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Genome-wide association studies (GWAS) have proven a fundamental tool to identify

common variants associated to complex traits, thus contributing to unveil the genetic

components of human disease. Besides, the advent of GWAS contributed to expose

unexpected findings that urged to redefine the framework of population genetics. First,

loci identified by GWAS had small effect sizes and could only explain a fraction of

the predicted heritability of the traits under study. Second, the majority of GWAS hits

mapped within non-coding regions (such as intergenic or intronic regions) where new

functional RNA species (such as lncRNAs or circRNAs) have started to emerge. Bigger

cohorts, meta-analysis and technical improvements in genotyping allowed identification

of an increased number of genetic variants associated to coronary artery disease

(CAD) and cardiometabolic traits. The challenge remains to infer causal mechanisms

by which these variants influence cardiovascular disease development. A tendency to

assign potential causal variants preferentially to coding genes close to lead variants

contributed to disregard the role of non-coding elements. In recent years, in parallel to

an increased knowledge of the non-coding genome, new studies started to characterize

disease-associated variants located within non-coding RNA regions. The upcoming

of databases integrating single-nucleotide polymorphisms (SNPs) and non-coding

RNAs together with novel technologies will hopefully facilitate the discovery of causal

non-coding variants associated to disease. This review attempts to summarize the

current knowledge of genetic variation within non-coding regions with a focus on long

non-coding RNAs that have widespread impact in cardiometabolic diseases.
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In the dawn of the millennium, the first draft of the human genome represented a major milestone
in the path to decipher the genetic component of human disease. Further refinement of the human
genome by the 1,000 Genomes Project mapped over 88 million variants from 26 populations
where ∼20 million correspond to common (frequency >0.5%) single-nucleotide polymorphisms
(SNPs), a coverage of >95% of all estimated human common SNPs (1, 2). Other consortia
such as Encyclopedia of DNA Elements (ENCODE) (3, 4) and Functional Annotation of the
Mammalian Genome (FANTOM) (5) contributed to the generation of a detailed atlas of DNA
functional elements and transcriptional units uncovering that more than 80–90% of the human
genome is transcribed and display some functionality (4). In this context, Genome-wide association
studies (GWAS) emerged as a fundamental tool to define single nucleotide polymorphisms (SNPs)
associated to complex human traits or diseases (6–10). With regard to cardiovascular disease,
GWAS studies identified up to 161 genetic risk loci associated to coronary artery disease (CAD)
(11–13).
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Despite the profound contributions of GWAS to the
understanding of human disease pathophysiology, some issues
forced to redefine the framework of GWAS studies. First, most
significant GWAS hits could only explain a small fraction of
genetic variance for a specific trait (14). In the case of CAD,
all 161 genome-wide significant loci account for 15.1% of the
predicted genetic contribution to the disease (15), which is
strikingly similar to the percentage of gene sets (13.9%) or
gene networks (14%) implicated on these 161 CAD-associated
loci (12). An emerging notion, known as omnigenic model,
states that cell regulatory networks are so deeply connected
that basically all genes expressed in disease-relevant cell types
conspire to influence the heritability of complex traits (16).
Therefore, this model assumes that thousands of loci with
small size effects contribute to the overall heritability of the
trait or disease by affecting the expression of a smaller set of
core genes (16). It seems that the common disease-common
variant (CD-CV) model that drove the first decade of GWAS
studies is shifting to a complex trait-complex genetics (CT-CG)
scenario, where a handful of relevant variants cannot fully explain
genetic variation in whole populations. The overall notion of a
widespread dispersion of genetic contributions to disease due to
the interconnectivity of biological systems seems to be widely
accepted. On the other hand, the concept of a set of core genes
driving the phenotype of complex diseases is still controversial
and as a result the choice of methodology to address the future of
the field (17).

Nearly 90% of all phenotype-associated SNPs identified by
GWAS lied within non-coding regions (18–20), which includes
a broad spectrum of locations including intronic or promoter
regions, small ncRNAs such as miRNAs, long ncRNAs, antisense,
and enhancer or insulator regions. Most non-coding variants are
concentrated in deoxyribonuclease I (DNase I) hypersensitive
sites that label regions with increased chromatin accessibility.
Currently, around 2,500miRNAs andmore than 50,000 lncRNAs
have been annotated in the human genome, practically doubling
the number of protein coding transcripts, highlighting the
important role of this part of the genome (21).

This review summarizes genetic variations within lncRNAs
associated to cardiovascular disease (CAD, MI) and to various
cardiometabolic risk factors for cardiovascular disease such as
lipoprotein metabolism, diabetes or hypertension (Table 1).

IMPACT OF GENETIC VARIANTS ON
LNCRNAS FUNCTIONALITY

One of the longest-standing challenges in human genetics is
to assign potential causality within a locus to every variant
in close linkage disequilibrium (LD) with the lead variant
(34). Despite the potential of lncRNAs as causal factors of
disease, GWAS studies had a tendency to explore genetic
variant causality preferentially in coding genes, mostly due
to our limited knowledge of ncRNAs genomic structure and
functionality. Additionally, lncRNAs overlapping coding genes
(such as antisense and intronic lncRNAs) are harder to dissociate
from neighboring coding genes when searching for potential

causal variants compared to intergenic lncRNA (lincRNA) which
do not overlap coding genes. Fortunately, interactive lncRNA
databases (LincSNP2.0) (35) together with established GWAS
catalogs like NHGRI-EBI (36) and GWASdb.v2 (37) have
started to integrate newly identified lncRNAs transcripts and
disease-associated genetic variants. The latest databases mapped
371,647 disease-associated SNPs to lncRNA what accounts
for approximately 45% of all disease-associated human SNPs
identified (35).

Recent approaches focused on lincRNAs by further exploring
loci previously associated to CAD (32, 38–41). For example, a
class-level testing framework, termed Genetic Class Association
Testing (GenCAT) allowed the identification of new trait-
associated variants within multiple lincRNAs contributing novel
insights into their role in cardiometabolic pathophysiology (42).
GenCAT approach includes SNPs directly within the lincRNA
but also the ones 500 kb up- or downstream of the lincRNA (38).

In a functional perspective, many lncRNAs reside in the
nucleus conducting key regulatory steps in gene transcription,
transcript splicing or chromatin structure. Cytoplasmic lncRNAs
affect cell homeostasis by modulating translation and stability
of mRNA through scaffolding multi-protein complexes that
accomplish these functions (43). Several lncRNA functions
depend on structural domains that generate binding sites
to interact with RNA binding proteins (RBPs) acting as
scaffolds for recruitment of proteins, RNA molecules and
DNA elements (44–46). Some genetic variants are predicted to
impact lncRNA secondary structure and thereby lncRNA–RBP
interactions which can dramatically affect their functionality.
Low evolutionary conservation of lncRNAs constitutes a
challenge to predict structural domains and consequently how
genetic variants induce functional modifications (47). Moreover,
analysis of variation frequencies suggested that functional
elements in lncRNAs have a much lower variation frequency
almost comparable to protein-coding exons (48). Alternative
splicing is an additional mechanism to generate functional
diversity of lncRNAs by differential arrangement of structural
domains (19).

Furthermore, SNPs may affect lncRNA transcriptional
expression by altering its promoter region but also may influence
expression of proximal or distal protein coding genes through
the action of enhancers (19). Modulation of distant genes by
trans-regulation is mediated by lncRNAs-enhancers but the
effect of induced chromatin structural changes must be also
considered. Chromatin structural loops link regulatory enhancer
elements to distant gene promoters and variants disrupting this
process broadly influence gene expression (49). Distal regulatory
elements (DRE) can regulate the transcription of lincRNA
through chromatin interactions, which can be influenced by
GWAS-identified SNPs and define disease association (50).

LONG NON-CODING RNAS ASSOCIATED
TO CARDIOMETABOLIC TRAITS

The first examples of SNP variants associated to increased risk
of CAD located within a lncRNA were identified in the locus
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chr9p21.3, which resulted to be the CAD risk locus with the
strongest effect found up to date. Locus chr9p21.3 contained
multiple SNP variants at the antisense noncoding RNA in the
INK4 locus (ANRIL), now referred to as CDKN2B-AS1 (51–
53). CDKN2B-AS1 spans 126.3 kb in a gene cluster next to
three tumor suppressor genes (p15/CDKN2B, p16/CDKN2A
and p14/ARF), partially overlapping CDKN2B (53–55). Several
CDKN2B-AS1 SNP variants also associated to other disease
traits such as ischemic stroke, aortic aneurysm, atherosclerosis,
specific carcinomas and type 2 diabetes (T2D) (22, 56–
58).

Most SNPs in the core risk region for CAD located within
CDKN2B-AS1 intronic areas (118 out of 131 variants) where
several enhancers were described (59). These enhancers mediated
cys-regulation of neighboring genes like CDKN2A/B or methyl-
thioadenosine phosphorylase (MTAP) but also trans-regulation
of genes such as interferon-α21 (IFNA21), one million base
pairs upstream (59). CDKN2B-AS1 trans-regulation of gene
expression increased cell adhesion and proliferation, both
atherogenic processes, in a process partially mediated by ALU
elements located in CDKN2B-AS1 (60). Interestingly, CDKN2B-
AS1 interacted with a component of the polycomb repressor
complex (PRC) 1 and 2, which control the epigenetic repression
of the CDKN2B gene (61, 62). In fact, risk variant rs10757278
located at enhancer ECAD9 inside CDKN2B-AS disrupted the
binding site of STAT1 transcription factor (59). In lymphoid cells,
this disruption of STAT1 binding implied a failure to recruit
the repressor machinery and resulted in increased CDKN2B-AS
expression, a mechanism that was confirmed by the silencing of
STAT1 (Figure 1A) (59).

Only five of the CAD candidate variants are located in exons
of CDKN2B-AS1 but none of them are located in conserved
elements, questioning the likeliness to affect functional domains
(59). However, numerous splice isoforms have been identified for
CDKN2B-AS1 (14 isoforms, Genbank; 21 isoforms, GENCODE)
highlighting a complex alternative splicing regulation that
potentially affects the structural domain organization of the
lncRNA leading to modulation of its functionality (64). Carriers
of risk haplotype presented increased expression of CDKN2B-
AS1 splice-isoforms EU741058 (short form) and NR_003529
(long form) but not DQ485454 (short form) which directly
correlated with the severity of atherosclerosis, suggesting distinct
roles for CDKN2B-AS1 splicing variants (65). Additionally,
splicing isoforms defined by their polyadenylation site in
proximal (exon 13) or distal (exon 19) showed trans-regulation
of different set of genes. Proximal CDKN2B-AS1 isoforms
modulated expression of glucose and lipid metabolism genes
(66) while distal isoforms regulated RBMS1 (RNA Binding
Motif Single Stranded Interacting Protein 1), a cell cycle
suppressor (67). Conversely, circularized CDKN2B-AS1, another
form of alternative splicing, showed an atheroprotective role via
interaction with pescadillo homolog 1 (PES1) which leads to

impaired ribosomal biogenesis (68). An SNP located in the 3
′

region of CDKN2B-AS1 associated with reduced expression of
CDKN2A, CDKN2B and CDKN2B-AS1 but also with increased
VSMC proliferation (69). Other CDKN2B-AS1 variants confer
increased myocardial infarction (MI) risk (70), supporting

previous findings, where the level of CDKN2B-AS1 significantly
increased in peripheral blood mononuclear cells after MI (71).
Despite great efforts, causal mechanisms of CDKN2B-AS1
variants have been elusive and not fully unravel yet. For further
detail, we refer the reader to other excellent recent reviews on the
topic (23, 53, 72, 73).

Myocardial infarction associated transcript (MIAT) was
identified as a susceptible locus for MI in a Japanese population
by large-scale case-control associated study (63). MIAT
expression upregulation in a MI mouse model concomitant
with increased cardiac interstitial fibrosis suggested a profibrotic
role with a prominent impact in the MI pathogenesis (74).
Furthermore, ex-vivo experiments with a diabetic rat model
identified a regulatory feedback loop between MIAT, vascular
endothelial growth factor (VEGF) and miR-150-5p. MIAT acts
as a sponge for miR-150-5p and represses degradation of VEGF
mediated by miR-150-5p (Figure 1B) (75). Expression of both
MIAT and CDKN2B-AS1 increased in human atherosclerotic
arteries suggesting a potential role of MIAT on atherosclerotic
plaque development (76).

The embryonic lincRNAH19was identified to be re-expressed
in human atherosclerotic plaques and in a rat model of carotid
artery injury (77, 78). Recently, a genotyping study of 4 SNPs in
H19 locus demonstrated significant association with CAD in a
Chinese population (26). Additional GWAS and meta-analysis
studies proved association of H19 variants with blood pressure,
a well-known risk factor for cardiovascular disease (24, 25).
Mechanistically, H19 was proposed to modulate availability of
several let-7miRNAs by acting as amolecular sponge (79). Highly
expressed in adult muscle tissue, H19 modulation of let-7 likely
controls timing of muscle differentiation since H19 depletion
accelerates in vitro muscle differentiation with a concomitant
overexpression of let-7 (79). Additionally, H19 was highly up-
regulated in two different mouse models of abdominal aortic
aneurism whereas specific H19 knock-down limited aneurism
growth by a mechanism involving decreased apoptosis of smooth
muscle cells (80). Other lncRNAs that contained genetic variants
associated to CAD have been identified by GWAS studies but
not studied further on their putative causal mechanisms such as
LOC400684 an uncharacterized antisense RNA in the Zinc Finger
Protein 507 (ZNF507) locus (12) or lncRNA LINC00310 which
variant rs28451064 is also associated to myocardial infarction
(13).

Genome-wide analysis also revealed multiple variants
associated to cardiometabolic traits such as cholesterol levels
or type 2 diabetes (T2D), both of them established risk factors
of cardiovascular disease. For example, genetic variant lying in
the lincRNA LOC157273 associated to lipid (HDL cholesterol)
(27) and glycemic (fasting insulin levels) (29) traits but also
to coronary artery calcification (28). Genetic variants at
LOC157273 associated to expression changes of the nearby
gene PPP1R3B, a phosphatase involved in hepatic regulation of
glucose (81). Another SNP (rs886424) located in the second exon
of LINC00243 associated with total cholesterol and triglyceride
levels (32). Expression quantitative trait loci (eQTL) analysis also
associated variant rs886424 with LINC00243 expression levels
of as well as numerous nearby immune-related genes including
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FIGURE 1 | (A) Change of ANRIL expression through a variant in an enhancer region. The CAD associated variant rs107577278 lies within the binding site for the

STAT1 transcription factor of enhancer region ECAD9. In lymphoid cells the binding of STAT1 to this region has been associated to decreased ANRIL expression,

whereas silencing of STAT1 lead to an enhanced expression of ANRIL. The risk variant of rs107577278 disrupts the binding of STAT1 and the repression of ANRIL

expression is abrogated. Increased expression of ANRIL promotes a downregulation of CDKN2B/p15 gene expression and underlines a proliferative effect which

presumably increases CVD susceptibility. (B) Potential regulatory mechanisms of MIAT expression through different variants. Ishii et al. (63) unraveled that various

variants are present in the lincRNA MIAT and associated them to myocardial infarction such as rs3132291. Some variants in Exon 5 have been associated to

increased MIAT expression. Yan et al. showed in their study that MIAT can bind miR150-5p in endothelial cells and does inhibiting the degradation of its direct target

VEGF. These data suggest that certain variants in the MIAT lincRNA can modify the structure of MIAT and thus leading to increased binding of miR-150-5p and

consequently inhibiting the degradation of its target genes such as VEGF.

immediate early response 3 (IER3) and several HLA forms (32).
IER3 was reported to inhibit pro-inflammatory cytokines but the
exact role of LINC00243 in immune-function and its putative

link to cardiometabolic diseases requires further evaluation. One
of the SNPs associated to T2D (rs231362) in the KCNQ1 locus
overlaps both KCNQ1OT1 lncRNA antisense and the intron 11
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of KCNQ1 (32). Several other polymorphisms in KCNQ1 locus
associated also with cardiovascular events (82) and some showed
protective effect against arrhythmic risk in long-QT syndrome
(83). Both KCNQ1OT1 and CDKN2B-AS1 were shown to be
valid predictors of left ventricle dysfunction after an MI (71).
KCNQ1OT1 is an imprinted gene that is expressed only from
the paternal allele and responsible to silence a proximal cluster
of genes (84). Mechanistically, KCNQ1OT1 acts as a scaffold
for the chromatin modifiers HMT G9a and PRC2 as well as
DNA methyltransferase Dnmt1 which exerts gene repression
by histone modifications and DNA methylation, respectively
(84).

Finally, the ARIC (Atherosclerosis Risk in Communities)
study intended to establish genetic loci associated to ECG global
electrical heterogeneity (GEH) and consequently changes in
QT measurements and one of the identified loci contained
the lncRNA LINC02137 (33). LINC02137 was highly expressed
in human heart atrial-appendage region and eQTL analysis
showed that variant rs4784934 significantly associated with the
expression of LINC02137 and gene NDRG4 in atrial tissue.
NDRG4 was reported to be necessary for sodium channel
trafficking in the nervous system but also associated with
cardiomyopathy (85).

FUTURE PERSPECTIVES OF LNCRNA
GENETIC VARIANTS

Determination of potential causality among genetic variants
associated with cardiovascular and cardiometabolic diseases
remains a challenging future task. In the case of the functional
analysis of lncRNAs it is important to consider their low
expression levels and high degree of tissue and cell type
specificity. For example, tissue-specific expression quantitative
trait loci (eQTL) analysis of lncRNAs is a strong tool to
associate certain variants to downstream effectors. Genotype-
Tissue Expression (GTEx) project provides the possibility to
study tissue-specific gene expression and regulation on large scale
with 44 various tissues in 449 individuals, which allowed to build
up a resourceful platform in order to identify genetic associations
both for local (cis eQTLs) and distal (trans eQTLs) effects (86).
Nonetheless, it is relevant to indicate some limitations inherent
to this analysis tool such as the inability to detect small size
effect eQTLs due to multiple test burden, or the fact that eQTL
effects are strongly tissue specific which hinders the inference of
functionality and therefore caution must be taken to extrapolate
conclusions to other tissues.

Novel lncRNA were localized near leukocyte enhancers
and close to GWAS identified risk variants for autoimmune
diseases suggesting alterations in enhancers or super enhancers
might be associated to changes in phenotype and disease risk
(87). SNP in close proximity or even in far distance (e.g., in
trans location to the variant), may help unravel the complex
regulatory events of cardiovascular disease including underlying
importance of enhancers or super-enhancers (88). Yet, the term
“super-enhancer” is under debate since a clear definition has
not been established and their functional properties do not

necessarily set them apart from regular enhancers (89). Another
task for future studies is to determine the role of lncRNAs
and their genetic variants in the maintenance and remodeling
of the chromatin structure that drives interactions between
enhancers and transcription initiation sites. Chromosome
Conformation Capture (C3) technologies such as HiC (90,
91) or chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) (92) will be useful as genome-wide
approaches to study chromatin structural changes and to
define the impact of genetic variants in long-range chromatin
interactomes.

The advent of new sequencing technologies that improve
current throughput, length of reads and cost will increase the
number of annotated lncRNAs and help to define their complex
transcript models. One of such technologies is capture long-
read sequencing (CLS), a technique that uses lncRNA capture
enrichment with nanopore technology, which allows sequencing
of longer fragments (∼1.5 kb) for characterizing the lncRNA
structure (93). This highly promising approach would greatly
improve the task of defining exon connectivity and therefore
splicing transcript models.

Another feature to improve is our ability to predict and
characterize lncRNA structural motifs and their underlying
functional domains. Computational analysis approaches are
able to predict the formation of loops and simple helices but
are not so successful to define more complex motifs (94).
New high-throughput techniques based on new generation
sequencing (NGS) technologies emerged to define new motifs
and validate computational predictions in a genome-wide scale
(94). These methods use diverse RNA nucleases (ssRNA or
dsRNA) or chemical probes in combination with NGS to analyze
full transcriptomes in techniques such as Parallel Analysis of
RNA Structure (PARS) (95), Fragmentation Sequencing (96) or
Selective 2′ hydroxyl acylation analyzed by primer extension
(SHAPE) (97, 98). For a detailed functional characterization of
lncRNAs, novel identify structural domains should be linked
to interactome information that can be obtained with novel
technologies such as ChIRP (99) and CHART (100). These
techniques allow the identification of specific lncRNA interacting
partners such as RBPs and can also delimit the interaction sites to
specific domains within the RNA molecule.

Lastly, it will be relevant to understand the potential
regulatory effects that genetic variants within lncRNA have on
regulation of CpG islands in cardiometabolic disorders (32). In
fact, an integrative analysis of 11 human data sets generated
a reference human epigenome as a framework to characterize
GWAS variants that alter the epigenomic profile during complex
human diseases (101), which can be also used to profile the
non-coding genome.

In summary, in the post-GWAS era many relevant factors
must be considered in order to study the effect of genetic
variation in lncRNA, some of which comprise differential tissue
expression, splicing isoforms models, RNA structural prediction
and functional domain identification, and identification
of lncRNA interacting partners such as RBPs. The high
proportion of disease-associated SNPs lying in non-coding
regions highlighted their functional relevance and prompted a
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better understanding of lncRNA biology as well as regulatory
regions such as enhancer to unravel their potential role in
cardiometabolic diseases. The expansion of the GWAS field
to explore the functionality of lncRNA but also other non-
coding RNAs will provide potential novel regulatory causal
mechanisms of cardiovascular disease. This research area
warrants interesting new insights into underlying mechanisms
that determine the genetic component of human disease
and will clear the path toward a personalized medicine
approach.
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