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Abstract

Using stochastic simulations we study the influence of spatial disorder on the diffusion of a

single particle through a gel that consists of rigid straight fibers. The interaction between the

particle and the gel fibers consists of an invariant short-range repulsion, the steric part, and an

interaction part that can be attractive or repulsive and of varying range. The effect spatial dis-

order has on the particle diffusivity depends crucially on the presence of non-steric interactions.

For attractive interactions, disorder slows down diffusion. The reason is that in disordered gels

the particle becomes strongly trapped in regions of locally increased fiber density. For repulsive

interactions, the diffusivity is minimal for intermediate disorder strength, since highly disor-

dered lattices exhibit abundant passageways of locally low fiber density. The comparison with

experimental data on protein and fluorophore diffusion through various hydrogels is favorable.

Our findings shed light on particle diffusion mechanisms in biogels an thus on biological barrier

properties which can be helpful for the optimal design of synthetic diffusors as well as synthetic

mucus constructs.
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1 Introduction

Hydrogels like mucus, the extracellular matrix (ECM) and the nuclear pore complex form natural barriers

for pathogens and play an important role in regulating the exchange of molecules and particles between

organelles and cells [1]. Even though the filtering capabilities of such hydrogels are of high importance

for biological function, they are still not fully understood. Numerous experimental and theoretical studies

investigated the mechanisms that determine the mobility of particles inside gels, as one main result it was

found that nonsteric interactions between the gel and the diffusing particle, which can be attractive or

repulsive, are a major factor in addition to purely steric obstruction effects. Electrostatic interactions in

particular determine the mobility of charged particles in mucus [1–10], the ECM [1, 11–13] and bacterial

biofilms [14]. Charge is also suggested to be a main ingredient regulating diffusion through the nuclear

pore complex [1, 15]. Regarding the sign of the electrostatic interactions, a number of experimental papers

report different diffusive behavior for positively and negatively charged particles in gels that have a given

net charge [5–7, 16, 17]. We previously have investigated diffusion of spherical particles in an ordered cubic

lattice of rigid cylindrical fibers as a model for the polymer network [16, 18]. Straight rigid fibers have

been used successfully to model the stiff collagen network of the ECM [19, 20] and mucus [18]. For mucus,

recent experimental research has shown that the movement of nanoparticles is obstructed by a relatively rigid

polymer scaffold [21]. Furthermore, single particle tracking reveals that some particles are almost completely

immobilized in mucus inside a small volume, while other of the same type are mobile [4,11] indicating that the

confined by the rigid mucus fibers, whereas the former are mobile inside larger pockets of the polymer lattice.

In our previous model we included the effect of attractive versus repulsive interactions on particle diffusivity

with an exponentially screened interaction potential between the fibers and the particle [16, 18]. With our

simple model gel, we showed that nonsteric interactions determine the effective particle diffusivity in a crucial

fashion and usually dominate over steric hindrance effects. In particular, we showed the particle filtering to

be charge asymmetric, meaning that particles are more strongly immobilized in oppositely charged gels, i.e.

for attractive interactions, than in similarly charged gels, in agreement with experimental findings [5–7,16,17].

Other pertinent theoretical studies on particle diffusion in crowded media are [19, 20, 22–27]. In this paper,

we generalize our model and consider disordered fiber lattices and in particular the transition from ordered

cubic to spatially disordered gels in combination with attractive and repulsive nonsteric as well as steric

interactions.

Our main results are as follows: While particle diffusion in purely steric gels depends only weakly on the

spatial arrangement of the fibers if the particle is smaller than the mesh size, in accordance to previous

theoretical results [19, 26, 27], the diffusive behavior in the presence of long-ranged, nonsteric interactions

between particle and fibers depends drastically on the presence of spatial disorder of the gel. In particular,

for attractive nonsteric particle-gel interactions we find different particle trapping mechanisms for spatially

ordered and disordered gels. In highly ordered gels, particles are attracted to the vertices of the cubic fiber

lattice where they become immobilized for small fiber volume fractions. In contrast, in disordered gels, regions

of high local fiber density form trapping areas that strongly attract and thereby immobilize the particle very

effectively, as has previously been proposed on the basis of experimental findings [3,12]. The influence of gel

disorder is less pronounced for repulsive nonsteric interactions. To test our model, we compare our simulated

particle diffusivities with previously published experimentally measured diffusivities of different particles in

different biogels. For negatively charged Alexa488 fluorophore molecules in gels consisting of neutral, positive

and negative dextran polymers [16] we find good qualitative agreement between experiment and simulation

as a function of the fiber volume fraction.
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Figure 1. (a) The black dots indicate the positions of the fibers parallel to the z-axis. In the presence of
spatial disorder, the fibers are displaced from their positions on the reference square lattice of spacing b
by Gaussian random numbers with a standard deviation of σd/b = 0.2. The diffusing particle, drawn as a
circle, crosses the boundary of the central cell in x-direction (left figure). In the simulation model, when
this happens, the gray fibers to the left are removed and the red fibers are added at the right boundary
(right figure). (b) Schematic definition of the particle diameter p, the fiber diameter a, the steric diameter
s = a+ p and the gel mesh size b.

2 Model

The diffusive motion of the particle is governed by the overdamped Langevin equation

ṙi(t) = −µ0 ∂iU(~r(t)) + ζi(t) , (i = x, y, z) , (1)

where ṙi is the particle velocity, ∂i the spatial derivative, U is the potential and µ0 the bulk particle mobility.

The random velocity ζi is a stochastic variable, modeled with Gaussian white noise

〈ζi(t)〉 = 0 , (2)

〈ζi(t) ζj(t′)〉 = 2µ0kBT δ(t− t′) δij , (3)

where δij is the Kronecker delta, kBT is the thermal energy and the indices i, j denote Cartesian components.

Since we are interested in the long-time diffusivity of the particle, the particle mass is neglected in the

equation of motion (1). By discretizing the Langevin equation with time step ∆t, an iterable equation for

the change of the particle position is obtained,

∆r̃i = − µ̃ ∂̃iŨ +
√

2µ̃ ζ̃i , (4)

where ∆r̃i is the displacement of the particle and ζ̃ is a Gaussian distributed random number with zero mean

and variance 〈ζ̃i ζ̃j〉 = δij . The tilde indicates rescaled variables. The potential Ũ is rescaled by the thermal

energy kBT and all lengths r̃ = r/b are rescaled by the mesh size b (c.f. fig. 1a). The rescaled timestep is

defined as

µ̃ =
∆t µ0 kBT

b2
. (5)

For the simulations a small enough rescaled time step µ̃ must be chosen. We tested different time steps and

found no increase in accuracy for µ̃ < 5× 10−6. To ensure that we are within the continuum limit we chose

µ̃ = 10−6 for all data presented in this work.
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The diffusivity D of the particle is obtained by linearly fitting the mean-squared displacement in the

long-time limit according to

lim
t→∞
〈∆r2(t)〉 = 6D t , (6)

where ∆r2(t) = (~r(t)−~r(0))2. The diffusivity of the particle if no gel is present is denoted by D0 = µ0 kBT .

For each data point, we perform one simulation of a single long particle trajectory of at least 109 steps. Due

to the stochastic nature of our simulations, the relative diffusivities fluctuate. Sample repeat simulations

have shown that the error for D/D0 is about 5%+0.001. In the supplementary information in fig. S1, we

show that the long-time limit in eq. (6) is always reached in our simulations.

The simulated gel consists of 48 fibers, i.e. 16 fibers parallel to each axis x, y and z. We introduce spatial

disorder by displacing the fibers from positions on a reference cubic lattice. The displacement of each fiber

is a random vector orthogonal to the fiber axis, sampled from a Gaussian distribution with zero mean and

standard deviation σd. In fig. 1a we present a sketch of our model for σd/b = 0.2, the reference cubic lattice

with mesh size b is indicated by dashed lines. When the particle leaves the central cell of the reference cubic

lattice, the eight distal fibers are removed and eight new fibers are added on the other side. This process

is illustrated in fig. 1a for a particle in the xy-plane that leaves the central cell in the positive x-direction.

Thus, in our simulation model, the gel changes as the particle moves across cells.

Steric hindrance between the particle and the fibers is modeled by a truncated, shifted Lennard Jones

potential

Usteric(~r) =

48∑
n=1

4ε

[(
s

2ρn

)12

−
(

s
2ρn

)6

+ 1
4

]
, ρn ≤ 2−5/6s

0 , ρn > 2−5/6s ,

(7)

where the energy parameter is fixed at ε = 1 kBT , ρn is the distance between the particle and the nth fiber

and s = a+p is the steric diameter, i.e. the sum of the diameters of the fibers a and the particle p, as shown

in fig. 1b. The long-ranged nonsteric interaction potential between the fibers and the particle is defined as

Uint(~r) =

48∑
n=1

U0 exp
(
−ρn
k

)
, (8)

where k is the interaction range and U0 the strength of the potential. For negative U0 the potential is

attractive and for positive U0 it is repulsive. For electrostatic interactions k corresponds to the Debye

screening length [28]

k−2 = 4πlBI , (9)

where lB = e2/4πεkBT is the Bjerrum length, e is the elementary charge and ε the permittivity. I =
1
2

∑
j nj z

2
j is the ionic strength and zj the valence of salt ion j and nj its number density. The salt

number density n is related to the molar ion concentration CIon through CIon = n/NA, where NA is the

Avogadro constant. U0 can be interpreted as the product of the particle charge and the linear polymer

charge density [18]. Thus, eq. (8) becomes an effective electrostatic interaction potential between charged

fibers and charged particle. Following our previous research on particle diffusion in interacting gels [16, 18]

we neglect hydrodynamic interactions.
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Figure 2. Distribution of the smallest distance dmin between parallel fibers for different disorder strengths
σd. For σd/b = 0 the smallest distance is b and the distribution is a delta peak. The dashed line is the
distribution for 16 parallel fibers that are placed on a 3b× 3b square at random positions, which agrees with
the distribution for σd/b = 0.9.

3 Results

Before we discuss the resulting particle diffusivity D, we characterize the spatial gel structure for different

disorder strengths σd. To illustrate the transition from a completely ordered gel, σd/b = 0, to a highly

disordered gel, σd/b = 0.9, we show the distribution of the smallest distances dmin between parallel fibers for

different σd in fig. 2. For the ordered gel, σd = 0, the distribution corresponds to a δ-peak. For increasing

σd, dmin becomes more broadly distributed. The dashed line in fig. 2 corresponds to the distribution for

16 parallel fibers that are placed within a 3b × 3b square at uniformly distributed random positions, which

agrees with the distribution for σd/b = 0.9 (green line). Thus, the value σd/b = 0.9 corresponds practically

to an uncorrelated fiber placement. In fig. S2 in the supplementary information, we also investigate the

effect of changing the central cell size, which determines at which particle positions the fiber network is

partially rebuilt (c.f. fig. 1a), for systems with strong interaction disorder σd/b ≥ 0.5.

The presentation of our simulation results is organized as follows. First, we examine diffusion in purely

steric gels and compare our modeling results to experimental data. After this we investigate how disorder

affects the diffusivity in the presence of long-ranged interactions between the particle and the gel and again

compare with experimental data.

3.1 Purely steric gels

In fig. 3a we present the relative particle diffusivity D/D0 as a function of the fiber volume fraction φ for

purely steric gels where U0 = 0 for various disorder strengths σd. The second x-axis at the top indicates the

rescaled steric diameter s/b = (a+ p)/b. The fiber volume fraction is given by

φ = 3π(a/2b)2 (10)

and depends on the fiber diameter a, in order to present our results as a function of the volume fraction

we thus have to make a specific choice for the value of a. In fig. 3a we use a small fiber particle size

ratio a/p = 0.05, so in the numerical simulations, the fibers are very thin lines. Experimentally, a ratio

of a/p = 0.05 corresponds to a particle diameter p of 60 − 200 nm for a fiber diameter a of 3 − 10 nm

for mucin [29]. This means that for mucus the mesh size b in fig. 3a is between ∼ 50 nm for large φ and
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∼ 1000 nm for small φ. Note, that to simulate a different combination of biogel and particle, one only has

to adapt the ratio a/p, which determines the φ via eq. (10). For the completely ordered cubic lattice with

σd/b = 0, the diffusivity becomes zero for s > b (φ > 0.0053), since the particle can not move between

adjacent fibers anymore [18]. For increasing disorder σd > 0 this complete immobilization of the particle for

s > b is prevented. If the particle encounters an impasse, it will eventually return and the fiber lattice in

the cell is partially rebuilt (c.f. fig. 1a). As a consequence, the particle has a finite mobility even at large

φ for σd > 0. In fig. 3b we plot the diffusivities as a function of the effective volume fraction φeff , which is

the ratio of the gel volume that is accessible to the center of the particle to the total volume. We determine

φeff by Monte-Carlo integration, similar to [26]. For 200 consecutive times during a single simulation, 106

random points are sampled to check whether they collide with one of the fibers. For the σd/b = 0 data the

effective volume fraction is given analytically by φeff = (3πba2/4−
√

2a3)/b3. Figure 3b demonstrates that

the data collapses onto a master curve, i.e., that the effects of the spatial disorder almost disappear in this

representation, similar to previous findings [26]. Thus, a diffusion model based on the free volume describes

particle diffusion in disordered purely steric gels very nicely.

Figure 3a includes the previously suggested scaling function [30]

D/D0 = exp(−0.84[φ(1 + p/a)2]1.09) , (11)

which is a heuristic fit to Brownian dynamics simulations for spherical particles in gels of randomly oriented,

rigid straight fibers and has been shown to agree with various other simulation data as well [31]. We find

that our simulation results agree perfectly with eq. (11) for an intermediate value σd/b = 0.5. This indicates

that our disordered gel model has similar diffusion properties as a model with random fiber orientations, in

accordance to the findings by Masoud and Alexeev who have demonstrated that for purely steric random

gels the diffusivity is almost independent of the exact fiber lattice geometry [27].

In fig. 3c we compare our diffusivity results to a general stretched exponential dependency

D/D0 = exp(−αφn) , (12)

where we show the logarithm of D/D0 in a log-log plot. As indicated by the straight lines, the exponent n

varies from n = 1.04±0.04 for σd/b = 0.9 to n = 1.14±0.06 for σd/b = 0.5 (c.f. table 1) for highly disordered

gels, and thus is very close to the exponent n = 1.09 in eq. (11). In contrast, for most experimental data, the

stretched-exponential parameter is between n = 0.5 and 1 [16,32–34]. We are aware of only one experimental

study that reports larger n values in the range of 1.1 to 2.4 for different probes in PDMS solution [35].

Note to Roland - All three referees commented on this part: ref 1: it is not clear how the hydrodynamic

interactions could potentially result in the decrease of the scaling exponent, I think it should be another way

around. ref 2: [. . . ] (ref. 26,30) is the gel model network the same in these references? Would this influence

the result? ref 3: [. . . ] could an analysis be done to determine quantitatively when hydrodynamics play a

role and how much influence they have on the particle diffusivity.

Phillips and colleagues have published numerous papers on the effect of HI on purely steric gels [31,36–38].

They found that the effect of HI can approximately be taken into account by multiplying the diffusivity for

simulations without HI DnoHI/D0 (the steric part) with the spatially averaged short-time relative diffusion

coefficient 〈Ds〉/D0
s〉 of the system (the hydrodynamic part), i.e. D/D0 = DnoHI/D0 × 〈Ds〉/D0

s〉. For gels

of disordered, randomly oriented straight fibers they propose the following expression [31]:

D/D0 = exp(−λφm) exp(−[0.84(1 + p/a)2 φ]1.09) , (13)
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Table 1. The parameters of a stretched exponential fit, eq. (12), to the data presented in figs. 3a and 3c.
The errors corresponds the estimated standard deviations of the fit parameters.

σd/b 0 0.1 0.2 0.3 0.5 0.9
α× 10−3 4± 3 2± 1 1.9± 0.7 1.0± 0.4 0.8± 0.2 0.35± 0.08
n 1.4± 0.2 1.3± 0.2 1.3± 0.1 1.16± 0.07 1.14± 0.06 1.04± 0.04

where the the first exponential is the hydrodynamic part and the second exponential is the steric part. Note

that the steric part corresponds to Johnson’s function in eq. (11). λ and m are listed for different ratios

0.1 < a/p < 2 in [31]. Figure 3a shows a line for eq. (13). Comparing the lines for Johnson’s (eq. (11)) and

Phillips function, one can see that the diffusivities are significantly smaller without HI, but the qualitative

behavior remains the same. According to eq. (13), the effect of HI increases monotonically with increasing

fiber volume fraction φ for purely steric gels. In fig. 3c a we include a line for eq. (13). The line has a scaling

exponent of about n ∼ 0.35 (upper black line), which corresponds to the scaling exponent m from eq. (13) for

small ratios a/p = 0.05. In other theoretical a scaling exponent of n ∼ 0.7 was reported for simulations with

HI and random, cross-linked fiber networks with different cross-linking densities and a/p = 0.5 and 0.3 [27].

Thus, we conclude that the increased value of n in our simulations in comparison to most experiments can

likely be attributed to the lack of hydrodynamic effects in our model. However, it is unclear if for our

simulations n will be the same as for eq. (13), n ∼ 0.35, since we employ a different fiber network with

parallel an orthogonal fibers. Furthermore, the method of adding the effect of HI to the diffusivity for purely

steric system has, to our knowledge, not yet been verified by comparing eq. (13) to simulations with HI.

Comparisons to experimental data are presented in fig. 4. Figure 4a shows results for RNAse diffusion in

polyacrylamide gel with a diameter ratio a/p = 0.32 by Tong and Anderson [39], fig. 4b for BSA diffusion in

polyacrylamide gel with a ratio a/p = 0.18 by Tong and Anderson and Park et al. [39,40] and fig. 4c for BSA

diffusion in calcium alginate with a ratio a/p = 0.1 by Amsden [41]. The estimated a/p fiber-particle diameter

ratios are taken from [31]. We find qualitative agreement between simulation and experiment in all three

cases for highly disordered gels with σd/b = 0.9 and 0.5. For large φ the experimental and the simulation

data agree quantitatively in figs. 4 b and c, this indicates that hydrodynamic interactions are irrelevant

compared to steric hindrance effects for these dense systems. In contrast, at low φ our simulation model

overestimates the diffusivity, presumably due to the lack of hydrodynamic interactions [31]. We conclude

that the difference of the stretched-exponential parameters n extracted from our simulations (n ∼ 1.1) versus

experiments (n ∼ 0.7) is mainly reflected by the deviation between experimental and simulated diffusivities

at small to intermediate volume fractions. For ordered gels with σd/b = 0, we find strong disagreement

between simulation and experiment, in particular at large volume fractions φ. This indicates that the gels

used in the experiment are quite disordered and that our disorder model correctly describes the experimental

gel structures.

3.2 Interacting gels

We move on to interacting gels. In figs. 5 and 6 we present the diffusivity D/D0 as a function of the fiber

volume fraction φ for repulsive and attractive interaction potential strength U0 = 10kBT and U0 = −10kBT .

The rescaled interaction range is k/s = 0.5 in fig. 5 and k/s = 1.5 in fig. 6. With the exception of fig. 5a we

find the following behavior: In ordered gels, the particle diffusivity D exhibits a non-monotonic dependence

on φ, whereas in disordered gels D decreases monotonically and steeply already at small φ. The non-

monotonicity of D for ordered gels can be explained as follows. For increasing φ and fixed interaction
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Figure 3. (a) Particle diffusivity in a purely steric gel as a function of the fiber volume fraction φ for
a diameter ratio a/p = 0.05 and different disorder strengths σd. The plot includes an upper x-axis for
the steric diameter s/b defined in fig. 1b. The continuous black line denotes the scaling function eq. (11),
the dashed black line eq. (13). We find particularly good agreement with our data for disorder strength
σd/b = 0.5. (b) Particle diffusivity as a function of the effective fiber volume fraction φeff defined in the text
for different σd, exhibiting collapse onto a master curve. In (c), the same data as in (a) is presented in a
log-log versus log plot, shifted along the y-axis to avoid overlapping curves. The dashed straight lines are
stretched exponential fits according to eq. (12), the fit parameters are given in table 1. The solid straight
line indicates n = 1.09, the stretched-exponential parameter in eq. (11). The strongly disordered systems
with σd/b = 0.9 and σd/b = 0.5 clearly exhibit a stretched exponential scaling. In contrast, for the ordered
system with σd = 0 a stretched exponential scaling is only present for intermediate φ.
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Figure 4. Particle diffusivity in purely steric gels as a function of the fiber volume fraction φ from simulations
(connected symbols) for ordered (σd/b = 0) and disordered (σd/b = 0.5 and 0.9) gels in comparison to
experimental data (unconnected symbols) for: (a) RNAse diffusion in polyacrylamide gel reported by Tong
and Anderson [39] with a fiber/particle diameter ratio a/p = 0.32 [31]. (b) BSA diffusion in polyacrylamide
gel reported by Tong and Anderson [39] and Park et al. [40] with a/p = 0.18 [31] and (c) BSA diffusion in
calcium alginate gel reported by Amsden [41] with a/p = 0.1 [31]. The simulation data is the same in all
three subfigures. We find qualitative agreement between our simulation model and the experiments for high
disorder parameters σd/b = 0.5 and σd/b = 0.9 and not too low volume fraction.

range k/s, the interaction range relative to the mesh size increases. When the interaction range becomes

comparable to the mesh size, roughly at k/b ≈ 0.2, the interaction potentials of neighboring fibers start

to overlap, which creates a rather smooth potential landscape and which thereby leads to an increase in

diffusivity with increasing φ [18], as can be observed for small φ in figs. 5b, 6a and 6b for highly ordered gels.

For larger values of φ, steric effects become important and give rise to a decrease of D with increasing φ. For

all results in figs. 5 and 6, increasing the disorder generally leads to a decrease of D with some exceptions

that will be discussed below.

Repulsive interactions induce mild exclusion trapping

In gels with repulsive nonsteric interactions the particle experiences mild exclusion trapping, i.e. it is confined

to the space between the fibers. In ordered gels, σd/b < 0.3, the particle can travel in a relatively unobstructed

fashion in between adjacent cells through the centers of the cubic cell faces [18], which is reflected in the high

diffusivities in figs. 5a and 6a for particles with a diameter smaller than b which corresponds to φ < 0.0053.

For large σd/b = 0.9, the strong disorder creates random passageways of low fiber density, thus in figs. 5a

and 6a the particle remains quite mobile even for large φ > 0.0053, when the particle diameter exceeds

the mesh size b. Intermediate disorder strengths 0.3 ≤ σd/b ≤ 0.5 lead to the smallest particle mobilities.

This non-monotonic dependence on σd is also visible in purely steric gels in fig. 3a, but in figs. 5a and 6a it

is much more pronounced, due to the additional repulsive interaction potential. The qualitative similarity

between purely steric gels and gels with nonsteric repulsive interactions is also apparent when the diffusivity

is plotted as a function of the disorder strength in fig. 7.

The different exclusion trapping mechanisms for repulsive interactions can be appreciated from the particle

snapshots in fig. 8 for a highly ordered σd/b = 0.1 gel (top left) and a disordered σd/b = 0.9 gel (bottom left).

The snap shots correspond to the case of s = b (φ = 0.0053) where the steric diameter is equal to the mesh

size so the particle becomes strongly immobilized due to steric hindrance as well as the repulsive interaction

effects. Both figures show particle position snap shots clustered in spaces of low local fiber density; for

the disordered system, there are fewer and more pronounced clusters in regions that are devoid of fibers.

Within these regions, the particle is quite mobile, thus D/D0 is still relatively high for σd/b = 0.9 and s = b

(φ = 0.0053) as seen in figs. 5a and 6a.
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Figure 5. Particle diffusivity in interacting gels as a function of the fiber volume fraction φ for a fiber/particle
diameter ratio a/p = 0.05 and short interaction range k/s = 0.5 for different σd for (a) repulsive interactions
with U0 = 10kBT and (b) attractive interactions with U0 = −10kBT . The diffusivity is much more sensitive
to disorder for attractive than for repulsive interactions. The dashed line indicates the immobilization
threshold defined by D/D0 = 0.01. Figure (c) shows the average number of fibers 〈Nlocal〉 within a distance
of b/2 from the particle as a function of U0. In attractive gels the particle moves into regions of high local
fiber density (and thus high 〈Nlocal〉) for increasing σd, in repulsive gels the particle moves into regions of
small 〈Nlocal〉.
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Figure 6. Particle diffusivity in interacting gels as a function of the fiber volume fraction φ for a fiber/particle
diameter ratio a/p = 0.05 and large rescaled interaction range k/s = 1.5 for different σd for (a) attractive
interactions with U0 = 10 kBT and (b) repulsive interactions with U0 = −10 kBT . The dashed line indicates
D/D0 = 0.01. The interaction range is increased by a factor of 3 in comparison to fig. 5, which corresponds
to a 9-fold decrease in terms of ionic strength (c.f. eq. (9)). This leads to a significant decrease in diffusivity
for both attractive and repulsive U0. Note that in (b) the data for σd/b = 0.5 and 0.9 exhibit large statistical
errors due to limited sampling.
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Figure 7. Particle diffusivity in interacting gels as a function of the disorder strength σd for a/p = 0.05 and a
steric diameter of s = 0.7b (φ ≈ 0.003). The rescaled interaction range is k/s = 0.5 for (a) and k/s = 1.5 for
(b). The data for U0 6= 0 presented in (a) and (b) corresponds to data shown in figs. 5 and 6, respectively.
Both the purely steric, U0 = 0, and the repulsive case, U0/kBT = 10, exhibit a characteristic minimum
around σd/b ∼ 0.3. The attractive case, U0/kBT = −10, exhibits a monotonically decreasing diffusivity as
a function of σd.

For attractive interactions disorder modifies trapping mechanism

For gels with attractive nonsteric interactions in figs. 5b and 6b the particle mobilities for disordered σd/b =

0.3 to 0.9 systems are significantly smaller than for ordered systems over almost the entire range of volume

fractions φ. To understand this behavior, it is instructive to study the particle snap shots in fig. 8 for

σd/b = 0.9 gels and different steric diameters s/b = 0.5 (φ = 0.0013, bottom center) and s/b = 0.2

(φ = 0.0002, bottom right). The particle position snap shots are from consecutive times during a single

trajectory. They clearly indicate the tendency of the particle to stay in regions with locally increased fiber

density during the simulation, which we refer to as dense-region trapping. The corresponding snap shots

in ordered gels with identical k/s and U0/kBT are for the weakly interacting case and φ = 0.0013 evenly

distributed (top center) and for the strongly attractive case and φ = 0.0002 (top right) clustered around

the vertices where three orthogonal attractive fibers create a local potential minimum. This illustrates

that the vertex trapping mechanism in highly ordered attractive gels is most effective for small φ, as also

seen in figs. 5b and 6b. In order to distinguish vertex and dense-region trapping, we show in fig. 5c the

average number of fibers within a distance of less than b/2 from the particle, 〈Nlocal〉, as a function of U0

for φ = 0.0013 (s/b = 0.5) and k/s = 0.5. For attractive interactions, U0 < 0, the particle mostly stays

in regions where several fibers are close together, corresponding to high 〈Nlocal〉. The completely ordered
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Figure 8. Particle position snap shots from a single trajectory at consecutive times (colored spheres) in
ordered and disordered gels taken from simulations that have been run for the same time. The spheres
indicating the particle positions are not drawn to scale. The rescaled interaction range is fixed at k/s = 0.5.
The top row shows results for highly ordered gels with a small disorder strength σd/b = 0.1 while the bottom
row shows results for strongly disordered gels σd/b = 0.9. In the left figures, the particle-fiber interaction is
repulsive with U0 kBT = 10, indicated by similarly colored spheres and fibers, and the steric diameter s = b
is equal to the mesh size, which corresponds to a fiber volume fraction of φ = 0.0053 for a/p = 0.05. In the
central column the fibers are attractive with U0/kBT = −10 and s/b = 0.5 (φ = 0.0013). In the right figures
the steric diameter is smaller, s/b = 0.2 (φ = 0.0002), and the fibers are strongly attractive, U0/kBT = −15.
The mean squared displacements are 〈∆r2(t)〉/b2 = 3.5 (top left), 215 (top center) and between 17 and 46
for the other figures. These figures visually demonstrate the three different trapping mechanisms, namely
exclusion trapping (left figures) for repulsive nonsteric interactions, vertex trapping (top right) for ordered
attractive gels and dense-region trapping (bottom middle and right) for disordered attractive gels.

σd/b = 0 gel has an upper bound of 〈Nlocal〉 = 3, which corresponds to three orthogonal fibers that meet at

a vertex. For more disordered gels 〈Nlocal〉 is significantly higher, confirming that in a disordered gel with

attractive nonsteric interactions, particles are strongly immobilized in regions of high local fiber density.

Lieleg and coworkers suggested that a similar effect leads to trapping of nanoparticles in the ECM, which

they observed by studying single-particle trajectories of particles with a diameter comparable to the mesh

size of the ECM [12]. The large difference of the trapping efficiency between vertex and dense-region trapping

makes diffusion in gels with attractive nonsteric interactions particularly sensitive to spatial disorder, this is

clearly demonstrated in figs. 5b and 6b.

For repulsive interaction potentials, U0 > 0, in fig. 5c the particle tends to stay away from the fibers and

preferentially stays in regions of small 〈Nlocal〉, i.e. small local fiber density. Exclusion is reinforced in more

disordered gels, since the particle can access regions with particularly small local fiber density. Figure 9

provides a schematic overview of the different trapping mechanisms for interacting gels.
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Figure 9. Schematic illustration of the different particle trapping mechanisms, namely exclusion trapping,
vertex trapping and dense-region trapping.

4 Discussion

Particles in repulsive gels diffuse rapidly

Many experimental publications classify particles in terms of their ability to penetrate the mucus barrier,

which is a desirable property for drug delivery purposes. Particles are typically classified as rapidly moving

if they exhibit a relative diffusivity in mucus of more than D/D0 = 0.01 [4, 10, 42, 43]. Applying this

classification scheme to our results, denoted by the broken horizontal lines in figs. 5 and 6, we find that

particles always diffuse rapidly in gels with repulsive nonsteric interactions in figs. 5a and 6a as long as they

are smaller than the average mesh size b. This is a consequence of the comparably weak exclusion trapping

mechanism. Hence, particles that interact repulsively with the gel fibers, e.g. particles that are similarly

charged as the gel or particles that are charge-neutral and hydrophilic, should be suitable to for drug delivery

purposes. Experimental studies for nanoparticle diffusion in mucus [5, 6, 17] and molecular dye diffusion in

synthetic gels [16] arrive at the same conclusion.

Disordered gels filter interacting particles most effectively

The filtering capabilities of biopolymer gels like mucus and the ECM are of particular importance in biology.

Interaction filtering can lead to the selective immobilization of a certain type of interacting particle, for

example, in the ECM charged particles that interact with the fibers via electrostatic interactions are immo-

bilized but not neutral particles [2]. For charged particles, interaction filtering can also involve filtering with

respect to the sign of the charge, e.g. positively charged peptides are immobilized in porcine mucin hydrogel

and negatively charged peptides are mobile [5]. Our results indicate that interaction filtering is much more

effective for spatially disordered gels, than for ordered gels, since disordered gels hinder interacting particles

for both interaction signs more strongly than ordered gels (c.f. fig. 7). In terms of the charge asymmetry, we

find that disordered gels allow rapid diffusion for repulsive particle-gel interactions but effectively immobilize

particles that are attracted to the gel by dense-region trapping. This can be seen, for example, for σd/b ≥ 0.5

in fig. 7. For ordered gels, by contrast, exclusion trapping and vertex trapping are both comparably weak

for most volume fractions, which makes them much less suitable for interaction filtering.

Ion concentration strongly impacts the diffusivity of charged particles in charged gels

According to eq. (9) the electrostatic interaction range k is related to the ion concentration as CIon ∝ k−2.

Hence, to appreciate how the diffusive behavior of charged particles in charged gels depends on the ion

concentration, it is useful to compare our simulation data for interaction range k/s = 0.5 and k/s = 1.5,

see fig. 5 and fig. 6, respectively. This increase in interaction range corresponds to a 9-fold decrease in

terms of ion concentration. For repulsive interaction U0 (figs. 5a and 6a) decreasing the ionic strength has
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a significant impact. On the one hand, it significantly decreases the particle diffusivity for small volume

fractions φ < 0.004. On the other hand, decreasing the ionic strength qualitatively changes the diffusive

behavior for all σd, e.g. we find a non-monotonic dependence of D on φ for both very ordered σd/b = 0

gels and disordered σd/b = 0.9 gels in fig. 6a, due to increasing the interaction range relative to the mesh

size k/b. For ordered gels with attractive interactions in figs. 5b and 6b lowering the ionic strength causes

a severe reduction in the particle mobility for small volume fractions. For disordered gels with attractive

interactions, σd/b ≥ 0.5, the diffusivity also decreases significantly for intermediate volume fractions. Thus,

both vertex trapping and dense-region trapping become more pronounced for lower ionic strengths.

Comparison to experimental data for charged and neutral dextran gels

In order to quantitatively test our model predictions we compare to previously published experimental data

for the diffusion of Alexa488 molecules in dextran hydrogels that were obtained by fluorescence correlation

spectroscopy methods [16]. Alexa488 has a net negative charge and neutral dextran (dextran(o)), positively

charged DEAE-dextran (dextran(+)) and negatively charged CM-dextran (dextran(-)) gels have been stud-

ied. Here, we compare the experimental data for the diffusivity of Alexa488 under varying dextran mass

concentrations to our simulations including spatial disorder. The following model parameters are dictated

by the experiment: the particle diameter is 1.48nm [16] and the polymer chain diameter is 0.74nm [44],

hence we obtain a size ratio a/p = 0.5. Using the partial specific volume νs = 0.61mL/g [44] for dextran,

we calculate the fiber volume fraction from the polymer concentration Cpoly in wt% as φ = Cpoly × 0.0061.

To calculate the electrostatic interaction range k using eq. (9), one has to note that the experiments were

performed in buffer solution with an ion concentration of 10 mM. Furthermore, one has to take into account

the ionic strength of the counterions that enter the solution upon addition of dextran(-) and dextran(+),

which effectively renders the interaction range k dependent on φ. Increasing φ by 0.01 corresponds to an

increase in ion concentration by 3.66mM and 6.1mM for dextran(-) and dextran(+), respectively [16]. We

use the interaction potential strength U0 as a fit parameter, but constrain the ratio of the potential strength

for dextran(+) and dextran(-) to be equal to the dextran charge ratio, which is 5/3 [16]. Figure 10a shows

a comparison of experimental data (unconnected symbols) and simulation data (filled, connected symbols)

for disordered σd/b = 0.9 gels with a neutral, an attractive and a repulsive interaction potential, U0 = 0,

U0/ kBT = −8 and U0/ kBT = 4.8, respectively. The simulation and experimental data show similar trends.

For the attractive case, that means negative Alexa488 in positive dextran(+), the diffusivities increase with

the fiber volume fraction φ. This at first sight surprising result can be rationalized by the fact that the salt

concentration increases with rising φ and thus the electrostatic interaction range goes down as φ goes up.

For the repulsive case of Alexa488 in negative dextran(-) the diffusivities decrease with φ, but the simula-

tion diffusivities are significantly lower than the experimental data. The simulation data for the neutral case

show a significantly higher diffusivity than for the repulsive case. This stands in contrast to the experimental

data for Alexa488 in neutral dextran20(o) (20 kDa molecular weight) and neutral dextran500(o) (500 kDa),

that show similar D/D0 as for the repulsive dextran(-) case, indicating that in the experiment the effect of

repulsive charges is significantly weaker than in our simulation model. This could be due to fiber flexibility,

which is neglected in our simulation model, as will be discussed further below.

In the comparison between experimental and simulation data for an ordered σd = 0 gel in fig. 10b, the

simulation data significantly deviates from the experimental data for the attractive case. We conclude

that our disordered gel model describes the experimental situation better than an ordered cubic lattice

model, in accordance to neutral dextran gels, which form disordered polymer systems [41, 45]. Note that

we use the fitted interaction potential strengths of U0/kBT = −12 and U0/kBT = 7.2 in fig. 10b. A plot

16



(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

φ

0.0

0.2

0.4

0.6

0.8

1.0

D
/D

0

σd/b= 0. 9 Dextran20(o)

Dextran500(o)

Dextran(-)

Dextran(+)

U0/kBT= 4. 8

U0/kBT= 0

U0/kBT= − 8

(b)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

φ

0.0

0.2

0.4

0.6

0.8

1.0

D
/D

0

σd/b= 0 Dextran20(o)

Dextran500(o)

Dextran(-)

Dextran(+)

U0/kBT= 7. 2

U0/kBT= 0

U0/kBT= − 12

Figure 10. Comparison of particle diffusivity as a function of the fiber volume fraction φ from simulations
for interacting gels (filled connected symbols) with experimental data for Alexa488 diffusion in different
dextran hydrogels (unconnected symbols). The simulations use a fiber/particle diameter ratio a/p = 0.5
and a disorder strength of (a) σd/b = 0.9 and (b) σd = 0. The interaction range k is dictated by the
experimental ionic strength as described in the text. The experimental data was obtained by fluorescence
correlation spectroscopy in 10 mM buffer solution with a free solution diffusivity of D0 = 320µm/s2 [16]. We
find qualitative agreement between simulations and experimental data for σd/b = 0.9 in (a). For σd = 0 in
(b), the data for attractive fibers disagree.

using U0/ kBT = −8 and U0/ kBT = 4.8 like in fig. 10a for the ordered gel with σd = 0 is shown in

the supplementary information in fig. S3. In our previous paper [16], we obtained qualitative agreement

between simulations for an ordered gel model with σd = 0 and experimental data for Alexa488 diffusion

in dextran(+) and dextran(-) as a function of added salt at a low fiber volume fraction of φ = 0.006

(Cpoly =1wt%). In that comparison the agreement between simulation and experiment was particularly

good for intermediate to large salt concentrations, but for small salt concentrations, our ordered model

underestimated the diffusivity. This is in agreement with our results in fig. 10b, where it is seen that the

ordered model significantly underestimates the diffusivity for φ = 0.006.

There are a number of potential reasons for the deviations between the experimental data and our model

results in fig. 10a. First, our model might overestimate the strength of repulsive electrostatic interactions,

since we approximate the discrete charges along the dextran polymers by a constant line charge density.

The 1.48nm-sized Alexa488 molecules might be able to avoid the discrete repulsive charges on a dextran(-)

polymer rather effectively, as their spacing is on average five times the dextran monomer width 5× 0.4nm =

2nm [44]; in this estimate we used the fact that only about one in five dextran monomers carries a charged

carboxyl group [16]. Secondly, dextran polymers are flexible [41] and, thus, are in principle able to move away

from a similarly charged particle and towards an oppositely charged particle, which would effectively weaken

the electrostatic repulsion in the experiment and, conversely, increase the electrostatic attraction. Thirdly,

the increasing concentrations of dextran(+) and dextran(-) might change the pH of the gel solution enough

to influence the number of charged amino and carboxyl groups on the dextran(+) and dextran(-) polymers,

according to their respective pKa and pKb values. Finally, the Alexa488 molecule has an inhomogeneous

charge distribution with three negative charges and one positive charge, which might affect its diffusivity

in charged gels [5]. Hence, it is likely that the electrostatic interaction between the polymer chains and

an Alexa488 particle is more complex than we capture with our simplified interaction potential eq. (8).

Nevertheless, we find that our approximative, coarse-grained interacting gel model qualitatively reproduces

the basic experimental trends.
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5 Conclusions

We present a model to investigate the trapping mechanisms of nanoparticles in spatially disordered gels with

attractive or repulsive nonsteric particle-gel interactions. By changing the disorder strength σd we generate

ordered as well disordered gels. We find that particles are generally more strongly trapped in spatially

disordered than in ordered gels. We observe three distinct trapping mechanisms. In gels with repulsive

nonsteric interactions particle diffusion is hindered through exclusion trapping. The particle is confined to

regions with small local fiber density and an optimal trapping capacity is achieved for an intermediate degree

of disorder (c.f. figs. 5a and 6a), since the particle can cross between cells in an almost unhindered fashion

for low σd as well as for high σd. Diffusion in gels with repulsive nonsteric interactions is similar to diffusion

in purely steric gels, which also achieve an optimal trapping capacity for an intermediate degree of disorder

(c.f. fig. 3). For gels with attractive nonsteric interactions, disorder influences particle diffusion much more

severely than for gels with repulsive interactions, and we find two distinct trapping mechanisms for ordered

and disordered gels (c.f. fig. 9). In ordered gels, vertex trapping occurs, which is most effective for small fiber

volume fractions. Thus, diffusion in ordered gels with attractive nonsteric interactions exhibits a peculiar

non-monotonic dependence on φ (c.f. figs. 5b and 6b). Even a small degree of spatial disorder eliminates

these non-monotonic effects, so to see them in experiments one would need spatially ordered gel structures

as can be produced by DNA origami techniques [46]. In disordered gels with attractive nonsteric interactions

we find dense-region trapping, which is the most effective immobilization mechanism. Here the particle is

trapped in regions of high local fiber density, i.e. near several proximate fibers which create a deep valley in

the potential landscape. A similar mechanism has previously been suggested on the basis of experimental

data for the ECM [12] and mucus [3]. Numerous experimental results show that gels with attractive nonsteric

particle-gel interactions filter nanoparticles much more effectively than gels with repulsive nonsteric particle-

gel interactions [5–7, 16, 17]. We argue that this is due to the dense-region trapping mechanism, since we

expect considerable spatial disorder in polymer gels [19,21,29,30,41,47,48].

Reducing the ion concentration by about an order of magnitude, i.e. increasing the electrostatic interaction

range k by a factor of three between fig. 5 and fig. 6, severely enhances the effect of dense-region trapping in

disordered gels with attractive electrostatic interactions, which makes the ionic strength a useful parameter

to regulate charged particle mobility in charged gels [2,5,11,16]. More systematic experimental research on

the effects of ionic strength on diffusion in electrostatically interacting gels would be desirable.

We neglect the effect of flexibility of the polymer lattice in our simulations. Theoretical research has

shown that for purely steric systems, network flexibility increases the particle diffusivity compared to static

networks, in particular for large particles [49, 50]. In our simulations, the fibers are rigid, but the network

is not static for disordered lattices. However, flexibility may mitigate the differences between ordered and

disordered lattices. For future work, it would be interesting to examine the effect of flexibility for gels with

nonsteric particle-gel interactions. Furthermore, we neglect that the polymer chains inside a gel have a finite

length and we assume that it would not qualitatively change our results: For purely steric gels, we assume

that the fiber length, just like the degree of spatial disorder (c.f. fig. 3b), will not have a large effect on the

diffusive behavior of particles smaller than the mesh size. In the presence of repulsive nonsteric interactions

exclusion trapping will likely hardly be affected by the fiber length, since the particle avoids the fibers. For

attractive nonsteric interactions, we assume that dense-region trapping will have qualitatively the same effect

on the diffusivity as for infinitely long fibers.

A great deal of pharmaceutical research is directed towards elucidating the barrier properties of biogels

like mucus and the ECM. Our simulations indicate how polymer gels filter interacting particles regarding

the sign and strength of their interaction. Attractive, e.g. oppositely charged, particles are immobilized
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and repulsive particles can rapidly traverse biopolymer layers like the mucus barriers, regardless of the fiber

lattice geometry, as long as they are smaller than the average mesh size. The highest mobilities for particles in

gels are of course achieved for inert particles, i.e. when no nonsteric particle-fiber interactions slow down the

particle [2, 8–10, 20, 42, 43]. These insights can be used for the design of advanced drug delivery techniques

with nanoparticle carriers through biogel layers. For example, large particles are considered particularly

useful for drug delivery purposes since they are more suitable for drug loading and release than smaller

particles [4]. In agreement to [20], our simulations show that large particles with a diameter comparable to

the mesh size, which can be on the order of 1µm in biogels [4,12], are mobile in repulsive disordered gels, even

for small ion concentrations in the presence of strong repulsive nonsteric particle-gel interactions, (c.f. fig. 6a)

since the particle readily avoids the repulsive fibers. On the other hand, large particles in attractive gels are

immobilized due to dense-region trapping. Thus, in order to achieve rapid diffusion of large nanoparticles

through a biopolymer barrier they should be electrostatically repulsive towards the fibers, i.e. oppositely

charged, or they should be charge neutral and hydrophilic.
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