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Intrauterine growth restriction (IUGR) is a condition whereby a fetus is unable to achieve

its genetically determined potential size. IUGR is a global health challenge due to

high mortality and morbidity amongst affected neonates. It is a multifactorial condition

caused by maternal, fetal, placental, and genetic confounders. Babies born of diabetic

pregnancies are usually large for gestational age but under certain conditions whereby

prolonged uncontrolled hyperglycemia leads to placental dysfunction, the outcome

of the pregnancy is an intrauterine growth restricted fetus with clinical features of

malnutrition. Placental dysfunction leads to undernutrition and hypoxia, which triggers

gene modification in the developing fetus due to fetal adaptation to adverse utero

environmental conditions. Thus, in utero genemodification results in future cardiovascular

programming in postnatal and adult life. Ongoing research aims to broaden our

understanding of the molecular mechanisms and pathological pathways involved in fetal

programming due to IUGR. There is a need for the development of effective preventive

and therapeutic strategies for the management of growth-restricted infants. Information

on the mechanisms involved with in utero epigenetic modification leading to development

of cardiovascular disease in adult life will increase our understanding and allow the

identification of susceptible individuals as well as the design of targeted prevention

strategies. This article aims to systematically review the latest molecular mechanisms

involved in the pathogenesis of IUGR in cardiovascular programming. Animal models

of IUGR that used nutrient restriction and hypoxia to mimic the clinical conditions in

humans of reduced flow of nutrients and oxygen to the fetus will be discussed in terms of

cardiac remodeling and epigenetic programming of cardiovascular disease. Experimental

evidence of long-term fetal programming due to IUGR will also be included.
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FETAL CARDIOVASCULAR
PROGRAMMING IN CONDITIONS OF
PLACENTAL DYSFUNCTION AND IUGR

Cardiovascular disease (CVD) is the main cause of mortality
and morbidity in the twenty-first century (1–3). According
to the World Health Organization (WHO), coronary heart
disease and stroke accounted for ∼15.2 million deaths in
2016 globally. Previously, CVD was assumed to be caused by
a series of events that occur after birth, such as a person’s
lifestyle, age, and other disease conditions. In other words,
postnatal gene-environment interactions are important factors
promoting CVD, but recently we began to understand that
in utero environmental changes that occur in the first few
months of prenatal development epigenetically program the fetus
for development of CVD in adulthood (4–6). Therefore, apart
from postnatal gene-environment interaction, information on in
utero gene-environment interactions is needed to improve our
understanding of CVD.

The placenta performs many functions ranging from growth
of the fetus, prevention of fetal rejection by maternal immune
system, as well as the transport/exchange of gases, nutrients,
and waste products between mother and fetus (7). In addition,
the placenta is involved in metabolism and production of many
hormones that play vital roles in the maintenance of pregnancy
(7). In a normal pregnancy the placental weight and birth
weight are highly correlated (8). In adverse situations where the
maternal-fetal circulation is altered due to disease conditions
such as diabetes, the development of the placenta also changes
(9). The determining factor in placental dysfunction is the
extent of exposure to hyperglycemia during fetal and placental
development (10). Depending on the degree of hyperglycemia,
the growth of the placenta and the fetus can be severely
affected (10). Long-term uncontrolled hyperglycemia can lead to
placental vascular dysfunction in women suffering from diabetes
(10). Endothelial dysfunction was observed in hyperglycemic
human umbilical vein cells (HUVEC) compared to control cells
(11). According to studies by Starikov et al. pre-gestational
diabetes led to placentas that were small for gestational age
in 20% of pregnancies and placentas that were large for
gestational age in 30% of cases (9). In conditions where maternal
hyperglycemia is not controlled, it results in histological changes
of the placental tissues (10, 12). Placentas from mothers with
diabetes display different histological features such as immature
villous, increased number of fetal capillaries, and fibrinoid
necrosis of the placental villi (7). Prolonged maternal insults
such as hyperglycemia, dyslipidemia, and hyperinsulinemia may
exceed the placental capacity to adapt and respond leading
to placental dysfunction and adverse fetal outcome such as
in IUGR (13, 14). Placental dysfunction is the most common
cause of asymmetrical intrauterine growth restriction (15–17).
Uteroplacental malperfusion, decidual vasculopathy, placental
infarct, and maternal vasculopathy were observed in women
with diabetes (12) and are associated with reduced fetal growth
and adverse outcome (17, 18). Abnormal placental vascular
development decreases normal placental blood supply, leading to
reduced oxygen (hypoxia) and nutrient delivery (undernutrition)

to the fetus and a subsequent IUGR fetus (16, 17). As a
result of reduced oxygen and nutrition, the fetus redistributes
its cardiac output to increase oxygen and nutrient supply to
the brain, which is referred to as brain sparing (19). This
prenatal cerebral circulatory adaptation has been associated
with long-term behavioral problems in schoolchildren who were
growth-restricted at birth. These difficulties include problems
in memory, cognition, motor skills, and neuropsychological
malfunction (20). IUGR offspring experience the highest rate of
coronary heart disease, myocardial dysfunction, type 2 diabetes,
hypertension, and stroke as adults (21, 22). The underlying
molecular mechanisms leading to fetal susceptibility to adult
disease are still under investigation. Interestingly, we now know
that clinical symptoms of cardiovascular disease may not appear
until adult life (4). In 1989, David Barker demonstrated this
aspect amongst individuals with low birth weight, showing
a direct association between low birth weight and CVD in
adulthood. This study demonstrated that the incidence of
ischemic heart disease and death were three times higher among
men with low birth weight compared to men with high birth
weight (5). Epidemiological investigations of adults born at the
time of the Dutch famine between 1944 and 1945 revealed an
association between maternal starvation and a low infant birth
weight with a high incidence of hypertension and coronary
heart disease in these adults (23). Furthermore, Painter et al.
reported the incidence of early onset coronary heart disease
among persons conceived during the Dutch famine (24). In that
regard, Barker’s findings led to the concept of fetal adaptation
to prenatal environmental changes and vulnerability to chronic
diseases in adult life, a concept known as “fetal programming.”
In 2003, the concept of “Developmental origins of health and
disease (DOHaD)” was published (25). DOHaD describes the
scenario whereby in uteromaternal insults result in structural and
functional changes in fetal organs extending in postnatal life and
increasing susceptibility of chronic disease in adulthood. Fetal
programming of other organs such as the brain (19), lungs (26),
and hypothalamic-pituitary-adrenal (HPA) axis have been greatly
studied, however the heart is also very important and few studies
have investigated fetal programming of the heart as summarized
below (27).

FETAL PROGRAMMING OF THE HEART IN
IUGR

The heart is the first organ to develop and function during
embryogenesis (28). Fetal organs that develop early are more
vulnerable to changes of the in utero environment than organs
that develop later (29). There is a direct correlation between
the amount of oxygen and nutrient supply to the fetus
and cardiomyocytes development and function (29). Chronic
hyperglycemia causes placental vascular dysfunction, which leads
to reduced nutrient and oxygen supply to the fetus resulting
in IUGR (10). Neonates exposed to IUGR present significant
changes in cardiac morphology and subclinical myocardial
dysfunction at birth (29). As such, in placental dysfunction
due to maternal diabetes involving undernutrition and hypoxia,
the developing myocardium undergoes structural and functional
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changes referred to as cardiac remodeling (30). In 1982,
Hochman and Bulkley were the first to use the term “remodeling”
to describe the substitution of infarcted tissue with scar tissue in
a model of myocardial infarction (31). Later, in the year 2000,
an international forum defined cardiac remodeling as molecular,
cellular, and interstitial changes that manifest clinically as
changes in size, shape, and function of the heart resulting from
cardiac load and injury (30). Therefore, the clinical phenotype is
a consequence of genomic changes that occur due to in utero gene
environment interaction. Few clinical studies and experimental
animal models have investigated the impact of IUGR on cardiac
remodeling as discussed below.

IMPACT OF PLACENTAL DYSFUNCTION
ON CARDIAC STRUCTURE AND
FUNCTION

Epidemiological studies have shown changes in the structure and
function of the heart in IUGR infants and neonates (29, 32).
Clinical investigations have reported that postnatal catch-up
growth in IUGR infants can result in abnormal cardiac function
(33–35). Cardiovascular evaluation using echocardiographic
assessment of IUGR fetuses revealed cardiac hypertrophy
characterized by globular cardiac shape, higher intraventricular
septum thickness, and increased pressure overload leading to
both systolic and diastolic dysfunction (36–38). Primary cardiac
and vascular changes observed at birth in IUGR fetus can persist
from a few months up to a few years of age (35, 37).

Recently, clinical investigations have shown evidence of
cardiac remodeling in IUGR offspring (32). For example, high
systolic blood pressure and smaller aortic diameter (ascending
aorta; IUGR:24.4 ± 1.5mm, Control: 26.3 ± 2.2mm, P <

0.05) were observed 20 years later in young adults (age 22–
25 years) who were born growth restricted due to placental
dysfunction (32). Compared to healthy controls, the diameter
of the ascending aorta was smaller in IUGR subjects and a
high aortic pressure augmentation index was observed (32).
Electrocardiography (ECG) measurement revealed electrical
remodeling in preadolescence who were born with IUGR (39).
These studies evaluated signs of ventricular electrical remodeling
in subjects with IUGR compared to controls by assessing
changes in ventricular depolarization and repolarization using
the QRS complex and T-wave, respectively (39). The classical
frontal QRS-T angle was significantly narrower in IUGR
preadolescents compared to control subjects (39). They also
reported wider angles between the depolarization dominant
vector and the frontal XY body plane in preterm-IUGR subjects,
resulting in significantly wider angles between depolarization
and repolarization vectors (39). The studies concluded that
ventricular electrical remodeling observed in the pre-adolescent
subjects might predispose to cardiovascular disease in later
life (39). Electrical remodeling is induced by functional
(altered electrical activation) and structural stressors (such as
in hypertrophy and heart failure). These electrophysiological
changes generate a substrate that is vulnerable to malignant
ventricular arrhythmias. Cardiac remodeling and dysfunction

increases with greater severity of IUGR (33, 40). The above-
mentioned studies show evidence of cardiac remodeling in
neonates, pre-adolescents, and young adults who were born
with IUGR (41–44). These findings are supported by animal
models; IUGR programming resulted in myocardial remodeling,
reduced systolic and diastolic function and premature aging of
the heart in growth restricted baboons (45). These structural and
functional changes of the heart can be associated to changes in
fetal cardiac gene expression that have occurred because of fetal
adaptations to intrauterine environmental changes (46). These
in utero changes, which result in reduced nutrition and oxygen,
are due to placental dysfunction caused by maternal insults such
as maternal vasculopathy in a diabetic pregnancy (46).

DIFFERENTIAL EXPRESSION OF CARDIAC
GENES LEADING TO DYSFUNCTIONAL
HEART IN IUGR

Pre-gestational and gestational diabetes have been associated
with maternal vasculopathy which can be caused by long-
term poor glycemic control (12). Fetal growth in diabetic
pregnancy might be affected in two different ways; maternal
hyperglycemia stimulates fetal overgrowth and maternal
vasculopathy may be associated with placental dysfunction
leading to a reduced nutrient and oxygen supply and subsequent
IUGR (12). The majority of animal models use either maternal
undernutrition and/or hypoxia to mimic IUGR (6, 47, 48).
Hypoxia, undernutrition, or both interventions induce cardiac
remodeling in adult rats (47). IUGR models have linked cardiac
remodeling with changes in fetal gene expression. Several genes
that play key roles in cardiac development have been studied in
detail. One prominent example is the hypoxia-inducible factor 1
(HIF-1), which is required for normal growth of the myocardium
and coronary blood vessels in conditions of low oxygen (49, 50).
High levels of HIF-1 were reported in fetal rodent hearts
exposed to hypoxia (49, 50). Abnormal cardiogenesis was
seen in HIF-1 alpha-deficient mice (51). Therefore, elevated
expression of HIF1 and its downstream genes is essential for
fetal adaptation and proper cardiac development in conditions
of placental dysfunction in which oxygen supply to the fetus
is relatively low (51–55). In a guinea pig model of maternal
nutrient restriction, hearts of growth restricted offspring
revealed increased expression of Poly [ADP-ribose] polymerase
1 (PARP1) gene and a reduction in cardiomyocyte number as
well as hypertrophy (56). Another interesting class of genes
associated with cardiac remodeling are the cardioprotective
genes such as heat shock protein 70 (HSP70) and protein
kinase C epsilon (PKCε) (57). Male rats exposed to hypoxia had
increased expression of HSP70 and ischemic injury (48, 58–60).
In addition, hypoxia in rat hearts resulted in a significant increase
in PKCε expression and increased susceptibility to ischemia and
perfusion injury in a sex-dependent manner (61). Furthermore,
the mammalian target of the rapamycin complex 1 (mTORC1)
pathway has also been associated with cardiac remodeling in
IUGRmice, and prenatalmTORC1 inhibition caused a reduction
in cardiomyocyte number in adult hearts compared to controls
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(62). In a rabbit model, IUGR was associated with cardiac
mitochondrial Complex II dysfunction and an increase in
Sirtuin 3 expression (63). In a rat model, maternal diabetes was
associated with increased expression of forkhead box protein
O1 (FOXO1) and its target genes in the heart of the offspring
(64). Under conditions of undernutrition and hypoxia, changes
that occur to enable the growing fetus to adapt and survive the
inadequate substrate supply results in programming of fetal
cardiac genes (4, 6, 65–67).

ROLE OF EPIGENETICS IN
CARDIAC PROGRAMMING

Researchers have been investigating the mechanisms by
which IUGR caused changes in fetal cardiac genes. Epigenetic
regulation is one principle underlying molecular mechanism that
causes differential gene expression in IUGR fetuses compared
to normally grown fetuses. Epigenetic activities can alter gene
expression throughout an individual’s lifetime; thus, the function
of the corresponding protein products as well as the organs
involved are affected. Gene modifications occur in response to
environmental changes, and genes are switched on and off via
epigenetic mechanisms. Epigenetic alterations could be altered
by lifestyle (for example overnutrition or undernutrition) or
possibly by using treatments strategies postnatally (68). Hence,
it is proposed that epigenetic mechanisms are important for
understanding pathophysiology as well as potential targets for
diagnosis and treatment of cardiovascular diseases (69, 70).
Epigenetic regulation occurs by DNA methylation, histone
modification, or regulation of genes by non-coding RNAs
(ncRNAs) such as small microRNA and long non-coding RNA
(71). So far, DNA methylation and histone acetylation are the
most studied epigenetic mechanisms and clinical evidence
of epigenetic programming is reported in adult patients with
various cardiovascular diseases as reviewed by Muka et al.
(72). Other studies have investigated the posttranscriptional
regulatory role of non-coding RNA in relation to cardiovascular
disease susceptibility in adult cardiac patients (73–75).
We will focus on DNA methylation in IUGR leading to
cardiovascular disease.

DNA METHYLATION MECHANISMS IN
IUGR LEADING TO DEVELOPMENT OF
CARDIOVASCULAR DISEASE

DNA methylation is the covalent addition of methyl groups
to the C5 position of cytosine in dinucleotide CpG islands
(76). CpG islands are regions with a high frequency of CpG
sites where a cytosine nucleotide is followed by a guanine
nucleotide. Methylation of CpG sites is catalyzed by DNA
methyl transferases (DNMTs), such as DNMT1, DNMT3a, and
DNMT3b. Very few studies have examined DNA methylation
mechanisms in IUGR leading to cardiovascular remodeling or
cardiac dysfunction. In a UK cohort of 144 children, investigators
used umbilical cord blood to examine the relationship between
prenatal antisense non-coding RNA in the INK4 locus (ANRIL)

promoter DNA methylation and risk markers of coronary heart
disease (76). Hypermethylation at CpG5 of the ANRIL promoter
was associated with increased childhood pulse wave velocity,
indicating increased arterial stiffness and a risk of coronary
heart disease in these children at 9 years old (76). The ANRIL
promoter is present on chromosome 2p21 which is considered
a strong candidate for coronary heart disease in adult patients
(77). Methylation ofANRIL and other genes on this chromosome
might contribute to the prolonged cardiovascular programming
in coronary disease patients. However, it is difficult to conclude
the epigenetic contribution unless studies involving long-term
follow-up of IUGR individuals are performed. Several studies
have investigated epigenetic disturbances of nitric oxide synthase
(NOS), which may predispose individuals to cardiovascular
disease by modulating endothelial dysfunction (78–80). Human
endothelial cells isolated from umbilical arteries and veins of
IUGR fetuses were analyzed for a DNA methylation pattern in
the promoter region of the endothelial nitric oxide synthase 3
(eNOS3) and arginine-2 (ARG2) genes. Compared to control
cells, differential DNA methylation at the CpG-352 site of
NOS3 gene promoter of IUGR-endothelial cells was observed
(80). Differential eNOS expression could be normalized by
simply silencing the DNA methylation machinery (80). Hypoxia
downregulates eNOS gene expression and activity, resulting in a
reduced production of nitric oxide and endothelial dysfunction
(78). Endothelial dysfunction is a very early stage in the
development of atherosclerosis, which appears prior to the
existence of atherosclerotic plaques or cardiovascular outcomes
(81–84). This favors the concept that an epigenetic marker
detectable as early as during prenatal and early postnatal
developmental periods might be capable of identifying persons
at risk of endothelial-related cardiovascular end organ damage.
Furthermore, it has been shown that hypoxia-related IUGR
changes the methylation pattern and expression of the PKCε

gene in rat hearts, causing ischemic injuries in offspring (85).
Hypoxia causes increased production of reactive oxygen species
(ROS) which induces epigenetic repression of the PKCε gene
leading to susceptibility of the heart to ischemic injury in the
offspring (85). Hypermethylation patterns were observed within
the promoter region of the PKCε gene in IUGR male rat hearts
compared to controls (85). PKCε promoter hypermethylation
was associated with a corresponding down regulation of PKCε

gene expression in the heart of male rats but not in females.
Activation of the PKCε gene in the heart restored hypoxia-
induced cardiac vulnerability to ischemic injury in male rats
(85). The transcription factor, early growth response factor (Egr-
1), is involved in the regulation of PKCe promoter activity
(86) since it binds to the PKCε promoter region, increasing its
activity. Further studies showed that the absence of methylation
in females was due to high levels of estrogen receptors in
the female rat heart. Estrogen receptors bind to the regulatory
gene Egr-1 and inhibit PKCε promoter methylation activity
(86). Therefore, compared to males, the female hearts are
protected against hypoxia-induced ischemic injury due to high
levels of estrogen. These data help to explain the differences
in the prevalence of CVD between men and women and
gives a molecular mechanism for the role of sex hormone
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(87). Postmenopausal women seem to lose this hormonally-
induced cardioprotective ability and as such, hormone therapy is
suggested as one of the remedies for prevention of cardiovascular
disease in this group of women (88). However, large studies
do not favor hormone replacement therapy for prevention
of cardiovascular disease since it also has side effects such
as increased risk for breast cancer and pulmonary embolism
(88). For IUGR epigenetically programmed hearts, the best
preventive strategy would be the use of epigenetic therapies
(drugs) that aim to reverse fetal heart programming in early
postnatal life (89). Postnatal drugs are capable of altering the
epigenetic modifications that occurred during prenatal life as
a result of fetal adaptations to changes in the intrauterine
environment (89). Animal models and human studies of IUGR
revealed epigenetic changes in 10 genes which result in a
predisposition to type 2 diabetes as reviewed in detail by
Liguori et al. (90). These epigenetic mechanisms may further
contribute to the high prevalence of cardiovascular disease in
type 2 diabetes patients (90). Another gene involved in growth
and development of the fetal heart is insulin-like growth factor
(IGF). Upregulation of cardiac IGF receptor is associated with
an increase in ventricular mass in a sheep model of nutrient
restriction (91). Moreover, epigenetic mechanisms in the renin
angiotensin system are linked to cardiovascular programming.
Animal models revealed epigenetic modification of the renin-
angiotensin system in fetal programming of hypertension (92,
93). Significantly lower renal expression of angiotensin II type
2 receptor, impairment of renal development and elevation of
blood pressure were observed (93). Maternal insults during
pregnancy induce placental dysfunction, leading to IUGR
(Figure 1) (10). So far, it is well established that IUGR leads
to cardiac remodeling via epigenetic modulation of cardiac
genes which play important roles in cardiac development
and function. However, many epigenetic pathways are still to
be elucidated.

DISCUSSION AND FUTURE PERSPECTIVE

Placental dysfunction due to maternal insults can result in
IUGR, which result in an altered fetal epigenome leading to
cardiac remodeling and subclinical symptoms of cardiovascular
phenotypes in offspring. It is well-proven that IUGR leads to
cardiac remodeling, likewise evidence linking altered genome
expression and cardiovascular disease in IUGR has been
published (85, 86, 91, 94). However, research involving epigenetic
mechanisms of cardiovascular programming in growth restricted
fetuses has just commenced. To date, most research has focused
on fetal programming leading to CVD-related risk factors such
as a predisposition to metabolic syndrome (95–97). Although
such studies improve our understanding of how to prevent
cardiovascular disease in carriers of cardiovascular risk factors,
it is important to fully understand the epigenetic mechanisms
acting directly on cardiovascular structure and function in IUGR
offspring. It seems IUGR results in DNA methylation in a tissue-
specific manner; thus, understanding the epigenetic mechanisms
in various tissues that have direct impact on the cardiac system

FIGURE 1 | Maternal insults result in placental dysfunction, IUGR, and

cardiac remodeling.

will be beneficial (98). The greatest task is to uncover the specific
pathways of prenatal methylation of gene expression, as it is vital
to the development and function of heart tissues, and to be able to
link these pathways to specific cardiac diseases. Even though one
can find DNA methylation in interesting CpG island in clinical
samples obtained from affected IUGR offspring, it is also difficult
to conclude a causal link between these epigenetic modifications
and the various heart diseases. However, animal models may
help to improve our understanding. Another challenge is linking
affected pathways based on the severity of the IUGR since
the extent of cardiac remodeling is based on the severity of
IUGR (40). Epidemiological time point experiments have been
performed to widen our understanding on the role of IUGR
in fetal vulnerability to cardiovascular disease (33–35); however,
there is need for longitudinal studies involving long-term follow-
up of affected IUGR offspring. The use of epigenetic therapies
in treatment of CVD is promising but it is still at its early
experimental stage. In other diseases such as cancer, systemic
lupus erythematosus, acute myeloid leukemia, and Alzheimer’s
disease, many epigenetic-related therapeutic agents are being
tested for their possible use in clinical practice, but many are still
awaiting approval to begin clinical trials or to receive approval by
the FDA (99–102). In terms of DNA methylation mechanisms,
therapeutic agents such as inhibitors of DNA methyl transferase
(DNMT), hormonal therapy, and certain dietary compounds
have been suggested for treatment of cardiovascular disease (89).
Early prediction of cardiovascular disease might reduce risk as
well as improve follow-up and treatment of susceptible patients.
Effective biomarkers of risk are needed for development of
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CVD prevention strategies (103). Epigenetic biomarkers could be
useful for early prediction of high-risk individuals (103).

Growth restricted newborns are at high risk of respiratory
distress syndrome, retinopathy of prematurity, and long-term
complications such as metabolic syndrome and cardiovascular
disease (104, 105). Therefore, it is vital to identify and follow
those who are likely to be affected. Studies also show that
an inheritable altered fetal cardiac genome can be transferred
from one generation to another, which is referred to as
transgenerational programing of the cardiac system (106).
“Healthy aging starts with a healthy pregnancy,” summarizes

very beautifully this important concept and was first introduced

in an editorial of Scioscia (107). A timely diagnosis of IUGR
pregnancies and application of various therapeutic measures to
treat and monitor affected neonates will help to reduce cardiac
problems in future generations.
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