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Abstract 

Emergence of bacterial resistance renders our antimicrobial armamentarium progressively ineffective 

and requires increasing use of antibiotics that display broad antibiotic activity including drug-resistant 

organisms. Particularly in hospital-acquired infections, patients very often receive empiric broad-

spectrum combination therapy for the first days of therapy until the infective pathogen is identified 

and the antibiotic spectrum can be tailored accordingly. However, the consequences of combining 

antibiotics on the pharmacodynamics (PD) are hardly explored yet.  

The present thesis aimed at a systemic investigation of the PD consequences of broad-spectrum 

antibiotic combination therapy using either linezolid (LZD) or vancomycin (VAN) combined with 

meropenem (MER) on the pathogen methicillin-susceptible Staphylococcus (S.) aureus, the most-

abundant S. aureus strain in Germany and other countries in the EU.  

In the experimental part, the single and combined effects of the antibiotics were explored by 

performance of conventional and dynamic in vitro checkerboard and time-kill curve studies. 

Quantification assays were developed and validated for determination of S. aureus (viable plate count 

assay) and the studied antibiotics (high-performance liquid chromatography) in the growth medium 

(Mueller-Hinton broth) in order to have a quantitative basis for characterisation of the influence of 

(changing) drug concentrations of the antibiotic effect. The growth state at drug exposure as a 

currently neglected influential factor on the determined antibiotic effect, i.e. if bacteria were 

exponentially replicating (log-phase) or resting (lag-phase) was identified – independently of the 

inoculum size – with unpredictable consequences which ranged from a higher kill rate (MER), more 

intense killing (LZD), or, conversely, more rapid regrowth after initial killing (VAN) if in log-phase 

compared to lag-phase.  

In the mathematical Modelling and Simulation part, an adaptive optimal experimental design 

assessment accompanied the performance of the experiments to exploit the experimental data utmost. 

Based on the quantified singe-drug effects, a response surface analysis was further developed that 

allowed for statistical, quantitative assessment of the nature and extent of the pharmacodynamic 

interaction of the combinations: In combination, LZD fully antagonised the rapid (4-6 h) bactericidal 

effect of MER alone at ≥0.25 mg/L to bacteriostasis if LZD exceeded its minimal inhibitory 

concentration (MIC) of 2 mg/L. This interaction was invisible in the conventional, turbidity-based 

checkerboard analysis (insensitive turbidity threshold) and was solely revealed if bacteria were 

quantified. VAN and MER interacted partly synergistic (subinhibitory, i.e. below the MICs of VAN of 

1 mg/L and MER of 0.125 mg/L) or additive (inhibitory combinations) being bactericidal after 24 h.  

Based on the experimental in vitro data, a mathematical, semi-mechanistic PD model was developed 

and extensively evaluated that simultaneously predicted the time-course of bacterial growth and killing 

under single and combined exposure of LZD, MER and VAN. The semi-mechanistic PD model was 

linked to published population pharmacokinetic (PK) models of the antibiotics LZD, MER and VAN. 

The resulting PK/PD models proved their value to translate into the clinical setting by successful 
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prediction of PK/PD indices for S. aureus determined from animal and clinical studies. Hence, a 

clinical trial simulation with a virtual patient population was performed that indicated that the 

observed antagonism between LZD and MER might also translate into the clinical setting, whereas the 

comparator regimen between VAN and MER was even superior with respect to bacterial killing and 

suppression of adaptive resistance compared to either monotherapy. 

The PK/PD model was also used to evaluate currently used and newly recommended alternative 

dosing regimens for monotherapy with LZD, MER or VAN against S. aureus-related infections in 

dependence of PK covariates using as evaluation criterion a probability of target attainment analysis 

for bactericidal and/or bacteriostatic effect after 24 h of therapy, respectively: For MER, the standard 

dosing regimen of 1000 mg TID administered as short-term infusion was reliable up to a creatinine 

clearance (CLCR) of 140 mL/min (bacteriostatic) or 100 mL/min (bactericidal). Yet, continuous 

infusion of 1500 mg MER over 24 h was superior to intermittent dosing and provided sufficient 

bactericidal target attainment up to the highest studied CLCR value of 160 mL/min. For LZD, the 

standard dosing regimen of 600 mg BID as 1 h infusion was solely bacteriostatic and target attainment 

was sufficient up to CLCR of 120 mL/min. The present work identified ‘front-loaded’ therapy with 

1200 mg LZD followed by 600 mg as BID being beneficial to augment the antibacterial effect of LZD 

to a bactericidal effect in a fraction of patients (up to 23% depending on CLCR). For VAN, standard 

dosing with 1000 mg BID was found unreliable for the majority of the virtual patients. The present 

work underlines the value of a loading dose of 30 mg/kg total body weight which substantially 

increased the bacteriostatic PTA which was sufficient for CLCR <80 mL/min. However, the use of 

intensified dosing intervals (500 mg VAN QID) or continuous infusion of 2000 mg VAN over 24 h 

was comparable to the therapy with the loading dosing, or superior (sufficient bacteriostatic PTA up to 

CLCR of 160 mL/min), respectively, at a lower total daily dose than the regimen with the loading 

doses. Prospective clinical trials that evaluate the efficacy and safety of the proposed alternative 

dosing regimens based on the present translational approach for LZD, MER and VAN are highly 

warranted.  
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Zusammenfassung 

Der rasante Anstieg von Antibiotikaresistenzen schwächt unser antibiotisches Arzneistoffarsenal 

zunehmend und erfordert vermehrt den Einsatz von Antibiotika mit einem breiten antibiotischen 

Wirkspektrum. Besonders bei im Krankenhaus erworbenen Infektionen erhalten die Patienten häufig 

empirische Breispektrum-Kombinationstherapien in den ersten Therapietagen bis der infektiöse 

Erreger identifiziert wird und das antibiotische Spektrum angepasst werden kann. Die Konsequenzen 

dieser verabreichten Kombinationen von Antibiotika auf die Pharmakodynamik (PD) sind jedoch 

bisher noch kaum erforscht. 

Das Ziel der vorliegenden Doktorarbeit war eine systematische Untersuchung der Folgen einer 

Breitspektrum-Antibiotikatherapie aus entweder Linezolid (LZD) oder Vancomycin (VAN) in 

Kombination mit Meropenem (MER) auf den pharmakodynamischen Effekt gegen Methicillin-

sensitiven Staphylococcus (S.) aureus, der in Deutschland und den meisten EU-Staaten häufigste 

S. aureus-Stamm.  

Im experimentellen Teil der Arbeit wurden die individuellen und kombinierten Effekte der o.g. drei 

Antibiotika in konventionellen und dynamischen In-Vitro-‚Checkerboard‘-Experimenten und Studien 

zur bakteriellen Absterbekinetik untersucht. Quantifizierungsmethoden zur Bestimmung von S. aureus 

(Lebendkeimzahlbestimmung) und den o.g. Antibiotika (Hochleistungs-Flüssigkeits-

Chromatographie) in bakteriellem Nährmedium (Müller-Hinton Boullion) wurden entwickelt und 

validiert, um den Einfluss (veränderlicher) Antibiotikakonzentrationen auf den antibiotischen Effekt 

mittels quantitativer Größen charakterisieren zu können. Die Wachstumsphase zum Zeitpunkt der 

Anitbiotikaexposition, d.h. ob sich die Bakterien exponentiell teilten (Log-Phase) oder ruhten (Lag-

Phase) wurde – unabhängig von der initialen Bakterienkonzentration – als ein bisher vernachlässigter 

Einflussfakor auf den antibiotischen Effekt charakterisiert, wobei kein einheitliches Muster feststellbar 

war: In der Log-Phase tötete MER schneller, LZD zu einem höheren Ausmaß, wohingegen für VAN 

ein deutlich ausgeprägteres Wiederanwachsen nach initialem Absterben im Vergleich zur Lag-Phase 

sichtbar war. 

Mathematische Modellierung und Simulation einschließlich adaptiver Optimierung des 

Versuchsaufbaus wurden parallel zur experimentellen Durchführung angewendet, um die 

experimentelle Datenbasis bestmöglich zu verwerten. Basierend auf den individuellen Effekten wurde 

eine ‚Response-Surface-Analyse‘ entwickelt, mit welcher die Art und das Ausmaß der PD-

Wechselwirkung zwischen den Antibiotika statistisch quantifiziert werden konnte. In Kombination 

antagonisierte LZD den raschen (4-6 h) bakteriziden Effekt von MER allein ab MER ≥0.25 mg/L auf 

einen bakteriostatischen Effekt für LZD-Konzentrationen oberhalb der minimalen 

Hemmkonzentration (MHK) von 2 mg/L. Diese Interaktion war im konventionellen, trübungsbasierten 

Checkerboard-Experiment aufgrund der unempfindlichen Trübungsschwelle nicht erkennbar, sondern 

nur, wenn die Bakterienkonzentration quantifiziert wurde. Die Wechselwirkung zwischen VAN und 

MER war tendenziell synergistisch für subinhibitorische Konzentrationen von VAN und MER 
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unterhalb der MHK (VAN: 1 mg/L; MER: 0.125 mg/L), oder additiv im Falle von inhibitorischen 

Konzentrationen, wobei dabei ein bakterizider Effekt nach 24 h beobachtet wurde. 

Ein mathematisches, semi-mechanistisches PD-Modell wurde basierend auf den erhobenen 

experimentellen Daten entwickelt und umfangreich evaluiert. Auf dieser Basis konnte der Zeitverlauf 

des bakteriellen Wachstums und Absterbens unter alleiniger und kombinierter Exposition von LZD, 

MER und VAN vorhergesagt werden konnte. Dieses semi-mechanistische PD Modell wurde mit 

publizierten Populations-pharmakokinetischen (PK)-Modellen der Antibiotika LZD, MER und VAN 

verknüpft. Das resultierende PK/PD Modell bildete die klinische Situation korrekt ab, da es die 

bestehenden klinisch-genutzten PK/PD-Indices aus Tierexperimenten und klinischen Studien für 

S. aureus erfolgreich vorhersagen konnte. Daher wurde es im nächsten Schritt zur In-Silico-Simulation 

von klinischen Studien genutzt, welche darauf hindeuteten, dass der beobachtete Antagonismus 

zwischen LZD und MER auch im klinischen Umfeld relevant sein kann, wohingegen das Vergleichs-

Therapieregime mit VAN und MER der Monotherapie mit den beiden Einzelsubstanzen sogar 

hinsichtlich Abtötung der Bakterien und Unterdrückung von adaptiver Resistenzentwicklung 

überlegen war.  

Weiterhin wurde das PK/PD Modell genutzt, um die derzeit klinisch etablierten und alternativen 

Dosierungsschemata von LZD, MER und VAN für Infektionen mit S. aureus in Abhängigkeit von PK-

Covariaten zu untersuchen, wobei die Wahrscheinlichkeit eines bakteriziden und/oder 

bakteriostatischen Effekts nach 24 h Therapie als Bewertungskriterium herangezogen wurde: Für 

MER war für das Standardtherapieschema von 1 g alle 8 h, verabreicht als Kurzinfusion, zuverlässig 

bis zu einer Kreatinin-Clearance (CLCR) von 140 mL/min (bakteriostatisch) oder 100 mL/min 

(bakterizid). Mittels kontinuierlicher Gabe von 1500 mg MER konnte hingegen ein verlässlicher 

bakterizider Effekt bis zur höchsten untersuchten CLCR von 160 mL/min erreicht werden. Für LZD 

wurde für die Standarddosierung von 600 mg alle 12 h als einstündige Infusion bis zu einer CLCR von 

120 mL/min ein verlässlicher bakteriostatischer Effekt bestimmt. Mithilfe einer Initialdosis von 

1200 mg LZD, gefolgt von 600 mg alle 12 h konnte in einem Teil der Patienten (8-23%, abh. von 

CLCR) sogar ein bakterizider Effekt erzielt werden. Für VAN war die Standarddosierung von 

1000 mg alle 12 h, als einstündige Infusion verbreicht, unzuverlässig in der Mehrzahl der virtuellen 

Patienten. Eine Initialdosis von 30 mg/kg Gesamtkörpergewicht erhöhte die Wahrscheinlichkeit einer 

zuverlässigen bakteriostatischen Therapie bis zu einer CLCR <80 mL/min. Ein verkürztes 

Dosierungsintervall (500 mg VAN alle 6 h) oder kontinuierliche Infusion von 2000 mg VAN über 

24 h waren der Therapie mit Initialdosis gleichwertig bzw. überlegen (zuverlässige bakteriostatische 

Therapie bis zu einer CLCR von 160 mL/min) – bei niedrigerer Gesamttagesdosis. Als nächster 

Schritt sollten prospektive klinische Studien die auf Basis des vorliegenden translationalen Ansatzes 

vorgeschlagenen Dosierungsregime hinsichtlich ihrer Wirksamkeit und Sicherheit untersuchen.  
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Introduction 

1 

1 Introduction 

1.1 Infectious diseases and anti-infective therapy 

Infectious diseases are a leading cause of death in the world. The Global Disease Burden Report 2013 

identified lower respiratory tract infections as the second-most abundant cause of death worldwide 

with ca. 2,652,600 deaths in 2013 [1]. The burden of death for infections is yet not equally distributed 

around the world: Whereas lower respiratory tract infections are even the leading cause of death in the 

so called ‘developing countries’, they are less abundant in the ‘developed world’ and rank ninth as 

cause of death [1]. Amongst other factors such as the facile availability of potable water and high 

hygienic standards, medical personnel have access to an armamentarium of anti-infective agents to 

treat various infections rendering infections ‘manageable’ in the developed world. The first ‘modern’ 

antibiotic, penicillin, discovered by Alexander Fleming in 1929 [2] being still in clinical use 

revolutionised the management of infections. For instance, the decrease in mortality rate from combat 

wounds from 8% to 4.5% from World War I to World War II is attributed to a major part to the use of 

wound management and antimicrobial therapy [3]. The area between 1940 and 1962 is often referred 

to as the ‘Golden-Age of antibacterial drug discovery’ [4], in which the lead structures of 

sulphonamides, beta-lactams, tetracyclines, aminoglycosides, macrolides, glycopeptides, quinolones 

and streptogramins were discovered [5]. The following innovation gap in discovery of new drug 

classes lasted until the year 2000 and is often referred to as the ‘Golden-Age of Medicinal Chemistry’ 

in which the lead structures were continuously modified to improve their antibacterial effect [5]. 

Figure 2 illustrates the availability of anti-infective agents since the 1940’s.  

 

Figure 1: Number of available antibiotics approved for clinical use by the US Food and Drug Administration. 

Changes over time result from both approval and withdrawal of antibiotic form the market. Modified from [6]. 
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1.2  “No new drugs for bad bugs” 

Although there is some loss of ‘old’ antibiotics in the last years from the market (Figure 1), the 

treasure trove of anti-infective agents is still richly filled for the time being. Yet, mankind begins to 

face a situation of increasing resistance of bacteria and a decreasing rate of approval of new anti-

infectives – referred to as a “perfect storm” by Cooper and Shlaes [7,8] illustrating this unfavourable 

development in Figure 2.  

 

Figure 2: Proportion of antibiotic-resistant clinical isolates of methicillin-resistant Staphylococcus aureus 

(MRSA, solid red line), vancomycin-resistant Enterococcus (VRE, solid brown line) and fluoroquinolone-

resistant Pseudomonas aeruginosa (FQRP, solid orange line) and number of newly approved antibiotics (dashed 

blue line) from [7]. 

 

Cooper stressed the issue of raising cost in drug development accompanied by considerably low 

financial revenues for antibiotics developed by pharmaceutical industry as a key driving force of this 

development and calls for both new incentives for industry and governmental leadership [7]. Until 

new therapies become available, as advocated by the WHO [9], rational use of existing antibiotics 

under consideration of pharmacokinetic (PK) and pharmacodynamic (PD) principles is imperative to 

preserve our antimicrobial armamentarium for future use [10]. In particular, deliberate use of ultima-

ratio antibiotics is highly important, which are often applied too generous [11].   
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1.3 Pharmacokinetic/pharmacodynamic analysis in anti-infective therapy 

In the following chapter, the conventionally utilised analysis methods as well as the their limitations 

are presented. Thereafter, the science of pharmacometrics is introduced and the potential benefits of 

applying pharmacometric techniques in antimicrobial PK/PD analyses is summarised. 

 

1.3.1 Conventional approaches for PK/PD assessment 

1.3.1.1 Minimal inhibitory concentration 

The minimal inhibitory concentration (MIC) represents the lowest concentration of an antibiotic that 

inhibits visible growth of a bacterium after incubation for 16 - 20 h at 35° C [12]. The inoculum is 

usually standardised to 5·10
5
 colony forming units (CFU)/mL (see 1.3.1.2). This inoculum is typically 

prepared with a turbidity-meter using the so called McFarland (McF) turbidity standards [13]. The 

inoculum is either adjusted by direct suspension of colonies into the growth medium or by growing 

few colonies to a defined turbidity value before addition of the antibiotic [12]. The MIC is typically 

determined in liquid growth media such as Mueller-Hinton broth (MHB) [14] and drug concentrations 

are added to the medium in geometric dilutions in base 2 logarithmic increments centred around a drug 

concentration of 1 mg/L [12]. Other methods for MIC determination are based on diffusion of an 

antibiotic into solid agar media: For the disk diffusion method, the diameter of inhibition around an 

antibiotic-containing disk on an inoculated agar plate is measured. The radius of inhibition is related to 

the susceptibility of the strain [15]. The same principle of diffusion of the antibiotic into agar is used 

for the E-test: Hereby, a gradient with increasing antibiotic concentration is applied along a carrier 

strip, which has the advantage that the MIC is directly readable at the strip where bacterial growth of 

the strain meets the strip [16]. It is acknowledged that different methods for MIC determination can 

generate different results [17]. The MIC determination has an inherent uncertainty of ±1 MIC tier [18] 

and the MIC, as a binary measure, does not reflect the continuity of the antibacterial effect in time and 

magnitude [19]. Yet, the MIC has proven useful as routine measure of the antibacterial effect in 

clinical practice, and based on the determined MIC value the bacteria are classified into susceptible, 

intermediate and resistant to the antibiotic [20]. 

 

1.3.1.2 Time-kill curve studies and in vitro infection models 

In so called time-kill curve studies, the antibacterial effect is measured over time. In principle, a time-

kill curve study is performed under similar experimental conditions as MIC determination, but usually 

in cell culture flasks with larger volumes of the growth medium [21]. In addition, a growth curve is 

recorded in which the unperturbed growth of the bacteria over time is obtained. In contrast to standard 

time-kill curve studies, in which drug concentrations are static, i.e. constant over the entire experiment, 
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dynamic time-kill curve studies are performed in in vitro infection models that allow for alteration of 

drug concentrations to mimic the PK of the antibiotic in the human body [22].  

The read-out for the antibacterial effect in MIC experiments is the binary turbidity measure at a single 

end (time) point. Instead, for time-kill curve studies, a continuous effect measure at several time points 

is used. This continuous effect measure is most commonly CFU/mL as a surrogate for viable bacteria 

[21]. For determination of CFU/mL, an aliquot is removed from the cell culture flask, diluted and 

transferred onto an agar plate which is incubated at bacterium-specific conditions until colonies 

become visible. Subsequently, colonies are counted and CFU/mL are calculated. Other, much less 

frequently used, methods to determine viable bacteria include measurement of phosphatase activity 

[23] and intracellular adenosine-triphosphate (ATP) [24] or the ‘Thoma cell counting chamber’ [25] to 

count the total number of bacteria.   

In contrast to MIC determination, time-kill curve studies are up-to-date less strictly standardised e.g. 

with respect to the inoculum size: For many antibiotics, including beta-lactam antibiotics such as 

meropenem (MER) [21] or glycopeptides such as vancomycin (VAN) [26], the rate of bacterial killing 

is drastically reduced at higher inocula. Moreover, many investigators aim to assess the antibacterial 

effect against an inoculum of exponentially growing bacteria. Therefore, a pre-incubation step of the 

bacteria in drug-free growth medium is performed before addition of the antibiotic. Published studies, 

e.g. for the oxazolidinone linezolid (LZD), vary largely (0-2 h) with respect to the pre-incubation time 

[27–31], and the impact of the potential time-dependency of this pre-incubation step on the 

antibacterial effect has not yet been explored to the author’s knowledge.  

 

1.3.1.3 Investigation of the effect of antibiotic combinations 

The combined effects of antibiotics are typically assessed with respect to interactions on the level of 

antibacterial killing and/or resistance development. For assessment of the potential interaction of 

antibiotics on the level of antibiotic killing, a ‘checkerboard’ study is performed [32], typically in a 

well plate format. Two antibiotics are diluted on the x- and y-axis of the well-plate, in similar dilution 

steps as MIC experiments. Hence, the outermost wells in x- and y-direction, i.e. the rows on the 

bottom and left of the well plate represent MIC experiments, whereas the inner area of the well plate 

contains the combinations. For assessment of the interaction, the MIC of the combination experiment, 

also referred to as fractional inhibitory concentration (FIC), is compared to the MIC of the single 

antibiotic, based on turbidity [33]. The ratio of FIC to MIC is referred to as the FIC index. If the sum 

of both FICdrug A (in presence of B)/MICdrug A and FICdrug B (in presence of A)/MICdrug B is smaller than 0.25, a 

synergistic, for 0.25-4 and indifferent and for >4 and antagonistic interaction is assumed [34]. Due to 

the considerable simple design and interpretation, the turbidity-based checkerboard study is the most 

commonly used method to evaluate antibiotic combinations [32]. Yet, as there are different ways to 

calculate the FIC index [33] and the checkerboard is – as the MIC – prone to reproducibility issues 
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[35] and the other limitations (1.3.1.1), the checkerboard approach has been criticised [34]. Another 

approach to determine the FIC index relies on E-test. With this method, the MIC of the single drug 

experiment, obtained from one E-test strip is related to the FIC of the combination, which is 

determined by two overlaying E-test strips [36]. Yet, this approach is also inherently variable and 

limited to a binary read-out.   

As advancement, the use of the ‘dynamic checkerboard’, i.e. a checkerboard experiment with 

quantification of bacteria [37,38] can explore the effect of antibiotics beyond the binary turbidity-

threshold and provides a continuous measure of an interpretation. However, interpretation of the 

nature of the interaction and discrimination between synergy, additivity and antagonism from 

unprocessed continuous data possesses challenges due to the unavailability of a standardised 

interpretation method.  

Finally, the kinetics of an interaction between antibiotics can be explored by time-kill curve studies. A 

usual design for an interaction study using the time-kill curve approach combines antibiotics at 

concentrations around their MIC value [32]. If an itself inactive antibiotic enhances or diminishes the 

killing of another antibiotic, synergism and antagonism, respectively is concluded. Discrimination 

from additivity is yet not standardised, and as for the ‘dynamic checkerboard’, interpretation of 

unprocessed data is challenging.      

 

1.3.2 Pharmacometrics for assessment of antimicrobial PK/PD 

The term ‘pharmacometrics’ appeared first in the 1970’s indicating the relatively recent history of the 

research area [39]. Pharmacometrics comprises quantitative methods related to basic and clinical 

pharmacology, pharmacy and medicine from the field of life-sciences, and statistics, engineering and 

computational methods from mathematical sciences [39]. Pharmacometric techniques are applied in 

the characterisation of the PK, PD and PK/PD relationship of a drug.  

 

1.3.2.1 Analysis of PK 

The concentration-time course of an intravenously applied drug in the human body is determined by 

the processes of distribution, metabolism and excretion. For extravascular, e.g. oral or cutaneous 

administration, also the liberation of the drug from the galenic vessel and subsequent resorption shape 

the kinetic profile of a drug in the human body [40].  

Non-compartmental analysis. A model-independent analysis method of the PK is the non-

compartmental analysis (NCA) [41]. The NCA uses log-linear regression for determination of the 

(terminal) slope of the concentration time-profile (λz) and the trapezoidal rule to calculate the area 

under the concentration-time profile (AUC) for computation of the PK parameters total clearance (CL) 

and volume of distribution in steady state (Vss). Additionally, the time tmax at which the maximum 
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concentration Cmax is observed, and the elimination half-life t1/2,z are often reported. The application of 

NCA is limited to rich PK data and assumes linear PK of first-order processes.  

Compartmental analysis. Compartmental analysis represents a model-dependent analysis method to 

describe the PK of a drug [42]. Thereby, the distribution of a drug in the human body is approximated 

by a number of compartments (typically one to three-compartment models) and a considerably low 

number of model parameters such as compartment volumes, transfer rates between the compartments 

and elimination rate constants. Those models are capable to describe the entire concentration-time 

profile of a drug in a continuous manner, but due to their empiric nature, the physiological 

interpretation of the parameter estimates is limited. To overcome such limits, ‘physiologically-based 

pharmacokinetic’ (PBPK) models aim at assigning a physiological meaning to model compartments 

[43]. For instance, in PBPK models each organ is represented by an individual compartment and 

physiological organ volumes as well as perfusion properties are considered. Yet, this level of detail in 

the parameterisation is hardly supported solely from conventional clinical trial data, in which the PK 

of the drug is usually exclusively determined in plasma. Hence, for PBPK models other data sources 

such as physicochemical properties of the drug or further in vitro investigations have to be taken into 

account. Yet, in spite of the unavailability of clinically-evaluated PBPK models for the investigated 

antibiotics LZD, MER and VAN, the PBPK approach was not used in the present work.  

Variability. As PK data in clinical studies originates from several patients, numerous methods to 

determine the PK parameters in the study population and to quantify variability in the PK have 

evolved. In the naïve pooling approach, the study data is pooled if it originated form a single 

individual [44]. Hence, solely point estimates of the PK in the population can be derived and 

variability between patients (inter-individual variability) is neglected. 

The ‘two-stage’ approach is capable to quantify variability between patients [45]. In ‘stage one’, the 

individual PK parameters are obtained from the individual PK profiles. In ‘stage two’, descriptive 

statistics on the obtained individual PK parameters is employed to derive point estimates and 

dispersion parameters to describe the population of interest. The advantage of the computational and 

mathematical simplicity of the two-stage approach is accompanied by several disadvantages such as 

the requirement of a balanced, rich sampling study design and systematic overestimation of inter-

individual variability as solely a single dispersion parameter is calculated and further sources of 

variability such as residual variability within an individual are neglected.  

Application of nonlinear mixed-effects modelling (NLME) in the ‘population approach’ is to-date the 

most elaborated methodology to quantify variability in PK in a study population [42], which has 

numerous advantages: Population PK models are hierarchical and can accommodate different levels of 

variability. Usually, a distinction between intra-individual and inter-individual variability of the PK 

parameters and residual variability in the PK profile is made. Moreover, the population approach 

allows for estimation of the point and various dispersion estimates from sparse or unbalanced study 
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designs, as all data is analysed simultaneously applying the Bayesian methodology. The population 

approach enables to include patient characteristics (covariates) into the mathematical model aiming at 

explaining parts of the observed, unexplained inter-individual variability. Moreover, other sources of 

variability (study arm, study site, inter-occasion) can be quantified. Population PK models hence are 

the most reliable basis to perform simulations, e.g. to develop dosing regimens that are tailored to 

patient characteristics. Consequently, population PK models of the investigated antibiotics were to be 

utilised as PK basis for the PK/PD investigations in the present thesis.  

 

1.3.2.2 Analysis of PD 

The PD studies the drug action and effect in a quantitative fashion. In the field of antibiotics, an 

experimental measure for the PD is the bacterial load, expressed by turbid growth or inhibition of 

growth in the MIC, as binary effect measure (1.3.1.1) or CFU/mL (1.3.1.2) as a continuous effect 

measure [21]. In a clinical setting, also inflammatory biomarkers, mortality or duration of 

hospitalisation are considered as PD surrogates [46].  

Empiric PD modelling. If a time-independent effect measure per antibiotic concentration is 

considered, empiric mathematical models can be employed to quantify the concentration-effect 

relationship. Linear regression can be used to describe simple linear concentration-effect relationships, 

whilst non-linear regression is employed for more complex concentration-effect curves utilising e.g. 

the sigmoidal Michaelis-Menten model [47]. However, frequently several, time-dependent effect 

measures per antibiotic concentration, e.g. in time-kill curve studies (1.3.1.2), are available. In order to 

analyse such data with empiric concentration-effect models, summary PD endpoint measures such as 

the area between growth and kill curves in time-kill curve studies [48], the initial slope of the time-kill 

curve [49], the time until nadir bacterial load [50] or simply the bacterial load at the end of the time-

kill curve [51,52] are utilised. 

Response surface analysis for antibiotic combinations. For quantification of combined drug effects 

and assessment of the nature of potential drug interactions, a response surface analysis can be 

performed [53]. As the empiric models, the response surface analysis relies on a time-independent 

effect measure per antibiotic concentration. The observed single-drug effect is either processed 

directly (non-parametric) or computed by the previously obtained empiric mathematical concentration-

effect relationship (parametric). Those single-drug effects of two antibiotics are utilised to predict an 

anticipated combined additive effect by means of various ‘null-interaction’ models [53], of which 

‘Loewe Additivity’ [54] and Bliss Independence (BI) [55] are most frequently used. The difference 

between the anticipated additive and the observed effect is calculated to assess deviation from 

additivity: Positive deviation (i.e. a greater than anticipated additive effect) indicates synergy whilst 

negative deviation (i.e. a smaller than anticipated additive effect) indicates antagonism.  
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Time-kill curve modelling. To mathematically model the time course of the antibacterial effect, e.g. 

data originating from time-kill curve studies, more complex mathematical models have to be 

employed. Time-kill curve modelling usually relies on (systems of) ordinary differential equations 

(ODEs) capturing the change in bacterial load over time [56]. The complexity of such ODE systems is 

very heterogeneous: Time-kill curves models can be considerably simple and consist of a single 

differential equation [57]. In the recent years, more complex models have been developed [56] and due 

to their mechanistically-motivated elements, are referred to as semi-mechanistic models [58]. Those 

models go beyond pure description of the observed experimental data, but aim at characterising the 

underlying system in a qualitative and quantitative way. 

 

1.3.2.3 Integrating PK and PD 

Pharmacokinetic/pharmacodynamic indices. If summary endpoints for the PK and PD are used, the 

efficacy of an antibacterial drug and the suitability of a dosing regimen are assessed by PK/PD indices 

that relate a PK to a PD parameter. Thereby, the PK parameter is derived from the PK profile of the 

antibiotic, whilst the PD parameter is conventionally the MIC in this approach [59].  

The impact of the dosing regimen on the effectiveness of an antibiotic treatment has already been 

noted in very early times of antibiotic research: Harry Eagle et al. reported for penicillin in 1950 that 

lower total doses are required if the dosing interval was decreased and serum concentrations should 

exceed the MIC [60]. Yet, this knowledge on the time- and concentration-independent effect (if above 

the MIC) for penicillin was not further exploited during the following ‘Golden Age’ of antibiotic 

discovery until Craig and co-workers started their seminal studies to systematically evaluate the 

PK/PD relationship of various antibiotic drug classes in the late 1980’s [61]. They realised that some 

antibiotics such as aminoglycosides displayed ‘concentration-dependent’ killing whilst other drugs, 

such as beta-lactams, exhibited ‘time-dependent’ killing [59]. Moreover, some drugs such as 

macrolides or aminoglycosides stimulate moderate or long ‘postantibiotic effects’ up to ca. 10 h 

[62,63], i.e. a persistent antibacterial effects after removal of the antibiotic. When the antibacterial 

effects were explored, it was noted that solely unbound drug concentrations stimulated an antibacterial 

effect [64], Hence, PK/PD indices should be based upon unbound drug concentrations [59].  

Craig integrated those findings and proposed three MIC-based PK/PD indices: (i) fCmax/MIC, i.e. the 

unbound (f) peak concentration divided by the MIC for concentration-dependent drugs with long 

perstistent effects, (ii) fAUC/MIC, i.e. the unbound AUC divided by the MIC for drugs being both 

concentration and time-dependent to some degree with moderate persistent effects and (iii) fT>MIC, i.e. 

the time or the percentage of the dosing interval that unbound drug concentrations exceed the MIC for 

drugs that display time-dependent killing and no or very short persistent effects [59]. PK/PD indices 

and breakpoints, that are associated with an adequate antibacterial effect can be derived in vitro, 

animal models and clinical studies [65].  
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Figure 3 displays the PK/PD relationship of the beta-lactam antibiotic cefotaxime against the Gram-

negative bacterium Klebsiella pneumoniae, derived from a dose-fractionation study in a neutropenic 

mouse infection model of pneumonia [66]. In is apparent, that T>MIC is the most suitable PK/PD index 

for cefotaxime in this setting. 

 

 

Figure 3: Relationship between CFU of Klebsiella pneumoniae in the lungs of neutropenic mice after 24 h of 

therapy with cefotaxime and the three PK/PD indices (see text). PK/PD indices were derived from total drug 

concentrations due to the low (<20 %) protein binding of cefotaxime to mouse serum [59].  Each point reflects 

number of bacteria at 24 h from one mouse. The dashed line represents the number of bacteria at the initiation of 

therapy. Data redrawn from [66,67]. 

 

 

Time-continuous PK/PD modelling. Although, PK/PD indices have been proven as useful tools for 

dosing decision making, also in clinical practice [68], this concept simplifies both PK and PD to 

summary endpoint measures. In continuous PK/PD modelling, the entire concentration-time profile of 

the antibiotic (PK) is linked to a mathematical time-kill curve model (PD). This approach captures the 

entire time course of the effect-time curve [56]. Depending on the experimental data, both single drug 

and combinatory time-kill curve studies can be described by mathematical models. Hence, in vitro 

results can be translated into a clinical perspective if human PK data is used for PK input.  

Clinical trial simulation. If population PK models are employed as PK component of the PK/PD 

model, also inter-individual variability can be considered in PK/PD modelling, leading to virtual 

clinical trials which allow for assessment of the effectiveness of various dosing regimens or drug 

combinations. Moreover, if population PK models are employed that include patient-specific 

characteristics, the impact of those PK-related covariates on the PD can be quantified. Yet, due to the 

requirement of population PK models and experimentally labour-intense time-kill curve data for PD, 

and maybe also due to the complexity of the mathematical PK and PD models in this setting, this 

approach is currently rarely used in the PK/PD assessment of antibiotics.  
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1.3.2.4 Optimal study design  

As outlined above, time-kill curve studies are labour- and personnel-intense as being non-automated. 

Moreover, if time-kill curve studies are analysed by complex mathematical models, usually many 

scenarios (e.g. drug concentrations) and frequent sampling is required to support all parameters of the 

mathematical model with sufficient information. Hence, efficient planning of time-kill curve studies is 

required to reduce the workload to a reasonable extent. Mathematical optimal design strategies have 

evolved as useful tools to support study planning [69]: Under the assumption of a mathematical model 

with defined parameter values which is capable to describe the experiment, optimal design approaches 

can be used to minimise the variance of the model parameters as a function of the study design 

variables such as the investigated drug concentration or the number and precise timing of sampling 

points to determine the bacterial load. Minimal parameter variance may lead to less biased and more 

precise parameter estimates of the mathematical model, which is a prerequisite to perform reliable 

simulations. Frequently, a lower number of ‘optimal’ scenarios have to be experimentally performed 

to obtain the same parameter precision as with conventional study designs.  

In clinical drug development the concept of ‘learning and confirming’ was introduced by Sheiner in 

1997 [70]. In the learning step, data from earlier stages of clinical development are analysed to 

generate hypotheses, which are prospectively evaluated. Such prospective trials can be confirmatory if 

the original hypothesis was confirmed or can be a learning study if previously undetected effects were 

elucidated. Finally, learning steps should converge to confirming steps. Optimal study design can 

streamline such repetitive circles of ‘learning and confirming’ and is referred to as ‘adaptive optimal 

design’ as the study design is iteratively optimised [71]. Application of adaptive optimal design 

techniques in parallel to the experimental conduct in pre-clinical time-kill curve experiments may be 

associated with similar benefits as mentioned above, but is – to the author’s knowledge – very 

infrequently done in preclinical research. 

 

 

1.4 Antibiotic therapy 

The following chapter introduces the clinical profiles of key antibiotics that represent the backbone of 

therapeutic regimens in treating infections in hospitalised patients, frequently being critically ill [72]. 

Moreover, the rationales behind antibiotic combination therapy are reviewed. Finally, the 

microbiological properties of one of the most-abundant pathogens in the hospital, Staphylococcus 

aureus, as well as its typical infections are introduced. 
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1.4.1 Key antibiotics and their clinical profiles 

1.4.1.1 Meropenem 

MER is a beta-lactam antibiotic belonging to the chemical subgroup of the ‘carbapenems’ [73], 

formerly also called ‘thienamycins’ named after the chemical lead structure isolated from 

Streptomyces cattleya [74]. The antibacterial target of MER is located in the bacterial cell-wall at so 

called ‘penicillin-binding proteins’, since they were originally discovered by labelling experiments 

with radioactive penicillin G [75]. One of those penicillin-binding proteins is the transpeptidase which 

cross-links peptidoglycan precursors of the bacterial cell-wall [76]. MER inhibits the transpeptidase 

and also stimulates secretion of autolysins which eventually cause lysis of the bacterium [77]. This 

mode of action frequently stimulates a rapid bactericidal effect, i.e. a reduction of the initial bacterial 

load (inoculum) by ≥99.9%. MER displays a very broad antibacterial spectrum ranging from Gram-

negative to Gram-positive organisms. MER is not susceptible to degradation by a wide variety of beta-

lactamases [73], including recently emerged extended-spectrum-beta-lactamases [78], to which beta-

lactams of earlier generations are substrates. Yet, the antibacterial spectrum of MER has a gap for 

MRSA [73]; the minimal inhibitory concentrations (MIC, see 1.3.1) of MER against MRSA is 

frequently >8 mg/L. S. aureus isolates with MIC values ≤2 mg/L are methicillin-susceptible and hence 

commonly also considered susceptible to MER [79].   

After a standard dose of 1000 mg administered as 30 min i.v. infusion, MER reached a maximum 

mean plasma concentration of 55 mg/L in healthy volunteers [80]. As a considerably hydrophilic 

molecule, MER displays a low volume of distribution of ca. 20 L [80]. Plasma protein binding of 

MER is 2% [81]. The area under the (unbound) concentration time curve (AUC) in the interstitial fluid 

of the lung or muscle in steady state was 41% or 60%, respectively, of the AUC in serum indicating 

adequate tissue distribution of MER [82]. The only metabolite of MER is produced by hydrolysis of 

the beta-lactam ring which displays no antibacterial activity. 60-80% of MER is excreted unchanged 

via urine; 15%-25% are recovered from urine as open-ring metabolite [73]. The renal clearance of 

MER is 219 mL/min [80], being higher than the glomerular filtration rate of 120 mL/min which 

indicates tubular secretion of MER. The elimination half-life of MER is ca. 1 h [73] which requires 

three times daily (TID) dosing of the standard dose of 1000 mg to achieve sufficient exposure in 

patients with normal renal function. The label suggests less intensified twice-daily (BID) dosing with 

1000 mg MER for a creatinine clearance ≤50 mL/min [81]. Continuous infusion of MER is an 

alternative dosing strategy gaining more and more popularity to treat infections with elevated MIC 

values close to the susceptibility breakpoint [72,83]. MER displays a favourable safety profile and 

even high doses of 2000 mg TID are generally well tolerated [81,84]. 
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1.4.1.2 Linezolid 

LZD is the first-in-class antimicrobial agent of the comparably young antibiotic drug class of the 

‘oxazolidinones’ being introduced into the market in the year 2000 [5]. The mode of action of LZD is 

found in inhibition of bacterial protein synthesis. In contrast to other protein-synthesis inhibitors, such 

as macrolides or aminoglycosides, LZD acts at an early stage of this vital process in the bacterial 

metabolism and inhibits the formation of the ribosomal initiation complex, i.e. the transfer-(t)-

ribonucleic acid (RNA)-ribosome-messenger-(m)RNA ternary complex [85]. LZD displays an 

antibacterial effect against Gram-positive bacteria, including MRSA [86,87]. The magnitude of the 

antibacterial effect of LZD is mostly bacteriostatic in nature, i.e. the reduction of the inoculum is 

<99.9%. Solely against streptococci, LZD can exert a slow bactericidal effect at high concentrations 

[87]. Gram-positive bacterial isolates with a MIC of ≤4 mg/L are considered susceptible to LZD [20]. 

Gram-negative bacteria are generally resistant towards the effect of oxazolidinones [88], possibly due 

to the presence of efflux pumps that decrease intracellular LZD concentrations [89].  

The standard dosing regimen for LZD is flat-dosing of 600 mg BID [90]. Both intravenous and oral 

formulations of LZD are available and are considered equivalent due to the bioavailability of LZD of 

100% [90].  After a standard dose of 600 mg administered as intravenous infusion over 0.5 h, a mean 

maximum serum concentration of ca. 13 mg/L is obtained. The volume of distribution is 30-50 L, 

which approximates total body water [91]. LZD is moderately bound to plasma proteins and reported 

values for concentration-independent plasma protein binding range from 12.4% [92] to 31% [90]. 

LZD displays good penetration into interstitial fluid of well-perfused tissues [92,93] and the epithelial 

lining fluid of the lung [94] and LZD concentrations were similar to concomitant plasma 

concentrations in steady state. LZD is metabolised into two inactive metabolites, which contributes to 

a non-renal clearance of 65% of the total body clearance [91]. This leads to an elimination half-life of 

LZD in serum at steady-state of ca. 3.4-7.4 h [95]. The safety profile of LZD is favourable. Yet, the 

label limits use of LZD to <28 days due to an increased likelihood of myelosuppression for longer 

treatment durations [90]. 

 

1.4.1.3 Vancomycin 

VAN is an antibiotic belonging to the group of ‘glycopeptides’ [96]. VAN exhibits its antibacterial 

effect in the cell-wall of the bacterium by forming a complex with C-terminal D-alanine residue of the 

peptidoglycan precursors [76]. This interruption of the cell-wall synthesis stimulates a bactericidal 

effect, which has often been reported to be less rapid than that of beta-lactams [97]. VAN displays its 

antibacterial effect solely against Gram-positive bacteria including MRSA. S. aureus isolates are 

considered susceptible to VAN if MIC values are ≤2 mg/L [20]. The considerably large molecular 

mass of 1450 Da [96] renders VAN inactive against Gram-negative bacteria, as it is believed that 

VAN cannot penetrate the outer membrane of the Gram-negative cell-wall [76].   
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The standard dosing regimen of VAN reported in the label is 1000 mg BID as 1 h intravenous infusion 

[98,99]. With this dosing regimen, a mean maximum concentration of 65.7 mg/L was attained in 

steady state in healthy volunteers, which declined to 7.9 mg/L in mean before the next dose [98]. The 

volume of distribution in steady-state was ca. 0.6 L/kg [98].  Protein binding of VAN is variable and 

values from 10% to 50% are reported [96]. Distribution of unbound VAN into soft tissue was assessed 

under continuous infusion and steady-state concentrations were ca. 30% of simultaneous plasma 

concentrations [100]. Trough concentrations in epithelial lining fluid were between 1.4 and 2.8 mg/L 

whereas concomitant plasma concentrations ranged between 20.9 and 23.3 mg/L [101]. 80% - 90% of 

VAN are eliminated unchanged via the kidney. The elimination half-life is reported to be within 6 – 12 

h [96]. To achieve sufficiently high VAN exposure in presence of the partly hindered tissue 

distribution, alternative dosing regimens of 15 mg/kg BID with a loading dose of up to 30 mg/kg have 

been suggested [102]. VAN use is associated with several adverse events including infusion-related 

anaphylactic reactions, nephrotoxicity and ototoxicity [99]. However, those adverse reactions were 

stimulated by impurities in early formulations of VAN and their rate appears to be much lower today 

[102]. Yet, to ascertain safe and effective VAN exposure, therapeutic drug monitoring of VAN is 

recommended and trough concentrations between 10 and 20 mg/L are targeted [102]. 

 

1.4.2 Antibiotic combination therapy 

Antibiotics are combined in an effort to enhance their antibacterial spectrum, to benefit from a 

synergistic effect, to decelerate the development of resistance and to potentially also select against 

emerging resistant strains [103].  

Enhancement of the antibacterial spectrum. As a single ‘full-spectrum’ antibiotic is not available, 

extending the antibacterial spectrum by combining different antibiotics is a vital option in initial 

empiric treatment of severe infections when the causative pathogen and its inherent susceptibility 

pattern are unidentified yet. Microbiological results and pathogen susceptibility are available at earliest 

after 1-2 days after sampling. Beforehand, a broad antibacterial spectrum with high antibacterial 

activity is the most important reason to apply combination therapy in this critical situation, as no 

coverage of the infective organism is equivalent to no treatment of the infection with potentially 

deleterious consequences [104]. Combinatory regimens of MER with either LZD or VAN are most 

frequently employed initial treatment regimens of severe nosocomial infections (e.g. pneumonia), 

because they provide considerably large and partly complementary antibacterial spectra including 

multi-drug resistant Gram-positive and Gram-negative pathogens [105]. 

Synergy. Synergism on the level of PD, i.e. the rate and extent of bacterial killing is the number two 

reason for combining antibiotics. Despite a manifold of synergistic interactions between antibiotics 

described in vitro [106], only few combination regimens prove their value on the level of reduced 

mortality rates in clinical practice, such as the combination of beta-lactams and aminoglycosides 
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against Pseudomonas aeruginosa bacteraemia [46]. Both the fact that the clinical setting is much more 

variable than well-controlled in vitro studies [32] and that the PD interaction is frequently strain- or 

even isolate-specific [107] might explain this translational gap.  

Reduction of the emergence of resistance. Thirdly, antibiotic combinations are used to minimise 

resistance development. The rationale behind this concept is that a bacterium being resistant to one 

antibiotic is still susceptible to the other combination partner and it is unlikely to observe simultaneous 

resistance development to both antibiotics [103]. Yet, the selection for resistance is also a function of 

the selective pressure which might also be influenced by the nature of the PD interaction on the rate 

and extent of bacterial killing [108,109].  

Risk factors. In contrast to these potential benefits, the risks of combination therapy are frequently 

neglected, namely a potentially enhanced spectrum of adverse events or even antagonistic interactions 

between the combined drugs [32]. Particularly, the latter might possess an uncontrollable risk in 

empiric therapy and both favourable and unfavourable PD interactions may occur, dependent on the 

bacterial isolate. Therefore, profiling of the PD interactions of empiric combination regimens and 

likely suspected bacterial strains is required to guide healthcare personnel to select the most favourable 

combinatory regimen for initial empiric therapy. 

 

1.4.3 Staphylococcus aureus as a major problematic pathogen 

Staphylococcus (S.) aureus is a Gram-positive, round-shaped coccal bacterium associated in bunches 

similar to grapes [110]. S. aureus grows on agar in ‘golden’, haemolytic colonies and can be rapidly 

distinguished from other staphylococci using the coagulase- and catalse-reaction for clumping factor 

and catalase activity, respectively, being specific for S. aureus [110]. S. aureus  is frequently isolated 

as part of the commensal normal skin flora [110,111], but can become infectious in presence of a 

compromised host immune system, a defect in the skin or insertion of a (contaminated) foreign body 

[110]. Once an infection is established, S. aureus has developed several immune evasion mechanism 

that hinder the human body in eradicating the S. aureus infection: Those evasion mechanisms include 

secretion of exoproteins that inhibits complement activation, resistance to phagocytosis by 

intracellular survival and resistance to lysozyme [112]. 

Typical infections of S. aureus represent localised skin infections, e.g. folliculitis [110]. Other typical 

entry portals into the human body – particularly in hospital-associated infections – include the lung, in 

which S. aureus can cause severe, necrotising pneumonia, or surgical and decubital wounds  [110]. 

Those initially local infections can become systemic leading to bacteraemia [110]. S. aureus infections 

are a leading cause of sepsis, a severe inflammatory disease state associated with rapid organ 

dysfunction, particularly of the respiratory and cardiovascular system [113] caused – among other 

factors – by the released exoproteins which often act as toxins [110,114].  The international ‘Surviving 
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Sepsis Campaign’ identified rapid administration of empiric combination antimicrobial therapy within 

one hour after recognition of severe sepsis and septic shock as a key goal of therapy [115]. Thereby, 

the spectrum of the antibiotic regimen must cover the infective organism; inappropriate selection of 

this initial treatment is a significant risk factor for increased mortality [116]. As outlined in 1.2, the 

antibacterial spectrum of this initial regimen should – in addition to broad Gram-positive or Gram-

negative coverage – also cover multi-drug resistant organisms. Due to an increasing burden of MRSA 

in overall >50% of hospital-associated infections [111], frequently LZD or VAN as ultima-ratio 

antibiotics with MRSA activity are added to the antibiotic regimens [105]. Yet, the burden of MRSA 

is geographically highly diverse and ranges from 0.7% in Sweden to 53.8% in Portugal in 2012 [117]. 

In Germany, 15.4% of the S. aureus isolates were MRSA [117]. Hence, in initial empiric therapy, even 

when staphylococcal infection is confirmed, the majority of patients would not require additional 

coverage by LZD or VAN in Germany, since even in high-risk settings, methicillin-susceptible 

S. aureus (MSSA) is dominant amongst staphylococcal infections. To avoid uncontrollable and 

undesired effects of the combination therapy, as outlined earlier (1.4.2), de-escalation to targeted 

therapy should be done as early as the infective organism is identified [115].  

 

 

1.5 Objectives 

Combinatory regimens of MER with either LZD or VAN are frequently employed for initial treatment 

of severe nosocomial infections. The combination of LZD with a carbapenem such as MER against 

MSSA has not been evaluated systematically, although LZD combined with MER vs. MSSA is a 

commonly utilised treatment option in patients with risk factors until MRSA is ruled out [105]. A 

published in vitro interaction study between the alternative antibiotic VAN and MER indicated no 

unfavourable interaction when subinhibitory concentrations of VAN were added to MER [118], but 

evidence about potential drug-drug interactions at higher concentrations of VAN is lacking.  

The objective of the present thesis was to contribute to the understanding of the combination therapy 

between either LZD or VAN combined with MER against MSSA. As strategy, the single drug effects 

as well as the combinatory effects were to be explored by an integrated in vitro-in silico approach in 

which experimental data from various in vitro studies on the antibacterial effect were combined with 

PK/PD modelling to assess the observed drug effects in a translational framework. Thereby, the 

present work was motivated by both clinically-orientated (C), as well as methodologically-motivated 

(M) research questions. 
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In detail, the objectives of the present thesis ranging from experimental to in silico modelling and 

simulation studies were as follows: 

 

Experimental: 

• Development and validation of quantification assays for the study drugs LZD, MER and VAN 

in bacterial growth medium as well as for the bacterium methicillin-susceptible S. aureus to 

provide a sole basis of quantitative data for pharmacometric analysis (  M). 

• Elucidation of conventionally-used turbidity-based screening techniques for combinatory 

effects for antibiotic combinations (‘conventional checkerboard’) and comparison to 

techniques with a continuous effect measure (‘dynamic checkerboard’) (  M). 

• Experimental performance of time-kill curve studies with the LZD, MER and VAN alone, as 

well as double combinations of LZD/MER and VAN/MER against methicillin-susceptible 

S. aureus to explore the time-dependency of the (combined) antibiotic effects (  C). 

• Exploration of the impact of the growth-phase of the bacterial inoculum at drug exposure on 

the antibiotic effects, as a currently neglected possibly influential experimental factor (  M).   

• Investigation of the time course and magnitude of potential adaptive resistance development 

of methicillin-susceptible S. aureus under exposure to LZD, MER and VAN (  C). 

 

Modelling and Simulations: 

• Elaboration and performance of a response-surface analysis for quantification and statistical 

assessment of drug interactions based on summary endpoint PD measures for checkerboard 

and time-kill curve data (  CM). 

• Characterisation of the entire time course of the antibacterial effect observed in the time-kill 

curve studies with a mathematical semi-mechanistic PD model (  CM). 

• Link of the semi-mechanistic PD model to published patient population PK models of LZD, 

MER and VAN to translate the observed single and combined antibacterial effects into the 

clinical setting (  CM). 

• Characterisation of the potential impact of patient covariates on the PD of the LZD, MER and 

VAN in a clinical trial simulation to evaluate established and alternative dosing regimens of 

the study drugs (  C). 
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2 Materials and methods 

2.1 Materials 

2.1.1 Chemicals and consumables 

5 mL tubes (sterile)  BD, Le Pont de Claix, Germany 

48 well plates (transparent, flat bottom, sterile) VWR, Darmstadt, Germany 

96 well plates (transparent, conical bottom, non-

sterile) 

Nunclon, Thermo Fisher, Dreieich, Germany 

Accucore
®
 C-18 HPLC column (2.6 µm, 100 x 2.1 

mm) 

Thermo Fisher, Dreieich, Germany 

Acetonitrile, super gradient-grade VWR, Darmstadt, Germany 

Bacterial storage equipment, Microbank
®
 Pro-Lab Diagnostics, Neston, UK 

Calcium chloride dihydrate, 

LOT: 233199810 

Carl Roth GmbH, Karlsruhe, Germany 

Cannulas (disposable, various sizes)  B. Braun, Melsungen, Germany  

Cell culture flasks (50 mL) with vented caps BD, Le Pont de Claix, France 

Columbia Agar, 

LOT: 433205700 

Carl Roth GmbH, Karlsruhe, Germany 

Disodium hydrogen phosphate, 

LOT: BCBK2569V 

Sigma-Aldrich, Steinheim, Germany 

Linezolid (free base),  

LOT: PF-00184033 

Pfizer, Groton, CT, USA 

Magnesium chloride hexahydrate, 

LOT: 293198927 

Carl Roth GmbH, Karlsruhe, Germany 

Meropenem trihydrate,  

LOT: 111202 

Dainippon Sumitomo Pharma, obtained via 

Astra Zeneca Research Compound Program 

 

Membrane filters, Whatman FP30/0.2 CA-S (0.2 µm) 

(various LOTs) 

GE Healthcare Ltd., Little Chalfont, UK 

Methanol, super gradient-grade VWR, Darmstadt, Germany 

Milli-Q
®
 water, purified by Milli-Q Plus

®
 Millipore, Eschborn, Germany 

Mueller-Hinton broth (unadjusted cation content), 

LOT: 1238500 

Oxoid GmbH, Wesel, Germany 
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Mueller-Hinton broth II, 

(cation content adjusted by manufacturer to 20-25 

mg/L Ca
2+

 and 10-12.5 mg/L Mg
2+

), 

LOT: BCBG3391V 

Sigma-Aldrich, Steinheim, Germany 

Peptone (from Casein), 

LOT: 072175575 

Carl Roth GmbH, Karlsruhe, Germany 

Pipette tips (200 µL, 1000 µL, 5000 µL) Eppendorf, Hamburg, Germany 

Potassium dihydrogen phosphate, 

LOT: 081M00041V 

Sigma-Aldrich, Steinheim, Germany 

Rotilabo petri dishes  Carl Roth GMbH, Karlsruhe, Germany 

Safe lock vials 1.5 mL Eppendorf, Hamburg, Germany 

Sodium chloride, 

LOT: 211096 

ChemPur, Karlsruhe, Germany 

Syringes (disposable, various volumes) B. Braun, Melsungen, Germany  

Triflouroacetic acid (99.9%)  Carl Roth GmbH, Karlsruhe, Germany 

Vancomycin hydrochloride,  

LOT: SLBB4575V 

Sigma-Aldrich, Steinheim, Germany 

 

 

2.1.2 Devices and equipment 

Autoclave Kronos B23 Newmed, Qattro Castella, Italy 

Centrifuge 5417R Eppendorf, Hamburg, Germany 

Colony counter, Colony Quant 
®
  Schuett Biotec GmbH, Göttingen, Germany 

Duran glass bottles (100 mL, 1000 mL) Schott AG, Mainz, Germany 

Fine balance, BP221S Sarorius, Göttingen, Germany 

HPLC System: Ultimate 3000 with binary pump, 

online solvent degasser, analytical autosampler, 

column oven and diode array detector 

Thermo Fisher, Dreieich, Germany 

Inoculation loop sterilizer, SteriMax WLD-tec, Göttingen, Germany 

Inoculation loops Carl Roth, Karlsruhe, Germany 

Laminar air flow hood LB-48-C Haereus, Hanau, Germany 

Magnetic stirrer IKA, Staufen im Breisgau, Germany  
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Pipettes: Eppendorf Research (various volumes) Eppendorf, Hamburg, Germany 

Shaking incubator, GFL3032 GFL Gesellschaft für Labortechnik, 

Burgwedel, Germany 

Speed Vac Plus SC110A Savant, Farmingdale, USA 

Turbiditiy standard for calibration of DensiCheck bioMérieux, Nuertingen, Germany 

Turbidity meter, DensiCheck bioMérieux, Nuertingen, Germany 

Vortexer REAX 2000 Heidolph, Schwabach, Germany 

 

 

2.1.3 Bacterial strains 

Staphylococcus aureus reference strain, 

ATCC 29213 

American Type Culture Collection, 

Manassas, VA, USA 

Staphylococcus aureus clinical isolate, 

MV13488, 

isolated from sputum, 

resistant to benzylpenicillin and ampicillin  

(MICs ≥ 0.5 mg/L) 

Institute for Microbiology and Hygiene, 

Charité University Hospital Berlin 

Staphylococcus aureus clinical isolate, 

MV13391, 

isolated from tracheal secretion, 

no resistance to commonly tested antibiotics 

Institute for Microbiology and Hygiene, 

Charité University Hospital Berlin 

 

2.1.4 Solutions 

Cation-adjusted Mueller-Hinton broth (CaMHB). CaMHB was prepared as described in the manual 

of the manufacturer: 2.1 g Mueller-Hinton broth dry powder were dissolved in 100.0 mL of Milli-Q 

water in a 100 mL Duran
®
 glass bottle. The suspended powder was dissolved on a heated magnet 

stirrer and the cation content was adjusted to 25 mg/L Ca
2+

 and 12.5 mg/L Mg
2+

 before sterilisation in 

an autoclave at 121° C for 15 min.  

 

Phosphate-buffered saline with peptone (PBSP). Phosphate-buffered saline with peptone (pH 7.0)  

(PBSP) was prepared as gentle bacterial suspension medium as suggested by Koch [119]. 8.5 g NaCl,  

0.3 g KH2PO4, 0.6 g Na2HPO4 and 1.0 g peptone were dissolved in 1.0 L Milli-Q water in a 1 L 

Duran
®
 glass bottle. The solution was autoclaved for 15 min at 121° C. 
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Sodium chloride (NaCl) solution (0.9%). 0.9 g NaCl was dissolved in 100.0 mL Milli-Q water and 

subsequently autoclaved for 15 min at 121° C. 

 

Antibiotic stock solutions. The primary antibiotic stock solutions with 1.0 mg/mL were prepared 

according to [12]: First, the potency of the antibiotic powder was calculated from the active fraction 

(as provided by the manufacturer) and corrected by the water content (e.g. MER powder is chemically 

meropenem trihydrate): 

 potency	
	active	fraction��1-water	content� 
Second, the required volume of diluent (Milli-Q water) was calculated from the potency and the actual 

weight of the powder: 

 Volume	of	diluent	�mL�
 Weight	�mg��Potency	Desired	concentration	$mgmL% 
Finally, the prepared stock solutions were aliquoted into 1.5 mL Eppendorf cups in aliquots of 1.0 mL 

and stored at -80° C until required. 

 

2.1.5 Software 

Chromeleon
®
 Version 7.2 Thermo Fisher, Dreieich, Germany 

ColonyQuant
®
 software Version 3.2 Schuett Biotec GmbH, Göttingen, Germany  

Excel Version 2010 Microsoft, Redmond, USA 

GraphClick Version 3.0  Arizona-software, Zurich, Switzerland 

R Version 3.1.1  R Foundation for Statistical Computing, 

Vienna, Austria 

 

 

2.2 Bioanalytical quantification of antibiotics in growth medium 

In this chapter, the development of a bioanalytical high-performance liquid chromatography (HPLC) 

method for simultaneous quantification of the utilised antibiotics LZD, MER and VAN from the 

bacterial growth medium CaMHB is described. Therefore, a sample pre-treatment and HPLC 

instrument method had to be developed. Moreover, the method was to be validated according to the 

EMA guideline for bioanalytical method validation [120]. Finally, the method was used to quantify the 

drug concentrations during the in vitro time-kill curve experiments to ultimately assess potential 

degradation of the antibiotics under the experimental conditions of the in vitro infection model.  
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2.2.1 HPLC instrument setup 

The HPLC system was a Dionex Ultimate 3000 HPLC+ system (Thermo Fisher, Dreieich, Germany), 

consisting of a WPS-3000 TPL RS Well Plate autosampler, a HPG-3200SD binary pump with online 

solvent degasser and a DAD-3000 diode array detector (DAD). An Accucore
®
 C-18 HPLC column 

(2.6 µm, 100 x 2.1 mm, Thermo Fisher, Dreieich, Germany) was installed in the TCC-300SD column 

oven. The HPLC was controlled by the Chromeleon
®
 software. 

 

2.2.2 Development of the bioanalytical HPLC method  

2.2.2.1 Sample treatment and recovery 

As the samples originating from the time-kill curve experiments contained CaMHB as matrix, direct 

injection of the sample was not possible due to the considerable matrix content that might precipitate 

and then clog the HPLC column. Hence, matrix constituents were precipitated before injection into the 

HPLC system. Therefore, spiked samples of LZD, MER and VAN in CaMHB were prepared to study 

different sample preparation methods. The investigated treatment protocols included:  

Precipitation with direct injection. 100 µL sample was precipitated with chilled methanol (MeOH) 

or acetonitrile (ACN) in various ratios (100 µL sample + 100 up to 400 µL solvent) in a 1.5 mL 

Eppendorf cup. The mixture was allowed to rest at 4° C for 10 min before centrifugation at 10000·g at 

4° C for 10 min. 150 µL of the supernatant was removed, transferred into a 96 well plate and 

subsequently 2 µL were injected into the HPLC apparatus.  

Precipitation with solvent evaporation. After precipitation and centrifugation as described above, 

400 µL of the supernatant were removed from the precipitated pellet and transferred into a new 

Eppendorf cup. The solvent was evaporated using a vacuum concentrator (SpeedVac, Savant, 

Farmingdale, USA, dry rate: medium) for ca. 1 h until dryness. The obtained crystals were 

reconstituted in 100 µL Milli-Q water and 2 µL of the reconstituted sample was injected into the 

HPLC apparatus. 

Recovery. The recoveries of the analytes from the matrices using both MeOH or ACN as precipitating 

agent was calculated based on the obtained analyte peak areas from processed samples in the matrix 

CaMHB compared to the peak area of an aqueous sample. Recovery experiments were carried out at a 

concentration of 10 mg/L for all antibiotics. 

 

2.2.2.2 HPLC instrument method 

The HPLC instrument method had (i) to sufficiently separate the analytes from the matrix constituents 

and (ii) to provide sufficient separation of the analytes LZD, MER and VAN itself. To fulfil both 

requirements, gradient elution (i.e. changing eluent composition over time) was chosen as it provided 

more flexibility than isocratic methods (i.e. constant eluent composition). Various mobile phases were 
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investigated and consisted of mixtures of water/ACN, water/MeOH with or without 0.1% 

trifluoroacetic acid (TFA). Gradient profiles were chosen to gradually increase the content of the 

organic solvent over time.  

Detection wavelengths of the DAD were set to 251, 302 and 240 nm for LZD, MER and VAN, 

respectively. Injection volume was varied from 1 to 20 µL. Column oven temperature was evaluated 

between 20 and 40° C. Analyte peaks in the chromatograms were integrated and peak areas were 

calculated using the Chromeleon
®
 software. 

 

2.2.3 Validation of the bioanalytical HPLC method 

The developed method was fully validated according to the EMA guideline for bioanalytical method 

validation [120].  

Selectivity. The HPLC method was found selective if the peaks of LZD, MER and VAN in the 

chromatogram were separated and did not interfere with peaks originating from CaMHB as matrix 

components. Absence of interference was accepted if the response, i.e. the peak of the CaMHB 

constituents was <20% of the lower limit of quantification (LLOQ) of the analyte at the same retention 

time.  

Carry-over. Analyte carry-over into a blank sample after injection of a sample with a high 

concentration should be <20% of the LLOQ of the analyte. 

Lower limit of quantification (LLOQ). For determination of the LLOQ, drug solutions in CaMHB 

with concentrations ranging from 0.2 to 10 mg/L of LZD, MER and VAN were prepared and injected 

in to the HPLC system. The LLOQ was the lowest concentration of the analyte that could be 

quantified with acceptable accuracy and precision being described below.  

Upper limit of quantification (ULOQ). The ULOQ was the highest concentration of the analyte that 

needed to be quantified with acceptable accuracy and precision being described below. It was 

determined by the highest concentrations studied in the in vitro infection model (see 2.3). 

Calibration curve. Six calibration samples were prepared by spiking CaMHB (CaMHB content >90 

%) with aqueous solutions of LZD, MER and VAN. Calibration concentration levels ranged from the 

LLOQ to the ULOQ and linearity was evaluated by (weighted) linear regression analysis. The 

calibration function was accepted for R² ≥0.98 and if 75% (i.e. 4 of 6) of the calibration samples had 

back-calculated concentrations within ±15% of the nominal concentration or ±20% of the nominal 

concentration for the lowest calibration sample (= LLOQ), respectively. 

Accuracy. Deviation of the analytically determined concentration from the nominal value was 

calculated as percentage of the nominal value (as a measure for inaccuracy of the assay) by analysing 

quality control (QC) samples. QC samples were prepared by spiking CaMHB (CaMHB content >90%) 

with analyte independently (i.e. using a different stock solution) from calibration samples.  
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For within-run accuracy, four QC concentration levels were prepared with five replicates per level. 

QC concentration levels were: the LLOQ (QC LLOQ), three times the LLOQ (QC L), ca. 50% of the 

calibration range (QC M) and ca. 80% of the calibration range (QC H). The mean accuracy at each QC 

level should be within 85-115%, except for the QC LLOQ were a range from 80-120% was 

acceptable.  

For between-run accuracy, the QC samples from three analytically independent runs on three different 

days were evaluated according to the same acceptance criteria as for within-run accuracy. 

Precision. Closeness of repeated individual measures of the analyte was calculated as coefficient of 

variation (%CV) as a measure for imprecision of the assay. For that, the same QC samples as 

described under ‘Accuracy’ were used. 

For within-run precision, the analytical validation was accepted if the coefficient of variation (CV) 

was <15%, except for the QC LLOQ for which <20% were tolerated.  

For between-run precision, the QC samples from three analytically independent runs on three different 

days were evaluated with the same acceptance criteria as for within-run precision. 

Stability. For assessing the stability of the analytes under different conditions, five QC L and five QC 

H samples were prepared, exposed to various storage conditions and analysed against a fresh set of 

calibration and QC samples.  

For short-term stability, unprocessed QC samples were stored at 25° C (room temperature) for 5 h to 

simulate benchtop conditions. The stored QC samples were analysed against a freshly prepared set of 

calibration samples and compared to freshly prepared QC samples. 

For autosampler stability, the processed QC samples were analysed in the HPLC system and stored at 

4° C in the autosampler. After 15 h, the QC samples were re-injected and evaluated. 

For freeze-thaw stability, QC samples were frozen at -80° C and thawn at room temperature and re-

frozen at -80° C on three consecutive days. Thereafter, the QC samples were analysed against a freshly 

prepared set of calibration samples and compared to freshly prepared QC samples. 

For long-term stability, QC samples were frozen at -80° C and stored for 189 days (~ 6 months). 

Thereafter, the QC samples were analysed against a freshly prepared set of calibration samples and 

compared to freshly prepared QC samples. 

 

2.2.4 Degradation of the antibiotics in the in vitro infection model 

Potential degradation of the antibiotics was monitored in cell-culture flasks at a drug concentration of 

10 mg/L under the same experimental conditions as in the actual time-kill curve studies (2.3.3). 

Samples of 200 µL were removed from the cell culture flaks at 0, 18 and 24 h and immediately frozen 

at -80° C until HPLC analysis (2.2.2.2). Degradation kinetics was monitored in n=3 per antibiotic. For 

all antibiotics, potential degradation was assumed as a first-order process, which was mathematically 

described by exponential decay: 
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&' 
 &'() � *+,-./�' (Eq. 1) 

For estimating the first-order degradation rate constant kdeg, Ct=0 was set to the mean value of the drug 

concentration at t=0 and kdeg was estimated using ordinary least-squares regression (2.4.1.1). 

Degradation was considered significant if the 95% confidence interval (CI) of the estimate of kdeg, 

calculated from the relative standard error of the estimate of kdeg, was not including zero.  

 

2.3 Microbiological experiments 

This chapter starts with preliminary microbiological investigations, i.e. development and evaluation of 

a quantification method for S. aureus in bacterial growth medium, the determination of the MIC of the 

utilised antibiotics against the S. aureus strains and the characterisation of the growth properties of 

S. aureus in CaMHB. Thereafter, the methods for the determination of the antibiotic effect, i.e. the 

‘conventional’ and ‘dynamic checkerboard’ as well as time-kill curve assays are presented. Finally, the 

developed method for elucidation of adaptive resistance of S. aureus to the investigated antibiotics is 

described. 

 

2.3.1 Preliminary microbiological investigations 

2.3.1.1 Droplet plate assay for quantification of S. aureus  

2.3.1.1.1 Sample treatment 

In order to quantify viable bacteria, a ‘droplet-plate’ assay [32] was adapted to the local environment 

at the Dept. of Clinical Pharmacy and Biochemistry for which in principle agar plates were spot-

inoculated with the bacterial sample and the prepared plates were incubated to stimulate formation of 

CFUs. To allow for counting of single colonies, samples with bacteria had to be diluted prior to 

plating to obtain <50 CFU per spot. Therefore, a 100 µL sample containing bacteria was subjected to 

serial dilutions in PBSP.  

For samples with (suspected) high bacterial concentrations (>10
3
 CFU/mL), antibiotic carryover was 

avoided by direct dilution to subinhibitory concentrations: Serial ten-fold dilutions were performed 

using 100 µL sample + 900 µL PBSP in a 48 well-plate.  

For samples with (suspected) low bacterial concentrations (≤10
3
 CFU/mL) and/or samples with high 

antibiotic concentrations, a centrifugation/washing cycle was utilised to remove the antibiotic 

[31,121]:  Briefly, the bacterial sample (100 µL) was diluted 1+9 in PBSP and centrifuged at 610 g for 

10 min. Subsequently, the supernatant was removed (800 µL) and fresh PBSP (800 µL) was added. 

The mixture was vortexed and the cycle was repeated until sufficient dilution of the antibiotic was 

attained (<0.5x MIC).  

For plating, Columbia agar plates were used, which were divided into four sectors. Each sector was 

spot-inoculated with the prepared dilutions (5× or 10×10 µL) according to Figure 4 and subsequently 
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incubated for 18-24 h at 37° C. CFU on agar plates were counted visually, documented with the 

Colony Quant
®
 device, multiplied with the applied dilution factor and CFU/mL were calculated. 0 

CFU/mL were set to 1 CFU/mL to allow log-transformation of CFU/mL to log10 CFU/mL. 

 

 

Figure 4: Spot inoculation scheme for preparing Columbia agar plates with 10×10 µL using the developed 

droplet-plate assay. Different dilutions of the bacterial sample were placed on the divided plate. In the graphical 

sketch, ‘n’ can be 0 to 4 depending on the anticipated CFU/mL in the in vitro infection model. 

 

2.3.1.1.2 Evaluation of the bacterial quantification assay 

As the described assay in 2.3.1.1.1 represents a down-scaled, resource-saving version of the previously 

established quantification assay by Scheerans [31] and Michael [122], which also used a different 

inoculation technique (‘drigalski spreading’ of one sample over an entire plate vs. ‘droplet plate’ 

inoculation using one plate for four samples), the assay performance was to be evaluated. 

 

Accuracy and precision. An initial suspension of S. aureus adjusted to McFarland (McF) standard 0.5 

(approx. 1·10
8
 CFU/mL [31,121]) was used for the preparation of the standard solutions. Dilutions 

were performed to yield 20, 30, 40, 50 and 200, 300, 400, 500 colonies per 100 µL. Six replicates of 

each bacterial concentration level were processed as described in 2.3.1.1.1. Median counts, 5
th
 and 95

th 

percentile and preparation variability (expressed as %CV) were calculated to assess accuracy and 

precision, respectively.  

 

Linearity between dilution vs. centrifugation/washing method. Three bacterial suspensions (10
3
, 

10
5
, 10

7
 CFU/mL) were processed by both direct dilution and centrifugation/washing (3 cycles), as 

described in 2.3.1.1.1. Agreement between both methods was evaluated based on a paired t-test. 

  

10
-n

 10
-(n+1) 

10
-(n+2) 

10
-(n+3)
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Stability of the bacterial samples in diluents. Stability of S. aureus in the dilution media PBSP and 

0.9% NaCl solution was investigated over a time period of 4 h to cover the processing time of an 

entire set of experiments. Bacteria were suspended in PBSB or 0.9% NaCl solution, stored at room 

temperature and bacteria were quantified according to 2.3.1.1.1 every 20 min over 4 h. Each diluent 

was tested in triplicate. 

 

2.3.1.2 Storage of bacteria and bacterial stock suspension 

All bacterial strains retrieved from the Dept. of Medical Microbiology and Hygiene of the Charité 

University Hospital were transferred into cryovials and stored at -80° C using the Microbank
®
 storage 

system [123]. For recovery of a frozen bacterial strain, the cryovial was opened under aseptic 

conditions; a single cryobead was removed with a sterile forceps and subsequently spread on a 

Columbia agar plate. The inoculated agar plate was subsequently incubated overnight for 15-18 h at 

37° C at ambient air. A freshly recovered bacterial culture from cryobeads was prepared every four 

weeks to prevent contamination of the bacterial strain.   

For preparation of the bacterial stock solution used in the experiments, a fresh overnight subculture of 

the bacterial strain or the freshly recovered primary culture incubated overnight was utilised to ensure 

reproducible viability of the bacterial colonies being a prerequisite for using turbidity-based inoculum 

preparation [124]. The inoculum was prepared by direct colony suspension [124]: 2-4 colonies were 

picked from the incubated agar plate with a sterile inoculation loop, suspended into 3 mL of sterile 

0.9% NaCl solution and turbidity was adjusted to 0.5 McF using a turbidity meter. With this 

procedure, a bacterial stock solution containing ca. 1·10
8
 CFU/mL was obtained for S. aureus 

[31,121,124]. 

 

2.3.1.3 Determination of the minimal inhibitory concentration 

The MIC of S. aureus ATCC 29213 and the two clinical isolates MV 13488 and MV 13391 was 

determined according to the ‘Clinical Laboratory Standards Institute’ (CLSI) guideline [12]. A 

bacterial stock suspension of S. aureus was prepared as described in 2.3.1.2. The bacterial stock 

suspension was diluted 1+1 with sterile 0.9% NaCl solution to yield a concentration of approx. 5·10
7
 

CFU/mL. 

890 µL of CaMHB and 100 µL of appropriately diluted antibiotic solutions were dispensed into each 

well of a 48-well plate. The antibiotic concentrations were chosen as multiples and fractions of 1.0 

mg/L in base 2 logarithmic steps. 10 µl of the diluted bacterial suspension containing 5·10
7
 CFU/ml 

were added to yield a final inoculum size of 5·10
5
 CFU/mL.  

In addition, negative (containing no drug and no bacteria) and positive (containing no drug but 

bacteria) control samples were prepared. For the positive controls, 990 µl of CaMHB and 10 µl of the 
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freshly prepared 5·10
7
 CFU/ml S. aureus dispersion were added into each well. For negative control, 

1000 µl of CaMHB were dispensed into a well and no bacteria were added. 

The well plate was incubated at 37° C at ambient air. The wells were read after ca. 20 hours of 

incubation, and the MIC was determined as the lowest concentration of the antibiotic allowing no 

visible growth indicated by turbidity. 

 

2.3.1.4 Determination of the lag-time of S. aureus 

The lag-time, i.e. time period to attain exponential growth was determined for S. aureus ATCC 29213 

and the two clinical isolates MV 13488 and MV 13391. A bacterial stock suspension was prepared as 

described in 2.3.1.2. An inoculum of 100 µL of the freshly prepared bacterial stock suspension was 

added to the 50 mL-cell-culture flask filled with 9.9 mL sterile CaMHB. The inoculated flask was 

incubated at 37° C at ambient air for 4 h. A sample of 100 µL was taken at t=0 and every 20 min up to 

240 min. Samples of 100 µL were taken from the culture flaks and bacteria were quantified as 

described in 2.3.1.1 using the direct dilution method. Log10 CFU/mL were plotted against time. The 

experiment was performed in triplicate with independent initial inocula for each culture flask. The lag-

time was determined using an exponential biphasic growth model (Eq. 2) with the growth rates kgrowth 

of klag and klog for lag- and log-phase, respectively, and initial condition (IC) for the bacterial load N in 

log10 CFU/mL at t=0 and tlag for the lag-time: 

010' 
 23456'7 � 8				9&:	8'() with kgrowth = klag for t≤tlag 

                                                and kgrowth = klog for t>tlag         

(Eq. 2) 

 

Generation times, i.e. the time interval until doubling of the bacterial population of S. aureus in in lag- 

and log-phase were derived from the first-order growth rate constants (log(2)/kgrowth). 

 

2.3.2  Checkerboard studies of linezolid with meropenem against S. aureus 

The conventional checkerboard experiment was performed with S. aureus ATCC 29213 in a 48-well 

plate. 100 µL of appropriately diluted drug solutions of LZD and/or MER were added to 890 µL 

(single drug) or 790 µL (combinations) of CaMHB (Sigma-Aldrich, Steinheim, Germany) along the 

horizontal and vertical path of the well plate, respectively, in order to yield final drug concentrations 

covering both MICs and clinically relevant concentrations of both drugs [91,125]. Antibiotic 

concentrations ranged from 0.25 to 16 mg/L for LZD and 0.016 to 16 mg/L for MER. 10 µL of a 

bacterial stock suspension (2.3.1.2) were added to obtain an inoculum size of approx. 10
6
 CFU/mL. 

The prepared checkerboard was incubated for 20 h at 37° C.  
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Conventional checkerboard with evaluation by turbidity. Conventionally, the checkerboard 

experiment is evaluated visually by turbidity [32,33]: Analogous to MIC determination, a turbid well 

indicated bacterial growth whilst a clear well indicated suppression of bacterial growth.  

 

Dynamic checkerboard with quantification of bacteria. In addition, for the ‘dynamic checkerboard’, 

bacteria were quantified in each well with the developed droplet plate assay (2.3.1.1). A ≥3 log10-fold 

reduction of bacteria was defined as ‘bactericidal’, whilst smaller reductions were referred to as 

‘bacteriostatic’ [126]. 

 

2.3.3 Time-kill curve studies in lag-phase in in vitro infection models 

Time-kill curve studies in lag-phase were performed with the reference strain ATCC 29213 and the 

two clinical isolates MV 13488 and MV 13391 of S. aureus. 

Linezolid, meropenem and vancomycin alone. Time-kill curve experiments were performed in 50 

mL-cell-culture flasks. 1.0 mL of appropriately diluted drug solutions of LZD, VAN or MER was 

added to 8.9 mL of CaMHB to yield final drug concentrations ranging from 0.03-8 mg/L for MER, 

0.5-32 mg/L for LZD and 0.25-16 mg/L for VAN. 100 µL of the bacterial stock suspension (2.3.1.2) 

were added to yield a final inoculum size of approximately 1·10
6
 CFU/mL representing bacteria in 

their lag-phase of growth. The inoculated flasks were incubated for 24 h at 37° C while shaking at 1 

Hz at ambient air. Samples of 100 µL for bacterial quantification were removed according to a rich 

sampling protocol (≥8 time points over 24 h) for S. aureus ATCC 29213 or at selected time points (0, 

4, 8 and 24 h) for the confirmatory studies with the clinical isolates of S. aureus. Experiments were 

performed in n≥2. A ≥3 log10-fold reduction of bacteria was defined as ‘bactericidal’, whilst smaller 

reductions were referred to as ‘bacteriostatic’ [126]. 

 

Combinations of meropenem and linezolid. Time-kill curve experiments for combinations of MER 

and LZD were performed in 50 mL-cell culture flasks. 1.0 mL of appropriately diluted drug solutions 

of MER and LZD were added to 7.9 mL of CaMHB. Drug concentration covered both clinically 

relevant subinhitory (i.e. below the MIC) and inhibitory combinations (i.e. above the MIC) for both 

antibiotics ranging from 0.03-8 mg/L for MER and 1-32 mg/L for LZD. The inoculum, sampling 

schedule and evaluation were as described above.  

  

Combinations of meropenem and vancomycin. Time-kill curve experiments for combinations of 

MER and VAN were performed in 50 mL-cell-culture flasks. 1.0 mL of appropriately diluted drug 

solutions of MER and VAN were added to 7.9 mL of CaMHB. Drug concentration covered both 

clinically relevant subinhitory and inhibitory combinations for both antibiotics and ranged from 0.015-
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8 mg/L for MER and 0.06-16 mg/L for VAN. The inoculum, sampling schedule and evaluation were 

as described above. 

 

2.3.4 Time-kill curve studies in log-phase in in vitro infection models 

To explore the impact of the growth phase on the antibiotic effect, log-phase bacteria were also 

assessed in time-kill curve studies. Therefore, the reference strain S. aureus ATCC 29213 was utilised. 

Linezolid, meropenem and vancomycin alone. Time-kill curve experiments were performed in 

50 mL-cell-culture flasks. 170 µL of the bacterial stock suspension (2.3.1.2) were diluted with 830 µL 

of sterile NaCl solution (0.9%), and 100 µL of the dilution were added to 8.9 mL of CaMHB resulting 

in an initial inoculum of approx. 2·10
5 

CFU/mL [31,121]. Before adding 1.0 mL of diluted drug 

solutions of LZD, VAN or MER to the inoculated culture flasks, a pre-incubation step for 2 h at 37° C 

of the antibiotic-free culture flask was undertaken. This procedure generated exponentially replicating 

bacteria (log-phase) at drug exposure with an inoculum size of ca. 1·10
6
 CFU/mL. Final drug 

concentrations ranged from 0.06-8 mg/L for MER, 1-32 mg/L for LZD and 0.25-16 mg/L for VAN. 

The inoculated flasks containing antibiotic(s) were incubated for 24 h at 37° C while shaking at 1 Hz 

at ambient air. Samples of 100 µL for bacterial quantification were removed according to a rich 

sampling protocol (≥8 time points). Experiments were performed in n≥2 and evaluated as described 

above. 

 

Combinations of meropenem and linezolid. Time-kill curve experiments for combinations of MER 

and LZD were performed in 50 mL cell culture flasks. 1.0 mL of appropriately diluted drug solutions 

of MER and LZD were added to 7.9 mL of CaMHB for initial inoculum preparation. Selected drug 

concentrations were studied for both antibiotics. The inoculum, sampling schedule and evaluation 

were as described above. 

  

Combinations of meropenem and vancomycin. Time-kill curve experiments for combinations of 

MER and VAN were performed in 50 mL cell culture flasks with vented caps. 1.0 mL of appropriately 

diluted drug solutions of MER and VAN were added to 7.9 mL of CaMHB for initial inoculum 

preparation.  Selected drug concentrations were studied for both antibiotics. The inoculum, sampling 

schedule and evaluation were as described above. 

 

2.3.5 Adaptive resistance studies of S. aureus  

For time-kill curve scenarios displaying regrowth after initial killing, potential adaption of the bacteria 

to the antibiotic over time was evaluated as follows: A second time-kill curve study was performed, in 

which the inoculum consisted of S. aureus ATCC 29213 that was pre-exposed to an antibiotic 
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concentration in a first time-kill curve study in which regrowth after initial killing was observed. To 

exclude other influencing factors, the inoculum size was empirically (re-)adjusted to 10
6 
CFU/mL for 

the second experiment using prior knowledge on the attained bacterial concentration at 24 h of the first 

experiment. Hence, depending on the bacterial concentration at the end of the first time-kill curve 

study, 10, 100 or 1000 µL were added as inoculum directly from the culture flask of the first time-kill 

curve experiment and added to 1 mL of the appropriately diluted drug solution and 8.99, 8.9 or 8 mL 

of CaMHB, respectively for the second time-kill curve study. Drug concentrations for the second 

experiment were chosen to be either equal or one log2-fold concentration level above or below the 

drug concentration of the first time-kill curve study to elucidate the magnitude of the adaption. 

CFU/mL were then quantified over another 24 h period using a dense sampling schedule (n≥8). 

Experiments were performed in n≥2.  

 

2.4 Modelling and Simulations 

The following chapter describes the methods used for analysing the quantitative data obtained in 2.2.4, 

2.3.1.4, and 2.3.2-2.3.5. In the first part, ‘Modelling’, the mathematical background on maximum 

likelihood estimation, optimal experimental design and model evaluation techniques are introduced 

and/or derived followed by the section on PD modelling of the antibacterial effects of LZD, MER and 

VAN against S. aureus. The second part, ‘Simulations’, describes linking the developed semi-

mechanistic PD models to literature-based population PK models to assess the observed drug 

(inter)actions in a translational framework. 

All modelling and simulation tasks were performed in the software ‘R’ [127]. The ‘R’ package 

‘deSolve’ was used for solving ordinary differential equations [128], ‘MASS’ [129] was utilised for 

handling of multivariate distributions and plots were generated using ‘ggplot2’ [130]. 

 

2.4.1 Modelling 

2.4.1.1 Mathematical background for modelling in ‘R’ 

2.4.1.1.1 Maximum likelihood estimation 

In a nonlinear model, the mathematical solution of the model depends non-linearly on the model 

parameters. The observed variable ;<  (e.g. log10 CFU/mL in the present work) is predicted by a 

function f of =	independent variables >?, … , >B (e.g. time or drug concentration) and a vector of model 

parameters 	C . The differences between predicted and observed variable ε originate both from 

measurement uncertainty in CFU determination as well as model misspecification and are assumed to 

follow a normal distribution D with mean zero and variance	σF. 

;< 
 G<H>?, … , >B|CJ + L   with   L~DH0, OFJ (Eq. 3) 
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The utilised experimental measure of bacterial growth in this thesis, CFU/mL, is log-normally 

distributed as being the result of a multiplicative process – bacterial duplication [131]. Hence, 

log10 CFU/mL is (approximately) normally distributed the assumption for ε as additive residual 

variability component is justified. 

Under the assumption of (Eq. 3), the maximum likelihood principle [132] was utilised which finds the 

(set of) model parameters C  describing the observed, experimental data 	;<  best. The maximum 

likelihood method selects the (set of) model parameters C that maximise(s) the likelihood function. 

The likelihood function computes the likelihood to observe the experimental data 	;< 	given the 

mathematical model G<H>?, … , >B|CJ with the independent variables >?, … , >B (i.e. drug concentrations 

and sampling time points in the present work) and the model parameters	C. Assuming the = samples 

being independent identically distributed (i.i.d.), with mean GH>?, … , >B|CJ  and variance 	σF , the 

likelihood function is the product of the so-called probability density functions:   

GH>?, … , >B|C, OFJ 
PGH><|B
<(? C, OFJ 
PQ 12SOFT

?F 	exp	V−�;< − GH><|CJ�F2OF XB
<(?  (Eq. 4) 

 

In order to maximise the likelihood function as function of	C, it is computationally easier to minimise 

the negative natural logarithm of the likelihood function, the minus log-likelihood function LL: 

YYH>?, … , >B|C, OFJ 
 =2 logH2ΠJ +=2 logHOFJ + 12OF[�;< − GH><|CJ�FB
<(?  (Eq. 5) 

 

The first two terms and 
?F\] before the sum of the squared residuals between observed and predicted 

values in LL are constants for a purely additive residual variability. Hence, minimisation of LL w.r.t C 

reduces LL to the ordinary least squares (OLS) estimator: 

^Y_H>?, … , >B|CJ 
[�;< − GH><|CJ�FB
<(?  (Eq. 6) 

 

Because f is nonlinear, the minimization of the OLS w.r.t. C is performed using numerical optimisation 

methods. The estimated parameter	C	̀ is the maximum likelihood estimate.  

The precision of the estimate C	̀is derived from the second derivative of LL w.r.t.	C	̀, which is also 

referred to as the ‘Hessian’ ∇ or the ‘observed Fisher information’ of LL [133]. The first C	̀derivative 

of LL is calculated by application of the “chain-rule” (inner times outer derivative): 
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YYa�>?, … , >BbCc� 
 12OF[�2H;< − GH><|CJJ ∗ GH><|CJ′�B
f(?  (Eq. 7) 

YYa�>?, … , >BbCc� 
 1OF[�H;< − GH><|CJJ ∗ GH><|CJ′�B
f(?  (Eq. 8) 

 

The second C derivative of LL is calculated by the application of the product- and chain-rule: 

YYaa�>?, … , >BbCc� 
 1OF[�HGH><|CJ′JF − H;< − GH><|CJJ ∗ GH><|CJ′′�B
<(?  (Eq. 9) 

 

For C	̀of a multi-parameter model with n >1 data points, the first and second C	̀-derivatives of the 

mathematical model G<H>?, … , >B|CJ are matrices. Hence, LL’’ in matrix notation is expressed by the 

‘Jacobian’ J and the ‘Hessian’ ∇ of G<H>?, … , >B|CJ: 
YYaa�>?, … , >BbCc� 
 1OF[gh< ∗ h<i − H;< − GH><|CJJ ∗ ∇<jB

<(?  (Eq. 10) 

 

The inverse of the LL’’ approximately yields the variance-covariance matrix	Σ: 

Σ�Cc� ≈ 1YYaa�>?, … , >BbCc� (Eq. 11) 

 

The diagonal elements of	Σ�Cc� represent the variances of each element of		Cc, which can be used to 

calculate the relative standard errors (RSE) of the model parameter estimates:  

m_n�Cc�,% 
 pqrst uΣ�Cc�v	
Cc ∗ 100	 (Eq. 12) 

 

With the parameter estimate Cc  and its variance given by	qrst uΣ�Cc�v, the 95% CI of the model 

parameter was calculated as follows: 

&9wx%�Cc� 
 Cc ± 1.96 ∗ pqrst uΣ�Cc�v		 (Eq. 13) 

 

To assess possible correlation between model parameters, the variance-covariance matrix was 

transformed to the correlation matrix: 
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&}~~�Cc� 
 pqrst uΣ�Cc�v ∗ Σ�Cc� ∗ pqrst uΣ�Cc�v (Eq. 14) 

In Corr �Cc�, the diagonal elements are normalised to 1.0, whilst the off-diagonal elements are bound 

between -1.0 and 1.0 indicating negative or positive correlation, respectively. A value of 0.0 on an off-

diagonal element indicated no correlation between those elements of	Cc. 
 

2.4.1.1.2 Optimal design of experiments 

An optimally designed experiment supports the parameters of a mathematical model (i.e. a model 

describing the underlying system) with informative data points [69]. Hence, model parameters of an 

optimally designed experiment are well identifiable, and can be estimated accurately with high 

precision, i.e. small RSE.   

In optimal design, experimental data, i.e. ;< , is often not available when the study is planned. Hence, 

an underlying mathematical model	GH><|CJ is assumed and the expectation (E) of LL’’ is evaluated: 

n uYYaa�>?, … , >BbCc�v 
 n V 1OF ∗[�h< ∗ h<i − H;< − GH><|CJJ ∗ ∇<�B
<(? X (Eq. 15) 

 

As the expected value of �;< − GH><|CJ� ∶
 0, i.e. in average, the mode of the observation distribution 

would be at the prediction, the ‘expected Fisher information matrix’ is: 

n uYYaa�>?, … , >BbCc�v 
 1OF ∗[�h ∗ hi�B
<(?  (Eq. 16) 

 

Note, that the ‘expected Fisher information matrix’ is independent of experimental data and only 

dependent of the model with its parameters C and the experimental design given by >B	(e.g. drug 

concentrations or sampling time points). For large n the standard errors obtained from the ‘observed 

Fisher information matrix’ will converge to the expected standard errors [132].  

As mentioned above, optimal design of experiments requires knowledge about the underlying system 

in order to optimally design the experiment. Yet, this knowledge is most often not available before 

experimental conduct which limits the applicability of optimal design in experimental practice. To 

overcome those limits in the present work, an adaptive optimal design approach [71] was elaborated 

that went in parallel with experimental conduct. At the respective stage of experimental conduct, a 

mathematical model that described the experimental data was developed, and the ‘expected Fisher 

information matrix’ was used to evaluate the impact of upcoming experiments on parameter 
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identifiability and precision in an iterative cycle (Figure 7 in 2.4.1.3.3) until ideally all processes were 

uncovered and accurately described by the developed model.  

 

2.4.1.2 Model development strategies and model evaluation techniques 

Mathematical modelling was used in the present work to quantitatively understand the processes of 

bacterial growth and death under antibiotic exposure. Therefore, the developed mathematical models 

were evaluated and compared with model selection and evaluation techniques, which will be 

introduced in the following chapter. In order to select the mathematical model that described the 

experimental data best amongst different competing mathematical models, model selection techniques 

such as the likelihood ratio test and the Akaike’s information criterion were used for statistical 

selection [42]. To evaluate the predictive performance, graphical tools such as goodness-of-fit plots 

and visual predictive checks were performed [134]. The generalisability of the mathematical model to 

predict time-kill curve data from antibiotic with a similar underlying mechanism of (inter)action was 

assessed by external evaluation.  

Likelihood ratio test. The likelihood ratio test (LRT) [42] was used for statistical comparisons of two 

nested models of different complexity. Two models are nested if one model (reduced model, r 

parameters) emerges from a more complex model (full model, f parameters) by fixing (and not 

estimating) a subset of the parameter values. As an example, one can envision the sigmoidal maximum 

effect model with H=1, i.e. the ordinary maximum effect model as a reduced version of the sigmoidal 

maximum effect model with estimated H (2.4.1.3.1). The likelihood ratio test score is calculated from 

the ratio of the maximum likelihood function evaluated at the respective maximum likelihood 

estimates of reduced (LLR) to the full model (LLF). The test statistics can be approximated by the chi-

squared distribution with f-r degrees of freedom, which - after applying the logarithmic rules - yields 

the test score LRT: Ym� 
 2 � HYY� − YY4J (Eq. 17) 

 

The decision for the more complex model was made based on the critical value of α=0.05. Hence, 

based on the chi-square distribution, for one degree of freedom, i.e. one more parameter in the full 

model, a difference of -3.84 in -2LL had to be observed to select for the full, i.e. more complex 

mathematical model.  

Akaike’s information criterion (AIC). The Akaike’s information criterion was used for comparison of 

non-nested models. The test score AIC was derived by H. Akaike extending the maximum likelihood 

principle by an approximation of the Kullback-Leibler information measure [42,135], in which -2LL is 

two times the negative log likelihood at the objective function minimum and k the number of model 

parameters plus one, as σ² is intrinsically also estimated.  
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�9& 
 −2YY + 22 (Eq. 18) 

 

For an additive residual variability model, as used in the present thesis, the log likelihood function 

(Eq. 5)  and consequently AIC simplifies to: 

�9& 
 = � logV∑ �;< − GH><|CJ�FB<(? = X + 22 (Eq. 19) 

with n being the number of data points. 

 

According to Akaike’s information criterion, the best model amongst a set of competing models has 

the lowest AIC score. As AIC was originally developed for large n, a corrected AIC, AICc was 

introduced [136] that corrects AIC with a second-order bias adjustment for small sample sizes with n/p 

< 40: 

�9&� 
 �9& + 22H2 + 1J= − 2 − 1  (Eq. 20) 

 

Goodness-of-fit analysis. For a graphical goodness-of-fit analysis, the observed variable ;<  was 

plotted against the predicted variable	GH><|CJ. Furthermore, the residuals �;< − GH><|CJ� were plotted 

against the independent variables (i.e. time and log10 CFU/mL) to elucidate potential model 

misspecification indicated by systematic over- or underprediction or trends in the residuals [134]. 

Visual predictive check. The predictive performance of a model was evaluated by stochastic 

simulations stratified on every investigated experimental scenario. Both uncertainties of the model 

parameters C, expressed in the estimated variance-covariance matrix, as well as the residual variability O²	were considered. The distributions of the simulated	GH><|CJ	were compared to the distributions of ;< for each investigated scenario [134]. 

External evaluation. If appropriate (or possible), the developed models were also externally 

evaluated by predicting scenarios from literature or other experiments that have not been provided for 

model parameter estimation. As this technique is rather difficult to generalise, it will be described in 

more detail at the respective mathematical model that was evaluated externally. 

 

2.4.1.3 Modelling of the effects of linezolid, meropenem and vancomycin on S. aureus 

2.4.1.3.1 Empiric modelling of individual drug effects 

To provide a first insight at the different magnitudes of the antibacterial effects of LZD, MER and 

VAN and their potency to kill or inhibit growth of S. aureus, both checkerboard and time-kill curve 

studies were evaluated by sigmoidal maximum effect models, originally derived from Michaelis and 

Menten [47] and extended to describe sigmoidicity by Hill [137]: 
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nH&J 
 	n�s>			 � 	 		&�
n&x)� 		+ 			&�  (Eq. 21) 

 

The sigmoidal maximum effect model (Eq. 21) described the drug effect stimulated by a defined 

concentration of an antibiotic E(C) and was parameterised by the maximum drug effect Emax, the 

drug concentration that stimulated the half-maximum effect EC50 and the Hill factor H accounting for 

the steepness at EC50 of the concentration-effect relationship: For H<1, hyperbolic concentration-

effect curves were observed, whereas for H>1, the relationship became sigmoidal with increasing 

steepness (Figure 5). Summary PD measures (see below) were utilised for the empiric modelling. 

 

Figure 5: Simulated concentration-effect curves using the sigmoidal maximum effect model with Emax = 1, 

EC50 = 1 and three selected values for H. 

 

Checkerboard studies. For the dynamic checkerboard, the mean bacterial concentration of log10 

CFU/mL at the end of n=3 experiments was utilised as summary PD measure. The antibiotic was 

assumed to reduce the bacterial concentration using a sigmoidal maximum effect model (Eq. 21).  

Time-kill curve studies. For the time-kill curve studies, the area between bacterial killing curve and 

growth control (GC) curve (intensity of the effect, IE), as described by Firsov and colleagues [48], was 

calculated as summary effect measure by the trapezoidal rule. Drug effects were also evaluated by a 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Drug concentration [fraction of EC50]

D
ru

g
 e

ff
e

c
t 

[f
ra

c
ti
o

n
 o

f 
E

m
a

x
]

H = 0.5
H = 1
H = 4



Materials and methods 

37 

sigmoidal maximum effect model (Eq. 21) and augmented the IE in a concentration-dependent 

manner. 

Individual drug effects were estimated using ordinary least squares regression (Eq. 6) and precision of 

the estimates was computed from the variance-covariance matrix (Eq. 12). 

 

2.4.1.3.2 Response surface analysis 

Derivation of the expected additivity response surface. For quantification of the extent of the drug 

interactions between either LZD or VAN with MER, a response surface analysis described by Prichard 

and colleagues [138] using BI was used as a starting point. The expected additive effect Ecomb,BI was 

calculated based upon the two individual drug effects EA and EB using the final parameter estimates of 

the PD analyses of each drug alone (2.4.1.3.1):  n�5��,�f 
 n� + n� − n� � n� (Eq. 22) 

 

For antibiotics with a different maximum effect, the conventional BI equation was modified as 

follows: As BI was originally derived from probability theory [55], the maximum effect to be 

evaluated by BI is limited to 1.0. Hence to study antibiotics with different Emax values, the effect of 

the more effective drug (A), i.e. EA was normalised to 1.0, whilst the effect of the individually less 

effective drug (B), i.e. EB was set to a fraction of 1.0, i.e. EmaxB/EmaxA. The modified BI term was 

then scaled to the maximum effect EmaxA of the more effective drug (A) to apply the elaborated 

equation to the experimental data on log10 CFU/mL-scale: n�5��,�fH&�, &�J 
 

n�s>� � �n�H&�J + n�s>�n�s>� � n�H&�J − n�H&�J � n�s>�n�s>� � n�H&�J� 
(Eq. 23) 

 

To quantify an interaction, the measured, i.e. observed, combined effect Ecomb,obs was compared to the 

predicted additive effect Ecomb,BI.  Ecomb,obs > Ecomb,BI indicated synergy and vice versa antagonism. 

Deviations from additivity were reported either in log10 CFU/mL (checkerboard) or in changes in IE 

(time-kill curve studies). 

 

Checkerboard studies. Bliss antagonism or Bliss synergy for the checkerboard dataset were tested for 

statistical significance using a t-test based on summarised data, in ‘R’ using the ‘BSDA’ package (V. 

1.01). Therefore, both the point estimates of the calculated, expected combined additive 

effect	n�5��,�fH&�, &�J, the experimentally observed combined effect	n�5��,5��H&�, &�J as well as the 

variability of both specimens were considered. For Ecomb,obs, the variance of the experimental data was 

calculated whereas for Ecomb,BI the residual variance of the calculated additivity response surface was 
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used, generated with the delta-method [139] of the ‘R’ package ‘msm’ (V. 1.4). To correct for multiple 

testing (i.e. n statistical testing for each drug combination), the Bonferroni correction [140] was 

applied (alpha=0.05/n). 

Time-kill curve studies. Calculation of the variance for the IE (i.e. area between growth and kill 

curve) is cumbersome, e.g. if not every time-kill curve had a corresponding GC curve. Therefore, 

‘range’ as a conservative measure of dispersion was chosen as uncertainty measure for n�5��,5��H&�, &�J . For a ‘significant’ deviation from additivity, the range-bar of n�5��,5��H&�, &�J	 should not overlap with the 95% confidence interval calculated from the 

variance of 	n�5��,�fH&�, &�J  (procedure similarly as described for the evaluation of the 

checkerboard studies). 

 

2.4.1.3.3 Semi-mechanistic modelling of time-kill curve studies 

The entire time courses of the antibacterial effects, alone and in combination, were to be modelled by a 

semi-mechanistic PD model as a prerequisite for time-continuous PK/PD modelling. 

 

Model development. A simplified life-cycle model [141] was adapted as the core of the PD model 

which consisted of two bacterial growth states: Bacteria in the growing state (‘GRO’) transfer into the 

replicating state (‘REP’). In ‘REP’ bacteria replicate (“doubling”) and transfer back to ‘GRO’. The 

first-order rate-constant krep was assumed to be rate-limiting and the actual bacterial replication 

process was assumed to be very fast (kdoub arbitrarily fixed to 100 h
-1

). The life-cycle was extended to 

capture bacteria being not susceptible to antibiotic exposure and not replicating (‘persisters’). Those 

bacteria were assumed to originate from initially replicating bacteria under drug exposure and were 

quantified in ‘PER’. The differential equation system describing this extended life-cycle was 

initialised for ‘GRO’ with the bacterial concentration at t=0 (CFU0) as initial condition (IC): 

0���0' 
 −24��H&��J � �m^ + 205�� � mn� � 2  IC=CFU0 (Eq. 24) 

0���0' 
 24��H&��J � �m^ − 205�� � mn� − 2��4 � mn� IC=0  (Eq. 25) 

0���0' 
 2��4 � mn� − 20� '7,��4 � �nm   IC=0  (Eq. 26) 

 

24�� was assumed to decrease if bacterial concentrations reached the capacity limit CFUmax: 

24��H&��J 
 24��,) � u1 − ���¡���¡���¢£¤¥¦§ v    (Eq. 27) 
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The extended life-cycle is visualised in a compartmental structure in Figure 6. 

 

Figure 6: Compartmental representation of the extended life-cycle model with the three states ‘GRO’, ‘REP’ 

and ‘PER’ (see text for details).  

 

Drug effects were implemented by sigmoidal maximum effect models (Eq. 21) on the respective turn-

over rate constants in the simplified bacterial life-cycle. To assure parameter identifiability, Emax was 

generally fixed to 1.0 to allow for implementation of the drug effect model on the various turn-over 

rate constants. Emax was estimated (relative to 1.0) only if more than one drug altered the same rate 

constant and the magnitude of perturbation between those was (significantly) different. 

Different implementations of the drug effects were assessed for LZD, VAN and MER including 

inhibition of replication, inhibition of successful doubling and stimulation of replication-dependent 

(perturbation of kdoub) and replication-independent (perturbation of krep) death of bacteria. 

Potential adaptive resistance of the bacteria leading to regrowth after initial killing was implemented 

by an adaption submodel [142,143]: The degree of adaption was assumed to increase the EC50 over 

time as a function of drug exposure C(t) and a second-order time-delay rate constant τ:  

0��¨©©0' 
 −ª � &«�¤�H¬J � �m5��    IC=1  (Eq. 28) 

0��¨­0' 
 ª � &«�¤�H¬J � �m5��	     IC=0  (Eq. 29) 

 

The hypothetic amount transferred to ARon was then multiplied with β to account for the magnitude of 

the adaption resulting in an adaption factor α(t), that ultimately scaled the EC50 over time [143]: 

n&x)H¬J 
 ®H¬J � n&x),'()     with    ®H¬J 
 1 + ¯ � �m5BH¬J  (Eq. 30) 

 

Potential interactions on the adaption level, i.e. if drug A had an influence on the adaption of the 

bacteria to drug B, was explored by an inhibitory effect model (Emax model) of drug A on τ of drug B 
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and/or vice versa. The ODE system was numerically solved in ‘R’ using the ‘lsoda’ ODE solver of 

‘deSolve’ [128]. 

 

Adaptive optimal design. The model development process (2.4.1.3.3) and the acquisition of the 

experimental time-kill curve data (2.3.3) were performed in parallel to support all parameters of the 

semi-mechanistic model with a firm base of experimental data. Based on the current data status, the 

base semi-mechanistic model was parameterised and model parameters were estimated. If estimation 

was impossible, e.g. due to missing information, hypotheses for experimental scenarios were 

simulated and the expected RSE values, as indicator for parameter identifiability, were calculated 

applying optimal design theory (2.4.1.1.2). The iterative process of performing experiments, 

specifying a mathematical model, prediction of subsequent informative experimental scenarios, 

performance of new experiments and repetition of this algorithm until ‘learning experiments’ became 

‘confirmatory’ is illustrated in Figure 7. 

 

 

Figure 7: Flow chart of the sequential in vitro and in silico steps applied in this thesis.  

 

Internal model evaluation  

Graphical evaluation. The developed semi-mechanistic PD models were evaluated using goodness-

of-fit plots and visual predictive checks (2.4.1.2) using n=1000 simulations.  

Nonparametric bootstrap analysis. To evaluate the precision of the model parameter estimates, a 

non-parametric bootstrap analysis was performed [144,145]: Therefore, the final dataset of the time-

kill curve study was bootstrapped by sampling from the dataset with replacement (n=1200). The 

parameters of the semi-mechanistic PD models were re-estimated for each of the 1200 bootstrap 

datasets. 95% confidence intervals were computed from the distributions of the bootstrap parameter 

estimates by calculating the 2.5
th
 and 97.5

th
 percentile. 
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External model evaluation  

Evaluation of the adaption submodel. To externally evaluate the adaption sub-model (Eq. 30), the 

experimentally observed time-kill curves of the adapted bacteria (2.3.5) were not included in 

parameter estimation. The shape of those experimentally observed time-kill curves was compared to 

the model-predicted evolvement of the bacteria that were ‘virtually’ pre-exposed to an antibiotic. 

Therefore, initial conditions of the adaption submodel were set to simulated values at 24 h for the 

respective antibiotic concentrations and the inoculum was adjusted to the experimentally used 

inoculum, i.e. 10
6
-10

7
 CFU/mL (Eq. 24).  

Evaluation of the generalisability of the semi-mechanistic PD model. To assess the 

generalisability of the developed semi-mechanistic PK/PD model to predict PD drug interactions, data 

from published time-kill curve studies was digitalised using the software GraphClick. The scenarios 

included combinations of cell-wall antibiotics and protein-synthesis inhibitors: vancomycin and 

linezolid vs. MRSA [146], penicillin and erythromycin vs. Streptococcus pneumoniae [147], and 

ampicillin and chloramphenicol vs. clinical isolates of group B Streptococci [148]. If estimation of an 

EC50 value was not possible due to exclusively inhibitory time-kill curve data in the respective study, 

EC50 was set to the respective minimal inhibitory concentration of the antibiotic and the Hill-factor 

was set to 4. Further, CFU0, CFUmax and krep were adapted to the respective GC curves. The maximum 

drug effects were either a result of the growth-curve (for replication-dependent killing) or were 

adapted to drug effect that exhibited replication-independent killing. The persister development rate 

kper was set to the final parameter estimate of MER if there was a lack of data to estimate it. 

 

2.4.2 Simulations 

To perform simulations, the developed ‘final’ semi-mechanistic PD model was linked to population 

PK models to explore the PK/PD relationships of LZD, MER and VAN in a quantitative fashion. In 

the first part of this chapter, the translational validity of the population PK/PD model was assessed in 

an in silico dose fractionation study [149] to calculate PK/PD indices and to derive PK/PD breakpoints 

for the study drugs. In the second part, clinically relevant dosing regimens were simulated and 

potential influences of patient covariates were elucidated. 

 

2.4.2.1 Population pharmacokinetic models 

Population PK investigates the PK of a drug in a population, very often using NLME [42]. NLME 

dissects the observed PK variability into interindividual and intraindividual variability. Patient 

covariates are investigated to potentially explain parts of the observed interindividual variability, thus 

reducing the unexplained interindividual variability. Population PK models from peer-reviewed 

publications were selected based on (i) heterogeneity of the patient population to ensure that covariates 
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could have been detected, (ii) parametric nature of the PK model to allow for facile implementation of 

the PK model in ‘R’ and (iii) quality of the PK model demonstrated by diagnostics in the publications.  

Suitable population PK models with their covariate relationships were encoded in ‘R’. Interindividual 

variability that was not explained by the covariate relationships was mathematically described by 

assuming either an exponential or proportional variability model, as provided in the respective 

publications:  

 

Exponential variability model:       �,,< 
 C, � *°±,² (Eq. 31) 

Proportional variability model:       �,,< 
 C, � H1 + ³,,<J (Eq. 32) 

 

Pk,i represented the estimated k’th PK parameter for the i’th individual calculated from the population 

PK parameter C, of the typical patient whilst ³,,< represented the individual deviation from the typical 

PK parameter assuming the respective distribution. ³,,< was sampled from a normal distribution with 

mean zero and variance ω². To avoid implausible negative individual PK parameters for the 

proportional variability model, sampling of ³,,<  was restricted to values of ≥-1. Residual 

intraindividual variability was not considered.  

Linezolid. For LZD, a one-compartment disposition model with first-order processes [150] was 

implemented in ‘R’ assuming an exponential variability model for unexplained interindividual 

variability (Eq. 31). The published model contained creatinine clearance estimated by Cockcroft Gault 

in mL/min (CLCR) [151], severe liver cirrhosis (CIR) as dichotomous covariate (1: cirrhosis, Child 

Pugh grade C [152]; 0: no cirrhosis) and total body weight (WT) in kg as covariates. Plasma protein 

binding of LZD was assumed to be 13.4% [93]. 

 

Table 1: Population PK parameters for linezolid using a one-compartment disposition model with covariate 

relationships on the structural PK parameters clearance and volume of distribution used for simulation; 

interindividual variability is indicated as variance ω².   

PK parameter Published estimate 

Clearance [L/h] 2.85 × (CLCR/60.9)
0.618

 × 0.472
CIR

 

ωCL²  
0.124 

(35.2 % CV) 

Volume of distribution [L] 33.6 × WT/57.9 

ωV²  
0.0949 

(30.8 % CV) 
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Meropenem. For MER, a two-compartment disposition model with first-order processes [153] was 

implemented in ‘R’ assuming an exponential variability model for unexplained interindividual 

variability (Eq. 31). The published model contained creatinine clearance estimated by Cockcroft Gault 

in mL/min (CLCR) [151], age (AGE) in years and total body weight (WT) in kg as covariates. Plasma 

protein binding of MER was assumed to be 2 % [81]. 

 

Table 2: Population PK parameters for meropenem using a two-compartment disposition model with covariate 

relationships on the structural PK parameters clearance and central volume of distribution used for simulation; 

interindividual variability is indicated as variance ω².   

PK parameter Published estimate 

Clearance [L/h] 14.6 × (CLCR/83)
0.62

 × (AGE/35)
-0.34

 

ωCL²  
0.118 

(34.4 % CV) 

Central volume of distribution [L] 10.8 × (WT/70)
0.99

 

ωV1²  
0.143 

(37.8 % CV) 

Intercompartimental clearance [L/h] 18.6 

ωQ²  
0.290 

(53.9 % CV) 

Peripheral volume of distribution [L] 12.6 

ωV2²  
0.102 

(31.9 % CV) 

 

 

 

Vancomycin. For VAN, a two-compartment disposition model with first-order processes [154] was 

implemented in ‘R’ assuming a proportional variability model for unexplained interindividual 

variability (Eq. 32). The published model contained creatinine clearance estimated by Cockcroft Gault 

in mL/min (CLCR) [151] and total body weight (WT) in kg as covariates. Plasma protein binding of 

VAN was assumed to be 32.8% [155]. 
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Table 3: Population PK parameters for vancomycin using a two-compartment disposition model with covariate 

relationships on the structural PK parameters clearance, central and peripheral volume of distribution, used for 

simulation. Residual interindividual variability is indicated as variance ω². For intercompartimental clearance, no 

interindividual variability was obtained. (n.a.: not applicable). 

PK parameter Published estimate 

Clearance [L/h] 0.034 × CLCR + 0.015 × WT 

ωCL²  
0.0853 

(29.2 % CV) 

Central volume of distribution [L] 0.414 × WT 

ωV1²  
0.133 

(36.4 % CV) 

Intercompartimental clearance [L/h] 7.48 

ωQ²  n.a. 

Peripheral volume of distribution [L] 1.32 × WT 

ωV2²  
0.158 

(39.8 % CV) 

 

2.4.2.2 Prediction of PK/PD indices 

The translational predictivity of the developed semi-mechanistic PD model was investigated by 

simulating a dose fractionation study [149]. For this purpose, the encoded population PK models 

described above (2.4.2.1) were linked to the developed semi-mechanistic PD model (2.4.1.3.3) to 

create a population PK/PD model. For this part, simulations were performed solely with the typical 

patient (i.e. no interindividual variability) and covariates of the population PK models were set to 35 

years for age, 75.0 kg for total body weight, 120.0 mL/min for creatinine clearance and without liver 

cirrhosis. Six to ten dose levels were empirically chosen to cover concentrations around the MIC of 

methicillin-susceptible S. aureus and ranged from 80-1200 mg (LZD), 2.5-20 mg (MER) and 10-200 

mg (VAN). These doses were virtually administered 1-12 (MER) and 1-6 times (LZD and VAN) over 

a simulation period of 24 h. PK/PD indices [156] were determined according to non-linear regression 

analysis and evaluated graphically and based on the coefficient of determination (R²) and included: 

• %fT>MIC: The percentage of time that unbound drug concentrations exceed the MIC in a 24 h  

period. 

• fCmax/MIC: The peak unbound drug concentration divided by the MIC. 

• fAUC/MIC: The area under the unbound concentration-time profile divided by the MIC in a 

24 h period. 

 

The obtained model-predicted PK/PD indices were compared to the clinical PK/PD indices of MER 

[125], LZD [157] and VAN [96] and bacteriostatic and/or bactericidal PK/PD breakpoints were 

derived. 
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2.4.2.3 Clinical trial simulation 

Virtual clinical trial with reference dosing regimens. In order to explore the antibiotic effects of 

LZD, MER and VAN, alone and in dual combinations, clinically utilised dosing regimens were used 

for simulations with the linked population PK/PD model. All drugs were virtually administered as 

intravenous infusions over 1 h to mimic a typical clinical situation. The exploratory scenarios were 

• LZD 600 mg BID [90] 

• MER 1000 mg TID [81]  

• VAN 1000 mg BID [99] 

alone and included double combinations of LZD/MER and VAN/MER. The exploratory simulations 

were performed with a virtual patient population of 1000 individuals. The covariates AGE, WT and 

serum creatinine (SCR) were sampled from log-normal distributions with geomean values of 75 kg, 

35 yrs. and 1.0 mg/dL, respectively and a standard deviation of 10% CV for all covariates using the 

‘rlnorm’ function in ‘R’. SEX and CIR were simulated from binomial distributions with probabilities 

of 50% females and 5% liver cirrhosis. CLCR was subsequently calculated from those ‘primary’ 

patient covariates using the Cockcroft-Gault equation:  

&Y&m 
 H140 − ��nJ �µ�72 � _&m H� 0.85	if	femaleJ (Eq. 33) 

 

(Unexplained) interindividual variability on the population PK model and uncertainty of the 

parameters of the semi-mechanistic PD model was considered by using stochastic simulations in a 

Monte-Carlo approach [158] by sampling from the respective parameter distributions for each 

individual virtual patient: The unexplained interindividual PK variability between virtual patients with 

those covariates was included in the simulations as described in 2.4.2.1. Uncertainty of the PD model 

parameter estimates was considered by sampling the respective model parameter from a distribution 

generated by the final model parameter estimate as means and the obtained variance-covariance matrix 

(Eq. 11) as (co-)variances. 

The PK/PD indices identified as being predictive in 2.4.2.2 were calculated and compared to the 

values obtained in the dose fractionation study. 

Impact of covariates on the antibiotic effect. Potential impact of patient covariates was investigated 

by varying the covariate value in addition to the variability/uncertainty described above. Creatinine 

clearance was altered from 60-160 mL/min, total body weight was varied from 60-105 kg for all 

studied antibiotics. For LZD, the impact of liver cirrhosis was additionally explored. In order to 

provide an effect measure that is also frequently used in pre-clinical PK/PD studies for anti-infectives, 

log10 CFU/mL at 24 h was calculated in each scenario and used as an evaluation criterion. Probability 

of target attainment (PTA) to attain a bacteriostatic or bactericidal effect was calculated:  
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PTA
No.	of	individuals	attaining	the	PD	targetTotal	No.	of	individuals  (Eq. 34) 

 

PTA >0.9 was considered as sufficient. 

 

Exploratory simulations of alternative dosing regimens. If a covariate was found influential on the 

antibiotic effects, alternative dosing regimens (e.g. continuous infusion or dose intensification) were 

explored. If appropriate, also higher initial dosing was explored to reach the steady state earlier (PK-

driven ‘loading dose’), or to enhance initial drug effects (PD-driven ‘front-loading’). 

 

2.5 General statistical techniques 

In addition to the modelling-specific statistics for model comparison (2.4.1.2), some general 

descriptive and inductive statistical measures and tests were utilised in the present work. Calculations 

were performed in the software ‘R’ (version 3.1.1).  

 

2.5.1 Descriptive statistics 

The following measures of central tendency and dispersion were used to visualise and aggregate data. 

 

2.5.1.1 Measures of central tendency 

• Arithmetic mean  > 
 ∑ ¼²­²½¾B  

• Geometric mean >3�5 
 ¿>? · >F · … · >B­
 

• Median   >Á 
 	Â>­Ã¾] 																																					for	uneven	n
?F Q>­] + >­]¡?T 				for	even	n  

2.5.1.2 Measures of dispersion, accuracy and precision 

 

• Variance  O² 
 ∑ H¼²+¼̅J]­²½¾B+?  

• Standard deviation O 
 ¿O² 
• Coefficient of variation &Å,% 
 \¼ · 100 

• Quantiles/percentiles >Á� 
	Æ>B·�																																									for	uneven	n·p?F �>B·� + >B·�¡?�		for	even	n·p  



Materials and methods 

47 

• Relative error   mn,% 
 ¼¨ÇÈ.ÉÊ.-+¼­¨¥²­¦Ë¼­¨¥²­¦Ë · 100 

• Accuracy   ���Ì~s�;,% 
 ¼¨ÇÈ.ÉÊ.-¼­¨¥²­¦Ë · 100 

 

2.5.2 Inductive statistics 

In inductive statistics, statistical methods are utilised to analyse data in order to deduce properties of 

an underlying distribution. 

 

2.5.2.1 Confidence intervals 

The CI is an interval that provides information about the precision of a point estimate. CIs are 

characterised by their confidence level (often 95%), i.e. the probability that the determined CIs contain 

the underlying ‘true’ point estimate. In the present work, CIs were determined by parametric methods 

from the quantiles of a distribution, e.g. under assumption of a (log-) normal distribution using mean 

and variance, or by non-parametric methods such as the bootstrap (2.4.1.3.3) that does not assume an 

underlying distribution. 

 

2.5.2.2 Hypothesis testing 

For a parametric comparison of two groups from the same sample, the two sample t-test was used. For 

parametric comparison of two or more groups, the one-way analysis of variance (ANOVA) was 

applied. Statistical tests were performed with the ‘stats’-package (version 3.1.1) of ‘R’.   
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3 Results 

3.1 Bioanalytical quantification of antibiotics in growth medium 

In the present thesis, a bioanalytical HPLC assay for simultaneous quantification of LZD, MER and 

VAN from CaMHB was successfully developed and validated according to the EMA guideline for 

bioanalytical method validation [120].  

 

3.1.1 Development of the bioanalytical HPLC method  

3.1.1.1 Sample treatment and recovery 

Precipitation of the sample with ACN or MeOH and subsequent direct injection into the HPLC 

apparatus resulted in ‘diluted’ samples. As the absorption intensity of VAN is rather low (compared to 

LZD or MER), the resulting LLOQ for VAN of 4-10 mg/L was considered too high and hence not 

suitable for the analytical needs. 

Precipitation with subsequent solvent evaporation and reconstitution in Milli-Q water achieved highest 

recoveries using 400 µL MeOH + 100 µL sample: LZD was recovered to 72%, MER to 69% and to 

VAN 71%. ACN was not suitable as precipitating agent: Although recovery was high for LZD (76%), 

the resulting recoveries for MER (38%) and VAN (0.8%) were rather low if ACN + sample (4+1 v/v) 

was used. Hence, in the final method, MeOH + sample (4+1 v/v) was utilised as processing method. 

The coefficient of variation for this procedure was 7.5% for LZD, 6.6% for MER and 7.2% for VAN, 

as determined from processing four aliquots from a unique sample at a concentration of 10 mg/L.  

 

3.1.1.2 HPLC instrument method 

Of the investigated flow gradient elution modes, the following flow gradient program was found 

suitable (i) to sufficiently separate the analytes from the CaMHB matrix components and (ii) to 

provide sufficient separation of the analytes LZD, MER and VAN: Mobile phases were  

(A) Milli-Q water with 0.1% TFA and  

(B) ACN:Milli-Q water 40:60 (v/v) with 0.1% TFA.  

The eluent flow rate was 0.4 mL/min during the entire gradient program. Mobile phase composition 

started with 10% B for 0.0 to 2.0 min. From 2.0 min to 12.0 min, solvent B increased to 62.5%. From 

12.0 to 14.0 min, solvent B was reduced to 10% to re-equilibrate the HPLC column. The flow gradient 

is illustrated in Figure 8. 
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Figure 8: Flow gradient diagram of the final HPLC instrument method. 

 

3.1.2 Validation of the bioanalytical HPLC method 

Selectivity and carry-over. The developed HPLC instrument method was found selective and no 

carry-over was observed when a blank sample was injected after the highest quality control sample QC 

H. Typical chromatograms obtained at day 2 of the method validation are presented in Figure 9. 

 

Figure 9: Chromatograms (solid line) at QC-level M for LZD at 251 nm (15 mg/L), MER at 302 nm (50 mg/L) 

and VAN at 240 nm (25 mg/L) along with matrix injection (dashed line) obtained during method validation. 

 

Calibration curve. Peak area was plotted versus the concentration of the respective six calibration 

samples of the antibiotics and weighted (1/x²) linear regression with intercept was performed in the 
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Chromeleon
®
 software. Calibration ranged from the LLOQ to the ULOQ, i.e. 0.5-25 mg/L for LZD, 

0.5-100 mg/L for MER and 2-50 mg/L for VAN. Typical calibration functions (Figure 10) obtained on 

day 2 of method validation were: 

• LZD:  Area = 0.1451× C(LZD) - 0.0118 R² = 0.999 

• MER: Area = 0.0701 × C(MER) - 0.0025 R² = 0.994 

• VAN:  Area = 0.0443 × C(VAN) - 0.0385 R² = 0.990 

All calibration curves obtained during method validation were accepted as accuracy of the calibration 

samples based on back calculated concentrations ranged from 94.1-106.8 % for LZD, 88.4-109.2 % 

for MER and 85.5-108.8 % for VAN on the three validation days.  

 

Figure 10: Typical calibration curves obtained at day 2 of method validation for LZD (left), MER (middle) and 

VAN (right). 

 

Accuracy and precision. Intra- and interday accuracies and their precision determined by analysing 

(independent) QC samples against the respective calibration curves met the requirements of the EMA 

guideline [120], and are presented in Table 4. No statistical differences were observed between the 

three validation days for LZD (p=0.18), MER (p=0.07) and VAN (p=0.12) when analysing accuracy 

values with a one-way ANOVA (α=0.05). 

 

 

Table 4: Intraday (n=5) and interday (n=15) accuracy and precision of the developed bioanalytical HPLC 

method for simultaneous quantification of LZD, MER and VAN from bacterial growth medium (CaMHB) 

determined from QC samples.  

  Intraday Interday 

  Day 1 Day 2 Day 3   

QC tier c(LZD) 

[mg/L] 

Accuracy 

% 

Precision 

%CV 

Accuracy 

% 

Precision 

%CV 

Accuracy 

% 

Precision 

%CV 

Accuracy 

% 

Precision 

%CV 

LLOQ 0.5 112.9 1.9 110.2 3.7 107.8 7.7 110.3 5.0 

L 1.5 104.8 2.1 103.6 3.2 98.6 1.5 102.4 3.5 

M 15 111.4 5.4 114.1 7.3 95.0 6.1 106.5 10.3 

H 29 112.3 1.5 112.1 6.4 95.9 2.6 106.8 8.4 

  
  
  
  
 A

re
a
 [
m

A
U

*m
in

] 

 

C(LZD) [mg/L] 

 

C(MER) [mg/L] 

 

C(VAN) [mg/L] 
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 c(MER) 

[mg/L] 

        

LLOQ 0.5 96.1 2.1 80.3 5.1 86.2 6.3 87.5 8.8 

L 1.5 97.9 2.0 86.7 3.3 93.6 1.8 92.7 5.6 

M 50 100.0 3.9 100.3 5.8 91.1 4.0 96.9 6.4 

H 80 100.8 2.3 98.0 6.0 91.4 2.7 96.7 5.6 

 c(VAN) 

[mg/L] 

        

LLOQ 2 106.4 2.6 97.2 2.4 101.5 10.8 101.7 7.2 

L 6 104.1 3.6 87.5 3.2 102.6 1.9 98.1 8.4 

M 25 105.5 5.6 105.3 7.4 96.3 5.9 102.2 7.4 

H 40 105.7 1.6 102.5 6.6 96.5 3.2 101.6 5.6 

 

Stability. The summary of the stability investigations related to the simultaneous bioanalysis of LZD, 

MER and VAN are presented in Table 5. As all concentrations were within ±15% of the nominal 

concentration of the respective QC sample, all antibiotics were considered stable according to the 

EMA guideline [120].  

 

Table 5: Stability investigations for LZD, MER and VAN at various QC tiers; for autosampler stability, 

accuracy was calculated based on the concentration determined at t=0 h, for all other investigated stability tests, 

accuracy was calculated based on the nominal concentration; n=3 aliquots per QC tier and scenario. 

  Autosampler  

stability  

(15 h at 4° C) 

Short-term  

stability  

(5 h at 25° C) 

Freeze/thaw stability  

(3 cycles) 

Long term  

stability  

(~6 months at -80° C) 

QC tier c(LZD) 

[mg/L] 

Accuracy 

% 

Precision 

%CV 

Accuracy 

% 

Precision 

%CV 

Accuracy 

% 

Precision 

%CV 

Accuracy % Precision 

%CV 

LLOQ 0.5 100.7 2.2       

L 1.5 102.5 0.9 103.7 1.1 89.7 1.5 98.4 3.5 

M 15 100.8 0.2 98.0 3.3   107.7 8.5 

H 29 103.3 3.7   97.9 10.3   

 c(MER) 

[mg/L]         

LLOQ 0.5 96.7 2.2       

L 1.5 98.4 2.8 94.5 4.9 88.6 4.7 92.6 3.4 

M 50 98.7 0.4 101.9 3.3   99.0 9.8 

H 80 101.1 3.4   102.1 9.1   

 c(VAN) 

[mg/L]         

LLOQ 2 100.9 1.9       

L 6 100.3 1.0 97.6 1.7 100.7 5.2 106.5 3.6 

M 25 94.3 0.6 91.3 3.3   104.6 9.0 

H 40 101.7 3.6   105.7 12.1   
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3.1.3 Degradation of the antibiotics in the in vitro infection model 

First-order degradation rate constants are presented in Table 6 and visualised within 24 h along with 

the observed drug concentrations in time-kill curve studies (Figure 11).  

 

Table 6: Estimates of first-order degradation rate constants for LZD, MER and VAN at 37° C in CaMHB. 

Antibiotic kdeg [h
-1

] [95% CI] 

LZD 1.01e-04 [-1.27e-03; 1.47e-03] 

MER 1.90e-02 [1.74e-02; 2.06e-02] 

VAN 3.90e-03 [2.38e-03; 5.42e-03] 

 

 

Figure 11: Experimentally observed drug concentrations normalised to nominal concentration at t=0 (points) 

and estimated first-order degradation kinetics (red lines) for LZD (left), MER (middle) and VAN (right), n=3 per 

drug. 

 

 

For LZD, no significant degradation was observed during 24 h as indicated by the very low 

degradation rate constant of 1.01·10
-4 

h
-1

 being not statistically different from zero. For MER, 

significant and substantial degradation was observed within 24 h and MER concentrations were 

reduced to 62.9% of MER at t=0. VAN also significantly degraded within 24 h and concentrations 

were reduced to 90.6% of VAN at t=0. Hence, degradation half-lives were t1/2(MER) = 36.5 h and 

t1/2(VAN) = 177.8 h. 
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3.2 Microbiological experiments 

3.2.1 Preliminary microbiological investigations 

3.2.1.1 Droplet plate assay for quantification of S. aureus 

Accuracy and precision of the developed sample treatment and quantification method (2.3.1.1) for 

S. aureus are presented in Table 7. The assay range was investigated from 20-500 CFU/sector. For 

practical reasons, an ULOQ of 300 seemed reasonable. Accuracy was within 90.0-110.0% and 

precision ranged from 30.1% at 20 CFU/sector to 1.7% at 500 CFU/sector. 

 

 

Table 7: Accuracy and preparation variability of the developed droplet plate assay (n=6). 

Nominal CFU/sector Median CFU/sector Accuracy [%] Precision [%CV] 

500 484 96.7 1.7 

400 404 100.9 2.8 

300 306 101.8 5.8 

200 203 101.5 9.5 

50 55 110.0 11.6 

40 41 102.5 12.0 

30 29 96.7 17.0 

20 18 90.0 30.1 

 

 

 

The developed droplet plate assay was found linear (Figure 12 left). The established processing 

methods ‘centrifugation/washing’ and ‘direct dilution’ were statistically different as indicated by a 

paired, two-sided, two sample t-test (p=0.00658) when log10 CFU/mL of both method were compared 

(Figure 12 right). However, the mean bias of the centrifugation method (-0.065 log10 CFU/mL) was 

not relevant for experimental practice and both method were considered equivalent. 
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Figure 12: Measured vs. nominal CFU per sector of the incubated agar plate in n=6 per concentration level 

(left). Comparison between the centrifugation/washing and the direct dilution processing method in n=3 per 

concentration level (right). Points represent experimental data and dashed lines represent the ‘line of identity’.  

 

 

Stability in dilution media 0.9% NaCl solution and PBSP was investigated over 4 h. First order 

degradation rate constants were determined by the same mathematical model used for determination of 

drug degradation (2.2.4). Parameter estimates are presented in Table 8. In 0.9% NaCl solution survival 

of S. aureus at t=4 h was reduced to 69.5% of t=0 (Figure 13). In PBSP, median bacterial counts 

increased to 111% of t=0 after t=4 h which was also indicated by the negative degradation rate 

constant. Hence, PBSP was chosen as the more gentle dilution medium for S. aureus. 

 

 

 

Table 8: Estimates of first-order degradation rate constants for S. aureus in the dilution media 0.9% NaCl 

solution and PBSP at 25° C. 

Dilution medium kdeg [h
-1

] [95% CI] 

0.9% NaCl 9.09e-02 [6.62e-02; 1.16e-01] 

PBSP -2.57e-02 [-4.38e-03; -4.71e-02] 
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Figure 13: Survival of S. aureus in 0.9% NaCl solution (blue triangles) and PBSP (red squares). Symbols 

represent median values and bars represent range of the experimental data (n=6). Large dashed line represents 

mean CFU/mL at t=0 of both methods and small dashed lines represent median ± 15%. 

 

3.2.1.2 Determination of the minimal inhibitory concentrations  

The MIC values for LZD, MER and VAN were read visually and were indicated as the lowest 

concentration that did not stimulate visual turbidity (Figure 14).  

 

 

Figure 14: Example of visual determination of the MIC of LZD vs. S. aureus clinical isolate MV 13488. The 

lowest concentration that prevented turbid growth was 2 mg/L. Numbers: Concentration of LZD in mg/L; GC: 

growth control; NC: negative control; (n=3 replicates). 
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MIC values for all investigated antibiotics and bacterial strains are presented in Table 9. Notably, the 

MIC displayed the same individual value for all replicates within the individual S. aureus strains. 

Also, the MIC values were consistent between the strains for LZD and VAN, except for MER for 

which the clinical isolate MV 13488 displayed an MIC value of one tier below the other strains. 

 

 

Table 9: MIC values of LZD, MER and VAN vs. the utilised three strains of S. aureus. (Median of n=3). 

S. aureus strain MIC of Antibiotic [mg/L] 

 LZD MER VAN 

ATCC 29213 2.0 0.125 1.0 

MV 13488 2.0 0.0625 1.0 

MV 13391 2.0 0.125 1.0 

 

 

 

 

3.2.1.3 Determination of the lag-time of S. aureus 

The experimental data for lag-time determination of all three strains is presented in Figure 15 and 

visual inspection of the semi-logarithmic plots suggested two log-linear slopes with an intercept 

between 80 and 120 min. The estimated lag-time using the biphasic exponential growth model was 

between 86 and 102 min for all S. aureus strains (Table 10). Hence, the utilised pre-incubation time of 

2 h was sufficient for the time-kill curve studies to obtain exponentially growing S. aureus at drug 

exposure (2.3.4). Growth rate constants were very similar between the different strains with 

overlapping 95% CI in the lag-and log-phase (Table 10).  

The resulting generation times in lag-phase S. aureus were 79 min, 96 min and 57 min for ATCC 

29213, MV 13488 and MV13391, respectively. In log-phase S. aureus, the generation times were 

24 min, 30 min and 25 min for ATCC 29213, MV 13488 and MV13391, respectively. 
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Figure 15: Determination of the lag-times of the utilised three strains of S. aureus. Points represent raw 

experimental data (n=3-6), red line represents predicted growth curve from the utilised biphasic growth model 

(2.3.1.4). 
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Table 10: Estimated growth parameters of the utilised three strains of S. aureus.  

S. aureus strain 

Growth parameter 

Lag-time [min] 

(CI95%) 

Growth rate constant [min
-1

] 

lag-phase 

(CI95%) 

log-phase 

(CI95%) 

ATCC 29213 
86 

(67-105) 

0.00782 

(0.00201-0.0136) 

0.0289 

(0.0255-0.0323) 

MV 13488 
100 

(95-105) 

0.00723 

(0.00306-0.0114) 

0.0227 

(0.0199-0.0257) 

MV 13391 
102 

(90-114) 

0.0121 

(0.00832-0.0159) 

0.0280 

(0.0253-0.0307) 

 

 

 

 

3.2.2 Checkerboard studies of linezolid and meropenem against S. aureus 

Evaluation of the checkerboard by turbidity (‘conventional checkerboard’) revealed that both agents 

did not alter the antibacterial effect as indicated by turbid (bacterial growth) and clear (inhibition of 

bacterial growth) wells of the 48-well plate. Hence, no interaction between LZD and MER was found 

with the conventional checkerboard study (Figure 16, upper panel).  Notably, the MIC (indicated by 
+
 

in Figure 16) for MER was 0.06 mg/L in the utilised CaMHB (Sigma-Aldrich) in comparison to the 

CaMHB (Oxoid) used for susceptibility testing and performance of the time-kill curve studies in 

which the MIC was 0.13 mg/L (3.2.1.2).  

The results of the ‘dynamic checkerboard’ study when bacteria were additionally quantified are 

presented in the lower panel of Figure 16. MER alone (≥0.25 mg/L) reduced the bacteria by 

>3 log10 CFU/mL. LZD alone reduced the bacteria at maximum by ca. 1.5 log10 CFU/mL. In 

combination, if drug concentrations exceeded the MIC, the bactericidal effect of MER was 

antagonised and the combinatory effect corresponded to the bacteriostatic effect of LZD alone.  
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Figure 16: Checkerboard study between LZD and MER. Upper panel: Conventional checkerboard evaluated by 

turbidity; turbid cavities of the well plate indicated bacterial growth; clear cavities indicated inhibition of 

bacterial growth. Lower panel: Dynamic checkerboard evaluated by quantification of bacteria; Gradient indicates 

concentration of bacteria in log10 CFU/mL; Inoculum, bacteriostatic and bactericidal effect thresholds are 

indicated next to the gradient. 
+
 indicates the MIC values (n=3).  
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3.2.3 Time-kill curve studies in lag-phase in in vitro infection models 

The time-kill curve studies provided a continuous measure of the individual and combined 

antibacterial effects of LZD, MER and VAN. First, the results for the reference strain S. aureus ATCC 

29213 are presented, subsequently those of the two clinical isolates.  

For lag-phase bacteria, in all GC experiments, a lag time of ca. 90-100 minutes was observed until 

exponential growth was observed. After 6-8 h, bacteria reached the stationary phase of growth with ca. 

1·10
10 

CFU/mL.   

For LZD (Figure 17), concentrations up to 2 mg/L protracted growth of S. aureus and moderate killing 

was observed between 4 and 32 mg/L. Bacterial killing was only marginally increased between 8 and 

32 mg/L indicating that the maximum effect of LZD against lag-phase S. aureus was reached at 32 

mg/L. LZD reduced S. aureus by ca. 1 log10 CFU/mL and hence displayed a bacteriostatic effect after 

24 h. 

 

Figure 17: Time-kill curve study of LZD versus S. aureus ATCC 29213 in lag-phase at drug exposure. Points 

represent median concentration of bacteria in log10 CFU/mL and bars represent range of 2-6 determinations of 

n=2-3 independent experiments. Inhibitory concentrations, i.e. concentrations ≥1×MIC (filled symbols), 

subinhibitory concentrations (open symbols). 
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For MER (Figure 18), concentrations up to 0.0625 mg/L protracted growth of S. aureus ATCC 29213 

and resulted in a decreased bacterial load at 24 h compared to the GC curves (1×10
8
 CFU/mL vs. 

1×10
10

 CFU/mL). For MER at 0.125 mg/L (=MIC), bactericidal killing was observed at 6-8 h, but was 

followed by regrowth up to ca. 5×10
7
 CFU/mL at 24 h. For MER at 0.25 mg/L, the effect of MER was 

most pronounced and a bactericidal effect was attained at 6-8 h, which was stable until 24 h. For MER 

at higher concentrations (≥2 mg/L), a paradoxically reduced initial effect of MER was observed. Yet, a 

bactericidal effect was attained at 24 h for MER ≥2 mg/L. 

 

 

Figure 18: Time-kill curve study of MER versus S. aureus ATCC 29213 in lag-phase at drug exposure. Points 

represent median concentration of bacteria in log10 CFU/mL and bars represent range of 2-6 determinations of 

n=2-3 independent experiments. Inhibitory concentrations (filled symbols), subinhibitory concentrations (open 

symbols). Dotted lines highlight concentrations that displayed a paradoxically reduced initial effect of MER.  
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For VAN (Figure 19), concentrations up to 0.5 mg/L did not have an antibacterial effect compared to 

the GC curve. For VAN at 0.75-1.0 mg/L, initial killing to 10
4
-10

5
 CFU/mL until 12 h was observed, 

which was followed by regrowth to ca. 10
9
 CFU/mL. For VAN ≥1.5 mg/L, persistent killing without 

regrowth was observed and a bactericidal effect was obtained for VAN ≥2 mg/L at 24 h.  

 

 

Figure 19: Time-kill curve study of VAN versus S. aureus ATCC 29213 in lag-phase at drug exposure. Points 

represent median concentration of bacteria in log10 CFU/mL and bars represent range of 2-6 determinations of 

n=2-3 independent experiments. Inhibitory concentrations (filled symbols), subinhibitory concentrations (open 

symbols). 
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In subinhibitory combination, LZD at 1 mg/L and MER at 0.03125 mg/L protracted growth of 

S. aureus ATCC 29213, but resulted in net-growth up to ca. 10
9
 CFU/mL at 24 h (Figure 20). For 

inhibitory concentrations of LZD and MER, the combined effect corresponded to the effect of LZD 

alone (Figure 17) and the bactericidal effect of MER (Figure 18) was antagonised to bacteriostasis. 

 

 

Figure 20: Time-kill curve study of combinations of LZD and MER versus S. aureus ATCC 29213 in lag-phase 

at drug exposure. Points represent median concentration of bacteria in log10 CFU/mL and bar represents range 

of 2-6 determinations of n=2-3 independent experiments. Inhibitory concentrations (filled symbols), 

subinhibitory concentrations (open symbols). Dotted line represents killing curve of MER at the maximum effect 

for comparison. 
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Subinhibitory combinations of VAN and MER substantially inhibited growth of S. aureus and 

displayed an increased antibacterial effect compared to the effect of each agent alone (Figure 21). For 

instance, MER alone at 0.06 mg/L displayed modest killing with regrowth and resulted in 10
8
-

10
9
 CFU/mL at 24 h (Figure 18). VAN alone at 0.75 mg/L displayed initial killing with regrowth and 

resulted in >10
9
 CFU/mL at 24 h (Figure 19). In combination, S. aureus was reduced to ca. 

5·10
3
 CFU/mL. Addition of subinhibitory VAN at 0.25 mg/L, which displayed no effect alone (Figure 

19), to MER at 0.125 mg/L substantially reduced regrowth of the S. aureus that was observed with 

MER at 0.125 mg/L alone. For VAN at 0.5 mg/L and MER at 0.13 mg/L a bactericidal effect was 

observed. Hence, a favourable interaction between VAN and MER was observed, but their nature 

(additivity, synergy) is yet unclear from raw time-kill curve data. 

 

 

Figure 21: Time-kill curve study of subinhibitory combinations of VAN and MER versus S. aureus ATCC 

29213 in lag-phase at drug exposure. Points represent median concentration of bacteria in log10 CFU/mL and 

bars represent range of 2-6 determinations of n=2-3 independent experiments. Legend symbols were aligned 

with appearance in the plot at 12-24 h. 
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For inhibitory combinations of VAN and MER (Figure 22), the combined effect corresponded to the 

effect of VAN alone, which was marginally less than the effect of MER alone at maximally effective 

concentrations (0.25 and 0.5 mg/L), but similar compared to higher concentrations of MER (2-8 mg/L) 

(Figure 18). Overall, the combination of VAN and MER was bactericidal at 24 h if concentrations 

were ≥2 mg/L for VAN and ≥0.5 mg/L for MER. 

 

 

Figure 22: Time-kill curve study of inhibitory combinations of VAN and MER versus S. aureus ATCC 29213 in 

lag-phase at drug exposure. Points represent median concentration of bacteria in log10 CFU/mL and bars 

represent range of 2-6 determinations of n=2-3 independent experiments. Dotted line represents killing curve of 

MER at the maximum effect for comparison. 

 

The studies with the clinical isolates MV 13391 and MV 13488 of S. aureus also confirmed an 

antagonistic interaction between LZD and MER (Figure 23). The combined effect for combinations of 

VAN and MER also corresponded to the effect of VAN (Figure 24) as observed with the reference of 
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higher concentrations of MER (Figure 23). 
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Figure 23: Time-kill curve study of selected combinations of LZD and MER versus S. aureus clinical isolates in 

lag-phase at drug exposure. Points represent median concentration of bacteria in log10 CFU/mL and bar 

represents range of 2-4 determinations of n=2 independent experiments. 

 

 

 

Figure 24: Time-kill curve study of selected combinations of VAN and MER versus S. aureus clinical isolates 

in lag-phase at drug exposure. Points represent median concentration of bacteria in log10 CFU/mL and bar 

represents range of 2-4 determinations of n=2 independent experiments. 
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3.2.4 Time-kill curve studies in log-phase in in vitro infection models 

To assess a potential impact of the growth state at drug exposure, for the following experiments, 

S. aureus ATCC 29213 was pre-incubated for 2 h at 37° C which assured exponential growth at drug 

exposue (3.2.1.3). Hence, in contrast to time-kill curves in the lag-phase at drug exposure, only a 

single initial slope was observed in the GC curves with log-phase S. aureus. Maximum growth was 

similar as in lag-phase S. aureus and a ca. 1·10
10

 CFU/mL were reached after 24 h. 

The effect of LZD against log-phase S. aureus ATCC 29213 is illustrated in Figure 25: LZD at 

concentrations up to 2 mg/L protracted growth compared to the GC curve and for LZD at 4 mg/L the 

bacterial load remained constant at ca. 10
6
 CFU/mL for the entire experiment until 24 h. For higher 

concentrations of LZD, two phases of killing were observed: After initial considerably intense killing 

up to 4-6 h a persisting phase with much slower killing was observed. LZD at 32 mg/L exhibited a 

bactericidal effect against S. aureus ATCC 29213. 

 

 

Figure 25: Time-kill curve study of LZD versus S. aureus ATCC 29213 in log-phase at drug exposure. Points 

represent median concentration of bacteria in log10 CFU/mL and bars represent range of 2-4 determinations of 

n=2 independent experiments. Inhibitory concentrations (filled symbols), subinhibitory concentrations (open 

symbols). 
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For MER (Figure 26), concentrations up to 0.125 mg/L protracted growth or provided killing up to 

maximal ca. 10
4
 CFU/mL at 6 h, followed by regrowth which yielded >10

8
 CFU/mL at 24 h. For MER 

0.25 and 0.5 mg/L, a rapid bactericidal effect was observed after 4 h, which was stable until 24 h. 

Higher concentrations of MER (2 and 8 mg/L) were initially slightly less effective being bactericidal 

after 6 h.  

 

 

Figure 26: Time-kill curve study of MER versus S. aureus ATCC 29213 in log-phase at drug exposure. Points 

represent median concentration of bacteria in log10 CFU/mL and bars represent range of 2-4 determinations of 

n=2 independent experiments. Inhibitory concentrations (filled symbols), subinhibitory concentrations (open 

symbols). Dotted lines highlight concentrations that displayed a paradoxically reduced initial effect of MER. 
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For VAN (Figure 27), concentrations up to 0.5 mg/L did not have a substantial antibacterial effect 

compared to the GC curve. Initial killing with net regrowth was observed up to 4 mg/L. For VAN at 8 

and 16 mg/L, marked killing to <10
4
 CFU/mL was observed at 10 h, but bacterial load re-increased to 

ca. 10
5
 CFU/mL and only a bacteriostatic effect was obtained at 24 h. 

 

 

Figure 27: Time-kill curve study of VAN versus S. aureus ATCC 29213 in log-phase at drug exposure. Points 

represent median concentration of bacteria in log10 CFU/mL and bars represent range of 2-4 determinations of 

n=2 independent experiments. Inhibitory concentrations (filled symbols), subinhibitory concentrations (open 

symbols). 
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For the investigated combinations of LZD and MER, the combined effect was inferior compared to the 

maximum effect of both LZD and MER at their respective maximally effective concentrations (Figure 

28) and a bacteriostatic effect was obtained at 24 h. 

 

 

Figure 28: Time-kill curve study of combinations of LZD and MER versus S. aureus ATCC 29213 in log-phase 

at drug exposure. Points represent median concentration of bacteria in log10 CFU/mL and bar represents range 

of 2-6 determinations of n=2-3 independent experiments. Dotted line represents killing curve of LZD and MER 

at their maximum effects for comparison. 
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For the combinations of VAN and MER (Figure 29), the combined effect corresponded to the initial 

effect of VAN until 10 h, and was inferior to the effect of MER alone (Figure 26). However, at 24 h a 

bactericidal effect was observed for all investigated combinations and no regrowth was stimulated as 

observed for VAN alone at 2 and 4 mg/L (Figure 27). 

 

 

Figure 29: Time-kill curve study of combinations of VAN and MER versus S. aureus ATCC 29213 in log-phase 

at drug exposure. Points represent median concentration of bacteria in log10 CFU/mL and bar represents range 

of 2-4 determinations of n=2 independent experiments. Dotted line represents killing curve of VAN and MER at 

their individual effects alone for comparison. 

 

 

3.2.5 Adaptive resistance studies 

Regrowth after initial killing was observed for both MER up to 0.125 mg/L (Figure 18) and VAN up 

to 1 mg/L in lag-phase S. aureus (Figure 19). Hence, those concentrations were used for pre-exposure 

of S. aureus for 24 h, and concentrations of this level and one higher and/or lower log2 level were 

investigated to assess the magnitude of adaption of the bacteria to the antibiotics.  
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For MER, pre-exposure to concentrations up to 0.125 mg/L (= 1x MIC; M1) rendered the second 

exposure to MER less effective (e.g. M1-M1) or even ineffective (e.g. M0.5-M0.5) indicating adaption 

of S. aureus to MER. Regrowth was observed for up to 0.25 mg/L (= 2x MIC; M2) indicating a 

decrease in susceptibility by at least one MIC level over 24 h.  

For VAN, pre-exposure to concentrations up to 1 mg/L (= 1x MIC; V1) rendered the second exposure 

to VAN less effective (e.g. V1-V2) or ineffective (e.g. V0.75-V0.75). Hence, S. aureus also adapted to 

VAN and susceptibility to VAN decreased by one MIC level over 24 h.  

 

 

Figure 30: Adaptive resistance investigations with MER (M) and VAN (V) against S. aureus at concentrations 

around their MIC value (number indicates multiple/fraction of MIC). Dotted lines represent the obtained time-

kill curve of ‘native’ S. aureus as described in 3.2.3 at a concentration indicated by the first part of the label; 

solid lines represent the obtained time-kill curves from the bacteria that have been pre-exposed to a 

concentration of the first label and exposed to the concentration indicated in the second label for another 24 h 

time period (n=2-3). 
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3.3 Modelling and Simulations 

The obtained experimental PD data of LZD, VAN and MER described in the previous chapters was 

first analysed by empiric modelling using summary PD measures. By using the individual effects of 

the antibiotics against S. aureus, the observed interactions between LZD or VAN and MER were 

quantified in the newly elaborated response surface analysis. Finally, a semi-mechanistic PK/PD 

model was developed to assess individual and combined use of the antibiotics and to translate the 

obtained results into a clinical setting. The developed mathematical models were built upon 

experimental data with S. aureus ATCC 29213. For all Modelling and Simulation tasks, ‘R’ scripts 

were developed (7.3).  

 

3.3.1 Modelling 

3.3.1.1 Empiric modelling of individual drug effects 

Checkerboard. For the dynamic checkerboard study, the bacterial load in log10 CFU/mL was utilised 

as summary PD effect measure. The estimated parameters of the developed inhibitory sigmoidal 

maximum effect model reliably described the experimental data (Figure 31).  

 

Figure 31: Individual concentration-effect relationships for LZD and MER against S. aureus ATCC 29213 

observed in the checkerboard studies. Mean experimental data  (points) and range (bar) are presented along with 

predictions of the sigmoidal maximum effect model (solide line). EC50 values for LZD and MER are indicated as 

vertical dashed lines. 

 

The parameter estimates of the utilised sigmoidal maximum effect model for S. aureus ATCC 29213 

are summarised in Table 11 for the checkerboard. For simple comparison of the antibacterial effects, 

the symbol ‘E’ was used for both inhibitory as well as excitatory sigmoidal maximum effect models 

throughout the present work. 
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Table 11: PD parameter estimates of the utilised sigmoidal maximum effect model (relative standard error, %), 

[95% CI] from the PD analysis of the individual antibacterial effects of LZD, MER and VAN in the 

checkerboard studies with S. aureus ATCC 29213. (n.d. = not determined). 

PD parameter MER LZD VAN 

Emax [log10 CFU/mL] 
6.88 (5.2) 

[5.89; 7.88] 

4.42 (2.6) 

[4.12; 4.72] 
n.d. 

EC50 [mg/L] 
0.043 (22.7) 

[0.016; 0.070] 

2.19 (5.1) 

[1.91; 2.48] 
n.d. 

H [-] 
1.77 (29.7) 

[0.31; 3.23] 

2.45 (9.8) 

[1.83; 3.07] 
n.d. 

 

In the checkerboard study, MER displayed a higher maximum effect than LZD at a drastically lower 

EC50. MER was hence more potent than LZD, as both drugs have similar molecular weights (MER: 

383 g/mol [159], LZD: 337 g/mol [160]). The parameter estimates were overall precise, except for 

EC50 and H of MER for which imprecision was to some extent higher with RSEs >20%. 

 

Time-kill curve studies. For the time-kill curve studies, the IE representing the area between growth 

and time-kill curve served as summary PD effect measure. Similarly to the checkerboard, the fitted 

sigmoidal maximum effect model described the experimental data well for both lag- (Figure 32) and 

log-phase S. aureus ATCC 29213 (Figure 33).  

 

Figure 32: Individual concentration-effect relationships for LZD, MER and VAN against lag-phase S. aureus 

ATCC 29213 observed in time-kill curve studies. Mean experimental data (points) and range (bar) are presented 

along with predictions of the sigmoidal maximum effect model (solid line). EC50 values for LZD, MER and 

VAN are indicated as vertical dashed lines. 
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Figure 33: Individual concentration-effect relationships for LZD, MER and VAN against log-phase S. aureus 

ATCC 29213 observed in time-kill curve studies. Mean experimental data (points) and range (bars) are presented 

along with predictions of the sigmoidal maximum effect model (solide line). EC50 values for LZD, MER and 

VAN are indicated as vertical dashed lines.  

 

 

 

 

Table 12: PD parameter estimates of the utilised sigmoidal maximum effect model (relative standard error, %), 

[95% CI] from the PD analysis of the individual antibacterial effects of LZD, MER and VAN in the time-kill 

curve studies in lag- and log-phase S. aureus ATCC 29213. Non-overlapping confidence intervals between 

estimates in lag- and log-phase of the respective antibiotics are italicised. 

PD parameter MER LZD VAN 

 lag-phase 

Emax [(log10 CFU/mL)   h] 
148 (4.6) 

[130; 164] 

96 (1.9) 

[91; 101] 

154 (2.8) 

[144; 164] 

EC50 [mg/L] 
0.067 (13.4) 

[0.044; 0.089] 

1.55 (4.8) 

[1.35; 1.77] 

1.02 (4.6) 

[0.92; 1.14] 

H [-] 
2.21 (21.9) 

[0.96; 3.45] 

1.33 (5.7) 

[1.12; 1.55] 

3.17 (11.5) 

[2.31; 4.04] 

 log-phase 

Emax [(log10 CFU/mL)   h] 
196 (3.5) 

[178; 216] 

166 (4.5) 

[142; 189] 

126 (7.6) 

[103; 148] 

EC50 [mg/L] 
0.111 (9.8) 

[0.081; 0.142] 

3.44 (10.7) 

[2.27; 4.61] 

1.42 (16.9) 

[0.85; 1.99] 

H [-] 
1.82 (17.1) 

[0.96; 2.68] 

1.19 (10.7) 

[0.78; 1.59] 

1.55 (20.9) 

[0.79; 2.33] 
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The parameter estimates for the time-kill curve studies in lag- and log-phase are presented in Table 12. 

Precision of the estimates was overall high and RSE were <21.9%. Similarly to the checkerboard, 

MER was the most potent antibiotic, followed by VAN (molecular weight: 1449 g/mol [161]) and 

LZD.  

Significant differences in the parameter estimates of the sigmoidal maximum effect model between 

both growth phases were indicated by non-overlapping 95% CIs: The maximum effect of MER and 

LZD was higher against log-phase S. aureus. Conversely, for VAN, the maximum effect was lower in 

log-phase S. aureus, but the CIs were slightly overlapping. For LZD, also the EC50 values of lag- and 

log-phase bacteria were significantly different with higher EC50 for log-phase bacteria. EC50 values 

were also higher for MER and VAN against log-phase S. aureus, but CIs were overlapping. For the 

Hill factor, moderate steepness (H: 1-2) was observed for all antibiotics, except for VAN against lag-

phase S. aureus, for which the steepness was comparably high (H=3.17). 

 

 

3.3.1.2 Response surface analysis 

The estimates of the individual antibacterial effects (3.3.1.1) were employed for calculation of the 

expected additive effects of the investigated antibiotic combinations using the elaborated BI equation 

(Eq. 23). Results were then compared to the observed experimental data and tested for significant 

deviation from additivity.  

Dynamic checkerboard studies. The expected additive effects of LZD and MER were bactericidal 

for MER ≥0.25 mg/L (Figure 34, upper panel).  The observed combined effects resulted in significant 

Bliss antagonism if LZD concentrations exceeded concentrations around the MIC (Figure 34, lower 

panel).  
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Figure 34: Heat map of calculated additive response surface based on BI (upper panel) and the observed, 

experimental data of the dynamic checkerboard (lower panel) for each investigated combination of LZD and 

MER: Gradient represents bacterial counts after 18 h of incubation (mean of log10 CFU/mL, n=3); (*) indicates 

bactericidal effect, (
+
) indicates the MIC. Significant Bliss antagonism is given as ∆ log10 CFU/mL directly in 

the heat map; no Bliss synergy was observed. 

 

Time-kill curve studies in lag-phase. The response surface analysis for time-kill curve studies with 

S. aureus ATCC 29213 in the lag-phase is illustrated in Figure 35. For the investigated combination of 

subinhibitory LZD and MER, an additive interaction was observed. If concentrations for LZD 

≥4 mg/L (=2x MIC), significant Bliss antagonism was observed for all studied concentrations of MER 

(0.5-8 mg/L). A trend towards Bliss synergy was observed at subinhibitory combinations of VAN and 

MER. For inhibitory combinations of VAN and MER, the interaction was Bliss additive.  
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Figure 35: Deviation of intensity of effect (IE) from expected additivity calculated by BI ± range for the 

scenarios studied in the time-kill curve studies with lag-phase S. aureus ATCC 29213 (L / M / V = concentration 

of linezolid, meropenem and vancomycin, respectively, in mg/L). ‘Significant’ negative or positive deviation 

from Bliss independence (non-overlap of range with 95% confidence interval of residual variability of expected 

additivity response surfaces represented by dashed lines) indicated Bliss antagonism or synergy, respectively. 

 

Time-kill curve studies in log-phase. The response surface analysis for log-phase S. aureus ATCC 

29213 is presented in Figure 36. Bliss antagonism between LZD and MER was more pronounced 

against log-phase S. aureus than against lag-phase S. aureus (Figure 35). The investigated 

combinations of VAN and MER were Bliss additive with a trend towards Bliss synergy.  
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Figure 36: Deviation of intensity of effect (IE) from expected additivity calculated by BI ± range for the 

scenarios studied in the time-kill curve studies with log-phase S. aureus ATCC 29213 (L / M / V = concentration 

of linezolid, meropenem and vancomycin, respectively, in mg/L). ‘Significant’ negative or positive deviation 

from BI (non-overlap of range with 95% confidence interval of residual variability of expected additivity 

response surfaces represented by dashed lines) indicated Bliss antagonism or synergy, respectively. 

 

3.3.1.3 Semi-mechanistic modelling of time-kill curve studies 

The empiric modelling of the individual and combined effects provided quantitative insight into the 

individual (3.3.1.1) and combined effects (3.3.1.2) of LZD, MER and VAN. However, the 

mathematical model of the drug effect used (sigmoidal maximum effect model) was time-independent. 

For continuous prediction of antibacterial effects as a prerequisite for linking a population PK model 

to PD, a semi-mechanistic PD model was developed that described the time-dependency of the 

antibiotic effects and considered their mechanisms of action. Due to their different nature, two semi-

mechanistic PD models were developed for lag- and log-phase S. aureus, respectively. As a basis for 

modelling of both growth states, a life cycle-model [141] and an adaption submodel [142,143] was 

utilised (2.4.1.3.3). 

 

3.3.1.3.1 S. aureus in lag-phase at drug exposure 

Development of the PD model was a continuous process which was performed in parallel to data 

acquisition using S. aureus ATCC 29213 over a time period of ca. 2.5 years utilising the ‘learning and 

confirming’ approach outlined in ‘adaptive optimal design’ (2.4.1.3.3). An example of one 

intermediate step in this circular algorithm is presented under 3.3.1.3.1.2. 
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3.3.1.3.1.1 Model development 

The milestones of model development and experimental dataset generation are presented in Table 13.  

 

Table 13: Summary of milestones in development of the semi-mechanistic PD model along with dataset 

generation (final dataset of lag-phase S. aureus, cf. 3.2.3), GC: growth control, Lx/Mx/Vx: concentration of 

LZD, MER and VAN as multiples/fraction of MIC. 

Milestone Dataset Effect implementation Parameters 

I 

Parameterisation of the life-cycle model for LZD and MER with prior knowledge  

GC Biphasic growth model (2.3.1.4) 3.2.1.3 

L2-L16 
LZD: Inhibition of replication krep 

Induction of kdeath,LZD (replication-indep.) 
Emax, EC50 of 

checkerboard 

(3.3.1.1),  

graphical 

M4 
MER: Inhibition of kdoub (replication-dependent) 

Stimulation of persiters in REP (kper,MER) 

L2M4, L4M4, L16M4 

Combined effect limited to effect of LZD alone, as 

effect of MER was precluded due to growth-arrest by 

LZD. 

II 

Addition of subinhibitory concentrations of LZD and MER allowing for parameter estimation 

GC Biphasic growth model (2.3.1.4) 

Estimated 

I +  

L0.25-L1 
as I 

I + 

M0.25-M2 
as I 

III 

Implementation of the Eagle-effect of MER 

II + 

M16, M64 

MER: Paradoxically reduced effect of MER at higher 

concentrations implemented as self-inhibitory effect on 

MER effect on kdoub 

Estimated L2M16, L4M16, 

L16M16, 

L2M64, L4M64 

L16M64 

as I 

IV 

Implementation of the single and combined effects of VAN with MER 

III + 

V0.25-16 

VAN: Inhibition of kdoub (replication-dependent) 

Stimulation of persiters in ‘REP’ (kper,VAN) 

Estimated V2M4, V2M64, 

V4M4, V4M64, 

V16M4, V16M64 

Combined effect limited to effect of VAN:  

Inhibitory effect of VAN on effect of MER on kdoub 

V 

Estimation of adaption of the bacteria to the effects of MER and VAN 

IV 

Consideration of adaption by bacteria using a 

concentration and time-dependent increase of EC50 of 

MER and VAN 

Estimated 

VI 

Characterisation of the interaction of VAN and MER on the level of adaptive resistance 

V + 

various subinh. 

combinations of M/V  

(Figure 21) 

Subinhibitory VAN delayed adaption of S. aureus to 

MER 
Estimated 
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The basic idea of parameterising the simplified bacterial life-cycle with a replication-dependent effect 

of MER as inhibitory effect on kdoub, and an inhibitory effect of LZD on krep, using sigmoidal 

maximum effect models was already realised in milestone I (Table 13) with a rather small dataset: As 

solely inhibitory concentrations were investigated at this stage, parameter values such as EC50 or H 

could not be estimated and were thus obtained using prior knowledge from e.g. checkerboard studies 

(3.2.2) or graphical determination (for kdeath.LZD and kper,MER). With this model, the replication-

dependent effect and persister development by MER, as well as the replication-independent effect of 

LZD which lead to growth-arrest associated with replication-independent killing (kdeath,LZD) was 

implemented. As a result, even the observed antagonistic interaction between LZD and MER was 

already predicted without any further modification of the life-cycle. Subinhibitory concentration of 

LZD and MER became available in milestone II and eventually allowed for estimation of the model 

parameters for the drug effects.  

With milestone III, higher concentrations of MER were available to cover the entire clinically relevant 

concentration range of MER. The observed paradoxically reduced effect of MER at higher 

concentrations (Figure 18) was implemented by a self-inhibitory effect of MER on kdoub with a second 

inhibitory sigmoidal maximum effect model: kdoub·[1-EMER·(1-EMER,Eagle)]. 

Studies with VAN alone and in combination with MER were generated in milestone IV: The effect of 

VAN was also implemented as a replication-dependent, inhibitory effect on kdoub. VAN was less active 

than MER and did not fully inhibit successful doubling of bacteria. Hence, a maximum inhibitory 

effect of VAN had to be estimated. In combination, the effect corresponded to the effect of VAN 

alone: kdoub·[1-EMER·(1-EMER,Eagle)·(1-EVAN)]·(1-EVAN). VAN also stimulated persister development 

(kper,VAN). 

In milestone V, the observed regrowth after initial killing for MER (e.g. 0.0625 or 0.125 mg/L in 

Figure 18) and VAN ( e.g. 0.75 or 1 mg/L in Figure 19) was mathematically described using separate 

adaption submodels for MER (Eq. 43) and VAN (Eq. 40). 

In milestone VI, the observed interaction of VAN and MER on the adaption level was implemented. 

Subinhibitory VAN was ineffective alone, but suppressed or delayed regrowth of S. aureus when 

combined with MER (Figure 37). This observation was implemented into the model by an inhibitory 

maximum effect model of VAN on the second-order time-delay rate constant τ (Eq. 43). A detailed 

description of the final model is given after the adaptive optimal design at 3.3.1.3.1.3. 

 

3.3.1.3.1.2 Adaptive optimal design 

Adaptive optimal design for planning experimental scenarios was performed in parallel throughout the 

entire period of experimental dataset generation according to the ‘learning and confirming’ algorithm 

described in 2.4.1.3.3. An example for this adaptive process was e.g. progress from milestone V to VI 

(final experimental design) in Table 13 and will be discussed more detailed for illustration purposes. 
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At the stage of milestone V, the scenarios of subinhibitory concentrations between VAN and MER had 

partly not yet been performed and the interaction between subinhibitory VAN and MER at the 

adaption level not yet been fully exploited. However, the experimental data from V0.5M1 indicated 

that VAN at 0.5x MIC being not at all effective alone suppressed regrowth observed with MER alone 

at 1x MIC (Figure 37).  

 

Figure 37: VAN at 0.5x MIC, being ineffective itself, supressed the regrowth observed with MER at 1x MIC. 

 

Implementation of a maximum effect model of VAN on the adaption process of MER [ H1 −nÍ�1,��fJ � ªÎ�� ] (Eq. 43) at the stage of milestone V did not result in an estimable value for 

EC50VAN,ARI. Hence, the knowledge-gain of performing above mentioned subinhibitory scenarios (i.e. 

V0.06M1, V0.125M1, V0.25M1, V0.5M0.25, V0.75M0.25, V0.75M0.5, V1M0.125, V1M0.25 and 

V1M0.5) was assessed by computing the expected Fisher information matrix of the experimental 

design to obtain the expected RSE (2.4.1.1.2) before performing those experiments. A value of 

0.2 mg/L for EC50VAN,ARI was assumed at that stage based on graphical examination. The other model 

parameters were set to their estimate at the stage of milestone V (First column in Table 14). The 

expected RSE for EC50VAN,ARI was unacceptably high (87.1%) indicating that the interaction between 

VAN and MER on the level of the adaption submodel could not be identified using the reduced dataset 

of milestone V. The expected RSE for the final design including the subinhibitory combinations 

between VAN and MER resulted in an expected RSE of 3.1% for EC50VAN,ARI,  supporting the 

performance of the experiments. After that, the final parameter estimates with the final design (fourth 

column in Table 14) were partly different from the ones obtained at milestone V (Table 14), e.g. the 

drug-related parameters of MER and VAN originating from the estimated EC50VAN,ARI of 0.39 mg/L 

being different from the previously assumed 0.20 mg/L. Yet, the expected and observed RSE were in 

reasonable agreement for the final design. 
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Table 14: Illustration of adaptive optimal design at transition from milestone V to the experimental design for 

obtaining the dataset of milestone VI (= final design): Parameter estimates at milestone V were utilised to 

compute expected RSE of designs of milestone V and the final design (left) and compared to the parameter 

estimates from the final design and the observed RSE (right). *: assumed. Bold values: RSE of example 

mentioned in the text.  For explanation of the parameters see Table 15. 

Parameter 
Estimate 

(milest. V) 

Exp. RSE 

(milest. V) 

Exp. RSE 

(final design) 

Estimate 

(final design) 

Obs. RSE 

(final design) 

Parameters of the bacterial life-cycle 

CFU0  

[log10 

CFU/mL] 

6.00 0.4 0.4 6.07 0.4 

CFUmax  

[log10 

CFU/mL] 

9.64 0.7 0.6 9.43 0.6 

klag  

[h
-1

] 
1.69 43.8 40.8 0.88 16.0 

krep  

[h
-1

] 
1.38 4.5 4.2 1.56 7.2 

kdeath, per  

[h
-1

] 
0.16 34.8 30.6 0.23 9.3 

Drug-related parameters 

EC50,LZD  

[mg/L] 
0.71 9.5 9.4 0.68 9.1 

HLZD  

[-] 
1.48 7.7 7.6 1.55 7.5 

kdeath, LZD 

[h
-1

] 

 

0.093 9.0 8.9 0.10 7.5 

EC50,MER,t=0 

[mg/L] 
0.030 4.0 2.4 0.022 2.8 

HMER  

[-] 
3.06 10.4 9.0 3.23 11.7 

EmaxMER,Eagle , 

% 
0.30 6.3 6.2 0.33 5.9 

EC50,MER,Eagle 

[mg/L] 
1.07 13.4 13.4 1.35 8.9 

βMER  

[-] 
7.38 9.6 9.4 9.53 4.2 

τMER  

[L/(mg·h)] 
0.35 16.6 14.2 0.47 5.8 

kper,MER  

[h
-1

] 

 

0.034 78.8 68.1 0.11 32.6 

EmaxVAN, 

% 
0.76 1.6 1.5 0.74 1.9 

EC50,VAN,t=0 

[mg/L] 
0.49 2.3 2.1 0.46 1.8 

EC50VAN,ARI 

[mg/L] 
0.20* 87.1 3.1 0.39 5.0 

βVAN  

[-] 
3.30 6.3 5.9 3.60 6.7 

τVAN  

[L/(mg·h)] 
0.034 22.6 20.7 0.034 11.2 

kper,VAN  

[h
-1

] 
0.0037 31.7 28.7 0.017 50.9 
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3.3.1.3.1.3 Final model 

The final semi-mechanistic PD model that simultaneously described the single and combined effects 

of LZD, MER and VAN against lag-phase S. aureus ATCC 29213 with the final experimentally 

obtained dataset of milestone VI is illustrated in Figure 38.  

 

Figure 38: Graphical sketch of the semi-mechanistic PD model (left) and adaption submodel of VAN and MER 

(right) for lag-phase S. aureus; Solid arrows: Mass transfer between compartments; dashed arrows: stimulatory 

effects; ----|: inhibitory effects; abbreviations see text. 

 

The system of ODEs (Eq. 35)-(Eq. 37) characterising the bacterial life cycle comprised stages of 

growing (‘GRO’), replicating (‘REP’) and persisting bacteria (‘PER’). Initial conditions (IC) are 

presented next to the respective ODE. Drug effects that perturbed the bacterial life cycle were 

implemented with sigmoidal maximum effect models (EDRUG) with  Emax=1 as the magnitude of 

perturbation was quantified by the respective rate constants k. A different parameterisation with an 

estimated value of Emax potentially <1 was only required for effects on kdoub, as (i) kdoub represented 

the rate constant for doubling and drug effects could potentially only inhibit a fraction of successful 

doublings, and (ii) the combination of effects of MER and VAN on kdoub required more flexibility to 

cover the observed interactions between MER and VAN and the paradoxical effect of MER. In 

particular, the drug effects were implemented as follows: LZD was assumed to growth-arrest the 

bacteria in ‘GRO’ leading to a replication-independent death quantified by kdeath,LZD. The effects of 

VAN and MER were implemented by a modified BI term (1-EMER)×(1-EVAN), accounting for the self-

inhibitory Eagle effect of MER and the observation that the maximum joint effect of MER and VAN 

was limited to the effect of VAN (Eq. 35) as outlined in 3.3.1.3.1.1. The biphasic killing, i.e. persister 

development after initial killing for MER and VAN was described by the rate constants kper,MER and 
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kper,VAN, which were stimulated by the respective antibiotics during replication (Eq. 36) and quantified 

in ‘PER’ (Eq. 37).  

 q�m^q¬ 
 −20� '7,ÏÐ« � nÏÐ« � �m^ 

−	24��H¬, &��J � H1 − nÏÐ«J � �m^ 

+205�� � g1 − nÎ��,' � �1 − n�s>Î��,� 3Ñ� � nÎ��,� 3Ñ��� �1 − nÍ�1,'�j � �1 − n�s>Í�1 � nÍ�1,'� � mn� � 2 

IC: CFU0 

(Eq. 35) 

qmn�q¬ 
 24��H¬, &��J � H1 − nÏÐ«J � �m^ 

−205�� � mn�	 − 2��4,Î�� � nÎ��,' � mn� − 2��4,Í�1 � nÍ�1,' � mn� 

IC: 0 

(Eq. 36) 

q�nmq¬ 
 2��4,Î�� � nÎ��,' � mn� + 2��4,Í�1 � nÍ�1,' � mn� 

−20� '7,��� � �nm  

IC: 0 

(Eq. 37) 

 24��	was assumed to decrease if bacterial concentrations reached the capacity limit CFUmax. The lag-

phase to attain exponential growth was estimated by a first-order delay rate constant klag. Both aspects 

were considered as follows: 

24��H¬, &��J 
 24�� � �1 − *+,Ë¦/'� � u1 − ���¡���¡���¢£¤¥¦§ v    (Eq. 38) 

 

The adaption of S. aureus to MER and VAN was implemented as an increasing EC50 over time (cf. 

2.4.1.3.3 for notation) for VAN (Eq. 41) and MER (Eq. 44) and stimulated by exposure to VAN (Eq. 

40) and MER (Eq. 43). As subinhibitory VAN delayed the adaption of S. aureus to MER, an 

inhibitory effect quantifying the adaptive resistance interaction between VAN and MER, EVAN,ARI, was 

implemented (Eq. 43).  

0��¨©©,ÒÓÔ0' 
 −ª � &Í�1H¬J � �m5��  IC=1  (Eq. 39) 
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0��¨©©,ÕÖ×0' 
 −H1 − nÍ�1,��fJ � ªÎ�� � &Î��H¬J � �m5��,Î�� IC=1  (Eq. 42) 

0��¨­,ÕÖ×0' 
 H1 − nÍ�1,��fJ � ªÎ�� � &Î��H¬J � �m5��,Î��	  IC=0  (Eq. 43) 

n&x),Î��H¬J 
 ®Î��H¬J � n&x),Î��,'()  

with ®Î��H¬J 
 1 + ¯Î�� � �m5B,Î��H¬J (Eq. 44) 

 

 

The ODE system was numerically solved using ‘lsoda’ (automatic detection of stiff- and non-stiff 

ODE system) of ‘deSolve’ in ‘R’ [128] with a relative error tolerance set to 1e-10. Parameters were 

estimated in a sequential manner: (i) log-transformed parameters were used to avoid convergence to 

implausible negative parameter values and to indirectly harmonise the parameter step-size for the 

estimation algorithm. The robust derivative-free Nelder-Mead algorithm [162] (implemented in 

‘optim’ of R Core [127]) was used for this first step. For step (ii), parameters were back-transformed 

to normal scale and the parameter estimates of stage (i) were used as initial estimates for the more 

sensitive gradient-based ‘BFGS’ algorithm [163] (‘optim’ of R Core [127]). The final parameter 

estimates from stage (ii) were used to compute the observed Fisher information matrix to obtain the 

standard errors of the estimates.  

The final parameter estimates of the semi-mechanistic PD model for lag-phase S. aureus are presented 

in Table 15 and are divided in parameters of the bacterial life-cycle and drug-specific parameters. The 

parameter values of the bacterial life-cycle, i.e. CFU0, CFUmax was in well agreement with those that 

one would determine by visual inspection (e.g. from Figure 17). krep was very close to the value 

obtained in the log-phase with the biphasic growth model (1.73 h
-1

 in 3.2.1.3); overlapping CIs 

indicated that the various drug-effects of LZD, MER and VAN did not perturb the parameter estimates 

of drug-free growth. For LZD, the drug effects were constant over time and EC50 and H were in range 

of the parameter estimates from the empiric model (3.3.1.1). When interpreting the plain parameter 

values of the drugs MER and VAN, it has to be noted that comparison of single parameter values 

provides only limited insight, e.g. due to the interplay of EC50 with the adaption parameters β and τ. A 

combined interpretation of the adaption processes is given in the discussion (4.3.3).  

 

 

0��¨­,ÒÓÔ0' 
 ª � &Í�1H¬J � �m5��	   IC=0  (Eq. 40) 

n&x),Í�1H¬J 
 ®Í�1H¬J � n&x),Í�1,'()  

with ®Í�1H¬J 
 1 + ¯Í�1 � �m5B,Í�1H¬J (Eq. 41) 
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Table 15: Parameter estimates of the final semi-mechanistic PD model for lag-phase S. aureus, relative standard 

errors (RSE) in % obtained from the variance-covariance matrix, 95% confidence intervals determined by a non-

parametric bootstrap analysis (n=1198) and short explanation of the model parameters.  

Parameter [Unit] Estimate RSE % 

[CI95%] 

Explanation 

Parameters of the bacterial life-cycle 

CFU0  

[log10 CFU/mL] 

6.06 0.4 

[6.02; 6.09] 

Initial colony forming units (CFU)/mL at beginning 

of the experiment 

CFUmax   

[log10 CFU/mL] 

9.43 0.6 

[9.26; 9.68] 

Maximum attainable bacterial growth 

klag [h
-1

] 0.88 16.0 

[0.662; 2.28] 

First-order time delay rate constant to attain log-

phase 

krep [h
-1

] 1.56 7.2 

[1.25; 1.90] 

Transit rate constant from growing to replicating 

state; rate-limiting step for growth 

kdoub [h
-1

] 100 FIX 

[-] 

Rate constant of doubling; represents actual 

replication (fixed to high rate constant as not rate-

limiting); MER and VAN impaired successful 

replication 

kdeath, per [h
-1

] 0.23 9.3 

[0.189; 0.307] 

Basal death rate constant of persistent bacteria 

Drug-related parameters 

EC50,LZD [mg/L] 0.68 9.1 

[0.563; 0.802] 

CLZD leading to half-maximum drug effect of LZD on 

krep (growth arrest) and stimulation of kdeath,LZD 

HLZD [-] 1.55 7.5 

[1.35; 1.63] 

Hill factor LZD (steepness of the concentration-effect 

relationship) 

kdeath, LZD [h
-1

] 0.10 7.5 

[0.092; 0.114] 

Basal death rate constant of growth-arrested bacteria, 

induced by LZD 

 

EC50,MER,t=0 

[mg/L] 

0.022 2.8 

[0.0189; 0.0262] 

CMER leading to half-maximum drug effect of MER 

on kdoub and kper,MER at t=0 

HMER [-] 3.23 11.7 

[2.27; 5.48] 

Hill factor MER (steepness of the concentration-

effect relationship) 

EmaxMER,Eagle,% 32.8 5.9 

[26.2; 35.6] 

Percentage by which the effect of MER at higher 

concentration decreased from maximum  

(67.2 % impaired doublings remained) 

EC50,MER,Eagle 

[mg/L] 

1.35 8.9 

[0.856; 1.41] 

CMER leading to half-maximum paradoxical effect of 

MER on kdoub  

HMER, Eagle [-] 4 FIX 

[-] 

Hill factor MER (steepness of the concentration-

Eagle-effect relationship) 
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βMER [-] 9.53 4.2 

[7.61; 22.0] 

Factor that calculates maximum possible adapted 

EC50 of bacteria by [(1+βMER )× EC50,MER,t=0] 

τMER [L/(mg·h)] 0.47 5.8 

[0.154; 0.653] 

Second-order delay rate constant for adaption with 

respect to time and CMER 

kper,MER [h
-1

] 0.11 32.6 

[0.0545; 0.263] 

Persister development rate for MER during 

replication 

kdeg,MER [h
-1

] 0.019 FIX 

[-] 

First-order degradation rate constant of CMER; drug 

degradation determined by HPLC (3.1.3), hence fixed 

during estimation 

 

EmaxVAN, % 74.3 1.9 

[70.8; 78.5] 

Percentage by which VAN decreased successful 

doubling at maximum  

EC50,VAN,t=0 

[mg/L] 

0.46 1.8 

[0.430; 0.482] 

CVAN leading to half-maximum drug effect of VAN 

on kdoub and kper,VAN at t=0 

HVAN [-] 20 FIX 

[-] 

Hill factor VAN (steepness of the concentration-

effect relationship); fixed as estimation was not 

possible and very steep (on/off) initial concentration-

effect relationship was observed in time-kill curves 

EC50,VAN,ARI 

[mg/L] 

0.39 5.0 

[0.293; 0.515] 

CVAN leading to half-maximum suppression of 

adaption of S. aureus to MER 

H,VAN,ARI [-] 1.0 FIX 

[-] 

Hill factor VAN for suppression of adaption of 

S. aureus to MER 

βVAN [-] 3.59 6.7 

[2.60; 4.81] 

Factor that calculates maximum possible adapted 

EC50 of bacteria by [(1+βVAN )× EC50,VAN,t=0]  

τVAN  

[L/(mg·h)] 

0.034 11.2 

[0.0197; 0.0638] 

Second-order delay rate constant for adaption with 

respect to time and CVAN 

kper,VAN [h
-1

] 0.017 50.9 

[0.00722; 0.0561] 

Persister development rate constant for VAN during 

replication 

kdeg,VAN [h
-1

] 3.9e-03 FIX 

[-] 

First-order degradation rate constant of CVAN; drug 

degradation determined by HPLC (3.1.3), as an 

independent variable, was fixed during estimation 

σ 

[log10CFU/mL] 

0.63 - Residual additive variability, no RSE reported as 

calculated from final objective function value 

 

The superiority of the final model over other key models was assessed by calculation of model 

selection criteria (Appendix Table 19). As the number of data points to parameters (n/p) was >73.5 

even for the most complex model tested, AIC and not AICc was used (if appropriate):  
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• Both inclusion of the persister development rates kper,MER (∆-2LL: -64.89) and kper,VAN (∆-2LL: -

47.80)  were statistically significant as indicated by the LRT and hence remained in the final 

model.  

• The inclusion of the paradoxically reduced (Eagle-) effect [164] for MER substantially 

improved the model (∆AIC: -104.64).  

• Inclusion of EmaxVAN significantly improved the model compared to a model with a maximum 

effect determined solely by the replication rate constant (∆-2LL: -58.34). 

• Considering the interaction on the adaption submodel (i.e. that subinhibitory VAN delayed the 

adaption of S. aureus to VAN) was highly significant (∆-2LL: -663.20). Conversely, if a 

potential interaction on the adaption level between MER influencing the adaption of S. aureus 

to VAN was evaluated, the more complex model with both adaption processes resulted in a 

worse model fit than the final model and also the LRT favoured the final model (∆-2LL: -

18.32).  

• A biphasic growth model with a separate growth rate for lag- and log-phase (2.3.1.4) was 

superior to the single growth rate with first-order delay (Eq. 38) (∆AIC: +18.01). However, 

the parameter estimates were highly imprecise for klag (RSE: 77.4 %) leading to model 

instabilities during estimation. In addition, the biphasic growth model only slightly improved 

the fit of the GC curve with its very dense sampling, but none of the time-kill curves with 

antibiotic. Hence, it was not considered as the final model.  

 

3.3.1.3.1.4 Final model evaluation 

Internal evaluation. The precision of the parameter estimates (RSE% in Table 15) was assessed by 

evaluating the relative standard errors computed from the variance-covariance matrix at the objective 

function minimum. Except for kper,VAN, the parameters were estimated with adequate or high precision. 

kper,VAN remained in the final model as its inclusion improved the model (as outlines above) and the 

95% CI of the bootstrap analysis for this parameter did not include zero. 

Correlation between the structural parameters of the semi-mechanistic PD model was assessed by 

inspecting the correlation matrix (Eq. 14) which was graphically illustrated in Figure 73 in the 

Appendix using the ‘corrplot’ package in ‘R’ based on [165]: High positive correlation (≥0.8) was 

observed for kper,MER with kdeath,PER (0.82) and HMER with EmaxVAN (0.83). High negative correlation (≤-

0.8) was observed for HMER with krep (-0.85), EmaxVAN with krep (-0.88), βVAN with τVAN (-0.91) and klag 

with krep (-0.86). For computation of 95% CIs (CI95% in Table 15), a non-parametric bootstrap analysis 

was performed to consider potentially asymmetric intervals and non-normally distributed parameter 

estimates. As a single bootstrap run required ca. 4 h of single thread CPU time, the performed 1200 

bootstrap runs were split into 12 parallel tasks and required ca. 20 days to finish. 1198 of 1200 runs 
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converged, two runs failed due to parameter values leading to instabilities of the ODE solver. 

Assessment of the frequency distribution of the obtained 1198 bootstrap parameter sets revealed very 

few implausible negative estimates (48 out of 25158 estimates; 0.19%) originating from the 

unconstrained estimation in stage (ii) (Figure 74 in Appendix). Overall, the 95% CIs reflected the RSE 

which were obtained from the variance-covariance matrix at the final parameter estimates. None of the 

95% CIs included zero. 

Goodness-of-fit plots (Figure 75) and residual analyses (Figure 76 in appendix) indicated good 

agreement of the predicted and the observed log10 CFU/mL. As all experimental raw data was 

included in the analysis, cluster formation could be observed in the goodness-of-fit plots originating 

from multiple observations per predicted observation.  

A visual predictive check was performed simulating 1000 time-kill curves stratified for the different 

experimental scenarios and considering both the variability of the parameters (using the variance-

covariance matrix) and the residual variability σ². Those simulated time-kill curves were in very good 

agreement with the experimentally observed data, indicating good predictive performance of the 

developed semi-mechanistic PD model (Figure 39).  
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Figure 39: Visual predictive check plots for the final semi-mechanistic PD model for lag-phase S. aureus. Points 

represent experimental data; red line indicates median prediction and grey shaded area represents the 90% 

prediction intervals (PI) based on 1000 stochastic simulations for each scenario. Lx / Mx / Vx = 

multiples/fractions of the MIC of linezolid, meropenem and vancomycin, respectively. 

 

External evaluation. The experimental data from the adaptive resistance studies (3.2.5) being not part 

of the model development process was used to externally evaluate the adaption submodel of the final 

semi-mechanistic PD model for lag-phase S. aureus. The effect of the second exposure period to the 

antibiotic was evaluated based upon experimentally pre-exposed bacteria (points in Figure 40) and 

compared to the model prediction (red lines in Figure 40). Figure 40 overall displays very good 

agreement of the experimentally observed and the predicted time-kill curves. A trend to 

underprediction of the adaptive resistance towards VAN (scenario V1-V2) was observed, but the 
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overall trend (regrowth) was well predicted. This indicated that the utilised adaption submodel 

[142,143] was suitable to describe the adaption of S. aureus by an increasing EC50 over time for MER 

and VAN. 

 

 

Figure 40: Prediction (red lines) of adaptive resistance investigations with MER (M) and VAN (V) at 

concentrations around their MIC value (number indicates multiple/fraction of MIC). First part of the label 

indicates concentration tier of first (pre-)exposure period, second part of the label the concentration tier of the 

second exposure that is displayed in the plot. Points represent experimental data from 3.2.5. 

 

The developed semi-mechanistic PD model was challenged with prediction of other assumed 

antagonistic antibiotic combinations between cell-wall antibiotics and protein-synthesis inhibitors and 

was found to successfully predict antagonism between VAN and LZD against five MRSA strains 

[146] (Appendix Figure 77), penicillin and erythromycin against three strains of streptococcus 

pneumoniae [147] (Appendix Figure 78) and ampicillin and chloramphenicol against a meningeal 

isolate of group B streptococci [148] (Appendix Figure 79). In all scenarios, the EC50 of the drug 

effects could not be estimated (exclusively inhibitory concentrations studied) and hence were set to the 

respective MIC value reported in the publications. The values of CFUo, CFUmax, krep, the value of the 

killing rate constant of the protein-synthesis inhibitors (analogous to kdeath,LZD) and persister 
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development rate constants kper were estimated separately for each strain. Figure 41 illustrates reliable 

prediction of all external scenarios.  

 

Figure 41: Observed vs. predicted log10 CFU/mL for the external evaluation of the semi-mechanistic PD model. 

VAN and LZD against MRSA, penicillin (PEN) and erythromycin (ERY) against S. pneumoniae and ampicillin 

(AMP) and chloramphenicol (CHL) against group B streptococci.  

  

 

3.3.1.3.2 S. aureus in log-phase at drug exposure 

3.3.1.3.2.1 Model development 

In addition to the lag-phase dataset, experimental data on the effect of LZD, MER and VAN against 

log-phase S. aureus ATCC 29213 was generated the present thesis when the impact of the growth-

state at drug exposure was assessed. As a starting point, the developed semi-mechanistic PD model 

from lag-phase (3.3.1.3.1) was also applied to the log-phase dataset. As the log-phase time-kill curve 

studies contained few combinatory experiments, and particularly no subinhibitory combinations, 

solely the single drug effects were subject to modelling tasks.  

The final semi-mechanistic PD model for lag-phase S. aureus (3.3.1.3.1.3) was modified such as to 

capture the PD of LZD, MER and VAN against log-phase S. aureus. Key models generated during 

model development are summarised in Table 20 in the Appendix. The superiority of the final model 
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over other key models was assessed by calculation of model selection criteria (Appendix Table 19). As 

the number of data points to parameters (n/p) was 29.6 and hence <40, AICc was used (if appropriate). 

For LZD, the time-kill curves for log-phase S. aureus had a very similar shape for concentration up to 

4 mg/L compared to lag-phase bacteria. This effect was implemented by a growth-arresting effect of 

LZD, similarly to the lag-phase model. However, for higher concentrations of LZD, an additional 

killing effect was observed up to 4 h and mathematically considered by an additional time-dependent 

killing rate on ‘GRO’. This approach was superior to not considering this killing effect at higher 

concentrations (∆AICc: -97.24) or to implementing an initial replication dependent effect of LZD 

(∆AICc:-65.47). 

For MER, the paradoxically reduced effect at higher concentrations (Eagle effect [164]) was much less 

pronounced in log-phase compared to lag-phase S. aureus. Mathematical implementation of an Eagle-

effect did not improve the model fit and a simpler model with a single replication-dependent effect for 

MER was superior (AICc: -4.42).  

Estimation of a persister development rate for MER was imprecise; still kper,MER was implemented and 

fixed to its final estimate to increase model stability which improved the model with very high 

significance (∆-2LL: -249.33). 

For VAN, the model structure was similar compared to the final PD model for lag-phase S. aureus. 

The initial maximum killing effect was also inferior to the maximum initial effect of MER in the log-

phase scenario. Considering EmaxVAN significantly improved the model compared to a simpler model 

that had the maximum effect of VAN solely determined by the replication rate (∆-2LL: -41.13). The 

persister development rate kper,VAN significantly improved the model (∆-2LL: -156.75). 

Implementation of a basal death rate for persisting bacteria (kdeath,per) did not improve the model 

(∆AIC: -0.15) as its estimate was close to zero and the 95% CI included zero. Yet, it is likely that for 

longer observation periods it can be assumed that persisting bacteria would eventually decline, but this 

was not observed within the studied time period of 24 h. 

 

3.3.1.3.2.2 Final model  

The final model that simultaneously described the single effects of MER, LZD and VAN against log-

phase S. aureus is illustrated in Figure 42. 
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Figure 42: Graphical sketch of the semi-mechanistic PD model (left) and adaption submodel of VAN and MER 

(right) for log-phase S. aureus; solid arrows: Mass transfer between compartments; dashed arrows: stimulatory 

effects; dashed ----|: inhibitory effects. 

 

The bacterial life-cycle was parameterised taking into account the differences observed in time-kill 

curve studies between the lag- and log-phase S. aureus as elaborated in 3.3.1.3.2.1. The ODE system 

for growing bacteria ‘GRO’, replicating bacteria ‘REP’ and persisting bacteria ‘PER’ was as follows: q�m^q¬ 
 −20� '7,ÏÐ« � nÏÐ« � �m^ 

−20� '7,ÏÐ«,Ñ53 � nÏÐ«,Ñ53 � �m^ � H*+,ØÙÚ,Ë¨/'J 
−	24��H¬, &��J � H1 − nÏÐ«J � �m^ 

+205�� � �1 − nÎ��,'� � �1 − n�s>Í�1 � nÍ�1,'� � mn� � 2 

IC: CFU0 

(Eq. 45) 

qmn�q¬ 
 24��H¬, &��J � H1 − nÏÐ«J � �m^ 

−205�� � mn�	 − 2��4,Î�� � nÎ��,' � mn� − 2��4,Í�1 � nÍ�1,' � mn� 

IC: 0 

(Eq. 46) 

q�nmq¬ 
 2��4,Î�� � nÎ��,' � mn� + 2��4,Í�1 � nÍ�1,' � mn� 

IC: 0 

(Eq. 47) 
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As for the lag-phase model, 24��	was assumed to decrease if bacterial concentrations reached the 

capacity limit CFUmax. Conversely, no lag-time to attain exponential growth was required as bacteria 

had already reached exponential growth at drug exposure: 

24��H¬, &��J 
 24�� � u1 − ���¡���¡���¢£¤¥¦§ v    (Eq. 48) 

 

The adaption of S. aureus to MER and VAN was implemented as an increasing EC50 over time for 

MER and VAN stimulated by exposure to MER and VAN analogous to the lag-phase model. 

However, no interaction between VAN and MER was implemented as only single drug effects were 

assessed for log-phase S. aureus. 

 

0��¨©©,ÕÖ×0' 
 ªÎ�� � �H¬J � �m5��,Î�� IC=1  (Eq. 49) 

0��¨­,ÕÖ×0' 
 ªÎ�� � �H¬J � �m5��,Î��	  IC=0  (Eq. 50) 

n&x),Î��H¬J 
 ®Î��H¬J � n&x),Î��,'()  

with ®Î��H¬J 
 1 + ¯Î�� � �m5B,Î��H¬J (Eq. 51) 

 

0��¨©©,ÒÓÔ0' 
 −ª � �H¬J � �m5��  IC=1  (Eq. 52) 

0��¨­,ÒÓÔ0' 
 ª � �H¬J � �m5��	   IC=0  (Eq. 53) 

n&x),Í�1H¬J 
 ®Í�1H¬J � n&x),Í�1,'()  

with ®Í�1H¬J 
 1 + ¯Í�1 � �m5B,Í�1H¬J (Eq. 54) 

 

The final parameter estimates of the semi-mechanistic PD model for log-phase S. aureus are presented 

in Table 16 and presented in a similar fashion as the estimates of the lag-phase model (Table 15). The 

parameter values of the bacterial life-cycle, i.e. CFU0, CFUmax were in well agreement with those that 

one would determine by visual inspection (e.g. from Figure 17). krep of 1.64 h
-1

 was very close to the 

value obtained in the log-phase with the biphasic growth model (1.73 h
-1

 in 3.2.1.3); as for the lag-

phase model, overlapping CIs indicated that the various drug-effects of LZD, MER and VAN did not 

perturb the parameter estimates of drug-free growth. For LZD, the drug effects were separated into a 

time-dependent effect at higher concentrations (EC50,LZD,log: 6.34 mg/L) that decreased with a first-

order time-delay rate constant kLZD,log and a time-invariant effect with an EC50 of 0.41 mg/L. As for the 

lag-phase model, the plain parameter values of the drugs MER and VAN are difficult to interpret and a 

combined interpretation of the adaption processes is given in the discussion (4.3.3).  
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Table 16: Parameter estimates of the final semi-mechanistic PD model for log-phase S. aureus, relative standard 

errors (RSE) in % obtained from the variance-covariance matrix, 95% confidence intervals determined by a non-

parametric bootstrap analysis (n=1190) and short explanation of the model parameters.  

Parameter [Unit] Estimate RSE % 

[CI95%] 

Explanation 

Parameters of the bacterial life-cycle 

CFU0  

[log10 CFU/mL] 

6.23 0.8 

[6.04; 6.29] 

Initial colony forming units (CFU)/mL at beginning 

of the experiment 

CFUmax   

[log10 CFU/mL] 

9.76 0.8 

[9.59; 9.94] 

Maximum attainable bacterial growth  

krep [h
-1

] 1.64 3.8 

[1.45; 2.00] 

Transit rate constant from growing to replicating 

state; used to calculate observed, rate-limiting step 

for bacterial growth 

kdoub [h
-1

] 100 FIX 

[-] 

Rate constant of doubling; represents actual 

replication (fixed to high rate constant as not rate-

limiting); MER and VAN impaired successful 

replication 

Drug-related parameters 

EC50,LZD [mg/L] 0.41 26.8 

[0.200; 0.737] 

CLZD leading to half-maximum drug effect of LZD on 

krep (growth arrest) and stimulation of kdeath,LZD 

HLZD [-] 0.82 29.1 

[0.427; 1.58] 

Hill factor LZD (steepness of the concentration-effect 

relationship for growth arrest) 

kdeath, LZD [h
-1

] 0.20 51.3 

[0.0656; 0.345] 

Basal death rate constant of growth-arrested bacteria, 

induced by LZD 

EC50,LZD,log 

[mg/L] 

6.34 11.5 

[4.37; 20.7] 

CLZD leading to half-maximum drug effect of LZD of 

initial killing against log-phase bacteria 

HLZD,log [-] 3.39 29.6 

[1.25; 13.2] 

Hill factor LZD (steepness of the concentration-effect 

relationship for initial log-phase killing) 

kdeath, LZD, log [h
-1

] 6.80 32.5 

[2.89; 18.0] 

Initial log-phase LZD killing rate constant  

kLZD, log [h
-1

] 1.18 38.1 

[0.321; 1.29] 

First-order time delay rate constant for decreasing 

initial log-phase killing by LZD 

 

EC50,MER,t=0 

[mg/L] 

0.040 9.5 

[0.0315; 0.0525] 

CMER leading to half-maximum drug effect of MER 

on kdoub and kper,MER at t=0 

HMER [-] 2.26 8.6 

[1.54; 2.94] 

Hill factor MER (steepness of the concentration-

effect relationship) 

βMER [-] 4.10 10.4 

[2.81; 9.51] 

[(1+βMER )× EC50,MER,t=0] calculates maximum 

possible adapted EC50 of bacteria 
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τMER [L/(mg·h)] 0.55 23.0 

[0.122; 0.822] 

Second-order delay rate constant for adaption with 

respect to time and CMER 

kper,MER [h
-1

] 2.65e-04 FIX 

[-] 

Persister development rate for MER during 

replication 

kdeg,MER [h
-1

] 0.019 FIX 

[-] 

First-order degradation rate constant of CMER; drug 

degradation determined by HPLC (3.1.3), hence fixed 

during estimation 

 

EmaxVAN [%] 73.7 2.8 

[67.9; 79.8] 

Percentage by which VAN decreased successful 

doubling at maximum  

EC50,VAN,t=0 

[mg/L] 

0.43 3.3 

[0.354; 0.493] 

CVAN leading to half-maximum drug effect of VAN 

on kdoub and kper,VAN at t=0 

HVAN [-] 20 FIX 

[-] 

Hill factor for replication dependent effect of VAN; 

fixed as estimation was imprecise 

βVAN [-] 11.5 7.3 

[9.19; 38.8] 

[(1+βVAN )× EC50,VAN,t=0] calculates maximum 

possible adapted EC50 of bacteria 

τVAN [L/(mg·h)] 0.019 17.5 

[0.00296; 0.0381] 

Second-order delay rate constant for adaption with 

respect to time and CVAN 

kper,VAN [h
-1

] 0.66 33.0 

[0.237; 1.86] 

Persister development rate for VAN during 

replication 

kdeg,VAN [h
-1

] 3.9e-03 FIX 

[-] 

First-order degradation rate constant of CVAN; drug 

degradation determined by HPLC (3.1.3), as an 

independent variable, was fixed during estimation 

σ 

[log10CFU/mL] 

0.58 - Residual additive variability, no RSE reported as 

calculated from final objective function value 

 

 

3.3.1.3.2.3 Final model evaluation 

The precision of the parameter estimates (RSE% in Table 16) was assessed by evaluating the relative 

standard errors computed from the variance-covariance matrix at the objective function minimum. 

Apart from kdeath, LZD, the parameters were estimated with adequate or high precision.  

Correlation between the structural parameters of the semi-mechanistic PD model was assessed by 

inspecting the correlation matrix (Eq. 14) which was graphically illustrated in Figure 80 (Appendix) 

using the ‘corrplot’ package in ‘R’ based on [165]: High positive correlation (≥0.8) was observed for 

kdeath,LZD with kdeath,LZD,log (0.95). High negative correlation (≤-0.8) was observed for βVAN with τVAN (-0.9) 

and kdeath,LZD with HLZD (-0.83). 

For computation of 95% CIs (CI95% in Table 15), a non-parametric bootstrap analysis was performed 

to consider potentially asymmetric intervals and non-normally distributed parameter estimates. A 
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single bootstrap run required ca. 0.5 h of single thread CPU time. 1190 of 1200 runs converged, 10 

runs failed due to parameter values leading to instabilities of the ODE solver. Assessment of the 

frequency distribution of the obtained 19 bootstrap parameter sets revealed very few implausible 

negative estimates (130 out of 22762 estimates; 0.57%) originating from the unconstrained estimation 

in stage (ii) (Appendix Figure 81). For the parameters related to the initial log-phase effect of LZD, 

bimodal parameter distributions were observed, potentially originating from the comparably sparse 

data situation (scenarios 8 and 32 mg/L) leading to a higher chance that no data point from one or the 

other scenario was sampled. For the other parameters, single mode distributions were observed. 

Goodness-of-fit plots (Appendix Figure 82) and residual analyses (Appendix Figure 83) indicated 

good agreement of the predicted with the observed log10 CFU/mL.  

A visual predictive check was performed simulating 1000 time-kill curves stratified for each 

experimental scenario considering both the variability of the parameters (using the variance-

covariance matrix) and the residual variability σ². Those simulated time-kill curves were in decent 

agreement with the experimentally observed data indicating good predictivity of the developed semi-

mechanistic PD model (Figure 43).  



Results 

 

100 

 

Figure 43: Visual predictive check plots for the final semi-mechanistic PD model for log-phase S. aureus. Points 

represent experimental data; Red line indicates median prediction and grey shaded area represents 90% PIs based 

on 1000 stochastic simulations for each scenario. Lx / Mx / Vx = multiples/fractions of the MIC of linezolid, 

meropenem and vancomycin, respectively. 
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3.3.2 Simulations 

3.3.2.1 Prediction of PK/PD indices 

Published population PK models for MER, LZD and VAN (2.4.2.1) were utilised to calculate unbound 

concentration time profiles which were linked to the final semi-mechanistic PD models for both lag- 

(3.3.1.3.1) and log-phase S. aureus (3.3.1.3.2). Typical PK profiles for MER, LZD and VAN are 

presented in Figure 84 in the Appendix. With the resulting population PK/PD model, an in silico dose 

fractionation study was performed and the PK/PD indices fCmax/MIC, fAUC/MIC and %fT>MIC were 

calculated and correlated with the obtained bacterial load in log10 CFU/mL at 24 h for both lag- and 

log-phase S. aureus (Figure 44 and Figure 45) to identify the PK/PD indices that best correlate with 

the effect. In addition, the obtained PK/PD-index - effect relationship was used to calculate 

bacteriostatic (i.e. no growth or killing compared to the inoculum) and/or bactericidal (i.e. log3-fold 

bacterial killing compared to the inoculum) PK/PD breakpoints.  

 

Figure 44: Prediction of PK/PD indices fCmax/MIC, fAUC/MIC and %fT>MIC for MER, LZD and VAN against 

lag-phase S. aureus. Points represent simulated log10 CFU/mL at 24 h using the linked population PK/PD 

model, dashed horizontal lines at 6 log10 CFU/mL represent inoculum and bacteriostatic effect, dashed 

horizontal line at 3 log10 CFU/mL represents bactericidal effect, red lines represent prediction of an inhibitory 

sigmoidal maximum effect model (2.4.1.3.1) fitted to the simulated data, R²: coefficient of determination. 
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Figure 45: Prediction of PK/PD indices fCmax/MIC, fAUC/MIC and %fT>MIC for MER, LZD and VAN against 

log-phase S. aureus. Points represent simulated log10 CFU/mL at 24 h using the linked population PK/PD 

model, dashed horizontal lines at 6 log10 CFU/mL represent inoculum and bacteriostatic effect, dashed 

horizontal line at 3 log10 CFU/mL represents bactericidal effect, red lines represent prediction of an inhibitory 

sigmoidal maximum effect model (2.4.1.3.1) fitted to the simulated data, R²: coefficient of determination. 
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indicating that in some scenarios even 100% fT>MIC was insufficient to decrease bacteria compared to 

the inoculum. 

Bacteriostatic and bactericidal PK/PD breakpoints were determined by the intercept between the fitted 

inhibitory sigmoidal maximum effect model (red lines in e.g. Figure 45) and the thresholds for a 

bacteriostatic and bactericidal effect (dashed horizontal lines in e.g. Figure 45). Table 17 summarises 

the obtained PK/PD breakpoints for a bacteriostatic and bactericidal antibiotic effect at 24 h for both 

lag- and log-phase S. aureus. For MER in lag-phase S.aureus, a bacteriostatic or bactericidal effect 

was observed when fT>MIC exceeded 50% or 65%, respectively. For MER in log-phase S.aureus, a 

bacteriostatic or bactericidal effect was observed when fT>MIC exceeded 52% or 70%, respectively. For 

LZD, solely a bacteriostatic effect was attained at fAUC/MIC 56 or 59 for lag- and log-phase 

S. aureus. For VAN in lag-phase S. aureus fT>MIC correlated best and a bacteriostatic or bactericidal 

effect was observed for fT>MIC of 86% or 94%, respectively. For VAN in log-phase S. aureus 

fAUC/MIC correlated best and solely a bacteriostatic effect was achieved if fAUC/MIC exceeded 160.  

 

Table 17: PK/PD breakpoints calculated from the in silico dose fractionation study for a bacteriostatic and 

bactericidal antibiotic effect for MER, LZD and VAN against both lag- and log-phase S. aureus; n.r. = not 

reached; bold: highest R². 

 
PK/PD breakpoint 

fCmax/MIC [-] fAUC/MIC [-] %fT>MIC 

Drug 
bacteriostatic effect 

lag log lag log lag log 

MER 3.8 3.6 31 30 52 50 

LZD 4.8 4.7 56 59 85 80 

VAN 6.6 20 59 160 86 100 

Drug 
bactericidal effect 

lag log lag log lag log 

MER 7.8 6.9 44 40 70 65 

LZD n.r. n.r. n.r. n.r. n.r. n.r. 

VAN 16 n.r. 94 n.r. 94 n.r. 

 

3.3.2.2 Clinical trial simulation 

The elaborated population PK/PD models for LZD, MER and VAN for both lag- and log-phase 

S. aureus were also used to evaluate clinically relevant dosing regimens. In a first step, a clinical trial 

was simulated with 1000 virtual patients that received standard dosing regimens for LZD, MER and 

VAN. In a second step, the impact of patient covariates for drug disposition (total body weight) and 
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drug elimination (total body weight, liver function, and creatinine clearance) was investigated and 

alternative dosing regimens were investigated if appropriate.  

 

3.3.2.2.1 Virtual clinical trial with reference dosing regimens.  

The clinical trial was simulated with 1000 patients receiving the standard dosing regimens MER, VAN 

and LZD, alone and in combination. The characteristics, i.e. PK covariates of the virtual patient 

population were overall in range of the covariates of the real patient populations on which the 

population PK models were built (Table 18) to avoid extrapolation. In contrast to the literature 

[150,153,154] that reported covariate ranges, the 2.5
th
-97.5

th
 percentiles of the covariates was reported 

for the virtual population of the present study due to the larger population (Table 18). The virtual 

patients were in median 35 years old and were with 74.7 kg of normal total body weight. The renal 

function as indicated by CLCR was normal and mild renal impairment <80 mL/min was observed in 

only 8.2% of the virtual patients. 5.2% of the virtual patients were assumed to suffer from liver 

cirrhosis (Child Pugh grade C). 

 

Table 18: Characteristics of the simulated virtual population of the present study (median, 2.5th-97.5th percentile) in 

comparison to the ‘real’ patient populations underlying the population PK models from literature used for simulation of the 

PK of MER, LZD and VAN (median, range); n.r.: not reported.  

Covariate Present study 

n=1000 

MER [153] 

n=79 

LZD [150] 

n=50 

VAN [154] 

n=50 

WT  

[kg] 

74.7 

(60.6-91.7) 

70.0 

(40.6-137) 

57.3 

(38.4-100) 

60.6 

(40-130) 

AGE 

[yrs.] 

35 

(28-43) 

35 

(18-93) 

69.1 

(32-92) 

60 

(18-81) 

SCR  

[mg/dL] 

1.00 

(0.81-1.23) 

1.00 

(0.4-6.9) 

1.10 

(0.2-4.24) 

n.r. 

CLCR  

[mL/min] 

100.8 

(71.6-139.7) 

n.r. 74.0 

(9.43-330) 

76.3 

(16.3-120) 

SEX  

[% female] 

48.1% 22.8% 28.0% 44.0% 

CIR  

[% liver cirrhosis] 

5.2% n.r. 4.0% n.r. 

 

The clinical trial simulation exhibited PK variability of MER of 1000 mg TID in the virtual patient 

population and unbound Cmax was in median (5
th
-95

th
 percentile) 32.6 mg/L (22.2-46.1 mg/L) and 

unbound Cmin was 0.51 mg/L (0.022-2.94 mg/L) after the first dose (Figure 46, upper panel). With 
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respect to the PD consequences of this PK variability, the regimen was effective against both lag- and 

log-phase S. aureus and, in median a bactericidal effect was obtained after 24 h (Figure 46, lower 

panel). The median effect was close to the maximum possible effect as indicated by the narrow spread 

between the 5
th
 and 50

th
 percentile. For lag-phase S. aureus, in 91 % of the virtual patients, a 

bactericidal effect was attained at 24 h. Against log-phase S. aureus, MER was more rapidly 

bactericidal within 10 h for 96% of the simulated patients.  

The PK/PD breakpoint %fT>MIC was 72% or 86% for lag-phase S. aureus for a bacteriostatic or 

bactericidal effect, respectively, and thus higher than the values derived from the dose fractionation 

study (Table 17). For log-phase S. aureus, the PK/PD index of %fT>MIC was 56% or 62% for a 

bacteriostatic or bactericidal effect, respectively, and thus comparable to the previously determined 

value from the dose fractionation study.  

 

 

  
Figure 46: PK/PD for lag- (left) and log-phase (right) S. aureus against MER 1000 mg TID; median prediction 

(dotted lines) of unbound drug concentrations (PK; upper panel) and drug effect as log10 CFU/mL over time 

(PD; lower panel), variability (shaded area) ranging from the 5
th

 to the 95
th

 percentile (20
th

,40
th

,60
th

, 80
th

 and 90
th
 

PIs), dashed horizontal line at 6 log10 CFU/mL represents inoculum and bacteriostatic effect, dashed horizontal 

line at 3 log10 CFU/mL represents bactericidal effect. 
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Figure 47: PK/PD index %fT>MIC for MER in lag- (left) and log-phase S. aureus (right) derived from the clinical 

trial simulation with MER 1000 mg TID, red lines represent prediction of an inhibitory sigmoidal maximum 

effect model (2.4.1.3.1) fitted to the simulated data, dashed horizontal line at 6 log10 CFU/mL represents 

inoculum and bacteriostatic effect, dashed horizontal line at 3 log10 CFU/mL represents bactericidal effect. 

 

With the standard dosing regimen of 600 mg LZD BID, unbound Cmax was in median (5
th
-95

th
 

percentile) 11.6 mg/L (6.7-19.2 mg/L) and unbound Cmin was 4.22 mg/L (1.70-7.60 mg/L) after the 

first dose. This PK exposure stimulated a bacteriostatic effect for both lag- and log-phase S. aureus 

(Figure 48). For lag-phase S. aureus, only marginal median killing to 5.4 log10 CFU/mL with a 

narrow effect spread (90% PI: 5.1-6.1 log10 CFU/mL) was observed after 24 h, indicating the for most 

virtual patients the maximum effect was attained. For log-phase S. aureus, LZD 600 mg BID reduced 

the bacterial load to 4.7 log10 CFU/mL at 24 h (90% PI: 3.5 and 6.1 log10 CFU/mL). In log-phase, the 

spread in the PD curve was less narrow than for lag-phase S. aureus originating from variability in the 

beginning of the PK profile that determines the initial effect of LZD against log-phase bacteria. 

The PK/PD breakpoint fAUC/MIC determined in the clinical trial simulation (Figure 49) for a 

bacteriostatic effect were 64 in lag- and 53 in log-phase and thus comparable to the previously 

determined values of the dose fractionation study (Table 17). In log-phase, a bactericidal effect was 

predicted for fAUC/MIC of 224. In summary, due to the considerable variability around the predicted 

relationship, higher fAUC/MIC > 100-150 is required to assure reliable reduction in the bacterial load 

for all virtual patients. 
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Figure 48: PK/PD for lag- (left) and log-phase (right) S. aureus against LZD 600 mg BID; for further details 

refer to caption of Figure 46. 

 

  
Figure 49: PK/PD index fAUC/MIC for LZD in lag- (left) and log-phase S. aureus (right) derived from the 

clinical trial simulation with LZD 600 mg BID. 

 

For lag-phase S. aureus, VAN 1000 mg BID was a bactericidal regimen after 12 h for 62% of the 

virtual patients (Figure 50). At 24 h, 95 % of the virtual patients had a bacterial load lower than 

50 100 150 200 250 300

0
2

4
6

8
1

0

fAUC/MIC [-]

lo
g

1
0

 C
F

U
/m

L
 a

t 
2

4
 h

50 100 150 200 250

0
2

4
6

8
1

0

fAUC/MIC [-]

lo
g

1
0

 C
F

U
/m

L
 a

t 
2

4
 h



Results 

 

108 

4.5 log10 CFU/mL. For log-phase S. aureus, VAN 1000 mg BID did not stimulate net-killing (i.e. a 

reduction of bacteria compared to the inoculum) in median and net-growth to 8.2 log10 CFU/mL was 

observed (90% PI: 4.1-9.8 log10 CFU/mL). For 31% of the patients, net-killing was observed.  

In contrast to LZD and MER, the variability in the relationship between the PK/PD index fAUC/MIC 

and the bacterial load at 24 h was substantial and thus it was not meaningful to describe it with a 

mathematical model to derive PK/PD breakpoints. The maximum effect for all virtual patients was 

achieved for fAUC/MIC between 200 and 250 in both growth phases. 

 

 

 

Figure 50: PK/PD for lag- (left) and log-phase (right) S. aureus against VAN 1000 mg BID; for further details 

refer to caption of Figure 46. 
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Figure 51: PK/PD index fAUC/MIC for VAN in lag- (left) and log-phase S. aureus (right) derived from the 

clinical trial simulation with VAN 1000 mg BID. 

 

For combinations of standard dosing regimens of LZD and MER or VAN and MER, solely the lag-

phase scenarios were evaluated (Figure 52) as the semi-mechanistic PD model for log-phase S. aureus 

was not built upon combinatory regimens.  

The combination of LZD 600 mg BID with MER 1000 mg TID stimulated a bacteriostatic effect to a 

median bacterial load of 4.8 log10 CFU/mL after 24 h (90% PI: 4.6-5.0 log10 CFU/mL), being 

inferior to the effect of MER 1000 mg TID alone after 24 h (median: 1.4 log10 CFU/mL; 90% PI: 1.1-

5.2 log10 CFU/mL), but slightly superior compared to LZD 600 mg BID alone after 24 h (median 

5.4 log10 CFU/mL, 90% PI: 5.1-6.1 log10 CFU/mL). 

The combination of VAN 1000 mg BID with MER 1000 mg TID resulted in a bactericidal effect at 

24 h, as observed with both antibiotics individually. However, the combinatory regimen reduced the 

observed inter-individual variability of the antibacterial effects observed with the single antibiotic 

regimens (Figure 46 and Figure 50) and a bacterial load of 1.2 log10 CFU/mL (90% PI: 1.1-

1.5 log10 CFU/mL) was attained at 24 h. Due to the BID / TID administration, the PD variability was 

considerably low in both scenarios as drug concentrations of either combination partner exceeded its 

EC50. 
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Figure 52: PK/PD for lag-phase S. aureus against a combination of LZD 600 mg BID (red) with MER 1000 mg 

TID (yellow) (left) and VAN 1000 mg BID (blue) with MER 1000 mg TID (right); for further details refer to 

caption of Figure 46. 

 

 

3.3.2.2.2 Impact of covariates on the antibiotic effect.  

For assessment of the PD influence of the PK covariates, the covariate of interest was varied while the 

other covariates were set to their ‘standard’ value of 75 kg for WT, 120 mL/min for CLCR and no 

liver cirrhosis. The impact of the covariates on the antibiotic effect is presented as log10 CFU/mL at 

24 h vs. the value of the respective covariate, e.g. CLCR in Figure 53. The distribution of the effect is 

presented in percentiles, i.e. shaded areas e.g. in Figure 53 and the PTA to attain a bacteriostatic of 

bactericidal effect is given as number within the plot. 

Meropenem. The impact of CLCR on the effect of the standard dosing regimen 1000 mg TID and 

also the low-dose standard regimen of 500 mg TID for MER is presented in Figure 53. 
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Figure 53: Impact of CLCR on the effect of the standard regimens MER 500 mg TID (upper panel) and MER 

1000 mg TID (lower panel) for lag- (left) and log-phase S. aureus (right), dashed horizontal lines at 6 log10 

CFU/mL represent inoculum and bacteriostatic effect, dashed horizontal line at 3 log10 CFU/mL represents 

bactericidal effect, number indicates PTA to attain the bacteriostatic of bactericidal effect, median prediction is 

given by the dotted line and variability is illustrated by shaded areas as 5
th

 to 95
th

 percentile in 5-percentile steps.  

 

In lag-phase S. aureus, for MER 500 TID, the bacteriostatic target was reliably achieved for CLCR 

≤120 mL/min. For supraphysiological, higher CLCR up to 160 mL/min, the bacteriostatic PTA 

decreased to 80%. A reliable bactericidal effect was achieved for CLCR <80 mL/min. MER 1000 mg 

TID shifted the sufficiently high PTA to higher CLCR and a bacteriostatic effect was achieved for 

CLCR ≤140 mL/min and a bactericidal effect was achieved for CLCR ≤100 mL/min. As MER was 

more active against log-phase S. aureus, a high bactericidal PTA of 87% was achieved up to CLCR of 
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160 mL/min. For WT from 60 to 105 kg (Figure 54), a trend to lower PTA was seen for lower WT for 

MER 500 mg TID, which originates from lower MER peak exposure at higher WT and thus slower 

adaption of S. aureus to the effect of MER. Yet, overall PTA varied only marginally within ca. 10% 

absolute difference and was hence not further explored. 

  

Figure 54: Impact of WT on the effect of the standard regimen MER 500 mg TID for lag- (left) and log-phase 

S. aureus (right). Refer to Figure 53 for explanation of the illustration.  

 

The alternative regimen of continuous infusion of 1500 mg MER over 24 h (Figure 55) was superior 

over the regimens with short-term infusion and provided sufficient PTA up to CLCR of 160 mL/min. 

  

Figure 55: Impact of CLCR on the effect of the alternative regimen MER 1500 mg as continuous infusion over 

one day for lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for explanation of the illustration. 
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Linezolid. The bacteriostatic PTA was sufficient for LZD 600 mg BID for CLCR ≤120 mL/min for 

both lag- and log-phase S. aureus when no liver cirrhosis was assumed (upper panel Figure 56). For 

higher values of CLCR up to 160 mL/min, PTA was still high (79% for lag- and 86% for log-phase 

S. aureus). In presence of liver cirrhosis, the baceriostatic PTA was higher and ≥96%, even for CLCR 

of 160 mL/min (lower panel Figure 56). The standard dosing regimen did not stimulate an appreciable 

bactericidal effect in any of the scenarios (bactericidal PTA ≤5%). 

Higher WT was corellated with slightly lower bacteriostatic PTA for log-phase S. aureus, but even for 

a subpopulation with 105 kg, a high PTA of 85% was observed. 

 

  

  

Figure 56: Impact of CLCR on the effect of the standard regimen LZD 600 mg BID for a patient population 

without (upper panel) and with liver cirrhosis (lower panel) for lag- (left) and log-phase S. aureus (right). Refer 

to Figure 53 for explanation of the illustration.  
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Figure 57: Impact of WT on the effect of the standard regimen LZD 600 mg BID for a patient population 

without liver cirrhosis for lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for explanation of the 

illustration.  

 

For the alternative dosing regimens, solely the impact of CLCR is presented as the simulations with 

WT provided qualitatively similar results. The alternative dosing regimen of 1200 mg LZD applied as 

continuous infusion over 24 h was inferior compared to the standard regimen (Figure 58): The 

bacteriostatic PTA ranged from 62% to 83% in lag- and from 13% to 29% in log-phase S. aureus, 

respectively.  

  

Figure 58: Impact of CLCR on the effect of the alternative regimen LZD 1200 mg as continuous infusion over 

24 h for a patient population without liver cirrhosis for lag- (left) and log-phase S. aureus (right). Refer to Figure 

53 for explanation of the illustration.  
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Two alternative LZD regimens with intensified dosing, LZD 600 mg TID as 1 h infusion and ‘front-

loaded’ LZD 1200 mg followed by 600 mg q 12 h, are all presented in Figure 59. Whilst both 

intensified regimens increased the bacteriostatic PTA, the ‘front-loading’ regimen overall reduced the 

bacterial load to a higher extent than LZD 600 mg TID which even resulted in a bactericidal effect for 

a minor portion of the virtual patients for log-phase S. aureus. 

 

  

  

Figure 59: Impact of CLCR on the effect of the alternative regimens LZD 600 mg TID (upper panel) and ‘front-

loaded’ LZD 1200 followed by 600 mg q 12 h (lower panel) for a patient population without liver cirrhosis for 

lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for explanation of the illustration.  
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Vancomycin. Extensive differences between lag- and log-phase S. aureus were observed for the 

standard dosing regimen VAN 1000 mg BID (Figure 60). For lag-phase S. aureus, a sufficient 

bacteriostatic or bactericidal PTA was observed for CLCR ≤120 or ≤100 mL/min, respectively. 

Conversely, for log-phase S. aureus, no sufficient bacteriostatic PTA was attained even for the lowest 

CLCR of 60 mL/min (PTA: 81%).  

  

Figure 60: Impact of CLCR on the effect of the standard regimen VAN 1000 mg BID for lag- (left) and log-

phase S. aureus (right). Refer to Figure 53 for explanation of the illustration.  

 

PTA decreased with increasing WT for both lag- and log-phase S. aureus, being less influential than 

CLCR (Figure 61). 

  

Figure 61: Impact of WT on the effect of the standard regimen VAN 1000 mg BID for lag- (left) and log-phase 

S. aureus (right). Refer to Figure 53 for explanation of the illustration.  
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The alternative regimens with similar total daily doses, but decreased dosing interval, i.e. VAN 

500 mg four times daily (QID) or continuous infusion (VAN 2000 mg over 24 h) are presented in 

Figure 62 and Figure 63: For lag-phase S. aureus, VAN 500 mg QID resulted in overall higher PTAs 

being sufficient for a bactericidal effect up to a CLCR of 140 mL/min. For log-phase S. aureus, a 

sufficient bacteriostatic PTA was attained up to CLCR of ca. 80 mL/min. No bactericidal effect was 

attained for log-phase S. aureus. WT did not influence 500 mg QID dosing of VAN. 

Continuous infusion of 2000 mg VAN over 24 h resulted in a sufficient bactericidal effect for lag-

phase and a sufficient bacteriostatic effect for log-phase S. aureus for CLCR up to 160 mL/min. WT 

did not influence continuous infusion of VAN 2000 mg. 

 

  

  

Figure 62: Impact of CLCR and WT on the effect of the alternative regimens VAN 500 mg QID for lag- (left) 

and log-phase S. aureus (right). Refer to Figure 53 for explanation of the illustration.  
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Figure 63: Impact of CLCR and WT on the effect of the alternative regimens VAN 2000 mg as continuous 

infusion over 24 h for lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for explanation of the 

illustration. 

 

WT-adjusted dosing for VAN (15 mg/kg BID) inverted the observed influence of WT on the effect of 

VAN (Figure 64), and for lag-phase S. aureus, a sufficient bactericidal PTA was observed for WT ≥75 

kg and for CLCR ≤120 mL/min. This inversion, i.e. a higher PTA for higher WT originates from WT-

driven increase of the peripheral volume of distribution, which outbeats the WT-driven increase of the 

central volume of distribution leading to a more shallow decline of the PK profile with higher WT. For 

log-phase S. aureus, no sufficient PTA for any WT and CLR was observed (Figure 65). 
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Figure 64: Impact of WT on the effect of the body weight adjusted dosing regimen VAN 15 mg/kg BID for lag- 

(left) and log-phase S. aureus (right). Refer to Figure 53 for explanation of the illustration. 

 

  

Figure 65: Impact of CLCR on the effect of the body weight adjusted dosing regimen VAN 15 mg/kg BID for 

lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for explanation of the illustration.  

 

WT-adjusted dosing for VAN with a loading dose (25 - 15 mg/kg) led to a sufficient bactericidal PTA 

for lag-phase S. aureus for all investigated WT’s and for CLCR ≤160 mL/min. Insufficient PTA for 

any WT was observed for log-phase S. aureus and the higher dose did only result in a sufficient 

bacteriostatic PTA for CLCR ≤60 mL/min (Figure 66 and Figure 67). 
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Figure 66: Impact of WT on the effect of the body weight adjusted dosing regimen with a loading dose of VAN 

25 mg/kg followed by VAN 15 mg/kg for lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for 

explanation of the illustration. 

 

  

Figure 67: Impact of CLCR on the effect of the body weight adjusted dosing regimen with a loading dose of 

VAN 25 mg/kg followed by VAN 15 mg/kg for lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for 

explanation of the illustration. 

 

WT-adjusted dosing for VAN with a higher loading dose (30 - 15 mg/kg) led to a sufficient 

bactericidal PTA for lag-phase S. aureus for all investigated WT’s and for CLCR ≤160 mL/min 

(Figure 68 and Figure 69). For log-phase S. aureus, no sufficient PTA for any WT was observed, but 
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PTA was considerably higher (0.55-0.85) than for VAN 15 mg/kg BID without a loading dose (0.2-

0.54). The higher loading dose did result in a sufficient bacteriostatic PTA for CLCR ≤80 mL/min. 

  

Figure 68: Impact of WT on the effect of WT adjusted dosing regimen with a loading dose of VAN 30 mg/kg 

followed by VAN 15 mg/kg for lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for explanation of 

the illustration. 

 

  

Figure 69: Impact of CLCR on the effect of the body weight adjusted dosing regimen with a loading dose of 

VAN 30 mg/kg followed by VAN 15 mg/kg for lag- (left) and log-phase S. aureus (right). Refer to Figure 53 for 

explanation of the illustration. 
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4 Discussion 

In the following section, the utilised and developed methods, as well as the generated results are 

critically discussed and compared to current knowledge from scientific literature.  

4.1 Bioanalytical quantification of antibiotics in growth medium 

In the present thesis, a bioanalytical HPLC assay was developed and validated (3.1) according to the 

EMA guideline for bioanalytical method development [120] that allows for reliable, simultaneous 

quantification of LZD, MER and VAN in the bacterial growth medium CaMHB. The assay was 

developed mainly for two purposes: (i) quality control of the antibiotics concentration in the in vitro 

infection model, and (ii) assessment of the potential degradation profile of the utilised antibiotics. To 

the author’s knowledge, the present work describes the first HPLC assay that provides simultaneous 

quantification of the three utilised antibiotics in bacterial growth medium.  

Sample treatment. The developed sample treatment method using sample+MeOH (1+4) with 

subsequent solvent evaporation and reconstitution in water reliably precipitated the matrix constituents 

in CaMHB and prevented column clogging as indicated by no increase of pump pressure over time. 

The obtained recoveries by this processing method were reproducible and ranged from 69% to 72%, 

which is close to the maximum possible value of 80% in this case due to the 1+4 dilution of the 

sample and removal of the supernatant. Hence, ‘dilution-corrected’ recovery values were 86-90% for 

all analytes. 

For MER, recovery was higher if MeOH was used for protein precipitation instead of ACN (69% vs. 

38%), which was also found by Kipper and colleagues who precipitated plasma samples with MeOH 

(1+1) [166]. Yet, precipitation with ACN has been used for MER in published HPLC assays for 

simultaneous quantification of beta-lactam antibiotics, but their resulting assay was ten times less 

sensitive with LLOQ values of 5 mg/L [167,168] than the assay of the present work (MER LLOQ of 

0.5 mg/L). Solid phase extraction as alternative for separation of proteins and other matrix residues 

has been proposed for MER by Ohmori et al [169], which resulted in a slightly lower LLOQ of 

0.1 mg/L compared to the present work, but might also have been the result of the utilised tandem 

mass spectrometry detection.  

For LZD, both protein precipitation with ACN and MeOH provided reasonable recoveries during 

sample treatment. The obtained result of 76% (‘dilution-corrected’: 95%) for ACN + sample (4+1) is 

in line with previous findings for MHB described by Scheerans (96.6%) [31]. Ba et al used an online 

extraction method for MHB that generated slightly lower recoveries (88.0% - 93.3%) [170]. Higher 

analytical recoveries have been observed for other matrices such as plasma and microdialysate 

(108.9%) [93], which might have contributed to their slightly lower LLOQ of 0.2 mg/L for LZD 

compared to 0.5 mg/L in the present work.  
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For VAN, recovery was 71% for precipitation with MeOH and only 0.8% when using ACN. 

Contrarily, Hagihara et al found high recoveries of VAN from mouse serum, ranging from 85.1% - 

90.8% also for ACN [171], but their method had a lower ACN content (200 µL sample + 50 µL 

internal standard + 500 µL ACN). As the developed gradient method increased the organic ACN 

content to a considerable amount (up to 37.5% v/v) and also contained 0.1% TFA, a higher organic 

content of 4+1 was chosen for sample treatment to avoid potential protein precipitation during elution 

on the HPLC column. The LLOQ for VAN was set to 2 mg/L to provide reliable quantification [120] 

in presence of some baseline noise from matrix residues. Hence, the LLOQ of the present work was 

higher compared to published methods for the matrices human plasma (1 mg/L [171,172]) or 

brochoalveolar lavage fluid (0.1 mg/L [171]).  

In total, for simultaneous determination of LZD, MER and VAN in CaMHB, sample preparation was 

best if 4 aliquots of MeOH were used as precipitating agent for one aliquot of sample. 

HPLC instrument method. Isocratic elution methods for LZD [93,170,173] were used as starting 

point for development of a potential isocratic method for simultaneous quantification of LZD, MER 

and VAN. Addition of 0.1% TFA was assessed to acidify the mobile phase to provide reproducible 

retention of  MER on a C-18 column [166–169]. The resulting isocratic mobile phases were highly 

sensitive to changes of the organic content in the mobile phase with respect to retention time of MER 

and not further elaborated. Instead, the developed gradient was highly reproducible and provided 

simultaneous determination of MER, LZD and VAN in a reasonable time of 15 min. The utilised 

Accucore
®
 C-18 HPLC column allowed for the use of considerably low injection volumes of 2 µL, 

which minimised the required sample volume from the in vitro infection model and permitted several 

injections of the sample. Published assays for MER, LZD and VAN required an order of magnitude 

higher injection volumes of 20 µL [167–169,174], 40 µL [166] or even 50 µL [172,173].  

Degradation of the antibiotics in the in vitro infection model. The application of the developed 

HPLC assay to monitoring drug concentrations over time revealed markedly different stability profiles 

for the investigated antibiotics MER, LZD and VAN. LZD displayed a favourable stability profile and 

did not degrade under the experimental conditions of the in vitro infection model. This is in agreement 

with previous results for MHB from Scheerans [31,121] and Schmidt [30] or under yet more stressed 

conditions (LZD in aqueous solution at 70° C for 48 h) described by Raju and co-workers [175] who 

also found no significant degradation of LZD.  

For VAN, minor degradation to 90.6% of the initial concentration was observed within 24 h which is 

still considered stable by the EMA guideline [120]. However, due to the accurate and precise HPLC 

assay with intraday precision between 1.9% and 7.4% CV in the relevant concentration range for 

VAN, degradation was found significant as indicated by the non-zero-overlapping CI of the first-order 

degradation rate constant estimated for VAN. Stratton and Weeks used a less sensitive bioassay and 
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reported VAN to be within ±10% of the initial value in CaMHB and human serum at 37° C after 24 h 

[176]. Hence, albeit minor, degradation of VAN was considered in the semi-mechanistic PD model.  

For MER, significant and substantial degradation to 62.9% of the initial concentration was observed 

within 24 h at 37° C in CaMHB. There is evidence in the literature that degradation might be even 

more pronounced at higher concentrations of MER than those used in the present work: Lemaire and 

colleagues found degradation to 50% of the initial concentration of 50 mg/L at 37° C in broth after 

24 h [177]. Viane and co-workers assessed the stability of MER in concentrated solutions for 

intravenous infusion and monitored a decrease by up to 70% from an initial concentration of 64 g/L at 

37° C within 24 h[178]. Hence, the observed substantial degradation of MER in CaMHB was in the 

magnitude of one MIC tier and could potentially drive a regrowth pattern after initial killing in time-

kill curve studies. Notably, this knowledge was not considered when the regrowth pattern of P. 

aeruginosa under static MER exposure was described with mathematical PK/PD modelling by Tam 

and colleagues [143]. Katsube and co-workers also neglected degradation of MER when modelling the 

PK/PD relationship of MER in a dynamic in vitro infection model, although they claimed that 

deviation of predicted and actually observed mimicked PK profiles was within 20% without providing 

evidence for that [179]. In summary, the developed, validated HPLC assay of the present thesis was 

useful to reliably determine the actual concentrations of the antibiotic over time in the present in vitro 

experiments, which might be of high value also for studies in dynamic in vitro infection models [22] to 

measure if the anticipated PK profiles were in fact obtained.  

  

4.2 Microbiological experiments 

4.2.1 Preliminary microbiological experiments 

Droplet plate assay for quantification of S. aureus. To provide a quantitative basis for the 

pharmacodynamic evaluation of single and combined drug effects, a quantification assay for S. aureus 

was established (3.2.1.1) based on the ‘droplet plate’ technique [32] that was adapted to the local 

requirements and environment. Evaluation showed that the assay was accurate and had a precision 

ranging from 30.1% CV for 20 CFU/sector to 1.7% for 500 CFU/sector. The developed assay was 

resource saving compared to a previously established quantification method at the Department of 

Clinical Pharmacy and Biochemistry for both S. aureus [31] and E. faecium [122]: Whilst previously a 

100 µL bacterial sample was spread over the surface of an entire agar plate with a ‘Drigalski’ plate 

spreader, the agar plate was divided into four sectors for spot inoculation with the newly developed 

droplet plate assay reducing the consumption of agar plates to 25%. Moreover, biohazard waste was 

reduced by 90% using a downscaled dilution procedure in 48 well plates (1 mL vs. 10 mL per dilution 

step [31,122]). The measure CFU was chosen as a surrogate for the number of viable bacteria. It has to 

be noted that one CFU does not necessarily originate from a unique bacterium. In particular, S. aureus 
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tends to form bunches similar to grapes that might eventually form a CFU [110]. Nonetheless, CFU 

assays are the most frequently used method for quantification of viable bacteria [22]. Other methods to 

quantify viable bacteria include measuring phosphatase activity with a fluorescence-based assay [23], 

intracellular ATP measured by a bioluminescence assay [24] or polymerase chain reaction (PCR)-

based RNA profiling [180,181]. Of those, one method used calibration functions to approximate 

CFU/mL [23]. Some of those methods have been solely used to monitor growth kinetics [23,180], but 

not for monitoring bacterial viability under antibiotic exposure, as performed in the present work. 

Hence their usefulness for this purpose needs to be investigated in further studies. Another very 

common method to count bacteria utilises the ‘Thoma cell counting chamber’ that requires manual, 

visual cell counting in a defined volume through a microscope [25]: However, the correlation of 

bacterial cells/mL with CFU/mL was not convincing for bacterial killing, as shown by Hanberger and 

co-workers who assessed the post-antibiotic effect of imipenem against E. coli with different counting 

techniques [24]. In studies from our laboratory, Goebgen investigated the use of a coulter counter to 

count bacteria as particles in particle-free bacterial growth media [182]: Whilst the correlation between 

CFU/mL and counts/mL could be established for resting and growing cultures, quantification of a 

killing culture did not succeed, possibly due to the contribution of dead cells or cell debris to the count 

measure. Hence, because of no convincing alternative the established droplet plate assay belonging to 

the family of CFU assays represents a robust and comparable measurement method for viable bacteria, 

but at cost of being more labour-intense than other methods [23,24,180,182]. 

Minimal inhibitory concentration. The MIC values for the investigated study drugs (3.2.1.2) were 

determined according to the CLSI guideline [12]. As the utilised S. aureus ATCC 29213 strain is a 

widely used reference strain, the determined MIC values could be compared to reference values 

published by the CLSI for quality control [18]: The determined MIC values in the CaMHB from 

Oxoid
®
 of 0.125 mg/L for MER (reference 0.03-0.125 mg/L), 2 mg/L for LZD (reference: 1-4 mg/L) 

and 1 mg/L for VAN (reference: 0.5-2 mg/L) all laid within the acceptable ranges proposed by the 

CLSI. The MIC values for the two clinical isolates of S. aureus were in the typical range for MSSA 

for MER [79] and were found susceptible to both LZD [183] and VAN [184]. Regarding the quality 

control criteria of the CLSI [18], there is a considerable acceptance range of distribution mode -

50%/+100% (± 1 MIC tier). This large uncertainty of the MIC originates from several factors 

influencing the determined MIC value: (i) The MIC is determined visually; it is certainly subjective to 

the experimentalist to identify turbidity. (ii) Bacterial growth and killing is inherently continuous in 

both time and magnitude e.g. as seen in any time-kill curve generated within this thesis. The MIC 

neglects this time-dependency, as it is allowed to be read within 16 to 20 h [12]. Yet, the MIC only 

snapshots this time span once and the choice of the precise time point of this snapshot might influence 

the result. (iii) The incubation temperature is allowed to vary between 35±2° C, which might influence 

the growth rate and hence also the antibacterial effect of replication-dependent antibiotics. (iv) The 
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choice of the growth medium might also have an influence: As seen in the present work, the MIC of 

MER read in the checkerboard experiment using a CaMHB from Sigma-Aldrich
®
 was 0.0625 mg/L 

whilst the MIC was 0.125 mg/L for the CaMHB from Oxoid
®
.   

Moreover, the MIC converts the continuous antibacterial effect into a binary variable, i.e. turbidity 

indicates growth whilst clear growth medium indicates inhibition of growth. To explore the effect 

beyond the turbidity threshold of ca. 10
7
 CFU/mL, the minimum bactericidal concentration (MBC) is 

sometimes assessed [185], but this concept neither considers the concentration-dependency of the 

effect between MIC and MBC, nor does it provide a continuous effect measure itself. Despite these 

shortcomings, the MIC has been found useful as ‘scaling factor’ for assessing the attainment of 

predefined PK/PD targets that have been found predictive for antibacterial growth suppression or 

killing in clinical practice, but does not contain enough information for quantitative research as 

continuous effect description or for mechanistic PK/PD modelling [19]. 

Determination of the lag-time of S. aureus. The lag-times (3.2.1.3), i.e. the time period to attain 

exponential growth ranged between 86 and 102 min for the three investigated S. aureus strains. This 

indicated, that – under the present conditions – a pre-incubation period of 2 h is sufficient to ensure 

that S. aureus was growing exponentially, i.e. was in the ‘log-phase’ of bacterial growth. Yet, the lag-

time may depend on several factors. For instance, it can be speculated that the growth medium 

composition of the agar plates from which the colonies are harvested, the incubation time of the plate-

culture, but also the liquid growth medium and the precise incubation temperature can affect the lag-

time. Therefore, determination of the lag-time under the local experimental environment is crucial to 

ascertain exponential growth, if this is warranted in the specific experimental setting. 

 

4.2.2 Checkerboard studies 

To investigate the effect of antibiotics in combination, the concept of the MIC was extended in 

‘checkerboard’ experiments: The commonly used two-dimensional checkerboard array is constructed 

using the antibiotics in two-fold dilutions centred on their individual MIC. The ‘outer’ rows, i.e. left 

and bottom of that array represent the respective single drug MIC experiments whilst the ‘inner’ area 

of this array contains the drug combinations [33]. A positive or negative interaction between the 

antibiotics is conventionally indicated if the combined MIC is lower or higher than the single drug 

MIC values. These combined MIC values are then used to calculate FIC indices (1.3.1.3) [33] for 

decision-making using the concept of Loewe additivity [54]. This conventional checkerboard approach 

shares the limitation of assessing the effect as binary and imprecise measure with the MIC: Turbidity-

based checkerboard studies have been criticised regarding their reproducibility [35], which led to 

stricter FIC thresholds for antagonism or synergy to prevent ‘fine-scale’ decisions using the 

conventional checkerboard [34]. To further complicate matters, the FIC calculation is not standardised 

leading to qualitatively different results depending on the chosen method as described by Bonapace 
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and colleagues [33]. Ultimately, the FIC approach assumes a monotonic interaction, i.e. only one 

single type of interaction and only concentrations around the MIC and not in the entire clinically 

relevant concentration range is assessed.  

The checkerboard experiments in the present work (3.2.2) underline the limitations of the 

‘conventional’ checkerboard method when only turbidity was used as evaluation criterion. The 

turbidity threshold (>10
7 
CFU/mL) was insensitive to detect the antagonistic interaction between LZD 

and MER at inhibitory concentrations, possibly a reason why the interaction had not been detected in a 

large study applying this technique [186]. It has to be acknowledged that calculation of a precise FIC 

index for LZD and MER was not possible with the present checkerboard data as the aim was to 

elucidate the entire clinically relevant concentration range of the study drugs and not solely 

concentrations around the MIC, which led to partly larger than two-fold increments in the 

concentration tiers.  

In contrast to the conventional turbidity-based checkerboard, the ‘dynamic checkerboard’ with 

quantification of bacteria provided a continuous effect measure and allowed for a more detailed 

exploration of the interaction between MER and LZD. Although the dynamic checkerboard was 

exploited in detail using modelling and simulation techniques which will be discussed later, the 

antagonism between LZD and MER was apparent already from the raw, unprocessed dataset: The 

antagonistic effect of LZD seemed to be present if LZD concentrations exceeded its MIC as indicated 

by the darker shading in the colour gradient in the upper right part in Figure 16, but did not stimulate a 

bacterial load that is visible as turbidity. Hence, the bactericidal effect of MER was antagonised at 

inhibitory LZD, but at subinhibitory concentrations no obvious interaction could be detected from the 

raw data. Hence, the ‘dynamic’ checkerboard with quantification of bacteria in combination with 

modelling and simulation techniques, as applied in the present work, was a powerful tool for screening 

and hypotheses generation with a reasonable compromise between workload and knowledge gain. Yet, 

despite all its limitation, the conventional turbidity-based checkerboard is still much more frequently 

used than the dynamic technique with quantification of bacteria: Surprisingly 10/59 publications 

related to the search term “synergy” in the renowned Journal of Antimicrobial Chemotherapy in 2013
1
 

solely relied on turbidity-based checkerboard methods for decision making [187–196].  

 

4.2.3 Time-kill curve studies of single antibiotics  

The time and magnitude domain of the antibacterial effects of MER, LZD and VAN were elucidated 

by time-kill curve studies (3.2.3 and 3.2.4). Firstly, the single drug effects of the investigated 

antibiotics in both investigated growth phases will be discussed. 

                                                      

1 Search keyword: „synergy“, year: 2013, http://jac.oxfordjournals.org/search, accessed at 26.3.2015. 
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Meropenem. For MER, a persistent bactericidal effect was obtained for the scenarios with 0.25 mg/L 

for both lag- and log-phase S. aureus. Regrowth after initial killing was observed up to MER at 

0.125 mg/L for both investigated growth phases. The effect of MER was slightly more rapid against 

log-phase bacteria, i.e. immediate killing was observed for MER ≥0.5 mg/L, whilst for lag-phase 

S. aureus, minor growth was observed within the first hour of exposure even at the highest studied 

concentration of 8 mg/L. A possible explanation for this observation might be the mechanism of action 

of MER: As a beta-lactam antibiotic, MER interferes with cross-linking of peptidoglycan chains by 

inhibition of transpeptidase enzymes, leading to instabilities in the bacterial cell wall [77]. Potentially 

a combination of this weakened cell wall and stimulation of autolysins by the beta-lactam cause lysis 

of the bacterium [77]. As those processes require active metabolism and replication [197,198], MER-

mediated killing of lag-phase bacteria might start once they enter the log-phase after 1.5 h. Moreover, 

the observed paradoxically reduced effect of MER at ‘higher’ concentrations (≥2 mg/L) was much 

more pronounced for lag-phase S. aureus (Figure 70 left). This paradoxical effect was in general first 

described for penicillin by Eagle and Musselman already in 1948 [164], and later also for 

cephalosporins [199] and carbapenems [198] against Gram-positive bacteria. It has been speculated 

that high concentrations of the antibiotic inhibit protein synthesis to a degree that the replication-

dependent effect is decreased leading to the ‘Eagle-effect’ [21,200]. Fontana and co-workers found a 

decreased level of one autolysin in E. faecalis when exposed to higher concentrations of penicillin 

[201]. Yet, the pharmacological origin of the ‘Eagle-effect’ remains to be elucidated. The author is not 

aware of a study that showed differences in this paradoxical effect depending on the growth phase of 

the bacterium at drug exposure. One study that investigated both lag- and log-phase for MER did not 

include high enough concentrations and hence did not observe this phenomenon [202]. 

Linezolid. For LZD, the shape of the time-kill curves was similar between both growth phases up to 

concentrations of 4 mg/L and a bacteriostatic effect was obtained. For lag-phase S. aureus, the 

antibacterial effect only slightly increased with higher concentrations and remained bacteriostatic 

whilst for log-phase S. aureus, a bactericidal effect was observed after 24 h at 32 mg/L (Figure 70 

middle). Moreover, biphasic killing was observed for log-phase S. aureus: After an initially intense 

killing phase up to 4 h, slower killing comparable to the lag-phase scenario was observed for the 

scenarios with 8 and 32 mg/L. Apparently, log-phase bacteria were much more susceptible to LZD at 

higher concentrations. A speculative explanation for this can be given in LZDs mechanism of action: 

In the log-phase, more bacteria are replicating; LZD acts as protein-synthesis inhibitor and inhibits the 

formation of the initiation complex of the ribosomal subunits [85]. If this vital metabolic component is 

fully inhibited (at higher concentrations) at crucial steps during replication, this might lead to cell 

death and only bacteria that are in a growth phase, in which all vital proteins for replication have 

already been synthesised, survive. The surviving bacteria manage to substantially decrease their 

metabolic activity, leading to a growth-arrested S. aureus that is much less susceptible towards the 
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effect of LZD. As lag-phase S. aureus has a much slower initial replication rate, LZD does not ‘hit’ a 

large number of bacteria at critical, vital stages of the replication cycle and S. aureus has more ‘time’ 

to enter the growth-arrested state, leading to considerably slow killing. Published studies on the effect 

of LZD on S. aureus ATCC 29213 [28,31,87,203] and other MSSA [29] or MRSA strains [29,30] 

cluster depending on the pre-incubation time (and thus the resulting growth phase) before addition of 

LZD into the culture flask. Investigators that either did not pre-incubate [27], pre-incubated for 30 min 

[28] or 1 h [29] found a bacteriostatic effect with a reduction of ca. 1 log10 CFU/mL at maximum, 

whilst investigators that pre-incubated for 2 h [30,31] or explicitly used log-phase S. aureus [203,204] 

determined a maximum reduction of 1.9-3.8 log10 CFU/mL depending on the concentration studied. 

Maximum LZD concentrations of the cited articles were covered by the present experiments and 

inocula were similar to our study, providing evidence for the validity of this comparison. Interestingly, 

none of the investigators mentions the contradictory maximum effects in their works. 

Vancomycin. For VAN, the most striking and counter-intuitive findings were observed between both 

growth-phases of S. aureus. For lag-phase S. aureus, 5 log-fold bactericidal killing was observed for 

VAN ≥2 mg/L at 24 h. Conversely, for log-phase S. aureus, no bactericidal effect was observed at all 

and even at the highest VAN concentration of 16 mg/L, a tendency for regrowth was observed (Figure 

70 right). The observation is counter-intuitive as (i) it is often observed that antibiotics kill replicating 

bacteria more intensely [77] and (ii) VAN in particular has its target in the cell wall, exerting a 

replication-dependent effect [26]. Although the initial slopes of the time-kill curves of VAN were 

similar in both growth-phases, it seemed that log-phase S. aureus had more efficient mechanisms to 

efficiently evade from the effect of VAN. Experimental reasons can be ruled out as the result was 

obtained in several replicates on different days with similar precision comparable to the other studies. 

Yet, in case of VAN, it was more difficult to ‘externally evaluate’ the present results than for the other 

investigated drugs: Several investigators [97,176,205,206] reported to have examined the effect of 

VAN on log-phase cultures of S. aureus. Yet, three of the four cited results rather follow the killing 

pattern of the present lag-phase experiments [176,205,206]. Löwdin prepared the inoculum for the 

time-kill curve study by pre-incubating S. aureus for 6 h with subsequent dilution to 5·10
5 

CFU/mL 

[205]. Lim followed a similar procedure and reported a pre-incubation period of 4-6 h [206]. In two 

papers, no details on the preparation of the log-phase inocula are reported [97,176]. Hence, at least for 

Löwdin’s and Lim’s experiments, it can be concluded that their inoculum might represent late log-

phase or already early stationary phase cultures compared to the (early) log-phase culture in the 

present study. Solely the results from Small and Chambers [97] are similar to the present study, but 

they only investigated VAN at four times the MIC, used clinical isolates of S. aureus and utilised a 

higher inoculum of 10
7 

CFU/mL, making a direct comparison difficult. Hence, to the author’s 

knowledge, the drastically reduced effect of VAN in (early) log-phase generated by a pre-incubation 

period of 2 h compared to lag-phase S. aureus is not known yet.  
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Figure 70: Time-kill curves at the highest concentration studied for MER at 8 mg/L (left), LZD at 32 mg/L 

(middle) and VAN at 16 mg/L (right) in lag- and log-phase S. aureus. 

 

4.2.4 Time-kill curve studies of dual combinations 

Linezolid and Meropenem. For the combination of LZD and MER, the time-kill curve studies in lag-

phase S. aureus displayed that the effect of MER in combination with inhibitory concentrations of 

LZD was antagonised and corresponded to the maximum effect of LZD over the entire interval of 

24 h. This is in agreement with the dynamic checkerboard studies of the present work, but adds insight 

about the kinetics of the interaction. For lag-phase S. aureus, the antagonism was also found in the 

confirmatory studies with the two clinical isolates of S. aureus. MER, as a cell-wall antibiotic, exerts 

its effect against actively replicating bacteria. As a protein-synthesis inhibitor, LZD might growth-

arrest the bacteria and thus could preclude the effect of MER. This mechanism of interaction has been 

described for several other antibiotics of the respective drug classes [146–148], but, to the author’s 

knowledge, this is the first time for LZD in combination with a beta-lactam against MSSA. Moreover, 

MSSA does not at all exhibit the same interaction pattern as MRSA, for which synergy between the 

carbapenem antibiotics imipenem and ertapenem combined with LZD was described both in vitro and 

in animal models [37,38]. The latter is, of course, an interesting, but rather unrepresentative finding for 

the majority of S. aureus isolates in Germany and the EU, which are MSSA [117]. Also, with other 

antibiotics and pathogens, antagonism was prevalent for combinations with LZD: It has been observed 

that LZD attenuated the effect of penicillin in time-kill curve studies against two clinical isolates of S. 

pyogenes within the first 8 h [207]; however, the interaction after 24 h was much less significant than 

against S. aureus in the present experiments. Furthermore, LZD, although inactive against Gram-

negative bacteria, even attenuated the effects of aztreonam and ceftazidime against E. coli [208]. The 

authors hypothesised that LZD was able to permeate through the Gram-negative cell wall due to the 

cell-wall disrupting effect of the beta-lactam, leading to growth-arrest which in turn attenuated the 
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beta-lactam effect [208]. For the studies with log-phase S. aureus, the combined effect of LZD and 

MER was even inferior to the effect of LZD alone, which was indicative for a reciprocal suppressive 

antagonistic effect [209] between LZD and MER. Certainly, more research is crucial to elucidate the 

precise molecular mechanism of this suppressive effect of the combination.  

Vancomycin and Meropenem. For the combination of VAN and MER, detailed time-kill curve 

studies with different inhibitory concentrations of VAN and MER in lag-phase S. aureus revealed that 

the combinations were bactericidal after 24 h as were both individual agents alone. However, the 

killing kinetics was ‘dominated’ by the effect of VAN, as the early bactericidal effect (4-6 h) of MER 

alone at ‘optimal’, maximally effective concentrations (e.g. 0.25 mg/L) was antagonised and the 

combined effect corresponded to the effect of VAN. For lag-phase S. aureus, this killing pattern with a 

combined effect corresponding to the effect of VAN was also found in the confirmatory studies with 

the two clinical isolates of MSSA. MER acts at a later stage in cell-wall synthesis than VAN, which 

might explain how VAN could have precluded the effect of MER: VAN interrupts cell-wall synthesis 

by complex formation with the peptidoglycan precursors. Hence, the effect of MER that is inhibition 

of the enzyme transpeptidase that attaches the newly synthesised peptidoglycan to the existing cell 

wall, could have been precluded, as the substrate of this enzyme was complexated by VAN [76]. The 

slower killing rate of the combination might also result from inhibition of the autolytic system of 

S. aureus by VAN [210]. Yet, as the killing kinetics of MER at higher concentrations was similar to 

VAN due to the ‘Eagle-effect’, no difference was seen for those scenarios and the clinical relevance of 

this ‘antagonism’ is potentially questionable. For studies with subinhibitory concentrations, the 

combinatory effect was frequently superior to the effect of both agents alone, but sound distinction 

between additivity and synergy is difficult from unprocessed time-kill curve data and interpretation 

and discussion will be given later (4.3.2). For log-phase S. aureus, the combined effect was also 

limited to the effect of VAN alone. However, MER suppressed the substantial regrowth of S. aureus 

under VAN exposure in the combinatory scenarios.  

 

4.2.5 Impact of the growth phase at drug exposure on the antibacterial effect 

The differences between the obtained time-kill curves depending on the growth phase at drug exposure 

had already been mentioned above. Yet, some further general statements on this aspect of the present 

thesis have to be made. It is well known that the size of the inoculum negatively correlates with the in 

vitro antibacterial effect of many antibiotics – a phenomenon referred to as the ‘inoculum effect’ [21]. 

The present work goes beyond the inoculum size and points to the importance of considering the 

growth phase of this inoculum: The growth phase was highly influential on the obtained time-kill 

curves for LZD, MER and VAN, even though the inoculum size was standardised to 10
6
 CFU/mL in 

the present work. As discussed above, time-kill curve studies are not (yet) standardised with respect to 

the growth phase at drug exposure as indicated by the variety of methods for inoculum preparation 
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found in the cited literature above. The present results also challenge the suggested inoculum 

preparation methods of the respective CLSI guideline for susceptibility testing that can be used 

interchangeably for many organisms [12]: The guideline describes two methods which are (i) the 

“Direct colony suspension method” and (ii) the “Growth method”. Method (i) is very similar to the 

procedure of preparing the lag-phase inoculum in the present work. For method (ii), some colonies of 

the bacterium are picked from an agar plate and incubated for 2-6 h, until a turbidity equivalent to 

McF 0.5 is attained, and then diluted to the relevant inoculum size. Depending on the medium, 

bacteria might then be in (late) log-phase or early stationary phase. It has to be acknowledged that the 

guideline was mainly developed for MIC testing which might be less susceptible to the effect of the 

growth state, but researchers should be wary when adopting this guideline to perform time-kill curve 

studies. Ultimately, it has to be noted that the lag-phase does not represent a surrogate for the 

stationary phase. For instance, for MER [202,211] or VAN [212], a diluted stationary culture was used 

to study the respective drug effects explicitly in the stationary phase of growth. However, this diluted 

stationary culture rather represents a lag-phase culture, as bacteria can re-enter log-phase. In ‘true’ 

stationary phase at higher bacterial loads, e.g. for MER, bacteria replicate much slower and much less 

rapid killing is observed [213] than in the diluted stationary cultures [202,211].  

 

4.2.6 Adaptive resistance studies  

Adaptive resistance studies (3.2.5) were performed in lag-phase S. aureus. For MER and VAN, 

regrowth after initial killing was observed up to 1x MIC, i.e. at 0.125 mg/L and 1.0 mg/L, 

respectively. Both VAN and MER lost effectiveness over 24 h: Adapted S. aureus showed direct 

growth at re-exposure to 1x MIC of MER and only modest killing with substantial regrowth at 2x 

MIC. For VAN, also 2x MIC was ineffective against adapted S. aureus and VAN at 4x MIC was 

required for killing without regrowth. Often, only, and if at all, the MIC is tested after adaption; in the 

present work, a ‘second’ time-kill curve study was performed with the adapted bacteria. Hence, the 

obtained results provided an excellent basis for external evaluation of the adaption submodel of the 

developed semi-mechanistic PD model, which will be discussed later (4.3.3). Future studies should 

focus on the impact of the growth phase at drug exposure on the adaption process, which might be 

particularly interesting for VAN. Moreover, quantification of subpopulations with different 

susceptibility to the antibiotic could be performed by the use of agar-plates containing antibiotic 

[122,214]. This could provide insight into the time course of the development of resistant 

subpopulations, but was not the focus of the present work. In addition, future studies could aim at the 

quantification of bacterial subpopulations based on their phenotypical colony properties, e.g. colony 

size, colour and time to appearance on the agar plate, as observed with small colony variants [31,215]. 

This could contribute to the understanding of the processes that bacteria undergo when exposed to 

antibiotics.   
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4.3 Modelling 

4.3.1 Empiric modelling of individual drug effects 

In empiric modelling, summary PD measures from the dynamic checkerboard and time-kill curve 

studies were used for deriving concentrations-effect relationships for the individual antibiotics 

(2.4.1.3.1). The single drug experiments from the dynamic checkerboard study were directly suitable 

for empiric analysis as they represent a single effect measure per drug concentration. For empiric 

modelling of the antibacterial effects observed in time-kill curves studies, a summary PD measures 

had to be utilised as effect measure to characterise the concentration-effect relationships of the 

antibiotics by a sigmoidal maximum effect model. In the present thesis, the area between growth and 

time-kill curve, the ‘intensity of the antibacterial effect’ IE as introduced by Firsov and colleagues [48] 

was used. As this area reflects the entire effect-time course, it was considered superior to other 

summary effect measures as e.g. the initial slope of the time-kill curve [49], the time until nadir 

bacterial load [50] or simply the bacterial load at the end of the time-kill curve [51,52]. 

The empiric modelling approach provided easy interpretable parameters for efficacy (Emax), potency 

(EC50) and steepness of the concentration-effect relationship (H) for LZD, MER and VAN in both the 

checkerboard and time-kill curve studies. Moreover, it allowed for facile comparison of the different 

effects in the studied growth phases.  

At first, the result from the checkerboard shall be related to the lag-phase time-kill curve studies with 

S. aureus due to the similar growth state of the inoculum: When comparing the EC50 values, it has to 

be noted that the EC50 values of the checkerboard depended on the chosen time point (20 h in present 

thesis), while the area-based summary PD measure in time-kill curve studies captured the entire time 

course. For instance, a higher EC50 value of 2.19 mg/L was observed in the checkerboard for LZD 

compared to 1.55 mg/L for the lag-phase time-kill curve study. Subinhibitory LZD had an effect on 

S. aureus by substantially delaying the exponential growth and hence was considered in the IE. Yet, as 

the time-kill curves of such scenarios had already adapted to the GC curve at 20 h and those early 

effects of LZD were not detectable in the checkerboard, higher EC50 value were obtained in the 

checkerboard. Due to their different nature, the values for Emax cannot be directly related. 

When comparing the parameters of lag- and log-phase experiments for the time-kill curve studies, a 

significantly higher EC50 value for LZD was observed for log-phase S. aureus. This can be attributed 

to the similarities in the killing kinetics between both scenarios up to LZD of 4 mg/L and the fact that 

for LZD ≥8 mg/L killing could be enhanced for log- but not for lag-phase S. aureus. A trend towards 

higher log-phase EC50 values was also seen for MER and VAN, but the 95% confidence intervals were 

overlapping. Emax values in the log-phase for MER (196 vs. 148 log10 CFU/mL·h) and LZD (166 vs. 

96 log10 CFU/mL·h) provided a quantitative measure for the already qualitatively discussed higher 

effect of both antibiotics against log-phase S. aureus. It has to be noted that the area-based effect 
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measure and hence also Emax itself is difficult to interpret, e.g. due to the log-transformation of the 

bacterial load. Moreover, the IE is not informative about the slope of the time-kill curve. Various time-

kill curve profiles can lead to very similar area values for the IE. Yet, a scenario with a monotonously 

decreasing time-kill curve might be more favourable compared to a profile with rapid killing followed 

by rapid bacterial regrowth, if both profiles had the same IE. This is also reflected in the analysis of 

VAN. The value for Emax was lower in log-phase S. aureus (126 vs. 154 log10 CFU/mL·h). 

However, the drastically different killing pattern for VAN with regrowth up to 1 mg/L in lag-phase 

and up to 16 mg/L in log-phase S. aureus, which can be considered much less favourable, cannot be 

expressed in this summary measure. Furthermore, no mechanistic aspects that might lead to deviations 

from the sigmoidal concentration-effect course [47] is included in this basic analysis. Hence, although 

it might not be suitable to draw direct clinical conclusions from the parameters obtained from the area-

based approach IE, it still represents a single measurement quantifying the entire antibiotic effect. This 

measurement can be useful to compare the magnitude of the antibiotic effect and allows for 

performing a response surface analysis to quantify the nature of potential drug interactions. 

 

4.3.2 Response surface analysis 

To elucidate the nature of the drug interactions, the previously discussed single drug concentration-

effect relationships based on checkerboard or summary PD measures for the time-kill curve studies 

were utilised to compute the anticipated combined additive antibacterial effects (3.3.1.2). As 

combinations of two antibiotics were studied in the present thesis, the resulting additive response 

surface resulted in a three dimensional ‘heat-map’ with the drug concentrations of both antibiotics on 

the x- and y-axis and the effect measure on the z-axis. The difference between the anticipated additive 

and the observed response was calculated to assess deviation from additivity: Positive deviation (i.e. 

an effect greater than anticipated additive effect in reducing CFU/mL) indicated synergy whilst 

negative deviation (i.e. a smaller effect than anticipated additive effect) indicated antagonism [138]. A 

response surface approach is not necessarily limited to combinations of two antibiotics as 

demonstrated by Prichard and co-workers, who have also applied this method to triple drug 

combinations [216]. The two commonly utilised additivity criteria are ‘Loewe Additivity’ [54] and 

‘Bliss Independence’ [55] which will be briefly discussed:  

Loewe additivity. For ‘Loewe Additivity’, it is assumed that two agents exert their effect on the same 

target (or different indistinguishable targets) and display same maximum effects, but different 

potencies [54,217,218]. Hence, at a certain effect X, a fraction of the concentration of drug A could be 

replaced by drug B to obtain the exact same effect X. The ‘Loewe Additivity’ criterion is given by: 

¢ÓHÛJ,Ö©©.ÜÝ	Þ¢Ó,Ö©©.ÜÝ	Þ + ¢ÛHÓJ,Ö©©.ÜÝ	Þ¢Û,Ö©©.ÜÝ	Þ 
 1  (Eq. 55) 
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CA and CB are the concentrations of drug A or B that individually stimulate an ‘Effect X’ and CA(B) and 

CB(A) represent the concentrations of drug A and B that produce the same ‘Effect X’ in presence of the 

respective other drug. If the criterion is not set to 1.0 (for additivity), but the calculated combination 

index is >1, this indicates antagonism or vice versa synergy [217]. If the ‘Effect X’ is the MIC, the 

relation of ‘Loewe Additivity’ to the previously discussed FIC index calculation (4.2) becomes 

evident. If the effect measure is continuous and follows a sigmoidal maximum effect model, the 

‘Loewe Additivity’ criterion can be formulated as follows [219]: 

1 
 ¢Ó�¢x)Ó�H ÖÖ¥¦§ÓßÖJ¾/áÓ + ¢Û�¢x)Û�H ÖÖ¥¦§ÛßÖJ¾/áÛ   (Eq. 56) 

 

A graphical illustration of the Loewe criterion is given in Figure 71. For additivity, the isoboles for an 

‘Effect X’ of 50%, i.e. lines of same effects with different combinations are linear whereas for synergy 

and antagonism the isoboles are curved (Figure 71).   

 

Figure 71: (Joint) effect(s) E of drugs A and B with an additive (left), synergistic (middle) and antagonistic 

(right) interaction; isoboles, i.e. lines of similar effects are drawn for the half-maximum effect. Extracted from 

the original work of Loewe [54]. 

 

Bliss Independence. The underlying assumption for BI is opposite to the ‘Loewe Additivity’ 

criterion: Here, the two agents are assumed to exert their effects simultaneously and mutually 

nonexclusively by distinct mechanisms of action [55,217,218]. BI uses the concept of effect 

multiplication (Eq. 22 in 2.4.1.3.2) that was originally derived from probability theory [55]. Translated 

to the context of the present work, this concept can be understood as one bacterium that has been 

killed by one antibiotic cannot be killed by the other antibiotic, if combined. The concept of BI 

seemed slightly more suitable for the present experiments, e.g. since all studied antibiotics exhibit 

differing mechanisms of action. Still, it was initially planned to analyse the data from the present 

thesis with both additivity criteria, e.g. as performed by Drusano and colleagues [220], to satisfy the 

adherents and detractors of both additivity concepts.  
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Application of Bliss Independence in the present response surface analysis. However, direct 

application of the two criteria was not possible as both ‘Loewe Additivity’ and BI assume the same 

maximum attainable effect for both combination partners [54,55,217,218]. Since the maximum effects 

between the antibiotics were different for both combinations (LZD-MER and VAN-MER), it was 

attempted to modify the criteria to apply them to the present experimental data with different 

individual maximum effects, but a mutual maximum possible effect given by the more active 

antibiotic. When using the ‘Loewe Additivity’ criterion with different maximum effects, e.g. EmaxA > 

EmaxB and an ‘Effect X’ between both Emax values, the ‘Loewe Additivity’ criterion is not defined as 

the summand with the lower EmaxB will become negative and for H>1 a root of a negative value is not 

defined (Eq. 56). Jonker also gave a graphical illustration of this property [221]: In our example with 

EmaxA > EmaxB, the isoboles, cannot intersect with both concentration axes as the value of CB,Effect X 

cannot exist as drug B cannot stimulate an effect higher than its individual EmaxB.  

Hence, the BI criterion had to be used and was modified to compute an additivity response surface to 

investigate drug combinations with different individual maximum effects, but a mutual maximum 

possible effect. For that purpose, e.g. for EmaxA > EmaxB, the antibacterial effects were first 

normalised to 1.0 by the maximum effect of the individually more effective drug while the effect of 

the individually less effective drug was set to a fraction of EmaxA/EmaxB (Eq. 23). The properties of 

this newly derived BI equation can be illustrated if the combined effect is evaluated at the EC50 values 

of both drugs. For the conventional BI with the same Emax value (i.e. 1.0) for both drugs (Eq. 22), the 

combined effect would result in 75% of Emax (0.5+0.5-(0.5×0.5)). If the maximum effect of drug B 

was 50% of that of drug A, according to the modified BI equation (Eq. 23) the combined effect would 

result in 62.5% of EmaxA due to the minor contribution of drug B to the combined effect 

[1.0×(0.5+0.25-(0.5×0.25))]. At concentrations of Emax of both drugs, the effect will eventually reach 

EmaxA, the maximum effect of the more effective drug [1.0×(1.0+0.5-(1.0×0.5))].  

Moreover, also the uncertainty of the expected additivity response surface was considered for 

decision-making by taking into account the residual variability of the additivity surface. This 

uncertainty is frequently neglected and hence the present analysis goes also methodologically beyond 

previous work that solely considered the uncertainty of the experimental data [51,216,220,222]. The 

author is not aware of any previous work that has adopted the BI criterion in this way. 

The presented response surface approach allows for an individual quantitative analysis of every 

investigated scenario. No assumption is made on a constant interaction type over the entire drug 

concentration range as other approaches do, such as the isobole-based FIC index [33] or the parametric 

approach by Greco that computes a single interaction parameter α for interpretation [222,223]. The 

present checkerboard and time-kill curve data for LZD and MER emphasise that drug interactions are 

not necessarily monotonic in nature and hence difficult to be captured within a single estimate: Whilst 

the interaction between LZD and MER was additive for subinhibitory concentrations in both the 
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dynamic checkerboard and time-kill curve studies, an antagonistic interaction was observed for 

inhibitory concentrations of both drugs. Hence, the conclusion regarding the nature of a drug 

interaction (favourable or harmful) can be a function of the investigated drug concentration(s). This 

also stresses the importance of covering the full concentration range observed at the effect site in the 

humans if the researcher wants to draw clinically relevant conclusions from PD drug interaction 

studies. Whereas PK drug-drug interaction studies typically investigate the clinically relevant drug 

concentration range, this has rarely been exploited for PD drug-drug interactions. Very often, PD 

interactions are only assessed with subinhibitory concentrations of the antibiotic [106], potentially 

leading to incorrect clinical conclusions regarding the nature of PD interactions.  

The presented response surface approach was useful to provide measures for the scenarios in which 

the interaction was not obvious, e.g. to discriminate between additivity and synergy. This was 

particularly useful for drug concentrations below the respective individual maximum effects. For 

instance, the time-kill curves with lag-phase S. aureus exposed to a combination of VAN at 0.5 mg/L 

and MER at 0.13 mg/L displayed a bactericidal effect whilst the antibiotics alone showed very limited 

effect (VAN) or killing followed by extensive regrowth (MER). Yet, although the response surface 

analysis indicated a trend towards synergy for this scenario, the interaction was statistically not 

significantly different from additive.  

The response surface analysis in the present thesis has some limitations which have to be 

acknowledged: There is some considerable debate which of the additivity criteria – Loewe or Bliss – is 

reflecting the situation best and appropriate definition of additivity still remains a controversial issue 

[53]. Boucher and Tam criticised that BI is generally limited to a mutual maximum effect [52]. 

Although this was actually the case in the present work, i.e. no combinatory effect exceeded the effect 

of the more active single drug experiment, it can be assumed that a certain drug combination of other 

drug classes might stimulate a combined effect exceeding the maximum effect of one of the single 

drug experiments. Such an observation would prevent application of BI in that case. Finally, BI, but 

also ‘Loewe Additivity’ are ‘black-box’ approaches that do not take into account the mechanism of 

(inter)action of the investigated antibiotics. Particularly, no kinetic information about the PD could be 

retrieved from the present interaction analysis preventing coupling to pharmacokinetic data, which was 

the motivation for the development of the semi-mechanistic PD model.  

 

4.3.3 Semi-mechanistic modelling of time-kill curve studies  

Modelling approach. The basic principle of modelling the time course of growth and killing of the 

cell count N over time was originally developed for anticancer cells by Jusko [57]: q8q¬ 
 23456'7 �8 − 20� '7 � 8 (Eq. 57) 
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As it is difficult to distinguish between growth and natural death in GC experiments when measuring 

viable bacteria, very often only kgrowth is estimated and kdeath is assumed to be zero in absence of the 

antibiotic. Hence, in such an approach, kgrowth represents the net growth rate [224]. As exponential 

growth is limited for bacteria with increasing N, kgrowth decreases with N using a logistic function 

kgrowth=kgrowth0×(1-N/Nmax) [224]. Michaelis-Menten models have also been utilised to describe the 

dependency of the growth rate on the total number of bacteria [225].  

Antibacterial effects are typically implemented in the Jusko model [57] as inhibition of the growth rate 

kgrowth or enhancement of the death rate kdeath. Although, this modelling concept and its extensions to 

account for time-delays of the effect [226] and/or changes in bacterial susceptibility [30,58,225,227–

229] are most frequently used [56], it was found not to be suitable to simultaneously describe the 

single and combined effects of LZD, MER and VAN against S. aureus observed in the present work. 

Particularly, the parallel implementation of replication-dependent and -independent drug effects and 

the resulting interactions was not possible to describe with that mathematical model (Eq. 57).  

Parameterisation of the bacterial life-cycle. For this purpose, the bacterial life cycle model from 

Bulitta [141] was used in the present work as a starting point for model development (3.3.1.3). The life 

cycle model assumes two bacterial compartments (‘states’): The first state represents the bacteria after 

successful doubling (termed ‘growing’ state ‘GRO’ in the present thesis) and the second state is 

attained immediately before doubling (‘replicating’ state, ‘REP’). The transition between ‘GRO’ and 

‘REP’ is rate-limiting in the cell-cycle whilst the actual doubling, i.e. formation of two cells after 

leaving state ‘REP’ and transition to ‘GRO’ was assumed to be very fast and not estimated. Bulitta has 

envisioned this model to describe the inoculum effect of Pseudomonas aeruginosa exposed to 

ceftazidime [141] in which hypothetical signal molecules produced by the bacteria in dependence of 

CFU0 inhibited the transition rate from ‘GRO’ to ‘REP’ leading to a reduced replication-dependent 

effect of ceftazidime. Other applications of this model included the evaluation of the PK/PD 

relationship of fusidic acid against S. aureus and S. pyogenes [230] or the evaluation of front-loaded 

LZD against enterococci [231].  

Implementation of the drug effects. The life-cycle model was a useful core to implement the single 

and combined drug effects of LZD, MER and VAN in a mechanistic fashion. As cell wall-active 

antibiotics, MER and VAN were assumed to exert a replication-dependent effect (i.e. perturbation of 

successful doubling), whilst LZD, as a protein-synthesis inhibitor inhibited the transition rate into the 

replicating state. By doing so, the antagonism between LZD and MER was already intrinsically 

implemented in the lag-phase model in a mechanistic fashion as the effect of LZD mathematically 

growth-arrested the life-cycle and thus precluded the effect of MER. The performed external 

evaluation demonstrated the ability of this modelling concept to generalise into other antagonistic 

combinations comprising a cell-wall antibiotic and a protein-synthesis inhibitor [146–148]. 
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The combined effects of VAN and MER in the lag-phase model were implemented as an inhibitory 

replication-dependent effect, reducing the percentage of successful doublings according to a modified 

BI term [55,217]. The core of this term, (1-EMER)×(1-EVAN) was extended to account for the observed 

deviations from conventional BI: (i) The maximum effect regarding inhibition of ‘successful’ doubling 

of VAN was inferior (lag-phase: 74.3%, log-phase: 73.7%) to the effect of MER (100% in both 

phases). (ii) The effect of MER in lag-phase was described by two sigmoidal maximum effect models, 

of which one effect model was inhibitory on the other one to account for the paradoxically reduced 

‘Eagle-effect’ [164] at higher concentrations observed for MER. A more mechanistic implementation 

of the ‘Eagle-effect’ (and its quasi-absence in log-phase S. aureus) would require more knowledge on 

the pharmacological basis of this phenomenon. Yet, the current knowledge, as discussed in 4.2, was 

not considered a reliable basis to support a more mechanistic implementation of the ‘Eagle-effect’ and 

the developed semi-mechanistic PD model could reliably describe this phenomenon. (iii) The 

combined effect of VAN and MER was limited to the effect of VAN, which was achieved by an 

inhibitory effect of VAN on the effect of MER. More detailed measurements of the processes 

occurring in the cell-wall during replication under perturbation of MER and VAN could support more 

mechanistic implementation of the drug effects of MER and VAN. At this stage, the present 

implementation provided reliable prediction of the observed effects alone and in combination.    

Adaptive resistance. Until now, solely the initial effects of the antibiotics were discussed; the effects 

of the studied antibiotics partially changed over time, which will be discussed in the following section: 

Apart from LZD in lag-phase S. aureus, the antibiotic effects were time-dependent and not monotonic 

in nature. Two phenomena were encountered in the present work: Persistence of bacteria displaying no 

replication under antibiotic exposure after initial killing and (adaptive) resistance development 

manifested as regrowth after initial killing by the antibiotic. Bacterial persistence was mathematically 

implemented in the semi-mechanistic PD model by either growth-arrest (for LZD) or selection of a 

drug-unsusceptible, non-replicating subpopulation during replication (for MER and VAN). The 

mathematical approach of selecting a drug-unsusceptible subpopulation under antibiotic exposure has 

been previously used in the literature [30,58,229]. Other investigators have employed modelling 

approaches assuming pre-existing subpopulations that dominate the time-kill curve pattern after killing 

of the susceptible population [225,227,228]. The first approach (i.e. growth-arrest and selection of 

persister cells) was chosen as subpopulations were not quantified in the present work and hence fewer 

assumptions were made. Persistent subpopulations could be quantified in future studies by e.g. 

microfluidic devices that allow for tracking down the growth history of a single bacterial cell and their 

dependants [232]. 

The adaptive resistance of MER and VAN leading to regrowth after initial killing was modelled as an 

increase in EC50 over time [142,143]. Due to the incorporation of drug degradation, measured by 

HPLC, into the mathematical model, the observed regrowth was dissected into regrowth due to decay 
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of the antibiotic and adaption of the bacteria. Interestingly, Tam and co-workers who introduced the 

utilised adaption model with an increasing EC50 did not consider drug degradation when modelling the 

PD of MER against P. aeruginosa [143], although substantial and relevant degradation to 62.9% was 

found in the present work under similar experimental conditions (i.e. use of CaMHB and a similar 

temperature of 35° C). Yano and colleagues also did not measure drug degradation to support their 

modelling activities, but estimated a first-order rate constant Kd to mathematically reduce the ‘active’ 

drug concentration over time to describe the regrowth of various strains exposed to MER and other 

beta-lactam antibiotics [229]. Yet, the authors acknowledge in their publication that the ‘active’ 

fraction could be reduced by both degradation and adaption of the bacteria. Also for other 

considerably instable beta-lactam antibiotics such as ceftazidime [233], drug degradation was not 

measured and hence not separated from adaption when performing mathematical modelling of time-

kill curve data [141,228]. This should be considered when interpreting their modelling results, as 

adaption-related parameters might overestimate the ‘true’ adaption of the bacteria. Other concepts of 

modelling adaptive resistance included a declining Emax [234] or an increasing growth rate over time 

[228]: A decreasing Emax could originate from target site alteration [224] whilst the mechanistic basis 

for an increasing growth rate seems rather unclear. Since higher concentrations of the antibiotic 

overrode the adaption, a decrease in Emax over time seemed not suitable for modelling the present 

time-kill curves of MER and VAN and the approach with the increasing EC50 [143] stimulated by 

exposure to the antibiotic over time was chosen. An increasing growth rate was also deemed not 

suitable, as in the life-cycle model in the present work, this would increase the growth rate 

proportionally with the replication-dependent killing rate of the antibiotic, leading to yet faster killing.  

Figure 72 illustrates the time course of the ‘effective’ EC50 values for MER and VAN in both studied 

growth phases from the present work. Whilst both time course and magnitude of the adaption were 

similar for MER in the investigated growth phases (e.g. maximum possible ‘effective’ EC50: 

0.23 mg/L in lag- and 0.20 mg/L in log-phase), the maximum possible adaption of VAN was 

substantially higher in log-phase S. aureus (‘effective’ EC50 of 5.36 mg/L in log- and 2.12 mg/L in 

lag-phase). As a function of drug concentration, the time to reach the maximum-possible EC50 was 

variable (Figure 72). 
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Figure 72: Time course of the ‘effective’ EC50 for MER (left) and VAN (right) in both lag- and log-phase 

S. aureus predicted from the utilised adaption submodel [143] of the semi-mechanistic PD model. The EC50,t=0 is 

represented by the scenarios with no drugs.    

 

The estimation of the adaption parameters β and τ is mainly driven by the (few) scenarios that 

displayed regrowth and one can assume that several combinations of β and τ can lead to similar 

adaption profiles for those scenarios. This causal correlation between β and τ is also apparent in the 

correlation matrices of lag- (Figure 73) and log-phase S. aureus (Figure 80) and in the considerably 

broad confidence intervals of those parameters obtained from the bootstrap analysis (Table 15 and 

Table 16). However, the present work provides experimental evidence from the adaptive resistance 

studies to support the adaption submodel and its parameter values for adaptive resistance of S. aureus 

to MER and VAN (3.2.5): Remarkably, the magnitude of the adaption process was well predicted in 

the external model evaluation with adapted bacteria (3.2.5 and 3.3.1.3.1.4). 

The adaption submodel with an increasing EC50 was not implemented as an analytical solution as 

proposed in the original publication by Tam et al [143], but as part of the ODE system, following a 

similar approach as Mohamed and colleagues [142]. The ODE implementation has two advantages 

over the analytical solution: (i) it is applicable changing drug concentrations including drug 

degradation and (ii) it allows for implementation of interactions on the adaption level, as observed in 

the present thesis, to quantify the interaction between ‘inactive’ subinhibitory VAN suppressing 

regrowth of MER at up to 0.125 mg/L.  

Limitations and perspectives. Some limitations of the developed semi-mechanistic PD model have 

to be acknowledged. Some processes such as the adaptive resistance as well as the persister 

development are implemented unidirectional, i.e. the acquired resistance is modelled as an irreversible 

process. One can imagine that both persistence and resistance could be reversible over time when a 

bacterial population survived an antibiotic treatment. The experimental data in the present work did 
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not support an implementation of this reversion which adds uncertainty if extrapolation beyond the 

studied ‘experimental range’ is performed. Nielsen et al and Schmidt et al formally included return 

from the persister state to the susceptible state, but fixed the respective rate constant to zero for similar 

reasons as in the present work [30,58]. Yano et al could estimate the reversion from the persisting state 

since no death rate constant of the persisting population was implemented in their model [229]. Time-

kill curve data obtained in dynamic in vitro infection models [22] could help to inform such potentially 

reversible processes in future studies. The present experimental data did not support the 

implementation of separate death rate constants for bacteria persisting under exposure to MER or 

VAN. If those differences were observed in other experiments, the present semi-mechanistic PD 

model would have to be modified to quantify the bacteria persisting under exposure to several 

antibiotics in separate compartments. Overall, the developed semi-mechanistic PD model described 

the experimental data of the lag- and log-phase scenarios very well and considered mechanistic aspects 

of the drug effects. In future studies, also the combined effects in log-phase should be further explored 

and integrated into the model. 

 

4.3.4 Adaptive optimal design 

The adaptive optimal design approach (3.3.1.3.1.2) enabled performance of informative experiments 

and, thus, characterisation of the single and particularly the combined effects observed in lag-phase 

S. aureus by a considerably complex mathematical model that captured even details in the time-kill 

curve profiles. This represents an application of the “learning and confirming” approach introduced 

into clinical drug development by Sheiner in 1997 [70] and extends this concept to pre-clinical 

“learning and confirming” when planning and analysing experimental data. Moreover, it could be 

demonstrated that mathematical optimal design techniques could be valuable to assess the impact of 

experimental information on the precision of model parameters, i.e. if an experiments does or does not 

add information to support estimation of this particular model parameter. A next step of optimisation 

would go beyond evaluation of designs to prediction of ‘fully optimised’ optimal designs. Whilst it has 

been recently shown, that e.g. D-optimal design [69] could reduce the number of required sampling 

time points [235] or concentration tiers [236] in time-kill curve studies, the practical value of such 

‘fully optimised’ experimental designs is questionable as prediction of the D-optimal design requires a 

priori knowledge on both the model structure as well as the model parameter values. This knowledge 

either supersedes the performance of the experiments or is not available before performance of the 

study. Hence, the parallel performance of experiments, modelling activities and iterative design 

evaluation as utilised in the present work seems a reasonable compromise to translate the value of 

optimal design into an experimental setting. 

In summary, the developed semi-mechanistic PD model reliably described the observed time-kill 

curve data and the performed internal and external model evaluation provided evidence for the 
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robustness of the developed model. Hence, the developed semi-mechanistic PD model provided a 

reliable basis for performance of simulations, will be discussed in the next chapter. 

 

4.4 Simulations 

4.4.1 Drug concentrations in the biophase 

A prerequisite to answer clinically relevant questions with the developed population PK/PD models 

was to study clinically relevant drug concentrations to inform the semi-mechanistic PD model. For 

MER, the studied concentrations up to 16 mg/L in the present work particularly matched 

concentrations observed at the target site, e.g. in the lung: steady state concentrations up to 11.4±10.9 

mg/L were measured in the interstitial fluid of the lung tissue applying microdialysis after 1 g MER 

every 8 hours administered via a short-term infusion [82]. Another study reported similar 

concentrations up to 7.7±3.1 mg/L in epithelial lining fluid of the lung obtained via bronchoalveolar 

lavage using the same dosing regimen [237]. Maximum plasma concentrations after administration of 

1 g MER exceeded the investigated concentrations of the present work with Cmax values of 

53.5±19.7 mg/L [237]. Due to the short half-life of 1.3 h, however, MER concentrations in plasma are 

covered by the studied concentration range of the present work (up to 16 mg/L) for the major portion 

of the dosing interval. For LZD, steady state concentrations in epithelial lining fluid ranged from 

2.6±1.7 to 14.4±5.6 mg/L after 600 mg intravenous LZD infusion twice daily [94] which matched the 

concomitant plasma concentrations (2.43±2.15 to 17.8±6.03 mg/L) [238]. Also for VAN, the 

investigated drug concentrations matched the clinically observed concentrations at the target site: 

VAN concentrations in epithelial lining fluid of the lung ranged from 0.4 to 8.1 mg/L after Cmin-

adjusted multiple dosing [239]. Plasma concentrations were reported to be higher ranging from 7.9 to 

65.7 mg/L [98]. Hence, the investigated concentrations used in the present thesis reflected the 

concentrations at the target site in vivo, which are partly lower for MER and VAN than plasma 

concentrations. Yet, the fact that the Cmax concentrations in plasma were not fully covered by the 

present experiments was not that relevant as the maximum effects for MER and VAN were well 

established below those Cmax concentrations and a further increase of the effect at Cmax seemed 

unlikely. 

 

4.4.2 Prediction of PK/PD indices 

The developed semi-mechanistic PD model from the present work was linked to published population 

plasma PK models of LZD [150], MER [153] and VAN [154], which were also corrected for plasma 

protein binding to predict unbound (active) drug concentrations over time (3.3.2.2). The experimental 

results were thereby exploited in a quantitative and translational fashion and allowed for performing 

clinical trial simulation. Beforehand, the validity of the population PK/PD model was assessed by 
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performing an in silico dose fractionation study to predict commonly utilised PK/PD indices, which 

are in the following related to literature data.  

Meropenem. For MER, the in silico dose fractionation study revealed that the PK/PD index fT>MIC 

correlated best with the effect, i.e. reduction of log10 CFU/mL at 24 h in both lag- and log-phase 

S. aureus. For fAUC/MIC and fCmax/MIC, the correlation was (substantially) inferior. This first 

qualitative result is in line with knowledge gained from seminal animal studies by Eagle [60] that were 

the initial stepping stone of the later development of PK/PD indices by Craig and co-workers [59]: The 

effect of beta-lactams was found to be time-dependent. Three different mechanisms drive this PK/PD 

relationship: Firstly, higher concentrations above the MIC do not further increase the antibacterial 

effect, i.e. the maximum effect is established. Secondly, beta-lactams display only a modest post-

antibiotic effect (i.e. persistent effects after removal of the antibiotic) of e.g. 0.7-1.7 h for MER against 

S. aureus [240].  Lastly, beta-lactam antibiotics typically display considerably short in vivo elimination 

half-lives of ~ 1 h [59] which reveals this time-dependency of the effect also in the clinical setting. 

The quantitative PK/PD breakpoint fT>MIC for MER determined in the present work was similar 

against lag- and log-phase S. aureus. PK/PD breakpoints for fT>MIC were determined by non-linear 

regression analysis and were 52% for lag- and 50% for log-phase S. aureus for a bacteriostatic effect 

and 65% for lag- and 70% for log-phase S. aureus for a bactericidal effect. Notably, the PK/PD index 

%fT>MIC for a bacteriostatic effect in lag-phase S. aureus was higher in the clinical trial simulation 

(3.3.2.2.1), i.e. ca. 70%, compared to the in silico dose fractionation study (3.3.2.1). This phenomenon 

might originate from the use of higher doses in the simulated clinical trial leading to higher 

concentrations of MER and in turn faster and more intense adaption of S. aureus to MER. Yet, overall 

the determined PK/PD index is in reasonable agreement with the clinical breakpoint for 

microbiological response of 54% determined in patients with lower respiratory tract infections, in 

which S. aureus was the second-most abundant pathogen [241]. A bacteriostatic effect or log2 killing 

was also observed if fT>MIC exceeded 45% or 75%, respectively, in animal studies evaluating the effect 

of MER on Gram-negative bacteria using a mouse thigh model [78]. Yet, also lower values for a 

bacteriostatic fT>MIC of 23% for the Gram-negative bacterium Pseudomonas aeruginosa was reported 

[242]. Worthy to discuss is the EUCAST rationale document that reports lower values for fT>MIC of 10-

30% or 15-40% for a bacteriostatic or log-2 killing effect, respectively, also for S. aureus [79]. In the 

EUCAST document, the PK/PD relationship of carbapenems is presented as a ‘class effect’ as long as 

unbound drug concentrations are compared. While this might in fact be true, this assumption heavily 

relies on correct determination of unbound concentrations. A substantial part of the EUCAST PK/PD 

summary is originating from PK/PD studies with the highly protein-bound antibiotic ertapenem 

[78,243,244]. An unbound fraction of 4.5% was determined once by Xuan et al [244], which was used 

in Xuan’s [244] and several later studies [78,243] for calculation of fT>MIC. Yet, work from our 

department and collaborators could recently show that the ultrafiltration process, also used by Xuan 
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[244], is highly dependent of temperature, pH and centrifugal force [155,245,246]. Particularly, 

ertapenem is susceptible to those experimental parameters [245]. In the ultrafiltration protocol of Xuan 

[244], pH of the plasma sample was not controlled by buffering which might have led to alkalotic pH 

values due to evaporation of carbon dioxide at 37° C: When pH was controlled and buffered to 7.4, the 

unbound fraction of ertapenem was significantly higher than that determined by Xuan, and was ca. 

20% in healthy volunteers and between 30.9% and 53.6% in ICU patients [245]. Hence, the ‘true’ 

fT>MIC to attain the PK/PD breakpoints with respect to the unbound concentrations might be 

substantially higher than those proposed by the EUCAST [79].  

Linezolid. For LZD, the in silico dose fractionation study revealed that the PK/PD indices fAUC/MIC 

correlated best with the effect, i.e. reduction of log10 CFU/mL at 24 h in both lag- and log-phase 

S. aureus. For fT>MIC and fCmax/MIC, the correlation was inferior, but this inferiority was much less 

pronounced than for MER. This is in accordance with animal studies from Andes et al [247], in which 

a clear distinction between these three PK/PD indices was also difficult. As no bactericidal effect was 

attained for LZD, no bactericidal PK/PD breakpoint could be calculated. The bacteriostatic fAUC/MIC 

was 56 in lag- and 59 in log-phase S. aureus. Andes and colleagues also could not find a bactericidal 

effect and determined a bacteriostatic (total, not unbound) AUC/MIC of 83 in animal studies using the 

mouse thigh model [247]. This result is well in the range of the present study, if protein binding is 

considered. Yet, also for LZD there is some uncertainty about the precise value of the unbound 

fraction and results range from 86.6% [93] to 69% [90]. The impact of the precise value is, however, 

certainly less drastic than for highly protein-bound drugs. Rayner and colleagues investigated the 

clinical PK/PD relationship of LZD in seriously ill patients in a compassionate use program [157]: 

They proposed values for (total) AUC/MIC of 80-120 for “higher success rates” for LZD for 

bacteraemia, but also for lower respiratory tract and skin and skin structure infections. Whilst the 

breakpoint for blood of 83 again matches considerably well to the present work, the infection-site 

specific breakpoints for skin (110), lower respiratory tract (99) and bone (164) are higher indicating 

the relevance of considering tissue distribution [157]. Rayner also investigated %T>MIC and found that 

bacterial eradication was higher if total LZD concentrations exceeded the MIC for 82% (bacteraemia) 

to 99% (skin), which also is in good agreement with the determined PK/PD breakpoint of 80%-85% 

from the present study.  

Vancomycin. The in silico dose fractionation study for VAN was less clear-cut regarding the 

correlation of any PK/PD index and the effect, which was inferior to the correlations obtained with 

both LZD or MER. When R² was evaluated, fAUC/MIC in the log-phase scenario correlated slightly 

better than the other competing PK/PD indices. Moreover, the differences between lag- and log-phase 

drastically influenced the obtained PK/PD indices. Whilst e.g. the bacteriostatic or bactericidal 

fAUC/MIC was 59 or 94 in lag-phase S. aureus, the bacteriostatic breakpoint was 160 in log-phase 

S. aureus and no bactericidal effect was attained. As for MER, the population PK/PD model for VAN 
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also contained an adaption submodel; the use of higher doses in the clinical trial simulation led to 

higher VAN concentrations and in turn faster adaption of S. aureus to VAN, which resulted in higher 

fAUC/MIC indices of 200-250 for the maximum effect of VAN. Rybak reported a bacteriostatic total 

AUC/MIC of 200-300 in a mouse thigh infection model [96]. Clinical investigations by Bosso [248] 

and Moise-Broder [249,250] set total AUC/MIC breakpoints of 125-400. Thus, those clinical 

breakpoints rather fit to the log-phase breakpoint of the present work. Even if a plasma protein binding 

ranging from 30% [155] to 55% [99] is assumed, the total AUC/MIC breakpoints from the clinical 

studies tend to be somewhat higher than the calculated values of the present work, which could 

originate from the partly impaired tissue distribution of VAN [96]. Although the unprocessed time-kill 

curves displayed different killing patterns in lag- and log-phase S. aureus for all studied antibiotics, a 

substantially different PK/PD breakpoint between lag- and log-phase S. aureus was only determined 

for VAN. For VAN, the value of fAUC/MIC for log-phase S. aureus was much closer to the clinically 

determined breakpoint(s) which indicates that bacteria might be actively replicating (i.e. in log-phase) 

in patients with symptomatic infections. Yet, also lag-phase bacteria might be clinically relevant, e.g. 

in prophylactic or perioperative antibiotic treatment to prevent infections.  

Limitations and future considerations. Although the agreement of the PK/PD breakpoint of the 

present work and published animal and clinical PK/PD studies was considerable, some limitations of 

the presented approach have to be discussed: A major limitation is that solely time-kill curve studies 

with static drug concentrations were experimentally performed, but dynamic, i.e. changing 

concentrations were simulated in the population PK/PD model. As a consequence, the semi-

mechanistic PD model was not informed about persistent antibiotic effects after declining antibiotic 

concentrations such as the so-called post-antibiotic effect. Yet, this major limitation in general turns 

out to be minor for the present study, as the post-antibiotic effects for MER, LZD and VAN against 

S. aureus are known to be considerably short up to 1.7 h [240], 2.2 h [251] and 1.2 h [205], 

respectively. For future studies with antibiotics displaying considerably longer persistent antibiotic 

effects, dynamic time-kill curve studies [22] should be performed to inform the semi-mechanistic PD 

model accordingly.  

As the semi-mechanistic PD model represents the PD directly at the target-site and the utilised 

population PK models describe the PK of (unbound) antibiotic solely in plasma, no information about 

tissue distribution was included in the present approach. This formally limits the approach to the 

assessment of bloodstream infections. However, the use of microdialysis [252] could elucidate the 

target-site PK of an antibiotic which could be included in PK model development [253]. This would 

allow assessment of target-site specific population PK/PD analyses in future studies. A fundamental 

assumption in antimicrobial PK/PD studies is that only unbound drug concentrations can exert their 

antibiotic effects, formulated in the so called “free drug hypothesis” [254]. Although the PK models 

were corrected for unbound concentrations assuming linear plasma protein binding, the determination 
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of protein binding is susceptible to experimental conditions [155,245,246], as discussed earlier, and a 

biased estimate of the unbound fractions might result in biased PK/PD simulations. To further add 

complexity, plasma protein binding might be saturable and follow a non-linear pattern [47], which 

needs to be considered when analysing antibiotics displaying such binding behaviour in future studies. 

Another limitation originates from the determined MIC value in the denominator of the PK/PD index. 

A one tier higher or lower MIC will consequently shift the determined PK/PD indices substantially, 

which should be generally considered when interpreting PK/PD indices. Moreover, the effects of the 

immune system are not considered in the present work and hence the population PK/PD model might 

reflect a ‘worst-case’ situation, e.g. cancer patients suffering from neutropenia. Yet, it is assumed that 

particularly those patients benefit from an optimised bactericidal therapy, whilst for non-neutropenic 

patients, the immune system blurs differences between bacteriostatic and bactericidal antibiotics [126].  

The investigated drugs LZD, MER and VAN are ultima-ratio antibiotics and particularly used in 

critically ill patients. Consequently, neutropenia might not be as rare as in community-based 

antibacterial therapy and an optimal appropriate treatment might be particularly important for the 

treatment of the critically ill patient [72]. Furthermore, in addition to the reduction of viable bacteria, 

other factors may contribute to the therapeutic success, e.g. the inhibition of toxin synthesis. LZD and 

clindamycin, another protein synthesis inhibitor, were found to suppress the toxin Panton-Valentine 

leucocidin, whereas oxacillin, a beta lactam antibiotic, even led to increased secretion of this toxin in 

vitro [255]. There is some initial clinical evidence that protein synthesis inhibitors are associated with 

a better clinical outcome in the case of invasive infections with toxin-producing bacteria [256,257], 

but more clinical data on this potential beneficial effect of protein synthesis inhibitors is necessary. 

Lastly, although the MICs and interaction profiles were similar in the three utilised S. aureus isolates, 

the time-kill curve studies and the semi-mechanistic PD model is based upon a single S. aureus isolate. 

Hence, further studies are required to investigate generalisability of the findings. 

In summary, the in silico dose fractionation study did not only qualitatively identify the in vivo PK/PD 

indices correctly; also the quantitative PK/PD breakpoints of the present work well agreed with the in 

vivo PK/PD breakpoints found in published literature. This is insofar remarkable, as the present work 

determined the PK/PD breakpoints solely from simple, resource-saving and cost-effective in vitro 

studies and published literature on the PK of the studied antibiotics. In contrast to this efficient 

approach in the present work, conservative PK/PD breakpoint determination relies on resource-intense 

in vivo animal studies or even clinical trials in patients suffering from severe infections. Hence, the 

present work provides an integrated quantitative pharmacometric approach to translate in vitro studies 

with antibiotics into a clinical setting so as to comprehensively elucidate the PK/PD relationship of an 

antibiotic in a resource-saving manner. Future studies could also investigate and derive PK/PD indices 

and breakpoints of combination therapies by this approach.  
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4.4.3 Clinical trial simulation 

The previously discussed in silico dose fractionation study yielded PK/PD indices being overall in 

accordance with the clinically used PK/PD breakpoints of MER, LZD and VAN. Hence the developed 

population PK/PD model was considered reliable to answer questions arising from ‘what-if-scenarios’ 

assessing the single and combined use of the antibiotics and potential impact of patient covariates 

informed from the utilised population PK models (3.3.2.2.2). For those translational simulations of 

clinical scenarios, both the interindividual variability in the PK of the studied patient population as 

well as the uncertainty of the semi-mechanistic PD model was considered in stochastic simulations 

using a Monte-Carlo approach [158]. Monte-Carlo methods are useful when the impact of several 

variables on a system is explored, but the mathematical analytical solution is unknown – as in the 

present work – or difficult to derive. The utilised number of 1000 simulations provided a reasonable 

compromise between accuracy of the obtained distributions [258] and the required simulation time of 

ca. 1 simulation per second.   

Evaluation of single and combined standard dosing regimens. In a first step, standard dosing 

regimens were explored with a representative virtual patient population that overall represented the 

population on which the population PK models were built [150,153,154]. The entire time course of 

24 h was presented allowing for detailed and continuous assessment of the PK/PD relationship of the 

MER, LZD and VAN. As previously, both bacterial growth phases were explored. Based on the 

results of the clinical trial simulation, the standard dosing regimen of 1000 mg TID for MER and 

600 mg BID for LZD could be considered reliably bactericidal or bacteriostatic, respectively, in the 

investigated patient population for S. aureus with MIC values of 0.125 (MER) and 2 mg/L (LZD). The 

impact of the growth phase in those translational clinical studies was visible in the PK/PD plots for 

MER (Figure 46) and LZD (Figure 48), but the clinical impact of this rather fine-scale difference 

might not be relevant in clinical practice. Conversely, the standard dosing regimen of VAN 1000 mg 

BID was not reliable for S. aureus with a MIC of 1 mg/L in the presumably more relevant log-phase 

scenario for VAN (Figure 50).   

The combinations of LZD or VAN with MER were evaluated solely against lag-phase S. aureus as the 

log-phase PK/PD model was not informed with (sufficient) experimental data. The clinical trial 

simulation revealed that the antagonistic interaction was also translated into the clinical setting and 

both MER alone, but also the combination of VAN and MER were superior to the combination of 

LZD and MER. The dosing regimens for both LZD and MER are designed to provide sustained 

plasma concentrations above the MIC. For the comparatively low MICs of the S. aureus strain in the 

present work, standard doses of both LZD and MER provided inhibitory concentrations and thus 

pharmacodynamic antagonism throughout the entire dosing interval. 

Impact of patient covariates. In a second step, standard and alternative dosing regimens from the 

investigated antibiotics were explored in dependence of patient covariates of the population PK model. 
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This approach represents a comprehensive translational assessment of antibiotic dosing strategies 

learning most from in vitro experiments for the clinical setting and could be used for hypothesis 

generation of upcoming clinical studies with the antibiotics. For the sake of simplicity, in the present 

work, the impact of covariates was evaluated solely in a univariate way. If CLCR was assessed, WT 

was set to 75 kg. If WT was explored, CLCR was set to 120 mL/min to shed light on the covariate 

relationship that might be masked from the PTA perspective for lower CLCR values. Yet, if an 

investigator aims to assess a specific ‘what-if’ scenario, e.g. a worst case situation of augmented renal 

clearance accompanied by a high or low body weight, simulation of this scenario is trivial and of 

course possible with the presented approach. 

Meropenem. For MER, the standard dosing regimens of 500 and 1000 mg TID administered as 1 h 

infusion provided high bacteriostatic PTA ranging >80% (lag-phase) or >94% (log-phase) depending 

on body weight (60-105 kg) and creatinine clearance (60-160 mL/min). The appropriateness of the 

standard dosing regimen of MER for the investigated S. aureus strain with a MIC of 0.125 mg/L is in 

accordance with the EUCAST clinical susceptibility breakpoint, which defines bacteria with a MIC 

≤2 mg/L as susceptible to MER [20,79]. The PTA – counterintuitively – slightly increased with higher 

WT: This might originate from the adaptive resistance submodel of MER. Higher WT leads to lower 

(peak) concentrations in the virtual patient and consequently to slower adaption of S. aureus to MER 

and hence to a slightly better PTA. Continuous infusion of 1500 mg MER over 24 h provided higher 

PTA, particularly when exploring the bactericidal PTA, which was 100% even at presence of 

augmented renal clearance with CLCR of 160 mL/min. Continuous infusion of MER might be 

particularly beneficial for infections with S. aureus isolates with higher MIC values closer to the 

EUCAST susceptibility breakpoint of 2 mg/L. For instance, Roberts and coworkers have investigated 

continuous infusion of up to 6 g MER per day in the clinical setting, and found sufficient target 

attainment even for isolates with MIC values of 8-16 mg/L when applied as continuous infusion in 

septic patients [259]. In a randomised controlled clinical trial, Dulhunty and colleagues could also 

demonstrate that continuous infusion of MER improved the clinical cure rate from 43% to 70% in 

their patient population [83]. Hence, continuous infusion might be beneficial in the clinical setting, 

particularly for patients suffering from infections with considerably ‘high’ MIC values. Yet, Carlier 

and colleagues showed that stability (solutions retaining >90%) of reconstituted MER in isotonic 0.9% 

NaCl solution is limited at 25° C to 12 h or 8 h at MER concentrations up to 20 or 40 mg/mL, 

respectively [260], which possesses some handling issues and awareness of the medical personnel to 

adopt continuous infusion of MER in clinical practice.  

Linezolid. For LZD, the standard dosing regimen of 600 mg BID provided bacteriostatic PTA values 

>79% depending on WT, CLCR or liver cirrhosis. Increasing WT and CLCR decreased the PTA 

whereas presence of liver cirrhosis reduced the clearance of LZD leading to higher exposure and in 

turn also higher PTA values. Hence, the standard dosing regimen provided reasonable PTA values for 
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the investigated S. aureus strain with a MIC of 2 mg/L being also formally susceptible to LZD 

according to EUCAST (MIC ≤4 mg/L) [20,183]. As the effect of LZD was limited to a bacteriostatic 

effect, alternative regimens comprising continuous infusion with the same total daily dose (1200 mg), 

intensified TID dosing (3x 600 mg) and ‘front-loading’ (1200 mg -> 600 mg BID) were assessed on 

their potential as a more effective alternative to the standard regimen: The regimen with continuous 

infusion of LZD was inferior to the standard regimen in both growth phases of S. aureus. This could 

be explained by the slower increase of LZD concentrations in the continuous regimen than in the 

short-term infusion which could allow some bacterial growth at the beginning of the treatment which 

cannot be compensated by the considerably slow killing effect of LZD due to growth arrest of 

S. aureus. Adembri and colleagues compared continuous to intermittent infusion of LZD and found 

comparable clinical outcome, AUC/MIC values, but slightly higher %T>MIC in the continuous infusion 

group [261]. The authors suggested continuous infusion as an alternative with comprehensible 

‘theoretical advantages’ of the continuous infusion regimen. Jacqueline and co-authors found 

continuous infusion of LZD superior to intermittent dosing in rabbit endocarditis model [262]. 

However, the concentrations they simulated in the rabbits in the continuous infusion group increased 

from 10.4 to 32.5 mg/L from day 1 to day 5 were substantially higher than the concentrations observed 

in humans of ca. 6 to 14 mg/L up to 2 days [261,263] and from the translational PK/PD studies in the 

present work (median: 10.1 mg/L, 2.5
th
 percentile: 5.5 mg/L, 97.5

th
 percentile: 16.9 mg/L). Those 

higher LZD concentrations and the presence of an intact immune system in the animals might explain 

the superiority of continuous infusion in the study of Jacqueline et al. The present work rather 

questions the benefit of continuous infusion of LZD and elucidated the value of ‘front-loaded’ LZD 

regimen following the strategy of achieving high LZD concentrations at a very early stage of antibiotic 

treatment. Front-loading 1200 mg – 600 mg LZD was also superior to intensified TID dosing with 

600 mg LZD and even stimulated a bactericidal effect for 8-29% of the patients (log-phase scenario) 

depending on CLCR. This result is primarily driven by the initial concentration-dependency of the 

effect of LZD in the first 4-6 h from the log-phase scenario, in which higher LZD concentrations can 

augment the effect. In contrast to that, at later time point the growth-arrest of LZD might render higher 

LZD concentrations ineffective. Hence, ‘front-loaded’ LZD regimen might be a promising alternative 

to the standard regimen to augment the antibacterial effect of LZD. A potential benefit of increased 

killing and suppression of resistance development for ‘front-loading’ of LZD was also described by 

Tsuji and colleagues when assessing the PK/PD relationship of LZD against enterococci [231] and 

S. aureus [264] in a dynamic in vitro infection model. However, the safety profile and also the impact 

on clinical outcome of this alternative intensified dosing regimen must be carefully evaluated in 

prospective clinical trials before adopting such a regimen in clinical practice.  

Vancomycin. For the investigated S. aureus strain with a MIC of 1 mg/L, EUCAST would define this 

strain as susceptible to VAN [20,184]. However, the present work questions this general MIC 
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breakpoint and tremendous differences between both investigated growth phases were observed: 

Whilst the standard dosing regimen of 1 g VAN BID administered as short-term infusion provided 

considerably high bactericidal PTA values even for augmented renal function with a CLCR of 

160 mL/min (PTA: 63%) and increased WT of 105 kg (PTA: 77%) for lag-phase S. aureus, the 

bacteriostatic PTA <60% for the lowest studied CLCR of 60 mL/min and no bactericidal effect was 

attained at all for log-phase S. aureus. As the in silico dose fractionation study revealed that log-phase 

S. aureus might be better reflected in the clinical setting for VAN, the discussion of alternative dosing 

regimens will focus on log-phase S. aureus. As suggested by guidelines, VAN dosing in current 

clinical practice is rather based on WT-adjusted dosing of 15 mg/kg BID with an optional loading dose 

of 25-30 mg/kg BID [102] than a fixed dose of 1000 mg BID as suggested in the label [99]. After 

initial dosing, also individual dose adjustment is suggested based on therapeutic drug monitoring 

[102]. WT-adjusted dosing did not only level out the influence of WT in the present work, but inverted 

the WT-effect relationship leading to even higher PTA values with increasing WT. Yet, only in few 

scenarios with WT of 75 kg and CLCR ≤80 mL/min and a dose of 30 mg/kg followed by 15 mg/kg, 

the PTA was considered sufficient (> 90%). In contrast to LZD and MER, CLCR had an enormous 

influence in the present work on the PTA also within the first 24 h; hence it might be beneficial to 

consider both WT and CLCR already for initialisation of antimicrobial therapy with VAN. To 

facilitate this two-dimensional dose adaption in clinical practice, pharmacometric models could be 

used rather than less precise nomograms [265]. User-friendly software is certainly a key prerequisite to 

implement pharmacometric techniques in the clinical setting. It shall be mentioned here that the author 

has developed an easy-to-use web application for this purpose to foster model-supported therapeutic 

drug monitoring in clinical practice (available at: www.tdmx.eu) [266]. An intensified dosing interval 

of 500 mg QID, also suggested in the label of VAN [99], provided higher PTAs than the front-loaded 

BID regimen with a higher total daily dose of 30 mg/kg followed by 15 mg/kg. Continuous infusion of 

2000 mg VAN BID further improved the PTA which was found sufficient even up to CLCR of 

160 mL/min. Waieno and co-authors very recently published a review on VAN administered via 

continuous infusion [267]: Although there was a trend to improved outcomes in some studies 

[268,269], no study found significantly better outcomes associated with continuous infusion [267]. It 

should be mentioned that Waino recommends maintaining (total) VAN steady state concentrations 

between 17.5 and 27.5 mg/L by administering higher doses determined by renal function (e.g. 

27×CLCR+140 to achieve 27.5 mg/L) [267] than in the present work where 2000 mg over 24 h 

provided sufficient PTAs for all covariate scenarios. This might be due to the impaired tissue 

distribution of VAN [96] which is not implemented in the present work due to the unavailability of 

suitable population PK models that also account for tissue distribution. For example, Georges 

investigated penetration of VAN into epithelial lining fluid in the lung and found that for patients with 

plasma trough concentrations below 20 mg/L, no VAN was detected in the lining fluid whilst patients 
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with VAN concentrations >20 mg/L, the concomitant VAN concentrations in the lining fluid were as 

low as 1.38-2.77 mg/L [270]. Lamer and co-workers determined similarly low concentrations in the 

epithelial lining fluid and found that penetration was also altered by lung inflammation [239]. Hence, 

further clinical studies, e.g. using microdialysis [252] are required for VAN to build up predictive 

pharmacometric models integrating unbound tissue concentrations. In presence of this highly variable 

tissue distribution of VAN, the application of the developed population PK/PD model of the present 

work is limited to bloodstream infections.  

In summary, the presented approach translated the results of in vitro experiments into a clinical 

setting. The obtained results agreed in a substantial portion with the results obtained from clinical 

trials providing evidence for the translational validity of the presented findings also for the evaluated 

monotherapy regimens of LZD, MER and VAN. Clinical studies evaluating the proposed dosing 

regimens with respect to their efficacy and safety would next be desirable.  
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5 Conclusion and Perspectives 

The aim of the present thesis was to investigate and compare the mono- and combination therapy of 

LZD or VAN combined with MER against methicillin-susceptible S. aureus in an integrated in vitro 

and in silico approach under consideration of PK and PD. Thereby, the present work advanced both 

the knowledge on the (combined) use of the utilised antibiotics as well as methodological aspects on 

the in vitro and in silico studies. 

The most prominent result on the combined use was that the rapid bactericidal effect of MER against 

methicillin-susceptible S. aureus was fully antagonised by LZD at concentrations above the MIC. The 

clinical trial simulation indicated that the antagonistic interaction between LZD and MER might also 

translate into a clinical setting. The comparator drug VAN resulted in an overall additive interaction 

with MER and even protracted the adaption process of S. aureus to MER, indicating a beneficial 

interaction between VAN and MER. The present work also assessed the approved and recently 

recommended single drug dosing regimens of the antibiotics in the virtual patient population. For 

MER, the standard dosing regimen of 1000 mg TID administered as 1 h infusion was sufficient up to 

CLCR of 140 mL/min (bacteriostatic) or 100 mL/min (bactericidal). Yet, continuous infusion of 1500 

mg MER over 24 h was superior to intermittent dosing and provided sufficient bactericidal PTAs up to 

the highest studied CLCR value of 160 mL/min. For LZD, the standard dosing regimen of 600 mg 

BID as 1 h infusion was solely bacteriostatic and PTA was sufficient up to CLCR of 120 mL/min. The 

present work identified ‘front-loaded’ therapy with 1200 mg LZD followed by 600 mg as BID being 

beneficial to augment the antibacterial effect of LZD to an even bactericidal effect in a fraction of 

patients (8-23% depending on CLCR). Yet, the safety profile of such an intensified regimen must be 

evaluated before adopting such dosing recommendations in clinical practice. For VAN, standard 

dosing with 1000 mg BID was found unreliable for the majority of the patients. The present work 

underlines the value of a loading dose of 30 mg/kg which substantially increased the bacteriostatic 

PTA which was sufficient for CLCR <80 mL/min. However, the use of intensified dosing intervals 

(500 mg VAN QID) or continuous infusion of 2000 mg VAN over 24 h was comparable or superior, 

respectively, at a lower total daily dose than the regimen with the loading doses. Prospective clinical 

trials that evaluate the proposed alternative dosing regimens for LZD, MER and VAN are warranted.  

The hypotheses for the novel dosing strategies for MER, LZD and VAN are based on a clinical trial 

simulation that used a population PK/PD model that was developed in the present work. This approach 

represents a methodological advancement to gain utmost information from in vitro experiments and to 

translate the obtained in vitro results into the clinical setting. Moreover, drug concentrations were 

measured in vitro in the present work and the different stability profiles of MER, LZD and VAN were 

quantified by HPLC, which were considered for PK/PD modelling dissecting loss of effect into the 

sources drug degradation and adaption of S. aureus. The elaborated adaptive optimal design approach 
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of iterative mathematical modelling and experiment conduct yielded a sole basis of quantitative PD 

data. Future studies could further exploit this approach to reduce the experimental workload to most-

informative scenarios. The population PK/PD model was extensively internally and externally 

evaluated and demonstrated its translational validity by successful prediction of PK/PD indices 

generated from animal and clinical studies. Future studies on the (combined) use of MER, LZD and 

VAN should include experiments in dynamic in vitro infection models mimicking the PK profiles in 

plasma and at the target site. With this experimental setup, a potential schedule-dependency of the 

observed interactions could be assessed. Moreover, the use of dynamic in vitro infection models is a 

prerequisite to study other antibiotics that exhibit a longer post-antibiotic effect than the antibiotics 

used in the present work to account for persistent drug effects. Future studies should also go beyond 

measuring viable bacteria expressed as CFU/mL: Quantification of bacterial subpopulations with 

different susceptibility and persisting cells would provide further mechanistic insight into the 

interaction between antibiotic and bacterium that could be considered in a further refined PK/PD 

model. 

Apart from the clinical implications, the present work shed light on some methodological issues on 

frequently used methods for determining the single and combined effect of antibiotics in vitro: (i) The 

conventional checkerboard method based on turbidity, frequently used for PD drug interaction 

screening, was unable to detect the antagonism between LZD and MER due to the insensitive turbidity 

threshold (>10
7
CFU/mL). (ii) The ‘dynamic’ checkerboard with quantification of bacteria in 

combination with the elaborated response surface analysis, as applied in the present work, was a 

powerful tool for screening, evaluation of the nature of the drug interaction and ultimately hypotheses 

generation for the time-kill curve studies. Hence, future studies should rely on the ‘dynamic’ 

checkerboard and interaction results from conventional checkerboard studies should be interpreted 

with caution and respect to the underlying limitations of the turbidity read-out. (iii) For the time-kill 

curve studies, the growth-state of the inoculum was highly influential on the obtained in vitro 

antibacterial effect of all investigated antibiotics. Moreover, the influence of the growth-state on the 

effect did not follow a uniform pattern: Whilst LZD and MER were more active against exponentially 

growing (i.e. log-phase S. aureus) than against resting (i.e. lag-phase S. aureus), VAN behaved vice 

versa and differences were most pronounced leading to a much-less intense antibacterial effect in log-

phase compared to lag-phase S. aureus. Current literature suggests that this influential factor is 

currently not considered in many studies and both proper reporting of the inoculum preparation as well 

as strict standardisation of the experimental procedures seem imperative to increase the comparability 

of time-kill curve studies in the scientific literature. Further experiments with different inoculum 

preparation methods (e.g. early vs. late log phase, colony-suspension vs. planktonic dilution) should be 

systematically evaluated and eventually standardised. 
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7 Appendix 

7.1 Supplementary Figures 

 

Figure 73: Correlation plot for the structural parameters of the final semi-mechanistic PD model for S. aureus in 

lag-phase at drug exposure. Positive correlation is indicated by blue, negative correlation by red circles. Circle 

size and colour gradient indicate the magnitude of correlation.  
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Figure 74: Frequency (y-axis) distribution of the bootstrap estimates (x-axis) for the semi-mechanistic PD 

model for S. aureus in lag-phase obtained from n=1198 bootstrap datasets, red lines indicate final parameter 

estimates. 
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Figure 75: Goodness-of-fit plots illustrating observed vs. predicted log10 CFU/mL (left) and residual vs. 

predicted log10 CFU/mL for semi-mechanistic PD model for S. aureus in lag-phase.  
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Figure 76: Residuals between observed and predicted log10 CFU/mL vs. investigated concentrations of LZD, 

MER and VAN for the semi-mechanistic PD model for lag-phase S. aureus. Boxplots illustrate median 

(horizontal line), 25
th

 to 75
th

 quantile (box), 1.5 fold inter-quartile range from box edge (whiskers) and points 

outside the whiskers.  
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Figure 77: External model evaluation for the semi-mechanistic PD model for S. aureus (3.3.1.3.1) for 

vancomycin (V) and linezolid (L) vs. five MRSA strains (rows). Numbers indicate concentration of antibiotic 

(fold MIC). 
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Figure 78: External model evaluation for the semi-mechanistic PD model for S. aureus (3.3.1.3.1) for penicillin 

(P) and erythromycin (E) vs. three strains of S. pneumoniae (rows). Numbers indicate concentration of antibiotic 

(fold MIC). 

 

 

Figure 79: External model evaluation for the semi-mechanistic PD model for S. aureus (3.3.1.3.1) for ampicillin 

(A) and chloramphenicol (C) vs. an meningeal isolate of group B streptococci (rows). Numbers indicate 

concentration of antibiotic (fold MIC). 
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Figure 80: Correlation plot for the structural parameters of the final semi-mechanistic PD model for S. aureus in 

log-phase at drug exposure. Positive correlation is indicated by blue circles, negative correlation by red circles. 

Circle size and colour gradient indicates magnitude of correlation.  
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Figure 81: Frequency (y-axis) distribution of the bootstrap estimates (x-axis) for the semi-mechanistic PD 

model for S. aureus in log-phase obtained from n=1190 bootstrap datasets, red lines indicate final parameter 

estimates.  
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Figure 82: Goodness-of-fit plots illustrating observed vs. predicted log10 CFU/mL (left) and residual vs. 

predicted log10 CFU/mL for semi-mechanistic PD model for S. aureus in log-phase.  
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Figure 83: Residuals between observed and predicted log10 CFU/mL vs. investigated concentrations of LZD, 

MER, VAN and time for the semi-mechanistic PD model for log-phase S. aureus. Boxplots illustrate median 

(horizontal line), 25
th

 to 75
th

 quantile (box), 1.5 fold inter-quartile range from box edge (whiskers) and points 

outside the whiskers. 
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Figure 84: Typical PK profiles for LZD 600 mg BID (upper panel), MER 1000 mg TID (middle) and VAN 

1000 mg BID (lower panel), administered as 1 h intravenous infusion; total drug concentrations (solid lines) and 

unbound concentrations (dashed lines) are presented for a typical 35 year old male patient with total body weight 

of 75 kg, creatinine clearance of 120 mL/min, and no liver cirrhosis.   
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7.2 Supplementary Tables 

Table 19: Model selection criteria for the final semi-mechanistic PD model for lag-phase S. aureus (first row) 

vs. key models obtained during model development. OLS: ordinary least squares at objective function minimum; 

k: number of model parameters; AIC: Akaike information criterion; AICc: corrected AIC for n/p < 40; -2LL: 

minus 2 times log likelihood. Bold: Criterion used for comparison; -2LL was used for comparison of nested 

models, AIC was used for comparison of non-nested models. Positive difference indicates statistical superiority 

of the final model, negative difference of the respective key model. 

Model OLS k AIC AICc -2LL ∆AIC ∆AICc ∆(-2LL) 

Final model 549.92 21 -1700.02 -1699.39 2844.82 0.00 0.00 0.00 

w/o kper,MER 572.44 20 -1637.13 -1636.55 2909.72 +62.89 +62.84 +64.89 

w/o kper,VAN 566.42 20 -1654.22 -1653.64 2892.63 +45.80 +45.75 +47.80 

w/o Eagle effect for MER 588.14 19 -1595.39 -1594.86 2953.46 +104.64 +104.53 +108.64 

w/o EmaxVAN 570.12 20 -1643.68 -1643.10 2903.17 +56.34 +56.29 +58.34 

w. EC50MER,ARI 556.19 22 -1679.7 -1679.01 2863.15 +20.32 +20.38 +18.32 

w/o EC50VAN,ARI 828.75 20 -1038.82 -1038.24 3508.03 +661.20 +661.15 +663.20 

vs. biphasic growth model 543.16 22 -1718.04 -1717.35 2824.81 -18.01 -17.96 -20.01 
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Table 20: Model selection criteria for the final semi-mechanistic PD model for log-phase S. aureus (first row) 

vs. key models obtained during model development. OLS: ordinary least squares at objective function minimum; 

k: number of model parameters; AIC: Akaike information criterion; AICc: corrected AIC for n/p < 40; -2LL: 

minus 2 times log likelihood. Bold: Criterion used for comparison; -2LL was used for comparison of nested 

models, AIC was used for comparison of non-nested models. Positive difference indicates statistical superiority 

of the final model, negative difference of the respective key model. 

Model OLS k AIC AICc -2LL ∆AIC ∆AICc ∆(-2LL) 

Final model  149.31 19 -443.86 -441.87 776.16 0.00 0.00 0.00 

w. Eagle-effect for 

MER 

149.32 21 -439.86 -437.45 776.16 +4.00 +4.42 0.00 

w/o kper,MER 261.81 19 -194.53 -192.54 1025.49 +249.33 +249.33 +249.33 

w/o kper,VAN 212.53 18 -289.11 -287.31 932.91 +154.75 +154.56 +156.75 

w. kdeath,per 149.36 20 -441.71 -439.52 776.31 +2.15 +2.35 +0.15 

w/o EmaxVAN 163.81 18 -404.73 -402.94 817.29 +39.13 +38.93 +41.13 

w/o kdeath,LZD,log, 

ECLZD,log, HLZD,log, 
kLZD,log(t) 

189.56 15 -345.91 -344.63 882.11 +97.95 +97.24 +105.95 

vs. model with initial 

replication dependent 

effect of LZD  

174.75 17 -378.01 -376.40 846.01 +65.85 +65.47 +69.85 
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7.3 ‘R’-Scripts 

7.3.1 Empiric PD modelling and response surface analysis 

#- RSA of Checkerboard for LZD and MER 

#- Read data ---------------------------------------------------------------------- 

data_checkerb=read.csv("~.csv") 

data_checkerb$LOGCFU=log10(data_checkerb$CFU) 

data_checkerb$LOGCFU[data_checkerb$LOGCFU==("-Inf")]<-0 

 

#- Calculate descriptive statistics of experimental data -------------------------- 

data=cbind(summarize(data_checkerb$LOGCFU, by=llist(data_checkerb$LZD, 

                                                    data_checkerb$MER), mean), 

           summarize(data_checkerb$LOGCFU, by=llist(data_checkerb$LZD, 

                                                    data_checkerb$MER), min)[,3], 

           summarize(data_checkerb$LOGCFU, by=llist(data_checkerb$LZD, 

                                                    data_checkerb$MER), max)[,3], 

           summarize(data_checkerb$LOGCFU, by=llist(data_checkerb$LZD, 

                                                    data_checkerb$MER), sd)[,3]) 

colnames(data)=c("LZD","MER","LOGCFU","LOGCFU_MIN","LOGCFU_MAX","LOGCFU_SD") 

 

# CI 95 calculation for sample mean of n<30 (here n = 3) --> t-distribution  

# with df = n (=3) - 1 --> more conservative than 1.96 * SEM ! 

data$CI95_LOW  = data$LOGCFU + data$LOGCFU_SD/sqrt(3) * qt(0.025, df = 2)  

data$CI95_UP   = data$LOGCFU + data$LOGCFU_SD/sqrt(3) * qt(0.975, df = 2) 
 

#- Individual effects ------------------------------------------------------------- 

#- Sigmoidal Emax model  

E.ind = function(Emax, EC50, H, c){ 

   

  # growth control                       # drug effect reduces bacterial load 

  data$LOGCFU[data$LZD==0&data$MER==0] - ((Emax*c^H)/(EC50^H+c^H)) 

   

} 

 

#- Individual analysis of MER ----------------------------------------------------- 

OBJ_OLS_MER = function(parms, 

                       c){ 

   

  Emax     = parms[1] 

  EC50     = parms[2] 

  H        = parms[3] 

   

  # Ordinary least squares 

       # predicted log10 CFU/mL                   # observed log10 CFU/mL 

  sum((E.ind(Emax,EC50,H,data$MER[data$LZD==0]) - data$LOGCFU[data$LZD==0])^2) 

} 

 

#- Minimise OBJ_OLS  

OBJ_min_MER =   optim(start.MER,  

                      OBJ_OLS_MER, 
                      method="L-BFGS-B", 

                      lower=0, 

                      control=list(trace=T, 

                                   maxit=500, 

                                   factr=1e-5, 

                                   parscale=start.MER, 

                                   fnscale=OBJ_OLS_MER(start.MER)), 

                      hessian=T) 

 

#- calculate residual variance using MLE for sig2 

sig2 = OBJ_min_MER$value/length(data$LOGCFU[data$LZD==0]) 

 

#- invert Hessian (observed Fisher information matrix) to obtain variance- 

#- covariance matrix; correct Hessian by 1/(2*sig2) as OLS was used instead of MLE! 

var_cov_mat<-solve(OBJ_min_MER$hessian/(2*sig2)) 
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#- calculate standard errors of the estimates from diagonal elements of  

#- var_covar_mat 

prop_sigma<-sqrt(diag(var_cov_mat))  

 

# calculation of 95% CIs of parameter estimates; since n < 30 --> t-distribution! 

# degrees of freedom = n-p 

upper<-OBJ_min_MER$par+qt(0.975,  

                          df = (length(data$LOGCFU[data$LZD==0])-3))*prop_sigma 
lower<-OBJ_min_MER$par+qt(0.025,  

                          df = (length(data$LOGCFU[data$LZD==0])-3))*prop_sigma 

interval.MER<-data.frame(value=OBJ_min_MER$par,  

                         upper=upper,           

                         lower=lower, 

                         RSE=(prop_sigma/OBJ_min_MER$par*100)) 

 

#- Individual analysis of LZD ----------------------------------------------------- 

OBJ_OLS_LZD = function...  

{dto. analogous to MER} 

... 

 

 
#- Response Surface Analysis ------------------------------------------------------ 

E.comb.LZDMER = function(Emax.MER,EC50.MER,H.MER, # parameters from ind. analyis 

                         Emax.LZD,EC50.LZD,H.LZD, # parameters from ind. analyis 

                         MER,LZD) {               # Drug concentrations 

   

  # Bliss independence model: Ecomb = Ea + Eb + Ea*Eb  

  # --> modified to account for differences in Emax between MER and LZD 

   

  EMERLZD  = Emax.MER*( 

    ((MER^H.MER)/(EC50.MER^H.MER+MER^H.MER)) + # EMER is normalised to max. 100% 

    (( (Emax.LZD/Emax.MER) * LZD^H.LZD)/ 

       (EC50.LZD^H.LZD+LZD^H.LZD)) -  # Emax LZD as fraction of max effect of MER 

    

    (((MER^H.MER)/(EC50.MER^H.MER+MER^H.MER)) *  

    (( (Emax.LZD/Emax.MER) * LZD^H.LZD)/(EC50.LZD^H.LZD+LZD^H.LZD)))  )  

     

  return(EMERLZD) 

} 

 

#- Calculate uncertainty (SD) of additivity surface from residuals of individual  

#- effect models  

 

#- residual analysis  

resid_MER= E.ind(OBJ_min_MER$par[1], 
                 OBJ_min_MER$par[2], 

                 OBJ_min_MER$par[3], 

                 data$MER[data$LZD==0]) - data$LOGCFU[data$LZD==0] 

 

resid_LZD= E.ind(OBJ_min_LZD$par[1], 

                 OBJ_min_LZD$par[2], 

                 OBJ_min_LZD$par[3], 

                 data$LZD[data$MER==0]) - data$LOGCFU[data$MER==0] 

 

#- compute ‘joint’ residual variance of response surface with delta method 

#-  

resid_LZDMER_SD = deltamethod(~x1+x2,       # transformation independent of E as    

                                              additive residual sigma2 

                              mean=c(0,0),  # exp. mean of residuals for large n  

                              cov=matrix(data=c(sum(resid_MER^2)/length(resid_MER), 

                                              0,                                               

                                              0, 

                                              sum(resid_LZD^2)/length(resid_LZD)), 

                                         nrow=2,ncol=2), 

                              ses=T) # compute standard error 



Appendix 

 

192 

 

# Test for significant deviation of experimental data from BI-RSA ----------------- 

p_values=NULL 

delta_LOGCFU=NULL 

 

for (i in 1:length(data$LOGCFU)){ 

   

  i_MER=data$MER[i] 

  i_LZD=data$LZD[i] 
   

   

  delta_LOGCFU[i] = data$LOGCFU[data$LZD==0&data$MER==0] - 

    E.comb.LZDMER(OBJ_min_MER$par[1],OBJ_min_MER$par[2],OBJ_min_MER$par[3], 

                  OBJ_min_LZD$par[1],OBJ_min_LZD$par[2],OBJ_min_LZD$par[3], 

                  MER=i_MER,LZD=i_LZD) - 

data$LOGCFU[data$LZD==i_LZD&data$MER==i_MER] 

  p_values[i] =   

  tsum.test(mean.x=data$LOGCFU[data$LZD==0&data$MER==0] - 

            E.comb.LZDMER(OBJ_min_MER$par[1],OBJ_min_MER$par[2],OBJ_min_MER$par[3], 

                               

OBJ_min_LZD$par[1],OBJ_min_LZD$par[2],OBJ_min_LZD$par[3], 

                               MER=i_MER,LZD=i_LZD), 

          s.x=resid_LZDMER_SD,  

          n.x=length(resid_LZD)+length(resid_MER), 

           

          mean.y=data$LOGCFU[data$LZD==i_LZD&data$MER==i_MER],  

          s.y=data$LOGCFU_SD[data$LZD==i_LZD&data$MER==i_MER],  

          n.y=3)$p.value  

 

} 

 

# Bonferoni correction for multiple testing alpha/n 

alpha = 0.05  

n = length(data$LOGCFU) 

 
cbind(data, delta_LOGCFU, p_values, p_values<.05, p_values<.05/n) 

 

 

7.3.2 Final semi-mechanistic PD model for lag-phase S. aureus  

#- PD model  -------------------------------------------------------------------- 

PD.model = function(t, cLZD, cMER, cVAN, 

                    parms,logp.operator 

){ 

  if(logp.operator==T){parms=exp(parms)} 

   

  CFU.0 = 10^(parms[1]) 

   

  out=lsoda(c(CFU.0,0,0,     #init of bacterial concentrations 

              1,0,1,0),   #init of adaption system --> all bacteria in AR_off 

            t,  

            function(t,S,parms){ 

              k.death.LZD    = parms[2]      

              k.doub         = 100 

              kper.MER       = parms[3] 

              kper.VAN       = parms[4] 

              k.death.per    = parms[5] 
              EC50.MER       = parms[6] 

              H.MER          = parms[7] 

              beta.MER       = parms[8] 

              tau.MER        = parms[9] 

              Emax.MER.Eagle = parms[10]  

              EC50.MER.Eagle = parms[11] 

              H.MER.Eagle    = 4 

              EC50.LZD       = parms[12] 
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              H.LZD          = parms[13] 

              EC50.VAN       = parms[14] 

              H.VAN          = 20  

              Emax.VAN       = parms[15] 

              beta.VAN       = parms[16] 

              tau.VAN        = parms[17]  

              EC50.VAN.ARI   = parms[18] 

              CFU.MAX        = 10^(parms[19]) 

              k.deg.MER      = 0.01898    #Determined by HPLC 
              k.deg.VAN      = 0.003898   #Determined by HPLC 

              k.lag          = parms[20]  

              k.rep          = parms[21] 

               

               

              k12=k.rep*(1-exp(-k.lag*t)) *(1-(S[1]+S[2]+S[3])/(CFU.MAX)) 

               

               

              alpha.MER = 1 + beta.MER*S[5] 

               

              alpha.VAN = 1 + beta.VAN*S[7] 

               

              cMER_t = cMER*(exp(-k.deg.MER*t)) 

              cVAN_t = cVAN*(exp(-k.deg.VAN*t)) 

               

              MER = (1*cMER_t^H.MER)/ 

                    ((alpha.MER*EC50.MER)^H.MER + cMER_t^H.MER) 

               

              MER.Eagle = (Emax.MER.Eagle * cMER_t^ H.MER.Eagle)/ 

                          (EC50.MER.Eagle^H.MER.Eagle + cMER_t^H.MER.Eagle) 

                             

              VAN = (1*cVAN_t^H.VAN)/ 

                    ((alpha.VAN*EC50.VAN)^H.VAN + cVAN_t^H.VAN)  

               

              VANadaptonMER = ((1*cVAN_t)/(EC50.VAN.ARI + cVAN_t)) 

                                
              LZD = (1*cLZD^H.LZD)/ 

                    (EC50.LZD^H.LZD + cLZD^H.LZD) 

               

              dSdt=vector(len=7) 

              dSdt[1] =- k.death.LZD*LZD*S[1]  

                       - k12*(1-LZD)*S[1] 

                       + k.doub*(1-MER*(1-MER.Eagle)*(1-VAN)) 

                               *(1-Emax.VAN*VAN)*S[2]*2 #GRO 

              dSdt[2] = k12*(1-LZD)*S[1] – k.doub*S[2] - kper.MER*MER*S[2]  

                        - kper.VAN*VAN*S[2] #REP 

              dSdt[3] = kper.MER*MER*S[2] + kper.VAN*VAN*S[2]  

                        – k.death.per*S[3] #PER 

               

              #adaption model MER  

              dSdt[4] =-(1-VANadaptonMER)*tau.MER*cMER_t*S[4]     #AR_off 

              dSdt[5] = (1-VANadaptonMER)*tau.MER*cMER_t*S[4]     #AR_on 

               

              #adaption model VAN  

              dSdt[6] =-tau.VAN*cVAN_t*S[6]       #AR_off 

              dSdt[7] = tau.VAN*cVAN_t*S[6]       #AR_on 

               

              log10CFU.apparent=log10(S[1]+S[2]+S[3]) 

               

              list(dSdt, log10CFU.apparent) 

            } 
            , parms, rtol=1e-10) 

   

  return(out[,9])  #return log10CFU.apparent 

} 

 

#- least squares OBJ ------------------------------------------------------------ 
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#- function of parameter vector and operator to log-transform parameters 

OBJ_OLS = function(parms,logp.operator){ 

   

  estdata=NULL 

  i=0 

  k=NULL 

   

  for(k in 1:length(levels(factor(data_lag$FLAG_SOLVE)))){ 

     
    i = i + length(data_lag[,"TIME"][data_lag$FLAG_SOLVE==(k-1)])  

     

    estdata[(i+1):(i+(length(data_lag[,"TIME"][data_lag$FLAG_SOLVE==k])))] = 

       

      PD.model(data_lag[,"TIME"][data_lag$FLAG_SOLVE==(k)], 

                    data_lag[,"LZD"][data_lag$FLAG_SOLVE==(k)][1], 

                    data_lag[,"MER"][data_lag$FLAG_SOLVE==(k)][1], 

                    data_lag[,"VAN"][data_lag$FLAG_SOLVE==(k)][1], 

                    parms,logp.operator) 

  } 

   

  sum((data_lag[,"LOGCFU"] - estdata)^2, na.rm=T) 

   

} 

 

#- minimise OBJ_OLS_logp ---------------------------------------------------------- 

OBJ_OLS(log(initials),logp.operator=TRUE) #check OBJ at initial estimates 

OBJ_OLS_logp_min = optim(par = log(initials), 

                    fn  = OBJ_OLS, 

                    logp.operator=T, 

                    method = "Nelder-Mead", 

                    control = list(trace=T, 

                                   maxit=3500, 

                                   reltol=1e-3, 

                                   parscale=log(initials), 

                                   fnscale=OBJ_OLS(log(initials),logp.operator=T)), 
                    hessian = F) 

 

 

#- check parameter estimates 

exp(OBJ_OLS_logp_min$par) 

 

#- minimise OBJ_OLS using estimates of OBJ_OLS_logp_min as initial estimates ------ 

OBJ_OLS(exp(OBJ_OLS_logp_min$par),logp.operator=FALSE) #check OBJ at initials  

 

OBJ_OLS_min = optim(par = exp(OBJ_OLS_logp_min$par), 

                          fn  = OBJ_OLS, 

                          logp.operator=FALSE, 

                          method = "BFGS", 

                          control = list(trace=T, 

                                         maxit=300, 

                                         reltol=1e-4, 

                                         parscale=exp(OBJ_OLS_logp_min$par), 

                                         fnscale=OBJ_OLS_logp_min$value), 

                          hessian = T) 

#- check parameter estimates 

OBJ_OLS_min$par 

 

#- calculate residual variance using MLE for sig2 

sig2 = OBJ_OLS_min$value/ length(data_lag$LOGCFU) 
 
#- invert Hessian (observed Fisher information matrix) to obtain variance- 

#- covariance matrix; correct Hessian by 1/(2*sig2) as OLS was used instead of MLE! 

var_covar_mat<-solve(OBJ_OLS_min$hessian/(2*sig2)) 

 

#- calculate standard errors of the estimates from diagonal elements of  

#- var_covar_mat 
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prop_sigma<-sqrt(diag(var_covar_mat)) 

 

#- calculate 95% confidence intervals for parameter estimates(1.96 as n is large) 

upper<-OBJ_OLS_min$par+1.96*prop_sigma 

lower<-OBJ_OLS_min$par-1.96*prop_sigma 

 

interval<-data.frame(value=OBJ_OLS_min$par,  

                     lower=lower,  

                     upper=upper) 
 

#- Model diagnostics -------------------------------------------------------------- 

#- AIC formula 

AIC = length(data_lag$LOGCFU) *  

      log(OBJ_OLS_min$value/length(data_lag$LOGCFU)) +  

      2*(length(OBJ_OLS_min$par)+1) 

 

#- AICc fomula 

AICc = AIC + (2*(length(OBJ_OLS_min$par)+1)*(length(OBJ_OLS_min$par)+2))/ 

             (length(data_lag$LOGCFU)-(length(OBJ_OLS_min$par)+1)-1) 

 

#- minus 2* log-likelihood function 

m2LogLik = -2*(-(length(data_lag$LOGCFU)/2)*log(2*pi) -               

              (length(data_lag$LOGCFU)/2)*log(sig2) - 1/(2*sig2)*OBJ_OLS_min$value) 

 

# VPC --------------------------------------------------------------------------- 

timepoints=seq(0,24,by=.1) 

VPC=function(cLZD,cMER,cVAN,n,alpha){ 

  VPC_data = matrix(nrow=length(timepoints),ncol=n+1) 

  VPC_data[,1] = timepoints 

  for(i in 1:n){ 

      VPC_data[,i+1] = PD.model(timepoints, 

                                cLZD=cLZD, 

                                cMER=cMER, 

                                cVAN=cVAN,                                    

                                parms=mvrnorm(mu=OBJ_OLS_min$par, #parm uncertainty 
                                              Sigma=var_covar_mat), 

                                logp.operator=F) +  

                       rnorm(n=1,mean=0,sd=sqrt(sig2)) #residual variability 

       

} 

VPC_out=rbind(TIME=timepoints, 

              apply(VPC_data,1, 

                    quantile,  

                    probs=c((alpha/2),.5,1-(alpha/2)),na.rm=T)) 

 

return(VPC_out) 

} 

 

#- VPC execution ----------------------------------------------------------------- 

VPC_plot=NULL 

for (i in levels(factor(data_lag$FLAG2))){ 

VPC_plot[[paste(i)]] = VPC(cLZD=data_lag$LZD[data_lag$FLAG2==i][1], 

                           cMER=data_lag$MER[data_lag$FLAG2==i][1], 

                           cVAN=data_lag$VAN[data_lag$FLAG2==i][1], 

                           1000, 

                           .1) 

print(paste("Processing currently:",i)) 

} 

 

 
VPC_plot_df = NULL 

for (i in levels(factor(data_lag$FLAG2))){ 

 VPC_plot_df_append = as.data.frame(t(VPC_plot[[paste(i)]])) 

 VPC_plot_df = rbind(VPC_plot_df,cbind(VPC_plot_df_append,"FLAG2"=i)) 

} 
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VPC_plot_df[1,] 

colnames(VPC_plot_df) = c("TIME","lower","median","upper","FLAG2") 

 

ggplot() +  

  geom_ribbon(data=VPC_plot_df,aes(x=TIME,ymin=lower,ymax=upper), 

              fill="black",alpha=.2) + 

  geom_point(data=data_lag,aes(TIME, LOGCFU),shape=1) + 

  geom_line(data=VPC_plot_df,aes(TIME, median),color="red") + 

  facet_wrap( ~ FLAG2) + 
  scale_x_continuous(name="Time [h]", breaks=c(0,6,12,18,24)) + 

  scale_y_continuous(name="Log10 CFU/mL", breaks=c(0,2,4,6,8,10))  

 

# Bootstrap --------------------------------------------------------------------- 

N_boot = 1200 

Boot_pars = matrix(data=NA,nrow=N_boot,ncol=length(OBJ_OLS_min$par)) 

colnames(Boot_pars)=rownames(estimates_RSE) 

 

for(j in 1:N_boot){ 

 

  data_lag_boot = data_lag[sample(seq(1:length(data_lag$LOGCFU)), 

                                  size=length(data_lag$LOGCFU), 

                                  replace=T),] 

   

  data_lag_boot = data_lag_boot[order(data_lag_boot$TIME),] 

  data_lag_boot = data_lag_boot[order(data_lag_boot$FLAG_SOLVE),] 

   

OBJ_OLS_boot = function(parms,logp.operator){ 

   

  estdata=NULL 

  i=0 

  k=NULL 

   

  for(k in 1:length(levels(factor(data_lag_boot$FLAG_SOLVE)))){ 

     

    i = i + length(data_lag_boot[,"TIME"][data_lag_boot$FLAG_SOLVE==(k-1)])  
     

    

estdata[(i+1):(i+(length(data_lag_boot[,"TIME"][data_lag_boot$FLAG_SOLVE==k])))] = 

       

      PD.model(data_lag_boot[,"TIME"][data_lag_boot$FLAG_SOLVE==(k)], 

               data_lag_boot[,"LZD"][data_lag_boot$FLAG_SOLVE==(k)][1], 

               data_lag_boot[,"MER"][data_lag_boot$FLAG_SOLVE==(k)][1], 

               data_lag_boot[,"VAN"][data_lag_boot$FLAG_SOLVE==(k)][1], 

               parms,logp.operator) 

  } 

   

  sum((data_lag_boot[,"LOGCFU"] - estdata)^2, na.rm=T) 

   

} 

 

print(paste("Bootstrap sample #",j)) 

OBJ_OLS_logp_boot_min = optim(par = log(OBJ_OLS_min$par), 

                              fn  = OBJ_OLS_boot, 

                              logp.operator=TRUE, 

                              method = "Nelder-Mead", 

                              control = list(trace=T, 

                                             maxit=120, 

                                             reltol=1e-3, 

                                             parscale=log(OBJ_OLS_min$par), 

                                             fnscale=OBJ_OLS_min$value), 
                              hessian = F) 

 

OBJ_OLS_boot_min = optim(par = exp(OBJ_OLS_logp_boot_min$par), 

                         fn  = OBJ_OLS_boot, 

                         logp.operator=FALSE, 

                         method = "BFGS", 
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                         control = list(trace=T, 

                                        maxit=300, 

                                        reltol=1e-4, 

                                        parscale=exp(OBJ_OLS_logp_min$par), 

                                        fnscale=OBJ_OLS_logp_min$value), 

                    hessian = F) 

Boot_pars[j,] = OBJ_OLS_boot_min$par 

 

} 

 

 

7.3.3 Final semi-mechanistic PD model for log-phase S. aureus 

#- PD model using non-transformed parms ------------------------------------------- 

PD.model = function(t, cLZD, cMER, cVAN, 

                    parms,logp.operator 

){ 

  if(logp.operator==T){parms=exp(parms)} 

   

  CFU.0 = 10^(parms[1]) 

   

  out=lsoda(c(CFU.0,0,0,     #init of bacterial concentrations 

              1,0,1,0),   #init of adaption system --> all bacteria in AR_off 

            t,  

            function(t,S,parms){ 

              k.death.LZD    = parms[2]  

              k.death.log.LZD= parms[3] 

              k.doub         = 100 

              k.per.MER      = 2.651608e-04 #fixed to final est. to increase stab. 

              k.per.VAN      = parms[4] 

              k.death.per    = 0 #fixed to final est. to increase stab. 
              EC50.MER       = parms[5] 

              H.MER          = parms[6] 

              beta.MER       = parms[7] 

              tau.MER        = parms[8] 

              EC50.LZD       = parms[9] 

              H.LZD          = parms[10] 

              EC50.LZD.log   = parms[11] 

              H.LZD.log      = parms[12] 

              k.LZD.arrest   = parms[13] 

              EC50.VAN       = parms[14] 

              H.VAN          = 20  

              Emax.VAN       = parms[15] 

              beta.VAN       = parms[16] 

              tau.VAN        = parms[17]  

              CFU.MAX        = 10^(parms[18]) 

              k.deg.MER      = 0.01898    #Determined by HPLC 

              k.deg.VAN      = 0.003898   #Determined by HPLC 

              k.rep          = parms[19] 

               

               

              k12=k.rep*(1-(S[1]+S[2]+S[3])/(CFU.MAX)) 

               

               

              alpha.MER = 1 + beta.MER*S[5] 

               

              alpha.VAN = 1 + beta.VAN*S[7] 
               

              cMER_t = cMER*(exp(-k.deg.MER*t)) 

              cVAN_t = cVAN*(exp(-k.deg.VAN*t)) 

               

              MER = ((1*cMER_t^H.MER)/ 

                       ((alpha.MER*EC50.MER)^H.MER + cMER_t^H.MER) )               

              

              VAN = ((1*cVAN_t^H.VAN)/ 
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                       ((alpha.VAN*EC50.VAN)^H.VAN + cVAN_t^H.VAN) ) 

                                

              LZD = ((1*cLZD^H.LZD)/(EC50.LZD^H.LZD + cLZD^H.LZD)) 

              LZD.log = ((1*cLZD^H.LZD.log)/(EC50.LZD.log^H.LZD.log +                  

                                                       cLZD^H.LZD.log)) 

               

              dSdt=vector(len=7) 

              dSdt[1] = -k.death.LZD*LZD*S[1]  

                        -k.death.log.LZD*LZD.log*exp(-k.LZD.arrest*t)*S[1]  
                        -k12*(1-LZD)*S[1]  

                        +k.doub*(1-MER)*(1-Emax.VAN*VAN)*S[2]*2 #GRO 

              dSdt[2] = k12*(1-LZD)*S[1] – k.doub*S[2]  

                       -k.per.MER*MER*S[2] – k.per.VAN*VAN*S[2] #REP 

              dSdt[3] = k.per.MER*MER*S[2] + k.per.VAN*VAN*S[2]   

                       -k.death.per*S[3] #PER 

               

              #adaption model MER (Mohamed 2009 AAC) 

              dSdt[4] = -tau.MER*cMER_t*S[4]    #AR_off 

              dSdt[5] = tau.MER*cMER_t*S[4]     #AR_on 

               

              #adaption model VAN (Mohamed 2009 AAC) 

              dSdt[6] = -tau.VAN*cVAN_t*S[6]      #AR_off 

              dSdt[7] = tau.VAN*cVAN_t*S[6]       #AR_on 

               

              log10CFU.apparent=log10(S[1]+S[2]+S[3]) 

               

              list(dSdt, log10CFU.apparent) 

            } 

            , parms, rtol=1e-10) 

   

  return(out[,9])   

} 

 

[further steps are similar as for lag-phase model (7.3.2)] 

[...] 

 

7.3.4 Adaptive optimal design 

#- Compute anticipated RSE based on provided design -------------------------------

#- required:  

#- * dataframe ‘data_lag’ with design columns: 

#-   - TIME (sampling points in ‘h’ incl. anticipated replicates) 

#-   - LZD (LZD concentration in ‘mg/L’) 

#-   - MER (MER concentration in ‘mg/L’) 

#-   - VAN (VAN concentration in ‘mg/L’) 
#- * parameter vector ‘parms’ with anticipated values for model parameters 

#- * anticipated residual variance ‘sig2’ 

 

OD_PDMODEL_SEs = function(parms,sig2){  

   

  # first ‘parms’-derivatives of PD model (Jacobian) 

  df       = jacobian(func = function(parms,logp.operator){ 

     

    estdata=NULL 

    i=0 

    k=NULL 

     

    for(k in 1:length(levels(factor(data_lag$FLAG_SOLVE)))){ 

       

      i = i + length(data_lag[,"TIME"][data_lag$FLAG_SOLVE==(k-1)])  

       

      estdata[(i+1):(i+(length(data_lag[,"TIME"][data_lag$FLAG_SOLVE==k])))] = 

         

        # semi-mechanistic PD model   

        PD.model(data_lag[,"TIME"][data_lag$FLAG_SOLVE==(k)], 
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                 data_lag[,"LZD"][data_lag$FLAG_SOLVE==(k)][1], 

                 data_lag[,"MER"][data_lag$FLAG_SOLVE==(k)][1], 

                 data_lag[,"VAN"][data_lag$FLAG_SOLVE==(k)][1], 

                 parms,logp.operator=F) 

    } 

     

    estdata 

  },  

  x = parms,  
  method = "simple") 

   

  # expected Fisher information matrix  

  FishInf  = 1/sig2 * (t(df)%*%df) 

 

  # expected relative standard errors 

  out      = sqrt(diag(solve(FishInf))) / initials *100 

  out 

   

} 

 

 

7.3.5 Generation of the virtual patient population for clinical trial simulation 

set.seed(1) 

WT   = rlnorm(1000, meanlog = log(75), sdlog = .1)         # Total body weight 

SEX  = rbinom(1000, 1, 0.5)                                # Sex (female = 1) 

AGE  = round(rlnorm(1000, meanlog = log(35), sdlog = .1),0)# Age (yrs.) 

CIR  = rbinom(1000, 1, 0.05)                               # Liver cirrhosis                           

                                                           # 0 = no, 1 = yes 

SCR  = rlnorm(1000, meanlog = log(1.0), sdlog = .1)        # Serum creatinine  

CLCR = (140-AGE)*WT/72/SCR * ifelse(SEX==1,0.85,1)         # Creatinine Clearance   

                                                           # Cockcroft Gault 

 

write.csv(cbind(WT,SEX,AGE,CIR,SCR,CLCR), 

          "LMV01_virtual_population.csv", 

          row.names=F) 

 

7.3.6 Clinical trial simulation model (lag-phase example) 

#- Load virtual patient population ---------------------------------------------- 

virt_pat=read.csv("LMV01_virtual_population_20150502.csv") 

var_covar_mat=read.csv("var-covar-mat_mod06.csv") 

parms = read.csv("Estimates_mod06.csv")[,2] 

names(parms) = read.csv("Estimates_mod06.csv")[,1] 

 

CLCR = virt_pat$CLCR     # Creatinine clearance mL/min  

WT   = virt_pat$WT       # Total body weight 

AGE  = virt_pat$AGE      # Age (yrs.) 

CIR  = virt_pat$CIR      # Liver cirrosis (LZD model; 0 = no, 1 = yes) 

 

#- PK models (cf. analytical solutions presented in Monolix PK/PD Library 

#-            http://www.lixoft.eu/wp-content/uploads/2015/06/PKPDlibrary.pdf) 

#-=============================================================================== 

#- Meropenem Population PK model (Li et al JCP 2006) ---------------------------- 

MEROPENEM_PK=function(t,Inf_Dose,Inf_Dur,t_Dose,ETA,AGE,WT,CLCR){ 

   

  CL_i = 14.6 * (CLCR/83)^0.62 * (AGE/35)^-0.34 * exp(ETA[1]) 

  V1_i = 10.8 * (WT/70)^0.99                    * exp(ETA[2]) 

  Q_i  = 18.6                                   * exp(ETA[3]) 
  V2_i = 12.6                                   * exp(ETA[4]) 

   

  #convert parameters to rate constants 

  k10 = CL_i/V1_i 
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  k12 = Q_i/V1_i 

  k21 = Q_i/V2_i 

   

  beta = 0.5 * (k12 + k21 + k10 - sqrt((k12 + k21 + k10)^2 - 4 * k21 * k10)) 

  alpha = (k21 * k10) / beta 

  A = 1/V1_i * (alpha - k21)/(alpha - beta) 

  B = 1/V1_i * (beta - k21)/(beta - alpha) 

   

  if(t==0){cp=0}else{ 
     

    #infusion phase 

    if(t-tail(t_Dose[t_Dose<t],1)<=tail(Inf_Dur[t_Dose<t],1)){ 

      cp = sum( 

        ( Inf_Dose[t_Dose<t][-length(Inf_Dose[t_Dose<t])]/Inf_Dur[t_Dose<t][-

length(Inf_Dose[t_Dose<t])] *  

            (A/alpha * (1-exp(-alpha*Inf_Dur[t_Dose<t][-

length(Inf_Dose[t_Dose<t])])) * exp(-alpha*(t-t_Dose[t_Dose<t][-

length(Inf_Dose[t_Dose<t])]-Inf_Dur[t_Dose<t][-length(Inf_Dose[t_Dose<t])])) + 

               B/beta  * (1-exp(-beta*Inf_Dur[t_Dose<t][-

length(Inf_Dose[t_Dose<t])]))  * exp(-beta*(t-t_Dose[t_Dose<t][-

length(Inf_Dose[t_Dose<t])]-Inf_Dur[t_Dose<t][-length(Inf_Dose[t_Dose<t])]))) ) ) +  

        ( tail(Inf_Dose[t_Dose<t],1)/tail(Inf_Dur[t_Dose<t],1) * (A/alpha * (1-

exp(-alpha*(t-tail(t_Dose[t_Dose<t],1)))) + B/beta * (1-exp(-beta*(t-

tail(t_Dose[t_Dose<t],1))))))  

    } 

    # elimination phase 

    if(t-tail(t_Dose[t_Dose<t],1)>tail(Inf_Dur[t_Dose<t],1)){ 

      cp = sum( 

         

        Inf_Dose[t_Dose<t]/Inf_Dur[t_Dose<t] * (A/alpha * (1-exp(-

alpha*Inf_Dur[t_Dose<t])) * exp(-alpha*(t-t_Dose[t_Dose<t]-Inf_Dur[t_Dose<t])) +  

                                                  B/beta  * (1-exp(-

beta*Inf_Dur[t_Dose<t]))  * exp(-beta*(t-t_Dose[t_Dose<t]-Inf_Dur[t_Dose<t]))) ) 

    } 

  } 
  return(cp) 

} 

 

#- Vancomycin Population PK model (Llopis-Salvia et al J. Clin. Pharm. Ther. 2006) 

------------------------------------------------------ 

VANCOMYCIN_PK=function(t,Inf_Dose,Inf_Dur,t_Dose,ETA,WT,CLCR){ 

   

  CL_i = (0.034 * CLCR + 0.015 * WT) * (1 + ifelse(ETA[1]<= -1,0,ETA[1])) 

  V1_i = (0.414 * WT)                * (1 + ifelse(ETA[2]<= -1,0,ETA[2])) 

  Q_i  =  7.48 

  V2_i = (1.32  * WT)                * (1 + ifelse(ETA[4]<= -1,0,ETA[4]))  

   

  #convert parameters to rate constants 

  k10 = CL_i/V1_i 

  k12 = Q_i/V1_i 

  k21 = Q_i/V2_i 

   

  beta = 0.5 * (k12 + k21 + k10 - sqrt((k12 + k21 + k10)^2 - 4 * k21 * k10)) 

  alpha = (k21 * k10) / beta 

  A = 1/V1_i * (alpha - k21)/(alpha - beta) 

  B = 1/V1_i * (beta - k21)/(beta - alpha) 

   

  if(t==0){cp=0}else{ 

     

    #infusion phase 
    if(t-tail(t_Dose[t_Dose<t],1)<=tail(Inf_Dur[t_Dose<t],1)){ 

      cp = sum( 

        ( Inf_Dose[t_Dose<t][-length(Inf_Dose[t_Dose<t])]/Inf_Dur[t_Dose<t][-

length(Inf_Dose[t_Dose<t])] *  

            (A/alpha * (1-exp(-alpha*Inf_Dur[t_Dose<t][-

length(Inf_Dose[t_Dose<t])])) * exp(-alpha*(t-t_Dose[t_Dose<t][-
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length(Inf_Dose[t_Dose<t])]-Inf_Dur[t_Dose<t][-length(Inf_Dose[t_Dose<t])])) + 

               B/beta  * (1-exp(-beta*Inf_Dur[t_Dose<t][-

length(Inf_Dose[t_Dose<t])]))  * exp(-beta*(t-t_Dose[t_Dose<t][-

length(Inf_Dose[t_Dose<t])]-Inf_Dur[t_Dose<t][-length(Inf_Dose[t_Dose<t])]))) ) ) +  

        ( tail(Inf_Dose[t_Dose<t],1)/tail(Inf_Dur[t_Dose<t],1) * (A/alpha * (1-

exp(-alpha*(t-tail(t_Dose[t_Dose<t],1)))) + B/beta * (1-exp(-beta*(t-

tail(t_Dose[t_Dose<t],1))))))  

    } 

    # elimination phase 
    if(t-tail(t_Dose[t_Dose<t],1)>tail(Inf_Dur[t_Dose<t],1)){ 

      cp = sum( 

         

        Inf_Dose[t_Dose<t]/Inf_Dur[t_Dose<t] * (A/alpha * (1-exp(-

alpha*Inf_Dur[t_Dose<t])) * exp(-alpha*(t-t_Dose[t_Dose<t]-Inf_Dur[t_Dose<t])) +  

                                                  B/beta  * (1-exp(-

beta*Inf_Dur[t_Dose<t]))  * exp(-beta*(t-t_Dose[t_Dose<t]-Inf_Dur[t_Dose<t]))) ) 

    } 

  } 

  return(cp) 

} 

 

#- Linezolid Population PK model (Sasaki et al AAC 2011) --------------------------

---------------------------- 

LINEZOLID_PK = function(t,Inf_Dose,Inf_Dur,t_Dose,ETA,WT,CLCR,CIR){ 

   

  CL_i = (2.85 * (CLCR/60.9)^0.618 * 0.472^CIR) * exp(ETA[1]) 

  V1_i = (33.6 * WT/57.9)                       * exp(ETA[2]) 

   

  #convert parameters to rate constants 

  kel = CL_i/V1_i 

  Vd  = V1_i 

   

  if(t==0){cp=0}else{ 

    if(t-tail(t_Dose[t_Dose<t],1)<=tail(Inf_Dur[t_Dose<t],1)){ 

      cp = sum( 
        ( Inf_Dose[t_Dose<t][-length(Inf_Dose[t_Dose<t])]/Inf_Dur[t_Dose<t][-

length(Inf_Dose[t_Dose<t])] * 1/(kel*Vd) * 

            (1-exp(-kel*Inf_Dur[t_Dose<t][-length(Inf_Dose[t_Dose<t])]))*exp(-

kel*(t-t_Dose[t_Dose<t][-length(Inf_Dose[t_Dose<t])]-Inf_Dur[t_Dose<t][-

length(Inf_Dose[t_Dose<t])])) )) + 

        tail(Inf_Dose[t_Dose<t],1)/tail(Inf_Dur[t_Dose<t],1)*1/(kel*Vd)*(1-exp(-

kel*(t-tail(t_Dose[t_Dose<t],1))))  

       

    } 

     

    if(t-tail(t_Dose[t_Dose<t],1)>tail(Inf_Dur[t_Dose<t],1)){ 

      cp = sum( 

        ( Inf_Dose[t_Dose<t]/Inf_Dur[t_Dose<t] * 1/(kel*Vd) * 

            (1-exp(-kel*Inf_Dur[t_Dose<t]))*exp(-kel*(t-t_Dose[t_Dose<t]-

Inf_Dur[t_Dose<t])) ))   

    }}  

  return(cp) 

} 

 

#-=============================================================================== 

#-Covariates for virtual patient population ------------------------------------- 

 

CLCR = virt_pat$CLCR     # Creatinine clearance mL/min  

WT   = virt_pat$WT       # Total body weight 

AGE  = virt_pat$AGE      # Age (yrs.) 
CIR  = virt_pat$CIR      # Liver cirrosis (LZD model; 0 = no, 1 = yes) 

 

#-Nr of stochastic simulations -------------------------------------------------- 

 

N_sim = 1000 
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#- population PK/PD model  ------------------------------------------------------- 

PKPD.model = function(t,  

                      parms, 

                      PKparms.MER, 

                      PKparms.VAN, 

                      PKparms.LZD, 

                      init.cond, 

                      MIC_MER, 

                      MIC_VAN, 
                      MIC_LZD 

){ 

   

  GRO      =init.cond[1] 

  REP      =init.cond[2] 

  PER      =init.cond[3] 

  ARoff.MER=init.cond[4] 

  ARon.MER =init.cond[5] 

  ARoff.VAN=init.cond[6] 

  ARon.VAN =init.cond[7] 

 

  out=lsoda(c(GRO,REP,PER,                           #init of bacteria 

              ARoff.MER,ARon.MER,ARoff.VAN,ARon.VAN, #init of adaption system  

                                                     #--> all bacteria in AR_off 

              fAUC_MER=0,fTMIC_MER=0,                #init of fAUC and T>MIC  

              fAUC_LZD=0,fTMIC_LZD=0,                #init of fAUC and T>MIC  

              fAUC_VAN=0,fTMIC_VAN=0),               #init of fAUC and T>MIC  

            t,  

            function(t,S,parms){ 

               

              k.death.LZD    = parms[2]      

              k.doub         = 100 

              kper.MER       = parms[3] 

              kper.VAN       = parms[4] 

              k.death.per    = parms[5] 

              EC50.MER       = parms[6] 
              H.MER          = parms[7] 

              beta.MER       = parms[8] 

              tau.MER        = parms[9] 

              Emax.MER.Eagle = parms[10]  

              EC50.MER.Eagle = parms[11] 

              H.MER.Eagle    = 4 

              EC50.LZD       = parms[12] 

              H.LZD          = parms[13] 

              EC50.VAN       = parms[14] 

              H.VAN          = 20  

              Emax.VAN       = parms[15] 

              beta.VAN       = parms[16] 

              tau.VAN        = parms[17]  

              EC50.VAN.ARI   = parms[18] 

              CFU.MAX        = 10^(parms[19]) 

              k.deg.MER      = 0.01898    #Determined by HPLC 

              k.deg.VAN      = 0.003898   #Determined by HPLC 

              k.lag          = parms[20]  

              k.rep          = parms[21]               

               

              k12=k.rep*(1-exp(-k.lag*t)) *(1-(S[1]+S[2]+S[3])/(CFU.MAX)) 

               

               

              alpha.MER = 1 + beta.MER*S[5] 

               
              alpha.VAN = 1 + beta.VAN*S[7] 

               

              cMER_t = MEROPENEM_PK(t, 

                                    PKparms.MER$Inf_Dose, 

                                    PKparms.MER$Inf_Dur, 

                                    PKparms.MER$t_Dose, 
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                                    PKparms.MER$ETA, 

                                    PKparms.MER$AGE, 

                                    PKparms.MER$WT, 

                                    PKparms.MER$CLCR) *0.98 #--> correction for             

                                                            #protein binding (FI) 

              cVAN_t = VANCOMYCIN_PK(t, 

                                     PKparms.VAN$Inf_Dose, 

                                     PKparms.VAN$Inf_Dur, 

                                     PKparms.VAN$t_Dose, 
                                     PKparms.VAN$ETA, 

                                     PKparms.VAN$WT, 

                                     PKparms.VAN$CLCR) *0.672 #--> correction for   

                                                              #protein binding     

                                                              #(Kees JCP 2014) 

              cLZD_t = LINEZOLID_PK(t, 

                                    PKparms.LZD$Inf_Dose, 

                                    PKparms.LZD$Inf_Dur, 

                                    PKparms.LZD$t_Dose, 

                                    PKparms.LZD$ETA, 

                                    PKparms.LZD$WT, 

                                    PKparms.LZD$CLCR, 

                                    PKparms.LZD$CIR) *0.866 #--> correction for  

                                                            #protein binding  

                                                            #Buerger AAC 2006 

               

              MER = ((1*(cMER_t*1)^H.MER)/ #--> no correction for penetration 

                       ((alpha.MER*EC50.MER)^H.MER + (cMER_t*1)^H.MER) ) 

               

              LZD = ((1*cLZD_t^H.LZD)/ #--> no correction for penetration  

                       (EC50.LZD^H.LZD + cLZD_t^H.LZD) ) 

               

              VAN = ((1*(cVAN_t*1)^H.VAN)/ #--> no correction for penetration 

                       ((alpha.VAN*EC50.VAN)^H.VAN + (cVAN_t*1)^H.VAN) )  

               

              VANadaptonMER = ((1*cVAN_t)/( EC50.VAN.ARI + cVAN_t)) 
               

              MER.Eagle = (Emax.MER.Eagle * cMER_t^ H.MER.Eagle)/ 

                          (EC50.MER.Eagle^H.MER.Eagle + cMER_t^H.MER.Eagle) 

               

              dSdt=vector(len=13) 

              dSdt[1] =- k.death.LZD*LZD*S[1]  

                       - k12*(1-LZD)*S[1] 

                       + k.doub*(1-MER*(1-MER.Eagle)*(1-VAN)) 

                               *(1-Emax.VAN*VAN)*S[2]*2  

              dSdt[2] = k12*(1-LZD)*S[1] – k.doub*S[2] - kper.MER*MER*S[2]  

                        - kper.VAN*VAN*S[2]  

              dSdt[3] = kper.MER*MER*S[2] + kper.VAN*VAN*S[2] – k.death.per*S[3] 

               

              #adaption model MER  

              dSdt[4] =-(1-VANadaptonMER)*tau.MER*cMER_t*S[4]     #AR_off 

              dSdt[5] = (1-VANadaptonMER)*tau.MER*cMER_t*S[4]     #AR_on 

               

              #adaption model VAN  

              dSdt[6] =-tau.VAN*cVAN_t*S[6]       #AR_off 

              dSdt[7] = tau.VAN*cVAN_t*S[6]       #AR_on 

               

              FMER=ifelse(cMER_t>MIC_MER,1,0) 

              dSdt[8] = cMER_t                    #fAUC MER in plasma 

              dSdt[9] = FMER                      #fTMIC MER calculation in plasma 

               
              FLZD=ifelse(cLZD_t>MIC_LZD,1,0) 

              dSdt[10] = cLZD_t                    #fAUC LZD in plasma 

              dSdt[11] = FLZD                      #fTMIC LZD calculation in plasma 

               

              FVAN=ifelse(cVAN_t>MIC_VAN,1,0) 

              dSdt[12] = cVAN_t                    #fAUC VAN in plasma 
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              dSdt[13] = FVAN                      #fTMIC VAN calculation in plasma 

                                          

              log10CFU.apparent=log10(S[1]+S[2]+S[3]) 

               

              list(dSdt, cMER_t=cMER_t, cVAN_t=cVAN_t, cLZD_t=cLZD_t,  

                   Ntot=log10CFU.apparent) 

            } 

            , parms, rtol=1e-10) 

   
  return(out)   

} 

 

# Stochastic simulations MER 500 mg TID 

init.cond=c( 

  GRO      =10^6, 

  REP      =0, 

  PER      =0, 

  ARoff.MER=1, 

  ARon.MER =0, 

  ARoff.VAN=1, 

  ARon.VAN =0) 

 

MER_500_TID = data.frame(NULL) 

MER_500_TID_append = data.frame(NULL) 

for (i in 1:N_sim){ 

  MER_500_TID_append =  

    PKPD.model(c(0,.001,seq(0.2,24,.2)), 

               parms=mvrnorm(n=1,mu=parms,Sigma=var_covar_mat), 

               PKparms.MER=list(Inf_Dose=c(500,500,500), 

                                Inf_Dur=c(1,1,1), 

                                t_Dose=c(0,8,16), 

                                ETA=c(rnorm(1,mean=0,sd=sqrt(0.118)), #iiv CL 

                                      rnorm(1,mean=0,sd=sqrt(0.143)), #iiv V1 

                                      rnorm(1,mean=0,sd=sqrt(0.290)), #iiv Q 

                                      rnorm(1,mean=0,sd=sqrt(0.102))),#iiv V2 
                                AGE=AGE[i], 

                                WT=WT[i], 

                                CLCR=CLCR[i]), 

               PKparms.VAN=PKparms.VAN.dummy, 

               PKparms.LZD=PKparms.LZD.dummy, 

               init.cond, 

               MIC_MER=0.125,MIC_VAN=1,MIC_LZD=2) 

   

  MER_500_TID = rbind(MER_500_TID,MER_500_TID_append) 

   

  print(i) 

} 
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counter to assess antibiotic therapy. 

Annual Meeting of the Deutsche Pharmazeutische Gesellschaft (DPhG), Greifswald, Deutschland, 11.-

13. October 2012. 

(poster presentation) 
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S.G. Wicha 
TDMx: A bedside web-based support tool to guide intermittent vs. continuous infusion of beta-

lactams.  

25
th
 Meeting of the International Society of Antiifective Pharmacology, San Diego, USA 21. 

September 2015.  
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S.G. Wicha, C. Kloft 

Does linezolid antagonise the bactericidal effect of meropenem? 

Tag der Pharmazie, Berlin, Germany, 6. June 2012. 

 

H. Derendorf, D. Gonzalez, D. Conrado, S. G. Wicha 

Benefits and risks of pharmacokinetic and pharmacodynamic drug-drug interactions in anti-infective 

therapy 

DDI 2011 – 2nd International workshop on regulatory requirements and current scientific aspects on 

preclinical and clinical of drug-drug interactions, Schloss Marbach, Germany, 1.-3. May 2011. 
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