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Abstract: Pathogenic mycobacteria are able to persist intracellularly in macrophages, whereas
non-pathogenic mycobacteria are effectively combated and eliminated after their phagocytosis. It is
known that TGF-β plays an important role in this context. Infection with pathogenic mycobacteria
such as Mycobacterium tuberculosis or M. avium leads to production of active TGF-β, which blocks the
ability of IFN-γ and TNF-α to inhibit intracellular replication. On the other hand, it is known that
the long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) is involved in the regulation
of TGF-β. In this study, we show how the infection of THP-1-derived human macrophages
with the saprophytic M. smegmatis but not with the facultatively pathogenic M. avium subsp.
hominissuis leads to increased MEG3 expression. This is associated with the downregulation of
DNA methyltransferases (DNMT) 1 and 3b, which are known to regulate MEG3 expression via
promoter hypermethylation. Consequently, we observe a significant downregulation of TGF-β in M.
smegmatis-infected macrophages but not in M. avium subsp. hominissuis pointing to lncRNAs as novel
mediators of host cell response during mycobacterial infections.

Keywords: mycobacteria; long non-coding RNAs; lncRNA; DNA methyltransferases; MEG3; TGF-β;
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1. Introduction

The genus Mycobacterium comprises several species, including obligate pathogens such as
M. tuberculosis (MTB), facultative pathogens such as M. avium subsp. hominissuis (MAH), and
saprophytic species such as M. smegmatis (MS), which is usually considered as non-pathogenic.
A great variability exists regarding their strategies to persist and multiply in the environment or
host organism. Pathogenic members of the genus such as MTB and MAH developed strategies to
evade the antimicrobial activities of macrophages and to replicate intracellularly resulting in disease,
while MS has only very limited ability to survive in immune cells [1–5].

Identification of the mechanisms used by mycobacteria to subvert immune response is
indispensable to understand pathogenesis and to develop strategies for counteracting infection. Over
the last few years, several studies reported that mycobacteria influence the expression of regulatory
non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs) affecting host cell response
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signaling pathways such as autophagy of immune cells [6–10]. Long ncRNAs are distinguished from
other non-coding RNAs based on their size of larger than 200 nucleotides. Long ncRNAs function,
for example, as protein scaffolds, activators or inhibitors of transcription, antisense RNA, protein
decoys, or microRNA (miRNA) sponges [11]. In contrast to miRNAs, studies investigating the role of
lncRNAs in mycobacterial infections are just beginning to rise. For example, it was shown that the
lncRNA CD244, which is upregulated in MTB infection, acts as an epigenetic inhibitor of TNF-α and
IFN-γ expression [12]. The authors were able to show that lncRNA CD244 leads to trimethylation and
a more repressive chromatin state at the IFN-γ or TNF-α loci. However, the infection-related function
and mode of action of most reported lncRNAs remain to be investigated.

Recently, we identified the participation of the lncRNA maternally expressed 3 (MEG3) in the
process of autophagy in macrophages infected with M. bovis BCG [6]. In the present study, we focused
on the expression of the lncRNA MEG3 in response to other mycobacteria (MS and MAH), as well
as the cellular regulation of MEG3 and its function regarding TGF-β expression, a cytokine which
is known to play an important role during mycobacterial infection [13–15]. Our findings provide
novel insight into the regulatory function of lncRNA MEG3 in response to mycobacteria exhibiting
differences in virulence, such as the ability to persist intracellularly, and improve our understanding of
the mycobacterium–macrophage interplay.

2. Materials and Methods

2.1. Bacterial Strains and Culture Conditions

M. smegmatis mc2 155 (DSMZ No. 43756) and M. avium subsp. hominissuis strain 104 [16] were
cultured on Middlebrook 7H11 (BD Life Sciences, Heidelberg, Germany) agar plates including 10%
OADC supplement (BD Life Sciences) and 0.5% glycerol (Carl Roth GmbH, Karlsruhe, Germany)
at 37 ◦C until colonies were visible. Colonies were transferred from plates to Middlebrook 7H9
broth (BD Life Sciences) supplemented with 10% ADC (BD Life Sciences) and 0.05% Tween-80
(Carl Roth GmbH) and grown at 37 ◦C until the culture reached an optical density (OD600) = 1.
From this pre-culture, the main culture was inoculated and adjusted to OD600 = 0.1 and cultured
again at 37 ◦C until OD600 = 1. Bacteria were harvested by centrifugation, quick-frozen in liquid
nitrogen, and kept at −80 ◦C in PBS containing 10% glycerol until used for infection experiments.
For quantification of bacteria, the number of colony-forming units was determined by plating serial
dilutions on Middlebrook 7H11 agar plates which were incubated at 37 ◦C until colonies were visible.

2.2. Cell Culture

The monocytic cell line THP-1 (DSMZ No. ACC 16) was cultured in RPMI 1640 (Biochrom
AG, Berlin, Germany) supplemented with 10% FBS superior (Biochrom AG), 2 mM L-glutamine
(Biochrom AG), 1 mM Na-pyruvate (Biochrom AG), gentamycin (10 µg/mL) (Biochrom AG), and 1 mM
HEPES buffer (Biochrom AG) at 37 ◦C in a 5% CO2 humidified atmosphere and passaged 2–3 times per
week. Cells were used up to passage 20. To perform infection experiments, cells were differentiated
into macrophages by stimulation with phorbol-12-myristate-13-acetate (PMA, Sigma-Aldrich, Munich,
Germany) 48 h prior to infection. For that purpose, cells were seeded in a 10 µM PMA solution in RPMI
including listed supplements but without antibiotics at a density of 1 × 106 cells per well, applying a
1.5-mL volume together with a six-well cell culture plate (Sarstedt AG, Nümbrecht, Germany). After
24 h of PMA stimulation, the stimulus was removed by washing the adherent cell layer with PBS.
Medium including listed supplements but without antibiotics was provided for another 24 h before
using THP-1-derived macrophages for infection experiments.

2.3. Infection Experiments

In total, 1 × 106 THP-1-derived macrophages were infected using 1 × 107 bacteria (multiplicity of
infection (MOI) = 10) at 37 ◦C and 5% CO2. Non-infected cells served as a negative control. Samples
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were taken 30 minutes, 4 h, and 8 h after adding the bacteria to the cells. For the 8 h time point, cells
were washed three times with PBS after 4 h of incubation and incubated in fresh media for another
4 h. For RNA extraction, cells were washed three times with PBS, and lysed with RNA lysis buffer
(miRVana, Thermo Fisher Scientific, Darmstadt, Germany), and total RNA was isolated according to
the manufacturer’s instruction. Each infection experiment was carried out in three biological replicates
(n = 3). Post-infection times of 30 min and 4 h were selected based on the observations we made in our
previous study regarding MEG3 regulation [3]. The additional time point of 8 h was selected to track
possible consequences following MEG3 dysregulation.

2.4. Expression Analysis Using RT-qPCR

Complementary DNA (cDNA) was synthesized by reverse transcription using the Maxima First
Strand cDNA synthesis kit (Thermo Fisher Scientific) as described in the manufacturer’s protocol.
Pooled cDNA was taken as a template for testing the primers listed in Appendix A as described
earlier [17]. Expression analysis was performed by means of SYBR Green detection chemistry using
the SensiMix SYBR Hi-ROX Kit (Bioline GmbH, Luckenwalde, Germany) as described earlier [6]
using a PikoReal Cycler (Thermo Fisher Scientific,). Expression was normalized using simultaneously
amplified reference genes (GAPDH, SDHA, B2M). The two most stable reference genes were selected
after geNorm analysis [18]. The stable expression of the reference genes is shown in Appendix B.
The ∆∆CT method was used to calculate the relative fold difference of RNA expression levels compared
to the negative control [19]. Data were baseline-corrected by defining the average of respective negative
controls as baseline and calculating the ratio (value/baseline) of replicates using GraphPad Prism
version 6.00 (GraphPad Software, La Jolla California USA, www.graphpad.com). The presented data
reflect the means of three biological and three technical replicates.

2.5. Statistical Analysis

Unpaired t-tests were conducted to test significant differences between two treatments. Asterisks
in figures summarize p-values (* p < 0.05, ** p < 0.01, *** p < 0.001) applying GraphPad Prism version
6.00 for Windows (GraphPad Software, La Jolla, CA, USA, www.graphpad.com).

3. Results

3.1. Infection with M. smegmatis But Not M. avium subsp. hominissuis Leads to Upregulation of the
lncRNA MEG3

THP-1-derived macrophages were infected with MS or MAH to analyze MEG3 expression in
response to different mycobacteria. As shown in Figure 1, the infection with MS showed clearly
increased MEG3 expression 30 minutes post infection (p.i.) (mean fold difference to negative control:
1.68) and even more pronounced and significant upregulation 4 h p.i. (mean fold difference to negative
control: 4.84, unpaired t-test, p < 0.05). In contrast, infection with MAH reduced cellular MEG3 levels
30 minutes (mean fold difference to negative control: 0.6) and 4 h p.i. (mean fold difference to negative
control: 0.48).

www.graphpad.com
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Figure 1. Maternally expressed 3 (MEG3) expression of THP-1-derived macrophages in response to 126 
Mycobacterium smegmatis (MS, dotted columns) or M. avium subsp. hominissuis (MAH, dashed 127 
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Figure 1. Maternally expressed 3 (MEG3) expression of THP-1-derived macrophages in response to
Mycobacterium smegmatis (MS, dotted columns) or M. avium subsp. hominissuis (MAH, dashed columns)
compared to the negative control (NC, white columns). Dotted lines indicate the fold differences
to negative controls (0.67, 1, and 1.5). The area between the outer dotted lines indicates balanced
expression between samples and controls. MEG3 is significantly upregulated by MS 4 h post infection
(p.i.) compared to NC and MAH. Asterisks summarize p-values (unpaired t-test; * p < 0.05). Columns
show means of three biological replicates (n = 3) and bars show the standard deviation.

3.2. The Expression of DNA Methlytransferases 1 and 3b Is Downregulated after M. smegmatis Infection

The cellular expression of MEG3 was reported to be regulated by DNA methyltransferase (DNMT)
1 in lung cancer cells [20] and in glioma cells [21], as well as by both DNMT1 and 3b in hepatocellular
cancer cells [22]. To follow up if this is also the case in mycobacterial infections of human macrophages,
the expression of DNMT1 and DNMT3b was analyzed by RT-qPCR 30 min, 4 h, and 8 h p.i. with MS
or MAH.

As shown in Figure 2a, infection with MS caused highly significant downregulation of DNMT1
expression compared to both the negative control and MAH at 4 h p.i. (mean fold difference to
negative control: 0.48, unpaired t-test, p < 0.001), as well as 8 h p.i. (mean fold difference to negative
control: 0.31, unpaired t-test, p < 0.001), whereas infection with MAH only caused slightly decreased
DNMT1 expression 4 h p.i. (mean fold difference to negative control: 0.76) and 8 h p.i. (mean fold
difference to negative control: 0.69, unpaired t-test, p < 0.05). DNMT3b was very pronounced and
highly significantly decreased by MS 4 h p.i. (mean fold difference to negative control: 0.26, unpaired
t-test, p < 0.001) and 8 h p.i. (mean fold difference to negative control: 0.34, unpaired t-test, p < 0.001)
compared to the negative control and to infection with MAH. In contrast, MAH only produced slightly
decreased expression 4 h p.i. (mean fold difference to negative control: 0.54, unpaired t-test, p < 0.01)
(Figure 2b).
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Figure 2. Expression of DNA methyltransferase (DNMT) 1 and 3b in macrophages infected with
M. smegmatis (MS, dotted columns) and M. avium subsp. hominissuis (MAH, dashed columns) compared
to the negative control (NC, white columns). Dotted lines indicate the fold differences to negative
controls (0.67, 1, and 1.5). The area between the outer dotted lines indicates balanced expression
between samples and controls. (a) Infection with MS caused a clear downregulation of DNMT1
expression compared to the negative control and to MAH 4 h and 8 h p.i. (b) DNMT3b expression is
significantly reduced by MS 4 h p.i. compared to the negative control and compared to infection with
MAH. Asterisks summarize p-values (unpaired t-test; * p < 0.05, ** p < 0.01, *** p < 0.001). Columns
show means of three biological replicates (n = 3) and bars show the standard deviation.
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3.3. TGF-β Is Downregulated in M. smegmatis-Infected THP-1-Derived Macrophages

After showing pronounced downregulation of methyltransferases, we focused our investigations
on TGF-β. MEG3 is known to modulate the activity of TGF-β gene expression by forming RNA–DNA
triplex structures, thereby binding distal regulatory elements, leading to its transcriptional repression
in breast cancer cells [23]. As TGF-β is a crucial regulator of the immune response during mycobacterial
infections, we were interested if TGF-β expression is dysregulated in our infection model. Interestingly,
we found highly and significantly decreased TGF-β2 expression in MS-infected cells 8 h p.i. (mean
fold difference to negative control: 0.29, unpaired t-test, p < 0.001). In contrast, MAH infections did not
cause a significant dysregulation of both TGF-β1 and 2 expression (Figure 3a). Expression of TGF-β1
was downregulated by MS 8 h p.i. (mean fold difference to negative control: 0.42) (Figure 3b).
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4. Discussion

Several studies reported the impact of mycobacteria on the expression of host cell lncRNAs.
However, function and molecular mechanisms of these lncRNAs usually remain unknown [12,24,25].
Furthermore, in many cases, it is unknown if the expression of lncRNAs is dysregulated in a
pathogen-specific manner and if dysregulation favors the host or the pathogen. Studies examining the
lncRNA expression in response to a choice of pathogens possessing different virulence mechanisms
are scarce. However, it was shown that two strains of MTB differing in virulence induced distinct
lncRNA expression profiles [8].

As our group recently identified the lncRNA MEG3 as a regulator of autophagy in infections with
M. bovis BCG belonging to the MTB complex, we were interested if MEG3 expression in macrophages
is also affected by facultatively pathogenic or saprophytic mycobacteria possessing differences in the
ability to survive in immune cells. MS can be found in normal human genital secretions, as well as
in the environment, and is usually not considered a human pathogen. However, there are very few
reports on skin or soft-tissue infections, usually occurring under immunosuppressed conditions. It is
known that MS is eradicated by macrophages shortly after internalization [2,5]. In contrast, MAH is
considered a pathogenic species belonging to the Mycobacterium avium complex, frequently causing
respiratory illness in immunocompromised patients [26,27]. In addition, cases of M. avium infections
in immunocompetent patients do occur regularly and are increasing [28–30]. MAH is able to invade
macrophages and inhibits intracellular killing to ensure its survival and replication [1].

To investigate the expression of lncRNA MEG3 in response to MS or MAH, we infected
THP-1-derived macrophages and analyzed MEG3 expression 30 minutes and 4 h p.i. Interestingly,
MEG3 expression was significantly induced 4 h p.i. by MS but not MAH. This confirms our observations
during M. bovis BCG infection [6] and points to a virulence- and species-dependent impact on the
expression of MEG3. To investigate the dysregulation of MEG3 expression in more detail, we analyzed



Microorganisms 2019, 7, 63 6 of 9

the cellular abundance of DNMT1 and 3b messenger RNA (mRNA). These methyltransferases inhibit
MEG3 expression via methylation of the MEG3-promotor region, leading to a more repressive
chromatin state [20–22]. Thus, limited abundance of methyltransferases in MS-infected cells will
allow increased expression of the lncRNA MEG3. In accordance with our hypothesis, we found
the expression of DNMT1 and 3b markedly and significantly downregulated in MS-infected cells
compared to the negative control, but not in MAH-infected macrophages.

In addition, we were interested in the functional aspect of MEG3 upregulation in MS-infected
macrophages. MEG3 was recently shown to regulate genes of the TGF-β pathway through formation
of RNA–DNA triplex structures [23]. TGF-β was identified as a direct target. Increased expression
of MEG3 resulted in significant downregulation of TGF-β. Consistent with the hypothesis that
increased MEG3 expression in MS-infected cells leads to decreased TGF-β levels, we found TGF-β
to be significantly downregulated in MS but not in MAH-infected cells. TGF-β is recognized as
an anti-inflammatory cytokine and has a variety of inhibitory effects including downregulation
of macrophage activity and function [31,32]. Several studies showed that TGF-β is produced by
macrophages in response to pathogenic mycobacteria such as MTB and M. avium, promoting the
intracellular persistence and growth of these pathogens [15,33,34]. Infection with MTB or M. avium
leads to production of active TGF-β, which blocks the ability of either IFN-γ or TNF-α to inhibit
intracellular replication [33]. It was shown that TGF-β inhibits the capability of IFN-γ to induce the
release of reactive nitrogen intermediates [31]. Neutralization of TGF-β results in increased bacterial
killing [33]. These studies elucidate TGF-β as an important mediator of macrophage reactivity to
intracellularly persisting mycobacterial pathogens.

In our study, we observed virulence-dependent regulation of MEG3 expression which
corresponded to regulation of DNMT1 and 3b, pointing to the control of MEG3 expression by
imprinting [20–22]. As already examined in a different context [23], it can be assumed that MEG3
regulates TGF-β also during macrophage infection with the non-pathogenic MS, which remains to
be examined experimentally. This seems to represent the normal protective host cell response for
eradicating phagocytosed bacteria. Depending on their genetic repertoire, pathogenic mycobacteria
seem to have evolved active mechanisms that interfere with the MEG3-mediated downregulation of
TGF-β signaling, facilitating their intracellular persistence in host macrophages. Our findings deepen
the understanding of mycobacterial pathogenesis and provide novel insights into the regulatory
function of lncRNAs during mycobacterial infection of human macrophages.
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Appendix A

Table A1. Oligonucleotides used for RT-qPCR.

Gene Name Forward 5′–3′ Reverse 5′–3′ Annealing
Temperature

MEG3 CAGCCAAGGTTCTTGAAAGG TTCCACGGAGTAGAGGCAGT 60 ◦C
DNMT1 GAATCAGTTATGTGACTTGGAAACC CTAGACGTCCATTCACTTCCC 60 ◦C
DNMT3b CCCATTCGAGTCCTGTCATTG TTGATATTCCCCTCGTGCTTC 62 ◦C
TGF-β1 CAGCAACAATTCCTGGCGATA AAGGCGAAAGCCCTCAATTT 60 ◦C
TGF-β2 CCCCGGAGGTGATTTCCATC CAACTGGGCAGACAGTTTCG 60 ◦C

B2M GTGCTCGCGCTACTCTCTCT GGATGGATGAAACCCAGACA 60 ◦C
GAPDH CCATCTTCCAGGAGCGAGAT CTAAGCAGTTGGTGGTGCAG 60 ◦C
SDHA TGGGAACAAGAGGGCATCTG CCACCACTGCATCAAATTCATG 60 ◦C
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