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1
G E N E R A L I N T R O D U C T I O N

1.1 transcriptional gene regulation

Following the sequencing of the human genome and the characterization of
its complement of genes [24] and regulatory elements [41], the field of epige-
netics has become a central topic in biological research. Cells with identical
genomic DNA may have very different characteristics. For instance, all cells
of a given human individual originate from a common ancestor, which is the
fertilized egg [3]. Because the cells proliferate via cell division, the cells in
the fully developed organism contain identical copies of the original genomic
DNA sequence. At the same time, different cell types perform very specific
tasks in very specific places, e.g. red blood cells or neurons. Epigenetics
attempts to explain this phenomenon on the basis of modifications of the
DNA and associated proteins that are transmissible to daughter cells and do
not involve a change of the nucleotide sequence.

Cell types within a given species differ with regard to gene expression, i.e.
which gene products – most commonly proteins – are actively produced. A
few thousand genes referred to as housekeeping genes are expressed in all
cells of a given organism because they are required to maintain basic cellular
function [33]. Beyond that, there are genes that are specifically expressed
only within particular cell types as well as genes that are expressed only
upon certain environmental stimuli or during specific developmental stages
[43]. Expression of genes in the wrong place or at the wrong time may
have severe consequences indicating complex and fine-tuned underlying
mechanisms of regulation.

Gene expression is a complicated and still only partially understood topic
whose details are beyond the scope of this thesis. On a very abstract level, in
order to become active first of all genes have to be transcribed. This process
is catalyzed by a multiprotein complex referred to as RNA polymerase that
first binds to promoter regions upstream of genes and then moves in down-
stream direction thereby assembling a complementary RNA strand using the
genomic DNA as a template. After some post-transcriptional modifications,
the resulting transcripts may be functional molecules, such as regulatory
small interfering RNAs or nuclear RNAs. In contrast to that, messenger
RNAs (mRNAs) serve as templates that are exported to the cytoplasm and
further translated into amino acid sequences that subsequently form pro-
teins. Regulation may occur at various stages of expression, for instance, the
levels of mRNAs depend on the rates of transcription, post-transcriptional
processing, transport from the nucleus to the cytoplasm, translation, decay
as well as active degradation [112].
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At the transcriptional level, the expression of genes is primarily limited by
the accessibility of the individual genes and their associated regulatory DNA
elements such as promoters or enhancers, whereby accessibility is linked
to the state of packaging of the DNA. The nucleus of each diploid human
cell contains about 6 billion base pairs that, if they were arranged in a row,
would make up 2 meters of DNA [6]. On the other hand, the diameter of
the nucleus is only 10 to 20 µm. In order to fit into this tiny space, the DNA
needs to be compacted. At the lowest level, this involves the formation of
protein-DNA complexes referred to as nucleosomes each consisting of eight
histone proteins around which the DNA is wrapped 1.65 times. Along the
DNA, the nucleosomes occur at regular and short distances of about 165 base
pairs, which corresponds to the length of the DNA wrapped around one
nucleosome plus the average length of intermediate linker DNA. Beyond that,
there are further compaction levels, and the highest degree of compaction
can be observed within the metaphase of mitosis.

The compacted DNA together with all associated proteins including the
histone molecules is referred to as chromatin, which can be further distin-
guished into the more tightly packed heterochromatin and the more loosely
packed euchromatin. Genes and regulatory regions within tightly packed
regions are not accessible for RNA polymerases as well as associated regula-
tory proteins and, therefore, cannot be transcribed. However, the structure
of chromatin can be modulated through a number of different modifications
of the histone proteins within the nucleosomes involving the recruitment of
remodeling enzymes and repositioning of nucleosomes [11].

In recent years, increasingly more importance has been attached to chro-
matin structure. For instance, regions with increased frequencies of pairwise
DNA contacts are regarded as functionally isolated topological associating
domains comprising genes and regulatory DNA elements that may share
functional roles [117]. Furthermore, multiple distal enhancers looped to the
promoter of one gene are considered as active chromatin hubs associated
with enhanced transcription [85].

At the sequence level, another important mechanism for the regulation
of transcription is methylation of cytosines at CG sites that can be prop-
agated through cell division due to the symmetry of the complementary
strands [101]. DNA methylation is mainly associated with silencing of genes,
whereby promoter or enhancer sequences are methylated making them inac-
cessible for regulatory proteins such as transcription factors. This mechanism
enables that for the two alleles of a given gene – one from the maternal and
one from the paternal chromosome – the one is expressed but the other is
not. A popular example is the insulin like growth factor 2, for which only
the paternal allele is expressed [27]. Moreover, silencing of genes through
methylation occurs in a coordinated fashion and on a genome-wide scale,
whereby specific genes required for particular states are jointly deactivated
or activated.

Transcription factors are the key players in the regulation of transcription.
They are known for the formation of the transcription pre-initiation complex
and the recruitment of RNA polymerase [116] as well as for setting criti-
cal switches in response to external stimuli especially during development.
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They co-operate on chromatin in order to initiate or modulate transcription
directly or indirectly by inducing changes in the structure of chromatin or
methylation status of DNA. The function of transcription factors can be
context specific, for instance, a given transcription factor may regulate the
transcription of different genes in different cell types [65].

Typical transcription factors bind via sequence specific domains to short
nucleotide patterns of 8 to 12 base pairs (bp), whereby the preference can be
as much as 1000 times higher as compared to other sequences. Regulatory
DNA regions such as promoters or enhancers contain variations of those
nucleotide patterns referred to as motifs. In addition to the DNA binding
domain, transcription factors have domains that allow for interaction with
ligands or other proteins. Once bound to the DNA, they can display enzy-
matic activities such as the catalysis of conformation changes in nucleosomes
[65].

1.2 next-generation sequencing

Sequencing of DNA is one of the key technologies in the life sciences. Over
the last decade, next-generation sequencing (NGS) has been developed, with
ongoing improvements regarding speed, accuracy and costs. Compared
to the conventional Sanger sequencing, NGS enables sequencing of large
amounts of DNA at affordable prices and has been used in many areas of
biological research such as genetics, microbiology and oncology [13].

There is a variety of sequencing technologies being used that all have
their individual strengths and weaknesses, whereby the most frequently
used platform is Illumina producing massive quantities of relatively short
reads of DNA sequences from 30 up to 300 bp [70]. For Illumina and other
short-read platforms, DNA is typically fragmented into small pieces of a
few hundred base pairs and only the outermost ends are sequenced – either
one (single-end) or both ends (paired-end) of each fragment. In addition,
there are platforms such as Pacific Biosciences that produce comparatively
small numbers of long reads up to 40 kbp in length. Long reads allow for
the investigation of scientific questions that are difficult to address using
short reads, for instance, long reads are better suited for the detection of
larger structural variants such as inversions. However, these technologies
are less established and, besides the lower throughput, they still have the
disadvantage of higher error rates [70].

Over the years, numerous different applications of short-read NGS have
been developed, whose primary purpose is not always to decode unknown
DNA sequences but also to verify or even quantify the presence of specific
RNA or DNA molecules in order to draw conclusions about processes that
take place within cells. The most prominent example is RNA-seq [78] that
can be used to analyze the set of all transcripts present in cells under certain
conditions [119]. For this purpose, RNA is extracted, fragmented and con-
verted into cDNA. The ends of the fragments are sequenced and mapped
to the corresponding reference transcripts on the basis of sequence identity.
The read counts can then be used to quantify the level of transcription. Alter-



1.3 chip-seq, chip-exo and chip-nexus 9

natively, the reads can be mapped to the corresponding reference genome
allowing for the identification of novel transcripts arising from alternative
splicing. In comparison to the conventional hybridization-based microarray
technology, RNA-seq is more generic and therefore allows a wider range of
scientific questions to be addressed. However, the complexity and the sheer
amount of data requires for expertise in computational biology as well as for
substantial computing and storage resources.

Besides RNA-seq, there is a number of applications that can be used
to investigate the regulation of gene expression with a particular focus on
epigenetics. For instance, the sequencing of genomic sodium bisulfite treated
DNA (BS-seq) can be used to detect methylated cytosines using the fact
that, at the sequencing level, only those are retained whereas unmethylated
cytosines are converted to thymines (T) that will form mismatches with their
methylated counterparts (C) in the sequences of the untreated DNA [123].
Another example is Hi-C [115] that can be used to measure the genome-wide
interactions between distal genomic sequences and thereby to characterize
compartments of increased pairwise interaction frequency referred to as
topological associating domains (TADs) that often contain functional entities
consisting of genes and regulatory sequences such as enhancers [117]. Or, to
give a final example, the accessibility of chromatin can be evaluated using
ATAC-seq [19] that requires only low amounts of starting material and is
relatively simple to do. In order to address meaningful biological questions,
often more than one NGS application is applied to the same tissue or popu-
lation of cells. For example, to investigate the effect of methylation on gene
expression RNA-seq and BS-seq can be performed simultaneously [83].

1.3 chip-seq, chip-exo and chip-nexus

This thesis is about the primary analysis of ChIP-seq [60, 92] and ChIP-
nexus [47] data. For this reason, these methodologies are described on a
more detailed level in the following paragraphs. The classical Chromatin
Immunoprecipitation (ChIP) procedure (Figure 1) can be used to verify in-
teractions between specific genomic sites and a target protein in vivo. For
this purpose, all proteins bound to the DNA of a population of cells are
first cross-linked using formaldehyde. Subsequently, chromatin is extracted,
sheared into small fragments of 100 to 500 bp and subjected to immuno-
precipitation using a specific antibody directed against the target protein,
thereby co-enriching DNA fragments that are bound to the protein of interest.
Finally, the cross-linking is reversed, and polymerase chain reaction (PCR)
with appropriate primers can be used to verify specific protein-DNA inter-
actions. This procedure is referred to as ChIP quantitative PCR. In contrast,
for ChIP-seq, the co-precipitated DNA fragments are sequenced, and the
reads are mapped to the corresponding reference genome, which allows
the genome-wide identification of interacting sites without prior knowledge
about specific binding sites.

In the course of the preparation of sequencing libraries, the DNA frag-
ments are subjected to PCR amplification in order to obtain a sufficient
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overall amount of DNA required for technical reasons. The common read
length used for ChIP-seq is between 20 and 100 bp, which is smaller than the
average length of the fragments (100-500 bp). Therefore, the reads represent
only the ends of fragments, whereby the 5’ end positions of reads represent
breakpoints introduced by the shearing of DNA. Each fragment within the
library can be assumed to be sequenced with equal probability. Furthermore,
if single-end sequencing is performed, which is usually done for ChIP-seq,
both ends of each given fragment can be assumed to be sequenced with
equal probability resulting in an approximately even overall number of reads
from both strands.

The reads are mapped to the associated reference genome on the basis of
sequence identity. At binding sites, the mapped reads form bimodal clus-
ters termed ChIP-seq peaks, whereby half of the reads map to the forward
strand directly before the binding site and the other half to the reverse strand
directly after the binding site (Figure 2A). The more precise distribution of
breakpoints around binding sites depends on the distribution of fragment
lengths in the sequencing library. Assuming that shearing is independent of
the interactions between target protein and DNA, the breakpoints may occur
with equal probability at each position within a region of length two times
the average fragment length around given binding sites. However, due to
the bimodal strand specific distribution of ChIP-seq reads, binding sites can
be predicted with great accuracy, especially for strong peaks.

There are some details of the ChIP-seq protocol that must be taken into
account for data analysis. One aspect affects almost all NGS applications
and is due to the PCR amplification that is performed prior to sequencing.
With increasing sequencing depth there will be more and more reads with
identical sequence coming from PCR duplicated fragments. The smaller the
number of fragments used as starting material, the lower the complexity of
the library and the sooner this will happen.

Another critical point is the evenness of PCR amplification. Ideally, each
fragment is amplified with the same efficiency, which is not entirely true,
because the efficiency i.a. depends on the base composition of the individual
fragments, especially on the GC content [1]. Consequently, this step poten-
tially distorts the composition of fragments. On the other hand, breakpoints
may occur by chance in different cells at the same position, which results in
reads with identical sequence that cannot be distinguished from reads origi-
nating from PCR duplicated fragments. It is common practice to treat both
categories in the same way by keeping only one read for each given sequence.
This approach is based on the assumption that identical reads are much less
likely to arise from identical breakpoints than from PCR-overamplification,
i.e. that the loss of informative reads is acceptable.

Aside from the PCR amplification step, the mapping of reads involves
some difficulties. Repetitive regions are difficult to evaluate when using
ChIP-seq, because ambiguously mapped reads are not suitable for the de-
termination of binding sites. Furthermore, repetitive regions are prone to
mapping artifacts [21], whereby the mapped reads form large clusters that
are sometimes difficult to distinguish from ChIP-seq peaks (Figure 2B). In
general, the longer the reads the larger the proportion of the genome to
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Figure 1: Schematic representation of the ChIP-seq protocol: Double
stranded DNA is depicted in red and blue. The chromatin of a popula-
tion of cells is cross-linked in vivo, the DNA is sheared into fragments of 100

to 500 bp, which are subjected to immunoprecipitation using an antibody
directed against the protein of interest (green). Depending on the efficiency
of the immunoprecipitation, fragments that were bound by any protein or
other proteins (purple) may remain and constitute the background. During
the preparation of the sequencing library, the co-precipitated DNA fragments
are amplified using PCR. Each fragment within the library can be assumed
to be sequenced with equal probability (stronger colored). Furthermore,
both ends of a given fragment can be assumed to be sequenced with equal
probability resulting in an approximately even number of reads from both
strands. Overrepresented PCR-duplicated fragments can lead to redundant
reads with identical sequence.
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Figure 2: Mapping of ChIP-seq reads: ChIP-seq reads are mapped to the
associated reference genome on the basis of sequence identity. The mappings
can be visualized using genome browsers such as the Integrated Genomics
Viewer (IGV) [93]. (A) The displayed region shows a typical ChIP-seq peak
for E2F6 in mouse embryonic stem cells. At binding sites, the mapped reads
form bimodal clusters, whereby half of the reads map to the forward strand
directly before the binding site (red) and the other half to the reverse strand
directly after the binding site (blue). Due to the strand specific distribution,
the binding sites can be predicted with great accuracy (chain line in the
center), especially for strong peaks. The precise shape of peaks depends
on the overall distribution of fragment lengths within the library. The
adjusted fragmentation size for this experiment was 185 bp (flanking dashed
lines). The isolated mapped reads in the surrounding region correspond
to background fragments. (B) Repetitive regions are prone to mapping
artifacts, whereby the mapped reads form large clusters that can be difficult
to distinguish from ChIP-seq peaks.



1.3 chip-seq, chip-exo and chip-nexus 13

which reads can be unambiguously mapped.
Another issue with ChIP-seq is the uneven accessibility of DNA [38] due

to varying degrees of compaction that also affects shearing of DNA [109]. As
a consequence, the background distribution of mapped reads is not uniform
across the genome.

GC and repeat content as well as DNA compaction are local potentially
overlapping characteristics of DNA that affect the depth of mapped reads
[38]. Therefore, control experiments are usually performed in order to gen-
erate data that can be used to correct for these biases. Most commonly, the
control data is derived from input chromatin, i.e. chromatin from the same
batch that has been cross-linked and sonicated but not immunoprecipitated.
Alternatively, an IgG control antibody that binds only to non-nuclear proteins
is used place of the specific antibody.

ChIP-seq is a valuable and well-established method for the genome-wide
identification of protein-DNA interactions. Since its introduction, thousands
of experiments have been performed in individual laboratories as well as in
large scale projects such as the ENCODE project [41]. The results contributed
significantly to the creation of epigenomic maps for different cell types that
now serve as reference for the scientific community.

The major shortcoming of ChIP-seq is the limited accuracy of binding site
prediction, which depends on the distribution of the lengths of fragments
in the sequencing library and on the strength of the individual peaks. For
strong peaks, the binding site can be precisely predicted, but for weak peaks
the data simply does not provide enough information to narrow down the
exact binding location. Another related question is resolution, i.e. how well
two adjacent peaks can be distinguished from one another. If the distance
between two peaks becomes smaller than one average fragment length, there
will be reads that cannot be unambiguously assigned to one or the other
peak.

On the other hand, accuracy is important for many biological questions
such as the search for sequence motifs associated with a given transcription
factor. The more precisely the peaks are predicted, the more often motif
sequences will occur in the sequences beneath the peaks that are subse-
quently used for de novo motif analysis. Moreover, DNA binding proteins
commonly form complexes such as the polycomb repressive complex [75, 22]
consisting of multiple proteins that coordinately interact with the DNA. A
high resolution is essential for drawing conclusions about the architecture of
such protein-DNA complexes. Finally, resolution also matters for proteins
that tend to produce broader ChIP-seq peaks. For example, the peaks for
some histone modifications can be seen as series of adjacent peaks. In such
cases, the picture is inverted, and the task is to identify the gaps between
peaks, which can correspond, for instance, to nucleosome depleted regions.

The ChIP-exo methodology is a further development of ChIP-seq that can be
used to predict binding sites with much greater accuracy [39, 102, 106] and
therefore allows for a characterization of cooperative binding of proteins to
DNA to a level of detail that was not feasible before. For instance, the profile-
based analysis of ChIP-exo data [104] was used to discriminate between
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direct and indirect binding of the glucocorticoid receptor. For ChIP-exo,
the increased accuracy is achieved by 5’-3’ (λ) exonuclease digest of the 5’
end segments of fragments up to about 5-6 base pairs to the location at
which target protein and DNA were cross-linked [90]. In theory, fragments
that were not cross-linked are digested completely, which contributes to a
reduction of background noise [90, 91]. The remaining intact 3’ end segments
of fragments are sequenced and mapped to the reference genome, which
results in very sharp peaks at cross-linked locations.

Besides the advantage of a massively increased accuracy, a number of
shortcomings of the ChIP-exo method have also been reported [47] includ-
ing high amounts of input DNA required to avoid PCR-overamplification
artifacts. Just as for ChIP-seq, it cannot be determined whether two iden-
tical reads originate from different fragments or not. On the other hand,
an increased number of the sequenced fragment ends must end up at the
same genomic position, given the extremely narrowed range around the
cross-linked interacting proteins (5-6 bp). Assuming the 5’-3’ (λ) exonuclease
perfectly extended to the cross-linked location at the exact same position
for each protein-DNA binding event, then each signal would consist of du-
plicated reads only. In this situation, it would be nonsensical to remove all
duplicated reads because this would eliminate the actual signal.

ChIP-nexus (ChIP-Nucleotide resolution through EXonuclease, Unique bar-
code and Single ligation) is a ChIP-exo protocol with improved efficiency.
In addition, random barcodes are introduced that allow to distinguish PCR
duplicated reads from identical reads emerging from different fragments.
Due to the protocol, PCR duplicated reads originating from the same DNA
fragment have the same random barcode. The random barcodes require
appropriate preprocessing. At the time ChIP-nexus was introduced [47], this
was done using a number of scripts invoking available tools. Furthermore,
the peak caller MACS2 was used that was originally developed for ChIP-seq
data, which has different characteristics as compared to ChIP-exo and ChIP-
nexus data.

For ChIP-seq, the distribution of fragment lengths affects the the shape
of peaks, especially the width. This is no longer valid for ChIP-exo and
ChIP-nexus because the 5’ end segments of fragments are digested up to the
position at which the 5’-3’ (λ) exonuclease encounters an obstacle and falls
off. At binding positions, the regions between exonuclease stop positions
on the forward and reverse strand are ideally free of signal because they
are occupied by the investigated proteins or by co-regulator proteins that
can also be part of the same complex. These regions appear to be protected
from 5’-3’ (λ) exonuclease digestion and, therefore, are here referred to as
protected region.

1.4 outline

This thesis deals with the primary analysis of ChIP-seq and ChIP-nexus data.
The work on these topics lead to three publications that are presented in
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chronological order each in a separate chapter.
The first part (Chapter 2) provides an application example of ChIP-seq that

was used in this case in order to elucidate the pathomechanism underlying
the phenotype of a patient with severe hand and foot malformations carrying
a mutation of the gene encoding for the transcription factor HOXD13 [54].
This work with a focus on developmental biology was done in the prelimi-
nary phase of this thesis, and the computational contributions were largely
limited to the use of existing software in accordance with the standards for
ChIP-seq data analysis as defined by the ENCODE project consortium [66].
Nevertheless, it is presented here because it provides insights to the practical
benefit of ChIP-seq. Furthermore, the main ideas for this thesis emerged
from practical application of the recommended standard software, which is
why it is introduced in detail.

In the next part (Chapter 3), the ChIP-seq peak caller Q [46] is intro-
duced that addresses shortcomings of the recommended software identified
in the course of practical applications. Improvements regarding efficiency
and reproducibility were verified within the framework of the ENCODE
standards using 38 publicly available datasets. Furthermore, Q was used
to characterize a signature of RNA polymerase II (RNAPII) and histone
modification H3K4me3 peaks that is consistent with the concept of paused
open promoters.

In the final part (Chapter 4), the first bespoke software package for the
analysis of ChIP-nexus data is presented [45]. The ChIP-seq caller Q was
extended by additional modules that are required for the analysis of ChIP-
nexus data. The software makes use of the random barcodes introduced with
ChIP-nexus and was released under the name Q-nexus. Finally, Q-nexus was
compared to two other peak callers with respect to reproducibility of peak
calling.



2
A P P L I C AT I O N E X A M P L E O F C H I P - S E Q

2.1 introduction

In this chapter an exemplary application of ChIP-seq [54] is presented in or-
der to provide insight into the practical benefit of ChIP-seq and to introduce
concepts and software for data analysis relevant for the problems addressed
within the scope of this thesis. The analysis of the ChIP-seq experiments were
performed in the preliminary phases of this thesis project and contributed
great to the development of ideas. Several established methods were used
for the analysis that were subsequently also used benchmark the methods
developed in this thesis, which is why they are explained in detail.

Ibrahim et al. [54] investigated the pathomechanism underlying a novel het-
erozygous missense mutation in a gene encoding for the transcription factor
HOXD13. Affected individuals show severe hand and foot malformations
(Figure 3). On the protein level, this mutation leads to a glutamine to lysine
substitution at position 317 within the DNA binding domain (Q317K). For
bicoid-type homeodomain proteins including PITX1, a lysine at position 317

is a typical feature, and misexpression of PITX1 in the developing chick wing
bud had been shown earlier to lead to a partial fore-to-hindlimb transfor-
mation accompanied by the formation of hindlimb characteristics [74, 107]
reminiscent of the phenotype that was observed for the patient carrying the
Q317K mutation. Based on this, Ibrahim et al. postulated a pathomechanism
according to which the mutation of the binding domain alters the binding
specificity of HOXD13 resulting in a regulation of an abnormal set of target
genes that are naturally regulated by PITX1. This hypothesis was verified
using a variety of molecular biological techniques including the NGS appli-
cations ChIP-seq and RNA-seq.

In principle, ChIP-seq is applicable to every protein for which a specific
antibody is available. However, in order to apply ChIP-seq to the Q317K
mutation, mainly two difficulties had to be overcome. First, for heterozygous
mutations wild type and mutant proteins both are present in the cell, but the
available antibodies do not distinguish between these two forms. Second, it
is virtually impossible to obtain sufficient amounts of tissue for the relevant
anatomical site and developmental time point. Because of this, Ibrahim et
al. [54] developed a cell culture-based retroviral overexpression system that
allows for specific targeting of the mutated factor and yields sufficient start-
ing material required for ChIP-seq (Figure 4). Roughly speaking, the coding
sequence of the gene of interest is fused with a triple FLAG tag sequence and
inserted into a vector, which is then transferred into an RCASBP virus. Upon
infection of a cell, the vector construct will be integrated into the genome

16
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Figure 3: Phenotype of Q317K missense mutation. Photographs and as-
sociated radiographs of hand (upper panels) and foot (lower panels) of a
patient carrying a Q317K mutation of the transcription factor HOXD13. The
mutation leads to severe malformations with missing and shortened digits.
This figure was originally published in Ibrahim et al., 2013 [54].
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and thus passed on to all daughter cells that will express the triple FLAG
tagged protein of interest. After culturing and harvesting of the infected
cells, ChIP-seq is performed using a standard anti-FLAG antibody. Due to
the triple FLAG tag, the ChIP-enrichment can be performed with increased
efficiency. Furthermore, the protein of interest is moderately overexpressed.
Therefore, binding sites of the analyzed factor can be detected with high
sensitivity. Ibrahim et al. used chicken mesenchymal limb bud cells, but in
principle the system is applicable to all culturable cell types.

HH24
limb buds

single cell 
suspension 

RCASBP

pSLAX

clone 
g.o.i. 

transfer 
into 

RCASBP

virus
production

culture harvest ChIP
infect and 
seed cells

Figure 4: Retroviral expression system: The sequence of a gene of interest
(green) is inserted into a vector in frame with a triple FLAG tag (red).
The vector is then transferred into an RCASBP virus. Embryonic chick
mesenchymal cells isolated from limb buds are infected with the virus and
subsequently cultured. After harvesting of cells, ChIP-seq with an anti-FLAG
antibody is performed. Due to moderate overexpression of triple FLAG
tagged proteins, increased efficiency of the ChIP-enrichment is achieved. This
figure was originally published in Ibrahim et al., 2013 [54].

The retroviral expression system was applied to the wild type proteins
Hoxd13

wt and PITX1
wt as well as to the mutant proteins Hoxd13

Q317K and
Hoxd13

Q317R, and the harvested cells were used to perform ChIP-seq and
RNA-seq. The next sections will show how the data was processed. The
focus is on the main steps of the primary analysis of ChIP-seq data. Special
emphasis is put on applied methods that initiated further developments or
were subsequently used for validation purposes. The detailed descriptions
are intended to serve as a reference for the interpretation of the results
presented in this thesis (Chapters 3 and 4). If appropriate, the individual
analysis results of Ibrahim et al. [54] will be presented briefly along with the
corresponding methods and jointly discussed at the end of this chapter.

2.2 chip-seq data analysis

2.2.1 ENCODE guidelines and best practices

Large scale projects such as the ENCODE project [41] necessarily use stan-
dards for applied methods and experimental setups as well as for the acces-
sibility and evaluation of experimental results [23, 16]. After the raw and
processed data is released it serves as a reference for the scientific community.
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Compliance with such standards opens up the possibility of comparing
the quality of one’s own results to those of many others. Furthermore, if
experimental data comply with ENCODE standards, this can be taken as a
strong argument for the quality of the results.

At the end of the first production phase of the ENCODE project [34, 31],
the final results were released accompanied by a series of publications. One
of these publications was entirely dedicated to the working standards and
guidelines for ChIP experiments used throughout the project [66], whereby
particular focus was put on data analysis. These guidelines resulted from
experiences gained in the course of the project for which more than thousand
ChIP-seq experiments for a variety factors and cell types were performed in
different laboratories.

In accordance with these standards, Ibrahim et al. [54] performed each
ChIP-seq experiment in two biological replicates. Additionally, associated
input control experiments were performed. Furthermore, all sequencing
libraries were sequenced to an appropriate depth exceeding the defined
specification in all cases. The raw sequencing data was submitted to the
Short Read Archive [68] and the primary results of the data analysis were
deposited at the Gene Expression Omnibus database [32]. Also in terms
of data analysis, Ibrahim et al. adhered to the standards. The efficiency of
ChIP-enrichment was assessed using the cross-correlation method of the SPP
package (Section 2.2.4), and peak calling was performed with special atten-
tion to reproducibility using the peak caller MACS2 (Section 2.2.5) within the
framework of the Irreproducibility Discovery Rate (IDR) procedure (Section
2.2.6).

2.2.2 Preprocessing and mapping of ChIP-seq reads

Short reads are typically given in FASTQ format. Each record consists of
three data fields containing a unique identifier, the nucleotide sequence and
the Phred quality scores [35] for the individual read positions. A frequently
used software for the first inspection of reads is FastQC [4] which generates a
report providing graphical presentations of summary statistics including per
base quality statistics (Figure 5). In the first step of the analysis for Ibrahim
et al., the average Phred score was calculated for each read and those with
an average score below 28 were discarded. For fragments smaller than the
uniform read length, the corresponding reads contain adapter sequence at
the 3’ ends that has to be clipped off. This step was skipped for the data
analysis of Ibrahim et al. because the read length was only 36 bp.

In the next step of ChIP-seq data analysis, the reads are mapped to the corre-
sponding reference genome using Burrows-Wheeler aligners such as bowtie
[67] or BWA [72] also referred to as short read mappers. Such mappers
typically produce output files in SAM/BAM format [71], which consist of a
comparatively small header section containing primarily information about
chromosome lengths and a large section for the individual alignments of
reads. For ChIP-seq and many other NGS applications, ambiguously mapped



2.2 chip-seq data analysis 20

Figure 5: Per base quality plot of FastQC: Example for a FASTQ dataset of
low overall quality. For each read position summary statistics are calculated
including median (red) and mean (blue) Phred quality scores. This figure was
taken from the documentation of the FastQC software [4].

reads complicate the analysis, because it cannot be determined from which
region of the genome they originate from. Therefore, such reads are typically
removed. For the analysis presented here, the quality filtered reads were
mapped to the chicken reference genome (genome build galGal3) using BWA
with at most two allowed mismatches per read, and ambiguously mapped
reads were discarded using the BWA specific SAM tag XT:AU.

Library complexity is an import issue in ChIP-seq and other NGS applica-
tions (Section 1.3), which is why the report of FastQC also includes a plot for
sequence duplication levels (Figure 6). PCR duplicated reads are not informa-
tive and artificially influence read depth. Therefore, all duplicated sequences
are typically removed prior downstream analysis which has the side effect
that identical reads that do not originate from PCR overamplification are also
removed. For the analysis of Ibrahim et al., the removal of duplicates was
performed using samtools [71] with the rmdup sub command. The average
number of unambiguously mapped deduplicated reads is 27, 193, 329 which
is in compliance with the ENCODE standards (Section 2.2.1).

2.2.3 Fragment length estimation

The predominant length of fragments in given ChIP-seq libraries is a crucial
parameter for data analysis and visualization. At the same time, it may
vary from one experiment to another because it depends on the settings
used for sonication. Therefore, the predominant fragment length has to be
determined for each experiment individually, and numerous algorithms have
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Figure 6: Duplication level plot of FastQC: The blue line shows the pro-
portion of reads within a given duplication level amongst all reads (before
deduplication), and the red line shows the proportion of reads with distinct
sequences within a given duplication level amongst all reads with distinct
sequences (after deduplication). The percentage of remaining reads after
deduplication is calculated as the ratio of the total numbers reads before and
after deduplication. This figure was taken from the documentation of the FastQC
software [4].

been developed that can be used to estimate this parameter from mapped
ChIP-seq reads [114, 125, 61, 18, 69, 48, 49, 88]. An established procedure
that was also used throughout the ENCODE project [41, 66] is the cross-
correlation method [63]. A special feature of this method is that it is applied
genome-wide and has no assumptions about true binding sites of the target
protein which are subject of investigation.

For the cross-correlation method, each chromosome of the genome is
divided up into equally sized bins. Subsequently, the 5’ end positions of
mapped reads within each bin are counted. This is done separately for the
forward and the reverse strand, which results in two count vectors n+

c (x)
and n−c (x), where x denotes the position, s the strand and c the chromosome.
Finally, the two count vectors are shifted against each other, and for each
shift δ the strand cross-correlation X(δ) is calculated as follows1:

X(δ) = ∑
c∈C

Nc

N
· P[n+

c (x +
δ

2
), n−c (x− δ

2
)] (1)

whereby P[a, b] is the Pearson linear correlation coefficient for the vectors
a and b, C is the set of all chromosomes, Nc the total number of 5’ end
positions for a given chromosome and N the total number of 5’ end positions
for the entire genome.

For a typical ChIP-seq experiment, the cross-correlation curve has a global
maximum usually between 90 and 250 bp (Figure 7A), and the corresponding
shift size is interpreted as the predominant length of fragments [66] here

1 This formula was transferred one-to-one from the original publication [63].
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denoted by `. For greater strand shifts, the curve gradually decreases and
finally converges to a certain correlation coefficient that depends on the noise
level of a given ChIP-seq experiment. To gain intuition, due to the strand
specific distribution of the detected breakpoints at binding sites (Figure 2)
clusters of bins with increased counts for n+

c (x) and n−c (x) are opposite to
each other at a shift of 0, and mainly the bins between binding sites con-
tribute to the correlation. With increasing strand shifts, the clusters on the
forward and reverse strand start to overlap and increasingly contribute to
the correlation until they start to pass which is when the correlation starts to
decrease.

If the cross-correlation method is applied to data of input control experi-
ments, i.e. no ChIP-enrichment was performed, there is no distinct peak at
a shift size of one predominant fragment length (Figure 7B). Instead, there
is a sharp peak at a shift of one read length rl. This peak, referred to as
phantom peak [66], is also identifiable in curves derived from experiments
with ChIP-enrichment although less pronounced (Figure 7A). The phantom
peak has been associated with mapping artifacts arising from genomic re-
gions that are difficult to map [88]. Blacklisting of such regions as well as
the removal of duplicated reads has an effect on the height of the phantom
peak [110, 21]. Visual inspection of the read alignments in regions that most
likely contribute to the phantom peak revealed pile-ups of mapped reads
arranged in a way that the 5’ end positions of reads mapped to the forward
and reverse strands occur at a distance of one read length (Figure A3).
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Figure 7: Cross-correlation curves for a HoxD13 replicate and input con-
trol: The cross-correlation method can be used to estimate the fragment
length and to assess the noise level of given ChIP-seq experiments. (A) With
increasing strand shifts, the correlation rises until a maximum is reached (red
dashed line). The corresponding shift size is interpreted as the predominant
fragment length (`). For shift sizes greater than `, the correlation falls away
and finally converges to a certain value that can be interpreted as the noise
level (argminδX). At a shift size of one read length (rl, gray dashed line),
there is a unevenness that corresponds to the phantom peak (see text). The
poorer the enrichment the more pronounced is the phantom peak. X(`)
is related to X(rl) to calculate the RSC and to argminδX to calculate the
NSC (see text). (B) For input controls (no enrichment) the phantom peak
constitutes the maximum. The plot in panel A was taken from the doctoral thesis
of Daniel Ibrahim [53] and the plot in panel B from Landt et al, 2012 [66].
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2.2.4 Assessment of ChIP-enrichment

Two quality metrics, referred to as the normalized and relative strand
cross-correlation coefficient (NSC and RSC), can be derived from the cross-
correlation curve (Figure 7). Both of them reflect the efficiency of ChIP-
enrichment, which essentially depends on the quality of the used antibody
but also on other experimental details such as washing steps. Therefore,
these metrics may provide valuable feedback for optimization.

The NSC puts the height X(`) at the maximum of the cross-correlation
curve into relation to the correlation at the background level.

NSC =
X(`)

argminδX
(2)

By contrast, for the RSC the background level is eliminated by subtraction
from the numerator and denominator, and the height X(`) is put into relation
to the height of the phantom peak X(rl) at one read length.

RSC =
X(`)− argminδX
X(rl)− argminδX

(3)

Since the height of the phantom peak depends on mapping artifacts arising
from individual characteristics of the given reference sequence, RSC values
should be compared only within the same genome build.

Based on practical experience, the ENCODE project consortium set the fol-
lowing rules. Experiments have to be repeated for which the NSC is smaller
than 1.05 and the RSC smaller than 0.8. If the NSC and RSC cannot be
improved in additional experiments, the corresponding datasets are flagged
as marginal in quality. Exceptions from these rules are allowed in particular
cases. For instance, transcription factors with few genuine binding sites may
show low NSC values even for high-quality datasets.

2.2.5 Peak calling using MACS2

For ChIP-seq, the genome-wide prediction of DNA sites that interact with
a given target protein is referred to as peak calling. Roughly speaking, re-
gions with increased coverage of mapped reads (Figure 2A) are summarized
in genomic coordinates with associated significance scores. Looking more
carefully, it becomes apparent that ChIP-seq peak calling involves a number
of known challenges that require for sophisticated solution approaches. A
variety of factors influence local read depth such as accessibility of chromatin
or GC content (Section 1.3), which is why the background distribution of
mapped reads is not uniform but varies throughout the genome. There is
also systematic variation. For instance, the fragment length may vary from
one experiment to another. Furthermore, there are mapping artifacts that
can be easily mistaken for genuine ChIP-seq peaks (Figure 2B). With that
in mind, the task is to mark out individual peaks with greatest possible
accuracy and to evaluate binding frequencies within their respective context
and with regard to the biological question as well as statistical significance.
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Due to the influence of the fragment length on the peak width (Section1.3),
virtually all peak callers incorporate an associated parameter or even an
extra routine for estimation (Section 2.2.3). The determined fragment length
can be used to enhance the coverage at binding positions with respect to
background. This is typically accomplished either by shifting all mapped
reads by the half of the fragment length towards 3’ direction [114, 125, 59, 82]
or by extending all mapped reads to an entire fragment length also towards 3’
direction [36, 18, 95, 113, 86, 89, 121, 26] (Figure 8A). This effectively means
that reads mapped to different strands are shifted or extended in opposite
directions. At binding positions, 5’ ends of reads mapped to different strands
are more likely to occur at a distance of a fragment length as compared
to other regions (Figure 2). Therefore, the coverage profiles for shifted or
extended reads have depth distributions in which ChIP-seq peaks are more
pronounced as compared to the read coverage profiles.

The prepared coverage profiles are subsequently searched for local maxima
referred to as summit positions. For each summit position, a raw signal score
is reported such as the read coverage or the fold change, if data for a second
condition is available. In addition, an associated P-Value is reported which
reflects the probability to observe a given or even greater signal score just
by chance, whereby the meaning of by chance depends on the setup of the
analysis. For instance, if the data is evaluated with respect to input control
data (Section 1.3), it means: What is the probability to observe this score given
that no ChIP has been performed. By contrast, if the data was derived from
two cell populations that were treated in different ways but ChIP has been
performed in either case, by chance means: The treatment has no impact on
binding of the target protein.

P-values are often calculated using discrete probability distributions pro-
viding the probabilities for all possible outcomes of a random experiment.
For example, the probability that k reads map to a given genomic interval is
often modeled using a Poisson distribution, which involves the parameter λ

that defines mean and variance of the distribution at the same time and is
typically estimated from the entire data assuming a uniform distribution of
mapped reads across the genome. Once a λ is determined, P-values can be
calculated by summing up the probabilities for observing k or more reads
mapping to a given interval. Alternatively, the probabilities for less than k
reads can be summed up and subtracted from 1 using the fact that the sum
of the probabilities for all possible outcomes must be 1. Another probability
distribution that is used in this context is the negative binomial distribution
[84]. A fundamental property of the Poisson distribution is that its vari-
ance is equal to its mean. For many NGS-applications including ChIP-seq,
the variance of the read counts is often much larger than the mean. This
phenomenon is called overdispersion. The negative binomial distribution is
similar to the Poisson distribution but has an extra parameter for dispersion
to model the variance, which provides a better model of the background [59].

In order to decide if an observed signal score is significant or not a thresh-
old has to be defined. Within the classical framework of statistical hypothesis
testing, the P-value threshold is set to 0.05, whereas for ChIP-seq peak
calling much smaller values such as 10−6 are used as a threshold. Peaks
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with P-values greater than the specified threshold are considered to be false
discoveries. Depending on the experimental conditions and the binding
properties of the target protein, there may be up to tens of thousands of
ChIP-seq peaks, and for each peak an individual test is performed that may
erroneously discard the null hypothesis. Therefore, the P-values are typically
corrected for multiple testing. The Bejamini-Hochberg procedure [14] pro-
vides a simple solution for this. First, the P-values are sorted in ascending
order, and then each P-value is multiplied by the ratio of the total number of
tests and the corresponding rank in the sorted list.

One of the first algorithms introduced for ChIP-seq peak calling was MACS
(Model-based analysis of ChIP-Seq) [125]. Due to the early introduction and
good usability it became the standard application, and the further developed
version MACS2 [38] was also used in the course of the ENCODE project
[66]. MACS2 includes a routine for the estimation of the average fragment
length `. The estimated length was formerly used to define an optimal shift
size `/2. For MACS2 the shifting of reads was replaced by extension to a
full fragment length (Figure 8A). The most special feature of MACS2 is the
use of a dynamic local lambdas that are intended to account for the uneven
background distribution of reads (Figure 8B). Instead of estimating only one
global λBG from the entire genome, MACS2 estimates lambdas for windows
of different sizes (λ1k, λ5k, and λ10k kbp) centered at peaks. The local lamb-
das are subsequently used to approximate a binomial distribution for the
statistical evaluation of peaks [38]. This has the effect that peaks within
regions of low mapped read density become statistically significant even if
they are below the global background level (λBG). Finally, if a control sample
is available an empirical false discovery rates (FDR) is reported, which is
defined as the expected proportion of peaks that were erroneously evaluated
as significant amongst all peaks evaluated as significant.

2.2.6 Irreproducible Discovery Rate (IDR)

In accordance with the standards set by the ENCODE project consortium,
Ibrahim et al. used MACS2 in conjunction with the irreproducible discov-
ery rate (IDR) procedure [73] in order to evaluate the reproducibility of
their ChIP-seq experiments and to define reproducible peaks sets. The IDR
procedure quantifies the consistency between replicates and assigns each
overlapping peak a posterior probability of being irreproducible. Technically
speaking, the scores of the replicates are modeled as a mixture of two groups
– a reproducible and an irreproducible group.

From a practical point of view, the use of the IDR procedure has the
advantage that the distributions and scales of the significance scores may
be different between replicates. Only the ranks in the peak lists sorted by
score are taken into account, which is useful in the context of collaborative
projects because it provides a flexible criterion for the reproducibility of
ranked peak lists contributed by different participants. Selecting overlapping
peaks at a threshold IDR ≤ 0.01 ensures that the proportion of peaks from
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Figure 8: Enhancement of coverage at binding sites and local background
model of MACS: (A) ChIP-seq peaks can be enhanced with respect to
background exploiting of the characteristic strand specific distribution of
mapped reads at binding sites. This is typically accomplished either by
shifting all reads by `/2 towards the 3’ direction, or by extending all reads
by an entire fragment length ` towards the 3’ direction. (B) Schematic
representation of the local background model implemented in the peak caller
MACS. The coverage profile is depicted in purple. In order to evaluate peaks,
MACS dynamically derives local background parameters λlocal from the
surrounding coverage (box). This has the advantage that peaks below the
global background level (λBG) can also be detected and false-positive peak
calls may be prevented in areas of high background.

the irreproducible group amongst all selected peaks is less than 1% (Figure
9A), which is similar to the FDR.

The R package for the IDR procedure includes a second component that
implements the change of correspondence method. As well as the IDR
procedure, this method can be used to evaluate the reproducibility of repli-
cates but it takes a completely different approach. In principle, the change
of correspondence method is based on the following assumptions. Given
two replicates that measure the same underlying stochastic processes and
an appropriate scoring system, the significance scores of true signals are
expected to be higher and more consistent between replicates as compared
to the scores of spuriously detected peaks [73]. This implies that there is a
larger degree of consistency for the higher ranked peaks as compared to the
lower ranked peaks, and that if we move down the ranks, the consistency
will drop at the transition from signal to noise. This conception is captured
by the correspondence curve Ψ and its first derivative Ψ′ (Figure 9B).

The correspondence curve is constructed by successively determining the
proportion of overlapping peaks for increasing fractions of peaks in the upper
ranks, i.e. the proportion of overlapping peaks in the top 1% ranks, in the top
2%, and so on, up to 100%. To gain intuition, take an example with two iden-
tical replicates. In this case, the proportion of overlapping peaks would be
100% in each step, i.e. the correspondence profile Ψ would form a diagonal
with a slope of one 1, and consequently Ψ′ would be always 0. However, for
real use cases the proportion of overlapping peaks rapidly decreases at some
point referred to as breakdown of consistency. At this point, the correspondence
curve Ψ moves away from the diagonal accompanied by a decrease in slope,
i.e. the slope becomes smaller than 1. Since the correspondence analysis is
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performed on overlapping peaks only, the proportion of overlapping peaks
in the top 100% ranks must be 100%, i.e. the curve must return to the di-
agonal at some point, and the slope becomes greater than 1. The later this
happens, the more peaks were consistently identified for the two replicates.
A large fraction of consistently identified peaks indicates high reproducibility.
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Figure 9: Explanation of IDR and correspondence curve: The IDR pro-
cedure includes two independent components for the evaluation of the
reproducibility of ranked peak lists. (A) Scatterplot for logarithmized sig-
nificance scores of two biological Hoxd13

wt replicates (left panel). Dots
corresponding to overlapping peaks with a posterior probability for being
from the irreproducible group greater than 0.01 are colored in red. The
panel on the right-hand side shows the numbers of selected overlapping
peaks at various IDR thresholds. 34, 267 overlapping peaks can be selected
at a threshold of IDR ≤ 0.01 (black dots in the scatterplot). The propor-
tion of overlapping peaks erroneously classified as reproducible amongst
all selected peaks can be assumed to be below 0.01. (B) Idealized example
of the correspondence curve. The 50% top ranked overlapping peaks each
have the same rank, whereas the ranks of the bottom 50% are shuffled. At
the decay point the slope drops below 1 and from then on increases. At
some point the slope must become greater than 1, because the analysis is
performed on overlapping peaks only. The later this happens the more peaks
are considered to be consistently identified. The figures in the upper two panels
were taken from the doctoral thesis of Daniel Ibrahim 2015 [53] and the figures in
lower two panels from Li et al., 2011 [73].

2.2.7 Motif analysis of ChIP-seq peaks

Many proteins bind sequence specific to DNA often collaboratively with
other proteins or as part of a complex. Therefore, peak regions are typi-
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cally enriched for recurring variations of short nucleotide patterns (6-8 bp)
that can be combined into motifs representing sequence specific preferences
of DNA binding proteins. If ChIP-seq is applied to a transcription factor,
the motifs are generally associated with the analyzed factor and co-factors
thereof. DNA-binding specificity is an intrinsic property of transcription
factors, and the determination of the binding preferences of a given factor
yields valuable input for further analyses [65]. Therefore, motif analysis is
one of the key objectives in ChIP-seq data analysis [81, 12].

In order to identify motifs associated with a given factor, the nucleotide
sequences beneath peaks are extracted and searched for recurring nucleotide
patterns that are evaluated with respect to control data. In this context, a
popular software package is the MEME Suite which provides a wide range
of tools for de novo motif discovery [9, 8] and downstream analyses such
as scanning extracted sequences for given motifs [42] or checking identified
motifs against motif databases [97, 10].

Motifs can be represented in different ways. A simple representation
method makes use of the IUPAC nucleotide code [56] which includes de-
generate base symbols for all possible combinations of the four bases. For
instance, TGCKAT stands for TGCGAT or TGCTAT (Figure 10A). Other rep-
resentations such as positions weight matrices [105] or sequence logos [98]
additionally take into account base frequencies at individual positions (Fig-
ure 10B).

The motif finder DREME, available as part of the MEME Suite, was used in
order to derive motifs from the peaks of the ChIP-seq experiments performed
by Ibrahim et al. This turned out to be a suitable choice because DREME is
optimized for finding short core motifs. For wild type Hoxd13, a motif with
a length of 8 bp was derived that is almost perfectly in line with a previously
published Hoxd13 motif [15] indicating a valid analysis. The peaks for the
mutants HoxD13

Q317K and HoxD13
Q317R as well as for PITX1 were analyzed

in the same way, which resulted in motifs incompatible with the motif de-
rived for wild type Hoxd13. However, the motif derived for the mutant
HoxD13

Q317K is partially compatible with the motif derived for PITX1, which
is not the case for the motif derived for the mutant HoxD13

Q317R (Figure 10B).

2.2.8 Higher level analyses of ChIP-seq and RNA-seq data

The lists of reproducible peaks obtained through the IDR procedure were
further evaluated with respect to their distribution across the genome (Figure
11A). For this purpose, the chicken genome was subdivided into promoter,
exon, intron, gene flanking and intergenic regions using annotation data
from Ensembl BioMart [2]. Subsequently, the peaks were counted for each
category using a custom-made PERL script that builds on BEDTtools [87] a
multipurpose program for processing files in BED and related formats.

It turned out that all four analyzed proteins distribute in similar fashion
over the individual regions, but peaks for wild type Hoxd13 and the mutants
HoxD13

Q317K and HoxD13
Q317R occur more often in conserved regions as

compared to PITX1 (Figure 11A).
For a principle component analysis of the read coverage profiles (Figure
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Figure 10: Representations of transcription factor binding motifs: ChIP-
seq peak regions are enriched for variations of short nucleotide patterns
which can be combined into motifs using different representation techniques.
(A) Degenerate base symbols of the IUPAC code can be used represent
ambiguous positions. For instance, Y stands for C or T. (B) Sequence logos
additionally take base frequencies into account. The sequence logo for wild
type HoxD13 (HoxD13

wt) at the top corresponds to the sequences shown in
panel A and is almost identical with a previously published HoxD13 motif
(Berger et al.) [15]. The motif derived for the Q317K mutant is partially
compatible with the motif derived for wild type PITX1 (bottom). By contrast,
the motif of the additionally analyzed mutant Q317R requires an T at the
second position that is incompatible with the PITX1 motif. The sequence logos
in the right panel were contributed by Daniel M. Ibrahim.
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11B), the genome was windowed, and for each 500 bp window the number
of mapped reads was determined for each analyzed factor. The obtained
count vectors were used as input for a principle component analysis that
was carried out within the open source statistical environment R [111] us-
ing the function prcomp. The coverage profiles for biological replicates of
HoxD13

wt and the two mutants form separate cluster, which is in line with
the postulated pathomechanism according to which the mutation within the
binding domain alters the binding specificity of the mutant HoxD13

Q317K

proteins. Furthermore, biological replicates group together indicating good
reproducibility.

A similar analysis was performed for RNA-seq data but this time vectors
of the base-2 logarithms of fold-changes of 3118 up- or down-regulated
transcripts were used as input for the PCA (Figure 11C). The fold-change
vector for HoxD13

wt forms a cluster with that of the mutant HoxD13
Q317R,

and the vectors for PITX1 and HoxD13
Q317K form a separate cluster. This

can be interpreted as a further evidence for the postulated pathomechanism
according to which the HoxD13

Q317K mutant regulates a subset of genes that
are normally regulated by PITX1.

Finally, also a combined analysis of ChIP-seq and RNA-seq data was
carried out. For this purpose, HoxD13

Q317K /PITX1 co-bound genes were de-
fined as genes that share a peak for the mutant HoxD13

Q317K and wild type
PITX1, and co-regulated genes were defined as genes that are either twofold
up- or -down-regulated for HoxD13

Q317K and PITX1. These definitions were
used to break down the set of all genes into four subsets: co-bound and
co-regulated, not co-bound but co-regulated, co-bound but not co-regulated,
and neither co-bound nor co-regulated (contingency table). Out of all 436 co-
regulated genes 57 were also co-bound (Fisher’s exact P-value = 1.295 · 10−3)
showing that co-regulation and co-binding do not occur independently. The
same analysis was performed for HoxD13

Q317R and PITX1. Out of all 237
co-regulated genes 12 were also co-bound which corresponds to a number
that one would expect only by chance (P-value = 0.1335). This shows that
co-binding and co-regulation occurs independently for the HoxD13

Q317R and
PITX1 but not for HoxD13

Q317K and PITX1.
For illustration purposes, a simulation study with 100, 000 iterations was

performed selecting randomly from 436 co-regulated genes. For each itera-
tion the number of selected genes that were also co-bound was determined,
and the combined counts for all iterations were presented in a histogram
(Figure 11D). The determined empirical P-values correspond to those ob-
tained using Fisher’s exact test.

2.3 discussion

The quality of the data and the standardized analyses (Section 2.2.1-2.2.6)
contributed to the credibility of the work of Ibrahim et al. [54, 53]. Beyond
that, motif analyses supported the hypothesis with the altered binding pref-
erences of mutant HOXD13 transcription factors (Section 2.2.7). Furthermore,
results of the higher-level analyses of ChIP-seq and RNA-seq data (Section
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Figure 11: Higher-level analyses of ChIP-seq and RNA-seq data: (A) The
pie charts show the genomic distribution of peaks. Based on annotation
data, the chicken genome was subdivided into promoter, exon, intron, gene
flanking and intergenic regions. Subsequently, the peaks were counted within
each region. The peaks of the four proteins distribute in a similar fashion
over the individual regions. (B) For a principle component analysis of the
read coverage profiles for windows of 500 bp, the Hoxd13 proteins (wildtype
and mutant proteins) and PITX1 form two distinct clusters. Furthermore,
biological replicates (same symbol and color) group together. (C) A principle
component analysis was also performed for the RNA-seq data, but this time
for the base-2 logarithms of fold-changes of 3118 up- or down-regulated
transcripts. The Q317R mutant forms a cluster with the HoxD13 wild type
protein, whereas the Q317K mutant forms a cluster with the PITX1 wild type
protein. (D) Illustrative presentation of the Fisher’s exact test of co-bound
and co-regulated genes that were defined using ChIP-seq and RNA-seq data
(see text). These figures were originally published in Ibrahim et al., 2013 [54].
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2.2.8) are in line with the hypothesis with a global shift of the regulatory role
of the mutant HoxD13

Q317K towards that of PITX1.
In the course of the analyses that were carried out in collaboration with

Daniel M. Ibrahim and Jochen Hecht, there were regular meetings with wet-
lab biologists performing ChIP-seq and active exchange about the ENCODE
guidelines. All tools required for data analyses in compliance with the stan-
dards were installed on a locally installed GALAXY instance [17, 40] at the
Charité. This provided scientists from various institutes with the possibility
to use this resource for data analysis [28, 53, 58]. One the other hand, it
contributed to deeper understanding of the data.

In the course of practical applications, it became evident that the usage of the
peak caller MACS2 (Section 2.2.5) in combination with the IDR procedure
(Section 2.2.6) does not yield optimal results in terms of resolution and repro-
ducibility. Manual inspection of the coverage at peak regions revealed that
MACS2 occasionally tends to combine adjacent peaks in close proximity into
one peak. This unstable characteristic affects the ranking of peaks and thus
potentially also affects the results of the IDR procedure. Another drawback
of the recommended pipeline was that the estimation of the predominant
fragment length using the cross-correlation method (Section 2.2.4) is very
time-consuming. This can be overcome by using larger step sizes, e.g. 10 bp
instead of 1 bp, but this will result in coarser estimates which is not accept-
able, because the fragment length is an important parameter for downstream
analyses, especially peak calling. To overcome these drawbacks, an improved
peak calling algorithm was developed that is presented in the next chapter.



3
R E P R O D U C I B L E C H I P - S E Q P E A K C A L L I N G

3.1 introduction

Here, a peak caller named Q [46] was developed to address all the short-
comings that became apparent in the course of the practical application of
available software (Chapter 2). Q was implemented in C++ using the SeqAn
library [30] that enables efficient analysis of next-generation sequencing data.
The result is a fast and user-friendly software package that allows for accu-
rate and reproducible identification of ChIP-seq peaks.

The implementation of Q includes a module for the estimation of the pre-
dominant fragment length (Section 3.2.1). To a great extent, the methodology
was inspired by the cross-correlation method and yields almost equivalent
results but three times faster. For ChIP-seq, enhancement of read coverage
at peak positions is typically achieved by either shifting or extending reads
by the half or the entire fragment length towards 3’ direction. In Q, an
alternative approach was implemented that makes use of qfrags that are simi-
lar to extended reads but the coverage profiles for qfrags are quadratically
amplified in peak regions (Section 3.2.2). The improved coverage profiles
allow more accurate prediction of binding sites. Another innovation of Q
is the statistical evaluation of peaks that shifts the focus from peak height
towards saturation of genomic positions around binding positions (Section
3.2.3).

Q was compared to three other peak callers recommended by the ENCODE
project consortium with regard to runtime (Section 3.2.4), reproducibility
(Section 3.2.5) as well as motif content of peaks (Section 3.2.6). Furthermore,
Q was used to characterize the architecture of paused open promoters using
data for RNA polymerase II (RNAPII) and the histone modification H3K4me3

(Section 3.2.7).

3.2 methods and results

3.2.1 Fragment length estimation

The predominant fragment length in ChIP-seq sequencing libraries is a cru-
cial parameter for peak calling and downstream analyses. The well accepted
cross-correlation method (Section 2.2.3) can be used to estimate this parame-
ter from mapped read data. In addition, the cross-correlation curve allows
the assessment of ChIP-enrichment (Section 2.2.4).

For the cross-correlation method, the Pearson correlation coefficient be-
tween count vectors for the forward and reverse strand is calculated for

33
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increasing strand shifts, and the shift size with the highest correlation is in-
terpreted as the fragment length. The count vectors contain the numbers of 5’
end positions of mapped reads at any given genomic position. If duplicated
reads are removed beforehand, the counts are either 0 or 1. Based on this
fact and in order to improve efficiency, an alternative metric for similarity
between the two strands was implemented in Q. Instead of the Pearson
correlation the Hamming distance is calculated for each strand shift, and the
shift size with the minimal distance is interpreted as the fragment length.

Analogously to the cross-correlation method, initially two bit vectors n f
c (x)

and nr
c(x) for the two strands are created for each chromosome c. The bits of

these vectors are set, if the corresponding genomic position is covered by at
least one 5’ end position of a mapped read. Subsequently, the two vectors are
shifted against each other, and for each shift size σ the Hamming distance
H(δ) is calculated as follows:

H(δ) = ∑
c∈C

dH [n+
c (x + δ), n−c (x)], (1)

where dH [X, Y] is the Hamming distance between the vectors X = x1, ..., xn

and Y = y1, ..., yn and C is the set of all chromosomes. The shift size δ

that corresponds to minimum Hamming distance is taken as the estimated
fragment length

` = argminδ H(δ). (2)

The Hamming distance corresponds to the number of positions by which the
vectors differ and can be calculated by applying the logical operator XOR
and summing up the number of set bits in the resulting vector. Efficient
implementations of bit vectors and operations of the Boost C++ library were
used for the implementation in Q.

For verification purposes, the two methods were applied to 38 ENCODE
datasets (Supplemental Table S1 of the original publication [46]). The used
datasets were generated in the course of the ENCODE project [41, 66] and
already mapped reads in BAM format were downloaded from UCSC [94]. In
order to ensure comparable results, duplicated reads were removed, and a
bin size of 1 bp was used.

In most cases, the two methods produce curves of almost equivalent shape,
and the estimate for the fragment length differs by exactly 1 bp, which can
be explained by an index shift (Figure 12).

For datasets with good ChIP-enrichment, also the values for the quality
metric RSC (Section 2.2.4) are comparable. However, for datasets with poor
ChIP-enrichment the values may differ more significantly. To compensate
for this, Q was applied to 392 available ENCODE datasets so as the results
can be used as a reference for the RSC as well as for other quality metrics
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Figure 12: Fragment length estimation: (A) Cross-correlation and (B) Ham-
ming distance curve for the dataset GM12878-BATF-REP1. In most of the
cases, the two methods produce equivalent curves that are horizontally
flipped. Additional plots can be found in Supplemental Fig. S1 of the original
publication. This figure was originally published in Hansen et al., 2015 [46].

3.2.2 Concept of qfrags

In this section, an innovative measure of coverage is introduced. In order to
selectively increase coverage within peak regions, reads are typically shifted
by half a fragment length or extended by an entire estimated fragment length
towards 3’ direction (Section 2.2.5). Those methods use the fact that, within
peak regions, two reads mapped to the forward and reverse strand are more
likely to occur at a distance of about one fragment length to one another
(Figure 2). The same fact is used in Q, but instead of shifting or extending
reads, the 5’ ends of any pair of reads are connected to a qfrags, if they are
at a distance of about one fragment length, and the first read maps to the
forward and the second to the reverse strand (Figure 13). Intuitively, this
method should yield a quadratic increase in coverage at binding sites in
contrast to the merely linear increase that can be achieved through shifting
or extension of reads.

More formally, a qfrag is defined as the genomic interval between any
pair of 5’ end positions of reads mapped to the forward and reverse strand
at a distance of at least qmin = `− x and at most qmax = `+ x, where ` is
the estimated fragment length (Section 3.2.1) and x is intended to reflect
deviations from ` (Figure 13). The qfrag coverage at any given position
in a genome equals the number of qfrags that cover the position, and the
consecutive qfrag coverage along all positions is referred to as qfrag coverage
profile (Figure 13B). The centers of local maxima in the qfrags coverage
profile are defined as predicted binding positions that will be statistically
tested in the subsequent step of the algorithm (Figure 13C).

1 http://charite.github.io/Q/tutorial.html#statistics_and_quality_
metrics

http://charite.github.io/Q/tutorial.html#statistics_and_quality_metrics
http://charite.github.io/Q/tutorial.html#statistics_and_quality_metrics
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A

B

C

Figure 13: Concept of qfrags and process description for Q: (A) qfrags
(black lines) are formed between 5’ end positions of read pairs that map to
the forward (red arrows) and reverse strand (blue arrows) at a distance of at
least qmin = `− x and at most qmax = `+ x (gray box), e.g. the read at the
left edge of the gray box (red) forms qfrags with all compatible reads (blue)
within light gray area of the box, which results in only one qfrag in this case.
(B) The qfrag coverage (purple) is calculated for each genomic position using
a sliding window approach (gray box). Summit positions are defined to be
the center of local maxima in the in the qfrag coverage profile. (C) Candidate
regions for statistical evaluation are defined as the summit position ±qmax.
This figure was originally published in Hansen et al., 2015 [46].
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In order to explore the qfrag coverage profile and also to compare it with the
conventional coverage profiles, all profiles were visualized using IGV [55].
For this purpose, appropriate files were prepared using an extra subroutine
of Q that estimates the fragment length ` from the mapped reads (Section
3.2.1), and subsequently writes out four BED files for reads, shifted reads
(`/2), extended reads (`) and qfrags (` and x = 50). The BED files were
converted into IGV’s binary tiled data format using the sub command count

of igvtools [55] with a bin size of 1. The height of each bin corresponds to
the number of features that cover the bin.

The four coverage profiles were constructed for a dataset derived from a
ChIP-seq experiment with RNAPII in HeLa-S3 cells (Supplemental Table S1
in [46]). All four profiles show peaks at the transcription start sites (Figure
14), which is a typical feature of RNAPII ChIP-seq data. Apart from that, the
different read transformations lead to coverage profiles with different depth
distributions. The profiles for extended reads and qfrags look smoother
compared to those for reads and shifted reads. For extended reads, there is
two-fold increase in the maximum coverage as compared to the maximum
coverage for reads or shifted reads, whereas for qfrags the increase is more
than quadratic. In proportion to background regions, the peaks in the qfrags
coverage profile are most pronounced and more distinct.

[0 - 22]

[0 - 52]

[0 - 676]

ACAP3 PUSL1 CPSF3L GLTPD1

23 kb

[0 - 22]
Reads

Shifted reads

Extended reads

qfrags

Figure 14: Coverage profiles for a ChIP-seq experiment with RNA poly-
merase II in HeLa-S3 cells: The coverage profiles for reads (gray), shifted
reads (red), reads extended to fragments (blue) and qfrags (black) were
derived using Q [46] and visualized using the IGV [55]. The same estimated
fragment length of ` = 120 bp was used for shifting (`/2), extension (`) and
formation of qfrags (` and x = 50). Each track is scaled to its maximum
value within the displayed region (chr1:1, 240, 182-1, 263, 869) given in square
brackets. This figure was originally published in Hansen et al., 2015 [46].

Due to the quadratic nature of qfrags, naive sequential approaches cannot be
used for efficient construction of the qfrags coverage profile and prediction of
peaks therein. Writing to and reading from disk is too time consuming, and
the memory of a standard computer is typically too small2. Therefore, the
identification of local maxima in the qfrags coverage profile was implemented
using a sliding window approach.

Within the sliding window three tasks are performed: formation of qfrags,
construction of the coverage profile and detection of local maxima therein.

2
2 or 4 GB RAM were standard at the time of implementation.
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The chromosomes are processed separately, and the values for the local qfrag
coverage are stored in arrays of much smaller size (1000 bp) as compared
to those of typical chromosomes. Previous values no longer required are
repeatedly overwritten by applying the modulo operator with the array size
to the current chromosomal position. Due to this implementation detail,
chromosomes can even be processed in parallel on standard computers
without running into memory issues.

In what follows, a more formal description of the algorithm is provided.
The 5’ end positions of reads mapped to the forward ( f ) or reverse (r) strand
of a target sequence of length l are here referred to as hits and defined as:

h = (pos ∈ {1, ..., l}, strand ∈ { f , r}). (3)

The algorithm iterates over the sorted hits on the forward strand, instead
of iterating over each chromosomal position. For a current hit (gc, f ) on the
forward strand, and for each subsequent hit (gn, r) on the reverse strand
within the region (gc + qmin, ..., gc + qmax), the current qfrag coverage qc0

at the genomic position gc is incremented by 1, and the qfrag coverage at
position gn + 1 required for future calculations is decremented by 1. The
previous two window positions are kept track of together with the corre-
sponding qfrag coverages qc(−2) and qc(−1). If qc(−1) is greater than qc(−2)

and qc(0), the center position of the local maximum with a coverage of q(−1)

is defined and reported as a raw summit.
The number of raw summits potentially can become large, because every

unevenness in the profile constitutes a summit (Figure 15). Therefore, the
set of raw summits is further refined by discarding summits that are not
freestanding, defined as follows. A summit at position si is not freestanding,
if there is another summit with a greater qfrag coverage in one of the adjacent
regions (si − qmin, ..., si − 1) or (si + 1, ..., si + qmin). In a second refinement,
step all adjacent summit positions si and si+1 with the same qfrag coverage
are combined into a single new summit position sj = si + d(si+1 − si)/2e
that is located in center between the two original summits. Finally, the center
positions of all remaining freestanding summits and combined summits are
defined to be the predicted binding positions in the following also referred
to as summit positions (Figure 13B).

3.2.3 Saturation-based evaluation of ChIP-seq peaks

3.2.3.1 Introduction of saturation

Traditionally, peak calling algorithms are geared towards peak height, i.e.
candidate regions are tested for significantly increased read or extended read
depth using mostly a Poisson or negative binomial distribution in order to
model the background distribution of reads [84]. In this section, an alterna-
tive concept is introduced that is different with respect to several aspects.

Hits most naturally represent breakpoints in genomic DNA (Section 1.3),
whereas the read or fragment length are experimental parameters that may
vary from one experiment to another. For Q, only hits that belong to qfrags
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Center

Figure 15: Schematic illustration of summit refinement: Q identifies all
local maxima in the qfrag coverage profile. The centers of the maxima
are defined as raw summits, in this example si, si+1, si+2 and si+3. In a
first refinement step, all raw summits that have adjacent summits with a
greater qfrag coverage within a distance of at most qmin bp are discarded, in
this case si and si+2. In a second step, adjacent summits with equal qfrag
coverage within a distance of at most qmin bp are combined into a single new
summit that is located in the center between the original two summits. In
this example, si+1 and si+3 are combined into sj.

are taken into account. Given the strand specific distribution at peaks, these
hits mutually confirm each other inasmuch as that they more likely to origi-
nate from peak regions.

Another innovation of Q is that the peak height measure is replaced by
saturation. A genomic position is here referred to as saturated, if it is oc-
cupied by at least one hit that belongs to a qfrag, and the strength of any
given peak is measured as the proportion of saturated positions surrounding
the summit position (Figure 13C). Due to the characteristic strand specific
bimodal distribution of forward and reverse strand hits at peaks (Figure 2A),
these positions tend to be well saturated.

Identified candidate regions are tested statistically with regard to the
number of saturated positions using a binomial test with the probability p
that is modeled within the framework of the classical occupancy problem
[37]. Furthermore, an extension of the binomial test allows for taking into
account data derived from a control experiment. In this case, it is tested for
the difference of saturated positions between ChIP and control data within a
given candidate region.

3.2.3.2 Statistical model without control data

Given a refined summit si (Section 3.2.2), the genomic candidate region that
will be statistically tested for saturation is defined as si − qmax, ..., si + qmax

(Figure 13C). The output of a ChIP-seq experiment can be seen as a set of
hits:

T = {h = (pos, strand)|pos ∈ {1, ..., l} ∧ strand ∈ { f , r}}, (4)

where T stands for treatment (i.e., use of a specific antibody for enrichment
of a ChIP-seq target protein). This set can be divided into hits on the
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forward and on the reverse strand here referred to as Tf and Tr. Since
both ends of each fragment in the sequencing library are sequenced with
equal probabilities, the number of hits for two strands can be assumed to be
approximately equal, i.e. |Tf | ≈ |Tr|.

For the null model it is assumed that hits are evenly distributed across
the genome and independently of the two strands. A position i is saturated,
if it is covered by a hit on the forward strand that is part of a qfrag. This
can only be the case, if there is at least one hit on the reverse strand within
the range i + qmin, ..., i + qmax. Given the null model, the expected number of
reverse strand hits at each position of a given reference sequence of length l
is |Tr|/l, and, by linearity of expectation, the expected number of such hits
at positions i + qmin, ..., i + qmax is

λt = (qmax − qmin) ·
|Tr|

l
, (5)

where the subscript t stands for treatment. The probability that there is at
least one hit on the reverse strand within the range i + qmin, ..., i + qmax is the
same as the probability for a hit on the forward strand at position i to be
part of a qfrag and is calculated using a Poisson distribution.

P(hi is part of a qfrag | hi.strand = f ) = 1− Pois(0, λt). (6)

At any given position, the expected number of hits on the forward strand is
|Tf |/l. Therefore, the rate of qfrag start positions, is

|Tf |
l
· (1− Pois(0, λt)). (7)

Since the total number of hits are assumed to be approximately equal for
the forward and reverse strand, also the rates for the two strands can be
assumed to be approximately equal. Therefore, if it is not distinguished
between strands, the expected joint rate of qfrag start and end positions is
calculated as

rt = 2 ·
|Tf |

l
· (1− Pois(0, λt)). (8)

Using this rate rt, the saturation of genomic positions with qfrag start or end
positions is then modeled within the framework of the occupancy problem
[37], which can be expressed as: Placing m balls randomly into n bins, what
is the probability that exactly n− k bins remain empty? The probability that a
given ball is placed in one particular bin out of n bins is 1/n. Vice versa,
the probability that the ball is not placed in this bin is (1− 1/n), and the
probability that any of the m balls is placed into this bin is

P(bin remains empty) = (1− 1
n
)m ∼= e−m/n. (9)

See Appendix B for a proof of the approximation above. This link can be
used to estimate the probability that a given position is saturated as

pt = 1− ert . (10)

A random variable Qt is defined on the sample space Ω = {0, ..., 2 · qmax}
that represents all possible numbers of saturated positions within a window



3.2 methods and results 41

of length 2 · qmax. The saturation of each individual position is then modeled
as independent and identically distributed Bernoulli trial. Given this, the
random variable Qt follows the binomial distribution

Qt ∼ Bin(n = 2 · qmax, p = pt). (11)

Given the null model, the probability that exactly k positions within a window
of length 2 · qmax are saturated by chance is then calculated as:

P(Qt = k) =
(

2 · qmax

k

)
· pk

t · (1− pt)
2·qmax−k, (12)

and the probability that at least k window positions are saturated is calculated
as:

P(k ≤ Qt ≤ qmax) =
2·qmax

∑
i=k

(
2 · qmax

i

)
· pi

t · (1− pt)
2·qmax−i. (13)

This probability is also referred to as P-vaule which is corrected for multiple
testing using the Benjamini-Hochberg procedure.

3.2.3.3 Statistical model with control data

In order to extend the model to the case with control data, another set C for
control hits is defined analogously to T, and, as for T, it can be assumed that
|C f | ≈ |Cr|. Furthermore, a second random variable Qc on the sample space
Ω = {0, ..., 2 · qmax} is defined analogously to Qt:

λc = (qmax − qmin) ·
|Cr|

l
,

rc = 2 · |Cr|
l
· (1− Pois(0, λc),

pc = 1− e−rc . (14)

For the null model, Qt and Qc are assumed to be independent. Based on
this, a third random variable Qd = Qt −Qc is defined on the sample space
Ω = −2 · qmax, ..., 0, ..., 2 · qmax. Qd represents all possible differences between
the numbers of saturated positions within a window of length 2 · qmax. That
is, if there are more saturated window positions for the treatment data, then
the difference d will be greater than 0. Conversely, if there are more saturated
window positions for the control data, d will be less than 0.

The derivation of the probability for observing a difference of Qd = d
requires the analysis of the convolution of Qt and Qc. To gain intuition,
imagine a random experiment in which one random number is drawn from
Qt and another one from Qc. For didactic purposes, assume d ≥ 0 for a
start. There are 2 · qmax − d + 1 possible outcomes. There can be d saturated
positions for the treatment dataset, i.e. Qt = d, and zero saturated positions
for the control dataset, i.e. Qc = 0. Or it can be Qt = d + 1 and Qc = 1, and
so up, until the window is completely saturated for the treatment dataset, i.e.
Qt = 2 · qmax and Qc = 2 · qmax − d. Therefore, the products for all possible
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outcomes need to be summed up in order to calculate the probability for
observing a difference of Qd = d:

P(Qd = d) =
2·qmax−d

∑
i=0

P(Qt = i + d) · P(Qc = i). (15)

However, if d < 0, the index i can become larger than 2 · qmax. Furthermore,
it is possible that i + d < 0 or i + d > 2 · qmax. Therefore, the following
equation is used for d < 0:

P(Qd = d) =
2·qmax−|d|

∑
i=0

P(Qt = i) · P(Qc = i + |d|). (16)

The probability to observe a difference in saturated positions of at least d is
calculated as follows:

P(d ≤ i ≤ 2 · qmax) =
2·qmax

∑
i=d

P(Qd = i). (17)

And, as for the case without control, this P-value is corrected for multiple
testing using the Benjamini-Hochberg procedure.

3.2.3.4 Influence of the control dataset size on P-values

Treatment and control samples are typically not sequenced to the same depth.
The saturation model with control data takes this into account, because the
rate parameters rt and rc are estimated from the treatment and control data
separately (Formulas 8 and 14). Therefore, no downsampling or scaling is
necessary, if the number of hits differs for the treatment and control dataset.

To analyze the effect of different control dataset sizes on P-values, a ChIP-
seq dataset for RNAPII in HeLa S3 cells was used (Supplemental Table S1
in [46]). If duplicated reads are removed, there are 23, 494, 468 hits for the
treatment and 29, 454, 439 hits for the associated control dataset. From these
two datasets, four datasets were derived for testing. First, the treatment
dataset was downsampled to n = 11, 747, 234 hits, which is exactly half of
the original number. The resulting dataset is here referred to as T . Second,
the control dataset was downsampled to 2 · n, n and n/2 hits. The resulting
datasets are here referred to as C2, C1 and C1/2. Next, the Q software was
applied to the three treatment-control dataset pairs (T , C1/2), (T , C1) and
(T , C2). For Q, the identification of candidate regions is performed on the
treatment dataset only, and for this analysis, no P-value cutoff was used.
Therefore, the identical peak set comprising 746, 755 peaks was derived in
all three cases.

For visual inspection, the P-values were plotted against each other for
different ratios of treatment and control hits (Figure 16). For the predominant
portion of peaks, approximately the same P-value is determined for differ-
ent control dataset sizes, indicating that the evaluation of peaks is largely
independent of the control dataset size. For smaller control dataset sizes,
some peaks are assigned P-values much smaller (more significant) than those
obtained for larger control dataset sizes. Manual inspection revealed that
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such peaks almost exclusively correspond to mapping artifacts due to repeats
mainly in centromeric regions. All things considered, the saturation-based
evaluation of peaks seems to be quite robust against varying sizes of control
datasets, and the more control data there is, the fewer artifacts will be de-
tected as significant.

Figure 16: Effect of different control dataset sizes on P-values: The Q
software was applied to the same treatment dataset T using control datasets
of different sizes (see text). C2 contains twice as much, C1 the same number
and C1/2 half as much hits as T . In each case, the same set of 746, 755 peak
regions is identified, because the identification step is independent of the
control dataset, and no P-value cutoff was used in this case. The P-values
(− log10) were plotted against each other for different ratios of treatment and
control hits. The plots in the upper row show the full range of determined
P-values for (T , C1) vs. (T , C2) (left), (T , C1) vs. (T , C1/2) (middle), and
(T , C2) vs. (T , C1/2) (right). The plots in the lower row show the same
data but only for the range 0 to 100. The predominant portion of peaks
are assigned approximately the same P-values (dots on the diagonal). Only
a small number of peaks are assigned much more significant P-values, if
smaller control datasets are used (dots along the y-axes) This figure was
originally published in Hansen et al., 2015 [46]..

3.2.4 Implementation and runtime analysis

The estimation of the average fragment length via Hamming distance (Sec-
tion 3.2.1), the identification of peak regions using qfrags (Section 3.2.2) and
the subsequent saturation-based evaluation of peaks (Section 3.2.3) is imple-
mented in a C++ command line program named Q. The software makes use
of the SeqAn library [30] which provides routines for command line parsing,
reading and writing of standard formats as well as efficient data structures
and algorithms for sequence analysis. The source code, executable binaries,
a detailed documentation and a tutorial is available on GitHub3.

3 http://charite.github.io/Q/

http://charite.github.io/Q/
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Q can be applied with or without control data. The hits can be read
from SAM or BAM formatted files, whereby prior sorting or removal of
duplicates is not necessary. If no value for the fragment length ` is speci-
fied, this parameter will be estimated from the input data and used for the
identification and evaluation of peaks. The identified peaks are written to
ENCODE narrowPeak formatted files [94] containing the coordinates, the raw
values for saturation, associated P-values and Q-values corrected for multiple
testing. Beyond that, there is a number of features and additional output
files that are useful for quality assessment and visualization of ChIP-seq data.

Q has a small memory footprint and can be used on standard desktop com-
puters. In addition, Q supports parallel computing and can utilize multiple
processors on larger computers. However, the runtime of Q [46] was com-
pared to that of MACS2 [125, 38], SPP [63] and PeakSeq [96] using only
a single thread omitting differences regarding parallelization. Individual
runtimes were determined for 38 datasets (Supplemental Table S1 in [46]) and
average runtimes were used for comparison.

First, Q’s runtime for the estimation of the fragment length was compared
to that of SPP (Section 3.2.1). This was done on a desktop computer and on
a rack server before and after removal of duplicates. For all test setups, the
fragment length can be estimated at least three times faster using Q instead
of SPP (Table 1).

Next, the runtime for peak calling was compared to that of MACS2, SPP
and PeakSeq. This comparison was performed after removal of duplicates
and on a rack server only. For each given dataset, the same fragment length
`, previously estimated with Q, was used for all peak callers. The internal
estimation routines of SPP and MACS2 were omitted. In this way, only the
runtime for peak calling is taken into account. On average, peak calling with
Q can be performed in only two minutes. Compared to the other three peak
callers, Q shows a three to 19-fold improvement in runtime (Table 2).

CPU Remove dup. N-Fold improvement SPP (m) Q (m)
Intel no 3.12 45.56 15.28

Intel yes 3.09 45.12 15.11

AMD no 3.61 138.76 44.25

AMD yes 4.74 144.69 31.33

Table 1: Runtime comparison - Fragment length estimation with SPP and
Q: The comparisons were performed on a desktop computer with Intel R©

CoreTM i7-3770 (3.4 GHz) processors and on a rack server with AMD
OpteronTM

6172 processors (2.1 GHz) before and after removal of dupli-
cates. The average runtimes (user time plus system time) for 38 datasets are
indicated in minutes.

Q (m) MACS2 (m) SPP (m) PeakSeq (m)
2.06 10.92 38.11 7.27

Table 2: Runtime comparison - Peak calling with Q, MACS2, SPP and
PeakSeq: The same 38 datasets as for the previous runtime analysis were
used (Table 1). The comparison was performed after duplicate removal on
a rack server only. Internal routines for fragment length estimation were
omitted.
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3.2.5 Reproducibility of ChIP-seq peak calling

3.2.5.1 Comparison framework

The reproducibility of peak evaluation (Section 3.2.3) was compared for
the peak callers Q, MACS2, SPP and PeakSeq. This was done within the
framework of the IDR procedure (Section 2.2.6). In practice, the IDR proce-
dure is used for the assessment of the biological reproducibility of ChIP-seq
experiments [66]. The proposed workflow includes multiple branches in
which additional datasets are derived from the mapped reads of two bio-
logical replicates by pooling and random sampling. Peak calling is then
performed on each prepared dataset, and pairs of ranked peak lists are used
as input for the IDR procedure. For the analysis presented here, only pseudo-
replicates were used, which were derived by splitting the set of mapped reads
for given biological replicates randomly into two halfs. The same pair of
pseudo-replicates was then used as input for each of the four peak callers in
conjunction with the IDR procedure. In this way, the reproducibility of peak
calling can be compared between peak callers.

To be more precise, given the mapped reads for a ChIP-seq and associated
control experiment, four pseudo-replicates were derived (Figure 17A). In
order to obtain the same number of reads for the ChIP-seq and the control
dataset, the larger dataset was downsampled before splitting. This was done
to eliminate effects arising from up- or down-scaling. For instance, MACS2

performs linear upscaling of the smaller dataset by default. Furthermore, the
cross-correlation method of the SPP package was used to estimate the frag-
ment length ` and the window half size (whs), whereby the whs corresponds
to the width of the cross-correlation peak at 1/3 of the peak height and is
used by SPP as a parameter analogous to `.

In a next step, peak calling was performed using the prepared pseudo-
replicates for treatment and control as input (Figure 17B). If appropriate for
this particular application, the parameter settings for the individual peak
callers were chosen according to the recommendations of Anshul Kundaje
[64]4. For better comparability, the same previously estimated parameter `
(or whs only for SPP) was used for all peak callers in appropriate ways. The
derived peak lists were sorted by significance and only the top 100, 000 peaks
were used as input for the IDR procedure.

3.2.5.2 Application of the comparison framework to 38 datasets

The framework for comparison of reproducibility of peak calling was applied
to the 38 datasets that were also used for the runtime analyses (Section 3.2.4),
and the results of the IDR analyses were compared for the four peak callers.

Figure 18 shows detailed results for a dataset derived for a ChIP-seq ex-
periment with RNAPII in HeLa S3 cells. The first step of the IDR procedure
consists in the determination of overlapping peaks. A large proportion of
overlapping peaks indicates good reproducibility. For the RNAPII dataset, Q

4 Find a detailed listing of the applied software and all chosen parameters in the supplementary
methods section of the original publication [46].
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Figure 17: Reproducibility of peak calling - Comparison framework: (A)
The workflow begins with the mapped reads for a ChIP-seq and an associated
control experiment given as BAM formatted files. The larger dataset is
downsampled in order to obtain the same number of reads for the ChIP-seq
and control dataset. Pseudo-replicates are derived by splitting the sets of
mapped reads randomly into two halves of equal size. The parameters
` and whs are estimated using the cross-correlation method of the SPP
package. (B) The pseudo-replicates are grouped into two pairs of ChIP-seq
and control datasets and used as input for peak calling. The previously
estimated parameters ` and whs are used in appropriate ways as input for
the individual peak callers. The derived peak lists are sorted by significance
and only the top 100, 000 peaks are used as input for the IDR procedure.
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shows the largest number of overlapping peaks (60, 450) as compared to the
peak callers MACS2 (46, 976), SPP (45, 759) and PeakSeq (45, 022). Moreover,
similar significance scores of overlapping peaks indicate good reproducibility.
The Pearson correlation coefficient for the scores of overlapping peaks is
0.97 for Q, whereas for the other three peak callers it is only between 0.88
and 0.90 (Figures 18A-D). Also with respect to the correspondence method,
Q outperforms the other three peak callers. The transition from signal to
noise occurs at around 35, 000 top ranked peaks for Q, whereas for the
other three peak callers the transition occurs between 15, 000 and 20, 000
(Figure 18E). Furthermore, at arbitrary IDR thresholds, the largest number of
peaks is selected for Q (Figure 18F). For the recommended default threshold
IDR ≤ 0.01, 27, 284 overlapping peaks are selected for Q, 17, 015 for MACS2,
11, 618 for SPP and 16, 318 for PeakSeq.

Figure 19 shows a summary of the numbers of overlapping peaks for
all 38 datasets. Between 5991 and 70, 663 overlapping peaks among the top
100, 000 peaks derived from the two pseudo-replicates are identified by all
four peak callers (Fig. 19A). For 31 datasets, Q shows the largest number of
overlapping peaks and, for 33 datasets, the Pearson correlation coefficient
for the significance scores is the highest for Q (Supplemental Table S3 and
S4 in [46]). In order to emphasize the differences between peak callers for
given datasets, the mean number of overlapping peaks was subtracted from
total numbers of peaks for the individual peak callers. For Q, the deviation
from the mean is above zero in all cases (Figure 19B). Altogether, the mean
normalized peak numbers are significantly larger for Q as compared to
MACS2, SPP and PeakSeq (Figure 19C).

3.2.5.3 Compatibility with the IDR procedure

A closer inspection of the results of the IDR procedure revealed that for some
datasets overlapping peaks with exceptional small significance scores for both
replicates were reported as reproducible regarding a cutoff of IDR ≤ 0.01.
This observation contradicts one of the basic assumptions of the IDR pro-
cedure according to which higher ranked signals are more reproducible
than lower ranked signals [73]. Therefore, this phenomenon was further
investigated.

For each dataset i, the mean value µi of the significance scores of all
overlapping peaks that were rejected as irreproducible at a threshold of
IDR ≤ 0.01 was calculated and used as a reference point (Figure 20A). Fur-
thermore, the significance scores of overlapping peaks classified as irrepro-
ducible (IDR > 0.01) and reproducible (IDR ≤ 0.01) were plotted separately.
For the RNAPII dataset, the vast majority of peaks that were classified as
reproducible has significance scores greater than µi for both replicates, and
only a small dissociated fraction has smaller scores (Figure 20B). Those peaks
were defined as consistently weak overlapping peaks (CWOP), and the pro-
portion of CWOP amongst all peaks selected at a threshold of IDR ≤ 0.01
was determined for each of the 38 datasets (Figure 20C). For 31 datasets, no
CWOP were identified for Q and only for one dataset more than 10%. In
comparison to this, there are 3 datasets for SPP with more than 10% CWOP
14 for MACS2 and 13 for PeakSeq.
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Figure 18: Reproducibility of peak calling - Detailed results for a RNAPII
dataset: The comparison framework was applied to the peak callers Q,
MACS2, SPP and PeakSeq. (A-D) Scatterplots of significance scores of
overlapping peaks derived from the two pseudo-replicates. For Q (A),
MACS2 (B) and PeakSeq (D) the negative decadic logarithm of P-values were
used as scores, whereas for SPP (C) the signal values were used. Q shows the
largest number of overlapping peaks (60, 450) as compared to the three other
peak callers (between 45, 022 and 46, 976). In addition, Q shows the highest
Pearson correlation coefficient (0.97). (E) Change of correspondence curve (Ψ′

plot). The latest transition from signal to noise is observed for Q at around
35, 000 peaks. (F) For Q, the largest number of peaks is selected at arbitrary
IDR thresholds. For the recommended default threshold IDR ≤ 0.01, the
largest number of peaks is selected for Q (27, 284) as compared to the three
other peak callers (between 11, 618 and 17, 015). Find a detailed explanation
of the IDR plots in panel E and F in Section 2.2.6. This figure was originally
published in Hansen et al., 2015 [46].
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Figure 19: Reproducibility of peak calling - Summary of overlapping
peaks for 38 datasets (A) Numbers of overlapping peaks for Q (black),
MACS2 (red), SPP (green) and PeakSeq (blue). The individual datasets are
indicated by the numbers around the radar plot (Supplemental Table S1 in [46]).
(B) Mean normalized numbers of overlapping peaks (shown in A). For each
dataset, the mean of the numbers from all four peak callers was subtracted
from the individual total numbers. (C) Boxplots of mean normalized peak
numbers (shown in B). The P-values were determined with respect to Q using
a two-sample, two-sided Wilcoxon tests. This figure was originally published in
Hansen et al., 2015 [46].
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For some datasets, the IDR procedure fails completely when applied in
conjunction with PeakSeq, i.e. most of the peaks are classified as irrepro-
ducible, and only CWOP are classified as reproducible (Supplemental Table S5
in [46]). A detailed examination of these extreme cases revealed that there
are many ties, especially at the lower ranks, i.e. overlapping peaks with the
same significance scores for both replicates. This problem is due to a too
small range of significance scores for weak peaks. The developers of the IDR
procedure recommend only ranking systems that produce scores without
ties [73]. For this reason, some significance measures are considered to be
more compatible with the IDR procedure than others [122]. For instance, the
enrichment value of SPP is considered to be well compatible with the IDR,
which could be confirmed by the analysis of CWOP presented here.
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Figure 20: Reproducibility of peak calling - IDR compatibility: Scatter
plots show the negative decadic logarithm of P-values derived by Q for the
RNAPII dataset. (A) Overlapping peaks classified as irreproducible (IDR >
0.01; red). The dashed lines represent the mean value µi of the significance
scores of all overlapping peaks with IDR > 0.01. (B) Overlapping peaks
classified as reproducible (IDR ≤ 0.01; blue). Overlapping peaks with IDR ≤
0.01 and significance scores less than µi are defined as consistently weak
overlapping peaks (CWOP). Such peaks contradict one of the fundamental
assumptions of the IDR procedure, whereby reproducible signals are higher
ranked as compared to irreproducible signals. (C) The proportion of CWOP
was determined for each dataset. Q shows the best compatibility with the
IDR procedure with only small proportions of CWOP for a few datasets.
Closer inspection of the significance scores of CWOP revealed that the
incompatibility is due to ties, especially at the lower ranks. This figure was
originally published in Hansen et al., 2015 [46].

3.2.5.4 Results of the IDR procedure for unproblematic datasets

For 21 datasets, all four peak callers have less than 10% CWOP. In order to
eliminate the effect of IDR compatibility, only these datasets were used for
downstream analyses. Figure 19 shows the numbers of overlapping peaks
selected at a threshold of IDR ≤ 0.01. In the majority of cases, Q identifies
the largest number of reproducible peaks (Figure 21A). Furthermore, the
mean normalized peak numbers are significantly larger for Q as compared
to the other three peak callers (Figure 21B,C).
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Figure 21: Reproducibility of peak calling - Summary of overlapping
peaks selected at a threshold of IDR ≤ 0.01 for 21 datasets: This figure
is analogous to 19A-C except that overlapping peaks were selected according
to the reproducibility criterion IDR ≤ 0.01. 17 datasets were excluded from
the analysis in order to eliminate effects of IDR compatibility. This figure was
originally published in Hansen et al., 2015 [46].

3.2.6 Motif content of peaks

One of the main applications of ChIP-seq is the analysis of transcription
factor binding sites (Section 2.2.7). In this section, a comparison regarding
motif content of peaks derived by the four peak callers is presented. For
this purpose, a framework was developed that aims to highlight only the
differences between the peak callers by excluding as many other influencing
factors as possible.

In a first step, a set of reference motifs is defined by performing a de novo
analysis on the 4-way intersection of the top 50, 000 peak sequences derived
by the individual peak callers (Figure 22A). The initial peak lists are prepared
as for the IDR comparison (Section 3.2.5) but all mapped reads are used for
peak calling. The summit positions of all peaks are extended in upstream
and downstream direction by a previously estimated fragment length `, and
the extended peaks are used to derive the 4-way intersection with bedtools
[87]. The genomic sequences between the most upstream and downstream
positions of overlapping peaks are extracted and used as input for a de novo
motif analysis with DREME [8]. The 10 most significant motifs are defined
to be the reference motifs.

In a second step, the number of peaks that contain at least one occurrence
of a reference motif is determined for the individual peak lists (Figure 22B).
The same peak lists that are used for the determination of the reference mo-
tifs are used for this step of the analysis. But this time the summit positions
are extended only by `/2 in upstream and downstream direction. Using
the FIMO software [42], the corresponding genomic sequences are extracted
and searched for occurrences of the reference motifs in order to identify
peaks that contain at least one motif occurrence. Since all lists contain the
same number of peaks, the absolute numbers are directly comparable be-
tween the individual peak callers. Find a listing of the applied software
and chosen parameters in the methods section of the original publication [46].

The comparison framework was applied to the same 38 datasets that were
also used for the reproducibility analysis (Section 3.2.5). For 33 datasets, the
top 50, 000 peaks obtained from Q contain the largest proportion of peaks
with at least one occurrence of a reference motif (Figure 23A, Supplemental



3.2 methods and results 51

B  Identification of peaks containing reference motifs

A  Determination of reference motifs

SPP
Peak list

PeakSeq
Peak list

MACS2
Peak list

Q
Peak list

4-way intersection
Reference
Peak list

De novo
motif analysis Reference motifs

Reference motifs

Q, MACS2, SPP, or PeakSeq
Peak list

Q, MACS2, SPP, or PeakSeq
Motif count per peak

Motif identification

Figure 22: Motif content of peaks - Comparison framework: (A) Determi-
nation of reference motifs. The summit positions of the top 50, 000 peaks
derived by Q, MACS2, SPP and PeakSeq are extended in upstream and
downstream direction by an estimated fragment length `. Peaks consistently
identified by all four peak callers are defined as reference peaks. The genomic
sequences of the reference peaks are extracted and used as input for a de
novo motif analysis. The ten most significant motifs are defined to be the
reference motifs. (B) Identification of reference motifs. The summit positions
of the same peak lists that are used for the determination of the reference
motifs are extended by `/2 in both directions. The corresponding sequences
are extracted, and the number of peaks containing at least one occurrence of
a reference motif is determined for each peak caller.

Table S5 in [46]). In order to highlight the differences between peak callers,
for each given dataset, the mean number of peaks containing at least one
reference motif was subtracted from corresponding peak numbers of individ-
ual peak callers (Figure 23B). For Q, the mean normalized peak numbers are
significantly larger as compared to MACS2, SPP, and PeakSeq (Figure 23C).

3.2.7 Signature of paused open promoters

The analyses regarding reproducibility of peak calling (Section 3.2.5) and
motif content of peaks (Section 3.2.6) are rather technical and aim at perfor-
mance comparison between peak callers. In this section, biologically relevant
findings that were obtained using Q are presented. In the course of the
reproducibility analysis, it became apparent that Q performs particularly
well on RNAPII datasets (Figure 21 datasets 19 to 22). Visual inspection of
RNAPII peaks at TSS revealed many cases in which Q identifies two peaks
directly in upstream and downstream direction of the TSS, whereas the other
peak callers only identify a single peak.

For a systematic investigation, TSS flanking double summits (TFDS) were
defined as adjacent pairs of peak summit positions that flank TSS and occur
within the range of TSS ±1500. Note that these ranges are henceforth are
referred to as promoters. Furthermore, the frequencies of TFDS at each posi-
tion within this range were determined and plotted as histograms. Note that
one TFDS consists of two individual summits in upstream and downstream
direction of the TSS. Therefore, two bins of the histogram are incremented
for each TFDS. The determination and visualization of summit frequencies
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Figure 23: Motif content of peaks – Summary of peaks with at least one
occurrence of a reference motif for 38 datasets: (A) The radar plot shows
the absolute numbers of peaks among the top 50, 000 that contain at least
one occurrence of a reference motif for Q (black), MACS2 (red), SPP (green)
and PeakSeq (blue). (B) Mean normalized peak numbers. For each dataset,
the mean number of peaks with at least one reference motif occurrence
was subtracted from the corresponding numbers of the individual peak
callers. (C) Boxplots for mean normalized peak numbers. The P-values were
calculated relative to Q using a two-sample, two-sided, Wilcoxon test. This
figure was originally published in Hansen et al., 2015 [46].

was done using self-developed PERL and R scripts as well as TSS annotation
data from NCBI (build 37.2; NCBI Homo sapiens annotation release 104).
To avoid double counting, TSS for which the two promoters (TSS ±1500)
overlap were excluded for this analysis which results in 19, 722 TSS.

For the analysis of the RNAPII data, the overlapping peaks of the top
100, 000 peaks derived from the pseudo-replicates of the reproducibility anal-
ysis (Section 3.2.5) were used. The summit positions of overlapping peaks
between pseudo-replicates were replaced the by the position in the center
between the original summit positions. For the RNAPII datasets, Q identifies
at least one summit in 37.4%-42% of all 19, 722 non-overlapping promoters
and in 39.5%-48.4% of these a TFDS (Supplemental Table S8 in [46]). The
distribution of TFDS around TSS shows two clearly separated peaks (Figure
24A), one sharp peak 50-100 nucleotides (nt; used synonymously with bp) in
downstream direction and a second peak 150-250 nt in upstream direction
of the TSS. The median distances between the two peaks in the distribution
of TSDS range from 375 to 426 nt (Supplemental Table S9 in [46]). Next,
the same analysis was performed for datasets derived from ChIP-seq exper-
iments with the histone modification H3K4me3 in HCT-116 and HeLa-S3

cells (Supplemental Table S1 in [46]) which were processed in the same way
as for RNAPII. Q identifies at least one summit in 39.4%-43.2% of all non-
overlapping promoters and in 59.2%-70.6% of these a TFDS (Supplemental
Table S9 in [46]). As for RNAPII, the distribution of TFDS around TSS shows
two clearly defined peaks that are separated by a larger distance as compared
to those obtained for RNAPII (Figure 24B). The peak in upstream direction
of the TSS is slightly sharper and located at a distance of 250-300 nt, and
the peak in downstream direction is located at a distance of 300-400 nt. The
two peaks in the TFDS distribution are separated by at least 400 nt, and the
median distances range from 710 to 778 nt ((Supplemental Figure S11 in [46]).

The same TFDS analyses were also performed for the other peak callers
(Supplemental Figures S8-S11 and Tables S8-S9 in [46]). Even though MACS2,
SPP and PeakSeq identify a similar amount of RNAPII and H3K4me3 bound
promoters, they fail to produce comparable results due to poor detection
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of TFDS. In contrast to that, Q reproducibly identifies TFDS for biological
replicates. The overlap of promoters with TFDS between replicates amounts
to 78.1% and 82.9% for RNAPII and to 85.3% and 90.6% for H3K4me3 (Sup-
plemental Table S10 in [46]).

A combined analysis of TFDS for RNAPII and H3K4me3 revealed a sig-
nature that is in line with the notion of paused open promoters with large
nucleosome depleted regions (NDR) interspersed with RNAPII and flanked
by H3K4me3 modified histones [20, 7, 103]. For the four analyzed datasets,
78.1%-90.6% of the promoters that have a TFDS for RNAPII also have a TFDS
for H3K4me3, and for 63.5%-68.7% of these the summits of the TFDS for
RNAPII are located within the range between the summits of the TFDS for
H3K4me3. In order to decide whether the proportion of promoters show-
ing the signature among those sharing TFDS for RNAPII and H3K4me3 is
greater than expected by chance, a simulation study with 10, 000 iterations
was performed (Supplemental Table S11 in [46]). For the promoters that contain
TFDS for RNAPII and H3K4me3 the intervals of TFDS for H3K4me3 were
randomly shuffled among the promoters, and the number of occurrences of
the paused open promoter signature was determined for each iteration. For
no iteration larger overlaps as for the original data were observed (empirical
P-value of at most 10−4).
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Figure 24: Signature of paused open promoters - TSS flanking double
summits for RNAPII and H3K4me3: The summit positions of TFDS were
integrated over all promoters centered at the TSS. n equals the total number
of integrated summits. The distributions of TFDS are shown for (A) RNAPII
and (B) H3K4me3. This figure was originally published in Hansen et al., 2015
[46].

3.3 discussion

The methods and software introduced in this chapter provide innovations
and improvements at all levels of ChIP-seq peak calling, from the estimation
of the fragment length (Section 3.2.1) to the detection (Section 3.2.2) through
to the statistical evaluation (Section 3.2.3) of peaks. Q can be executed on
desktop computers but also on larger machines and outperformed MACS2,
SPP and PeakSeq with respect to runtime (Section 3.2.4). Q was tested and
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verified by comparison with the other peak callers regarding reproducibility
of peak calling (Section 3.2.5) and motif content of peaks (Section 3.2.6).
Finally, Q was used to detect a signature of biological relevance, whereby the
other peak caller failed to produce similar results (Section 3.2.7).

The predominant fragment length of the sequencing library may vary
from one experiment to another and, at the same time, is an essential pa-
rameter for ChIP-seq peak calling and downstream analyses (Section 2.2.3).
Furthermore, the quantification of ChIP-enrichment is important for the
evaluation of the experiment and experimental trouble shooting (Section
2.2.4). Virtually every peak caller either includes a routine for the estimation
of the fragment length or requires this parameter to be specified (Section
2.2.5). The cross-correlation method is a valid method for the estimation of
the fragment length and additionally provides quality metrics that reflect the
quality of enrichment. Q can be used to produce equivalent estimates of the
fragment length and similar results for the evaluation of ChIP-enrichment
but three times faster (Section 3.2.4).

The estimated fragment length can be used to enhance the coverage at
peaks exploiting the characteristic strand specific distribution of ChIP-seq
reads at binding sites (Section 2.2.5), which is often accomplished by shifting
or extension of reads (Figure 8). The concept of qfrags (Section 3.2.2) is an
innovative further development that involves qfrags coverage profiles which
can be searched for peaks as the profiles for shifted or extended reads but
have a different depth distribution (Figure 14). At peaks, the qfrag method
yields approximately quadratic increase in coverage with respect to the read
coverage, whereas the increase is merely linear for the conventional methods.

5’ end positions of mapped reads, here referred to as hits, represent the
breakpoints in the DNA introduced by shearing of chromatin and thus the
outcome of a ChIP-seq experiment, whereas the read or fragment length
are experimental parameters that may vary from one experiment to another
(Section 1.3). Furthermore, duplicated reads are typically removed in order
to avoid PCR-overamplification artifacts and, after this, each position of the
genome can be covered by at most one hit (Section 2.2.2). The saturation-
based evaluation of peaks (Section 3.2.3) takes these facts into consideration
and provides an alternative to the conventional approaches that test peak
height for statistical significance using a Poisson or negative binomial distri-
bution [84]. In contrast to height measures, the saturation score is limited
to values between 0 and the number of positions within the window that is
evaluated, which might mitigate overdispersion effects typically observed for
count data derived from NGS applications [126]. The concept of saturation
was supplemented by a statistical test modeled within the framework of the
classical occupancy problem [37]. Two models for the cases without and
with control data were developed. The model for the case with control data
also takes into account different sequencing depths for treatment and control
data, whereby different amounts of control data have only a marginal effect
on P-values (Figure 16).

Q was implemented in a memory efficient fashion and outperformed the
peak callers MACS2, SPP and PeakSeq with respect to runtime. The C++
source code was deposited at GitHub along with a tutorial about ChIP-seq
data analysis5. For a typical ChIP-seq experiment, no parameters need to

5 http://charite.github.io/Q/

http://charite.github.io/Q/
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be specified. The fragment length ` is estimated from the input data, and
an R script is generated that can be executed in order to create the Ham-
ming distance plot (Figure 12) in pdf format. The peak lists are written to
standard formatted files so as they can be used for downstream analyses.
In addition, Q provides additional output that is useful for documentation,
quality assessment and visualization. For instance, Q can be instructed to
generate a bedGraph file for the fragment coverage that can be uploaded to
UCSC’s genome browser [62], which is a popular way of presenting one’s
own ChIP-seq data in the context of a variety of genomic data.

If high-throughput techniques such as ChIP-seq are applied, reproducibil-
ity is an important subject, and the ENCODE project consortium has defined
standards concerning this matter (Section 2.2.6). According to these stan-
dards, the reproducibility of biological replicates is evaluated using the IDR
procedure that is applied multiple times to the original data as well as to
differently prepared datasets that are derived from two biological replicates
by pooling and random sampling. Since given pairs of pseudo-replicates
are derived from the same biological replicate at the level of the mapped
reads, the reproducibility analysis cannot reflect experimental differences
that occurred before peak calling. Therefore, the results should only reflect
differences with respect to peak calling, assuming sufficient sample sizes
and validity of the IDR procedure. The reproducibility of peak calling using
Q was compared to that of the recommended peak callers MACS2, SPP
and PeakSeq using pseudo-replicates derived from 38 individual biological
replicates (Section 3.2.5). In most cases, Q identifies the largest number of
overlapping peaks and reproducible overlapping peaks selected at a thresh-
old of IDR ≤ 0.01. Furthermore, the correspondence analyses indicate better
reproducibility for Q as compared to the three other peak callers. Finally, Q
showed the best overall compatibility with the IDR procedure.

Transcription factors bind sequence specific to DNA. Therefore, ChIP-seq
peaks are typically enriched for binding motifs (Section 2.2.7). The peak
callers Q, MACS2, SPP and PeakSeq were compared with respect to motif
content of peaks (Section 3.2.6). To ensure a fair comparison, reference motifs
were derived only from peaks that are identified by all four peak callers.
Subsequently, the reference motif content was determined for each of the
top 50, 000 peaks derived by the individual peak callers. This procedure was
applied to the same 38 peak lists that were also used for the reproducibility
analysis. In most cases, Q shows the largest number of peaks containing
at least one reference motif. Taken together, the number of such peaks is
significantly larger for Q as compared to the three other peak callers.

In the course of the reproducibility analysis, it became apparent that Q
performs especially well on RNAPII datasets (Section 3.2.5). Visual inspection
revealed TSS flanking double summits (TFDS) that were often exclusively
identified by Q, whereby the other three peak callers reported only single
summits instead of TFDS. Beyond that, a systematic analysis incorporating
additional ChIP-seq datasets for the histone modification H3K4me3 revealed
a TFDS signature that is consistent with the conception of paused open
promoters (Section 3.2.7).



4
S O F T WA R E F O R C H I P - N E X U S D ATA A N A LY S I S

4.1 introduction

Detailed investigations of protein-DNA binding architectures require bind-
ing site predictions at high resolution (Section 1.3). ChIP-nexus is a further
development of the ChIP-seq and ChIP-exo protocol that provides improved
resolution as compared to ChIP-seq and addresses shortcomings of ChIP-exo
regarding efficiency and monitoring of PCR-overamplification.

In this chapter, the innovations that allow Q to be applied to ChIP-nexus
data are described. As a groundwork, a preprocessing module was imple-
mented that takes into account the specific structure of ChIP-nexus reads
and makes use of the random barcodes (Section 4.2.1). Based on this, a plot
was developed that enables unbiased monitoring of PCR duplication rates
(Section 4.2.2). Furthermore, a novel method was implemented that can be
used to estimate the width of the protected region (Section 4.2.3), which
is a parameter similar to the fragment length in ChIP-seq. The estimated
parameter is used as an argument for Q to perform peak calling (Section
4.2.4). The software named Q-nexus [45] along with a documentation and a
tutorial is available on GitHub1. Finally, Q-nexus was compared to MACS2

and MACE with respect to reproducibility of ChIP-nexus peak calling.

4.2 methods and results

4.2.1 Preprocessing and mapping of ChIP-nexus reads

ChIP-nexus reads have a specific and consistent structure consisting of a
fixed and a random barcode, an adapter as well as the fragment sequence
originating from the actual biological sample. Just as for many other NGS
applications, all sequences unlike the sequences of the fragments have to be
clipped off before mapping. The removal of adapters is especially impor-
tant for ChIP-exo reads because due to the 5’-3’ (λ) exonuclease digest the
fragments often become shorter than reads. For ChIP-nexus, the random
barcodes require additional efforts because they serve for the identification of
PCR duplicated reads and therefore have to be preserved beyond mapping.
Alternatively, it is possible to perform the random barcode processing before
mapping using an index structure comprising all reads, but this approach
was not implemented in Q-nexus.

All tasks arising from the specific structure of ChIP-nexus reads up to the

1 http://charite.github.io/Q/tutorial_chip_nexus.html
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BAM files and read counts that can be used for further processing including
monitoring of PCR-overamplification (Section 4.2.2) were accomplished by
Benjamin Mencüç under the supervision of Peter Robinson and myself in
the scope of a Dr. med. thesis [76].

The workflow for ChIP-nexus preprocessing consists of three steps: removal
of barcodes and adapters, mapping and selective removal of PCR duplicated
reads (Figure 25). In the first step, the five-nucleotide random barcodes
and the adjacent four-nucleotide fixed barcodes at the 5’ ends of reads are
clipped off, and the random barcodes are inserted into the ID field of the
FASTQ records. Furthermore, the adapters at the 3’ ends of reads are clipped
off, and reads without barcodes or with more than one mismatch within
the fixed barcode sequence are discarded. The clipping was carried out
using FLEXBAR [29] for which some adjustments had to be made in order
to remove multiple adapter sequences on either side of the reads and to
conserve the information of the random barcodes.

In the next step, the trimmed reads are mapped to the reference genome
using bowtie [67] with settings appropriate to ensure that for each read only
the best alignment will be reported, whereby the best alignment may also
include reads mapping to multiple position. This is an adapted form of a
more stringent approach, whereby only uniquely mapped reads are used for
downstream analysis because ambiguously mapped reads can lead to false
positive predicted binding sites.

In the final step, selective removal of PCR duplicated reads is performed
using the information of the random barcodes that was passed on with the
read IDs to the BAM files containing the alignments. Multiple reads that map
to the same genomic position and have an identical barcode are discarded
except for one read. This was implemented in a SeqAn application called
NEXCAT that additionally reports duplication levels for different categories
of duplicated reads that were subsequently used for further analysis (Section
4.2.2).

Using 10 datasets of the original ChIP-nexus publication (GEO accession
code: GSE55306), an average runtime of 17 minutes was determined using
four threads on a desktop computer with an Intel R© CoreTM i7-3770 (3.4 GHz)
processor.

4.2.2 Unbiased monitoring of PCR-overamplification

The plot for sequence duplication levels of the FastQC package [4] is often
used to assess PCR-overamplification. This plot shows the distribution of
percentages of reads with a given degree of sequence duplication. For in-
stance, a value of 10% at the duplication level 2 means that 10% of all reads
exist in exact two copies.

With the ChIP-nexus protocol random barcodes were introduced that
allow for selective removal of PCR-duplicated reads (Section 4.2.1) and, ad-
ditionally, provide the opportunity to monitor PCR-overamplification in an
unbiased fashion. In this section, the reconstruction of FastQC’s plot for
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Figure 25: Preprocessing of ChIP-nexus reads: The workflow consists of
three steps: At first, the barcode (varicolored, gray) and adapter (pink) se-
quences are removed while random barcodes are preserved. Faulty reads
such as those consisting of adapter sequence only are filtered out (left). Sub-
sequently, the trimmed reads (black) are mapped to the reference genome
using a read mapper such as bowtie with appropriate parameter settings
(middle). Finally, PCR-duplicated reads are selectively removed in considera-
tion of random barcodes (right). This figure was originally published in Hansen
et al., 2016 [45].
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sequence duplication levels is presented. The percentages of the various
levels are calculated with and without consideration of random barcodes.
Duplicated reads can be identified before mapping on the basis of sequence
identity only but this requires an index structure on all reads, which comes
at the cost of high memory requirement. Alternatively, duplicates can be
identified after mapping on the basis of identical mapping positions. Since
the reads have to mapped either way, the latter approach was implemented
in Q-nexus.

Without additional information the set of all mapped reads can be divided
into two categories: unique reads that are mapped to genomic positions
to which no other read can be mapped, and other duplicated reads, which
are mapped to the same position as at least one other read. The latter are
here referred to as identically mapped reads (IM), which can be further
subdivided into levels, e.g. all reads that are mapped to positions to which
exactly one other read is mapped belong to level 2 (Figure 26A). Unique
reads belong to level 1. IM reads correspond to the conventional duplicated
reads, and the percentages obtained for the various levels conform to those
in the original plot of FastQC.

Using the information of the random barcodes, a subcategory of IM reads
can be identified consisting of reads that are mapped to the same genomic
position as at least one other read that additionally has an identical barcode.
Those reads are here referred to as identically mapped reads with identical
barcode (IMIB). For IMIB reads it can be assumed that they originate from
from PCR-overamplification, and the subdivision into levels yields an un-
biased equivalent of the conventional plot for sequence duplication levels.
The remaining IM reads are here referred to as identically mapped reads
with unique barcode (IMUB). In contrast to IMIB reads, IMUB reads can be
assumed to originate from different fragments. Therefore, only those are
used together with unique reads for downstream analysis.

A quality metric that is often used in order to assess complexity of sequenc-
ing libraries is the overall duplication level calculated as the proportion of
duplicated reads amongst all reads [4]. The method introduced here provides
separate overall duplication levels for IM, IMIB and IMUB reads defined as
proportion reads of the respective category within the levels greater or equal
2 amongst all mapped reads.

The sequence duplication level plots were derived [45] for eight datasets
of the original ChIP-nexus publication [47]. The conventional overall duplica-
tion levels are between 54% and approximately 100% , which is exceptionally
high. For instance, at a threshold of 20% the module of FastQC issues a
warning, and at a threshold of 50% datasets completely fail this quality check.
Furthermore, also the unbiased overall duplication levels between 42% and
99% are very high, and only one dataset would pass the quality check. The
progression of the duplication level curves is as expected (Figure 26B-C). For
high overall duplication levels, there is a shift for IMIB reads towards the
lower levels with respect to IM reads.
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Figure 26: Unbiased monitoring of PCR-overamplification: (A) Demonstra-
tion example of mapped reads tagged with random barcodes and the related
level counts for IM (red), IMIB (blue) and IMUB reads (black). The number of
horizontal bars for a given level correspond to the number of reads with this
level of duplication. A more detailed example and an extensive explanation
can be found in Additional file 1: Figure S1 of the original publication. (B,C)
Duplication level plots for Dosal and Max. For IM reads, i.e. without using
random barcode information, the overall duplication level is 54% for Dorsal
and 95% for Max. For IMIB reads, overall duplication levels of 50% and 95%
were determined. Additional plots for the other datasets can be found in
Additional file 1: Figure S2 of the original publication. This figure was originally
published in Hansen et al., 2016 [45].
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4.2.3 Protected region width estimation

Another challenge in the analysis of ChIP-exo and ChIP-nexus data is that
the average fragment length, which is a crucial parameter for ChIP-seq, is no
longer a relevant factor. For ChIP-exo and ChIP-nexus, the equivalent of the
average fragment length is the width of the region occupied by the target
protein or an associated complex, which is here referred to as ”protected-
region width”. Such regions typically have a width of 6-20 bp, which is
much shorter than the fragment lengths observed for ChIP-seq (90-230 bp).

The curves produced by the cross-correlation method (Section 2.2.3) as
well as by its variation using Hamming distance (Section 3.2.1) are compro-
mised by an artefactual peak at one read length termed ”phantom peak”
[66]. This peak has already been associated with repetitive regions, and
the influence of the exclusion of known artifact regions using so called
blacklists was investigated [21]. Such regions often occur on non-canonical
chromosomes, which serve as reservoir for scaffolds partly of low quality
that could not unambiguously assigned to a chromosome arm. For instance,
for Drosophila melanogaster (dm3) these chromosomes are referred to as U
and chrUextra [50]. To prevent complications, reads that can be mapped to
non-canonical chromosomes are often excluded from the analysis. In general,
the most generic approach to correct for such artifacts is the inclusion of
appropriate control data. However, no control data is available for ChIP-exo
and ChIP-nexus [108].

For the estimation of the fragment length from ChIP-seq data, the phantom
peak does not pose a problem because the second maximum that corresponds
to the fragment length occurs in a different range. However, for ChIP-exo and
ChIP-nexus the phantom peak masks the range of interest. In this section,
a method is presented that can be used to estimate the protected region
width denoted as `′′′, which is subsequently used for the construction of
the qfrag coverage profile. This method is similar to the cross-correlation
method inasmuch that it operates genome-wide and has no assumptions
about binding sites of the target protein, but it circumvents the problem with
the phantom peak.

For a first investigation, the cross-correlation method was applied to all
datasets. Without exception, the curves are strongly dominated by the phan-
tom peak, and the maximum is at one read length. The removal of reads
mapping to the non-canonical chromosomes U and Uextra has only a minor
effect (Additional file 1: Figure S5 in [45]).

Furthermore, the distributions of 5’ end positions of mapped reads around
preselected sites were determined for the ChIP-nexus datasets, which is a
popular way of presenting ChIP-exo data [104] that was also used for the
original ChIP-nexus publication. The approach turned out to be unstable
when using standardized parameter settings for all samples. Only for six
out of ten datasets useful results are obtained (Additional file 1: Figure S4 in
[45]). Furthermore, the derived distributions slightly differ from those shown
in the original ChIP-nexus publication [47]. The results heavily depend on
the motif used for selection and centering of peaks and could possibly be
improved using prior knowledge about the preferred motifs of the analyzed
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factors. However, this was not done because the focus of this investigation
was on the unbiased and automated estimation of the protected region width.

The method introduced here is based on the concept of qfrags (Section
3.2.2). The empirical distribution of qfrag-lengths is derived from the data by
counting the number of qfrags for given lengths, and the qfrag-length with
the highest count is determined. The basic idea is similar as for ChIP-seq.
At at binding sites, 5’ end positions of reads mapped to the forward and
reverse strand are likely to occur at a distance that is related to the width of
the protected region (Figure 27A).

The qfrag-length distribution method was applied to the ten ChIP-nexus
datasets, and it turned out that it is also affected by the phantom peak al-
though to a lesser extent (Additional file 1: Figure S6 in [45]). In six cases, the
qfrag-length with the highest count is smaller than one read length, and after
removal of reads mapping to non-canonical chromosomes there are three
more such cases. However, given the strong bias introduced by the phantom
peak, the method needed to be further improved.

Given the strand specific distribution of 5’ end positions at binding sites
and the operating principle of the cross-correlation method (Section 2.2.3), it
appeared plausible that the phantom peak corresponds to clusters of reads
that map to the same region with a length of about two times the read length
but to the forward and reverse strands so as most of the 5’ positions on
different strands occur at a distance of about one read length. For a closer
examination, a standard Q peak calling was performed with the parameters
` set to one read length and x = 5, which is appropriate for the identification
of such regions. Visual inspection of the peaks indeed revealed a number of
such clusters (Appendix A3).

With this in mind, a pseudo-control was developed that can be used to
subtract the proportion of signal caused by the artifacts within the range of
interest. The pseudo-control is derived from the original data by switching
the strands of all reads and, subsequently, shifting the 5’ end positions by one
read length towards 3’ direction (Figure27B). The qfrag-length distribution
is then derived from the original data as well as from the pseudo-control
(Figure 27B), and the counts for the pseudo-control are subtracted for each
qfrag-length (Figure 27C). The qfrag-length `′′′ with the largest difference in
counts between original data and pseudo-control is taken as the estimated
width of the protected region.

The qfrag-length distribution method presented here was implemented as
an additional module of the Q software (Section 3.2.4), and the differences
between qfrag-length counts for original data and pseudo-control were de-
rived for all datasets (Additional file 1: Figure S6 in [45]). For the cases in
which a usable footprints of 5’ end positions around predefined binding
sites is available, the qfrag-length method reproducibly produces consistent
estimates for `′′′ (Figures 28A-D). For the other cases, the estimates are also
reproducible and within the expected range (6-20 bp) (Figures 28E-F). Finally,
the curves show characteristic progressions for the individual factors (Figures
C,D and G,H).
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Figure 27: Protected region width estimation - Methods: (A) Schematic
representation of a fragment of length ` that is bound to a protein of interest.
5’-3’ (λ) exonuclease is employed to digest the 5’ ends to within a few bp at
which the protein is bound, which can result in a fragment of length `′ or `′′.
The relevant length for ChIP-exo and ChIP-nexus is `′′′, which corresponds
to the width of the region that is protected from digestion. (B) Schematic
representation of a mapping artifact most likely causing the phantom peak
(top left) and a genuine ChIP-nexus peak (top right). The original data is
transformed into a pseudo-control by switching the strands of all reads and
shifting the 5’ end positions by one read length towards 3’ direction. The
mapping artifact remains in the pseudo-control (bottom left), whereas the 5’
end positions of genuine peaks are shifted outwards so as the relevant range
(6-20 bp) becomes accessible (bottom right). (C) qfrag-length distribution
derived from a Dorsal dataset with a pronounced phantom peak at one read
length (black) and from the corresponding pseudo-control (gray). The second
local maximum at a qfrag-length of 19 bp corresponds to the actual signal.
The difference between the qfrag-length counts for the original data and for
corresponding pseudo-control data is depicted as d, which will be reused
in (D) for didactic purposes. (D) Difference between qfrag-length counts
for original and pseudo-control data. The qfrag-length with the largest
difference is defined to be the estimated width of the protected region `′′′ in
this case 19. This figure was originally published in Hansen et al., 2016 [45].
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Figure 28: Protected region width estimation - Results: (A-B) Footprints of
5’ end positions of mapped reads around preselected sets of binding sites for
two biological replicates of ChIP-nexus experiments with the Dorsal factor.
The distance between the two peaks on the forward and reverse strand is
line with a previous analysis of the same data [47]. (C,D) Qfrag-length
counts after subtraction of the pseudo-control for the same data that was
used for (A,B). The analysis was performed before (blue) and after removal
of reads mapping to non-canonical chromosomes (green). The estimated
parameter `′′′ = 18 is consistent with the footprint of 5’ positions. (E-H) The
same analyses were performed as for A-D but for the TATA-binding protein
(TBP). Using standardized parameter settings, no useful footprints of 5’ end
positions can be obtained in this case. The qfrag-length distribution method
reproducibly yields estimates that are plausible from a biological point of
view, and the curve progressions are clearly different from those obtained
for Dorsal (C,D). This figure was originally published in Hansen et al., 2016 [45].
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4.2.4 ChIP-nexus peak calling

The Q software was extended by a nexus mode (Figure 29) that is optimized
for the analysis of ChIP-exo and ChIP-nexus data. If Q is executed in this
mode, and except the data no further parameters are specified, duplicates
are not removed, and the width of the protected region `′′′ is estimated using
the qfrag-length distribution method (Section 4.2.3) instead of the Hamming
distance method (Section 3.2.2). Furthermore, a simpler model is used for the
evaluation of peaks in place of the saturation-based approach. The software
was released under the name Q-nexus.

The qfrag coverage profile is constructed and searched for peaks as for Q
(Section 3.2.2). However, due to the increased resolution of ChIP-nexus, the
previously estimated `′′′ instead of ` and a much smaller argument of x = 5
for the allowed deviation from `′′′ are used. Positions covered by at least
one qfrag and with no higher qfrag depth at a distance of qmin are predicted
as binding positions and the surrounding regions ±qmax are subjected to
statistical evaluation.

For preprocessed ChIP-nexus reads (Section 4.2.1) it can be assumed that
they are free of PCR duplicates, and reads that map to the same position con-
stitute a large portion of the signal. For the saturation approach (Section 3.2.3)
it makes no difference if one or more reads map to the same position. There-
fore, it is not suitable for the evaluation of ChIP-nexus peaks. Instead, for
each summit si, the number of 5’ end positions of mapped reads within the
range si− qmax, ..., si + qmax, denoted as k, is determined. The P-values are cal-
culated using a Poisson distribution Pois(k, λ) assuming that 5’ end positions
are evenly distributed across the genome, i.e. λ = 2 · qmax · (|Tf |+ |Tr|)/l,
where |Tf |+ |Tr| is the total number of 5’ end positions and l the length of
the genome. Finally, the Benjamini-Hochberg procedure is used to correct
for multiple testing (Section 2.2.5).

4.2.5 Reproducibility of ChIP-nexus peak calling

Q-nexus was compared to MACS2 [38] and MACE [118] with regard to
reproducibility, because MACS2 was also used in the original ChIP-nexus
publication [47] and MACE [118] was the only publication mentioning the
analysis of ChIP-nexus data at that time.

The comparison framework using the IDR procedure (Figure 17) was
reused but with biological replicates in place of technical replicates. Fur-
thermore, instead no uniform argument for the protected region width and
similar parameters for the other two peak callers were used. This was done
because the estimation of the width of the protected region (Section 4.2.3) is
one of the main innovations in Q-nexus.

Apart from that, MACS2 and MACE were run with appropriate parame-
ter settings. For instance, the option --call-summits was set to instruct
MACS2 to search primary peak regions post hoc for sub peaks, which is rec-
ommended for the detection of adjacent binding sites [38], or the feature for
nucleotide composition bias correction of MACE was switched off because it
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Figure 29: ChIP-nexus peak calling: (A) Description of the Q-nexus work-
flow. For ChIP-nexus, 5’-3’ (λ) exonuclease (’Pac-Man’ icons) is employed to
digest the 5’ ends of fragments up to about 5-6 base pairs to the location at
which target protein (green) and DNA were cross-linked. The mapped reads
(red and blue arrows) correspond to 5’ ends of fragments. If Q is executed
in nexus mode, duplicates are not removed. The qfrag-length distribution
method (Figure 27) is used to estimate the length of the protected region (`′′′),
which is used along with a default argument of x = 5 to construct qfrags
(gray box and black lines). Summit positions in the qfrag coverage profile
(purple) are defined as for Q (Section 3.2.2). For each summit position si, the
number of 5’ end positions within the region ±qmax is tested for statistical
significance using a Poisson distribution. (B) Coverage profiles for 5’ end
positions (red and blue) and qfrags (purple) at the rho NEE enhancer for
Dorsal and Twist. The same region is shown in the original ChIP-nexus
publication [47]. The qfrag coverage profile shows two distinct peaks for
Dorsal and Twist. This figure was originally published in Hansen et al., 2016 [45].



4.3 discussion 67

is not appropriate for ChIP-exo and ChIP-nexus data2 and, additionally, lead
to a significant loss of reads utilized for the analysis.

The peak callers were applied to the BAM files (Section 4.2.1) for the ChIP-
nexus replicates for Dorsal, Twist, Max, Myc and TBP. Without exception,
Q-nexus identifies significantly more overlapping peaks than MACS2 or
MACE (Figures 30A-C,E). This also applies to numbers of selected peaks at
a threshold of IDR ≤ 0.01 (Figure 30D,E,G). MACS2 reproducibly identifies
peaks for all analyzed factors and also performs well in conjunction with the
IDR procedure. However, to a much lower extend as compared to Q-nexus.
For MACE, there are many overlapping peaks with identical significance
scores at the lower ranks (Figure 30C) that must lead to ties known to be
incompatible with the IDR procedure (Section 2.2.6), which could be an
explanation for the poor performance in conjunction with IDR procedure.

4.3 discussion

The Q-nexus software introduced in this chapter was the first comprehen-
sive software package for the analysis of ChIP-nexus data. Furthermore,
a detailed duplication analysis was performed making use of the random
barcodes. Beyond that, Q-nexus implements a novel method for the estima-
tion of the protected region width that yields estimates which are plausible
from a biological point of view and consistent previously published results.
Using the estimated parameter along with parameter settings optimized
for ChIP-nexus, Q-nexus outperformed MACS2 and MACE with respect to
reproducible peak calling.

The preprocessing of ChIP-nexus reads (Section 4.2.1) was implemented by
Benjamin Mencüç as part of a Dr. med. thesis [76]. The focus of this work
was on efficiency which is why there was also active communication with
the developers of the adapter clipping software FLEXBAR [29] and the C++
library SeqAn [30]. The adjustments that were made to FLEXBAR initiated
further developments whose details3 are beyond the scope of this thesis.
The software permits fast processing of ChIP-nexus reads, which includes
clipping of barcodes and adapters, mapping to a reference genome, selective
removal of PCR duplicated reads and calculation of sequence duplication
levels. In contrast to the preprocessing performed for the original ChIP-nexus
publication using a number of scripts and available tools [47], Q-nexus comes
with a clearly defined user-interface and a detailed documentation including
a tutorial4.

Besides the fact that random barcodes allow selective removal of PCR-
duplicated reads, they enabled unbiased monitoring of PCR-overamplification
of ChIP-exo reads for the first time (Section 4.2.2). A sequence duplication

2 The nucleotide composition bias correction is intended to correct for bias emerging from random
hexamer priming [118] which is performed for RNA-seq [44] but neither for ChIP-exo nor for
ChIP-nexus.

3 https://github.com/seqan/flexcat
4 http://charite.github.io/Q/tutorial_chip_nexus.html#preprocessing

https://github.com/seqan/flexcat
http://charite.github.io/Q/tutorial_chip_nexus.html#preprocessing
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Figure 30: Reproducibility of ChIP-nexus peak calling: The peak callers
Q-nexus (black), MACS2 (red) and MACE (blue) were compared with regard
to reproducibility of peak calling using the same comparison frame work as
for ChIP-seq (Section 3.2.5) but biological instead of technical replicates were
used. Furthermore, no uniform argument for the protected region width and
similar parameters for MACS2 and MACE was used, but these parameters
were estimated by the corresponding internal routines of the individual
peak callers. (A-C) Scatterplots of the significance scores of overlapping
peaks amongst the top 100, 000 peaks derived for the two replicates of the
transcription factor Twist. The Pearson correlation coefficients and the
numbers of overlapping peaks are indicated in the upper-left corners of the
plots. Q-nexus identifies more than twice as much overlapping peaks as
compared to MACS2. (D) Change of correspondence curve (Ψ′ plot). The
latest transition to a segment with positive slope is observed for Q-nexus
indicating higher reproducibility as compared to the two other peak callers.
Find a detailed description of this and the next plot in (Section 2.2.6). (E)
Numbers of selected peaks at various IDR thresholds. For Q-nexus, the
largest number of reproducible peaks is selected at arbitrary cutoffs. For
the default threshold IDR ≤ 0.01, Q-nexus identifies about twice as much
peaks as compared to MACS2. (F, G) Similar results as shown in A-E were
obtained for the other factors Dorsal, Max, Myc and TBP. The two bar charts
show the numbers of overlapping peaks (F) and numbers of overlapping
peaks selected at IDR ≤ 0.01 (G). This figure was originally published in Hansen
et al., 2016 [45].
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plot adapted to ChIP-nexus was developed. The duplication levels are deter-
mined for three categories of reads: PCR duplicated reads, identical reads
originating from different fragments and the union of both (Section 4.2.2).
Furthermore, the overall duplication levels for the three categories are cal-
culated. The provided framework for duplication analysis in consideration
of random barcodes may be useful for the evaluation of experiments and
troubleshooting. For all analyzed ChIP-nexus datasets [47], high overall
duplication levels were observed, whereby the differences between the con-
ventional and unbiased overall duplication levels were only marginal. In
general, high duplication levels indicate libraries of low complexity due low
amounts of input DNA.

For ChIP-exo and ChIP-nexus the equivalent of the average fragment length
(`) is the width of the occupied region (`′′′) which is protected from 5’-3’ (λ)
exonuclease digest. The estimated parameter `′′′ is intended to maximize the
number qfrags that are used to construct the qfrag coverage profile which
is subsequently searched for peaks. Regions with clusters of reads on the
forward and reverse strand whose 5’ end positions occur at a distance of
about `′′′ will be selectively emphasized (Figure 29). The default argument
for the allowed deviation from `′′′ is x = 5, and smaller arguments can be
used in order to increase specificity. Peaks in the qfrag coverage profile are
identified as for Q, but for Q-nexus a different measure of enrichment is
used. The saturation approach is not suitable for ChIP-nexus data, because
multiple 5’ end positions at individual genomic positions form a part of
the signal. Therefore, the number of hits that map to given peak regions is
determined and tested for statistical significance using a Poisson distribution.

One of the key innovations of Q-nexus is the estimation of the parameter
`′′′. As the cross-correlation method, the qfrag length-distribution accumu-
lates strand specific signal characteristics from all over the genome including
regions prone to mapping artifacts. As a result, the relevant range (6-20 bp)
in the qfrag-length distribution is masked by the phantom peak. The pseudo-
control makes this range accessible. However, the drawback of this approach
is that the clusters of reads at genuine binding sites introduce new bias to a
range upwards of one read length that is difficult to delimit (Additional file 1:
Figure S4 in [45]). One advantage of this approach is that it does not require
the exclusion of genomic regions prone to mapping artifacts using blacklists
that are not available for all species and genome builds. Furthermore, no
prior knowledge about the binding sites of the target protein is required
as it is the case for the conventional footprints of 5’ end positions at prese-
lected sites. Interestingly, the curve progressions for the differences between
qfrag-length counts of the original data and pseudo-control reproducibly
show characteristic signatures for the individual factors. However, these
plots have to be carefully interpreted for the reasons discussed above. The
aim was to estimate a parameter `′′′ that can be used for the construction
of the qfrag coverage profile, and the length that maximizes the number of
qfrags seemed to be a good choice. For the analyzed ChIP-nexus datasets,
the estimated widths are between 9 and 18 bp, which is within the expected
range from a biological point of view. Furthermore, the estimates are by and
large consistent with the footprints of 5’ end positions centered at predefined
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sets of binding positions (See Table 3 in [45]).
Another question is how well the qfrag coverage profile for a given `

reflects the binding architecture of a given target protein. The notion that
binding positions are flanked by two pile-ups of reads on the forward and
reverse strand is a simplification that is not applicable to all cases. At bind-
ing positions, the succession of exonuclease stop positions on the forward
and reverse strand depends on the preferred cross-linking configurations of
the target protein or complex as well as on proteins that co-bind to DNA
nearby. Furthermore, there may be subpopulations of binding sites that show
different architectures [104]. In this context, the qfrag-length distribution
may represent a mixture of architectures, and a single qfrag coverage profile
might not be sufficient in order to draw meaningful conclusions. In such
cases, it might be useful run Q-nexus peak calling with differently specified
`′′′ and smaller x.

The reproducibility of Q-nexus peak calling was compared to that of
MACS2 and MACE using the biological replicates of the original ChIP-nexus
publication, whereby the estimation of the protected region width or com-
parable parameters for MACS2 and MACE was left to the build-in modules
individual peak callers. Q-nexus outperforms the MACS2 with respect to
the number of reproducible peaks selected at a threshold of IDR ≤ 0.01, and
MACE completely fails to identify reproducible peaks. The poor performance
of MACS2 and MACE can be explained by the estimation of inappropriate
arguments for the extension size and border pair size, which are the equiv-
alents of the protected region width. For MACS2 as well as MACE, the
estimates are shifted towards one read length that is 42 bp in this case (See
Table 3 in [45]).

For MACS2, the smoothing effect on the coverage profile increases with
the extension size. If the extension size exceeds the width of the protected
region, the prediction of binding sites will start become imprecise. Moreover,
adjacent biding sites will start to get merged, if the extension exceeds the
distance between them. Finally, depending on the overall noise level, at some
point flanking noise reads will start to overlap peak regions. However, it has
to be said that the estimates of MACS2 could be possibly improved by using
a more suitable bandwidth parameter which is used for the preselection of
regions used for the estimation [38], but this would require prior knowledge.

For MACE, the small number of overlapping peaks can be explained simi-
larly. MACE estimates optimal border pair size that is conceptually similar
to the width of the protected region [118]. Furthermore, a border detection
(peak calling) is performed for both strands separately, and forward and
reverse strand peaks at a distance of about the border pair size are matched.
Using the inappropriate border pair size, MACE fails to detect reproducible
peaks. Apart from that, MACE seems to use an internal lower significance
threshold that cannot be overridden by users5. This may lead to ties at the
lower ranks that are known to be incompatibility with the IDR procedure.

5 For the comparisons the user defined threshold was released by setting a P-value cutoff of 0.99.
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F I N A L D I S C U S S I O N

Genetics is a fundamental part of biological research, and epigenetics shifts
the focus beyond the sequence level to the configuration of DNA that deter-
mines the transcription levels of genes within given cells. The accessibility
and three-dimensional layout of genomic DNA are important modulators of
gene expression that involve modifications of DNA and proteins that interact
with DNA. The technology of DNA sequencing has become a popular and
valuable instrument that enables researches to answer a variety of related
questions. The next-generation sequencing application ChIP-seq can be used
for the genome-wide identification of sites that interact with target proteins
including key players such as transcription factors and histone proteins.

This bioinformatic thesis is about the primary analysis of ChIP-seq and
ChIP-nexus data. The main ideas and concepts emerged from the practi-
cal application of bioinformatic software and guidelines for the assessment
of data quality and reproducibility (Chapter 2). A thorough study of the
standards for ChIP-seq data analysis as defined by the ENCODE project
consortium was done in collaboration with scientists performing ChIP-seq
and DNA sequencing, and a local instance of the GALAXY platform was
setup that allowed for primary data analyses compliant with the standards.
This infrastructure was of mutual benefit. On the one hand, the users were
enabled to perform this part of their investigation autonomously, which
resulted in greater transparency and a better ability to interpret the results
[53]. On the other hand, the steady and active communication with the
users contributed to a deeper understanding of the data and the additional
resources could be used to focus on bioinformatic questions [46, 45]. The
analysis of the HoxD13

Q317K mutant represents an application example of
ChIP-seq that could be used in this case to characterize and compare global
binding properties of wildtype and mutant proteins, which contributed to
the elucidation of the pathomechanism underlying a phenotype with severe
hand and foot malformations.

For this thesis, a ChIP-seq peak caller named Q was developed (Chapter 3)
addressing shortcomings identified during practical applications of existing
software. Three methodological innovations were implemented in Q: the
estimation of the fragment length using Hamming distance (Section 3.2.1),
the concept of qfrags (Section 3.2.2) and the saturation-based evaluation of
peaks (Section 3.2.3).

The method for the estimation of the fragment length largely recapitulates
the cross-correlation plot, but Hamming distances instead of Pearson corre-
lation coefficients are used in order to measure similarity between shifted
strands. The implementation in Q yields equivalent estimates of the frag-
ment length but three times faster as compared to the conventional method

71
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implemented in the SPP package [63].
The degree of ChIP-enrichment is an important quality feature of ChIP-seq

experiments. The RSC that can be derived from the cross-correlation curve is
a well accepted metric. The RSC derived from the Hamming distance curves
are comparable for high to moderate degrees of enrichment. In addition, Q
reports own enrichment metrics. However, RSC values and Q’s enrichment
scores are influenced by a number of factors including artifact regions in
which the mapped reads form large clusters (Figure 2) as well as details of
data processing such as removal of duplicated reads [21]. Furthermore, there
is also a dependency on the number of peaks. Factors that tend to bind at
many sites in the genome will yield better enrichment scores as compared to
others. Therefore, these metrics are best suited for comparisons of replicates
performed for the same factor within the same experimental setup, and any
deviations from this should be taken into account for interpretation.

Within Q, the estimated fragment length is used to create qfrag coverage
profiles that have different depth distributions as compared to the conven-
tional profiles for shifted and extended reads, whereby qfrags at peaks show
a quadratic instead of only a linear increase in coverage. Intuitively, this
should also contribute to a better centering of peaks at binding positions,
which was the decisive argument for the development of Q-nexus.

For NGS applications, DNA is typically randomly sheared into fragments,
and the 5’ end positions of reads represent breakpoints in the DNA of given
cells. Furthermore, removal of duplicated reads is a common procedure
applied in order to eliminate PCR duplicated reads. The saturation-based
evaluation of peaks takes both aspects into account and thus provides a more
robust alternative to conventional approaches that focus on peak height,
which depends on experimental parameters such as the read or fragment
length as well as on whether duplicated reads were removed or not. Finally,
the saturation-based evaluation was supplemented with statistical tests for
the cases with and without control.

Q was implemented in C++, and the software along with a tutorial is
available on GitHub (Section 3.2.4). A memory efficient implementation
allows Q to be run on desktop computers. Beyond that, Q is also fast. For
typical datasets, peak calling can be performed within two minutes on av-
erage, which is advantageous for large scale projects with large numbers
of ChIP-seq datasets. Given the well-defined command line interface and
the ability to read and write standard formats, Q blends in well with the
landscape of bioinformatic tools that are typically involved in ChIP-seq data
analysis.

Reproducibility is an important issue in ChIP-seq. The peak callers Q,
MACS2, SPP and PeakSeq were compared with respect to reproducibility of
peak identification and ranking (Section 3.2.5). Q showed the best compati-
bility with the IDR procedure, and as measured by the ENCODE standards,
identified significantly more reproducible peaks, whereby datasets for which
at least one of the four peak callers showed problems with IDR compatibility
were excluded from the analysis. SPP is considered as well compatible with
the IDR procedure and this could be confirmed by the IDR compatibility
analysis. PeakSeq did not perform well with regard to IDR compatibil-
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ity. However, after exclusion of problematic datasets, PeakSeq yielded the
second-best results with respect to the identification of reproducible peaks.
Finally, the most widely used peak caller MACS2 showed a moderate overall
performance.

The elucidation of transcription factor binding preferences is one of the
main applications of ChIP-seq. Transcription factors and other proteins bind
sequence specific to DNA which is why genuine ChIP-seq peaks are typically
enriched for binding motifs. Therefore, the peak callers were also compared
with respect to motif content of peaks. For this purpose, reference motifs
were derived from peak regions identified by all four peak callers, and the
occurrences of reference motifs were determined for the top 50, 000 peaks of
the individual peak callers. As compared to the other peak callers, Q showed
significantly more peaks with at least one reference motif occurrence (Section
3.2.6), whereby SPP also showed above average performance.

The TFDS signature of paused open promoters derived from RNAPII and
H3K4me3 ChIP-seq data (Section 3.2.7) opens up new perspectives for future
investigations. Regulatory DNA elements such as promoters and enhancers
are often brought into contact with one another by the formation of chro-
matin loops. The NGS application Hi-C can be used be used to identify all
pairwise DNA interactions in a genome-wide fashion [115]. Capture Hi-C
is an extension of Hi-C that allows to focus on preselected target regions
referred to as viewpoints. Similar to exome sequencing, this reduces the
sequencing depth which is required to achieve a resolution that is sufficient
to assign gene promoters their regulatory elements [51, 77, 99, 100, 57]. Such
analyses are often complemented with other NGS applications. For instance,
additional RNA-seq and histone ChIP-seq experiments were performed in
order to characterize observed contacts more thoroughly [5]. For future
investigations, ChIP-seq experiments with RNAPII and H3K4me3 could
be performed in addition to Hi-C, and Q’s TFDS signature could be used
to identify interacting paused open promoters and associated regulatory
elements.
Altogether, it could be shown that Q is suitable for large scale analyses such
as the ENCODE project and additionally has advantages with respect to
runtime and reproducibility. At the same time, Q can also be used for the
detailed analyses of combined binding patters of different target proteins.

At the outset of the development of Q-nexus [45], there was no comprehensive
software package for the analysis for ChIP-nexus data. The supplied software
provides innovative solutions for the most important subproblems, from the
preprocessing of ChIP-nexus reads (Section 4.2.1) and unbiased monitoring
of PCR-overamplification making use of the random barcodes (Section 4.2.2),
over the estimation of the protected region width from genome-wide data
avoiding the problem with the phantom peak (Section 4.2.3), up to the repro-
ducible identification of transcription factor binding sites reusing the concept
of qfrags (Section 4.2.4).

FastQC’s familiar plot for duplication levels was translated into its un-
biased counterpart using the information of the random barcodes (Section
4.2.2). The concept of this plot is not restricted to ChIP-nexus but also appli-
cable to other NGS applications that make use random barcodes in order to
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identify PCR duplicated reads. Besides the PCR duplication levels, this plot
also includes the duplication levels of ChIP-nexus reads after removal of PCR
duplicated reads, which could be useful for the evaluation of experiments
and troubleshooting whenever pile-ups of reads form a part of the signal,
for instance, for the sequencing of small RNAs.

The qfrag-length distribution takes up the idea of the cross-correlation
method inasmuch as the binding characteristics are derived in a genome-
wide fashion. The problem with the phantom peak is circumvented using
pseudo-controls that are derived from the original data by applying simple
strand switch and shift operations to all mapped reads. The estimates of the
protected region width `′′′ range from 9 to 18 bp, which is plausible from a
biological point of view. Furthermore, the estimated widths are largely in line
with previously published footprints of 5’ end positions at preselected bind-
ing sites [47]. Interestingly, the qfrag-length distribution reproducibly shows
very characteristic signatures for individual transcription factors. However,
these plots have to be interpreted carefully, because the method with the
pseudo-control introduces new bias to the range upwards of one read length.

The estimated protected region width is used to construct the qfrag cover-
age profile, and regions in which pile-ups of reads on the forward and reverse
strand occur at a distance of `′′′ will be selectively emphasized. However,
how well the qfrag coverage profile reflects the precise binding architecture
of given target proteins or complexes remains an open question. The estima-
tion procedure integrates qfrags from the entire genome, but there may be
subpopulations of binding sites with different architectures [104], which is a
general problem with the interpretation of ChIP-exo and ChIP-nexus data.
For simpler architectures such as seen for Dorsal, it seems to be sufficient
to use only a single `′′′, but for more complex architectures it might be
useful to apply Q-nexus repeatedly with various protected region widths,
whereby appropriate settings of `′′′ could be read off from the qfrag-length
distribution or conventional footprints of 5’ end positions.

Using the datasets of the original ChIP-nexus publication, Q-nexus was
compared to MACS2 and MACE with respect to reproducibility of peak
calling (Section 4.2.5). This comparison was performed within almost the
same framework that had been used before for the analysis of reproducible
ChIP-seq peak calling (Section 3.2.5) with the difference that no uniform
argument was used for the protected region width and the analogous pa-
rameters of the other two peak callers. Within this setting, peaks can be
identified most reproducibly using Q-nexus. However, it turned out that
the build-in estimation routines of MACS2 and MACE did not perform well
for the chosen parameter settings and on the analyzed datasets. Without
exception, the estimates of MACS2 and MACE are larger than Q-nexus’
protected region width and seem to be shifted towards one read length,
similar to those derived from the cross-correlation curve. Furthermore, there
is no obvious way to bring these estimates in line with underlying molecular
mechanisms. Therefore, no valid conclusions can be drawn with regard to
the reproducibility of peak calling using MACS2 or MACE. In contrast to
that, Q-nexus showed good IDR compatibility and identified large numbers
of reproducible peaks using the protected region width derived from the
qfrag-length distribution.

Taken everything together, Q-nexus is good for a first exploratory data
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analysis without prior knowledge about the analyzed factor. The BAM file
free of PCR duplicates, the unbiased plot for duplication levels, the estima-
tion of the width of the protected region and the lists of reproducible peaks
form a good basis for further investigations. In that respect, Q-nexus can be
used to speed up and complement the conventional analysis pipelines for
ChIP-exo and ChIP-nexus data analysis.

This thesis has grown out of an exiting environment involving skilled per-
sonnel and scientists specialized in medical genetics, developmental biology,
information technology, biotechnology, statistics and bioinformatics. Two
tools were developed: the ChIP-seq peak caller Q that improves reproducible
peak calling and provides opportunities for future investigations as well as
the ChIP-nexus analysis pipeline Q-nexus. Both tools implement a number of
innovations that possibly could be also applicable to other NGS-applications.
For instance, it might be useful to apply the saturation framework of Q to
the outermost ends of Hi-C restriction fragments that should be saturated
in a similar fashion to ChIP-seq peaks. The saturation scores could then be
used to normalize contact frequencies between interacting genomic loci. Or
the duplication level plots of Q-nexus may be used whenever pile-ups of
reads form a part of the signal and molecular random barcodes are avail-
able. Finally, both tools are actively being discussed [120, 80, 79] and used
[5, 124, 52] by the scientific community.
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M O D E L S O F C H I P - S E Q R E A D D I S T R I B U T I O N AT
P R O T E I N B I N D I N G S I T E S
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Figure A1: Valouev et al., 2008 [114]: (a) Schematic representation of frag-
mentation at binding sites together with empirical data is shown. (b) Cov-
erage profiles for reads mapped to the forward (blue) and reverse strand
(red) are shown (top). These two profiles are combined into one profile by
shifting all reads towards the 3’ direction according to the strand to which
each individual read is mapped and, from then on, treating them as if they
were mapped to the same strand (bottom). The read profiles form two
clearly separated bell-shaped curves. This conception involves assumptions
regarding the underrepresentation of reads between the two curves which is
explained by the fact that only the outer 5’ ends of fragments are sequenced.
We observed different read profiles for Hoxd13 in chicken (See original pub-
lication of Q in [46] Supplemental Material: Figure S3) and E2F6 in mouse cells
(Figure 2).
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Figure A2: Kharchenko et al., 2008 [63]: (b) Schematic representation of
breakpoints at binding positions is shown. In this conception, the distance
between the forward and reverse strand peaks is assumed to reflect the
width of the region that is occupied by the target protein, whereby the size
distribution is taken into consideration as an additional influencing factor.
(c) Profiles for reads mapped to the forward (red) and reverse strand (blue)
are shown separately. The solid curves show the smoothed profiles.



B
A P P R O X I M AT I O N O F T H E P R O B A B I L I T Y T H AT A B I N
R E M A I N S E M P T Y

After a conversation about this topic, the following proof was provided by
Na Zhu, a former member of the institute for medical genetics and human
genetics at the Charité in Berlin. The proof was double checked by myself
and Alexander Krannich, a statistician who coordinated clinical studies at
the Charité.

Proof. According to the mean value theorem the following holds:

∫ n

n−1

1
x

dx =
1
c

(1)

1
n
≤
∫ n

n−1

1
x

dx ≤ 1
n− 1

(2)

n− 1 ≤ c ≤ n

1
n ≤ 1

c ≤
1

n−1

(3)

The integral of 1
x is ln(x).

∫ n

n−1

1
x

dx = − ln(n)− ln(n− 1)

= − ln(
n− 1

n
)

= − ln(1− 1
n
) (4)

Using formula 4 in 3 yields:

1
n ≤ − ln(1− 1
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− m
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n
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m
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(5)
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Figure A3: This screenshot was taken from the Integrated Genome Viewer.
Two typical mapping artifacts for ChIP-nexus are shown. The data was de-
rived from an experiment with the Dorsal transcription factor in Drosophila
Melongaster (GEO: GSE55306). The artifacts are located on chromosome
U. Such artifacts most likely contribute to the phantom peak in the cross-
correlation plot.

80



D
Z U S A M M E N FA S S U N G D E R E R G E B N I S S E I N
D E U T S C H E R S P R A C H E

Diese Arbeit handelt von der Entwicklung bioinformatischer Methoden und
Software zur Vorhersage von DNA-Protein Interaktionen aus ChIP-seq- und
ChIP-nexus-Daten.

Die Regulation der Genexpression ist ein zentrales Thema in den Lebens-
wissenschaften. Die Zellen eines menschlichen Organismus enthalten diesel-
be Erbinformation in Form von DNA. Dabei haben verschiedene Zelltypen
unterschiedliche Gestalt und Funktion. Auf molekularer Ebene unterschei-
den sich Zelltypen vor allem darin, welche der rund 30000 Gene aktiv sind.
Damit ein Gen aktiv wird, muss seine genetische Information in funktionelle
Moleküle (vorwiegend Proteine) übersetzt werden. Der erste Schritt dieses
Vorgangs wird als Transkription bezeichnet und findet direkt an der DNA
im Zellkern statt. DNA-bindende Proteine, wie Transkriptionsfaktoren oder
Histonproteine, spielen daher eine wichtige Rolle bei der Regulation der
Transkription.

Inzwischen werden kostengünstige Hochdurchsatzmethoden zur Sequen-
zierung von DNA, die üblicherweise als Next-Generation-Sequencing (NGS)
bezeichnet werden, auch auf Fragestellungen angewendet, die über das
reine Erfassen von Basenabfolgen hinaus gehen. Ein Beispiel einer NGS-
Anwendung ist ChIP-seq, welche dazu verwendet werden kann, genomweit
Protein-DNA Interaktionen für ein gegebenes Zielprotein zu bestimmen.
ChIP-nexus ist eine Weiterentwicklung von ChIP-seq mit deutlich erhöhter
Auflösung.

Im Allgemeinen sind NGS-Daten sehr umfangreich und es hängt vom zu-
grunde liegenden experimentellen Protokoll ab, wie die Daten auszuwerten
sind. Dies erfordert effiziente Algorithmen, die individuelle Lösungen um-
setzen und typischerweise auch statistische Modelle beinhalten. Für die vor-
liegende Arbeit wurden eine Reihe von innovativen Algorithmen entwickelt,
die verschiedene Teilprobleme bei der Vorhersage von Protein-DNA Inter-
aktionen aus ChIP-seq- und ChIP-nexus-Daten adressieren. Beispielsweise
wurde für die Sättigung genomischer Regionen mit mappierten NGS-Reads,
die anhand von Sequenzidentität Positionen im Genom eindeutig zugeord-
net werden können, im Rahmen des klassischen Occupancy-Problems stati-
stisch modelliert um ChIP-seq peaks zu bewerten. Dabei stellt das Maß der
Sättigung eine Alternative zur konventionellen Read-Tiefe dar und ist über
ChIP-seq hinaus auch auf andere NGS-Anwendungen anwendbar. Darüber
hinaus wurde für diese Arbeit umfangreiche Software entwickelt, die beglei-
tet von zwei von Publikationen in den Fachzeitschriften Genome Research
und BMC Genomics auf der Entwickler-Plattform GitHub bereitgestellt
wurde: http://charite.github.io/Q/. Diese Software wurde von der
wissenschaftlichen Gemeinschaft bereits diskutiert und angewendet.
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Peter Krawitz, Gundula Leschik, et al. Distinct global shifts in genomic
binding profiles of limb malformation associated HOXD13 mutations.
Genome research, aug 2013.

[55] Competing Financial Interests. Integrative genomics viewer. 29(1):24–
26, 2011.

[56] IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Ab-
breviations and Symbols for Nucleic Acids , Polynucleotides and their
Constituents. European Journal of Biochemisty, 15:203–208, 1970.

[57] Biola M. Javierre, Sven Sewitz, Jonathan Cairns, Steven W. Wingett,
Csilla Várnai, Michiel J. Thiecke, Paula Freire-Pritchett, Mikhail Spi-
vakov, Peter Fraser, Oliver S. Burren, et al. Lineage-Specific Genome
Architecture Links Enhancers and Non-coding Disease Variants to
Target Gene Promoters. Cell, 167(5):1369–1384.e19, 2016.
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