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Abstract: This article starts with an introductory survey of previous work on breaking and restoring
the electronic structure symmetry of atoms and molecules by means of two laser pulses. Accordingly,
the first pulse breaks the symmetry of the system in its ground state with irreducible representation
IRREPg by exciting it to a superposition of the ground state and an excited state with different
IRREPe. The superposition state is non-stationary, representing charge migration with period T in
the sub- to few femtosecond time domains. The second pulse stops charge migration and restores
symmetry by de-exciting the superposition state back to the ground state. Here, we present a new
strategy for symmetry restoration: The second laser pulse excites the superposition state to the excited
state, which has the same symmetry as the ground state, but different IRREPe. The success depends
on perfect time delay between the laser pulses, with precision of few attoseconds. The new strategy
is demonstrated by quantum dynamics simulation for an oriented model system, benzene.

Keywords: attosecond chemistry; laser control; symmetry breaking; symmetry restoration; charge
migration; quantum dynamics; benzene

1. Introduction

It is nowadays well established that a laser pulse can break the electronic structure symmetry
of atoms or molecules (as in Refs. [1–7]), a process that it often followed by charge migration (as in
Refs. [8–18]). Recently, we showed that one can employ a well-designed second laser pulse that restores
the symmetry of the electronic structure after application of a first symmetry-breaking pulse [19–21].
In the molecular case, by “symmetry” we mean the molecular point group, e.g., D6h for benzene, or in
general the group of all symmetry operations such as rotations, reflections, and inversions that map the
initial electronic eigenfunction (or a set of degenerate eigenfunctions) on itself, with the characteristic
phase factors that are called “characters”. The characters determine the irreducible representations
(IRREP) for the given symmetry, e.g., benzene has IRREPg = A1g and various other IRREPe (e.g.,
E1u) in the electronic ground and excited states, respectively. Symmetry breaking means that the first
laser pulse distorts the electronic wave function such that it can no longer be assigned to the original
symmetry group. For example, in the case of benzene, the distorted electronic wave function can no
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longer be assigned to D6h symmetry. Likewise, symmetry restoration means that the second pulse
re-shapes the wave function such that it can be re-assigned to the original symmetry group, irrespective
of any possible changes of the IRREP. For example, in the case of benzene, symmetry restoration of
electronic structure means that the electronic wave function can be re-assigned to D6h symmetry.

For reference, we use the next paragraph of this Introduction to explain our previous approaches
to electronic structure symmetry breaking and symmetry restoration. This long paragraph also serves
to introduce some important terminology that is employed in the rest of the paper. The following
paragraph points to some related previous work. The remaining paragraphs define the goal of this
paper, namely to develop a new strategy for breaking and restoring electronic structure symmetry.

The previous approaches to breaking and restoring electronic structure symmetry by two laser
pulses have been demonstrated for two model systems, the 87Rb atom[19] and the oriented benzene
molecule[19–21]. To achieve this goal, we designed two laser pulses centered at tb < 0 and at
tr = −tb > 0, respectively. The time delay td = tr − tb between the pulses was chosen sufficiently long,
and their durations sufficiently short such that, at the "central" time tc = (tb + tr)/2 = 0, the systems
evolve in quasi-field-free environment.

At the same time, td must be chosen short enough such that effects of decoherence (e.g., due
to nuclear motions [13,14,22]) are negligible. Specifically, the coherence time of benzene exceeds ten
femtosecond [13,14]; we note in passing that this is significantly longer than for the benzene cation
where it lasts for just a few femtoseconds [23]. This allows using the model of fixed nuclei to describe
the laser induced electron dynamics. In our simulations, the nuclei of benzene were fixed at the global
minimum structure of the electronic ground state with D6h symmetry, adapted from Refs. [17,24–26].
Initially, at time ti � tb, the systems were in their highly symmetric electronic ground states, S0(3)
and D6h for 87Rb and benzene, respectively. The first laser pulse then broke symmetry by partial
population transfer from the ground state with initial irreducible representation IRREPg(= D(0) and
A1g, respectively) to an excited state with different IRREPe 6= IRREPg (specifically, IRREPe = D(2)

and E1u, respectively). This created a superposition of the electronic ground and excited states that
cannot be assigned to any IRREP (e.g., neither to IRREPg nor to IRREPe) of the original symmetry
groups (S0(3) and D6h, respectively), but only to one of their subgroups. For example, the electronic
structure of the 87Rb atom in the superposition state was anisotropic [19], and the electronic wave
function of the superposition state of benzene had Cs [19,21] or C2v [20] symmetry, different from
the initial isotropic S0(3) or D6h symmetries, respectively. Since the superposition state is not an
eigenstate, it is of course non-stationary. Since the nuclear wave functions that are associated with the
electronic ground and excited states overlap, the non-stationary superposition state represents charge
migration in the applications of Refs. [19–21]. The period T = h/∆E of charge migration depends on
the energy gap ∆E = Ee − Eg between the levels Eg and Ee of the electronic ground and excited states.
Typical values of ∆E are in the domain of several eV. The periods T of charge migration are, therefore,
in the time domain from sub-fs to several fs. Specifically, for our applications to 87Rb and benzene,
T = 0.992 fs and 0.504 fs, respectively. The second laser pulse de-excited the superposition state back
to the ground state [19,20]. Consequently, charge migration was stopped, and finally (at time t f = −ti)
the systems were back to their initial symmetry groups—specifically, they were back to S0(3) and D6h,
respectively. Moreover, the previous approaches [19,20] also re-establish the original IRREPg(= D(0)

and A1g, respectively). Successful applications depended on two conditions: (i) The second laser pulse
was designed as a circularly polarized copy [19], or as time-reversed linearly polarized copy [20] of
the first pulse for symmetry breaking. By “copies” we imply that the two laser pulses must have the
same, or time-reversed properties. For example, they have the same carrier frequencies ωb = ωr, the
same maximum field strengths εb = εr and corresponding maximum intensities Ib = 0.5ε0c0ε2

b = Ir

(where ε0 and c0 denote the permittivity and speed of light in vacuo), the same ( e.g., Gaussian) shape
functions with the same parameters for the durations τb = τr, the same carrier envelope phases ηb = ηr

(usually set equal to zero), etc. (ii) The time delay td had to be chosen “perfectly” such that at the
central time tc = 0, the two components of the superposition states had the same or opposite phases. If
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this condition is not satisfied, i.e., if the second pulse is centered at t′r = tr + t′ with time t′ added to the
“perfect” time tr, then at the final time t′f = t f + t′, the systems are left in the asymmetric superposition
state, with non-zero populations Pg(t′f ) and Pe(t′f ) = 1− Pg(t′f ) of the two components for the ground
and excited states. An important analytical result is [19,20]

Pe(t′f ) = 4Pg(tc)Pe(tc)

[
1
2
− 1

2
cos

(
2πt′

T

)]
, (1)

where Pg(tc) and Pe(tc) are the populations of the ground and excited states at the central time,
tc = 0. Symmetry restoration in the ground state requires that Pg(t′f ) = 1 and Pe(t′f ) = 0. Obviously,
Condition (ii) is satisfied if and only if t′ = 0 or t′ = T, 2T, 3T, etc. In practice, one may allow small
deviations from this ideal requirement, by the order of few percents of the period T. In the applications
to 87Rb and benzene (where T = 0.992 fs and 0.504 fs, respectively, see above), Condition (ii) thus
requires “perfect” time delays, with precision of a few attoseconds. In Ref. [19], we developed robust
numerical techniques for quantum dynamics simulations that fulfill this condition, with applications
to the two model systems. The experimental feasibility is also presented in Ref. [19], by means of
high-contrast Ramsey interferometry of the 87Rb atom.

In retrospect, one can find rather early examples in the literature of works involving electronic
structure symmetry breaking and restoration, in particular in early work on Ramsey fringes [27,28],
but the authors did not discuss the phenomenon. A more recent example comes from high harmonic
generation (HHG). According to Corkum’s “simple man’s three step mechanism” [29], an atom or a
molecule in the electronic ground state is first ionized by an intensive ultrashort laser pulse. In the
second step, the same laser pulse accelerates the electron that was ejected in the first step, first by
driving it away and then back to the ion. In the third step, the electron re-collides with the ion in a
highly excited electronic state that decays back to the electronic ground state by spontaneous emission
of HHG, see, e.g., Refs. [29–33]. In retrospective, this correspond to a kind of spontaneous symmetry
restoration, although it was never recognized as such. The example of HHG is rewarding because
it shows that restoration of electronic structure symmetry can be exploited for useful application.
Laser control of electronic symmetry may also be used for chemical reactions [34–37] and for charge
migration [10,17]. The efficiency of electronic symmetry restoration in HHG is rather low, however,
because the probabilities of re-collision and spontaneous emission in the third step are rather small.
Here, we aim at designing laser pulses that achieve close to 100% restoration of electronic structure
symmetry. In a general perspective, the present development may thus be considered as contribution
to quantum control [38–40].

The goal of this article is to develop a new strategy for restoration of electronic structure symmetry
by means of the second laser pulse, after symmetry has been broken by a first pulse. For convenience,
we employ the same mechanism of symmetry breaking by the first laser pulse as previously [19–21],
namely by exciting the system from its electronic ground state to a superposition of the ground state
and an excited state with IRREPe different from IRREPg. The purpose and the mechanism of the
second laser pulse is, however, quite different from the previous de-excitation of the superposition
state back to the ground state [19,20]: It excites the component of the ground state in the superposition
state to the excited state, which means it prepares the excited state as a pure eigenstate with the same
electronic symmetry as the original one. Its IRREPe is, however, different from the original IRREPg

(e.g., in the case of benzene with symmetry D6h, the excited target state may have IRREPe = E1u,
which is different from IRREPg = A1g). A special case of this strategy is already presented in Ref. [21].
There, the discovery is motivated by Equation (1), which yields Pe(t′f ) = 1 if Pg(tc) = Pe(tc) = 0.5 and
t′ = T/2 or 3T/2, 5T/2, etc. (Note that the work in Ref. [21] employs alternative definitions of time
delays.) The requirement of equal populations Pg(tc) = Pe(tc) = 0.5 called for the special design of the
first laser pulse as so-called π/2 laser pulse [41]—in Ref. [21], this is a circularly polarized π/2 pulse
as in Ref. [11,17]. Our new theory removes this restriction, i.e., symmetry may be broken by arbitrary
first laser pulses, and, in any case, the second laser pulse is tailored such that it restores electronic
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structure symmetry in the excited eigenstate with IRREPe. The new approach was exemplified by
quantum dynamic simulation for the oriented model benzene. We show that the new strategy requires
different laser pulses for symmetry breaking and restoration, i.e., they are no longer (time-reversed)
copies of each other, but they still require “perfect” time delays with attosecond precision.

Section 2 presents the model, the concept, the basic and extended theory and the methods.
The results and discussions are in Section 3. The conclusions are in Section 4.

2. Model, Concept, Theory and Methods

This section is divided into three parts. In the first subsection, we introduce the model and present
some general aspects of the theory, together with the necessary details of the theory for symmetry
breaking by a laser pulse. This part mostly builds upon and is quite similar to the theory published in
our previous work (see Section 1)—we call it the “basic” theory. It is included here for self-containment
of this article. The second subsection describes the new strategy for breaking the symmetry of the
electronic structure of the electronic ground state and for restoring it in an excited state with different
IRREPe 6= IRREPg. The third subsection presents the theory for the new strategy—we call it the
“extended” theory.

2.1. Model and Basic Theory

Our model assumes that all nuclei are fixed at the global minimum structures of the molecules
in the electronic ground state, as in the previous approaches (cf. Section 1). We consider the
scenario of an oriented molecule with its center of mass at the origin of the laboratory frame. This
frame has a right-handed Cartesian set of unit vectors ~ex,~ey,~ez which are determined by the laser
pulses. For example, in the present application to benzene, the laser pulses propagate along~ez with
perpendicular circular polarizations that yield maximum field strength of the first laser pulse along~ex

at time tb. The benzene molecule is oriented in the xy-plane of the laboratory frame, with two carbon
nuclei on the y-axis, as in Refs. [17,24–26]. The laser carrier frequencies ωb = 2πνb and ωr = 2πνr

correspond to wavelengths λb = c0/νb and λr = c0/νr, respectively, that are much longer than the
molecular sizes. In the molecular domain that is of interest here, the electric fields of the laser pulses
be considered as homogeneous.

The model Hamiltonian of the molecule interacting with the laser pulses is

H(t) = He − ~d ·~ε(t), (2)

where
He = Te + Vc (3)

is the electronic Hamiltonian that accounts for the kinetic energies Te of the electrons and for their
intramolecular Coulomb interactions Vc with all particles (electrons and fixed nuclei). The scalar
product ~d ·~ε(t) represents the semiclassical interaction of the electric dipole operator ~d and the electric
field ε(t) of the two laser pulses that break and restore electronic structure symmetry.

The electronic eigenfunctions |Ψk〉 and their energies Ek are calculated as solutions of the
time-independent Schrödinger equation (TISE)

He|Ψk〉 = Ek|Ψk〉. (4)

The labels k denote sets of quantum numbers, which include the IRREPs. Specifically, k = g
and k = e denote the electronic ground state (IRREPg) and the specific excited state (IRREPe) that
constitute the superposition state which is prepared by the first laser pulse,

|Ψ(tc)〉 = cg(tc)|Ψg〉+ ce(tc)|Ψe〉 (5)
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with coefficients cg(tc) and ce(tc) at the central time tc = 0 between the two laser pulses. The new
strategy uses the second laser pulse to excite this superposition (Equation (5)) to the final state

|Ψ(t f )〉 = eiηe f |Ψe〉 (6)

with irrelevant phase factor eiηe f for the phase ηe f ≡ ηe(t f ) of the excited state at t = t f . Preparation of
the final state (Equation (6)) restores the original point group of the initial (t = ti) ground electronic state

|Ψ(ti)〉 = |Ψg〉. (7)

The inherent two-state scenario that leads from the initial ground state (Equation (7)) via the
superposition state (Equation (5)) to the excited target state (Equation (6)) is justified in the beginning
of Section 2.3. The laser driven electronic wave function |Ψ(t)〉 is calculated as solution of the time
dependent Schrödinger equation (TDSE)

ih̄
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉 (8)

subject to the initial condition in Equation (7). Expanding the wave function |Ψ(t)〉 in terms of a finite
set of the eigenfunctions

|Ψ(t)〉 = ∑
k

ck(t)|Ψk〉 (9)

yields the algebraic version of the TDSE

ih̄
d
dt

c(t) = H(t)c(t), (10)

with vector c(t) of the coefficients ck(t) and corresponding initial condition

ck(ti) = δgk, (11)

where δgk denotes the Kronecker delta. The coefficients are in general complex-valued; they can be
written as

ck(t) = Ck(t)eiηk(t) (12)

with real valued amplitudes Ck(t) and phases ηk(t). The matrix elements of the Hamilton matrix
H(t) are

Hkl(t) = 〈Ψk|H(t)|Ψl〉 = Ekδkl − ~dkl ·~ε(t) (13)

with k → l transition dipole matrix element ~dkl = 〈Ψk|~d|Ψl〉. In the case of benzene, the diagonal
matrix elements vanish, ~dkk = 0, for symmetry reasons.

The absolute squares of the coefficients ck(t) yield the populations, or the probabilities of
occupying the eigenstate labeled k in the superposition (Equation (9)) at time t,

Pk(t) = |ck(t)|2 = C2
k (t). (14)

These probabilities are normalized,

∑
k

Pk(t) = 1. (15)
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In particular, the initial electronic ground state (Equation (7)) implies that Pk(ti) = δgk
(cf. Equation (11)). The populations of the ground and excited states in the superposition (Equation (5))
at time tc after the first laser pulse are

Pg(tc) = |cg(tc)|2,
Pe(tc) = |ce(tc)|2,

(16)

whereas all other coefficients and probabilities are equal to zero at time tc. The normalization in
Equation (15) implies that the coefficients at time tc can be parameterized as

cg(tc) = cos α · eiηg(tc),
ce(tc) = sin α · eiηe(tc).

(17)

The final populations are
Pk(t f ) = δek (18)

in accord with Equation (6).
The formal solution of the TDSE (Equation (10)) with the initial condition in Equation (11) is

c(t) = U(t, ti)c(ti) = T̂e−i
∫ t

ti
dt′H(t′)/h̄c(ti), (19)

where U(t, ti) is the matrix representation of the unitary operator for propagating the electronic wave
function |Ψ(t)〉 from the initial time ti to t, and T̂ is the time-ordering operator. In practice, the algebraic
TDSE (Equation (10)) is propagated numerically, using the methods which have been developed in
Ref. [19]. The coefficients at the central and final times, i.e., after the first and second laser pulses
are thus

c(tc) = U(tc, ti)c(ti), (20)

c(t f ) = U(t f , ti)c(ti) = Ur(t f , tc)Ub(tc, ti)c(ti). (21)

In the second part of Equation (21), we have separated the evolution operator U(t f , ti) into two parts
for symmetry breaking and restoration by the first and second laser pulses,

U(t f , ti) = Ur(t f , tc)Ub(tc, ti) (22)

where
Ub(tc, ti) = U(tc, ti) (23)

and

Ur(t f , tc) = T̂e−i
∫ t f

tc dt′H(t′)/h̄. (24)

If the time delay between the two laser pulses is prolonged by additional time t′ for quasi-field-free
evolution, as discussed for Equation (1), we obtain by using the Schrödinger picture

U(t′f , ti) = Ur(t′f , t′)U f (t′, tc)Ub(tc, ti) = Ur(t f , tc)U f (t′, tc)Ub(tc, ti) (25)

where t′f = t f + t′, and U f (t′, tc) is the propagator for the free evolution. It is diagonal, with matrix
elements [19,20]

U f (t′, tc)kl = e−iEkt′/h̄δkl . (26)

In the second part of Equation (25), we exploit the fact that the effect of the second laser pulse with
additional time delay t′ − tc during the time-shifted period from t′ to t′f is the same as the effect of the
original second laser pulse without additional time delay during the period from tc to t f .

We close this subsection by stating some general results for the matrix representation of the
evolution operator for symmetry breaking. The laser pulse for symmetry breaking transforms the
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initial state (Equation (7)) to the superposition (Equation (5)) of the ground (g) and excited (e) states.
Let us list the molecular eigenstates in the order g, e, e′, e”... The corresponding order of the coefficients
is c(t) = (cg(t), ce(t), ce′(t), ce”(t), ...)ᵀ. Then, Ub(tc, ti) takes block diagonal form

Ub(tc, ti) =

(
Ubge(tc, ti) 0

0 Ubnge(tc, ti)

)
(27)

where

Ubge(tc, ti) =

(
cos α · eiηg(tc) − sin α · e−iηg(tc)

sin α · eiηe(tc) cos α · e−iηe(tc)

)
(28)

is the 2× 2 block matrix for propagating states g and e from initial time ti to tc, and Ubnge(tc, ti) is the
block matrix for propagating all other (“non-ge”) states. The first column of Ubge(tc, ti) is imposed
by Equation (17), while the second column is a consequence of the unitarity of Ubge(tc, ti). The form
of Ubnge(tc, ti) is irrelevant for the present application because the first laser pulse does not transfer
population from the initial ground state to any other excited states e′, e”, ... at the central time tc.

2.2. Conceptual Background for the New Symmetry Restoration Strategy

After the first laser pulse has broken the symmetry of the initial electronic ground state
(Equation (7)) by exciting it to the superposition state (Equation (5)), our new strategy suggests
that the second laser pulse should restore symmetry by transferring the superposition state (Equation
(5)) to the excited state (Equation (6)). The net result of the combined first and second laser pulses is
thus to excite the ground state (Equation (7)) to the target state (Equation (6)). It is well known that
complete population transfer can be achieved by a resonant π-pulse [41,42]. This suggests the concept
which can be written symbolically as

first laser pulse + second laser pulse = resonant π−pulse. (29)

Equation (29) should be read as condition for the second laser pulse: It should be designed
such that the sum of the two pulses is a resonant π-pulse. This condition holds irrespective of the
polarizations of the laser pulses, i.e., they may be linearly x- or y-polarized, or circularly right (+) or
left (−) polarized. The expressions for linearly [41] and circularly [42] polarized resonant π-pulses are
similar. They all have in common that the x- and/or y-components of the electric field of the pulse that
propagates along~ez are written as amplitude ε0 ( = the maximum field strength) times a shape function
s(t) (where max s(t) = 1), times cosinusoidal or sinusoidal functions cos

[
ω(t− tre f ) + ηCEP

]
or

sin
[
ω(t− tre f ) + ηCEP

]
where ω is the carrier frequency, tre f is a reference time, and ηCEP is the carrier

envelope phase (CEP); additional information on the consequences of different laser polarizations is
provided at the end of this subsection. The resonance condition means that the photon energy h̄ω

matches the energy gap between the levels of the excited and ground states,

h̄ω = Ee − Eg = h/T. (30)

Here, we must emphasize that the reference time and the CEP of resonant π-pulses are
time-independent,

tre f = const, ηCEP = const. (31)

That means that the first and second laser pulses in Equation (29) must have the same reference
time and the same CEP. Mathematical formulations of the two conditions in Equations (29) and (31)
are worked out below.

There are various ways of realizing the conditions in Equations (29) and (31). Below, we
demonstrate a rather simple example that serves as proof-of-principle, and also as a reference for
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extensions of the present approach. Specifically, we consider the case of circularly right (+) polarized
laser pulses with

tre f = tb, ηCEP = 0. (32)

For our proof-of-principle, the second laser pulse is designed such that its electric field at
maximum intensity points along~ex, just like the first laser pulse. We show below that the condition in
Equation (32) is then equivalent to the requirement

td = tr − tb = NT, N = 1, 2, 3, ... (33)

or
tr = −tb = NT/2, N = 1, 2, 3, .... (34)

This means that during the delay time td between the peaks of the laser pulses, the system
undergoes an integer number N of periodic cycles of charge migration. Our specific example employs
N = 9 periods T between the laser pulses. We also derive an equivalent alternative condition, namely
the difference between the phases of the coefficients cg(tc) = Cg(tc)eiηg(tc) and ce(tc) = Ce(tc)eiηe(tc)

of the superposition state, Equations (5), (12) and (17) at the central time tc = (tb + tr)/2 = 0
should satisfy

∆η(tc) mod 2π = (ηe(tc)− ηg(tc)) mod 2π =

{
−π/2 if N = 1, 3, 5, ...(odd)

+π/2 if N = 2, 4, 6, ...(even).
(35)

Some important aspects of the concept are illustrated in Figure 1, with application to the oriented
model benzene as an example. Initially (t = ti), the system is in its electronic ground state |Ψg〉 with
symmetry D6h and IRREPg = A1g. This is documented by the one-electron density labeled “A1g” at
the bottom of Figure 1. The first circularly right (+) polarized laser pulse centered at t = tb breaks
symmetry by exciting the ground state (Equation (7)) to the superposition state (Equation (5)) of
the ground state and an excited state |Ψe〉 with different IRREPe—here this is one of the lowest two
degenerate excited states with IRREPe = E1u. This excitation is symbolized by the first red arrow
in Figure 1. The superposition state (Equation (5)) at the central time tc is written symbolically as
“A1g − iE1u” ( = A1g + e−iπ/2E1u) in Figure 1, in accord with the phase condition in Equation (35) for
the case of N = 9 periods T between the peaks of the laser pulses at tb and tr. The symmetry of the
superposition state is Cs, a sub-group of D6h that contains nothing but the identity and the reflection at
the molecular plane—all other symmetry operations of D6h are destroyed by the first laser pulse.

The superposition state (Equation (5)) represents charge migration as indicated by the two curved
arrows in Figure 1. Two snapshots of the one-electron densities during charge migration are also
illustrated in Figure 1—the first one corresponds to the superposition “A1g − iE1u” for the time
t = tc = 0 (or periodically for t = T, 2T, 3T, etc.), the second one is for “A1g + iE1u” at time t = T/2
(or for t = 3T/2, 5T/2, etc.). The second laser pulse excites the component cg(tc)|Ψg〉 of the ground
state in the superposition state (Equation (5)) to the excited state |Ψe〉 with the same symmetry D6h as
the ground state, but with different IRREPe = E1u (cf. Equation (6)); one can also say symbolically
that it transforms the superposition state “A1g − iE1u” to the excited state “E1u”, as illustrated by the
second red arrow in Figure 1. The target state |Ψe〉 is illustrated by its one-electron density at the top
of Figure 1. One readily recognizes its D6h symmetry—the same as for |Ψg〉. Close inspection reveals,
however, that the density of |Ψe〉 is slightly different from the density of |Ψg〉—this is associated with
the different IRREPe 6= IRREPg.

Successful preparation of the target state |Ψe〉 depends on perfect timing of the second laser pulse,
i.e., it must be centered at t = tr = −tb = NT/2, or at t = tr + T, tr + 2T, tr + 3T, etc., which means it
must be fired precisely at tr(= 9T/2 in the present application), or precisely after one, two or more
full cycles of charge migration (see Equations (33) and (34)). Any other attempts to restore symmetry
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during non-integer multiples of the period T of charge migration are useless. Such unsuccessful
attempts are indicated by the arrows that are crossed out in Figure 1.

Figure 1. The concept for symmetry breaking of the electronic ground state and symmetry restoration
in an electronic excited state by two laser pulses according to the new strategy. (Bottom) One-electron
density of the oriented benzene molecule in the ground state labeled A1g (symmetry D6h, irreducible
representation IRREPg = A1g). The first circularly-polarized laser pulse is centered at time tb = −4.5T.
It breaks symmetry by exciting the ground state to the superposition labeled “A1g − iE1u” of the
ground state and an excited state with IRREPe = E1u. This laser excitation is symbolized by the
first red arrow. The superposition state has symmetry Cs. (Middle) Periodic charge migration from
“A1g − iE1u” via “A1g + iE1u” back to “A1g − iE1u”, with period T = 504 as. This is symbolized by
the two curved arrows, with snapshots of the one-electron densities for state “A1g − iE1u” (left) at
central time t = tc = 0 (and also at t = T, 2T, etc.) and for state “A1g + iE1u” (right) at time t = T/2
(and also at 3T/2, 5T/2, etc.) The second laser pulse centered at tr = 4.5T restores D6h symmetry by
transferring the superposition state to the excited state with IRREPe = E1u. This laser excitation is
symbolized by the second red arrow. (Top) One-electron density of the excited target state labeled
E1u. The time delay td = tr − tb = NT between the centers of the laser pulses must be equal to an
integer number N of periods T of charge migration, with precision of few attoseconds. Here, N = 9.
Any attempts to restore electronic structure symmetry at delay times that correspond to incomplete
cycles of charge migration are useless—this is indicated by the crossed-out arrows. The Gaussian shape
functions (dashed lines) and the x- and y-components of the electric field (red and green continuous
lines) of the circularly-polarized laser pulses are also sketched. All densities were created using
detCI@ORBKIT [43–45] and plotted using Matplotlib [46].

The x- and y-components of the electric fields of the laser pulses are also sketched in Figure 1,
together with the products εbsb(t) and εrsr(t) of the field amplitudes times the shape functions which
are modeled as Gaussians,

sb(t) = e−(t−tb)
2/2τ2

b ,
sr(t) = e−(t−tr)2/2τ2

r .
(36)

Our “proof-of-principle” employs the same parameters for the durations,

τb = τr = τ, (37)
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but different field strength εb 6= εr. More specifically, we show that, to satisfy the condition in Equation
(29), the field strength of the second pulse must be larger than for the first pulse, εb > εr, as illustrated
in Figure 1. Figure 1 also shows that the y-components are equal to zero at the times tb and tr of
maximum intensities, i.e., at these instants, the laser pulses point along the same direction~ex.

We close this subsection by adding information about the consequences of the different
polarizations of the first laser pulse for cases where the excited state in the superposition (Equation (5))
is degenerate. Here, this is explained for the example of benzene’s doubly degenerate excited state with
IRREPe = E1u. As shown in Ref. [17], the laser polarization may be used as a control knob for selective
excitation of specific target states |Ψex〉 ≡ |ΨE1ux 〉, |Ψey〉 ≡ |ΨE1uy〉 or |Ψe+〉 ≡ |ΨE1u+〉, |Ψe−〉 ≡ |ΨE1u−〉
out of benzene’s lowest set of degenerate eigenstates with IRREPe = E1u. Specifically, linearly x- and
y-polarized pulses excite |Ψg〉 to |Ψe〉 = |Ψex〉 and |Ψey〉, respectively. This selectivity is due to the
symmetry rules for the x- and y-components of the transition dipole matrix elements [17,24–26]

d ≡ dx,gx = 〈Ψg|dx|Ψex〉 = dy,gy = 〈Ψg|dy|Ψey〉 6= 0,
dx,gy = 〈Ψg|dx|Ψey〉 = dy,gx = 〈Ψg|dy|Ψex〉 = 0.

(38)

Circularly right (+) or left (−) polarized laser pulses excite |Ψg〉 to

|Ψe+〉 =
1√
2

(
|Ψex〉+ i|Ψey〉

)
, (39)

and
|Ψe−〉 =

1√
2

(
|Ψex〉 − i|Ψey〉

)
, (40)

respectively. The corresponding x- and y-components of the transition dipole matrix elements are [17]

dx,g+ = 〈Ψg|dx|Ψe+〉 =
d√
2

,

dx,g− = 〈Ψg|dx|Ψe−〉 =
d√
2

,

dy,g+ = 〈Ψg|dy|Ψe+〉 = i
d√
2

,

dy,g− = 〈Ψg|dy|Ψe−〉 = −i
d√
2

.

(41)

2.3. Extended Theory for the New Strategy

For the “proof-of-principle”, we apply the general theory of Section 2 to the new strategy, using
a specific form of the electric fields of the circularly right (+) laser pulses that break the symmetry
D6h of the electronic ground state (IRREPg = A1g) of benzene, and restore it in the excited state
(IRREPe = E1u). Adapting the derivations in Ref. [42] and using the conditions in Equations (32) and
(33), we obtain

~εb(t) =
(

εbx(t), εby(t), 0
)

= εbsb(t) · (cos [ω(t− tb)] , sin [ω(t− tb)] , 0) ,

~εr(t) =
(
εrx(t), εry(t), 0

)
= εrsr(t) · (cos [ω(t− tr)] , sin [ω(t− tr)] , 0)
= εrsr(t) · (cos [ω(t− tb)] , sin [ω(t− tb)] , 0) .

(42)

The temporal and the spectral profiles of the intensities of the laser pulses are Gaussian,

Ib(t) = 0.5cε0|εb(t)|2 = 0.5cε0ε2
be−(t−tb)

2/τ2
,

Ir(t) = 0.5cε0|εr(t)|2 = 0.5cε0ε2
r e−(t−tr)2/τ2

,
(43)
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Ib(E) = 0.5cε0|εb(E)|2 = 0.5cε0ε2
be−(E−(Ee−Eg)))2τ2/h̄2

,
Ir(E) = 0.5cε0|εr(E)|2 = 0.5cε0ε2

r e−(E−(Ee−Eg)))2τ2/h̄2
.

(44)

The spectral profiles (Equation (44)) are shown in Figure 2, together with the levels of the lowest
electronic states of benzene, and their IRREPs. These energies have been calculated by means of the
CASSCF(6,6) level of quantum chemistry, with aug-cc-PVTZ basis. Apparently, the broad bandwidths
of the laser pulses cover several energy levels, but the present target state is the only state with
IRREPe = E1u+. All other states within the laser bandwidths have different IRREPs. The chosen
circular polarizations of the present laser pulses then imply selective population transfer from the
ground state (IRREPg = A1g) exclusively to the target state (IRREPe = E1u+)—this is indicated by the
vertical arrow in Figure 2. All other transitions are dipole-forbidden—these are symbolized by vertical
arrows that are crossed out in Figure 2.
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Figure 2. (Left) Electronic energy levels of the lowest states of benzene, with assignment of the IRREPs.
The present circularly polarized laser pulses yield exclusive population transfer from the electronic
ground state A1g to the excited target state E1u+, illustrated by the vertical arrow. All other transitions
to excited states that are within the spectral width of the laser pulses with different IRREPs are dipole
forbidden, symbolized by vertical arrows that are crossed out. The two-photon process at 16.42 eV is
also found to be off-resonance. (Right) Spectral profile of the laser pulses of duration 0.47 fs (red line),
including a potential two-photon contribution at ∆E = 2h̄ω = 16.42 eV (grey line).

The condition in Equation (29) for the sum of the two laser pulses then yields the electric field of
the designated resonant π-pulse,

~επ(t) =
(
επx(t), επy(t), 0

)
= [εbsb(t) + εrsr(t)] · (cos [ω(t− tb)] , sin [ω(t− tb)] , 0) . (45)

Next, we invoke the two-state (g, e+) approximation, i.e., we assume that the laser pulses
induce exclusively transitions between the ground state |Ψg〉 and the selective excited target
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state |Ψe+〉 = |ΨE1u+〉. Implicitly, this approximation makes use of the so-called rotating wave
approximation (RWA) that excludes transitions from |Ψg〉 to the degenerate excited state |Ψe−〉 =
|ΨE1u−〉. The validity of the RWA has been tested by excellent agreement of numerically accurate
solutions of the TDSE (Equation (10)) with and without the RWA [19]. Moreover, the durations
τ = τb = τr of the laser pulses imply sufficiently narrow widths Γ = 0.5h̄/τ that exclude
dipole-allowed one-photon transitions to any other excited states. We assume that multi-photon
processes such as ladder climbing to more excited states are negligible—the test of this assumption is
left to future accurate model simulations. Using the two-state approximation with transition dipole
matrix elements in Equation (41) for selective excitation from the ground state |Ψg〉 to the target state
|Ψe+〉 = |ΨE1u+〉, we obtain the specific form of the 2× 2 Hamilton matrix in Equation (13),

H(t) =

(
Eg − [εbsb(t) + εrsr(t)] eiω(t−tb)d/

√
2

− [εbsb(t) + εrsr(t)] e−iω(t−tb)d/
√

2 Ee+

)
. (46)

The solution in Equation (19) of the TDSE (Equation (10)) with the initial condition in Equation (11)
yields the coefficients [42]

cg(t) = cos
{

d
[
εb
∫ t

ti
dt′sb(t′) + εr

∫ t
ti

dt′sr(t′)
]

/
√

2h̄
}

e−iEg(t−tb)/h̄,

ce(t) = i sin
{

d
[
εb
∫ t

ti
dt′sb(t′) + εr

∫ t
ti

dt′sr(t′)
]

/
√

2h̄
}

e−iEe(t−tb)/h̄

= sin
{

d
[
εb
∫ t

ti
dt′sb(t′) + εr

∫ t
ti

dt′sr(t′)
]

/
√

2h̄
}

e−iEe(t−tb)/h̄+iπ/2.

(47)

In the following, we set Eg = 0, for convenience. Equation (45) then simplifies to

cg(t) = cos
{

d
[
εb
∫ t

ti
dt′sb(t′) + εr

∫ t
ti

dt′sr(t′)
]

/
√

2h̄
}

,

ce(t) = i sin
{

d
[
εb
∫ t

ti
dt′sb(t′) + εr

∫ t
ti

dt′sr(t′)
]

/
√

2h̄
}

e−i∆E(t−tb)/h̄

= i sin
{

d
[
εb
∫ t

ti
dt′sb(t′) + εr

∫ t
ti

dt′sr(t′)
]

/
√

2h̄
}

e−2πi(t−tb)/T .

(48)

The new strategy aims at complete g → e population transfer by the two laser pulses, with
exclusive population of the excited target state, Equation (18). Hence,

|ce(t f )|2 = 1 (49)

or equivalently

d
[
εb
∫ t f

ti
dt′sb(t′) + εr

∫ t f
ti

dt′sr(t′)
]

/
√

2h̄

=
√

πd(εbτb + εrτr)/h̄
=
√

πdεπτπ/h̄
= π/2,

(50)

(cf. Equations (14) and (18)). In the first part of Equation (50), we use the result∫ +∞
−∞ dt′sb(t′) =

√
2πτb∫ +∞

−∞ dt′sr(t′) =
√

2πτr
(51)

for Gaussian shape functions (Equation (36)) with parameters for the durations τb and τr, respectively.
In the second part of Equation (50), we use the product επτπ of the field amplitude times the parameter
for the duration of the π-pulse that yields the same result as the combined two laser pulses, i.e.,
complete population transfer from |Ψg〉 to |Ψe+〉, with transition dipole matrix elements 〈Ψg|dx|Ψe+〉 =
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d/
√

2 and 〈Ψg|dy|Ψe+〉 = id/
√

2. Using Equation (50), the concept in Equation (29) can be rewritten
as the constraint between the two pulses

εbτb + εrτr = επτπ . (52)

Since our proof-of-principle is for the special case of equal durations of the laser pulses (τb = τr =

τπ = τ), Equation (52) simplifies to the condition

εb + εr = επ . (53)

Accordingly, if the reference field amplitude of the π-pulse is equal to επ and the field amplitude
of the first pulse is equal to εb, then the second laser pulse that restores symmetry should have the
same shape and the same duration as the first pulse, and its field amplitude εr should “fill the gap”
between εb and επ .

As a summary, Equations (50)–(53) provide the proof-of-existence for the new strategy, i.e., if
the first resonant right (+) circularly polarized laser pulse with field amplitude εb and with Gaussian
shape function and with parameter τb for the duration breaks the electronic structure symmetry of the
ground state, then one can employ the second resonant right (+) circularly polarized laser pulse with
field amplitude εr = επ − εb and with Gaussian shape function with the same parameter τr = τb for
the duration in order to restore symmetry in the electronic excited state. The success depends on the
condition in Equation (33), i.e., the time delay between the laser pulses must be equal to an integer
number N of the periods T of charge migration, or on the equivalent conditions in Equations (31)–(35).

Finally, let us investigate the consequences for the new strategy if the conditions in
Equations (31)–(35) are not satisfied, i.e., the second pulse is centered at t′r = tr + t′ with time
delay t′d = td + t′ = NT + t′ due to additional quasi-field-free propagation from tc = 0 to t′.
For this purpose, we employ the expression (Equation (25)) of the evolution operator U(t′f , ti) in
terms of the product Ur(t′f , t′)U f (t′, tc)Ub(tc, ti) of the evolution operators for the first laser pulse, for
quasi-field free evolution, and for the second laser pulse. In passing, this approach also yields an
illuminating alternative proof of Equations (51)–(53). We need to determine the matrix representations
of the time evolution operators Ur(t′f , t′), U f (t′, tc) and Ub(tc, ti), or in the present two-state (g, e)
approximation, the 2× 2 matrices Urge(t′f , t′), U f ge(t′, tc) and Ubge(tc, ti). For this purpose, it is first
helpful to determine the coefficients at the central time tc,

cg(tc) = cos
[√

1
2 dεb

∫ tc
ti

dt′sb(t′)/h̄
]
= cos

[√
π

2
dεbτb/h̄

]
,

ce(tc) = i sin

[√
1
2

dεb
∫ t

ti
dt′sb(t′)/h̄

]
e−2πi(tc−tb)/T

= i sin
[√

πdεbτb/h̄
]

e−2πiN/2

=

{
i sin

[√
πdεbτb/h̄

]
if N = 2, 4, 6, ...(even)

−i sin
[√

πdεbτb/h̄
]

if N = 1, 3, 5, ...(odd).

(54)

Gratifyingly, this is in accord with the general result, Equation (17), with parameters

α =

√
πdεbτb

h̄
(55)

for the amplitudes, and

ηg(tc) = 0,

∆ηe(tc) = ηe(tc) =

{
−π/2 if N = 1, 3, 5, ...(odd)

+π/2 if N = 2, 4, 6, ...(even)

(56)
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for the phases and phase differences. The derivation of Equations (54)–(56) employs the conditions in
Equations (33) and (34), i.e., the time delay between the two laser pulses must be equal to an integer
number N times the period T for charge migration. The corresponding unitary matrix Ubge(tc, ti),
Equation (28), for propagating the initial coefficients c(ti), Equation (11), to c(tc), Equation (54), is

Ubge(tc, ti) =

(
cos α ±i sin α

±i sin α cos α

)
. (57)

The first column of the matrix in Equation (57) is imposed by the coefficients in Equation (54), the
second column is due to the unitarity of Ubge(tc, ti). Likewise, the final coefficients ck(t f ) = ce(t f )δke =

eiηe(t f )δke ≡ eiηe f δke imply the unitary matrix for propagating from ti to t f (cf. Equation (49)),

Uge(t f , ti) = eiηe f

(
0 1
1 0

)
(58)

with irrelevant phase factor eiηe f . The separation in Equation (22) of the evolution operator Uge(t f , ti)

into two parts for symmetry breaking and restoration then yields the evolution operator for
propagating from tc to t f ,

Urge(t f , tc) = eiηe f

(
±i sin α cos α

cos α ±i sin α

)
= ±ieiηe f

(
cos (π/2− α) ∓i sin (π/2− α)

∓i sin (π/2− α) cos (π/2− α)

)
. (59)

In the second part of Equation (59), we use the symmetry relations sin α = cos (π/2− α) and
cos α = sin (π/2− α). The second part of Equation (59) for time propagation due to the second
laser pulse thus takes the same form as Equation (57) for the first laser pulse, except for the different
but irrelevant phase factor ±ieiηe f . That means that the effect of the second laser pulse is formally
equivalent to the first pulse, but the angle α must be replaced by π/2− α. Equation (52) shows that
this substitution is equivalent to replacing εbτb by επτπ − εrτr or, if one uses the same parameters for
the laser durations, τb = τπ = τr then it is equivalent to replacing εb by επ − εr. As anticipated, this
requirement is equivalent to Equations (52) and (53).

Now, let us add the evolution operator for quasi-field-free evolution during the additional time
from tc = 0 to t′ between the laser pulses (cf. Equations (25) and (26)),

U f ge(t′, tc) =

(
1 0
0 e−i∆Et′/h

)
=

(
1 0
0 e−2πit′/T

)
≡
(

1 0
0 eiη′

)
. (60)

The modified final coefficients at time t′f = t f + t′ are then obtained as(
cg(t′f )
ce(t′f )

)
= Urge(t′f , t′)U f ge(t′, tc)Ubge(tc, ti)

(
1
0

)
=

(
±i cos α sin α(1 + eiη′)eiηe f

(cos2 α + sin2 α · eiη′)eiηe f

)
. (61)

The modified final populations are

Pe(t′f ) = |ce(t′f )|
2 =

(
cos2 α + sin2 α · eiη′

)
·
(

cos2 α + sin2 α · e−iη′
)

= 1− 2 cos2 α sin2 α(1− cos η′)

= 1− 2Pg(tc)Pe(tc)[1− cos(2πt′/T)].

(62)

Accordingly, the goal of symmetry restoration in the target excited state with population Pe(t′f ) = 1
is obtained at delay times td = tr − tb = NT between the laser pulses that correspond to integer
numbers of periods of charge migration, or at delay times t′d = td + t′ that are prolongated by or
additional full periods T, 2T, 3T, etc. In all other cases where t′ 6= T, 2T, 3T, etc., the final population
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Pe(t′f ) is less than 1, that means the final state remains a superposition of the ground and excited states
with different IRREPg and IRREPe, i.e., the second pulse was unable to restore electronic structure
symmetry, as illustrated in Figure 1.

3. Results and Discussions

This section has two parts. First, we apply the theory of Section 2 to demonstrate successful
quantum control of breaking and restoring the D6h symmetry of the electronic structure of the model
benzene in its electronic ground and excited states with different IRREPs A1g and E1u. This part
consists of three steps: (i) the symmetry breaking by a circularly right (+) polarized laser pulse and the
resulting periodic charge migration; (ii) the design of the laser pulse for symmetry restoration; and (iii)
the quantum dynamics simulation of the laser driven symmetry restoration. The purpose of this first
part is to provide a proof-of-principle of the new strategy that has been developed in Section 2, for the
example of the model benzene. The second part presents an in-depth-investigation of the condition
in Equation (33) for the time delay between the two laser pulses, td = NT, i.e., the time delay must
be equal to an integer number of period T of charge migration. We show that this condition must be
satisfied with precision of a few attoseconds. The results for both parts are documented in Figure 3.
The layout of Figure 3 is the same as corresponding figures in Refs. [19–21], but the results are of
course entirely different, i.e., Figure 3 documents a new mechanism of symmetry restoration, different
from those of Refs. [19–21]. The values of the parameters of the laser pulses that are applied for the
proof-of-principle are listed in the caption of Figure 3.

Figure 3. Symmetry breaking of the electronic ground state of benzene labeled A1g (symmetry D6h,
irreducible representation IRREPg = A1g) and symmetry restoration in an electronic excited labeled
E1u (symmetry D6h, irreducible representation IRREPe = E1u) by two laser pulses according to the new
strategy. (a) Gaussian envelopes (dashed lines) and the x- and y-components (red and green continuous
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lines) of the circularly right (+) polarized laser pulses centered at tb = −4.5T and tr = +4.5T with
period T = 504 as of charge migration. The parameter of the circularly right (+) polarized laser pulses
(Equation (40)) are εb = 4.207× 107 V/cm, εr = 7.192× 107 V/cm, ω = 2π/T, T = 504 as, τb = τr =

0.47 fs, tb = −4.5T, tr = +4.5T. (b) Time evolution of the population of the excited state due to the first
and second laser pulses shown in (a) for the case tr = +4.5T = 2.267 fs. The results for sixteen different
times t′r = tr + t′ where t′ = kT/16, k = 1, 2, ..., 16 are also shown. (c) Numerical results (continuous
blue line) and analytical result (dotted red line, Equation (62)) for the final populations Pe(t′f ) of the
excited state at time t′f = t f + t′ versus delay time t′d = t′r − tb, in units of the period T (top abscissa) or
fs (bottom abscissa, as in (d)). The results coincide within graphical resolution. (d) Phase difference
∆η(t′c) = ηe(t′c)− ηg(t′c) of the wave functions in electronic excited and ground states at the central
time t′c = (t′r + tb)/2. (e) One-electron density of the electronic ground state of benzene labeled A1g.
(f) Five snapshots of the one-electron density during periodic charge migration of the superposition
of the ground state labeled A1g and the excited state labeled E1u during one period, from t = tc = 0
to T. (g) One-electron density of the excited target state labeled E1u. All densities were created using
detCI@ORBKIT [43–45] and plotted using Matplotlib [46].

3.1. The Proof-of-Principle for Quantum Control of Symmetry Breaking and Restoration of Molecules in
Electronic Ground and Excited States with Different IRREPs

Our proof-of-principle uses the concept and theory that are developed in Section 2, with
application to the model benzene as described in Sections 1 and 2. The proof consists of three
steps that implement various results of Section 2. The presentation below documents the key results in
a straightforward manner, with references to several key expressions, but without repetition of the
derivation. The reader is expected to be familiar with the context developed in Section 2.

Step (i): The electronic structure of benzene in its initial ground state (IRREPg = A1g) is illustrated
by a contour plot of its one-electron density in the molecular plane in Figure 3e. One readily recognizes
its D6h symmetry.

The x- and y-components and the envelope of the electric field of the first circularly right (+)
polarized laser pulse (Equation (42)) that breaks the D6h symmetry are shown in the left of Figure 3a.
This pulse is centered at tb = −4.5T = −2.267 fs. Its parameters are chosen rather arbitrarily, within the
frame of the general rules explained in Sections 1 and 2. The pulse thus serves as “general” example,
quite different from the special π/2 pulse that has been employed in Ref. [21]. Consequently, its
effect of symmetry breaking and launching charge migration should also be considered as “general”,
providing a “generic example” for the challenge of designing a second laser pulse that stops charge
migration and restores symmetry. In other words, the present example lends itself for a rather general
proof-of-principle.

The first laser pulse breaks D6h symmetry by preparing the superposition (Equation (5)) of the
electronic ground and excited states with IRREPs A1g and E1u, here with probabilities Pg(tc = 0) = 0.7
and Pe(tc = 0) = 0.3 at central time tc = 0 (cf. Equation (16)). The laser-induced increase of Pe(t)
from the initial value zero to Pe(tc = 0) = 0.3 is documented in Figure 3b. The one-electron density
of the superposition state (Equation (5)) at tc is illustrated in the first panel of Figure 3e. Symmetry
breaking is obvious, i.e., the superposition state (Equation (5)) can no longer be assigned to the original
D6h symmetry. Since it is not an eigenstate, it is non-stationary. This gives rise to periodic charge
migration with period T, as illustrated in Figure 3f by five snapshots of the one-electron density at
times t = 0, T/4, T/2, 3T/4, T. On first glance, these snapshots may suggest that the superposition
(Equation (5)) may have C2v symmetry, but additional snapshots at arbitrary times t ∈ [0, T] reveal that
the superposition (Equation (5)) evolves with Cs symmetry: the first laser pulse breaks all symmetry
elements except the molecular plane as mirror plane. The challenge is thus to design the second
laser pulse that stops charge migration and restores symmetry by transferring the superposition state
(Equation (5)) to the excited target state (Equation (6)).

Step (ii): The second laser pulse for symmetry restoration is constructed according to the recipe
derived in Sections 2.2 and 2.3.
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First, it should be circularly right (+) polarized, similar to the first laser pulse, Equation (42). The
laser parameters of the two pulses are the same, with two exceptions.

Second, the pulse is centered at tr = −tb, and the time delay td between the two laser pulses must
be equal to an integer number N of period T of charge migration. In the present case, we choose

td = tr − tb = 9T, (63)

that means
tr = −tb = 4.5T; (64)

compare with Equations (33) and (34). We note in passing that the conditions in Equations (63)
and (64) imply the phase difference ∆η(tc) mod 2π = ±π/2 for the coefficients ce(tc) and cg(tc)

of the superposition state (Equation (5)) at central time tc; see Equation (35) and the derivation in
Equation (54). This result is confirmed in Figure 3d.

Third, the field strength εr is determined according to the rule in Equation (53),

εr = επ − εb (65)

where επ is the field strength of a circularly right (+) polarized π-pulse with Gaussian shape,

επ =

√
π · h̄

2dτ
, (66)

in accord with Equation (50) (cf. Ref. [42]). The value of the parameter for the laser duration, τ = 0.47 fs,
together with the value of the transition dipole d = 2.0576ea0, yields the field amplitude of the π-laser
pulse, επ = 11.399× 107 V/cm. Subtraction of the field amplitude of the laser pulse for symmetry
breaking, εb = 4.207 × 107 V/cm, then yields the field strength of the laser pulse for symmetry
restoration, εr = 7.192× 107 V/cm. It is illuminating to compare the population transfers between the
electronic ground and excited states, namely 0.30 and 0.70, which are achieved by these pulses, with
the values 0.0037 for the weak field strengths εb = εr = 4.42× 106 V/cm that are employed in Ref. [19].
Assuming the weak field limit, the population transfers should increase linearly with intensity, i.e.,
one would expect the value 0.0037× (42.07/4.42)2 = 0.33 and 0.0037× (42.07/4.42)2 = 0.98. The
deviations from the values 0.30 and 0.70 show that while the intensity of the pulse for symmetry
breaking may still be considered as “weak”, the required high field strength of the pulse for symmetry
restoration is well beyond that limit.

The predicted laser pulse for symmetry restoration is shown in Figure 3a as second pulse, together
with the laser pulse for symmetry breaking as first laser pulse. As anticipated already in Figure 1, the
rules in Equations (53) and (65) imply that the second pulse is a bit stronger than the first one.

Step (iii): As decisive effect of the laser pulse for the symmetry restoration designed in Section 2.2,
Figure 3b documents the laser driven evolution of the population of the excited state Pe(t) in the
superposition state (Equation (5)), from the value Pe(tc) = 0.3 to Pe(t f ) = 1. This is a key result: it
implies complete and exclusive population of the excited state with D6h symmetry and IRREPe = E1u.
This provides the proof-of-principle, i.e., the well-designed (see Section 2.2) second laser pulse
(Figure 3a) restores D6h symmetry by exciting the model benzene from the superposition state
(Equation (5)) to the target state with IRREPe 6= IRREPg. At the same time, it stops charge migration
because the target state is an electronic eigenstate, i.e., it is stationary. The one-electron density of the
target state is shown in Figure 3g. Its D6h symmetry is obvious. There are, however, tiny differences
between the initial (Figure 3e) and the final (Figure 3g) electron densities—this is a consequence of the
different IRREPs A1g and E1u of the initial and final states, respectively.
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3.2. The Requirement of Attosecond Precision for the Proper Time Delay Between the Laser Pulses for Electronic
Structure Symmetry Breaking and Restoration

The proof-of-principle (Section 3.1) employs the perfectly synchronized second laser pulse
for symmetry restoration which has been designed according to the recipe derived in Section 2.
In particular, its time delay with respect to the first laser pulse that breaks symmetry satisfies the
condition in Equation (63), in accord with the general rule in Equation (33). In this subsection, we
investigate the consequences of violations of the condition in Equation (63). For this purpose, let us
assume that the second laser pulse is centered at

t′r = tr + t′ (67)

with additional time t′ between the laser pulses, that means with additional time for the molecule to
evolve in quasi-field-free environment, from tc = 0 to t′. The corresponding time delay is

t′d = td + t′, (68)

the new final time is
t′f = t f + t′, (69)

and the new “central time” is

t′c = (t′r + tb)/2 = tc + t′/2 = t′/2. (70)

Figure 3b shows the resulting time evolutions of the populations Pe(t) of the excited state in the
superposition state (Equation (5)) for altogether sixteen different values of additional time, t′ = kT/16,
k = 1, 2, ..., 16. The results of this systematic investigation are obtained by solving the TDSE (Equation
(10)) by the numerical techniques developed in Ref. [19]. Apparently, the vast majority of these
examples yield final populations

Pe(t′f ) 6= 1 for t′ = kT/16, k = 1, 2, ..., 15. (71)

That means the molecule is left in a superposition state such as Equation (5), not only after the first
pulse that means at t′c, but also after the second pulse at t′f . Hence, the final state is not a pure state,
but it is “contaminated” by both the ground and excited states with different IRREPs, i.e., the second
laser pulse was unable to restore symmetry.

Figure 3b also shows one exceptional case (k = 16) where t′ = T. In this case, the final population
of the excited state is

Pe(t′f ) = 1 for t′ = T (72)

implying symmetry restoration. The corresponding time delay

t′d = t′r − tb = 10T (73)

is again an integer multiple of the period T for charge migration. The results in Equations (71)–(73)
documented in Figure 3b thus confirm the condition in Equation (33), i.e., to achieve symmetry
restoration, the time delay between the two laser pulses must satisfy the requirement td = NT or
more generally

t′d = NT. (74)

The sixteen results for the final populations Pe(t′f ) obtained in Figure 3b are plotted versus time
delay t′d, Equation (65), in Figure 3c, together with corresponding results for a broader range of time
delays. Figure 3c also shows a comparison of these results, which are obtained by quantum dynamics
simulations, with the analytical result in Equation (62). The agreement is seen to be almost perfect, the
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deviations are smaller than the graphical resolution. We consider this agreement as double triumph,
both for the robustness of the numerical method for quantum dynamics simulation that has been
developed in Ref. [19], and also for the analytical theory derived in Section 2.3.

According to Figure 3c and the analytical result in Equation (62), perfect symmetry restoration
requires perfect time delays, Equations (33) and (74). In practice, one may allow small deviations
from the ideal value Pe(t′f ) = 1, for example one may accept results Pe(t′f ) > 0.99 as “good enough”
for “almost perfect symmetry restoration”. The limit Pe(t′f ) > 0.99 would allow small deviations
∆t′d < 0.035T from the ideal time delays. The present value of the period T = 504 as thus implies
that the time delay between the laser pulses should obey the condition in Equation (33) and (74) with
accuracy of few attoseconds. Indeed, this time resolution was achieved experimentally by high-contrast
Ramsay interferometry, which was thereby shown to be suitable for symmetry restoration [19].

Finally, Figure 3d documents the validity of the equivalent conditions in Equations (35) and
(56) for the phase difference ∆η(t′c) of the coefficients of the superposition state (Equation (5)) at
the central time t′c, Equation (70). As anticipated, the values of ∆η(t′c) mod 2π at the central times
t′c = T/2, T, 3T/2, 2T, etc. and the corresponding time delays t′d = 9T, 10T, 11T, 12T, etc. alternate
according to −π/2,+π/2,−π/2,+π/2, etc. For any other values of the times t′c, t′d and the phase
difference ∆η(t′c) mod 2π, the second pulse does not allow symmetry restoration.

4. Conclusions

This paper presents a new strategy for the restoration of the symmetry of electronic structure by
means of a well-designed laser pulse, after symmetry was broken by a first laser pulse, which excites
the electronic ground state to a superposition of the ground state and an excited state with different
IRREPs. The superposition state is non-stationary; it represents periodic charge migration with period
T. Typical values of T for electronic superposition states are in the time domain from several hundred
attoseconds to few femtoseconds. Symmetry is restored by the second laser pulse, which excites the
superposition state to the excited state. The net effect of the two laser pulses can be summarized as an
excitation of the electronic ground state to the excited state, with IRREPe 6= IRREPg. This observation
suggests that, as a necessary condition for this new type of symmetry restoration, the second laser
pulse must be designed such that the sum of the first and second laser pulses add up to a π-pulse.
There are many ways to satisfy this condition. In the present application to the model benzene, both
laser pulses are designed as circularly right (+) polarized laser pulses, with the same Gaussian shapes,
the same parameters for the duration, the same resonant carrier frequencies, the same carrier envelope
phases, but with two different temporal centers and with different field strengths. Specifically, the
time delay between the temporal centers of the two laser pulses must be equal to an integer number
of periods T. This condition must be satisfied with precision of few attoseconds. The experimental
feasibility of this high accuracy is demonstrated in Ref. [19]. The condition for the field strength of the
second laser pulse is that the sum of the field strengths of the first and second laser pulses must add
up to the field strength of the circularly polarized π-pulse that otherwise has the same parameters
as the first and second pulses. One may thus consider the two laser pulses as “fractional π-pulses”.
Previously, it has been shown that fractional π-pulses are useful for other purposes as well, e.g., for
laser generation of hybrid orbitals[47].

The present proof-of-principle of the new strategy, together with the alternative previous
strategies [19–21], should stimulate the search for alternative approaches to laser symmetry restoration.
As a working hypothesis, the present concept should allow several extensions, e.g., the fractional
π-pulse for symmetry restoration may be designed with weaker or stronger field strengths that are
compensated by longer or shorter duration, respectively, or one might employ the carrier envelope
phase as a control knob in order to compensate the effect of time delays with non-integer multiples
of the period T. By extrapolation of the concept and derivations of this manuscript, the field of laser
symmetry breaking and restoration leads into new territories of research that allow rich discoveries.
From the experimental point of view, one should keep in mind that the present new concept of laser
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control from symmetry breaking via charge migration to symmetry restoration is general and should
apply to many other rigid molecules—the present example of the benzene molecule should stimulate
the search for candidates with more suitable parameters for experimental verification.
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