163/17), had granted
ethical approval.

Skeletal Muscle Specimens
In this study, we analyzed skeletal muscle biopsies derived
from sIBM patients (clinically and morphologically definite
sIBM) (12). Skeletal muscle biopsies from sIBM patients
were used to produce proteomic results (four biopsies) and
qualitative morphological characteristics in situ (whole cohort).
In addition, four control muscle biopsies were included for the
proteomic profiling and additional nine biopsies for subsequent
immunohistochemical and qPCR studies. All skeletal muscle
specimens were cryopreserved at−80◦C prior to analysis.

Morphological Analysis
All stains were performed on 7µm cryomicrotome sections,
according to standard procedures. Immunohistochemical and
double immunofluorescence reactions were carried out as
described previously (13). The following antibodies were used for
staining procedures:

Mouse anti-human CD163, 1:50, St. John’s Lab/polyclonal;
rabbit anti-human CD74, 1:100 St. John’s Lab/polyclonal; mouse
anti-human CD68, 1:100 Dako/EBM1; rabbit anti-human
iNOS, ready-to-use, Genetex/polyclonal; rabbit anti-human
ISG15, 1:100, abcam/polyclonal; MHCI, 1:1.000, Dako/W6/32;
mouse anti-human MHC class II, 1:100, DAKO/ CR3/43;
rat anti-human STAT1, 1:50, R&D Systems/246523; mouse
anti-human STAT6, 1:50, R&D Systems/253906; mouse anti-
human Siglec1, 1:100, Novus Biologicals/HSn7D2; IRF8,
1:100 Abcam/polyclonal.

Proteomics
Proteomic profiling of four sIBM-patient derived and four
control quadriceps muscles was carried out as described
previously (14).

In Silico Studies
Further in silico studies included “Proteomaps” (www.
proteomaps.net), “Interferome” (www.interferome.org),
“Cytoscape” (www.cytoscape.org) and “STRING” (www.
string-db.org) and have been carried out to unravel
functional connections and interdependences between the
proteins vulnerable in sIBM with a special focus on such
involved in the interferon-mediated immune response. All
regulated proteins (24 down, 119 up-regulated) were used
for the analyses.

“Proteomaps” enables us to obtain a picture of the quantitative
composition of vulnerable pathways and cellular processes
with a focus on individual protein functions controlling these
pathways and processes. The visualization of affected pathways
(and responsible proteins) is built automatically from the
computerized proteome data and based on the “KEGGPathways”
gene classification. Hereby, individual proteins are shown as
polygons and to emphasize the fold of regulation, polygon-sizes
reflect fold of changes abundances. Functionally related proteins
are arranged in proximity. This in silico tool has been applied
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FIGURE 1 | Key proteomic findings and subsequent in silico analyses. (A) 3-D montages of representative tryptic peptides highlighting the increased abundance of

the corresponding proteins, CD47, STAT1, and CD163. (B) Proteomaps-based analysis of cellular processes addressed by up- and down-regulated proteins in

sIBM-patient-derived muscle (left figures) as well as of proteins predominating the respective cellular processes by taking their relative abundance/fold of regulation

(Continued)
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FIGURE 1 | into consideration (right figures). (C) Venn diagram-based categorization of proteins increased in sIBM-patient-derived muscle and modulated by the

three different interferon types (detailed list of increased proteins controlled by interferons is provided in Table 2). (D) Cytoscape-based visualization of functional

networks of upregulated proteins controlled by interferons. (E) STRING-based analysis of functional protein networks of CD74 (left figure), STAT1 (figure in the middle)

and CD163 (right figure) toward the identification of further interferon-modulated and macrophage-expressed proteins with pathophysiological significance in sIBM.

FIGURE 2 | Immunohistochemical reactions of potential key players in the skeletal muscle biopsies from sIBM patients. Proteomics-based identified key players

showed a positive staining in sIBM patients’ skeletal muscle biopsies, where CD74 (A), as well as CD163 (B) highlighted macrophages. STAT1 (C) was expressed in

macrophages in active myophagocytosis, while it was not present at the sarcolemma of myofibers.

to proteins showing a statistically significant altered abundance
and thus vulnerability in sIBM-diseased muscle. “Interferome”
enables the reliable identification of individual interferon-
regulated genes or respective molecular signatures. Here,
“Ensembl IDs” have been utilized to filter for interferon-regulated
genes (or rather corresponding proteins) based on our proteomic
findings. “Cytoscape” as an additional open source in silico tool
enabling the visualization of molecular and functional protein-
protein interaction networks. Here, we applied “Cytoscape” to
proteins modulated by the interferon-response (based on the
results of our “Interferome”-based data analysis). “STRING“
(Search Tool for the Retrieval of Interacting Genes/Proteins)
represents an in silico tool enabling the delineation of (direct and
functionally related) protein-protein interactions and thus allows
to identify functional interdependences of proteins with altered
abundances in diseased tissues such as sIBM muscle. Here, we
applied “STRING” to decipher proteins interacting with CD74,
STAT1, and CD63.

Quantitative Reverse Transcription PCR
(qRT-PCR)
Total RNA was extracted from muscle specimens using
the technique described previously (13). Briefly, cDNA was
synthesized using the High-Capacity cDNA Archive Kit
(Applied Biosystems, Foster City, CA). For qPCR reactions,
2 ng of cDNA were used and for subsequent analysis, the
7900HT Fast Real-Time PCR System (Applied Biosystems,
Foster City, CA) was utilized with the following, running
conditions: 95◦C 0:20, 95◦C 0:01, 60◦C 0:20, 45 cycles (values
above 40 cycles were defined as not expressed). All targeted
transcripts were run as triplicates. For each of these runs, the
reference gene PGK1 has been included as internal control to
normalize the relative expression of the targeted transcripts.
The qPCR assay identification numbers, TaqMan R© Gene
Exp Assay from Life Technologies/ThermoFisher are listed

as follows: STAT1 Hs01013989_m1, STAT6 Hs00598625_m1,
PGK1 Hs99999906_m1. The 1CT of non-diseased controls was
subtracted from the 1CT of sIBM patients muscles to determine
the differences (11CT) and fold change (2∧ − 11CT) of gene
expression. Gene expression was illustrated by the log10 of fold
change values compared to NDCs.

Statistical Analysis
Statistical analysis of proteomic data has been carried out
as described previously (14). Kruskal-Wallis one-way ANOVA
followed by Bonferroni-Dunn correction of the post hoc
tests was used to analyze quantitative differences of mRNA
transcripts. Data are presented as mean ± SEM. The level of
significance was set at P < 0.05. GraphPad Prism 5.02 software
(GraphPad Software, Inc., La Jolla, CA, USA) was used for
statistical analysis.

RESULTS

Proteomic Signature: CD74, CD163, and
STAT1 Are Highly Expressed in Skeletal
Muscle Biopsies of sIBM Patients
Since the precise pathogenesis of IBM is still unclear, we
aimed to analyze the proteomic signature via label-free profiling
as an unbiased approach to gather new relevant molecules
that might play decisive roles in the disease pathogenesis.
The proteomic analysis unraveled that CD74 (6.7-fold; log2-
ratio), STAT1 (5-fold; log2-ratio), and CD163 (4.8-fold; log2-
ratio) are among the highly expressed proteins in skeletal
muscle specimens derived from sIBM patients (Figure 1A).
In silico studies (proteomap: https://www.proteomaps.net/) of
all proteins altered in abundance (out of 1375 quantified
proteins, 24 are statistically significantly decreased and 119 are
increased; vulnerability of 10.4% of the investigated proteome)
in sIBM-patient derived skeletal muscles, revealed alteration
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of biosynthesis, cellular composition, cytoskeleton and altered
protein processing (folding, sorting, and degradation) along
with vesicular transport. Moreover, the activation of the
immune response is a predominating mechanism mirrored
by an increase in specific proteins (Figure 1B). Remarkably,
proteomap-based linking of altered cellular processes to key
proteins (taking their fold of regulation into consideration)
revealed that CD74 and STAT1 hereby seem to be major
molecular “determinators” of modulation of the immune
response. Prompted by this finding and by the fact that
CD74, STAT1, and CD163 are well-known modulators of
interferon-mediated processes (15–21), all up-regulated proteins
(total of 119 proteins) were additionally analyzed in silico
using the “interferome” platform (http://www.interferome.org).
This resulted in the identification of a total 46 transcripts
corresponding to the proteins up-regulated in the muscle of
sIBM patients which are controlled by interferon-modulated
processes (Figure 1C). Hereby 26 out of the 46 up-regulated
transcripts are controlled by both types I and II interferon
and four proteins by types I, II, and III. Five transcripts are
controlled either by type 1 interferons while eleven are by type 2
interferons (Figure 1C). An additional analysis of the interferon-
pathway controlled proteins via the “cytoscape” platform (https://
cytoscape.org/) confirmed a functional interdependence of these
proteins (Figure 1D), thus suggesting a functional relevance
in sIBM-pathogenesis.

A further STRING analysis (https://string-db.org) toward the
identification of functional protein-protein networks confirmed
the functional interplay of the proteins encoded by these
transcripts (Figure 1D), suggesting a fundamental role of
interferon-modulated processes in the etiopathology of sIBM.
An individual STRING analysis of CD74, STAT1, and CD163
confirmed a functional link of these immune-response proteins
to a variety of interferon-induced proteins (Figure 1E).

Based on the dense networks of predicted functional
protein-protein interplays, we evaluated the potential reaction
partners and hence decided to focus on some key players for
further studies. The selected key players are MIF—Macrophage
migration inhibitory factor, involved in the interferon type
response and showing a functional interplay with CD74
(Figure 1E) as well as ISG15, which was not upregulated in our
analyses, but represents a well-known partner (22) for e.g., STATs,
JAKs and IL-6, which are all found in our STRING analysis
(Figure 1E). Both of these molecules showed an increased
immunoreactivity within macrophages in sIBM-patient derived
muscle biopsy specimens, thus supporting the concept of
the involvement of different types of interferon-mediated
downstream intracellular activation programs in macrophages.
The concept of a particular role of macrophage-mediated
interferon response in sIBM is not only further supported by
increased abundance of Macrophage-capping protein (CAPG;
identified via proteomic profiling; Table 2), but also by the
identification of increased immunoreactivity of additional key
players such as Siglec1 and CD68 within macrophages in
sIBM muscle (see below), adding additional markers to the
subsequent analyses.

TABLE 1 | Summarized clinical information of all IBM patients included in the

study.

Patient

No.

Age Sex Duration

of

disease

(years)

Muscle symptoms

sIBM1 72 M ? Symmetric LL prox. and distal paresis,

CK 3-fold elevated

sIBM2 78 F 3 Prox. LL and paresis of finger flexors,

CK 2-fold elevated

sIBM3 64 M 2 Prox. tetraparesis and paresis of distal

forearms, CK 2-fold elevated

sIBM4 68 F 3 Chronic progressive tetraparesis,

significant muscle atrophy

sIBM5 66 M 5 Prox. paresis LL, significant atrophy of

vastus lateralis

sIBM6 75 F ? Prox. paresis LL and distal paresis UL,

CK 6-fold elevated

sIBM7 64 M ? Prox. paresis and distal paresis of

fingers

sIBM8 75 M 2 Prox. progressive paresis LL and

exercise induced pain, CK 3-fold

elevated

sIBM9 66 M ? Dysphagia, distal and proximal

tetraparesis, CK 1.5-fold elevated

sIBM10 79 F 11 Prox. tetraparesis, progressive muscle

atrophy

sIBM11 76 M >2 Muscle pain, proximal weakness,

muscle atrophy, CK normal

sIBM12 72 F 7 Prox. tetraparesis, muscle atrophy

sIBM13 71 M ? Prox. tetraparesis

Cellular Localization of CD74, CD163, and STAT1 in

Skeletal Muscle Biopsies From sIBM Patients
To verify the in silico results and the respective increased
expression of CD74, CD163, and STAT1 in sIBM muscle
biopsies, we stained sections of muscle biopsy specimens in
a larger cohort of sIBM patients (n = 13). In sIBM patients’
skeletal muscle biopsies, CD74 mostly stained endomysial
macrophages (Figure 2A). CD163 highlighted macrophages in
the endomysium but was not positive on the sarcolemma of the
myofibres (Figure 2B). STAT1 was expressed in macrophages in
active myophagocytosis but not in the endo- and perimysium,
independently of macrophages. STAT1 antibodies did not
stain the sarcolemma of myofibers (Figure 2C). In summary
and on a descriptive first approach, all three molecules are
detectable on a variety of macrophages in the endomysium or
in myophagocytosis.

Significance of CD74, CD163, and STAT1 to

Immunological Processes in Skeletal Muscle of sIBM

Patients
To expand these descriptive findings and to further implement
functional association of the above-mentioned quantitatively
and qualitatively highly relevant proteins, we analyzed
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additional proteins which are predicted to interact with
those in situ and studied co-expression of several markers
by immunofluorescence. CD74 stained some muscle fibers
sarcolemmaly and co-localized with CD68+ macrophages
(Figure 3A), as well as with sarcolemmal MHC class II
immunoreactivity (Figure 3B). On the contrary, the macrophage
migration inhibitory factor MIF did not co-stain with CD74
(Figure 3C). Furthermore, our immunostaining studies revealed
that many CD163+ macrophages co-stained with Siglec1
(CD169) in the endomysium (Figure 3D).

In addition, Siglec1+ macrophages expressed the transcription
factor STAT1 in active myophagocytic clusters (Figure 4A),
while STAT6 was expressed endomysially (Figure 4B),
demonstrating the involvement of different yet complementary
immune mechanisms in the course of sIBM-associated muscle
inflammation. Importantly, both markers were also significantly
elevated on the transcript level in skeletal muscle biopsies
of sIBM patients as compared to NDCs (Figure 4E), with
gene expression of STAT1 being elevated around 15-fold,
and of STAT6 around 4,5-fold. Of note, activated MHC
class II+ macrophages strongly co-stained with key proteins
of the type I interferon pathway such as IRG8 and ISG15
(Figures 4C,D and Table 2).

DISCUSSION

In the present study, data from unbiased proteomic analysis
highlighted the presence of certain proteins playing decisive roles
in immune response to be highly abundant in sIBM patients’
skeletal muscle biopsies. In silico analyses and subsequent
morphological studies in skeletal muscle revealed their key
characteristics in pathways driving specific macrophage
responses. Along this line, Siglec1+ CD163+ and Siglec1+

STAT1+ macrophages were identified. Furthermore, MHC
class II+ macrophages co-expressed ISG15 and IRF8 in
patient-derived muscles highlighting a tight bond between
these activated macrophages and the type I and type
II interferon responses. Additionally, MHC class II+

macrophages and the sarcoplasm of adjacent muscle fibers
expressed CD74.

These findings have important implications for the current
understanding of the role of specifically activated macrophages
in the pathogenesis of sIBM. Several ways of addressing the
activation of macrophages in vivo and in vitro by using targeted
and unbiased approaches notoriously exist (13, 23–27). Flexible
states of macrophage activation have been found to occur
according to their vast duties in physiology and pathophysiology
of different diseases, specifically in chronic inflammatory and
fibrotic diseases (24, 28–31). In sIBM, the vast majority of
studies focusing on the immune-system have addressed the
adverse effects of systemic T cell function and dysfunction
or T cell dysfunction within the muscle itself (1, 5, 32–38).
In contrast, only few studies have had a broader approach
in tackling additional aspects of the immune response (48,
49) or genetic factors influencing the pathogenesis such as

the SQSTM1 or VCP variants (39). Proteomic analysis has
recently helped to decipher new and unexpected molecules
involved in the pathophysiology of sIBM such as FYCO1
and its role in autophagy or the composition of protein
aggregates in rimmed vacuoles (40). While the latter studies
have focused on the elucidation of vacuole pathophysiology,
in the present study we have used the whole protein extracts
of skeletal muscle biopsies to obtain molecular information
about the entire tissue, and thus, to gain a better and
unbiased understanding of the etiology of the disease. This
approach revealed that CD74, CD163 and STAT1, driving
inflammatory responses, were at the forefront of the highly
expressed proteins within the diseased skeletal muscle tissue.
This finding accords with our hypothesis of a major role
for molecules driving macrophage polarization since sIBM
biopsies feature very strong immunity-related aspects over
all with macrophages being by far the most abundant cell
type in the lesion. Hence, we were able to characterize the
immunity of these macrophages in more detail and found
molecules identified by proteomic analysis and subsequently
verified by immunohistochemistry in biopsies which are strongly
related to type I/II interferon responses, specifically IRF8,
ISG15, GBP1, GBP1P1, HLA-DOB, IFIT3, STAT1, TAP2. Since
macrophages can adopt a great variety of functional states
(24, 31, 41, 42), it was not surprising to identify a further
important subgroup consisting of STAT1+Siglec1+ macrophages
in active myophagocytosis. This type of macrophages is
implicated in acute clearance of necrotic muscle fibers, a process
which, despite the explicitly chronic character of the disease
(active over decades), is a constant muscle biopsy feature. Of
note, we also identified STAT6+Siglec1+ macrophages in the
endomysium at distance of myophagocytic and necrotic fibers,
highlighting that both downstream transcription factors may
become activated in certain macrophages, which have then
different duties and fates. A specific immune phenotype of
Caucasian sIBM patients with HLA-A3 suggesting MHC class
I activation has been described (43), MHC class II staining
patterns were recently described for sIBM patients in comparison
to dermatomyositis and anti-synthetase syndrome-associated
myositis (44). This finding is in keeping with our proteomic
identification of elevated CD74, as a protein regularly interacting
with MHC class II molecules. Our findings also indicate that
macrophages (which are mentioned as being the most abundant
mononuclear inflammatory cells in skeletal muscle biopsies of
sIBM patients) have been underestimated as cellular key players
in the etiopathology of sIBM. The second relevant finding
of this study, is the type I and type II interferon response
identified both by proteomic profiling, subsequent in silico
studies, and immunohistochemistry, expanding previous data
where the interferon signature genes have been addressed by
transcriptomics (45). Notably, the signatures of type I and type II
Interferons, identified here, differ from the ones that have been

described to be crucial in dermatomyositis (45–47). Herewith,
the relevant role of macrophages as versatile multifunctional
immune cells playing a decisive role in the etiopathology of
sIBM was shown. These findings may define a molecular starting
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TABLE 2 | List of proteins altered in abundance and controlled by interferon-mediated processes (based on “Interferome” database).

Acces-sion

#

Peptide

count/unique

peptides

Anova

(p)

Description Gene

Symbol

Ensembl ID Fold of regu-

lation [log2]

UPREGULATED PROTEINS

Q99972 1/1 0.04 Myocilin MYOC ENSG00000034971 6.49

P15153 1/1 <0.0005 Ras-related C3 botulinum toxin

substrate 2

RAC2 ENSG00000128340 5.21

P42224 9/9 0.01 Signal transducer and activator of

transcription 1-alpha/beta

STAT1 ENSG00000115415 4.99

Q14764 8/8 <0.0005 Major vault protein MVP ENSG00000013364 4.66

Q9UJU6 1/1 <0.0005 Drebrin-like protein DBNL ENSG00000136279 4.60

P08754 1/1 0.01 Guanine nucleotide-binding protein

G(k) subunit alpha

GNAI3 ENSG00000065135 4.44

P33241 1/1 0.02 Lymphocyte-specific protein 1 LSP1 ENSG00000130592 4.29

Q03519 1/1 0.01 Antigen peptide transporter 2 TAP2 ENSG00000204267

ENSG00000250264

3.95

O95865 2/2 <0.0005 N(G),N(G)-dimethylarginine

dimethylaminohydro-lase 2

DDAH2 ENSG00000213722 3.89

P32455 4/3 0.03 Interferon-induced

guanylate-binding protein 1

GBP1 ENSG00000117228

ENSG00000225492

3.72

Q9UKY7 1/1 <0.0005 Protein CDV3 homolog CDV3 ENSG00000091527 3.65

O14879 1/1 0.03 Interferon-induced protein with

tetratricopeptide repeats 3

IFIT3 ENSG00000119917 3.58

Q9UHD8 4/3 <0.0005 Septin-9 SEPT9 ENSG00000184640

ENSG00000261843

3.58

Q14203 3/3 <0.0005 Dynactin subunit 1 DCTN1 ENSG00000204843 3.46

P49756 1/1 <0.0005 RNA-binding protein 25 RBM25 ENSG00000119707 3.32

Q9Y3B3 1/1 0.01 Transmembrane emp24

domain-containing protein 7

TMED7 ENSG00000134970 3.19

P78559 1/1 0.02 Microtubule-associated protein 1A MAP1A ENSG00000166963 3.16

Q14980 1/1 0.02 Nuclear mitotic apparatus protein 1 NUMA1 ENSG00000137497 3.12

P35580 9/4 0.04 Myosin-10 MYH10 ENSG00000133026 2.91

P23142 3/3 0.02 Fibulin-1 FBLN1 ENSG00000077942 2.87

Q13033 1/1 0.01 Striatin-3 STRN3 ENSG00000196792 2.79

O75534 1/1 0.03 Cold shock domain-containing

protein E1

CSDE1 ENSG00000009307 2.77

Q99536 4/4 <0.0005 Synaptic vesicle membrane protein

VAT-1 homolog

VAT1 ENSG00000108828 2.77

Q9BSJ8 6/6 <0.0005 Extended synaptotagmin-1 ESYT1 ENSG00000139641 2.76

P62070 1/1 <0.0005 Ras-related protein R-Ras2 RRAS2 ENSG00000133818 2.75

Q07065 2/2 0.01 Cytoskeleton-associated protein 4 CKAP4 ENSG00000136026 2.75

Q9Y696 4/4 0.01 Chloride intracellular channel

protein 4

CLIC4 ENSG00000169504 2.75

O60240 9/8 0.05 Perilipin-1 PLIN1 ENSG00000166819 2.73

P32456 3/2 0.01 Interferon-induced

guanylate-binding protein 2

GBP2 ENSG00000162645 2.72

Q15075 4/3 0.02 Early endosome antigen 1 EEA1 ENSG00000102189 2.72

P04275 5/5 <0.0005 von Willebrand factor VWF ENSG00000110799 2.71

P04083 9/8 <0.0005 Annexin A1 ANXA1 ENSG00000135046 2.70

P51911 2/2 0.01 Calponin-1 CNN1 ENSG00000130176 2.66

Q9Y4L1 2/2 0.04 Hypoxia up-regulated protein 1 HYOU1 ENSG00000149428 2.61

P09936 5/4 0.02 Ubiquitin carboxyl-terminal

hydrolase isozyme L1

UCHL1 ENSG00000154277 2.57

P16070 1/1 <0.0005 CD44 antigen CD44 ENSG00000026508 2.52

(Continued)
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TABLE 2 | Continued

Acces-sion

#

Peptide

count/unique

peptides

Anova

(p)

Description Gene

Symbol

Ensembl ID Fold of regu-

lation [log2]

DOWNREGULATED PROTEINS

P02585 9/9 0.01 Troponin C, skeletal muscle TNNC2 ENSG00000101470 −2.25

P48788 12/12 0.01 Troponin I, fast skeletal muscle TNNI2 ENSG00000130598 −2.21

P45378 21/20 0.01 Troponin T, fast skeletal muscle TNNT3 ENSG00000130595 −2.19

P16219 5/5 0.02 Short-chain specific acyl-CoA

dehydrogenase, mitochondrial

ACADS ENSG00000122971 −1.83

P30711 3/2 0.01 Glutathione S-transferase theta-1 GSTT1 ENSG00000184674 −1.37

Q12797 1/1 0.01 Aspartyl/asparaginyl

beta-hydroxylase

ASPH ENSG00000198363 −1.11

P11217 55/42 0.01 Glycogen phosphorylase, muscle

form

PYGM ENSG00000068976 −1.10

Q8N335 8/7 0.01 Glycerol-3-phosphate

dehydrogenase 1-like protein

GPD1L ENSG00000152642 −1.10

FIGURE 3 | Double immunflorescent staining reveal functional interactions in sIBM patients’ muscle tissue. Co-staining of various proteins revealed that CD74

co-labels with CD68+ macrophages (A), and MHC class II (B), but not with the macrophage migration inhibitory factor MIF (C). In addition, CD163+ macrophages

partially co-express Siglec1 (D).

point for future therapeutic approaches in sIBM utilizing JAK-
STAT inhibitors.

SUMMARY

In summary, we demonstrate that unbiased proteomic profiling
of skeletal muscle biopsies provides important insights into

the molecular etiology of a disease and more precisely in
the context of sIBM revealed proteins prominently involved
in immunity and characterizing a pattern of macrophage
activation. Application of immunohistochemical verification
and analysis of these cells in the context of the type
I and type II interferon signature in situ allowed the
attribution of these proteins to specific functional states of
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FIGURE 4 | different subforms of macrophages, as well as type I interferon pathways are found in sIBM. We could demonstrate Siglec1+ macrophages, which

express STAT1 (A), or STAT6 (B), hinting at involvement of different macrophage subtypes in sIBM muscle inflammation. The activation of STAT1 and STAT6 could

also be demonstrated by significantly elevated gene expression levels (E), p < 0.01. MHC class II+ macrophages also clearly co-stained with key proteins of the type I

interferon pathway like IRF8 (C) and ISG15 (D).

macrophage activation. Hence, we show that several different
types of macrophages are actively affecting the immune
response in sIBM, via a prominent type I interferon signature
among others.
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