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Summary 
	

Motor neurons in the spinal cord are found grouped in nuclear structures termed 

pools, whose position is precisely orchestrated during development. Despite the emerging 

role of pool organization in the assembly of spinal circuits, little is known about the 

morphogenetic programs underlying the patterning of motor neuron subtypes. Type I and 

type II classical cadherins constitute a family of cell adhesion molecules expressed in 

complex combinatorial profiles in the nervous system, suggesting the hypothesis that a 

cadherin-based adhesive code controls neuronal recognition at the basis of the 

development of neuronal structures and circuits. In addition, cadherin location at cell-cell 

contact sites is known to be regulated by the nectin-afadin cell adhesion complex. Thus, to 

test the impact of cell surface proteins on motor neuron organization, three-dimensional 

analysis of motor neuron positioning was established to reveal roles and contributions of 

classical cadherins function. The results uncovered that nuclear organization of motor 

neurons is dependent on inside-out positioning orchestrated by N-cadherin (a type I 

cadherin), catenins and afadin activities, controlling cell body layering on the medio-

lateral axis. In addition to this lamination-like program, motor neurons undergo a 

secondary, independent phase of organization. This process results in segregation of motor 

neurons along the dorso-ventral axis of the spinal cord and relies on type II cadherin 

function, which is only revealed by concomitant elimination of N-cadherin.  
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Zusammenfassung 
 

	 Motoneurone werden während ihrer Entwicklung im Rückenmark präzise in 

Motorpool-Kernarealen positioniert und organisiert. Obwohl die Positionierung dieser 

Motorpools eine wichtige Rolle während des Aufbaus des Nervensystems spielt, ist wenig 

über die der Organisation zugrunde liegenden morphogenetischen Programme bekannt. 

Klassische Typ I und Typ II Cadherine gehören zu einer Familie der Zell-

Adhäsionsmoleküle welche in komplexen, kombinatorischen Mustern im Nervensystem 

exprimiert werden und die Abgrenzung unterschiedlicher neuronaler Strukturen 

kontrollieren. Dies führt zu der Hypothese, dass ein Cadherin-basierter Code die 

Erkennung von Nervenzellen kontrolliert und somit den Grundstein zur Entwicklung 

korrekter neuronaler Netzwerke darstellt. Darüber hinaus ist bekannt, dass die 

Lokalisierung von Cadherinen an Zell-Zell-Kontakten durch den Zell-Zell-

Adhäsionskomplex Nectin-Afadin reguliert wird. In dieser Arbeit wurde daher der 

Einfluss von Zell-Oberflächenproteinen auf die Organisation von Motoneuronen getestet. 

Dafür wurde eine Methode zur dreidimensionalen Untersuchung der Positionen von 

Motoneuronen etabliert. Anschließend wurde der Einfluss und die Beteiligung 

unterschiedlicher Zell-Adhäsionsproteine nach Inaktivierung von klassischen Cadherinen 

und Afadin auf die Positionierung der Motoneurone analysiert. Die Ergebnisse zeigen, 

dass die Organisation von Motorpools durch eine schrittweise verlaufende Schichtung 

entlang der medio-lateralen Achse entsteht, für welche die Funktionen von N-Cadherin 

(ein Typ I Cadherin), Catenine und Afadin entscheidend sind. Zusätzlich zu diesem 

Prozess der Zell-Schichtungen, durchlaufen die Motoneurone eine zweite, unabhängige 

Organisierungsphase, bei der sich die Zellkörper entlang der dorso-ventralen Achse im 

Rückenmark auftrennen. Dieser zweite, für die Entstehung von Motorpool-Kernarealen 

essentielle Schritt, beruht auf den Funktionen von Typ II Cadherinen, welche allerdings 

nur im Zusammenspiel mit N-Cadherin ihre Wirkung zeigen. 
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1. Introduction 

 
1.1 Organization of the nervous system 

 

A fundamental question in neuroscience regards the mechanisms used during 

development to assemble highly ordered and specific neuronal networks from a diverse 

array of neuronal cell types. Neuronal subtypes are often assigned highly stereotyped 

positions, where neurons grouped together not only share positional coordinates but also 

receive connections from similar inputs and send projections to common targets. Thus, 

precise spatial organization appears to represent a major strategy to simplify the problem 

of wiring neurons during development. To define the mechanisms governing these 

processes, it is is important to understand the developmental steps of neuronal circuit 

assembly.  

 

1.1.1 Neurons are organized into nuclei and laminae  

The existence of neuronal organization into functional and structurally distinct 

regions has long been evident in the central nervous system (CNS). During development, 

precise positioning of neurons is a tightly regulated process controlled by neurogenesis and 

migration, and is an important determinant of identity, connectivity and ultimately 

function (Leone et al., 2008; Sürmeli et al., 2011; Bikoff et al., 2016; Oishi et al., 2016). In 

the CNS, most neurons are organized along two main anatomical schemes (Ramon y 

Cajal, 1894). In the neo-cortex, cerebellum or the dorsal spinal cord for example, the 

predominant mode of organization is as stratified layers or laminae of neurons. However, 

in more evolutionary ancient regions of the CNS, the primary mode of organization 

clusters neurons with related functions into so called neuronal nuclei. Neurons that are 

organized within laminae or nuclei share several features like morphological properties, 

innervation targets and patterns of inputs. The cellular and molecular underpinnings of 

neuronal positioning have been mostly studied in the developing cortex, where signaling 

pathways controlling lamination and ordered distribution of neuronal populations have 

been identified (Rakic, 1974; Hatten, 1999; Bielas and Gleeson, 2004; Marin et al., 2010). 

In the developing cortex, inside-out positioning of neurons tightly links neuronal birth date 

and migratory pattern, controlling the laminar organization of neurons (Hatten, 1999; 

Marin et al., 2010). Neurons exiting the cell cycle at early time points populate deep 
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cortical layers, whereas neurons generated at later time points settle in more superficial 

layers. In contrast, it is unknown what processes drive neuronal nucleus formation; 

however, experimental evidence points to a multi-step process that involves switching 

between distinct migration modes (Kawauchi et al., 2006; Watanabe and Murakami, 2009; 

Shi et al., 2017). A striking example of nuclear organization in the CNS is apparent in the 

arrangement of motor neurons in the ventral horn of the spinal cord, which can be used as 

a model system to investigate the developmental processes of nuclear organization due to 

its well-studied anatomy and physiology and relative simplicity of its circuitry. 

 

1.1.2 Nuclear organization of motor neurons in the spinal cord 

At a general level, motor neuron nuclei are clearly separated from other spinal 

neurons, such as interneurons and projection neurons, as they assume characteristic ventro-

lateral and ventro-medial positions within the Redex area IX in the spinal cord and project 

axons into the periphery. In addition, spinal motor neurons are further organized in a 

hierarchical fashion according to their target connectivity during development (Figure 1; 

Dasen and Jessell, 2009). Along the rostro-caudal axis motor neurons are organized in 

longitudinal columns, which correspond to segmentally distinct peripheral targets. Four 

major columnar classes have been described: at thoracic levels visceral preganglionic 

column (PGC) motor neurons project to sympathetic ganglia, while hypaxial motor 

column (HMC) neurons innervate intercostal and abdominal wall musculature (Dasen and 

Jessell, 2009). At limb levels, the lateral motor column (LMC) contains neurons that 

innervate limb muscles (Figure 1; Romanes, 1951). In contrast to these segmentally 

restricted motor columns, motor neurons in the median motor column (MMC) are present 

along the whole rostro-caudal axis of the spinal cord and innervate dorsal epaxial 

musculature. In addition, higher levels of anatomical organization are present within the 

LMC: LMC neurons can be further divided into medial (LMCm) and lateral (LMCl) 

divisions based on their projections to ventral and dorsal muscle targets, respectively 

(Tosney and Landmesser, 1985; Jessell, 2000; Dasen and Jessell, 2009). At the highest 

level of organization, all motor neurons innervating a single muscle target are segregated 

and clustered into pools, whose position is stereotyped and conserved across individuals 

(Figure 1; Romanes 1964; Vanderhorst and Holstege, 1997). In addition, motor pools that 

innervate limb muscles exerting synergistic functions are themselves grouped together 

forming columels that run along the rostro-caudal axis of the lumbar and brachial spinal 

cord (Romanes, 1964). 
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Figure 1: Hierarchical organization of spinal motor neuron subtypes.  
Motor neurons (MNs) project axons out of the spinal cord, which distinguishes them from interneurons 
(INs). Sets of motor neurons are arrayed into longitudinal columns along the rostro-caudal axis and project to 
distinct regions in the periphery. Motor neurons within the median motor column (MMC) are generated at all 
rostro-caudal levels of the spinal cord and project to axial musculature (epaxial). Preganglionic column 
(PGC) motor neurons and hypaxial motor column (HMC) neurons are found at thoracic levels, projecting to 
sympathetic chain ganglia (sgc), and intercostal and body wall muscles (hypaxial), respectively. The lateral 
motor column (LMC) is located at brachial and lumbar levels of the spinal cord and sends axons into the 
limb mesenchyme. The LMC can further be divided into a medial (m) and lateral (l) division based on 
projections to the ventral and dorsal half of the limb mesenchyme, respectively. At the highest level of 
organization, motor pools occupy specific rostro-caudal positions within the LMC, with each pool 
innervating a dedicated target muscle. Proteins expressed by each motor neuron subtype are depicted with 
their respective color code (adapted from Jessell, 2000; Dasen and Jessell, 2009; Stifani, 2014). 
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Columels exhibit a positional plan that conforms, in remarkably precise fashion, to 

the three major axes of limb organization. 1) The rostro-caudal positioning of columels 

correlates to the antero-posterior coordinates of the limb muscle position (Landmesser, 

1978; Hollyday and Jacobson, 1990). 2) The ventro-dorsal position of motor columels 

mirrors the proximo-distal position of limb muscles (Romanes, 1964; McHanwell and 

Biscoe, 1981; Vanderhorst and Holstege, 1997). 3) The medio-lateral positioning of 

columels reflects flexor-extensor function of limb muscles. However, what is the purpose 

of constructing such an elaborate and multilayered program of motor neuron organization? 

 

1.2 Significance of motor pool positioning 

	

The evolutionary conservation of motor neuron spatial organization in higher 

vertebrates emphasizes the importance of precise cell body positioning, but its significance 

has remained unclear. There are several anatomical features shared by all motor neurons 

within a pool. First, all motor neurons within a pool project axons to a single muscle target 

in the limb (Landmesser, 1978). Second, motor neurons within a pool receive 

monosynaptic inputs from proprioceptive sensory neurons that supply the same muscle 

target (Frank et al., 1988). Third, motor neurons within a pool are linked by transient 

coupling through gap junctions early during development (Brenowitz et al., 1983). Fourth, 

motor neurons within a pool possess characteristic dendritic arborization patterns 

(Vrieseling and Arber, 2006).  

 

1.2.1 Muscle connectivity 

What is the developmental relationship between motor pool position and muscle 

innervation pattern? One hypothesis that supports the need to construct such an elaborated 

motor neuron organization during development is that motor pool position could 

contribute to the precision and fidelity of muscle target innervation. Interestingly, despite 

the scrambling of motor neuron position through inactivation of cadherin signaling via 

elimination of catenins, motor neurons still target muscles appropriate for their molecular 

identity, indicating that motor neuron clustering and muscle-specific connectivity are 

controlled through independent processes (Demireva et al., 2011; Bello et al., 2012). 

Presumably, expression and activity profiles of many known axon guidance molecules like 

netrins, semaphorins, ephrins and slits are established in a manner independent of motor 

neuron cell body position (Bonanomi and Pfaff, 2010). For example, the dorso-ventral 
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axon trajectory in the limb is regulated by the expression of axonal Eph tyrosine kinase 

receptors that enable LMC growth cones to respond to ephrin ligands in the limb 

mesenchyme (see Introduction section 1.4.2.2; Eberhart et al., 2000; Luria et al., 2008). In 

addition, neuropilins, the secreted co-receptors of plexins, expressed by motor neurons, 

interact with semaphorin ligands provided by the limb to control axon entry into the limb 

mesenchyme and perturbation of neuropilin-semaphorin signaling has been shown to result 

in defects of dorso-ventral axonal projections (Huber et al., 2005).  

Interestingly, studies on the role of reelin also indicate independent events of motor 

neuron position and axon guidance. Reelin is a large secreted extracellular matrix 

glycoprotein and expressed in dorso-medial LMC neurons in contrast to its intracellular 

adaptor protein Dab1, which is found at high levels in LMCl neurons. Both reelin and 

Dab1 mutant mice display impaired LMCl and LMCm positioning, however, their 

appropriate target selection is not impaired (Palmesino et al., 2010). Thus, these findings 

argue against the idea that the clustering and settling position of motor neurons helps to 

assign patterns of muscle target connectivity, but support the view that the molecular 

identity rather than position of an individual motor neuron determines its muscle target 

selectivity (Demireva et al., 2011).  

 

1.2.2 Sensory input 

 If motor neuron organization is not important for overall pattern of neuromuscular 

innervation, may one function be to provide a positional logic that helps to establish the 

precise pattern of sensory-motor connectivity? The connections formed between 

proprioceptive sensory and motor neurons convey feedback signals that coordinate motor 

output (Hultborn, 2006). Proprioceptive sensory afferents that innervate a given muscle 

project to the cell bodies and dendrites of spinal motor neurons with exquisite specificity: 

they form strong connections with “self” motor neurons that innervate the same muscle 

and weaker connections with motor neurons that innervate muscles with synergistic 

functions. In contrast, motor neurons do not receive proprioceptive input from muscles 

with antagonistic or unrelated function (“non-self”). Instead, proprioceptive sensory 

afferents contact inhibitory 1a interneurons that silence motor neurons with antagonistic 

function to ensure alternation of flexor-extensor muscle activity at the basis of coordinated 

motor movement (Eccles et al., 1957). This triangulation of motor, muscle and sensory 

coordinates raises the question whether motor neuron position is a crucial element in the 

wiring of sensory connections. Indeed, recent studies in mice have shown that elimination 
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of a motor neuron transcriptional co-factor for homebox (Hox) family of genes, FoxP1, 

results in the loss of motor pool identity and the scrambling of settling position. As a 

consequence, a degraded specificity of sensory-motor connections is observed resulting in 

sensory afferents innervating “self” and “non-self” motor neurons at similar incidences. In 

addition, sensory afferents supplying an individual muscle exhibit a striking preference for 

motor neurons occupying a dorso-ventral position that coincides with the normal tier 

location of their “self” motor pool. Most strikingly, sensory axons continue to project to 

the appropriate dorso-ventral tiers within the spinal cord even when motor neurons are no 

longer present at that location (Dasen et al., 2008; Sürmeli et al., 2011). In contrast, 

inversion of motor pool positions in the cervical spinal cord does not alter specificity of 

sensory stimulation (Vrieseling and Arber, 2006). These findings suggest, that positioning 

of motor pools and columels constitutes part of a spatial logic that helps to establish 

precise patterns of monosynaptic connectivity, however, also motor neuron position-

independent programs contribute to sensory input specificity. 

 

1.2.3 Synchronous firing and neuromuscular stability 

 Does the clustering of motor neurons into pools have relevance for enhancing the 

coherence of motor neuron firing? At embryonic stages, motor neurons within a pool are 

connected by gap junction channels and active junctional communication has been argued 

to promote coherence in the firing of motor neurons that innervate a particular muscle 

target, and thus stabilizing neuromuscular connections (Chang et al., 1999). Indeed, the 

coherence of motor neuron firing is decreased in mutant mice in which gap junctional 

communication has been prevented by targeted inactivation of the connexin subunit Cx40 

and fewer neuromuscular synapses are maintained at postnatal stages in these mutants 

(Personius et al., 2007). Furthermore, recent findings in the chick brainstem suggest that 

manipulation of gap junction coupling disrupts coordinated spontaneous activity during 

formation of nuclei and in turn, pharmacological disruption of spontaneous activity 

impairs nucleogenesis, demonstrating a functional role for activity (Montague et al., 2017). 

Thus, these findings suggest that clustering of motor neurons into pools might promote the 

stability of synaptic connections with target muscles and that gap junctions facilitate 

spontaneous activity crucial for nucleogenesis. 
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1.3 Developmental time course of motor and sensory neuron generation 

  

In mouse, spinal motor neurons are generated within the neural tube at the motor 

neuron progenitor domain (pMN) between embryonic day (e) 9.0 and e11.5, with the peak 

of neurogenesis occurring around e9.5-e10.5 (Nornes and Das, 1974; Hollyday and 

Hamburger, 1977; Nornes and Carry, 1978). After exiting the cell cycle, motor neurons 

migrate from the progenitor zone to the lateral region of the ventral horn of the spinal cord. 

First, LMCm neurons are generated; then, later-born LMCl neurons migrate through 

LMCm neurons to reach their final settling position in the lateral ventral horn (Hollyday 

and Hamburger, 1977; Sockanathan and Jessell, 1998). The migration and segregation of 

the lateral and medial division of LMC occurs over the period of e11.0-e12.5 with 

projections of motor axons into the limb mesenchyme first occurring as early as e12.5. 

Last, defined subsets of motor neurons within each division coalesce to form motor pools 

with their final settling position achieved by e13.5 (Lin et al., 1998). Globally, spinal 

motor neuron specification follows a temporal gradient along the ventro-dorsal and rostro-

caudal axes: motor neurons located in a more ventral and more rostral position are 

generated earlier reflecting the progressive expansion of the total volume of the neural 

tissue and the generation of specific cell types along the rostro-caudal axis (Stifani, 2014).  

Sensory neurons arise from neural crest cells around e9.0-e10.0 and delaminate 

from the dorsal neural tube upon specific inductive signals. Subsequently, they migrate 

along ventral pathways in chain-like structures and coalesce into ganglia adjacent to the 

neural tube. Early differentiation processes and peripheral innervation occur between e11.5 

and e15.5, while during the last embryonic week central innervation patterns and sensory 

neuron subtypes can be first identified. Presumably, direct sensory-motor connections are 

established between e16.0-e18.0. In addition, further sensory neuron subtype 

specifications and functional connectivity refinements occur during the first postnatal 

weeks (Lallemend and Ernfors, 2012).  

Thus, the well-established positioning of motor neurons long before sensory axonal 

invasion underscores the hypothesis of a connectivity logic based on motor neuron 

position. 
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1.4 Molecular control of motor neuron development and specification 

	

Motor neurons acquire divisional and pool identities through a process of extrinsic 

signals and transcription factor mediated specification that directs the innervation of target 

muscle in the periphery (Dasen, 2009). Limb-derived factors play a later role in motor 

neuron specification by inducing transcription factors that mediate pool clustering and 

arborization of motor terminals within muscle. The factors that contribute to the 

specification and diversification of motor neuron subtypes, as well as the down-stream 

effectors that facilitate the guidance of motor axons to their peripheral targets are well 

known and briefly described in the following sections. 

 

1.4.1 Spinal motor neuron generation 

Spinal progenitor cells are arrayed into different domains at conserved dorso-

ventral positions along the midline of the neural tube and give rise to post-mitotic neurons 

during temporally restricted periods. In the ventral spinal cord, patterning of neural 

progenitor domains is governed mainly through a gradient of sonic hedgehog (Shh) along 

the dorso-ventral axis, secreted from the notochord and cells of the floor plate that 

provides topographic information by regulating the expression of homeodomain and basic 

helix-loop-helix transcription factors (Alaynick et al., 2011). Five ventral progenitor 

domains (p0, p1, p2, pMN, p3) give rise to four cardinal interneuron subtypes (V0, V1, V2 

and V3) and motor neurons that will provide the main cellular substrate of spinal motor 

circuits (Figure 2A; Davis-Dusenbery et al., 2014). In the dorsal spinal cord, dorsal bone 

morphogenetic proteins (Bmps), secreted from the roof plate and surface ectoderm are 

responsible for producing dorsal cell types, which are typically associated with sensory 

relay circuits (Jessell, 2000). The ventral part of the neural tube is protected from the 

dorsalizing effects of Bmps by expression of its antagonist Noggin, which is secreted by 

the notochord (McMahon et al., 1998).  

Shh acts via Gli family of transcription factors to regulate the expression profile of 

two classes of homeodomain transcription factors in the ventral spinal cord (Shirasaki and 

Pfaff, 2002). These transcription factors can be roughly divided into two classes based on 

their regulation in response to Shh signaling: ventrally expressed class II proteins, 

including Nkx6.1, Olig2 and Nkx2.2 are activated by Shh. Dorsally expressed class I 

proteins, including Pax6, Pax7, Irx3, Dbx1 and Dbx2 are repressed by Shh (Briscoe et al., 

2000; Jessell, 2000; Alaynick et al., 2011). Class I and class II proteins have reciprocal 
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repressive activities (Pax6 versus Nkx2.2; Dbx2 versus Nkx6.1) that define and maintain 

the sharp boundaries of the five ventral progenitor domains and ensure the production of 

defined classes of post-mitotic cells (Briscoe et al., 2000; Jessell, 2000). Specifically, the 

combined actions of Nkx6.1, Nkx2.2 and Irx3 restrict the generation of motor neurons to a 

single progenitor domain (Tanabe et al., 1998; Briscoe et al., 2000). The activity of 

Nkx6.1, when unconstrained by the inhibitory effects of Irx3 and Nkx2.2, is sufficient to 

induce the expression of the homeodomain protein MNR2, which is first expressed during 

the final division cycle of motor neuron progenitors and induces the expression of the 

downstream transcription factors involved in motor neuron specification, including Lim3, 

Isl1, Isl2 and Hb9 (Figure 2A). This patterning, however, remains constant along the 

anterior-posterior axis, thus dorso-ventral signaling alone cannot explain the specification 

of motor neurons into subtypes along the rostro-caudal axis. 

 

1.4.2 Subtype diversification of spinal motor neurons 

All spinal motor neurons arise from a single ventral progenitor domain, but how is 

the further specification of motor neurons into subtypes achieved? Similar to dorso-ventral 

Shh/Bmps signaling, secreted fibroblast growth factor (FGF) and retinoic acid (RA) form 

opposing concentration gradients along the rostro-caudal axis to establish broad domains 

of homeodomain protein expression that are subsequently refined through selective cross-

repressive interaction (Figure 2B). Notably, dorso-ventral signaling acts on neural 

progenitor cells whereas along the rostro-caudal axis, patterning programs are confined to 

post-mitotic motor neurons (Dasen et al., 2003).  

 

Acquisition of columnar identity 

A motor neuron transcriptional network that engages the actions of nearly two 

dozen of vertebrate Hox proteins has been shown to regulate motor neuron columnar 

identity and position (Lance-Jones et al., 2001). Hox genes are a large family of 

chromosomally arrayed genes encoding transcription factors that are instrumental in 

patterning along the rostro-caudal axis of most animal species (Alexander et al., 2000). In 

vertebrates, they comprise 39 genes organized in four clusters. In addition, the expression 

of Hox genes is closely aligned with their position within the Hox cluster: Hox genes 

located at the 3’ end of the cluster are expressed more anteriorly than genes at the 5’ end, 

thus resulting in a relationship between chromosomal location and spatial location 

(Lemons and McGinnis, 2006). The expression of these chromosomally arrayed Hox 
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genes is controlled by FGFs and RA signaling: within the neural tube, RA, secreted from 

the paraxial mesoderm, acts as a rostralizing signal, whereas FGF, derived from the 

primitive streak, acts as a caudalizing signal, along with the TGFβ family member Gdfl1 

(Bel-Vialar et al., 2002; Dasen et al., 2003; Liu et al., 2001). Expression and cross-

repressive interactions of Hox proteins is closely aligned with the position in which 

molecularly defined columnar subtypes are generated: at brachial and lumbar levels, motor 

neurons that express Hox6 and Hox10 proteins, respectively, acquire a LMC identity. 

Whereas, at thoracic levels, Hox9 gene is essential for the assignment of HMC and PGC 

motor neuron fates (Figure 2B; Liu et al., 2001; Dasen et al., 2003). 

 
Figure 2: Generation of ventral neuronal subtypes in the spinal cord. 
(A) A gradient of the secreted protein Sonic hedgehog (Shh) induces the patterned expression of different 
transcription factors in ventral progenitor domains, which are generated along the dorso-ventral axis of the 
neural tube. Class I transcription factors are induced while Class II proteins are repressed by Shh signaling. 
Selective cross-repressive interactions between these two classes sharpen the boundaries between progenitor 
domains. Each of these progenitor domains gives rise to postmitotic neurons, including motor neurons and 
several classes of interneurons, expressing specific sets of transcription factors. (B) Opposing gradients of 
retinoic acid (RA) and fibroblast growth factor (FGF) along the rostro-caudal axis of the neural tube induce 
Hox genes expression. Hox patterns are further refined through cross-repressive interactions giving rise to 
specific Hox expression profiles in motor columns and pools. From Dasen, 2009. 
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Misexpression of Hox9 at brachial levels is sufficient to convert LMC to PGC motor 

neurons, while expression of Hox6 and Hox10 at thoracic levels convert PGC and HMC 

neurons to a LMC character (Dasen et al., 2003). However, how do MMC motor neurons, 

which are found all along the body axis, escape Hox rostro-caudal patterning? MMC 

neuron specification has been associated with a ventral to dorsal decreasing gradient of 

Wnt4/5 signaling permitting the persistence of Lhx3/4 expression in the most ventral 

region, which in turn makes MMC neurons unresponsive to Hox patterning (Briscoe and 

Ericson, 2001; Dasen et al., 2005; Agalliu et al., 2009).  

Although Hox protein activities appear to be critical in the generation of motor 

neuron subtype diversification, several lines of evidence suggest that an additional factor is 

required to gate their actions in motor neurons (Dasen and Jessell, 2009). Indeed, the 

network of Hox proteins driving motor neuron diversification depends on the actions of a 

single accessory factor, the forkhead class homeodomain protein FoxP1. In vertebrates, the 

FoxP1 protein is selectively expressed by PGC neurons (at low levels) and in LMC 

neurons (at high levels). The differences in FoxP1 levels is Hox-expression dependent, as 

misexpression of brachial or lumbar Hox proteins, like Hox6 and Hox10, switches HMC 

and PGC neurons to FoxP1high LMC motor neurons at thoracic levels (Dasen et al., 2008). 

Furthermore, inactivating FoxP1 in mice results in the loss of all Hox-dependent steps of 

LMC motor neurons differentiation and motor neuron identities revert to an ancestral state, 

consisting of two continuous motor columns, HMCs and MMCs (Dasen et al., 2008; 

Rousso et al., 2008). 

 

Establishment of divisional identity 

 An early step of Hox-dependent specification of LMC identity is to direct the 

expression of RA-synthesizing enzyme retinaldehyde dehydrogenase 2 (Raldh2) and to 

trigger a series of downstream signaling events that govern the pattern of motor neuron 

connectivity in the developing limb (Dasen and Jessell, 2009). However, the first step in 

establishing the acquisition of divisional identity originates as a consequence of the 

difference in birthdates between motor neurons of the medial and lateral LMC (see 

Introduction section 1.3). Earlier-born LMCm neurons co-express Isl1/2 and the Raldh2. 

As a consequence, the secretion of RA by LMCm neurons induces the down-regulation of 

Isl1 to the profit of the Lim homeobox 1 (Lhx1) in later born LMC neurons, generating 

LMCl subtype character (Sockanathan and Jessell, 1998). Lhx1 expression in turn, has 

been shown to direct the projection of LMC motor axons in the dorsal developing limb 
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through its ability to induce expression of the receptor EphA4, a guidance receptor 

required for axons to avoid ephrin-a5 repulsive signals originating from the ventral 

mesenchyme (Eberhart et al., 2002; Kania and Jessell, 2003). Conversely, EphB1 receptor 

expression, induced by Isl1, directs LMCm axons to the ventral limb mesenchyme by 

sensitizing them to repulsive signals from the dorsal cells containing ephrinB2 (Luria et 

al., 2008). Furthermore, local retinoid signaling also serves to suppress PGC and HMC 

fate (Dasen et al., 2003).  

 

Control of motor pool identity 

Two Hox-dependent programs appear to control motor pool fates: one, restricting 

rostro-caudal pool position, and a second controlling the assignment of transcriptional 

motor pool identities at intrasegmental levels (Dasen et al., 2005). Patterns of Hox 

expression that determine motor pool identity along the rostro-caudal axis of the LMC is 

mainly achieved through a series of cross-repressive interactions, which restrict the 

complement of Hox genes expressed by motor neuron subsets (Figure 2B). However, how 

does the motor pool-specific Hox gene expression profile translate into the acquisition of 

intrasegmental pool subtypes? Hox gene activities impose the pool-restricted expression of 

two sets of downstream transcription factors: an early limb-independent one, and a second 

one consisting of transcription factors induced by muscle target. The early intrinsic set of 

transcription factors, including members of the Runx, POU and Nkx homeodomain 

proteins, are expressed by motor neurons prior to their axons approaching muscle targets 

and are important for the selection of certain muscle-specific trajectories (Landmesser, 

2001; Dasen et a., 2005, 2008). Nkx6 homeodomain proteins are expressed by subsets of 

LMC neurons in a pool-specific manner and altering Nkx6.1 expression in motor pools 

results in a failure of normal target innervation (Dasen et al., 2003; De Marco Garcia and 

Jessell, 2008). Thus, Nkx6.1 has two sequential roles in motor neuron development: first, 

it takes part in the specification of motor neuron progenitors in response to Shh signaling 

and second, it contributes to the specification of discrete motor pools. 

The second set of transcription factors are extrinsically induced and expressed in 

developing motor neurons upon reception of limb-dependent signals. Studies of limb 

ablation and spinal cord inversion studies in the chick spinal cord have shown that the 

expression of the ETS genes Er81 and Pea3 depends on peripherally derived signals (Price 

et al., 2002; Lin et al., 1998). However, so far only one such extrinsic factor has been 

unambiguously identified: the glial cell derived neurotrophic factor (GDNF) is secreted by 
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specific cervical muscles inducing the expression of Pea3 in corresponding motor pools 

and several studies of Pea3 mutant mice have shown the requirement of these later signals 

for cell body position, axonal arborization and dendritic pattern (Haase et al., 2002; Livet 

et al., 2002; Vrieseling and Arber, 2006).  

What are the mechanisms by which transcription factor identity is translated into 

precise positional organization of motor pools? To date, the main cell-surface molecules 

shown to be involved in motor neuron organization are members of the classical cadherin 

family of adhesion molecules, whose expression is known to be regulated by ETS proteins 

(Price et al., 2002; Demireva et al., 2011; Bello et al., 2012; Astick et al., 2014).  

 

1.5 The cadherin family of cell-cell adhesion molecules 

 

Cadherins (>100 in mammals) constitute a large family of cell surface 

glycoproteins, which are defined by the presence of calcium binding, extracellular 

cadherin (EC) repeats (Shapiro and Weis, 2009). Cadherins can be grouped into several 

main classes based on sequence homology, protein structure and domain organization and 

include the classical cadherins, protocadherins, desmosomal, Fat and 7-pass 

transmembrane cadherins (Takeichi 1995). They are conserved across species and most are 

expressed in the nervous system where they function in several aspects of neuronal 

development from neurogenesis and cell migration to synapse formation and plasticity 

(Takeichi, 2007). By far the best understood members of the cadherin family are the 

vertebrate classical cadherins.  

 

1.5.1 Classical cadherins 

Classical cadherins are defined by five tandem β-sandwich fold EC domains (EC1-

5) in the extracellular portion, followed by a single-pass transmembrane domain and two 

well-conserved catenin binding domains in the cytoplasmic portion (Figure 3A; Brasch et 

al., 2012, Nollet et al., 2000). The cytoplasmic domain of classical cadherins presents two 

main motifs: a juxtamembrane region containing a p120 binding binding site and a C-

terminal domain containing a catenin binding sequence motif for binding β-catenin and γ-

catenin (also know as plakoglobulin). β-catenin and γ-catenin in turn are known to bind to 

α-catenin, which has a number of binding partners including F-actin (Figure 3A; Ozawa et 

al., 1989; Thoreson et al., 2000; Kobielak and Fuchs, 2004). The impairment of β-catenin 
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Figure 3: Classical cadherins expression in motor neurons.  
(A) Classical cadherins have ectodomains composed of five extracellular cadherin (EC) repeats, a single 
transmembrane region and a cytoplasmic domain that interacts with β- and γ-catenin which in turn bind to 
the actin-binding α-catenin. In addition, the protein p120 catenin binds to the juxtamembrane portion of the 
cadherin cytoplasmic domain. Cell adhesion by cadherins depends on the presence of Ca2+, which rigidifies 
the connections between successive ECs. Nectins consist of three IgG-like loops, a single transmembrane 
region and a cytoplasmic domain with a C-terminal PDZ binding motif. Nectins bind to the adaptor protein 
afadin, which in turn directly binds to the actin cytoskeleton. The nectin-afadin complex is thought to 
provide the first scaffold for adherens junctions and interacts with the cadherin-catenin complex (adapted 
from Niessen, 2007). (B) Phylogram of the type II cadherin family computed from alignment of amino acid 
sequences of adhesive EC1 and EC2 domain regions using a maximum likelihood method. Branches are 
colored according to specificity groups. Notably, cadherin-24 may belong to the specificity group of 
cadherin-8,-11, as it belongs to the same phylogenetic branch, however, shared binding affinities have not 
been confirmed yet (adapted from Brasch et al., 2018). (C) N-cadherin, cadherin-6, cadherin-9 and cadherin-
8 expression in e13.5 lumbar spinal cord. N-cadherin and cadherin-6 are expressed by all motor neurons, 
whereas cadherin-8 and -9 have pool specific expression patterns. Note that cadherin-9 is only expressed at 
L4-5 lumbar spinal levels (adapted from Demireva et al., 2011). (D) Classical cadherin expression by motor 
pools at lumbar levels L1-L3 (adapted from Demireva et al., 2011). 
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binding has been shown to result in proteosomal degradation of classical cadherins (Chen 

et al., 1999).  

Based on sequence homology and structural basis of their adhesive dimer 

interaction, 18 classical cadherins can be subdivided into two closely related families: type 

I and type II cadherins (Nollet et al., 2000). Type I cadherins include E-cadherin, N-

cadherin, P-cadherin, R-cadherin and M-cadherin (cadherin-1-4 and 15, respectively) and 

are involved in strong cell-cell adhesion. They typically show broad distribution patterns 

that are segregated by embryonic germ layer or tissue type (Nishimura et al., 1999). 

Members of type II cadherins include cadherin-6-12, 18-20, 22 and 24, which are 

associated with less robust cell-cell adhesion and expression patterns are restricted to 

specific subsets of functionally or anatomically related cell types. Furthermore, type II 

cadherins appear to be more likely involved in heterophilic binding in contrast to type I 

cadherins, even though weak binding preferences between N-cadherin and E- and R-

cadherin have been observed (Inuzuka et al., 1991; Matsunami et al., 1993). Recent studies 

have shown that cadherin-8, -11; cadherin-6, -9, -10; cadherin-7, -12, -18, -20, -22 can be 

organized into three specificity groups according to phylogenetic analyses and binding 

affinities (Figure 3B; Shimoyama et al., 2000; Brasch et al., 2018).  

Several studies suggest that cadherin mediated intercellular adhesion occurs via 

stereotyped strand-swap binding in their membrane-distal EC1 domains (Zhang et al., 

2009, Patel et al., 2006). The amino-terminal β-strands of paired EC1 domains (the A 

strands) “swap”, so that the A strand of one monomer replaces the A strand of the other 

(Shapiro and Weis, 2009). Here, a key element is the insertion of the side chain from the 

conserved Trp-2 of the A strand of one protomer into a pocket extending into hydrophobic 

core of the adhesive partner. Importantly, current data suggest that type I and type II 

cadherins cannot interact, as they show substantial differences in these binding interfaces. 

Type II cadherins include two conserved Trp anchor residues, rather than one, and form a 

hydrophobic interface that runs the length of the EC1 domain (Shaprio and Weis, 2009). 

Indeed, this proposed lack of adhesive interactions between type I and type II cadherins 

based on structural analyses has been proven in transfected cell experiments, where cells 

transfected with a type I cadherin sort out from type II cadherin transfectants, indicating 

differences in binding affinities (Patel et al., 2006).  
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1.5.2 Classical cadherins expression and function in the nervous system 

Based on expression patterns in developing and mature subdivisions of the nervous 

system such as brain nuclei, neuronal layers and fiber, classical cadherins have been 

proposed to play numerous roles in the development and maintenance of the CNS 

(Krishna-K et al., 2011; Bekirov et al., 2008; Yamagata and Sanes, 1995). Most studies 

have investigated N-cadherin function and expression in the nervous system as it has been 

implicated in many early steps in neural development including formation of the neural 

tube, neuronal migration and neurite outgrowth during axon guidance (Hirano and 

Takeichi, 2012). In zebrafish and chick, N-cadherin has been shown to be required for 

correct innervation of specific laminae by retinal optic nerves (Inoue and Sanes, 1997; 

Masai et al., 2003). One classical example of N-cadherin function during early neuronal 

development can be found during neurolation, where the invaginating neural plate 

expresses N-cadherin, while the overlapping ectoderm expresses E-cadherin, separating 

the two tissues.  

In contrast, very few studies have addressed the function of type II cadherins, even 

though they are differentially expressed in complex combinatorial patterns demarcating 

neuronal structures and circuits. In the retina it was shown, that cadherin-8 and cadherin-9 

play instructive roles in targeting bipolar cells to appropriate sublaminae (Duan et al., 

2014). In addition, cadherin-8 mutant mice have been shown to display defects in the 

physiological detection of cold sensation, most likely due to the loss of cadherin-8 

homophilic interactions between cold sensing afferents and their targets. However, no 

anatomical changes in synaptic morphology or connectivity were detected (Suzuki et al., 

2007). In addition, cadherin-6 expression by a subset of in retinal ganglion cells mediates 

axon target matching in a specific non-image-forming circuit (Osterhout et al., 2011). 

Lastly, loss of cadherin-11 enhances plastic changes in hippocampal synapses and results 

in behavioral deficits in fear conditioning (Manabe et al., 2000). 

Recent studies indicate that redundancy in the adhesive function of type II cadherin 

specificity groups is at the basis of neuronal recognition properties as only elimination of 

all members of a type II cadherin specificity group results in connectivity and functional 

defects in the retina and hippocampus, respectively, providing an explanation for the small 

numbers of phenotypes observed in single type II cadherin mutants (Basu et al., 2017; 

Duan et al., 2018). In addition, classical cadherins have been shown to be important 

mediators of motor pool sorting in the spinal cord, as it will be briefly described in the 

following section (Demireva et al, 2011; Patel et al., 2006; Price et al., 2002).  
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1.5.3 Roles of classical cadherins in motor neuron organization 

The remarkable property of type II cadherins expression patterns to highlight 

anatomical features of the nervous system is clearly evident in motor pools of the spinal 

cord (Figure 3C; Romanes, 1964; Vanderhost and Holstage, 1997). Combinatorial 

expression profiles of type II cadherins define motor pools at a molecular level in mouse 

and chick and genetic manipulation in chick motor neurons has been shown to perturb 

pools morphogenesis (Figure 3D; Price et al., 2002, Patel et al., 2006; Demireva et al., 

2011; Astick et al., 2014). In mouse embryos, inactivation of N-cadherin, expressed by all 

motor neurons, as well as perturbation of all classical cadherin function through β- and γ-

catenin elimination, have been shown to prevent divisional segregation and pool clustering 

(Demireva et al., 2011). However, because catenin mutations likely affect multiple 

intracellular signaling pathways and motor neuron disorganization has been reported only 

in N-cadherin mutants in mouse, the role and contributions of type I and type II cadherins 

and the nature of the morphogenetic events that lead to motor pool formation remains to be 

fully understood. In addition, catenin adhesive signaling has been shown to cooperate with 

nectins, a family of Ca2+-independent immunoglobulin-like CAMs, via direct interaction 

with afadin (Figure 3A; Mandai et al., 1997; Takai and Nakanishi, 2003; Takai et al., 

2008; Harris and Tepass, 2010).  

 

1.6 The afadin/nectin cell adhesive system  

 

The nectin family comprises four members: nectin-1, -2, -3 and -4, which are 

encoded by the PVRL1, PVRL2, PVRL3 and PVRL4 genes, respectively. Interestingly, 

their heterophilic trans-interactions are stronger than their homophilic ones in the 

following order: nectin-1-3 > nectin-2-3 > nectin-1-1, 2-2, and 3-3 (Harrison et al., 2012). 

Furthermore, they can heterophilically interact in trans with the extracellular regions of 

other Ig-like molecules, including nectin-like molecules (Ikeda 2003). Examples of nectins 

mediated cell-adhesions can be found in numerous tissues and cell types including mossy-

fiber-CA3 synapses in the hippocampus (Mizoguchi et al., 2002), contacts between 

commissural axons and floor plate cells in the neural tube (Okabe et al., 2004) and the 

formation of a checkerboard-like mosaic pattern in auditory hair cells (Togashi et al., 

2011). Nectins contain an extracellular region with three immunoglobulin-like loops, a 

single membrane-spanning region and a cytoplasmic tail through which they directly bind 

afadin, an F-actin-binding protein, via the PDZ domain (Figure 3A). Afadin, α-catenin and 
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their binding proteins are known to physically mediate the association between nectin and 

cadherin molecules (Pokutta et al., 2002, Takai et al., 2008). Furthermore, afadin controls 

nectin adhesive function in similar ways as catenins regulate cadherin activity and cross-

talk between nectin/afadin and cadherin/catenin signaling is believed to be an important 

regulator of cell adhesive function (Takai and Nakanishi, 2003). Afadin links nectins and 

cadherins by binding to the cytoplasmic domains of nectins and associating with p120-

catenin and α-catenin, which in turn interact with the cytoplasmic domains of cadherins 

(Ozawe et al., 1989, Pokutta et al., 2002). Mice lacking nectins are viable and show 

relatively moderate phenotypes and no life-threatening disorders most likely due to 

functional redundancy. In contrast, afadin knock-out mice show embryonic lethality due to 

impairments in formation of cell-cell junctions, cell movement and cell differentiation 

(Ikeda et al., 1999). Interestingly, in the developing brain, conditional elimination of 

afadin has been shown to impair synapse formation and neuronal migration (Beaudoin et 

al., 2012; Gil-Sanz et al., 2014; Yamamoto et al., 2013; Miyata et al., 2017). However, a 

potential role for nectin/afadin signaling in motor neuron organization in the spinal cord 

has not been explored. 
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2. Aims of the thesis 
	

Motor neurons in the spinal cord are found grouped in nuclear structures termed 

pools, whose position is precisely orchestrated during development. Despite the emerging 

role of pool organization in the assembly of spinal circuits, little is known about the 

morphogenetic programs underlying the positioning of motor neuron subtypes. Thus, in 

this thesis, spinal motor neurons were used as a prototypic example of the CNS nuclear 

organization to ask how these nuclei arise during spinal cord development by focusing on 

the role of cell adhesion molecules. 

 

Aim 1: Establishing and validating a three-dimensional positional analysis to evaluate 

motor neuron organization.  

 

Aim 2: Assessing the impact of nectin/afadin signaling in the control of motor neuron 

positional organization. 

 

Aim 3: Testing the roles of type II cadherin specificity groups in motor neuron positional 

organization. 

 

Aim 4: Evaluating combined function of type I and type II cadherins in motor neuron 

positional organization. 

 



	 	 Material	

	 	 20	

3. Material 
 

3.1 Antibodies 

 

Table 1: Primary antibodies that were used for immunohistochemistry.  

“Self-made” antibodies were generated and used as previously described (Agalliu et al., 

2009; Dasen et al., 2008; De Marco Garcia and Jessell, 2008). 

Target Host Source Dilution 

Afadin Guinea-Pig T. Jessell lab, s-m 1:20.000 

β-catenin Rabbit T. Jessell lab, s-m 1:1000 

DsRed Rabbit Clonetech 632496 1:1000 

Er81 Rabbit T. Jessell lab, s-m 1:30.000 

FoxP1 Rabbit T. Jessell lab, s-m 1:64.000 

γ-catenin Rabbit T. Jessell lab, s-m 1:1000 

GFP Chicken Abcam ab13970 1:1000 

Hb9 Rabbit T. Jessell lab, s-m 1:8000 

Isl1 Guinea-Pig T. Jessell lab, s-m 1:30.000 

Lhx3 Mouse T. Jessell lab, s-m 1:20.000 

N-cadherin Mouse BD Bioscience 610921 1:1000 

Nectin-1 Rat MBL D146-3 1:200 

Nectin-2 Rat MBL D083-3 1:200 

Nectin-3 Rat MBL D084-3 1:200 

Nectin-4 Rabbit Abcam ab155692 1:200 

Nkx6.1 Rat T. Jessell lab, s-m 1:3000 

Nkx6.2 Guinea-Pig T. Jessell lab, s-m 1:15.000 

nNos Rabbit T. Jessell lab, s-m 1:16.000 

pSMAD Rabbit T. Jessell lab, s-m 1:2000 

Discosoma red fluorescent protein (DsRed), forkhead box protein P1 (FoxP1), green 

fluorescent protein (GFP), homebox gene 9 (Hb9), Islet 1 (Isl1), self-made (s-m) 

 

 

 

 



	 	 Material	

	 	 21	

Table 2: Secondary antibodies that were used for immunohistochemistry.  

All antibodies were obtained from Jackson ImmunoResearch.  

Target Host Conjugate Dilution 

 

Chicken 

 

Donkey 

Cy3 

Cy5 

AF-488 

1:1000 

1:500 

1:1000 

 

Guinea-Pig 

 

Donkey 

Cy3 

Cy5 

AF-488 

1:1000 

1:500 

1:1000 

 

Mouse 

 

Donkey 

Cy3 

Cy5 

AF-488 

1:1000 

1:500 

1:1000 

 

Rabbit 

 

Donkey 

Cy3 

Cy5 

AF-488 

1:1000 

1:500 

1:1000 

 

Rat 

 

Donkey 

Cy3 

Cy5 

AF-488 

1:1000 

1:500 

1:1000 

Alexa Fluor (AF), cyanin (Cy) 

 

Table 3: Antibodies that were used for western blots. 

Target Host Conjugate Source Dilution 

β-actin Mouse - Merk A5441 1:20.000 

Mouse Goat HRP 
Jackson ImmunoResearch 

115-035-003 
1:20.000 

N-cadherin Mouse - BD Bioscience 610921 1:1000 

Pan-Cadherin Rabbit - Abcam ab6529 1:500 

Rabbit Goat HRP 
Jackson ImmunoResearch 

111-035-045 
1:20.000 

Horseradish peroxidase (HRP) 
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3.2 Plasmids 

 

Table 4: Plasmids that were used for transfections of cell lines. 

 

	
3.3 Cell lines 

 

Table 5: Cell lines that were used for in vitro experiments. 

Cell line Source Description 

CHO-K1 ATCC CCL-61 

HEK293T ATCC CRL-3216 

American Type Culture Collection (ATCC), chinese hamster ovary cell line (CHO), 

human embryonic kidney cell line (HEK) 

 

	
	
	
	
	
	
	
	
	
	
 

Name Source 

Cadherin-2-mCherry pCAG M. Williams lab, s-m 

Cadherin-6-EGFP pCAG M. Williams lab, s-m 

Cadherin-6-mCherry pCAG M. Williams lab, s-m 

Cadherin-8-EGFP pCAG M. Williams lab, s-m 

Cadherin-8-mCherry pCAG M. Williams lab, s-m 

Cadherin-9-EGFP pCAG M. Williams lab, s-m 

Cadherin-9-mCherry pCAG M. Williams lab, s-m 

Cadherin-10-EGFP pCAG M. Williams lab, s-m 

Cadherin-10-mCherry pCAG M. Williams lab, s-m 

Cadherin-11-EGFP pCAG M. Williams lab, s-m 

Cadherin-11-mCherry pCAG M. Williams lab, s-m 
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3.4 Oligonucleotides and PCR programs 

 

Table 6: Oligonucleotides, annealing temperature and extension time used for 

genotyping mouse lines. 

  

  

 

 

Afadin 

FL 

 

Fwd: TCA GTA CAG GGG AAC AAC 

AGG 

Rev: TCA GTA CAG GGG AAC AAC 

AGG 

 

60 

 

20 

WT allele 

188bp; FL 

allele 315 bp 

 

Afadin 

KO 

Fwd: GCC TTA GAG TTA GGA GGA 

ACA TG 

Rev: TCA GTA CAG GGG AAC AAC 

AGG 

 

62 

 

30 

WT allele 

1482bp; KO 

allele 238bp 

 

β-

catenin 

FL 

Cmn Fw: AAG GTA GAG TGA TGA 

AAG TTG TT 

Rev WT: CAC CAT GTC CTC TGT CTA 

TTC 

Rev FL: TAC ACT ATT GAA TCA CAG 

GGA CTT 

60 40 

 

WT allele 

221bp; FL 

allele 324bp 

 

Cad-6 

Cmn Fw: 

CATTCTTGCTCCTGCCTATTTGCT  

Rev WT: 

CGTACTGATAATCGGATCCCGTGT 

Rev KO: 

GAACCTGGTCGAAATCAGTGCGTT 

 

61 

 

90 

 

WT allele 

400bp; KO 

allele 900pb 

Pr
im
er
s	

N
am

e	

An
n.
	te
m
p.
	(°
C)
	

Ex
te
ns
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n	
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m
e	
(s
ec
)	

Fr
ag
m
en
t	

le
ng
th
	(b
p)
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Cad-8 

Fwd WT: GCT AGC TGA GAC GCT 

CAT GGA CCT CTG GAC 

Rev WT: AAT GAA GCT TAC CCG 

GCC AAC GAG AAT CGG 

Fwd KO: TGT ACT GGA GGC TGA 

AGT TCA GAT GTG CGG 

Rev KO: TCC ATG ACC TGA CCA TGC 

AGA GGA TGA TGC 

 

60 

 

60 

 

WT allele 

252bp; KO 

allele 390bp 

Cad-9 

Fwd: TGCAGAATTTCAGTGGTTTGG 

Rev: 

AGAGTCTAGCAAAGTATTCCAAGCA 

60 30 

WT allele 

740bp; KO 

allele 700bp 

 

Cad-10 

Cmn Fwd: 

CTGATGAAGTGCTGGAAGCCAGTT  

Rev WT: 

CCACGTTTTTGACGGTGAAGGATT 

Rev KO: 

GCCGCATAACCAGTGAAACAGCAT 

 

61 

 

90 

 

WT allele 

250bp; KO 

allele 850bp 

 

Cad-11 

Cmn Fwd: TTC AGT CGG CAG AAG 

CAG GAC 

Rev WT: GTG TAT TGG TTG CAC CAT 

G 

Rev KO: TCT ATC GCC TTC TTG ACG 

AGT TC 

 

55 

 

60 

 

WT allele 

270bp; KO 

allele 420bp 

eGFP 

Fwd: TCG AGC TGG ACG GCG ACG 

TAA A 

Rev: TAG TGG TTG TCG GGC AAG 

CAG CA 

55 60 

 

KO allele 

550bp 

 

 

γ-

catenin 

FL 

Fwd: CTT CTG GGA TCT CAG GAG 

TGT AC 

Rev: GTC ATG TGC TAG CCC AGT 

CTA AG 

53 30 

WT allele 

170bp; FL 

allele 200bp 
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γ-

catenin 

KO 

Cmn Fwd: CGG CCA TCG TCC ATC 

TCA TC 

Rev WT: CCT CCT TCT TGG ACA GCT 

GG 

Rev KO: CTT CTA TCG CCT TCT TGA 

CG 

 

 

53 

 

 

30 

 

WT allele 

300bp; KO 

allele 150bp 

N-cad 

FL 

Fwd: CCA AAG CTG AGT GTG ACT TG 

Rev: TAC AAG TTT GGG TGA CAA GC 
60 10 

WT allele 

290bp; FL 

allele 260bp 

N-cad 

KO 

 

Fwd: TGC TGG TAG CAT TCC TAT GG 

Rev: GTA TGG CCA AGT AAT GGG 

GAC 

60 40 
KO allele 

450bp 

 

Olig2-

cre 

 

Fwd: CGA CGG TGA CTT GAG CAG 

Rev: TCT GGA TTC ATC GAC TGT GG 
60 45 

Cre allele 

360bp 

Base pairs (bp), cadherin (cad), common (Cmn), flox (FL), forward (Fwd), knockout 

(KO), polymerase chain reaction (PCR), reverse (Rev), wild-type (WT) 

 

3.5 Mouse strains 

 

Table 7: Mouse strains that were used for in vivo experiments.  

Detailed information on construct design and PCR genotyping strategy has been published 

as listed below. 

Lab name Official nomenclature Published by Source 

Afadin FL 

 

Afdntm1.1Lfr 

 

Beaudoin III et al., 

2012 

Jackson 

Laboratory 

 

Afadin KO 

Not registered yet, 

obtained by crossing 

Afdntm1.1Lfr to 

Protamine::cre mice 

O'Gorman et al., 

1997 

Niccolò 

Zampieri 
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β-cat FL 

 

B6.129-

Ctnnb1tm2Kem/KnwJ 

 

 

Brault et al., 2001 

 

Jackson 

Laboratory 

Cad-8 KO Cdh8tm1Mta/JrsJ Suzuki et al., 2007 
Jackson 

Laboratory 

Cad-11 KO Cdh11tm1Mta/HensJ 

 

Horikawa et al., 

1999 

 

Jackson 

Laboratory 

γ-cat FL 

 

Juptm1.1Glr/J 

 

 

Demireva et al., 

2011 

Jackson 

Laboratory 

γ-cat KO 

 

B6.129-Juptm1Ruiz/J 

 

Ruiz et al., 1996 
Jackson 

Laboratory 

Hlxb9-GFP 

 

B6.Cg-Tg(Hlxb9-

GFP)1Tmj/J 

 

Wichterle et al., 

2002 

Jackson 

Laboratory 

 

KO6910 CAD +/- 

 

Cdh6-/-; cdh9-/-; cdh10-/- 

 

Duan et al., 2018 

 

Xin Duan lab 

N-cad FL 
B6.129S6(SJL)-

Cdh2tm1Glr/J 

 

Kostetskii et al., 

2005 

 

Jackson 

Laboratory 

N-cad KO Cdh2tm1Hyn/J Radice et al., 1997 
Jackson 

Laboratory 

Olig2-cre Olig2tm1.1(cre)Wdr Dessaud et al., 2007 
Jackson 

Laboratory 
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3.6 Devices and chemicals 

 

Table 8: Devices and equipment that were used to perform the experiments. 

Description Model Brand 

Basic Power/Voltage Supply Power Pac 200 Bio-Rad 

Binocular MZ8 Leica 

Cell Culture Hood SAFE2020 Thermo Scientific 

Centrifuge Sorvali RC 6+ Centrifuge Thermo Scientific 

Confocal LSM 800 ZEISS 

Cryostat CM3050 S Leica 

Flaming/Brown Micropipette puller Model P97, B Sutter Instrument 

Fluid aspiration system Professional vacuubrand  BVC 

Fluorescence Microscope DFC3000 G Leica 

Fluorescence lamp  HXP 120V ZEISS 

Gel Electrophoresis System Owl Easycast B1 and B2 Thermo Scientific 

Gel imager C150 azure biosystems 

High speed centrifuge 5804 eppendorf 

Hotplate stirrer VMS-C7 advanced VWR 

Incubator Series CB Binder 

Infrared lamp SIL06 Sanitas 

Inverted microscope Eclipse TS100  Nikon 

Lamp for Binocular KL1500LCD Leica 

Mercury lamp Ebq100 isolated LEJ 

Microcentrifuge PerfectSpin Mini peqlab 

Nanodrop Spectrophotometer ND-1000 peqlab 

Orbital Shaker Sky Line ELMI 

PCR Cycler Mastercycler nexus GX2 eppendorf 

Pipettes Research plus eppendorf 

Platform shaker Polymax1040 Heidolph Instruments 

Scale PF Shinko Denish 

Tabletop Centrifuge Centrifuge 5415D eppendorf 

Thermomixer Thermomixer comfort eppendorf 
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UV Table TFX-35 Vilber Lourmat 

Vortex Mixer Vortex-Genie2 Specific Industries 

Water bath Alpha A6 Lauda 

Water bath AQUAline AL12 Lauda 

 

Table 9: Chemicals and kits that were used to perform the experiments. 

Name Company 

Agarose Standard Roth 

Ampicilin Roth 

Bovine Serum Albumin Sigma 

B27 Supplement gibco 

Calcium chloride dihydrate Roth 

DAPI, 4’,6-Diamidino-2-phenylindole Sigma 

DMEM gibco 

D(+)-Glucose Roth 

Dimethylsulfoxid Roth 

Di-sodium hydrogen phosphate heptahydrate Roth 

dNTP, Deoxynucleotide, Mix Promega 

DPBS with Calcium and Magnesium PAN Biotech 

D(+)-Saccharose Roth 

DTT, Dithiothreitol Thermo Scientific 

ECL Western Blotting Detection Reagents GE Healthcare 

0.5 M EDTA pH 8.0 Ambion 

Ethanol Roth 

Ethidium Bromide Roth 

Fetal Bovine Serum Premium PAN Biotech 

F-12K Nutrient Mixture (1x) gibco 

Formamide Sigma 

GeneRuler 1kb Plus Thermo Scientific 

Geneticin, G418 gibco 

Glycine  Sigma 

GoTagG2 DNA Polymerase Promega 
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5x Green GoTaq Reaction Buffer Promega 

Ham’s F-12K (Kaighn’s) Medium Thermo Fischer 

Hepes buffered saline Fluka 

Heat inactivated horse serum life technology 

Hydrochloric acid (1N) Roth 

KAPA2G Fast ReadyMix + dye (2x) KAPA Biosystems 

Laminin Sigma 

LB-Agar (granulated) Roth 

LB-Medium (granulated) Roth 

Leibovitz L-15 Medium Thermo Fisher 

Lipofectamine 2000 Thermo Fisher 

Magnesium chloride hexahydrate Roth 

Methanol Roth 

Neurobasal Medium (1x) gibco 

Nonfat Dry Milk 
Cell Signaling 

Technology 

NuPAGE LDS Sample Buffer (4x) Novex 

NuPAGE Tris-Acetate Mini Gels 3-8% novex 

N-2 Supplement (100x) gibco 

Opti-MEM I Reduced Serum Medium (1x) gibco 

Optimum cutting temperature compound Tissue-Tek 

Papain dissociation System Worthington 

Paraformaldehyde Roth 

10x PBS Liquid Concentrate Merk Millipore 

Penicillin Streptomycin gibco 

Poly-L-Lysine Sigma 

Potassium chloride Roth 

2-Propanol Roth 

Protease inhibitor complete ULTRA Tablets, EDTA-free, glass 

vials 
Roche 

Proteinase K Sigma 

QIAquick Gel Extraction Kit QIAgen 
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QIAquick PCR Purification Kit QIAgen 

QIAprep Spin Maxiprep Kit QIAgen 

QIAprep Spin Miniprep Kit QIAgen 

Recombinant Human BDNF Merk Millipore 

Recombinant Human GDNF Merk Millipore 

Recombinant mouse Cadherin-11/Fc Chimera R&D Systems 

Recombinant mouse N-Cadherin/Fc Chimera R&D Systems 

Restriction Enzymes and Buffers BioLabs 

RIPA buffer Sigma 

Rotiphorese 10x TAE-Buffer Roth 

SeeBlue Plus2 Pre-stained Protein Standard invitrogen 

Sodium acetate Roth 

Sodium carbonate monohydrate Roth 

Sodium chloride Roth 

Sodium dihydrogen phosphate dihydrate Roth 

Sodium hydrogen carbonate Roth 

Sodium hydroxide solution (1N) Roth 

Supersignal West Femto Thermo Scientific 

Sylgard 184 Dow Corning 

TRIS Roth 

TRIS-Acetate SDS Running Buffer novex 

Triton X 100 Roth 

Trypsin (0.25%), phenol red (1x) gibco 

Trypsin (0.25%), phenol red, without EDTA (1x) gibco 

Tween-20 Sigma 

Vectashield (+DAPI) Vector 
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3.7 Software 

 

Table 10: Software that was used for analyses.  

  Name  Description 

Adobe Illustrator CS6 

Adobe Photoshop CS6 

Fiji ImageJ 2.0.0-rc-68/1.52e 

GraphPad Prism 7 

IMARIS Bitplane IMARIS 9.4 

Microsoft Office 
Excel, PowerPoint, Word, 

 2011 

R 
R.app GUI 1.68 R Foundation for Statistical 

Computing, 2016 

R studio 1.0.136 2009 -2016 RStudio, Inc. 

ZEN ZEN 2.3 (blue edition) 
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4. Methods  
 
4.1 In vivo experiments 

 

4.1.1 Spinal cord dissection 

The pregnant female mouse was sacrificed via cervical dislocation and embryos 

were dissected into a petri dish with ice cold PBS (1x). After the placenta and yolk sac 

were removed, the head was cut off and the rib cage was opened. Heart, lungs and guts 

were carefully pulled out in order to expose the spinal cord. Embryos were then pinned 

down (with small pins in shoulders and legs) with the ventral side up, in a dish coated with 

sylgard gel. Tail biopsies were taken for genotyping. 

 

4.1.2 Genotyping 

 For afadinΔMN and NΔMN mutant mice: Tail biopsies were incubated in 50 µl tail 

lysis buffer with proteinase K (at 0.1 mg/ml final concentration) over night or for 3 hours 

at 56°C on a shaking heating block. Samples were then vortexed briefly and centrifuged at 

13000 rpm for 2 min. Subsequently, samples were diluted 1:20 in ddH2O and used for 

PCR.   

 

Tail lysis buffer 

- 50 ml 1 M Tris HCl pH 8.5 

- 20 ml 5 M NaCl 

- 10 ml 10 % SDS 

- 5 ml 0.5 M EDTA 

- fill up to 500 ml with ddH2O and store at room temperature 

 

 For 8/11-/-, 6/9/10-/-, βγΔMN, NΔMN8-/- and NΔMN11-/- mutant mice: 200 µl of 0.5 M 

NaOH were added to the tail biopsies and centrifuged briefly. After incubation for 30 min 

at 95°C on a heating block, 20 µl of 1 M Tris/HCl pH 7.5 were added. Samples were 

vortexed, centrifuged at 13000 rpm for 5 min and then used for PCR. Oligonucleotides 

were used according to the mouse line as listed in Materials section 3.4, Table 6. The 

following protocol was used: 
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For afadinΔMN and NΔMN mutant mice: 

 

5x Green GoTaq Reaction Buffer 5 µl 

50x Primer mix (20 µM of each primer) 0.5 µl (0.4 µM each final) 

dNTPs (10 µM each) 0.5 µl 

GoTagG2 DNA Polymerase 0.125 µl 

DNA 1.5 µl 

Milli-Q H2O to 25 µl 

 

For 8/11-/-, 6/9/10-/-, βγΔMN, NΔMN8-/- and NΔMN11-/- mutant mice: 

 

KAPA2G Fast ReadyMix 12.5 µl 

50x Primer mix (20 µM of each primer) 0.5 µl (0.4 µM each final) 

DNA 1.5 µl 

Milli-Q H2O to 25 µl 

 

The following PCR program was used: 

 

1. 94°C 3 min  

2. 94°C 30 sec  

 

repeat 40x 

3. Annealing temperature according to 

Table 6 

30 sec 

4. 72°C Extension time 

according to Table 6 

5. 72°C 10 min  

6. 10°C forever  

 

PCR products were then loaded next to a DNA ladder onto a 1.5-2 % agarose gel 

containing ethidium bromide for 45 min at 100 V and imaged via UV light at a basic gel 

documentation system.  
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4.1.3 Immunohistochemistry 

After spinal cord dissection, embryonic spinal cords were fixed with 4 % 

paraformaldehyde (PFA) for 90 min on ice, cryoprotected by equilibration with 30 % 

sucrose over night at 4°C and frozen in optimum cutting temperature compound. Lumbar 

cords were then sectioned at 16 µm using a Leica cryostat. Sections were collected on 

superfrost plus microscope slides (VWR) and rehydrated with PBS (1x) for 10 min. 

Immunohistochemistry on cryosections was performed as previously described (Tsuchida 

et al., 1994). In brief, primary antibodies (in PBX, dilutions according to Materials section 

3.1, Table 1) were carefully added for 3 hours at room temperature or over night at 4°C. 

After three washes with PBX for 5 min each, secondary antibodies (in PBX, dilutions 

according to Materials section 3.1, Table 2) were added for 1 hour at room temperature. 

Sections were then washed twice with PBX for 5 min each and once with 1x PBS for 10 

min. Slides were cover-slipped using Vectashield (with or without DAPI) as a mounting 

medium. Immediately afterwards, images were acquired with a 20x objective on a Zeiss 

LSM 800 confocal microscope. 

 

4 % PFA (100 ml) 

- add 20 µl 10 N NaOH to 50 ml of ddH2O 

- microwave for 30 sec 

- add 4 g PFA and stir under hood until dissolved 

- add 50 ml of 0.2 M PB 

- mix and filter 

- store at 4°C and use within 48 hrs 

 

PBX 

- 0.1 % v/v Triton X 100 in PBS (1x) 

- stir and store at room temperature 

 

0.2 M PB (1 L) 

- 6.2 g NaH2PO4 * 2H2O  

- 42.88 g Na2HPO4 * 7H2O  

- filter and store at room temperature 
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30 % sucrose 

- 30 % w/v saccharose in 0.1 M PB 

- filter and store at 4°C 

 

4.1.4 Motor neuron subtype identification  

Median motor column (MMC) neurons were identified by expression of the 

homeodomain transcription factor Lhx3 or coexpression of Isl1 and Hb9 (Dasen et al., 

2008; Rousso et al., 2008). Motor neurons belonging to the PGC were identified by 

expression of pSMAD and nNOS. At lumbar levels, FoxP1 can be used to identify LMC 

neurons. Motor neuron divisional subtypes were identified by the expression of homeobox 

transcription factors Isl1/2 (LMCm) and Hb9 (LMCl; Sockanathan and Jessell, 1998). 

Motor pools occupying different medio-lateral and dorso-ventral positions at lumbar spinal 

levels were identified by expression of homeobox and ETS transcription factors (De 

Marco Garcia and Jessell, 2008). The adductor/gracilis (A/G) pool was identified by 

expression of Er81 and Nkx6.1; the rectus femoris/tensor fasciae latae (R/T) complex was 

identified by expression of Nkx6.2; the hamstrings (H) complex was identified by 

expression of Nkx6.1 and the vasti (V) motor pool was identified by expression of Er81.  

 

4.2 In vitro experiments 

 

4.2.1 Cultivation and cryo-preservation of cell lines 

Cells were cultured at 37°C, 5 % CO2 and a relative humidity of 95 % in a Binder 

CB incubator. Adherent cells were passaged depending on their growth rate at a 

confluency of about 90 %. For this purpose, medium was removed, cells were washed with 

1x PBS and treated with 0.05 % trypsin-EDTA for 5 min at 37°C. Cells were centrifuged 

at 1000 rpm for 5 min and the required number of resuspended cells was added into a 

culture dish with fresh serum-containing medium. For cryo-preservation, cells were 

resuspended in 90 % FBS and 10 % DMSO, transferred to cryotubes and stored for 48 

hours at -80°C in cryotube vials (Thermo Fisher). For longtime storage, cells were 

transferred into liquid nitrogen. Cells were thawed again by incubation at 37°C for 2 min. 

Thawed cells were taken up into 10 ml cold medium, centrifuged at 1000 rpm for 5 min 

and seeded in fresh serum-containing medium into appropriate culture dishes.  
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Culture medium for CHO cells 

- F-12 K media 

- 10 % FBS Premium 

- 1 % Pen Strep 

- filter sterilized and stored at 4°C 

 

Culture medium for HEK293 cells 

- DMEM without pyruvate  

- 10 % FBS Premium 

- 1 % Pen Strep 

- filter sterilized and stored at 4°C 

 

4.2.2 Transfection of cell lines 

 Twenty-four hours before transfection, cells were seeded into cell culture dishes to 

obtain 70-90 % of confluency on the day of transfection. Culture medium was changed to 

Opti-MEM I Reduced Serum Medium (Opti-MEM) 30 min prior to transfection. DNA and 

Lipofectamine 2000 were diluted in Opti-MEM, respectively, mixed gently and incubated 

for 5 min at room temperature. Then, diluted DNA was combined with diluted 

Lipofectamine 2000, mixed gently and incubated for 20 min at room temperature. DNA-

Lipofectamine 2000 complexes were added to cell culture dishes containing cells and 

Opti-MEM and mixed gently by rocking the plate or slides back and forth. Cells were then 

incubated at 37°C in an incubator for 24 - 48 hours before testing for transgene expression. 

Medium was changed back to normal culture medium 4-6 hours post-transfection. The 

following amounts of DNA and Lipofectamine 200 were used in the experiments: 

Cell aggregation assay: 5 µg DNA and 8 µl Lipofectamine 2000 each in 250 µl Opti-

MEM; 60 mm cell culture dishes 

NOA: 1 µg DNA and 2 µl Lipofectamine 2000 each in 25 µl Opti-MEM; 8-well slides 

Stable N-cadherin expressing cell line: 4 µg DNA and 8 µl Lipofectamine 2000 each in 

250 µl Opti-MEM; 60 mm cell culture dishes 

Co-culture assay: 13.75 µg DNA and 25 µl Lipofectamine 2000 each in 680 µl Opti-MEM; 

10 cm cell culture dishes 
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4.2.3 Generation of a stable cell line expressing N-cadherin 

CHO cells, which express no endogenous cadherins (Ginsberg et al., 1991; Figure 

27A), were used to generate a N-cadherin-expressing stable cell line. 

 

Killing curve  

First, a dose-response curve (killing curve) was established to determine the 

selective conditions for CHO cells. Cells were seeded into wells of a 24-well plate 

containing various concentrations of Geneticin (G418 sulfate, a commonly used selection 

antibiotic for stable cell transfection). The different concentrations ranged from 0 µg/ml to 

3000 µg/ml and selection medium was changed every second day for 2 weeks. Wells were 

examined for viable cells and a concentration of 1500 µg/ml of Geneticin was determined 

as the most appropriate selective drug concentration required to kill all cells in a well and 

subsequently added to the media during all steps of the stable cell line generation.  

 

Stable transfection 

Cells were seeded into 6 cm dishes and then transfected with an N-cadherin 

expression vector using Lipofectamine 2000 (according to manufacture’s protocol, for 

details see section 4.3.2). A neomycin selectable marker was included on the DNA 

construct used for transfection, so that only cells that had acquired the DNA vector would 

survive. Twenty-four hours after transfection, cells were passaged at different dilutions 

(1:5 to 1:100) in medium containing Geneticin. For the next three weeks, Geneticin-

containing medium was replaced every 2-3 days and cells were passaged at high dilutions 

to avoid confluency as confluent, non-growing cells are resistant to the effects of 

antibiotics like Geneticin. During the third week, cells were monitored for distinct 

“islands” of surviving cells. Using a Nikon Self Inking Object Marker, circles were placed 

around cell clones of interest on the microscope, which were then picked from the cell 

culture dishes after one wash with PBS and adding a drop of trypsin on top using a pipette 

tip. 24 clones were picked in total and added into a 24-well plate containing Geneticin. 

Clones were then cultured for several days and screened for N-cadherin expression via 

western blot and immunohistochemistry and called N-cad CHO cells thereafter (Figures 

27B and 27C). 
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4.2.4 Cell aggregation assay (adapted from Basu et al., 2017) 

CHO cells or N-cad CHO cells were transfected with different type II cadherins 

labeled at their C termini with either GFP or mCherry (see Material section 3.2, Table 4) 

and medium was changed 4-6 hours after transfection to F-12K medium to restrict cell 

division (see Methods section 4.3.2). 48 hours post transfection cells were washed three 

times with warm HMF buffer and dissociated with 0.01 % trypsin in HMF buffer for 30 

min at 37°C. Cells were subsequently detached, spun down at 1500 rpm for 5 min. 

Supernatant was discarded and the cell pellet was resuspended in HMF and kept on ice. 

Cells were then counted using a counting chamber (Neubauer Imroved, Blaubrand) and 

75.000 cells expressing a GFP-tagged cadherin were mixed with 75.000 cells expressing a 

mCherry-tagged cadherin. Cells were plated on HCMF + 1 % BSA coated 8-well glass 

slides and supplemented to obtain final concentrations of 4 mM CaCl2, 20 mg/ml DNase I, 

and 1 mM MgCl2 and brought to a final volume of 500 µl. Cells were then shaken in a 

nutating shaker for 90 min and subsequently fixed by addition of 500 µl of 8% PFA in 

PBS pH 7.4 and DAPI to label all cell nuclei and kept at 4°C. 12 hours later cells 

aggregates were carefully transferred with a cut-off p1000 pipette tip to a 8-well glass 

bottom slide and cell aggregates were imaged using a Zeiss LSM 800 confocal microscope 

with a 5x magnification lens.  

 

HEPES Mg2+ free (HMF) buffer (1 L) 

- 137 mM NaCl 

- 5.4 mM KCl 

- 1 mM CaCl2 

- 0.34 mM Na2HPO4 

- 10 mM HEPES 

- 1 g Glucose 

- pH 7.4 and filter and store at 4°C  

- HCMF is HMF buffer without adding CaCl2 

 

4.2.5 Co-culture assay (adapted from Brasch et al., 2018) 

 CHO cells or N-cad CHO cells were transfected with different type II cadherins 

labeled at their C termini with either GFP or mCherry (see Material section 3.2, Table 4) 

and medium was changed 4-6 hours after transfection to F-12K medium to restrict cell 

division (see Methods section 4.3.2). 24 hours post transfection cells were washed with 
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PBS (1x) and dissociated with 0.05 % trypsin for 5 min at 37°C. Cells were subsequently 

detached and spun down at 1000 rpm for 5 min. Supernatant was discarded and the cell 

pellet was resuspended in culture medium and kept on ice. Cells were then counted using a 

counting chamber (Neubauer Imroved, Blaubrand) and equal amounts of cells (25.000) 

expressing a GFP-tagged cadherin were mixed with cells expressing a mCherry-tagged 

cadherin. Cell-mixtures were plated on 8-well glass slides (pre-coated with Poly-L-Lysine) 

and co-cultured over night in an incubator. Cells were then imaged using a Zeiss LSM 800 

confocal microscope with a 20x or 40x magnification lens and screened for homotypic cell 

contacts between cells of the same cell line and heterotypic contacts between cells from 

different cell lines.  

 

4.2.6 Neurite outgrowth assay (NOA) of primary motor neuron cultures (adapted from 

Demireva et al., 2011) 

Two sets of experiments were performed: 1) Motor neurons were dissociated from 

e10.5 control (afadinfl/+; olig2::Cre+/- ; rosa-lsl-tdTomatofl/+) or afadinΔMN (afadinfl/-; 

olig2::Cre+/- ; rosa-lsl-tdTomatofl/+) embryos and plated on dishes coated with laminin 

(15 µg/ml) or N-cadherin protein substrate (15 µg/ml). 2) Motor neurons were dissociated 

from Hb9:GFP+ e10.5 embryos and plated either on CHO cells expressing different sets of 

classical cadherins (CHO cells or N-cad CHO cells were transfected with cadherin-11 

prior to NOA; see Methods section 4.3.2) or on purified protein substrate (N-cadherin and 

Cadherin-11; 15 µg/ml). 

Shortly, embryos were dissected in L-15 medium and kept on ice at all times. 

Spinal cords were microdissected and isolated from all other tissue. tdTomato or GFP+ 

cords were then selected by visualizing direct fluorescence and dissociated using papain 

enzymatic treatment as per manufacturer’s protocol. In brief, spinal cords were incubated 

in 400 µl of EBSS medium containing papain powder (with 25 µl DNase) for 45 min in an 

incubator at 37°C. The caps of the vials were left open to allow gas equilibration during 

incubation. After incubation, tissue was triturated vigorously until it was completely 

dissociated and centrifuged for 5 min at 800 rpm. The supernatant was removed and the 

cell pellet was resuspended in MN media. 20.000 cells were plated per well on 8-well 

slides (pre-coated with Poly-L-Lysine) coated with different protein substrates or CHO 

cells. Motor neurons were cultured in MN media between 16 and 20 hours and 

subsequently fixed in ice-cold PFA for 5 min. Cells were then stained for 2 hours at room 

temperature with rabbit-anti-GFP or rabbit anti-DsRed antibody, washed three times with 
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PBS and treated with secondary donkey anti-rabbit antibody conjugated to Alexa-488 or 

Cy3. After three washes, slides were coverslipped and entire wells were imaged at the 

confocal microscope. Number of neurites, length, and total number of motor neurons per 

well were quantified using ImageJ and IMARIS.  

 

MN medium (100ml) 

- 50 % Neurobasal medium (without L-Glutamine) 

- 50 % DMEM/F12 (with 15mM HEPES, L-Glutamine, pyridoxine) 

- 2 % Heat-inactivated horse serum 

- 1 x Pen Strep 

- filter sterilize the above before adding the following supplements (on day of 

experiment): 

- 1x B27 Supplement 

- 1x N2 Supplement 

- 100 pg/ml GDNF  

- 1 ng/ml BDNF 

 

4.3 Western Blots 

 

4.3.1 Preparation of cell lysate and immunological protein detection 

CHO cells, HEK293 cells and N-cad CHO cells were used for western blots. 

Generation of cell lysates for detection of protein expression was done by resuspension of 

cells in RIPA lysis buffer freshly supplemented with the protease inhibitors (1x) and 

dithiothreitol (DTT; 1 M). After 15 min of incubation on a rotating mixer at 4°C, lysates 

were centrifuged (13000 rpm, 10 min, 4°C) to remove cellular debris. The supernatant was 

either stored at -20°C or immediately used for protein estimation via Bradford Protein 

Quantification (according to manufactures instructions). Equal amounts of protein were 

then prepared with LDS sample buffer and DTT and heated at 72°C for 10 min. For 

protein separation, a NuPAGE 3-8 % Tris-Acetate 10-well gel was used. As a standard for 

the molecular weight, the “SeeBlue Plus2 Prestained Standard” was applied. The 

electrophoresis was performed in Tris-Acetate SDS running buffer (novex) running at 80 

V for 15-20 min followed by 150 V. 
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4.3.2 Protein transfer and immunological protein detection  

Separated proteins on gel were transferred via electroblotting onto a PVDF 

membrane (Immobilon-P, Merck) at 110 V for 60 min in transfer buffer. After transfer, the 

non-specific protein binding sites were blocked by incubation of the membrane in PBS-T 

supplemented with 5% milk powder for 1 hour under agitation at room temperature. For 

antibody staining, the membrane was incubated with an uncoupled protein specific 

primary antibody in blocking solution over night under agitation at 4°C. The membrane 

was then washed three times for 10 min with PBS-T and incubated with an HRP-coupled 

secondary antibody in blocking solution for 1 h under agitation at room temperature (see 

Materials section 3.1, Table 3). The membrane was then washed three times and protein 

detection was performed by treating the membrane with the ”ECL western blotting 

detection reagents” or “SuperSignal West Femto” according to the manufacturers 

instructions. HRP activity resulted in chemiluminescence signals that were detected using 

the ChemiDoc.  

 

PBS-T 

- 0.1 % Tween-20 in PBS (1x) 

 

Transfer buffer (2 L) 

- 6 g TRIS 

- 28.8 g Glycine 

- 400 ml Methanol 

- 1600 ml ddH2O 

 

4.4 Statistical Analysis 

Positional datasets were analyzed using custom scripts in ‘‘R project’’ (R Foun- 

dation for Statistical Computing, Vienna, Austria, 2005). Contour and density plots were 

generated using "ggplot2" package by estimating the Gaussian kernel density for the 

distribution of neuron positions. Contour plots were calculated from 2D density estimates 

of neuron positions using a bivariate normal kernel on a 100x100 grid. These calculations 

rely on the "kde2D" function in the MASS library. Correlation heat maps were used to 

compare the 2D spatial distribution of neurons across experiments. In order to produce the 

heat maps, we first computed 2D density estimates of positions on a 100x100 grid. The 

similarity between pairs of experiments was measured by the Pearson correlation 
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coefficient of the 2D density estimates on the 100x100 grid. The heat map was then 

ordered using hierarchical clustering with complete linkage method and the distance 

metric as 1-r, where r is the Pearson correlation coefficient. The package "corrplot" was 

used for plotting and ordering the heat map.  
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Table 11: Genotypes, number of embryos and number of sections per embryo 

analyzed for three-dimensional positional analysis 

Experiment MN 
Subtype 

Genotype # of 
embryos 

# of 
sections/embryo 

 
“control” 

 
Divisions 

 
afadin fl/+ 

 
3 
 

33 
27 
30 

 
“control” 

 
Pools 

 
afadin fl/+ 

 
3 

31 
29 
30 

	
"afadinΔMN" 

	
Divisions 

afadin	fl/-;	
Olig2::Cre+/- 

	
3 

27 
26 
24 

 
“8/11-/-” 

 
Division 

cadherin-8 -/-; 
cadherin-11 -/- 

 
3 

27 
32 
27 

 
“8/11-/-” 

 
Pools 

cadherin-8 -/-; 
cadherin-11 -/- 

 
3 

26 
30 
24 

 
“6/9/10-/-” 

 
Pools 

cadherin-6 -/-; 
cadherin-9 -/-; 
cadherin-10 -/- 

 
3 

19 
23 
17 

 
“NΔMN” 

 
Divisions 

N-cadherin fl/-; 
Olig2::Cre +/- 

 
3 

20 
30 
31 

 
“NΔMN” 

 
Pools 

N-cadherin fl/-; 
Olig2::Cre +/- 

 
3 

30 
26 
31 

 
“βγΔMN” 

 
Divisions 

β-catenin fl/fl; 
γ-catenin fl/-; 

Olig2::Cre +/- 

 
3 

31 
32 
30 

 
“βγΔMN” 

 
Pools 

β-catenin fl/fl; 
γ-catenin fl/-; 

Olig2::Cre +/- 

 
3 

25 
28 
28 

 
“NΔMN8-/-” 

 
Divisions 

N-cadherin fl/-; 
cadherin-8 -/-; 
Olig2::Cre +/- 

 
3 

29 
31 
31 

 
“NΔMN8-/-” 

 
Pools 

N-cadherin fl/-; 
cadherin-8 -/-; 
Olig2::Cre +/- 

 
3 

24 
26 
26 

 
“NΔMN11-/-” 

 
Pools 

N-cadherin fl/-; 
cadherin-11 -/-; 
Olig2::Cre +/- 

 
4 

24 
28 
21 
19 
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5. Results 
 

The first part of this doctoral thesis (Results section 5.1 to 5.4) was published in 

February 2018 in Cell Reports, as listed below. Control and afadinΔMN motor pool datasets 

were generated by my colleague Sofia Pimpinella. All other data was generated by me, 

unless stated otherwise. 

 

Dewitz, C., Pimpinella, S., Hackel, P., Akalin, A., Jessell, T.M., and Zampieri, N. (2018). 

Nuclear Organization in the Spinal Cord Depends on Motor Neuron Lamination 

Orchestrated by Catenin and Afadin Function. Cell Rep. 22, 1681–1694 
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Aim1: Establishing and validating a three-dimensional positional 

analysis to evaluate motor neuron organization.  
 

5.1 Establishment of a three-dimensional positional analysis to evaluate motor 

neuron organization 

 

Previous studies performed qualitative analyses to detect defects in motor neuron 

organization informing about intermixing of different motor neuron subtypes at a local 

level in the ventral horn (Price et al., 2002; Demireva et al., 2011). These methods share 

the principle of being designed to measure the segregation or degree of intermixing of two 

neuronal populations on the basis of their relative position, locally, in the ventral horn. 

However, they failed to provide any information on the actual position of motor neurons in 

the spinal cord. Therefore, a different approach to quantitatively analyze motor neuron 

subtype positioning in three dimensions (3D) was crucial to reveal the cellular and 

molecular mechanisms controlling motor pool formation (Stepien et al., 2010; Bikoff et 

al., 2016). Thus, the first aim of this thesis was to generate 3D maps of motor neuron 

positions using Cartesian coordinates obtained from immunohistochemistry experiments 

performed on consecutive sections of mouse spinal cord (see Methods section 4.1.3). 

 

5.1.1 Development of three-dimensional analysis of motor neuron positioning  

Lumbar levels at e13.5, the earliest point in development when motor neurons have 

settled in their final position, were analyzed by cutting 16 µm consecutive cryosections 

and performing immunostaining with specific antibodies recognizing transcriptions factors 

expressed by motor neuron divisions (Isl1/2 for LMCm neurons; Hb9 for LMCl neurons; 

Figure 4A) and motor pools (Nkx6.1 for H neurons, Nkx6.2 for R/T neurons, Er81 for V 

neurons). See Materials section 3.1, Table 1 for more details on antibody concentrations 

and sources and Methods section 4.1.4 for motor neuron subtype identifications. After 

acquisition of high-resolution images at the confocal microscope (with wide-field 

microscopy settings), motor neuron positional coordinates were obtained in an automated 

and unbiased manner using the “spots” function of the imaging software IMARIS, which 

assigns x and y values to motor neurons belonging to each divisional or pool subtype. To 

account for experimental variability in spinal cord size, orientation and shape between 

embryos sections were rotated and normalized to a standardized spinal cord whose 
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dimensions were empirically calculated by averaging experimental measurements of e13.5 

wild type lumbar spinal cords (midline to the lateral edge: 365 µm; midpoint of the 

midline to the ventral edge: 340 µm). The rostro-caudal position (z) of each neuron was 

derived by tracking the order of histological sections. Datasets were aligned on the z axis 

by starting analysis from the section (z = 0) where either the first Isl1/2+ (for divisional 

analysis) or Nkx6.1+ motor neuron (for pool analysis) appeared and analysis progressed 

caudally for 512 µm (for a maximum of 33 sections, 16 µm each), covering approximately 

the rostral half of the lumbar spinal. These datasets, composed of x, y and z coordinates, 

were then used to digitally reconstruct 3D motor neuron positions via density and 

distribution maps as well as correlation analyses with the statistic software R. See Methods 

section 4.5, Table 11 for genotypes, number of embryos and number of sections analyzed.  

 

5.1.2 Validation of three-dimensional positional analysis  

In order to validate the three-dimensional positional analysis, it was first 

fundamental to test the reproducibility of motor neuron positions belonging to different 

datasets. Thus, LMC divisional datasets of e13.5 wild type mouse embryos were 

generated. Transverse and longitudinal projections of cell body position coordinates were 

plotted to visualize motor neuron distributions on the medio-lateral, dorso-ventral and 

rostro-caudal axes for three biological replicates (Figures 5). LMCm and LMCl neurons 

were found in distinct medio-lateral positions in the ventral horn, segregated from each 

other, as expected by stereotyped positioning of motor neuron divisional subtypes (Figure 

4B and 4C; Romanes, 1964; Vanderhorst and Holstege, 1997). Accordingly, overall 

average medio-lateral/dorso-ventral settling positions of LMCm and LMCl neurons did not 

reveal obvious differences between replicates, indicating that motor neuron positioning is 

highly conserved across individuals (Figure 4C). Moreover, both medio-lateral and dorso-

ventral distributions were highly reproducible (Figures 4D and 4E). Finally, to assess 

variability in motor neuron positioning, divisional datasets of individual embryos were 

compared using correlation analysis. We found that the position of motor neurons sharing 

the same subtype identity highly correlated with each other (LMCm versus LMCm and 

LMCl versus LMCl, r ≥ 0.9), in contrast to datasets of motor neurons residing in different 

divisions (LMCm versus LMCl and LMCl versus LMCm, r ≤ 0.3; Figure 4F).  

Thus, these findings show that three-dimensional positional analysis is a reliable 

and reproducible tool required and suitable to quantitatively assess and compare motor 

neuron organization in the embryonic spinal cord. 
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Figure 4: Three-dimensional analysis of motor neuron positions in the developing spinal cord is 
reproducible.  
(A) Motor neuron organization in an e13.5 control embryo at lumbar spinal level. Isl1/2+ LMCm neurons; 
Hb9+ LMCl neurons; Isl1/2+, Hb9+ MMC neurons. (B) Digitally reconstructed distribution of LMC neurons 
at L1-L3, shown as transverse projection. (C) Medio-lateral and dorso-ventral positions (mean position ± 
standard deviation (SD) of LMCm (green) and LMCl (red) neurons (#1 ; #2 ☐ ; #3 ). (D and E) 
Boxplots showing distributions of LMCm (green) and LMCl (red) neurons along the medio-lateral (D) and 
dorso-ventral (E) axes. (F) Correlation analysis of LMC positional coordinates. The scale bar indicates 
correlation values.  
 
 

5.2 Analysis of motor neuron organization after β- and γ-catenin elimination  

 

Previous work showed that genetic inactivation of β- and γ-catenin, and, to an 

extent, also of N-cadherin, disrupts divisional segregation of LMC neurons and leads to 

intermixing of motor pools (Demireva et al., 2011).  However, since the actual position of 

motor neurons in the spinal cord was neglected in those studies, the first set of experiments 

of this thesis aimed at taking advantage of the three-dimensional positional analysis to 

perform quantitative analysis of positional defects in β- and γ-catenin mutant embryos 

before carrying out analyses of individual cadherins and the role of the interactions among 
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Figure 5: Divisional organization is conserved across individual e13.5 control embryos along all three 
axes. 
(A) Transverse contour density plots of LMCm (green) and LMCl (red) neurons (n=3). (B) Longitudinal 
contour density plots of LMCm (green) and LMCl (red) neurons (n=3). (C) Longitudinal digital 
reconstruction of LMCm (green) and LMCl (red) neuronal positions (n=3). 
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members of the family at a higher resolution. Catenins were eliminated from motor 

neurons by crossing olig2::Cre mice with conditional β- and γ-catenin alleles to generate 

βf/f, γf/-, olig2::Cre mutant mice (βγΔMN; Demireva et al., 2011). 

 

5.2.1 Effects of β- and γ-catenin inactivation on divisional organization 

First, divisional organization of motor neurons in βγΔMN mutant embryos was 

assessed. Motor neuron subtypes were identified as described in Methods section 4.1.4. 

Transverse and longitudinal contour plots from control and βγΔMN embryos revealed clear 

differences in medio-lateral and dorso-ventral organization (Figures 6A-6F). In βγΔMN 

embryos, an overlap in the distribution of LMCm and LMCl neurons could be observed on 

the medio-lateral axis (Figures 6E and 6F; Figures 7A and 7B). Notably, no local variation 

in the rostro-caudal distribution of motor neurons was detected, with LMCl neurons from 

βγΔMN embryos consistently being found in a medial position at all levels analyzed (Figures 

6E and 6F). Surprisingly, the medio-lateral distribution and average position of LMCm 

neurons in control and βγΔMN embryos was not significantly different, whereas βγΔMN LMCl 

neurons were found in medial positions, causing intermixing with LMCm neurons (Figures 

7C and 7D). On the dorso-ventral axis, a ventral shift in the location of both LMCm and 

LMCl neurons was detected (Figures 7F–7I). To provide an overall assessment of 

divisional organization in catenin mutants, correlation analysis was used. LMCl neuron 

positions of βγΔMN and control embryos were no longer correlated (βγΔMN versus control 

LMCl, r < 0.1; Figure 6H). In contrast, LMCm neuron positions were still partially 

correlated despite the ventral shift of the whole motor column in βγΔMN mutant embryos 

(βγΔMN versus control LMCm, r = 0.58; Figure 6H). Accordingly, datasets from LMCm 

neurons of βγΔMN and control embryos were still highly correlated when only medio-lateral 

coordinates were considered (βγΔMN versus control LMCm, r > 0.9, βγΔMN versus control 

LMCl, r < 0.3; Figure 7E).  

Thus, in contrast to previous studies, which simply detected a disruption of motor 

neuron organization after catenin elimination, three-dimensional positional analysis 

uncovers that inactivation of β- and γ-catenin function perturbs divisional organization in 

two ways: on the medio-lateral axis by preventing lateral positioning of LMCl neurons and 

on the dorso-ventral axis by shifting ventrally the location of the whole column (Figure 

6G).  
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Figure 6: Catenin inactivation perturbs divisional motor neuron organization.  
(A and B) Organization of Isl1/2+ medial and Hb9+ lateral LMC neurons at lumbar spinal levels in e13.5 
control (A) and βγΔMN (B) embryos. (C and D) Transverse contour density plots of LMCm (green) and LMCl 
(red) neurons in control (C) and βγΔMN (B) embryos. (E and F) Longitudinal contour density plots of LMCm 
(green) and LMCl (red) neurons in control (E) and βγΔMN (F) embryos. (G) Average medio-lateral and dorso-
ventral positions of LMCm (green) and LMCl (red) neurons in control and βγΔMN embryos (mean). (H) 
Correlation analysis of LMC neuron positional coordinates in control and βγΔMN embryos. The scale bar 
indicates correlation values.  
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Figure 7: Catenin inactivation impairs LMCl medio-lateral and columnar dorso-ventral motor neuron 
positioning.  
(A and B) Medio-lateral density plots of LMCm (green) and LMCl (red) neurons in control (A) and βγΔMN 

(B) embryos. (C) Average medio-lateral position of LMCm (green) and LMCl (red) neurons in control and 
βγΔMN embryos (mean ± SD; differences significant for LMCl neurons; t-test, p < 0.001). (D) Box-plots 
showing medio-lateral distributions of LMCm (green) and LMCl (red) neurons in control and βγΔMN 
embryos. (E) Correlation analysis of LMC positional coordinates on the medio-lateral axis in control and 
βγΔMN embryos. Scale bar indicates correlation values. (F) Average dorso-ventral position of LMCm (green) 
and LMCl (red) neurons in control and βγΔMN embryos (mean ± SD; differences significant for LMCm and 
LMCl neurons; t-test: LMCm p < 0.01; LMCl p < 0.001). (G and H) Dorso-ventral density plots of LMCm 
(green) and LMCl (red) neurons in control (G) and βγΔMN (H) embryos. (I) Box-plots showing dorso-ventral 
distributions of LMCm (green) and LMCl (red) neurons in control and βγΔMN embryos.  
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5.2.2 Effects of β- and γ-catenin inactivation on motor pool organization 

To test whether three-dimensional positional analysis could also reveal more 

details about the specific nature of the pool segregation defects in βγΔMN embryos, the next 

set of experiments focused on differences in motor neuron subtype position within 

divisions (Figures 8A and 8B). Motor neuron subtypes were identified as described in 

section 4.1.4.  

First, the effect of β- and γ-catenin inactivation on the positioning of pools that 

normally reside in different LMC divisions was assessed by analyzing the medio-lateral 

segregation of medial (hamstring, H) from lateral pools (rectus femoris/tensor fasciae 

latae, R/T; De Marco Garcia and Jessell, 2008). In control embryos, H neurons were found 

clearly separated from R/T neurons in medial and lateral positions, respectively (Figures 

8C and 8E). In βγΔMN embryos, motor pool organization is disrupted with H and R/T pools 

being no longer segregated and occupying largely overlapping areas (Figures 8D and 8F). 

Distribution and average positional analyses on the medio-lateral axis showed that, 

consistent with the LMCl phenotype, lateral R/T neurons were found in a medial position 

(Figures 8G–8I).  

Next, the dorso-ventral organization of motor neurons was investigated by 

analyzing the segregation of dorsal (vasti, V) from ventral pools (H and R/T). Contour, 

density, and average position analyses showed that segregation of pools on the dorso-

ventral axis was lost in βγΔMN embryos (Figures 8C, 8D, 8J and 8K). Importantly, detailed 

contour density plots of dorsal and ventral pools showed that, in addition to the overall 

ventral shift in LMC location, the relative position between dorsal (V) and ventral (H and 

R/T) neurons was changed, with dorsal V neurons now occupying more ventral positions 

resulting in a positional overlap with ventral H and R/T neurons (Figures 8L and 9A-F).  

Thus, the three-dimensional position analysis reveals that β- and γ-catenin 

inactivation disrupts motor pool segregation both on the medio-lateral and the dorso-

ventral axes.  
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Figure 8: Catenin inactivation disrupts motor pool organization.  
(A and B) Organization of H (Nkx6.1+), R/T (Nkx6.2+) and V (Er81+) motor pools in e13.5 control (A) and 
βγΔMN (B) embryos. The motor neuron area is delimited by a dashed line. (C and D) Transverse contour 
density plots of H (green), R/T (red) and V (blue) motor pools in control (C) and βγΔMN (D) embryos. (E and 
F) Longitudinal contour density plots of H (green, medial) and R/T (red, lateral) neurons in control (E) and 
βγΔMN (F) embryos. (G and H) Medio-lateral density plots of H (green, medial) and R/T (red, lateral) neurons 
in control (G) and βγΔMN (H) embryos. (I) Average medio-lateral position of H (green, medial) and R/T (red) 
neurons in control and βγΔMN embryos (mean ± SD; differences significant for H neurons; t-test, p < 0.01). (J 
and K) Dorso-ventral density plots of H (green, ventral), R/T (red, ventral) and V (blue, dorsal) neurons in 
control (J) and βγΔMN (K) embryos. (L) Average dorso-ventral position of H (green), R/T (red) and V (blue) 
neurons in control and βγΔMN embryos (mean ± SD; differences significant for H, RT and V neurons; t-test: H 
p < 0.05; R/T and V p < 0.001). 
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Figure 9: Catenin inactivation impairs dorso-ventral motor pool segregation.  
(A and B) Transverse contour density plots of H (green), R/T (red) and V (blue) motor pools in control (A) 
and βγΔMN (B) embryos. (C and D) Transverse contour density plots of V (blue, dorsal) and R/T (red, ventral) 
motor pools in control (C) and βγΔMN (D) embryos. (E and F) Transverse contour density plots of V (blue, 
dorsal) and H (green, ventral) motor pools in control (E) and βγΔMN (F) embryos. 
 

 

5.3 Analysis of motor neuron organization after N-cadherin elimination  

 

Previous motor neuron intermixing analysis suggested that the defects of N-

cadherin mutants phenocopied the ones observed in β- and γ-catenin mutants, albeit less 

severely (Demireva et al., 2011). Thus, it was of high interest to test whether N-cadherin 
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elimination recapitulates the β- and γ-catenin inactivation phenotypes using the three-

dimensional position assay.  

 

5.3.1 Effects of N-cadherin inactivation on divisional organization 

N-cadherin was eliminated from motor neurons by crossing an olig2::Cre driver 

line with mice carrying floxed N-cadherin alleles (NΔMN; Demireva et al., 2011). The 

analysis revealed defects in the positioning of LMC neurons in NΔMN embryos (Figures 

10A–10C). Divisional distribution on the medio-lateral axis showed that elimination of N-

cadherin selectively impaired lateral positioning of LMCl neurons whereas LMCm 

neurons were not affected (Figures 10D and 10E). On the dorso-ventral axis, all LMC 

neurons were found in more ventral positions phenocopying the defects observed after β- 

and γ-catenin elimination (Figures 10F and 10G). However, although the medio-lateral 

defect in NΔMN embryos only partially recapitulates the one observed in βγΔMN embryos, the 

dorso-ventral phenotype is nearly indistinguishable (Figures 10D-10G). 

 

5.3.2 Effects of N-cadherin inactivation on motor pool organization 

Next, motor pool organization was investigated in NΔMN mtant mice (Figures 11A 

and 11B). Analysis of medio-lateral distribution of medial (H) and lateral (R/T) pools 

confirmed divisional data that elimination of N-cadherin specifically impairs LMCl neuron 

subtype positioning (Figures 10C-11E; Figures 11C-11E). Surprisingly, on the dorso-

ventral axis, transverse contour analysis indicated that, despite the ventral shift in 

columnar location, motor pool segregation in the absence of N-cadherin function was not 

completely eroded, as observed in βγΔMN embryos (Figures 11A and 11B; Figures 8B and 

8D). Density, distribution and average position analyses on the dorso-ventral axis 

confirmed that segregation of motor pool subtypes was mostly preserved (Figures 11F, 

11H and 11I). As a consequence, the average distance between dorsal and ventral pools in 

NΔMN embryos was not significantly different from control embryos, as opposed to βγΔMN 

embryos (Figure 11G).  

Thus, three-dimensional positional analysis reveals that N-cadherin elimination, 

although accounting entirely for the columnar positioning defect and partially for the 

LMCl medio-lateral phenotype, does not recapitulate the dorso-ventral motor pool mixing 

phenotype of β- and γ-catenin mutants.  
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Figure 10: N-cadherin elimination perturbs divisional motor neuron organization.  
(A) Organization of Isl1/2+ medial and Hb9+ lateral LMC neurons at lumbar spinal levels in e13.5 NΔMN 

embryos. (B) Transverse contour density plots of LMCm (green) and LMCl (red) neurons in NΔMN embryos. 
(C) Longitudinal contour density plots of LMCm (green) and LMCl (red) neurons in NΔMN embryos. (D) 
Medio-lateral density plots of LMCm (green) and LMCl (red) neurons in control (solid line), NΔMN (dotted 
line) and βγΔMN (dashed line) embryos. (E) Box-plots showing medio-lateral distributions of LMCm (green) 
and LMCl (red) neurons in control, NΔMN and βγΔMN embryos. (F) Dorso-ventral density plots of LMCm 
(green) and LMCl (red) neurons in control (solid line), NΔMN (dotted line) and βγΔMN (dashed line) embryos. 
(G) Box-plots showing dorso-ventral distributions of LMCm (green) and LMCl (red) neurons in control, 
NΔMN and βγΔMN embryos. 
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Figure 11: N-cadherin elimination does not perturb dorso-ventral pool segregation.  
(A) Organization of H (Nkx6.1+), R/T (Nkx6.2+) and V (Er81+) motor pools in e13.5 NΔMN embryos. The 
motor neuron area is delimited by a dashed line. (B) Transverse contour density plots of H (green), R/T (red) 
and V (blue) motor pools in NΔMN embryos. (C) Box-plots showing medio-lateral distributions of H (green), 
R/T (red) and V (blue) motor pools in control, NΔMN and βγΔMN embryos. (D) Average medio-lateral position 
of H (green, medial) and R/T (red, lateral) neurons in control, NΔMN and βγΔMN embryos (mean ± SD; 
differences significant for R/T neurons: control versus NΔMN p < 0.01; control versus βγΔMN p < 0.001; NΔMN 

versus βγΔMN p < 0.05; one-way ANOVA followed by post hoc Tuckey’s honest significant test (HSD)). (E) 
Medio-lateral density plots of H (green, medial) and R/T (red, lateral) neurons in control (solid line), NΔMN 
(dotted line) and βγΔMN (dashed line) embryos. (F) Average dorso-ventral position of H (green, ventral), R/T 
(red, ventral) and V (blue, dorsal) neurons in control, NΔMN and βγΔMN embryos (mean ± SD; differences 
significant for V neurons: control versus NΔMN and βγΔMN p < 0.001; for R/T neurons: control versus NΔMN and 
βγΔMN p < 0.001; for H neurons: control versus NΔMN and βγΔMN p < 0.01; one-way ANOVA and post hoc 
Tukey’s HSD test). (G) Average distance between dorso-ventral positions of V-R/T (n) and V-H ( ) pools 
in control, NΔMN and βγΔMN embryos. (H) Dorso-ventral density plots of H (green, ventral), R/T (red, ventral) 
and V (blue, dorsal) neurons in control, NΔMN and βγΔMN embryos. (I) Box-plots showing dorso-ventral 
distributions of H (green, ventral), R/T (red, ventral) and V (blue, dorsal) motor pools in control, NΔMN and 
βγΔMN embryos. 
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Aim 2: Assessing the impact of nectin/afadin signaling in the control of 

motor neuron positional organization. 
 

5.4 Analysis of motor neuron organization after afadin elimination  

 

The limited effect on dorso-ventral pool segregation observed after N-cadherin 

elimination suggests the involvement of additional catenin-dependent effectors. Type II 

cadherins are obvious candidates because motor neuron subtypes can be distinguished by 

their combinatorial expression and manipulations that equalize type II cadherin profiles 

disrupt motor pool segregation in chick spinal cord (Figure 3D, Price et al., 2002). 

However, genetic mouse models where type II cadherins have been eliminated either 

individually or in combination exhibit no defect in motor neuron positioning (N.Z., 

unpublished data). Thus, one hypothesis to test was whether catenins might regulate dorso-

ventral motor neuron sorting by engaging the activity of nectins. To start studying a 

possible involvement of nectin signaling, the focus was set on afadin, an intracellular 

transducer molecule that is necessary for nectin-mediated adhesive function (Figure 3A; 

Takai and Nakanishi, 2003).  

 

5.4.1 Motor neuron generation, differentiation and columnar organization in afadin 

mutant embryos 

Nectins are not strongly expressed in the spinal cord during development (Figures 

13C-13F), whereas afadin mRNA and protein are expressed in motor neurons throughout 

the developmental period encompassing their generation, migration, and final positioning 

in the ventral horn of the spinal cord (Figures 12A and 12B, 13A and 13B). Because afadin 

constitutive inactivation results in gross developmental defects and abortion by e10.5 due 

to its essential roles during gastrulation, afadin deletion was targeted to motor neurons by 

using a conditional approach (Ikeda et al., 1999). Afadin heterozygous mutants are 

indistinguishable from wild-type mice; thus, mice carrying one copy of a constitutive 

mutant allele (afadin-) and one copy of a floxed allele (afadinfl) were crossed with the 

olig2::Cre driver line to restrict recombination to motor neuron progenitors and generated 

afadinfl/- ; olig2::Cre+/- mice (afadinΔMN; Beaudoin et al., 2012; Dessaud et al., 2007).  

Afadin was effectively eliminated from spinal motor neurons in afadinΔMN embryos 

(Figures 12C–12F). The first step was then to evaluate whether afadin elimination has an 
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effect on motor neuron generation and subtype identity. Motor neuron columnar subtypes 

were distinguished using transcription factor expression profiles as described in Methods 

section 4.1.4. The total number of neurons generated was similar in control and afadinΔMN 

embryos and no significant differences in the numbers of LMC and MMC neurons were 

observed (Figures 12G–12I). Similarly, no differences in the generation, differentiation, 

and overall organization of motor columns were detected at thoracic levels (Figures 12J–

12L).  
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Figure 12: Afadin expression and motor neuron generation in the developing spinal cord.  
(A and B) Afadin mRNA (A) and protein (B) expression in e13.5 lumbar spinal cord. (C–F) Afadin 
expression in e13.5 lumbar spinal cord in control (C and D) and afadinΔMN (E and F) embryos. FoxP1 
identifies LMC neurons. (G and H) Segregation of Lhx3+ MMC and FoxP1+ LMC neurons in e13.5 lumbar 
spinal cord of control (G) and afadinΔMN (H) embryos. (I) Number of MMC and LMC neurons found in 
e13.5 lumbar spinal cord of control (○) and afadinΔMN (●) embryos. Motor neurons/100 µm, mean ± SD. (J 
and K) pSMAD+, nNOS+ preganglionic column (PGC) neurons in e13.5 thoracic spinal cord of control (J) 
and afadinΔMN (K) embryos. (L) Number of hypaxial motor column (HMC) and PGC neurons in e13.5 
thoracic spinal cord of control (○) and afadinΔMN (●) embryos. Motor neurons/100 µm, mean ± SD.  
In situ hybridization experiment for Afadin mRNA expression was performed by Niccolò Zampieri. HMC 
and PGC neuron immunostaining and counts were performed by Sofia Pimpinella. 
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Figure 13: Afadin and nectins expression in the developing spinal cord.  
(A) Afadin expression at lumbar spinal level of e9.5 wild type embryo. (B) Afadin expression at lumbar 
spinal level of e11.5 wild type embryo. (C) Nectin 1 expression at lumbar spinal level of e11.5 wild type 
embryo. (D) Nectin 2 expression at lumbar spinal level of e11.5 wild type embryo. (E) Nectin 3 expression 
at lumbar spinal level of e11.5 wild type embryo. (F) Nectin 4 expression at lumbar spinal level of e11.5 
wild type embryos. FoxP1 identifies LMC neurons. Isl1/2 neurons identifies LMCm neurons. 
Part of the nectin immunostainings were performed by Sofia Pimpinella. 
 

 

5.4.2 Effects of afadin inactivation on motor neuron organization 

Next, it was investigated whether divisional and pool organization is affected by 

the loss of afadin. In e13.5 afadinΔMN embryos, intermixing of medial and lateral LMC 

neurons was detected as well as defects in the clustering and segregation of motor pools  
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Figure 14: Perturbed divisional and pool organization in afadin mutant mice.  
(A-D) Isl1/2+ medial and Hb9+ lateral LMC neurons at L2/L3 in e13.5 control (A and C) and afadinΔMN (B 
and D) embryos. (E) Number of LMCm and LMCl neurons in e13.5 lumbar spinal cord of control (○) and 
afadinΔMN (●) embryos. Motor neurons/100 µm, mean ± SD.(F–I) Motor pools at L2/L3 in e13.5 control (F 
and H) and afadinΔMN (G and I) embryos. Nkx6.1+, Er81+ adductor/gracilis (A/G) neurons; Er81+, Nkx6.1- V 
neurons; Nkx6.2+ R/T neurons; Nkx6.1+, Er81- H neurons. (J) Number of Er81+, Nkx6.1+, and Nkx6.2+ 

motor neurons in e13.5 lumbar spinal cord of control (○) and afadinΔMN (●) embryos. Motor neurons/100 µm, 
mean ± SD. Motor pool counts were performed by Sofia Pimpinella. 
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(Figures 14A–14D and 14F–14I). However, no changes in the numbers of motor neurons 

allocated to the lateral and medial division or to the pool subtypes analyzed were observed 

(Figures 14E and 14J).  

Thus, afadin elimination does not interfere with the acquisition of motor neuron 

divisional and pool identities but selectively abolishes their positional organization.  

The next step was to use three-dimensional position analysis to assess motor 

neuron organization defects in afadinΔMN embryos in more detail. At a divisional level a 

perturbation in the segregation of LMCm and LMCl neurons could be observed (Figures 

15A and 15B). Medio-lateral distribution and average position analyses indicated that 

afadin inactivation selectively impairs the ability of LMCl neurons to settle laterally to 

LMCm neurons (Figures 15D and 15E). On the dorso-ventral axis, a subtle ventral shift in 

columnar location was detected (Figure 15C). To provide a quantitative assessment of 

divisional organization in afadin mutants, correlation analysis was used (Figure 15F). 

LMCm neuron positions of afadinΔMN and control embryos were highly correlated 

(afadinΔMN versus control LMCm, r = 0.91), indicating that the overall spatial organization 

of these neurons is not affected by afadin elimination. In contrast, correlation of LMCl 

neuron positions of afadinΔMN and control embryos was reduced (afadinΔMN versus control 

LMCl, r = 0.65).  

Next, the effect of afadin inactivation on motor pool organization was investigated. 

These data were generated by my colleague Sofia Pimpinella. Consistent with the 

divisional data, the pool position analysis indicated that afadin inactivation selectively 

impairs the ability of motor neurons with a lateral identity (R/T) to settle past motor 

neurons with a medial identity (H; Figure 15G, data not shown). She also analyzed the 

segregation and clustering of dorsal (V) and ventral (H and R/T) motor pools. Transverse 

contour density plots indicated that the relative dorso-ventral organization of motor pools 

was not affected by afadin inactivation (Figures 15G). Analyses of dorso-ventral 

distribution and average position did not reveal significant differences between control and 

afadin mutants (Figures 15H and 15I).  

Thus, these data indicate that afadin signaling specifically controls motor neuron 

segregation on the medio-lateral axis by regulating LMCl positioning, but is not required 

for motor neuron organization on the dorso-ventral axis.  
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Figure 15: Afadin is required for medio-lateral but not dorso-ventral motor neuron positioning. 
(A and B) Transverse (A) and longitudinal (B) contour density plots of LMCm (green) and LMCl (red) 
neurons in e13.5 afadinΔMN embryos. (C) Average dorso-ventral position of LMCm (green) and LMCl (red) 
neurons in control, afadinΔMN, NΔMN and βγΔMN embryos (mean ± SD; differences significant for LMCm 
neurons: control versus NΔMN p<0.001, control versus βγΔMN p<0.001, afadinΔMN versus βγΔMN p<0.01, 
afadinΔMN versus NΔMN p<0.01; for LMCl neurons: control versus afadinΔMN p<0.05, control versus NΔMN 

p<0.001, control versus βγΔMN p<0.001, afadinΔMN versus NΔMN p<0.05, afadinΔMN versus βγΔMN p<0.01; one-
way ANOVA followed by post hoc Tukey's HSD test). (D) Box-plots showing medio-lateral distributions of 
LMCm (green, medial) and LMCl (red, lateral) neurons in control, afadinΔMN NΔMN and βγΔMN embryos. (E) 
Average medio-lateral positions of LMCm (green) and LMCl (red) neurons in control, afadinΔMN, NΔMN and 
βγΔMN embryos (mean ± SD; differences significant for LMCl neurons: control versus afadinΔMN p<0.01, 
control versus βγΔMN p<0.001, afadinΔMN versus βγΔMN p<0.05, NΔMN versus βγΔMN p<0.001; one-way ANOVA 
followed by post hoc Tukey's HSD test). (F) Correlation analysis of LMCm and LMCl positional coordinates 
in control and afadinΔMN embryos. Scale bar indicates correlation values. (G) Transverse contour density 
analyses of V (blue), H (green) and R/T (red) motor pools in control, afadinΔMN, NΔMN and βγΔMN embryos. 
(H) Average dorso-ventral position of H (green), R/T (red), and V (blue) neurons in control and afadinΔMN 

embryos (mean ± SD; differences not significant, t-test). (I) Box-plots showing dorso-ventral distributions of 
H (green, ventral), R/T (red, ventral), and V (blue, dorsal) neurons in control and afadinΔMN embryos.  
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5.4.3 N-cadherin expression and function in afadin mutants 

The next question arising is whether afadin is required for cadherin/catenin 

expression and function. First, to test N-cadherin function, neurite outgrowth in motor 

neurons isolated from control and afadinΔMN embryos grown either on laminin- or N-

cadherin-coated dishes was monitored (see Methods section 4.2.1). It has been shown 

previously that motor neurons undergo a 2-fold increase in neurite length and branching 

when grown on N-cadherin-presenting substrates and that these enhancements are 

completely abrogated in the absence of catenin function (Demireva et al., 2011). However, 

no significant difference in N-cadherin enhanced neurite outgrowth and branching were 

observed between control and afadinΔMN motor neurons (Figure 16). Second, the 

consequences of afadin elimination on the expression of N-cadherin and β-catenin were 

examined. No changes in the motor neuron area and in the motor neuron progenitor zone 

of afadinΔMN embryos were detected (Figure 17). 

Altogether, these experiments indicate that motor neurons do not require afadin 

activity either for expression of N-cadherin/catenin or for functional interaction with an N-

cadherin substrate.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: N-cadherin function in afadin mutant motor neurons.  
(A-D) Neurite outgrowth of motor neurons, dissociated from control (afadinfl/+; olig2::Cre+/-; rosa-lsl-
tdTomatofl/+) and afadinΔMN (afadinfl/-; olig2::Cre+/-; rosa-lsl-tdTomatofl/+) e10.5 embryos and seeded on 
dishes coated with laminin (A and C) or N-cadherin (B and D). Motor neurons visualized by tdTomato 
immunoreactivity depicted in black. (E and F) Average motor neuron neurite length (E) and branching (F) 
grown on laminin (○) or N-cadherin (●) for control and afadinΔMN mutant embryos (mean ± SEM for length; 
mean ± SD for branches, n=3).  
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Figure 17: N-cadherin/catenin expression in afadin mutant mice.  
(A-F) Afadin and β-catenin expression in e13.5 control and afadinΔMN lumbar spinal cords. (G-L) Afadin and 
N-cadherin expression in e13.5 control and afadinΔMN lumbar spinal cords. 
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Aim 3: Testing the roles of type II cadherin specificity groups in motor 

neuron positional organization. 
 

5.5 Analysis of motor neuron organization after type II cadherins specificity group 

elimination  

 

So far, the molecular underpinnings supporting motor pools segregation on the 

dorso-ventral axis are still unknown. Type II cadherins are obvious candidates because of 

their expression profiles and their dependency on catenins activity (Kemler, 1993; Nelson, 

2008). However, elimination of individual type II cadherins using mouse genetics does not 

perturb motor neuron positioning, thus raising questions regarding their roles and 

contributions (Demireva et al., 2011). Recent studies indicate that redundancy in the 

adhesive function in groups of type II cadherins is at the basis of neuronal recognition 

properties in the retina and the hippocampus (Basu et al., 2017; Duan et al., 2018). Indeed, 

at a molecular level, type II cadherins can be divided into three different specificity groups 

according to pylogenetic analyses and their adhesive preferences (Figure 3B; Shimoyama 

et al., 2000; Brasch et al., 2018, see Introduction section 1.5.1). Thus, to start addressing 

whether functional redundancy in binding recognition properties of type II cadherins is an 

important determinant of motor neuron spatial organization, a mouse model lacking all the 

members of a specificity group by crossing cad-8 and cad-11 single knock-out mice was 

generated (8/11-/-; Horikawa et al., 1999; Suzuki et al., 2007). 

 

5.5.1 Effects of type II cadherins specificity group (8/11) inactivation on divisional 

organization 

8/11-/- mice are born at expected Mendelian ratio and do not present any obvious 

phenotype. First, motor neuron generation and acquisition of subtype identities in 8/11-/- 

mice was analyzed and similar numbers compared to control mice were found (Figure 

21F). Next, motor neuron divisional organization was studied by applying three-

dimensional positional analysis. Motor neuron subtypes were identified according to their 

specific transcription factor expression profiles (see Methods section 4.1.4). Transverse 

and longitudinal contour plots from control and 8/11-/- embryos did not reveal any defects 

in medio-lateral and dorso-ventral positioning of LMCm and LMCl neurons (Figures 18A-

18C). Accordingly, no changes neither in the distribution nor in the average position were 
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observed, both on the medio-lateral and dorso-ventral axis (Figures 18E-18H). In addition, 

correlation analysis was used to provide an overall assessment of LMCm and LMCl 

neurons spatial organization. Cartesian coordinates of motor neurons sharing the same 

subtype identity were highly correlated between control and 8/11-/- embryos (control 

LMCm versus 8/11-/- LMCm r > 0.8 and control LMCl versus 8/11-/- LMCl r > 0.8; Figure 

18D). 

Thus, these data show that elimination of the type II cadherin specificity group 

comprising cad-8 and cad-11 does not affect motor neuron generation, identity and 

divisional organization. 

 

Figure 18: Elimination of cad-8, -11 specificity group does not perturb divisional organization.  
(A) Organization of Isl1/2+ LMCm and Hb9+ LMCl neurons at lumbar spinal levels in e13.5 8/11-/-embryos. 
(B) Transverse contour density plots of LMCm (green) and LMCl (red) neurons in 8/11-/- embryos. (C) 
Longitudinal contour density plots of LMCm (green) and LMCl (red) neurons 8/11-/- embryos. (D) 
Correlation analysis of LMC neurons medio-lateral and dorso-ventral Cartesian coordinates in control and 
8/11-/- embryos. The scale bar indicates correlation values. (E) Average medio-lateral position of LMCm 
(green) and LMCl (red) neurons in control and 8/11-/- embryos (mean ± SD; differences not significant; t-
test). (F) Average dorso-ventral position of LMCm (green) and LMCl (red) neurons in control and 8/11-/- 
embryos (mean ± SD; differences not significant; t-test). (G) Dorso-ventral density plots of LMCm (green) 
and LMCl (red) neurons in control and 8/11-/- embryos. (H) Average medio-lateral and dorso-ventral 
positions of LMCm (green) and LMCl (red) neurons in control and 8/11-/- embryos (mean). 
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5.5.2 Effects of type II cadherin specificity group (8/11) inactivation on motor pool 

organization 

Until now, N-cadherin/catenin and afadin signaling have been identified to control 

medio-lateral segregation of motor neuron divisions. However, the catenin-dependent 

effectors of motor neuron segregation into pools on the dorso-ventral axis are still 

unknown. Thus, it was next tested whether joint elimination of cad-8 and cad-11 could 

have a role in orchestrating dorso-ventral pool segregation despite not having an effect at 

divisional level. In order to test this hypothesis, segregation of dorsal (V, Er81+) and 

ventral motor pools (H, Nkx6.1+ and R/T, Nkx6.2+) was analyzed (Figure 19A). 

Transverse contour analysis indicated that motor pool dorso-ventral organization was not 

affected in 8/11-/- mutant embryos (Figure 19B). Density, distribution and average position 

analyses confirmed that segregation of motor pool subtypes was preserved (Figures 19C-

19E). In addition, consistent with the divisional data no changes in pool organization on 

the medio-lateral axis were observed (Figures 21A-21D).  

Thus, these data indicate that joint inactivation of cad-8 and -11 leaves motor pools 

segregation and positioning intact. 
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Figure 19: The type II cadherins specificity group cad-8, -11 is dispensable for motor pool 
organization. 
(A) Organization of H (Nkx6.1+), R/T (Nkx6.2+), and V (Er81+) motor pools at lumbar spinal levels in e13.5 
8/11-/- embryos. The motor neuron area is delimited by a dashed line. (B) Transverse contour density plots of 
H (green), R/T (red), and V (blue) motor pools in 8/11-/- embryos. (C) Average dorso-ventral position of H 
(green), R/T (red), and V (blue) neurons in control and 8/11-/- embryos (mean ± SD; differences not 
significant; t-test). (D) Box-plots showing dorso-ventral distributions of H (green), R/T (red), and V (blue) 
neurons in control and 8/11-/- embryos. (E) Dorso-ventral density plots of H (green, ventral), R/T (red, 
ventral), and V (blue, dorsal) neurons in control and 8/11-/- embryos. 
	
	
5.5.3 Effects of type II cadherins specificity group (6/9/10) inactivation on motor pool 

organization 

In order to confirm and expand the observations of a lack of phenotype in 8/11-/- 

mutant embryos, the effect of inactivating a second specificity group on motor neuron 

organization was next studied. Recent studies show that functional redundancy in cad-6, -

9, -10 has important functions in controlling neuronal interactions in the hippocampus and 

the retina (Basu et al., 2017; Duan et al., 2018). Thus, triple cad-6, -9, -10 knock-out mice 

were generated using targeted genome editing as previously described (6/9/10-/-; Duan et 

al., 2018). 6/9/10-/- mice are viable and fertile and do not present any obvious phenotype. 

Moreover, motor neurons were present at expected numbers and acquired appropriate 
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subtype identities (Figure 21F). Next, motor pool organization in triple mutant embryos 

was investigated. Contour, average position, distribution and density analyses showed that 

segregation of pools on the dorso-ventral axis in 6/9/10-/- embryos was similar to control 

and 8/11-/- double mutants (Figures 20A-20E). As a consequence, positional coordinates of 

H, R/T and V neurons were highly correlated in control, 8/11-/- and 6/9/10-/- embryos (for 

all three pool comparisons r > 0.8; Figure 20F). Accordingly, positioning of motor pools 

along the medio-lateral axis was not affected (Figures 21C-21E).  

Altogether, these experiments indicate that elimination of type II cadherin 

specificity groups does not affect motor neuron generation, diversification and spatial 

organization in the spinal cord. 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Elimination of type II cadherins specificity group cad-6, -9, -10 does not affect dorso-
ventral pool segregation.  
(A) Organization of H (Nkx6.1+), R/T (Nkx6.2+), and V (Er81+) motor pools at lumbar spinal levels in e13.5 
6/9/10-/- embryos. The motor neuron area is delimited by a dashed line. (B) Transverse contour density plots 
of H (green), R/T (red), and V (blue) motor pools in 6/9/10-/- embryos. (C) Average dorso-ventral position of 
H (green), R/T (red), and V (blue) neurons in control, 8/11-/- and 6/9/10-/- embryos (mean ± SD; differences 
not significant; one-way ANOVA and post hoc Tukey’s HSD test). (D) Box-plots showing dorso-ventral 
distributions of H (green), R/T (red), and V (blue) neurons in control, 8/11-/- and 6/9/10-/- embryos. (E) 
Dorso-ventral density plots of H (green, ventral), R/T (red, ventral), and V (blue, dorsal) neurons in control, 
8/11-/- and 6/9/10-/- embryos. (F) Correlation analysis of H, R/T and V neurons medio-lateral and dorso-
ventral Cartesian coordinates in control, 8/11-/- and 6/9/10-/- embryos. The scale bar indicates correlation 
values. 
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Figure 21: Medio-lateral pool organization is unchanged after elimination of type II cadherins 
specificity groups.  
(A and B) Medio-lateral density plots of H (green) and R/T (red) neurons in control (A) and 8/11-/- (B) 
embryos. (C) Box-plots showing medio-lateral distributions of H (green) and R/T (red) neurons in control, 
8/11-/- and 6/9/10-/- embryos. (D) Average medio-lateral position of H (green) and R/T (red) neurons in 
control, 8/11-/- and 6/9/10-/- embryos (mean ± SD; differences not significant; one-way ANOVA and post hoc 
Tukey’s HSD test). (E) Medio-lateral density plots of H (green) and R/T (red) neurons in 6/9/10-/- embryos. 
(F) Average total numbers of Er81+, Nkx6.1+, and Nkx6.2+ motor neurons in e13.5 lumbar spinal cords of 
control, 8/11-/- and 6/9/10-/- embryos (motor neurons/100 µm, mean ± SD; differences significant for H 
neurons: control versus 6/9/10-/- embryos p<0.05; differences significant for V neurons: control versus 8/11-/- 
and 6/9/10-/- embryos p<0.01; one-way ANOVA and post hoc Tukey’s HSD test). 
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Aim 4: Evaluating combined function of type I and type II cadherins in 

motor neuron positional organization. 
 
 
5.6 Analysis of joint inactivation of N-cadherin and a type II cadherin 

 

Type II cadherins expression profiles in motor neurons are highly suggestive of 

their involvement in pool organization. However, so far, any attempt to disrupt motor 

neuron positioning by eliminating type II cadherins function in mice has failed. Thus, a 

hypothesis was that another factor might be required to elicit type II cadherins activity. 

According to previous genetic results, such factor should be ubiquitously expressed in 

motor neurons and capable of interacting with catenin adhesive signaling (Demireva et al., 

2011). N-cadherin, a type I cadherin expressed from early progenitor stages on, fulfills 

these requirements and its conditional elimination from motor neurons has been shown in 

previous experiments to cause a defect in LMCl medio-lateral migration as well as a 

ventralization of LMC positioning, but did not perturb segregation of pools on the dorso-

ventral axis (Figures 10 and 11). Thus, either cad-8 or cad-11 mutant alleles, which do not 

present any positioning defect either alone or in combination, were combined with N-

cadherin conditional deletion to generate NΔMN8-/- and NΔMN11-/- mice.  

 

5.6.1 Motor neuron migration arrest in the progenitor area after joint elimination of 

N-cadherin and a type II cadherin 

NΔMN8-/- and NΔMN11-/- mice are lethal at late embryonic stages as previously 

described for NΔMN mutants, thus allowing analysis of motor neuron development until 

positional organization is completed at e13.5 (Demireva et al., 2011). First, motor neuron 

generation was assessed and it was found that total number and identity of motor neuron 

subtypes in NΔMN8-/- and NΔMN11-/- embryos did not significantly differ from control 

embryos (Figures 21F and 26F). However, a striking defect in motor neuron migration, 

resulting in about 50% of post-mitotic motor neurons found arrested in the progenitor area, 

was observed, both in NΔMN8-/- and NΔMN11-/- embryos (Figures 22A and 22B, 22E and 

22F). The same phenotype, at reduced penetrance, was previously observed in NΔMN 

embryos and after conditional inactivation of β- and γ-catenin in motor neurons (Figures 

22B-22D; Demireva et al., 2011). The migration defect was comparable between NΔMN8-/- 
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and NΔMN11-/- embryos and different motor neuron subtypes were found in the progenitor 

zone with similar frequencies (Figure 22B).  

Thus, concomitant elimination of N-cadherin with a type II cadherin does not 

affect motor neuron generation and diversification, but results in a partial failure of motor 

neuron migration out of the progenitor area. 

 

Figure 22: Motor neuron migration arrest at the progenitor zone after combined elimination of N-
cadherin and a type II cadherin.  
(A) Schematic showing motor neurons arrested at the progenitor zone (delimited by a dashed line) in lumbar 
spinal cord. (B) Average number of motor neurons found in the progenitor zone (PZ) expressed as 
percentage of total number of motor neurons of each motor pool identity in NΔMN, βγΔMN, NΔMN8-/- and 
NΔMN11-/- embryos (mean ± SD; differences significant for Nkx6.1+ neurons: NΔMN versus NΔMN8-/- and 
NΔMN11-/- embryos p<0.01; βγΔMN versus NΔMN11-/-embryos p<0.01; βγΔMN versus NΔMN8-/-embryos p<0.05; 
differences significant for Nkx6.2+ neurons: NΔMN versus NΔMN8-/- and NΔMN11-/- embryos p<0.01; βγΔMN versus 
NΔMN11-/- embryos p<0.01; βγΔMN versus NΔMN8-/- embryos p<0.05; differences significant for Er81+ neurons:  
NΔMN versus NΔMN8-/- embryos p<0.05; NΔMN versus NΔMN11-/- embryos p<0.001; βγΔMN versus NΔMN8-/- 

embryos p<0.05; βγΔMN versus NΔMN11-/- embryos p<0.001; NΔMN8-/- versus NΔMN11-/- embryos p<0.05; one-
way ANOVA and post hoc Tukey’s HSD test. Data are presented only for genotypes in which a significant 
medial arrest of motor neurons was observed with respect to controls). (C-F) Motor neurons arrested at the 
progenitor zone in NΔMN (C), βγΔMN (D), NΔMN8-/- (E) and NΔMN11-/- (F) e13.5 embryos at lumbar spinal level.  
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5.6.2 Effects of joint elimination of N-cadherin and a type II cadherin on motor 

neuron organization 

Next, motor neuron organization at divisional level in NΔMN8-/- embryos was 

assessed and defects in the positioning of LMC neurons were observed consistent with the 

ones previously described after inactivation of N-cadherin (Figures 23A, 23B and 23I; 

Figures 10 and 11). Transverse and longitudinal contour density plots showed a medial 

shift in LMCl neurons position, which was further confirmed by correlation analysis 

(Figures 23B, 23C and 23F). LMCm neuron positions were highly correlated between 

control and NΔMN8-/- embryos (control LMCm versus NΔMN8-/- LMCm r = 0.87) in contrast 

to a decrease in correlation of the medio-lateral position of LMCl neurons (control LMCl 

versus NΔMN8-/- LMCl r = 0.54; Figure 23F). In addition, density and average position 

analyses revealed that the medio-lateral positioning defect of LMCl neurons in NΔMN8-/- 

embryos was significantly more severe than in single N-cadherin mutants (Figures 23D 

and 23E). In contrast, the observed ventralization in columnar location did not differ from 

NΔMN embryos (Figures 23G and 23H). Thus, these data indicate that, at divisional level, 

cad-8 selectively contributes to the control of LMCl medio-lateral positioning and removal 

of N-cadherin is required to reveal its involvement. 

 Next, motor pools segregation was analyzed on the dorso-ventral axis (Figures 

24A and 24B). Interestingly, average dorso-ventral position and density analyses of V 

(dorsal), H and R/T (ventral) neurons showed that, unlike in NΔMN embryos, dorso-ventral 

segregation of pools was clearly impaired in NΔMN8-/- embryos and now their positioning 

resembled the one previously observed after inactivation of βγ-catenin, with V and H 

pools found in mostly overlapping areas (Figures 24C and 24E). As a consequence, the 

average distance between dorsal and ventral pools (V-H and V-R/T) was significantly 

decreased in NΔMN8-/- embryos compared to NΔMN and controls embryos, but not different 

from βγΔMN embryos (Figure 24D).  

The next question asked was whether the dorso-ventral segregation phenotype is 

specific for the removal of cad-8 in combination with N-cadherin. Thus, NΔMN11-/- embryos 

were analyzed and it was found that motor neuron organization was also dramatically 

perturbed after concomitant elimination of N-cadherin and cad-11 (Figures 25A and 25B). 

Interestingly, dorso-ventral distributions, average and relative position analyses revealed 

that the removal of either cad-8 or cad-11 generated almost indistinguishable phenotypes 

(Figures 25C-25F). In addition, analysis of medio-lateral position of H (medial) and R/T 

(lateral) pools supported the observation made at divisional level, with elimination of 
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either cad-8 or cad-11 in combination with N-cadherin increasing the severity of LMCl 

neurons positioning defect observed in NΔMN embryos (Figures 26A-26E; Figure 11).  

Altogether, these data reveal the contributions of type II cadherins to motor neuron 

positional organization, first in the control of medio-lateral migration of LMCl neurons 

and second in mediating dorso-ventral segregation of pools, however their impact is only 

exposed in absence of N-cadherin. 
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Figure 23: Combined elimination of N-cadherin and cadherin-8 results in divisional organization 
defects.  
(A) Organization of Isl1/2+ LMCm and Hb9+ LMCl neurons at lumbar spinal levels in e13.5 NΔMN8-/- 
embryos. (B) Transverse contour density plots of LMCm (green) and LMCl (red) neurons in NΔMN8-/- 
embryos. (C) Longitudinal contour density plots of LMCm (green) and LMCl (red) neurons in NΔMN8-/- 
embryos. (D) Average medio-lateral position of LMCm (green) and LMCl (red) neurons in control, NΔMN and 
NΔMN8-/- embryos (mean ± SD; differences significant for LMCm neurons: control versus NΔMN8-/- embryos 
p=0.038, NΔMN versus NΔMN8-/- embryos p<0.01; differences significant for LMCl neurons: control versus 
NΔMN8-/- embryos p<0.001, NΔMN versus NΔMN8-/- embryos p<0.01; one-way ANOVA and post hoc Tukey’s 
HSD test). (E) Medio-lateral density plots of LMCm (green) and LMCl (red) neurons in control, NΔMN and 
NΔMN8-/- embryos. (F) Correlation analysis of medio-lateral LMC neuron positional coordinates in control 
and NΔMN8-/- embryos. The scale bar indicates correlation values. (G) Average dorso-ventral position of 
LMCm (green) and LMCl (red) neurons in control, NΔMN and NΔMN8-/- embryos (mean ± SD; differences 
significant for LMCm neurons: control versus NΔMN and NΔMN8-/- embryos p<0.001; differences significant 
for LMCl neurons: control versus NΔMN and NΔMN8-/- embryos p<0.001; one-way ANOVA and post hoc 
Tukey’s HSD test). (H) Dorso-ventral density plots of LMCm (green) and LMCl (red) neurons in control, 
NΔMN and NΔMN8-/- embryos. (I) Average medio-lateral and dorso-ventral positions of LMCm (green) and 
LMCl (red) neurons in control and NΔMN8-/- embryos (mean). 
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Figure 24: Combined elimination of N-cadherin and cadherin-8 perturbs dorso-ventral pool 
segregation. 
(A) Organization of H (Nkx6.1+), R/T (Nkx6.2+), and V (Er81+) motor pools in e13.5 NΔMN8-/- embryos. The 
motor neuron area is delimited by a dashed line. (B) Transverse contour density plots of H (green), R/T (red), 
and V (blue) motor pools in NΔMN8-/- embryos. (C) Average dorso-ventral position of H (green), R/T (red), 
and V (blue) neurons in control, NΔMN, NΔMN8-/- and βγΔMN embryos (mean ± SD; differences significant for H 
neurons: control versus NΔMN and βγΔMN embryos p<0.01, control versus NΔMN8-/- embryos p<0.001; 
differences significant for R/T neurons: control versus NΔMN, NΔMN8-/- and βγΔMN embryos p<0.001; 
differences significant for V neurons: control versus NΔMN, NΔMN8-/- and βγΔMN embryos p<0.001; one-way 
ANOVA and post hoc Tukey’s HSD test). (D) Average distance between dorso-ventral positions of V-R/T 
and V-H pools in control, NΔMN, NΔMN8-/- and βγΔMN embryos (mean ± SD; differences of V-H and V-R/T 
neurons not significant between control and NΔMN embryos; differences significant for V-H: control versus 
NΔMN8-/- and βγΔMN embryos p<0.01; differences significant for V-R/T: control versus NΔMN8-/- embryos 
p<0.01, control versus βγΔMN embryos p<0.001, NΔMN versus NΔMN8-/- embryos p<0.05, NΔMN versus βγΔMN 
embryos p<0.001; one-way ANOVA and post hoc Tukey’s HSD test). (E) Dorso-ventral density plots of H 
(green, ventral), R/T (red, ventral), and V (blue, dorsal) neurons in control, NΔMN, NΔMN8-/- and βγΔMN 

embryos. 
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Figure 25: Combined elimination of N-cadherin and cadherin-11 phenocopies defects observed in 
NΔMN8-/- embryos.  
(A) Organization of H (Nkx6.1+), R/T (Nkx6.2+), and V (Er81+) motor pools at lumbar spinal levels in e13.5 
NΔMN11-/- embryos. The motor neuron area is delimited by a dashed line. (B) Transverse contour density plots 
of H (green), R/T (red), and V (blue) motor pools in NΔMN11-/- embryos. (C) Dorso-ventral density plots of H 
(green, ventral), R/T (red, ventral), and V (blue, dorsal) neurons in NΔMN11-/- embryos. (D) Box-plots 
showing dorso-ventral distributions of H (green), R/T (red), and V (blue) neurons in NΔMN8-/- and NΔMN11-/- 
embryos (mean ± SD; differences not significant; t-test). (E) Average dorso-ventral position of H (green), 
R/T (red), and V (blue) neurons in NΔMN8-/- and NΔMN11-/- embryos (mean ± SD; differences not significant; t-
test). (F) Average distance between dorso-ventral positions of V-R/T and V-H pools in NΔMN8-/- and NΔMN11-/- 

embryos (mean ± SD; differences not significant; t-test). 
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Figure 26: Medio-lateral pool organization is perturbed after concomitant elimination of N-cadherin 
and a type II cadherin.  
(A and B) Longitudinal contour density plots of H (green) and R/T (red) neurons in NΔMN8-/- (A) and NΔMN11-

/- (B) embryos. (C and D) Medio-lateral density plots of H (green) and R/T (red) neurons in NΔMN8-/- (C) and 
NΔMN11-/- (D) embryos. (E) Average medio-lateral position of H (green) and R/T (red) neurons in control, 
NΔMN, NΔMN8-/- and NΔMN11-/- embryos (mean ± SD; differences significant for R/T neurons: control versus 
NΔMN embryos p<0.01, control versus NΔMN8-/- and NΔMN11-/- embryos p<0.001, NΔMN versus NΔMN11-/- 
embryos p<0.01, NΔMN8-/- versus NΔMN11-/- embryos p<0.05; one-way ANOVA and post hoc Tukey’s HSD 
test). (F) Average total numbers of Er81+, Nkx6.1+ and Nkx6.2+ motor neurons in NΔMN, βγΔMN, NΔMN8-/- and 
NΔMN11-/- embryos in lumbar spinal cord (total motor neuron#/100µm, mean ± SD; differences significant for 
Nkx6.2+ neurons:  NΔMN versus βγΔMN and NΔMN11-/-embryos p<0.01; NΔMN versus NΔMN8-/- embryos p<0.05; 
one-way ANOVA and post hoc Tukey’s HSD test). 
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5.7 In vitro analyses of classical cadherin functions at a cellular level 

 

 The described mouse genetic experiments clearly showed that the contributions of 

type II cadherins become evident only in absence of N-cadherin. However, the molecular 

and cellular bases of the emerging functions observed after concomitant elimination of N-

cadherin and type II cadherins remain unclear. At a structural level, heterophilic binding 

between type I and type II cadherins is prohibited and, at a cellular level, there is no prior 

report of such functional interaction controlling adhesive recognition, either in vitro or in 

vivo (Patel et al., 2006; Brasch et al., 2012). Thus, the next set of experiments aimed to 

identify changes in cell adhesion properties upon co-expression of N-cadherin and type II 

cadherins by investigating adhesive recognition in a heterologous cell system and primary 

motor neurons. In order to perform the following in vitro experiments, first a stable cell 

line expressing N-cadherin was generated (termed N-cad CHO cells; Figure 27; see 

Methods section 4.3.3).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27: N-cadherin expression in N-cad CHO stable cell line.  
(A) Immunoblot showing the absence of cadherin expression in CHO cells. β-actin served as a loading 
control. (B) Immunoblot of N-cad CHO lysates showing expression of N-cadherin protein. β-actin served as 
a loading control. Clone #23 was picked for all subsequent in vitro experiments. (C) Immunostaining against 
N-cadherin in N-cad CHO cells (clone #23). DAPI identifies all cell nuclei. 
 

 

5.7.1 Neurite outgrowth assay  

 In order to test a new emerging function of type II cadherins in the presence of N-

cadherin, neurite outgrowth of motor neurons isolated from e10.5 Hb9:GFP embryos 

cultured on N-cad CHO or cadherin-11-transfected N-cad CHO cells was monitored (see 
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Methods section 4.2.1; Figure 28). Previously, it has been shown that N-cadherin substrate 

enhances neurite outgrowth of primary motor neurons (Demireva et al., 2011; Figure 16), 

thus a hypothesis was that combined expression of N-cadherin and cadherin-11 by CHO 

cells could result in a new function, similar to the observed defects in vivo in NΔMN11-/- 

embryos, changing motor neuron neurite outgrowth response.  

  
Figure 28: Motor neuron grown on cadherin-11-transfected CHO and N-cad CHO cells.  
(A) Motor neuron cultured on CHO cells transfected with cadherin-11 (mCherry). (A’) Increased 
magnification of motor neuron cultured on CHO cells transfected with cadherin-11 (mCherry) from A. (B) 
Motor neuron cultured on N-cad CHO cells transfected with cadherin-11 (mCherry). (B’) Increased 
magnification of motor neuron cultured on N-cad CHO cells transfected with cadherin-11 (mCherry) from B.  
 

Number of neurites, neurite length as well as total number of adherent motor 

neurons cultured on CHO cells transfected with cadherin-11 as a substrate was 

indistinguishable from naïve CHO cells (Figures 29A and 29B, 29E-269H). Motor neurons 

grown on N-cad CHO cells showed a 2-fold increase in neurite numbers and length 

compared to control CHO and cadherin-11-transfected CHO cells, as predicted by 

previous studies (Figures 29C and 29E-29H; Demrieva et al., 2011). However, no 

significant increase in neurite length or branching was observed between N-cadherin 

expressing cells and cadherin-11-transfected N-cad CHO cells (Figures 29C, 29D and 

29E-29H). In a different approach, neurite outgrowth of motor neurons grown on purified 

protein substrate was monitored. However, no enhanced neurite outgrowth and branching  
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Figure 29: Motor neuron neurite outgrowth on different cadherin expressing CHO cells.  
(A-D) Neurite outgrowth of motor neurons, dissociated from Hb9:GFP e10.5 embryos and seeded on dishes 
coated with CHO cells (A), CHO cells transfected with cadherin-11 (B), N-cad CHO cells (C) and N-cad 
CHO cells transfected with cadherin-11 (D); motor neurons visualized by GFP immunoreactivity depicted in 
black. (E and F) Average motor neuron neurite length (E) and number of neurites (F) of motor neurons 
grown on CHO cells, CHO cells transfected with cadherin-11, N-cad CHO cells and N-cad CHO cells 
transfected with cadherin-11 (mean ± SEM; differences significant for neurite length and average number of 
neurites: CHO cells and cadherin-11-transfected CHO cells versus N-cad CHO cells and cadherin-11-
transfected N-cad CHO cells p < 0.001; one-way ANOVA and post hoc Tukey’s HSD test). (G) Average 
number of adherent motor neurons per well grown on CHO cells, CHO cells transfected with cadherin-11, 
N-cad CHO cells and N-cad CHO cells transfected with cadherin-11 (mean ± SD, differences not significant; 
one-way ANOVA and post hoc Tukey’s HSD test). (H) Percentage of motor neurons with neurites grown on 
CHO cells, CHO cells transfected with cadherin-11, N-cad CHO cells and N-cad CHO cells transfected with 
cadherin-11 (mean ± SD, differences not significant; one-way ANOVA and post hoc Tukey’s HSD test). I 
performed the neurite outgrowth assay but parts of the neurite measurements were done with the help of 
Sofia Pimpinella. 
 
 
was measured between N-cadherin-coated or N-cadherin plus cadherin-11-coated dishes, 

confirming the previous results (Figure 30). Thus, at least in these set of experiments, the 

presence of N-cadherin does not result in a new emerging function of type II cadherin.  
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Figure 30: Motor neuron neurite outgrowth on different cadherin protein substrates.  
(A) Average neurite length of motor neurons, dissociated from Hb9:GFP e10.5 embryos and seeded on 
dishes coated with N-cadherin or N-cadherin and cadherin-11 purified protein (mean ± SEM, differences not 
significant; t-test). (B) Average number of neurites of motor neurons, dissociated from Hb9:GFP e10.5 
embryos and seeded on dishes coated with N-cadherin or N-cadherin and cadherin-11 purified protein (mean 
± SD, differences not significant; t-test).   
 

 

5.7.2 Cell aggregation assay 

 Next, to determine whether the presence of N-cadherin can change type II 

cadherins cell adhesive behavior, a cell aggregation assay was performed (Takeichi and 

Nakagawa, 2001). CHO cells or N-cad CHO cells were transfected with type II cadherins 

either fused to GFP or mCherry and cell suspensions were mixed (see Methods section 

4.3.4 for details). If cadherins bind in trans, mixed red and green aggregates form. If the 

cadherins of the two cell suspensions do not interact heterophilically, separate red and 

green aggregates form because all cadherins undergo homophilic binding (Basu et al., 

2017). The adhesive properties of cells expressing individual cadherins and pair-wise 

combinations of type I (N-cadherin) and type II cadherins were then tested. Consistent 

with previous studies, heterophilic cadherin pairs were identified according to specificity 

groups (Shimoyama et al, 2000; Patel et al., 2006; Basu et al., 2017). Cells expressing type 

II cadherins belonging to the same specificity group formed mixed aggregates in contrast 

to cells expressing type II cadherin members of different groups (8/11 versus 6/11; Figures 

31A and 31B). Next, the ability of cells expressing type II cadherins to interact with cells  

expressing N-cadherin (type I) was tested. Aggregates formed by cells expressing type II 

cadherins segregated from aggregates of cells expressing N-cadherin (Figures 31C and 

31D). 
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Next, aggregation assays were performed with cells expressing type II cadherins on 

an N-cadherin background using N-cad CHO cells. Mixtures of cells expressing N-

cadherin in addition to cadherin-11 and cells expressing only cadherin-11 formed mixed 

aggregates (Figures 32A). Expression of cadherin-6 in presence of N-cadherin did not 

inhibit mixed aggregation with N-cadherin aggregates (Figures 32B). Interestingly, the 

simultaneous expression of N-cadherin did not change type II cadherin adhesive behavior 

as mixed cadherin-6 and cadherin-11 expressors still formed “separate” aggregates as 

predicted by specificity groups. However, these aggregates were not completely dispersed 

but enclosed in a coherent bigger aggregate suggesting a general adhesive role for N-

cadherin.  

This data needs to be confirmed by repeating the assay with type II cadherins 

belonging to the same specificity group on an N-cadherin background in order to test 

whether mixed aggregates within one big coherent aggregate will form. In addition, it will 

be necessary to quantify the degrees of. However, these findings confirmed and extended 

studies demonstrating the heterophilic interactions of type II cadherins specificity groups 

and segregation of cells expressing type II and type I cadherins and showed, surprisingly, 

that the adhesive binding preferences of type II cadherins do not seem to be affected upon 

presence of N-cadherin.  
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Figure 31: Cell aggregation assay to show heterophilic and homophilic binding between different 
cadherin pairs.  
(A) Representative images of CHO cell aggregation assays showing separate red and green aggregates when 
cadherin-6 cells (green) are mixed with cadherin-11 cells (red) indicating only homophilic trans-cellular 
interactions of cadherins belonging to different type II cadherins specificity groups. (B) Representative 
images of CHO cell aggregation assays showing mixed red/green aggregates when cadherin-8 cells (green) 
are mixed with cadherin-11 cells (red) indicating heterophilic trans-cellular interactions of type II cadherins 
belonging to the same specificity group. (C) Representative images of CHO cell aggregation assays showing 
separate red and green aggregates when N-cadherin (type I) cells (green) are mixed with cadherin-6 (type II) 
cells (red) indicating only homophilic trans-cellular interactions. (D) Representative images of CHO cell 
aggregation assays showing separate red and green aggregates when N-cadherin (type I) cells (green) are 
mixed with cadherin-11 (type II) cells (red) indicating only homophilic trans-cellular interactions.  
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Figure 32: Cell aggregation assay to show heterophilic and homophilic binding between different type 
II cadherin combinations in presence of N-cadherin.  
(A) Representative images of CHO cell aggregation assays showing mixed red and green aggregates when 
cadherin-11 cells (green) are mixed with N-cad/cadherin-11-expressing cells (red). (B) Representative 
images of CHO cell aggregation assays showing mixed red/green aggregates when N-cad/cadherin-6 cells 
(green) are mixed with N-cadherin cells (red). (C) Representative images of CHO cell aggregation assays 
showing separate red and green aggregates within one big coherent aggregate when N-cad/cadherin-6 cells 
(green) are mixed with N-cad/cadherin-11 cells (red).  
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5.7.3 Co-culture assay 

 To relate our in vivo findings of a new emerging function of type II cadherins in the 

presence of N-cadherin to a cellular system, localization of fluorescently labeled type II 

cadherins in transfected CHO and N-cad CHO cells was examined. First, type II cadherins, 

representing members of different specificity groups, were transfected individually into 

CHO cells that were then co-cultured to allow formation of homotypic cell contacts 

between cells of the same cell line and heterotypic contacts between cells from different 

cell lines. Co-culture of these cells produced heterotypic cell contact sites devoid of 

cadherins, which accumulated only at homotypic sites, confirming binding preferences 

according to specificity groups  (Figure 33A). When cadherin-11 cell lines were co-

cultured with cadherin-11-transfected N-cad CHO cell lines, the homophilic cadherin-11 

pair co- localized equally to homotypic and heterotypic contacts, reflecting no changes in 

cadherin localization upon presence of N-cadherin (Figure 33B). Lastly, N-cad CHO cells 

were transfected with type II cadherins of different specificity groups, resulting in a N-

cad/cadherin-6-GFP and N-cad/cadherin-11-mCherry cell line. Type II cadherins localized 

only to homotypic contact sites, reflecting no changes in cadherin localization upon 

presence of N-cadherin (Figure 33C). This data needs to be confirmed by repeating the co-

culture experiment with type II cadherins belonging to the same specificity group and 

different type II cadherins combinations with N-cadherin to test whether cadherin 

localization will change upon co-expression of N-cadherin. In addition, it will be crucial to 

immunostain for N-cadherin to show concomitant expression with type II cadherins. 

However, these preliminary results show that type II cadherin localization is not 

affected by the presence of N-cadherin, but still mirrors binding preferences according to 

specificity groups.  
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Figure 33: Type II cadherins localization at homotypic and heterotypic contact sites between 
transfected CHO and N-cad CHO cells in co-culture.  
(A) Representative co-culture images showing cadherin localization at homotypic red (cadherin-6 / cadherin-
6) and green (cadherin-11 / cadherin-11) contact sites and the absence of cadherins localization at heterotypic 
contact sites between red (cadherin-6) and green (cadherin-11) cells. (B) Representative co-culture images 
showing cadherins localization at homotypic red (N-cad/11 / N-cad/11) and green (cadherin-11 / cadherin-
11) contact sites and the presence of cadherins localization at heterotypic contact sites between red (N-
cad/11) and green (cadherin-11) cells. (C) Representative co-culture images showing cadherins localization 
at homotypic red (N-cad/11 / N-cad/11) and green (N-cad/6 / N-cad/6) contact sites and the absence of 
cadherins locatlizion at heterotypic contact sites between red (N-cad/11) and green (N-cad/6) cells. Presence 
or absence of cadherin localization at heterotypic contact sites is marked by white arrowheads. DAPI 
identifies all cell nuclei.  
 
 
 
 
 
 
 
 
 
 



	 	 Discussion	

	 	 90	

6. Discussion 
 

The positioning of newly born neurons is a tightly regulated process that is critical 

for the assembly of the nervous system. In the spinal cord, nuclear organization of motor 

neurons into pools is an elaborated morphogenetic feature at the basis of the wiring of 

spinal sensory motor circuits (Sürmeli et al., 2011; Hinckley et al., 2015; Bikoff et al., 

2016). The events controlling motor neuron positioning during development have yet to be 

clearly defined. Previous studies identified N-cadherin/catenin adhesive signaling as an 

important regulator of motor neuron organization but did not provide insights into the 

molecular and cellular events leading to precise positioning (Price et al., 2002; Demireva 

et al., 2011). The present work reveals that nuclear organization of motor neurons is 

dependent on inside-out positioning, orchestrated by N-cadherin, catenin and afadin 

activities, controlling cell body layering on the medio-lateral axis. In addition to this 

lamination like program, motor neurons undergo a secondary, independent phase of 

organization, which results in segregation of motor neurons along the dorso-ventral axis of 

the spinal cord and can proceed even when medio-lateral positioning is perturbed. 

Interestingly, the data show that this latter process is dependent on combined type I and 

type I cadherin function. 

 

6.1 Lamination and nuclear organization of spinal motor neurons 

	

Precise control of neurogenesis and migration is used during development as a 

strategy to position neuronal subtypes into specific coordinates. In the developing cortex, 

inside-out positioning of neurons tightly links neuronal birth date and migratory pattern, 

controlling the laminar organization of neurons (Hatten, 1999; Marin et al., 2010). 

Neurons exiting the cell cycle at early time points populate deep cortical layers, whereas 

neurons generated at later times settle in superficial layers. In contrast, less is known about 

the mechanisms controlling nuclear organization. Limb-innervating motor neurons display 

prominent nuclear organization and are positioned into discrete clusters, termed pools, that 

are found at precise coordinated in the spinal cord (Dasen and Jessell, 2009). Previous 

work indicated that motor neurons migrate radially away from the progenitor zone during 

development (Leber and Sanes, 1995), Indeed, radial migration is supposed to be at the 

basis of medio-lateral organization of motor neuron divisions.  
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The present work shows that a lamination-like inside-out migration is the initial 

step of motor neuron nuclear organization resembling cortex development. N-

cadherin/catenins and afadin specifically disrupt divisional segregation by perturbing 

lateral migration of later-born LMCl neurons, whereas positioning of first-born LMCm 

neurons is not affected. However, in order to generate distinct nuclei an additional step of 

migration is required. This independent step segregates neurons along the dorso-ventral 

axis resulting in motor pool formation and requires combined type I and type II cadherin 

function. 

In conclusion, these results reveal that the events involved in medio-lateral 

divisional organization closely resemble the ones controlling cortical lamination, 

suggesting that the same principles are applied in the developing spinal cord.  

	

6.2 N-cadherin mediates lamination-like migration programs 

	

Here, by taking advantage of three-dimensional positional analysis, the data 

confirms that N-cadherin, via β- and γ-catenin signaling, has a major role in motor neuron 

organization. It participates in directing the medio-lateral position of LMCl neurons and 

divisional segregation. Interestingly, in contrast to previous studies, where N-cadherin 

elimination from motor neurons was described to phenocopy the defects in β- and γ-

catenin mutants, the present data reveal that segregation of motor pools along the dorso-

ventral axis is mostly spared, indicating the existence of other catenin-interacting effectors 

controlling these events. These findings are in agreement with previous knowledge on N- 

expression profiles in motor neurons and its function during the development of the cortex. 

N-cadherin is expressed by all spinal motor neurons and thus cannot generate the 

necessary adhesive recognition and distinctions between different motor pools in order to 

allow their segregation. However, N-cadherin has been shown to be involved in more 

general aspects like axonal outgrowth and neuronal migration (Hansen et al., 2008, Masai 

et al., 2003), thus possibly explaining the medio-lateral migratory defects along the medio-

lateral axis. Specifically, N-cadherin may promote lateral migration by providing 

homophilic interactions for motor neurons migrating along radial glial fibers as suggested 

in the previous section. In support of this view are findings in the mouse cerebral cortex, 

where elimination of N-cadherin from cortical progenitors results in destroyed architecture 

of intra-cortical structures, partly due to the disruption of ventricular zone integrity and the 

radial migration of newly generated neurons (Kadowaki et al., 2007).  
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In addition, analysis of N-cadherin and β- and γ-catenin mutants revealed an 

additional role for N-cadherin/catenin signaling in the control of columnar dorso-ventral 

positioning. Loss of N-cadherin/catenin activities results in a dramatic ventral shift of 

LMC neurons suggesting severe migratory defects. These findings raise the question 

whether, similar to migratory patterns of PGC neurons, LMC neurons first migrate ventral-

laterally to the outer most boundary of the developing spinal cord and subsequently move 

dorsally to reach their final settling positions. Results suggest that this latter dorsal 

movement is impaired after loss of N-cadherin/catenin signaling. It is known that PGC 

neurons, which innervate sympathetic nervous system targets in the periphery, are located 

in a dorsal-lateral and dorsal-medial part of the ventral thoracic spinal cord and undergo 

three different phases of migration (Phelps et al., 1993). First, they migrate radially to the 

marginal zone, using the same method of migration as LMC neurons. In a second step of 

migration, PGC neurons tangentially move to a more dorsal position. Finally, a 

subpopulation migrates medially towards the central canal. Interestingly, within N-

cadherin and catenin mutants, PGC neurons fail to reach their dorso-lateral position in the 

ventral horn and are found in ectopic ventral positions (Demireva et al., 2011). These 

results lead to the following two hypotheses: ventral migration may be the initial and 

default mode of migration used by different motor columns and consequent dorsal 

migration may be a common catenin-dependent mechanism shared by LMC and PGC 

neurons.  

 

6.3 Identification of afadin as a novel player in motor neuron inside-out migration 

	

In addition to N-cadherin/catenin signaling, afadin was identified as an important 

player in motor neuron organization. Afadin elimination has a selective role in the control 

of LMCl medio-lateral settling, confirming that LMCl neuron inside-out positioning is a 

key step in controlling motor neuron segregation on the medio-lateral axis and proper 

layering of divisional subtypes. However, similar to the phenotypes observed after N-

cadherin elimination, loss of afadin function has no effect on dorso-ventral motor pools 

segregation, indicating that nectins do not participate in this aspect of motor neuron 

organization.  

Recent studies have shown that precise control of cell adhesive interactions is 

critical for cortical development, regulating the proliferation of neuronal progenitors, 

stability of the radial glia scaffold, and migration of post-mitotic neurons (Bielas and 
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Gleeson, 2004). The classical cadherin and nectin families of adhesion molecules are key 

components of the machinery that controls the assembly and maintenance of several types 

of cell junctions, with catenins and afadin interaction regulating the cross-talk between 

these molecules (Takai et al., 2008; Hirano and Takeichi, 2012). To date, many members 

of the cadherin/catenin and nectin/afadin signaling systems have been shown to play 

important roles during cortical development. Elimination of β-catenin in cortical 

progenitors results in migratory defects in late-born cortical neurons, and, similar to N-

cadherin elimination, severe cortical lamination phenotypes are also afadin mutant mice 

(Machon et al., 2003; Kadowaki et al., 2007; Gil- Sanz et al., 2014; Yamamoto et al., 

2015). Moreover, acute disruption of nectin and afadin functions in cortical neurons 

perturbs radial migration (Jossin and Cooper 2011; Martinez-Garay et al., 2016). Recent 

evidence indicates that nectin-based adhesion controls radial migration by acting in 

concert with reelin and N-cadherin (Gil-Sanz et al., 2013). Interestingly, reelin signaling 

has also been shown to be involved in spinal motor neuron migration, and, in particular, 

divisional segregation defects have been observed after perturbation of Reelin-Dab1 

signaling (Yip et al., 2003; Palmesino et al., 2010). The present findings complement and 

extend these studies, indicating that interplay by cadherin/catenin and nectin/afadin 

signaling is a conserved developmental mechanism that controls neuronal positioning not 

only during the assembly of laminar structures, as exemplified in the cortex, but also of 

nuclear ones. The precise mechanism behind afadin function in motor neurons and its 

relationship with cadherin/catenin signaling needs to be further addressed. Surprisingly, 

this work indicates that afadin is not required for N-cadherin/catenin expression or 

function in motor neurons, despite several studies showing, that without afadin, cadherin 

clustering is perturbed leading to defects in the formation of adherens junctions (Ikeda et 

al., 1999). These findings suggest that afadin might regulate the migration of LMCl 

neurons by transducing nectin activity. However, nectins are not strongly expressed in the 

spinal cord during development, indicating the possibility that afadin could control 

migration in a nectin-independent manner (Miyata et al., 2009). The cell positioning in the 

neocortex is massively perturbed in afadin mutant mice as a consequence of adherens 

junction disruptions, leading to a double cortex. Interestingly, genetic deletion of the small 

GTPase RhoA in the developing cerebral cortex also leads to a double cortex and affects 

stability of actin in neurons. Furthermore, it has been shown that it is critical for glial 

guided neuronal migration (Capello et al., 2012).  These findings, in addition to known 

modulating activities of RhoA by afadin, suggest that afadin could act via the RhoA 
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signaling cascade (Miyata et al., 2009).  

Altogether, these data support a key role for afadin, in addition to N-

cadherin/catenin adhesive signaling, in lamination of motor neuron divisions, highlighting 

their role as conserved regulators of inside-out migration in the developing nervous 

system. It will be interesting in the future to test whether a similar developmental logic and 

mechanisms are used in the morphogenesis of other spatially ordered structures in the 

nervous system.  
 

6.4 LMCl neuronal specific migratory defect after elimination of cell-surface proteins 

	
This work indicates that inactivation of either N-cadherin, β- and γ-catenin, or 

afadin has a specific effect on the medio-lateral positioning of LMCl neurons, which are 

found in medial locations normally occupied by LMCm neurons whose position is 

unaffected. These data show for the first time that inside-out radial migration is a key step 

for layering of motor neuron divisions and that N-cadherin/catenins and afadin functions 

are prominent regulators of this process. However, what is the cellular basis for the 

observed LMCl neuronal specific phenotype? 

Previous work indicates that motor neurons migrate radially away from the 

progenitor zone during development, by a process of perikaryal translocation (Dorado et 

al., 1990; Leber and Sanes, 1995). During their radial migration, motor neurons extend 

processes that attach to both the ventricular (apical) and pial (basal) surfaces of the spinal 

cord. Following this bipolar state, they detach and retract their apical processes and 

undergo nuclear translocation laterally through the intermediate zone of the spinal cord. At 

the same time, the basal processes pierce the basal lamina and differentiate into axons 

(Wentworth, 1984). This method of migration is primarily used by the first wave of 

postmitotic motor neurons; however, later born neurons may migrate along radial glial 

fibers, which begin, to traverse the grey matter of the spinal cord at e10.5 (Oudega and 

Marani, 1991). These two migratory methods could explain the observed differences in 

divisional subtype migratory defects. The data show that N-cadherin/catenins and afadin 

are specifically involved in the medio-lateral migration of the later born LMCl neurons, 

suggesting that these neurons are differently affected by the loss of cadherin/catenins and 

afadin function compared to LMCm neurons. One hypothesis thus is, that the first-born 

LMCm neurons reach their final settling position via perikaryal translocation, a process 

independent of cell surface molecules. In contrast, the later-born LMCl neurons may rely 
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to a greater extend on radial glial fibers-mediated migration or the surface and processes of 

LMCm neurons, which may be disrupted in the absence of cell surface proteins. Thus, lack 

of N-cadherin/catenins and afadin dependent interactions impairs the ability of LMCl 

neurons to migrate past LMCm cells. Another explanation for the LMCl specific migratory 

defect could result from differences in the efficiency of protein removal from motor 

neurons. In this study, cell adhesion proteins were eliminated by crossing an olig2::cre 

driver line with conditional N-cadherin/catenin or afadin alleles to restrict recombination 

to motor neuron progenitors. However, olig2 first starts being expressed by motor neurons 

around e10.0, indicating that the olig2::cre recombinase may be more efficient in 

removing proteins from later-born LMCl neurons compared to LMCm neurons which are 

already born around e9.0. Thus, due to differences in the birth date of LMCm and LMCl 

neurons, LMCm neurons may exhibit incomplete N-cadherin/catenin or afadin protein 

removal. Consequently, LMCm neuron settling position is not impaired. However, the 

precise mechanism of cadherin/catenin and afadin function in motor neuron migration still 

needs to be investigated. 

 

6.5 The mystery of type II cadherins function 

	

The absence of phenotypes for N-cadherin and afadin mutants on dorso-ventral 

pool segregation imply that other β- and γ-catenin-dependent effectors are in charge of 

controlling dorso-ventral pool clustering. Type II cadherins exhibit complex combinatorial 

patterns of expression in several areas of the developing nervous system, including motor 

neurons in the spinal cord, leading to the hypothesis that this family of molecules might be 

used to generate an adhesive code responsible for controlling cell-cell recognition during 

development (Suzuki et al., 1997; Redies, 2000; Krishna-K et al., 2011; Hirano and 

Takeichi, 2012).  

 

6.5.1 The cadherin adhesive code in the development of the nervous system 

 Since its discovery, the exquisite specificity with which classical cadherins define 

discrete anatomical features of the nervous system has supported the hypothesis that 

cadherins set up a cellular adhesive code underlying specific neuronal interactions (Redies 

and Takeichi, 1996). Type II cadherins, in particular, are broadly expressed in the central 

nervous system in remarkable combinatorial profiles delineating neuronal circuits and 

structures like cortical laminae, subdivisions of the basal ganglia and amygdala nuclei 
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(Suzuki et al., 1997; Hertel et al., 2008; Krishna-K et al., 2011; Hertel et al., 2012). 

However, defining the functions of different members of the family and the relevance of 

the adhesive code hypothesis has been challenging as, at a molecular level, cadherins often 

engage in extensive heterophilic interactions and, at a genetic level, most knock-out mouse 

models do not show any or only mild obvious phenotype (see Introduction section 1.5.3; 

Hirano and Takeichi, 2012).  

 There are several evidences indicating that type II cadherins may work 

synergistically in defining neuronal adhesive recognition properties (Shimoyama et al., 

2000; Demireva et al., 2011; Duan et al., 2014). Comprehensive binding affinity analysis 

shows that type II cadherins can be divided into three different specificity groups 

according to their binding preferences, where molecules belonging to the same group can 

bind to each other in heterophilic manner, but discriminate molecules belonging to 

different groups (Brasch et al., 2018). Mouse genetic experiments confirmed that 

redundant functions of subsets of type II cadherins are at the basis of synaptic specificity 

in the retina and synaptic plasticity in the hippocampus, thus indicating that elimination of 

multiple members belonging to a specificity group might be necessary to reveal type II 

cadherins contributions in vivo (Basu et al., 2017; Duan et al., 2018). Altogether these data 

support a model based on an adhesive recognition code where functional redundancy and 

combinatorial expression of type II cadherins is used to generate developmental programs 

that are both specific and robust (Jontes, 2018).  

	

6.5.2 Type II cadherin specificity groups and the organization of motor pools 

 The importance of classical cadherins in controlling the spatial organization of 

motor pools has been clearly evident since the first studies in chick and mouse embryos 

(Price et al., 2002; Demireva et al 2011). Unique combinatorial expression profiles of type 

II cadherins delineate motor pools in the developing chick spinal cord. The adductor (A) 

pool and the external Femorotibialis (eF) pool can be distinguished by the expression of a 

single cadherin, cadherin-20. Equalizing the type II cadherin expression profile by either 

introducing or removing cadherin-20 from either motor pool leads to the intermixing of the 

two pools (Price et al., 2002). These experiments clearly point to a direct role of type II 

cadherins function in motor pool segregation. Nevertheless, genetic attempts to address the 

roles of type II cadherins in mice have failed and elimination of individual type II 

cadherins did not result in perturbation of motor neuron positioning. Only for N-cadherin, 

a type I cadherin, a clear function in the segregation of motor neuron divisions has been 
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previously described (Demireva et al., 2011). These findings could indicate that type II 

cadherins roles are not conserved between species or that differences between chick and 

mouse are a result from a much higher complexity of the type II cadherin expression code 

and that compensation and redundancy are at the basis of the type II cadherin activity in 

mouse.  

 However, surprisingly, the data of this thesis imply that the positioning of motor 

neurons does not follow the same molecular logic, based on a redundant adhesive code, 

which has been shown to control synaptic properties in the hippocampus and to instruct the 

assembly of retinal circuits. In particular, in the hippocampus, heterophilic interactions 

between cadherin-6, -9 and -10 have been shown to control high-magnitude synaptic 

potentiation between CA3 and CA1 neurons (Basu et al., 2017). Similarly, the ordered 

patterning of ON-OFF direction selective ganglion cells dendrites into two distinct 

sublaminae in the retina is based on the redundant function of cadherin-6, -9, and -10, thus 

requiring elimination of all the members of this specificity group to perturb dendritic 

organization (Duan et al., 2018). In contrast to these previous findings, in the spinal cord, 

the same triple cadherin mutant shows no effect on motor neuron generation, 

differentiation, and positioning. Moreover, also elimination of a different specificity group, 

consisting of cadherin-8 and -11, did not result in any defects in motor neuron 

development.  

However, notably, due to experimental limitations in this work, positioning of only 

three different motor pools (H, V and R/T) were analyzed. Thus, defects in positions of 

different motor pools after elimination of type II cadherin specificity groups cannot be 

completely excluded. Furthermore, individual cadherin members show differential patterns 

of expression between forelimb and hindlimb LMC neurons with further variations at 

rostral and caudal regions; for example, cadherin-9 is only expressed in caudal hindlimb 

and forelimb motor pools and is not expressed by lumbar H, V and R/T motor pools. Thus, 

it would be interesting to test in the future whether elimination of the specificity group 

cadherin-6, -9 and -10 affects more caudally positioned lumbar or forelimb motor pools.  

 Puzzlingly, the data show that the same molecules seem to have different roles in 

regard to synaptic specificity and function in contrast to cell body positioning. At a cellular 

level, cadherins are dynamically expressed in neurons throughout development into 

adulthood and thus may serve different functions at different times (Hirano and Takeichi, 

2012; Astick et al., 2014). In the mouse, classical cadherins start being expressed soon 

after motor neuron generation but detailed profiles at a pool resolution are only available 
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around e13.5, a stage where motor pool organization is just completed (Demireva et al., 

2011). Thus, it is possible that type II cadherins combinatorial expression may encode 

recognition properties used for later events in motor neuron development, such as dendritic 

organization and synaptic specificity. Here, it would be interesting to investigate 

localization of cadherin proteins in motor neurons to provide information about their 

expression in somata, dendrites and axons. Furthermore, an important role for classical 

cadherins in controlling motor neuron dendritic arborization has been previously 

described, showing that removal of all cadherin function via genetic elimination of β- and 

γ-catenin results in changes of the stereotypic radial dendritic architecture of adductor 

motor neurons, with reduced dendritic length and branch numbers (Demireva et al., 2011). 

Thus, it will be interesting to analyze synapse formation and function in motor neurons 

lacking type II cadherins specificity groups in the future. Last, it is completely unknown 

whether compensatory mechanisms exist after the loss of specific cadherins. Motor 

neurons may sense and regulate the repertoire of present cell surface cadherins and their 

elimination could trigger changes in the cadherin expression profile. Thus, it would be 

interesting to precisely monitor the cadherin expression pattern in motor neurons, not only 

at several developmental time points, but also within cadherin mutant mice. 

 

6.6 Type I and type II cadherins orchestrate pool morphogenesis 

	

 One of the most striking findings of the experiments performed in this thesis 

clearly show that the contributions of type II cadherins become evident only in absence of 

N-cadherin. First, at a divisional level, a stronger penetrance in the medio-lateral 

segregation phenotype, as described in N-cadherin mutant embryos, was observed 

indicating that type II cadherins contribute to the early phase of motor neuron inside-out 

migration. Second, at a pool level, the analysis reveals a central role for type II cadherins 

in the segregation of motor pools on the dorso-ventral axis, a phenotype that has been 

previously observed only after elimination of all classical cadherins function, via deletion 

of β- and γ-catenin. Interestingly, identical phenotypes are observed by inactivating N-

cadherin with either cadherin-8 or -11, which did not show any phenotype when 

eliminated individually or in conjunction, thus indicating that cross talk between N-

cadherin and type II cadherin is indeed a central feature of the mechanisms controlling 

motor neuron positional organization. 
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 However, the molecular and cellular bases of the emerging functions observed after 

concomitant elimination of N-cadherin and type II cadherins remain unclear. At a 

structural level, heterophilic binding between type I and type II cadherins is prohibited due 

to major differences in their binding domain (see Introduction sections 1.5.1) and, at a 

cellular level, there is no prior report of such functional interaction controlling adhesive 

recognition, either in vitro or in vivo (Patel et al., 2006; Brasch et al., 2012). Thus, based 

on all previous knowledge on sequence homology, binding affinity and biophysical 

structure, type I and type II cadherins interactions are not feasible. However, still the 

present data show a clear genetic interplay of the two proteins. Thus, in the attempt to 

identify changes in cell adhesion properties and downstream signaling events upon co-

expression of N-cadherin and type II cadherins, adhesive recognition in a heterologous cell 

system and primary motor neurons were investigated, but did not observed any significant 

effect. In theory, just varying cadherins expression patterns in motor neurons could be 

sufficient to generate differences in cellular adhesive strengths to drive sorting of different 

motor neuron subtypes into pools, a mechanism that has been proposed to explain aspects 

of cell sorting behavior during tissue morphogenesis (Steinberg, 2007). Indeed, in in vitro 

experiments it has been shown that varying levels of cadherins expression between 

otherwise identical cell populations is sufficient to promote cell segregation (Foty and 

Steinberg, 2013). It is therefore possible that N-cadherin, may serve to maintain a basal 

adhesive level among all motor neurons necessary for type II cadherins to modulate 

relative adhesive strength of different pools thus driving their segregation. However, the 

lack of dorso-ventral pool segregation defects in single N-cadherin mutants can still not be 

explained. In addition, as observed for N-cadherin, also cadherin-6 and cadherin-11 are 

expressed by all motor neurons, thus raising the possibility, that in absence of N-cadherin, 

cadherin-6 and cadherin-11 may act redundantly. In general, a better understanding of the 

temporal dynamics of cadherins expression and motor pool morphogenesis, as well as 

quantitative assessments of surface levels and plasma membrane localization will be 

necessary to understand the principles behind classical cadherins contributions to cell 

adhesive behavior.  

 Altogether, the present results uncover a central role for type II cadherins in the 

control of pools segregation and positioning. Surprisingly, type II cadherins function does 

not directly reflect their recognition specificities as predicted by binding affinities at a 

molecular level, but relies on genetic interaction with N-cadherin, a type I cadherin 

expressed by all motor neurons. Thus, combinatorial expression of type II cadherins is not 
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necessarily used to establish an adhesive recognition code, but as it has been proposed for 

several morphogenetic processes, may just confer differential adhesion properties 

sufficient to implement a developmental program generating cellular patterns (Steinberg, 

2007; Hassan and Hiesinger, 2015; Heler and Fuchs, 2015). 

	

6.7 Migratory arrest at the progenitor zone  

 

In β- and γ-catenin and all mutants lacking N-cadherin, a portion of motor neurons 

fail to migrate away from the ventricular zone. The ventricular zone is deformed, which 

may provide a physical impediment to motor neurons to migrate out to their final settling 

positions. In addition, migratory defects may be non-cell autonomous as also interneurons, 

which should express normal levels of cadherins/catenins, were arrested, too. However, 

the altered morphology of the ventricular zone may also be a consequence of the stalled 

neurons themselves. Normally, β-catenin is highly enriched at the apical surface of the 

neuroepithelium consistent with previous studies reporting high levels of β-catenin and N-

cadherin, which are thought to be localized with adherens junctions in that region (Aaku-

Saraste et al., 1996; Kadowaki et al., 2007). All motor neuron subtypes were affected, 

however, the number of lateral neurons were predominantly influenced and found at 

higher percentages stalled at the progenitor zone. This could again be explained by 

differences in birthrate between medial and lateral motor neurons, similar to the specific 

positioning defect of lateral motor neurons in the ventral horn. As it is not by e10.5 that 

radial glia traverse the intermediate zone of the spinal cord, it is possible that only the 

later-born lateral LMC neurons use the available radial glia as a migratory scaffold. Thus, 

if this process is specifically affected by the loss of β- and γ-catenin and N-cadherin, that 

would explain why neurons belonging to the lateral division are more affected and 

consequently fail to migrate out into the ventral horn. In addition, also differences in the 

efficiency of protein elimination by olig2::cre recombinase in first-born medial and later-

born lateral motor neurons could explain that primarily lateral neurons are affected. 
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6.8 Conclusions 

 

In this thesis, by taking advantage of three-dimensional positional analysis, the 

roles and relative contributions of cell-adhesion molecules in motor neuron organization 

were uncovered. It was shown that N-cadherin, via β- and γ-catenin signaling, has a dual 

role in motor neuron organization. First, it controls columnar dorso-ventral position in the 

ventral horn. Second, it participates in directing the medio-lateral position of LMCl 

neurons and divisional segregation. Surprisingly, the data reveal that N-cadherin activity is 

mostly dispensable for motor pool segregation on the dorso-ventral axis. In addition, 

afadin, the adaptor protein of nectins, was identified as an important player in motor 

neuron organization. Afadin elimination, similar to removal of N-cadherin, has a selective 

role in the control of LMCl medio-lateral settling, confirming that LMCl neuron inside-out 

positioning is a key step in controlling motor neuron segregation on the medio-lateral axis 

and proper layering of divisional subtypes. In contrast, also loss of afadin function has no 

effect on dorso-ventral motor pool organization, indicating the existence of other catenin-

interacting effectors controlling these events. Indeed, the data show, that type II cadherins 

are involved in motor pool segregation along the dorso-ventral axis, however, surprisingly, 

type II cadherins function does not directly reflect their recognition specificities as 

predicted by binding affinities at a molecular level, but relies on genetic interaction with 

N-cadherin, a type I cadherin expressed by all motor neurons. 

Altogether, these findings may challenge the current understanding of specific 

adhesive recognition by classical cadherins as it may not be the only force governing 

cadherin-mediated function. 
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