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ABSTRACT
Background: Biocrusts, communities dominated by mosses, lichens, cyanobacteria,
and other microorganisms, largely affect the carbon cycle of drylands. As
poikilohydric organisms, their activity time is often limited to short hydration
events. The photosynthetic and respiratory response of biocrusts to hydration events
is not only determined by the overall amount of available water, but also by the
frequency and size of individual rainfall pulses.
Methods:We experimentally assessed the carbon exchange of a biocrust community
dominated by the lichen Diploschistes diacapsis in central Spain. We compared the
effect of two simulated precipitation patterns providing the same overall amount
of water, but with different pulse sizes and frequency (high frequency: five mm/day
vs. low frequency: 15 mm/3 days), on net/gross photosynthesis and dark respiration.
Results: Radiation and soil temperature, together with the watering treatment,
affected the rates of net and gross photosynthesis, as well as dark respiration. On
average, the low frequency treatment showed a 46% ± 3% (mean ± 1 SE) lower rate
of net photosynthesis, a 13% ± 7% lower rate of dark respiration, and a 24% ± 8%
lower rate of gross photosynthesis. However, on the days when samples of both
treatments were watered, no differences between their carbon fluxes were observed.
The carbon flux response of D. diacapsis was modulated by the environmental
conditions and was particularly dependent on the antecedent soil moisture.
Discussion: In line with other studies, we found a synergetic effect of individual pulse
size, frequency, environmental conditions, and antecedent moisture on the carbon
exchange fluxes of biocrusts. However, most studies on this subject were conducted in
summer and they obtained results different from ours, so we conclude that there is a
need for long-term experiments of manipulated precipitation impacts on the carbon
exchange of biocrusts. This will enable a more complete assessment of the impacts of
climate change-induced alterations in precipitation patterns on biocrust communities.
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INTRODUCTION
Biocrusts are communities dominated by cyanobacteria, algae, fungi, lichens, and
bryophytes living on the soil surface. They are a major feature in drylands worldwide,
with an estimated cover of around 12% of the terrestrial surface (Rodriguez-Caballero et al.,
2018), and act as a boundary layer between the soil and the atmosphere (Belnap, Büdel &
Lange, 2001; Belnap, Weber & Büdel, 2016). Biocrust constituents, such as lichens and
mosses, are poikilohydric organisms, which are dormant when desiccated and, unlike
vascular plants, cannot actively control their water balance. Their activity time is thus
limited to hydration events with water inputs from the atmosphere in the form of rain,
fog, dew, water vapor, or melting snow (Lange, 2001; Darrouzet-Nardi et al., 2015).
Despite their restricted activity time, biocrusts play an important role in the carbon
cycle of drylands through their photosynthetic and respiratory activity (Weber et al., 2012;
Sancho et al., 2016). The duration of moisture availability thereby controls the ratio of
respiratory losses to photosynthetic gains (Jeffries, Link & Klopatek, 1993; Belnap,
Phillips & Miller, 2004). Therefore, larger rainfall events are generally associated with
higher carbon gains, whereas small rain events can result in a carbon deficit, because
the initial respiratory losses cannot be compensated by subsequent photosynthesis
(Coe, Belnap & Sparks, 2012; Reed et al., 2012; Su, Lin & Zhang, 2012).

In addition to the importance of individual event size, rainfall frequency is a key
factor in determining the duration of moisture availability at the soil surface (D’Odorico &
Porporato, 2004), which affects the activity of biocrust constituents (Raggio et al., 2017).
As an example, a laboratory study with the common biocrust moss Syntrichia caninervis
showed that a higher frequency of sufficiently large rainfall events is beneficial in terms
of photosynthesis (Coe, Belnap & Sparks, 2012). These authors found that a shift in
the interval between two wetting events from 1 day to 5 days led to a decrease in the
mean carbon balance by nearly 90%, and became negative at an interval of 10 days.
Furthermore, the effect of watering patterns on the carbon flux response depends on
the season considered, as it plays an important role in determining the event size that
is necessary to reach the compensation point for net photosynthesis (Lange, 2001; Büdel
et al., 2009). Precipitation patterns can be beneficial in winter and lead to carbon losses
in summer due to higher temperatures (Darrouzet-Nardi et al., 2015) and different
physiological responses to rainfall events of the same size (Coe, Belnap & Sparks, 2012).

A spring to fall rainfall manipulation experiment on the Colorado Plateau
(southwestern United States) showed that a 50% above-average precipitation frequency
negatively impacts quantum yield, chlorophyll a, and protective pigment concentration
in lichen- and cyanobacterial biocrusts, especially if applied for a longer period
(Belnap, Phillips & Miller, 2004). In another study located in the same area, an increase in
the frequency of small summer rainfall events led to a negative carbon balance and
rapid mortality of S. caninervis (Reed et al., 2012; Zelikova et al., 2012). The additional
small rainfall events caused C starvation due to non-sufficient hydration of the moss
(Reed et al., 2012). In the same experiment, soil cyanobacterial biomass and abundance
also declined significantly following the second summer of altered precipitation patterns
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although the treatment increased overall moisture availability compared to control
conditions (Johnson et al., 2012). In the long term, an increase in the summer precipitation
frequency has been found to drive a shift in species composition from lichen- and
moss-dominated to cyanobacteria-dominated biocrusts (Zelikova et al., 2012;
Ferrenberg, Reed & Belnap, 2015).

Precipitation and water availability are the major driver of biocrust activity
(Wertin et al., 2012) and hence, changes in precipitation patterns, such as those
projected for climate change in drylands worldwide (Pachauri et al., 2014), will directly
and indirectly influence the ability of biocrusts to fix and store carbon (Belnap, Phillips &
Miller, 2004). However, we still know little about the impact of changes in precipitation
on the carbon uptake across biocrust communities in different dryland regions and across
seasons. In order to contribute to filling this knowledge gap, we have conducted a
short-term manipulative experiment in early spring to assess the effect of rainfall
patterns on photosynthesis and respiration of Diploschistes diacapsis, a lichen that
generally is dominant in the biocrust communities in central Spain (Maestre et al., 2011).
We compared the carbon exchange fluxes in response to two rainfall patterns that
provided the same overall water amount; in one of the treatments, single rainfall events
were smaller, but more frequent; while in the other one, single rainfall events were
larger, but less frequent. By doing so, we seek to understand which rainfall pattern could be
more beneficial for carbon fixation by biocrusts, and to set the direction for follow-up
long-term experiments in the field.

METHODS
Sample collection and experimental design
In March 2017, we collected 12 undisturbed soil cores (diameter: 10 cm, height: seven cm)
with a high crust cover (between 80% and 100%) of D. diacapsis at the rural estate El
Espartal, in the Southeast Regional Park of Madrid, central Spain (40�11′N 3�36′W,
574 m a.s.l.). The bioclimate of El Espartal is upper semiarid meso-Mediterranean, with a
mean annual temperature of 14.5 �C and a mean annual precipitation of around 389 mm
in the period from 1971 to 2000 (Cano Sánchez, 2006). The mean precipitation in
March and April is 36 and 52 mm, respectively. However, the historical minimum and
maximum monthly precipitation (1981–2010) are 1 and 196 mm in March and 11 and
162 mm in April with maximum daily precipitation amounts of 29 mm in March and
45 mm in April (Agencia Estatal De Meteorología, 2012). The soils of the area are classified
as Gypsic Regosols (Ortíz-Bernard et al., 1997) and Calcic Gypsisol (Monturiol Rodriguez
& Alcala Del Olmo, 1990). Perennial plant coverage is lower than 40% and the site
hosts a well-developed biocrust community dominated by lichens, such as D. diacapsis,
Squamarina lentigera, Fulgensia subbracteata, and Buellia zoharyi (see Fig. S1).

After collection, we covered the bottom of the soil cores with a fine-meshed fabric
to avoid soil loss and then took them to the lab, where they were watered to full saturation
with low mineralized water and drained for 24 h to determine the weight at saturation
water content. The undisturbed cores were placed on a structure that allowed water to
drain from the cores under a transparent roof at the Climate Change Outdoor Laboratory,

Baldauf et al. (2018), PeerJ, DOI 10.7717/peerj.5904 3/16

http://dx.doi.org/10.7717/peerj.5904/supp-1
http://dx.doi.org/10.7717/peerj.5904
https://peerj.com/


located at the facilities of Rey Juan Carlos University (Móstoles, Spain: 40�20′N, 3�52′W,
650 m a.s.l., see Fig. S2). Rainfall was excluded by the roof, whereas temperature and
radiation remained similar to those at ambient conditions. Five days after placing the
cores under the roof, we started to apply a daily water pulse of 5 mm to six of the samples
(high frequency treatment), and a 15 mm pulse at a 3-day interval to the other six
samples (low frequency treatment). In total, all samples received a water amount of 60 mm
during 12 days (from March 21st, 2017 until April 1st, 2017). Although D. diacapsis
can activate the photosynthetic system at smaller rainfall pulses (Lange et al., 1997;
Pintado et al., 2005), the watering patterns were chosen such that they were sufficient
to provide enough water to both stimulate a pulse of lichen activity and wet the soil
beneath the sample. Also, we wanted to ensure that the pulses exceed the threshold for
ecologically effective precipitation, which has been reported to be five mm in a
semiarid steppe ecosystem (Hao et al., 2013).

Measurements
One of the six samples from each treatment was used to monitor soil temperature at
three cm depth with a temperature sensor (UP Umweltanalytische Produkte GmbH,
Cottbus, Germany). In the other five soil cores, we conducted gas exchange measurements
using a Li-6400 portable photosynthesis system (Li-Cor, Lincoln, NE, USA). Measurements
were taken every day after the water application and started earliest at 9:30 am. The
mean time between water application and the first measurement of the samples was 77 min
(SD = 13 min). In each sample, light and dark measurements were paired. First, the net
CO2 flux was measured by placing a transparent chamber on the sample (hereafter referred
to as net photosynthesis), waiting for equilibrium to be reached between the chamber
(see Ladrón De Guevara et al., 2015 for a detailed description of the chamber) and the
sample prior to measurement. For each measurement under light conditions, we recorded
photosynthetically active radiation (PAR) with a Field Scout Quantum Light Meter
(Spectrum Technologies, Plainfield, IL, USA). Next, measurements were conducted in
the dark using the same technique as before, but this time placing an opaque cloth around
the chamber to exclude light (hereafter referred to as dark respiration). Similar to the
net photosynthesis measurements, we waited for the gas exchange to stabilize before taking
the measurements, a process which took ca. 3–5 min. We assume, that after this time
of dark-acclimation and stabilization, there is no longer a dynamic evolution of gas
exchange due to a decrease in residual photosynthesis (compare, Smith & Griffiths, 1996,
1998). Between each measurement, the infrared gas analyzers were standardized using
the “match” procedure of the measuring device. With these constraints, the paired
measurements were taken at the closest time possible to avoid a shift in the
environmental conditions between them. The difference between the paired light and dark
measurements was calculated, and will be referred to as gross photosynthesis hereafter.
As the underlying soil was not removed from the crusts, the measurements comprise the
fluxes from both biocrusts and underlying soil. With this, we follow an ecological approach,
taking into account the contribution of the whole soil profile and avoiding any mechanical
disturbance to the lichen (e.g., by thallus clipping) that could affect its functioning.
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Paired measurements were taken alternatingly between the samples receiving a high and
low frequency watering treatment to minimize the differences in environmental
variables between the measurements. In total, three paired measurements were taken
daily for every sample with a mean interval of 88 min between measurements. The last
measurements were taken with a mean time of 4.5 h after the watering of that day (for
detailed information on the mean times since the last watering see Table S1). On the 23rd
of March, only one paired measurement was made for each sample due to snow and
heavy wind being registered. Further measurements on that day were cancelled to avoid
damage to the measuring device. After daily gas exchange measurements, the sample
weights were determined to calculate the volumetric soil moisture. An average of on-site
bulk density measurements of 1.03 g cm-3 was used for all calculations.

The occurrence of dew could potentially influence the photosynthetic activity in our
microcosms. Therefore, we estimated dewpoint temperature according to Lawrence (2005).
For the calculation, we used the relative air humidity and temperature recorded by the
Li-6400 device and compared it to the lichen surface temperature which was recorded
by the device as well (see Fig. S3 for relative humidity, dewpoint and lichen surface
temperature during the measurements). Relative humidity did not exceed 76% and the
dewpoint never was reached. Hence, we assume that dew did not confound the response
of the microcosms to the applied watering treatments.

Data analysis
We applied linear mixed effect models to evaluate the effect of the high and low
watering frequency treatment and the environmental conditions on dark respiration, net
and gross photosynthesis. We used the R statistical software (R Core Team, 2018) with
the “nlme” package (Pinheiro et al., 2018) to conduct these analyses. Due to a high
correlation between PAR, air and soil temperature (Tsoil), we used PAR as a covariate in the
models of net and gross photosynthesis, and Tsoil in the model of respiration. Because
of problems with the measuring device, soil temperature data on the first day were only
available for the low frequency treatment from 11 to 12 am. We used the average of these
temperatures to fill the day’s measurement gaps because soil temperature did not differ
substantially between treatments. The watering treatment, PAR or Tsoil and their
interaction were included as fixed factors in the models. We followed a protocol for model
selection based on the AIC and maximum likelihood ratio tests to compare between
models (Zuur et al., 2009). We considered the sample identification as a random intercept
to account for the repeated measures, and we used a continuous autocorrelation structure of
order 1 (CAR1 correlation structure) to correct the temporal autocorrelation within each
sample. We monitored the AIC to choose the best-fitting model and checked model
assumptions using QQ-plots of the residuals and a plot of the standardized residuals vs. fitted
values. Due to the heteroscedasticity of the residuals, we allowed each day to have a different
variance structure. Next, we sequentially excluded the fixed factors from the full model
starting with the interaction and compared the models using a maximum likelihood ratio
test. In this way, we selected a final model that only contained terms significant at the 5%
level. The final model was refitted with restricted maximum likelihood estimators.
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We performed Wilcoxon rank sum tests to compare the soil moisture of the two
treatments on day 0, 1, and 2 since the last watering of the low frequency treatment.
Because data were not normally distributed, paired Wilcoxon rank sum tests were used
to compare CO2 fluxes of dark respiration, net and gross photosynthesis between the two
treatments overall and on the different days since the last watering. The same test was
also used to compare soil temperatures between treatments during the measurement times.
This data analysis was also performed using R statistical software (R Core Team, 2018).

RESULTS
Environmental conditions during the experiment
The temporal dynamics of the measured environmental variables (PAR, soil and air
temperature and soil moisture) were highly variable during the experiment (see Figs. 1
and 2). PAR values ranged from 50 to 2,000 mmol m-2 s-1, and exceeded the light
compensation point of D. diacapsis of around 100 mmol m-2 s-1 (Lange, 2001) for all
but five measurements. Ambient air and soil temperatures ranged from 6 to 31 �C and
from 3 to 25 �C, respectively. These wide ranges reflect the variable climatic conditions during
the experimental phase, with PAR, air and soil temperature decreasing after March 21st
and increasing towards the end of the experimental phase. Soil temperature was slightly
lowered in the high frequency treatment samples (W = 1,156, p < 0.001). The difference in soil
temperature was markedly higher during the last 4 days of the experiment (mean difference
of 1 �C) compared to the period before (mean difference of 0.3 �C).

Soil moisture dynamics generally reflected the applied watering patterns. The samples
of the low frequency treatment showed a decrease in soil moisture following the days
after the 15 mm pulse. The soil moisture of the high frequency treatment increased during
the first days because temperature and therefore evaporation were low and thus moisture
accumulated in the samples. When air temperature exceeded 20 �C, evaporation was
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high enough for soil moisture to decrease. On the days when the samples of both
treatments were watered, soil moisture was 13% higher for the low watering frequency
samples, which received 15 mm (W = 195, p < 0.001). On the following day there was
no significant difference in soil moisture between the treatments (W = 246, p = 0.221),
and on the second day after watering, soil moisture was 27% lower for the low watering
frequency samples (W = 354, p < 0.001). An overall comparison of soil moisture for
the entire experimental period did not indicate moisture differences between the
treatments (W = 1,262, p = 0.135). However, cumulative moisture was higher in the
high frequency treatment for all four periods of 3 days (see Table S2 for details).

Watering effects on CO2 fluxes
Similar to the environmental conditions, the CO2 flux measurements showed a high
variability. On the first day of the experiment, we observed a negative net photosynthesis
associated with high respiration rates in all samples measured (see Fig. 3A). On the
second day, net photosynthesis increased and stayed above or close to zero for the
remaining experiment. The flux difference between treatments became more
pronounced from the 29th of March until the end of the experiment. During these
days, temperature and radiation were higher and the largest flux differences were
associated with the largest differences in soil moisture between treatments.

Overall, we observed a net CO2 uptake (i.e., positive net photosynthesis) with mean
net fluxes of 0.35 ± 0.05 (mean ± 1 SE) and 0.56 ± 0.06 mmol m-2 s-1 for the low and
the high frequency treatment, respectively. When comparing the mean CO2 fluxes of
the two frequency treatments, all fluxes were significantly lower in the low frequency
treatment, with 13 ± 7% (mean ± 1 SE) lower dark respiration (W = 4,046, p < 0.001),
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46 ± 3% lower net photosynthesis (W = 9,818, p < 0.001) and 24% ± 8% lower gross
photosynthesis (W = 17,602, p < 0.001) (see Fig. 3B).

The relative difference between treatments changed with the days since the last
watering of the low frequency treatment (see Table 1 and Fig. S4). On days when both
treatments were watered, no significant flux differences between them were found
(see Figs. 4A–4C), net photosynthesis: W = 1,032, p = 0.391; dark respiration: W = 980,
p = 0.635; gross photosynthesis: W = 931, p = 0.909). In the low frequency treatment,
the CO2 fluxes for dark respiration, net and gross photosynthesis decreased on the
days following water application. For dark respiration the difference between the two
treatments was significant on the first and second day after watering (W = 587, p = 0.016).
Net and gross photosynthesis were more variable among samples, therefore means
only differed significantly on the second day following water application (net
photosynthesis: W = 1,034, p < 0.001, gross photosynthesis: W = 1,118, p < 0.001).

The linear mixed model analysis (see Table S3 for results of final model) showed a
significant influence of both the watering treatment and the environmental conditions on
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Table 1 Median and 95% confidence interval of the median (in brackets) of the pairwise relative
differences (%) between the two treatments by days since the last watering of the low frequency
treatment.

Days since last watering of
low frequency treatment

Net photosynthesis Dark respiration Gross photosynthesis

0 6 (-30.68) 1 (-4.8) -2 (-14.20)
1 15 (-44.64) 7* (-2.14) 5 (-3.27)
2 136*** (-92.182) 38*** (27.52) 71*** (55.91)

Note:
Significant differences resulting from a Wilcoxon rank sum test are marked in bold (*p < 0.05, ***p < 0.001).
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the measured carbon fluxes. We found a significant watering treatment:PAR interaction
and a watering treatment:Tsoil interaction on net photosynthesis and on dark respiration,
respectively (saturated model vs. model without interaction: df = 17, L-ratio = 6.96,
p = 0.008 for net photosynthesis and df = 17, L-ratio = 7.85, p = 0.005 for dark respiration).
Therefore, we could not exclude the single effects from the model. In contrast, the
interaction between these variables was not found to be significant for gross photosynthesis
(saturated model vs. model without interaction: df = 17, L-ratio = 2.65, p = 0.104). The
additive fixed terms PAR and the watering treatment both significantly affected the
model (additive model vs. model without PAR: df = 16, L-ratio = 147.7, p < 0.001, additive
model vs. model without the watering treatment: df = 16. L-ratio = 4.2, p = 0.040).

DISCUSSION
The carbon balance of biocrust communities depends on the patterns of moisture
availability, which are likely to be altered by climate change. Therefore, it is important to
assess how different biocrust communities respond to an alteration in the rainfall
event size and frequency and how regional and seasonal differences can influence this
response. In this study, we assessed how two different precipitation frequency patterns
providing the same overall amount of water (i.e. 5 mm/day vs. 15 mm/3 days) affected
photosynthesis and respiration of biocrusts dominated by D. diacapsis in central Spain.
We observed that radiation and soil temperature, together with the watering treatment,
affected the rates of net and gross photosynthesis, as well as dark respiration.

During most of the experimental period, temperature was below the optimum of 22–24 �C
for NP reported from D. diacapsis in Spain (Pintado et al., 2005). We observed the
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treatment. Measurements are displayed separately for each of the three low frequency interval
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highest carbon flux rates on the days when temperatures exceeded 20 �C. However,
the rates of 4–5 mmol m-2 s-1 that are reported at optimum temperature (Pintado et al.,
2005) were not reached in our experiment, where the maximum rates of
net photosynthesis and dark respiration were ca. 3 mmol m-2 s-1. A major contribution to
the difference of our measurements to the maximum net photosynthesis at
optimum conditions reported in the literature is possibly the hydration status of the
lichens, because PAR values exceed NP compensation point of D. diacapsis at this
temperature (Pintado et al., 2005).

In addition to the different water availability in the treatments, the lowered soil
temperature in the high frequency samples (0.3–1 �C difference) possibly contributed
to the observed differences between the treatments due to the exponential sensitivity of
respiration to temperature. A difference of 1 �C in temperature can lead to a difference
of around 5–8% in additive respiration of bare soil and D. diacapsis at the temperatures
relevant to our study (Lange et al., 1997; Pintado et al., 2005; Castillo-Monroy et al., 2011,
see Fig. S5). However, these temperature differences can only explain a small part of
the observed total changes in dark respiration and net photosynthesis. Thus, we conclude
that the main driver of the differences is water availability but that soil temperature
differences also contributed to the observed patterns.

Individual pulse sizes
We did not find differences in the mean photosynthetic and respiratory response between
the two pulse sizes evaluated (5 and 15 mm) on days when they were both applied.
However, on the first day of the experiment, when soils and lichens were dry prior to
watering, respiration, and net photosynthesis were higher in the samples receiving the
larger pulse. The lichen D. diacapsis can achieve its maximum net photosynthesis rate
at thallus water contents of around 0.5–0.75 mm precipitation equivalent (Lange, 2001;
Pintado et al., 2005). There are studies showing an effect of suprasaturation at a relative
water content of around 50% of the maximumwater holding capacity (Pintado et al., 2005)
and others that do not show a depression of photosynthesis at suprasaturation (Lange,
2001). Following these studies, we can assume that in our experiment both pulses were
large enough for moisture within the lichen to exceed this threshold. However, it is
unclear whether suprasaturation limited photosynthesis. An indication for a
suprasaturation effect could be the fact that the larger watering pulse did not lead to a
higher NP response, as we would have expected. Generally, larger rainfall events lead to
longer periods of moist conditions and therefore, more carbon can be fixed (Coe, Belnap &
Sparks, 2012; Reed et al., 2012). Su, Lin & Zhang (2012) reported higher net carbon fluxes
and respiration rates from cyanobacterial-lichen crusted soils in the Gurbantunggut
Desert after applying a single rainfall pulse of 15 mm compared to a 5 mm pulse applied
on dry soil. On the first days of our study, the 15 mm pulse led to higher net
photosynthesis despite the higher respiration compared to the 5 mm pulse. The
rewetting of dry biocrust communities and the underlying soil can lead to large
immediate carbon losses caused by physical processes, and increased respiration due
to cell reparation processes (Farrar, 1973; Smith & Molesworth, 1973; Lange, 2001).
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This explains the high respiration rates on the first day despite soil moisture being lower
than in the following days. The beneficial effect of the 15 mm watering pulse was not
sustained throughout the experiment, despite the soil moisture level after the water
application being always higher for this pulse size. This indicates that not only the moisture
content itself, but also the condition of a sample prior to moistening plays a role in the
carbon exchange response of biocrusts. Applying the larger pulse on previously wetted
soil was not beneficial in comparison to a smaller pulse that was already large enough
to sufficiently wet the sample to trigger photosynthetic activity.

Inter-pulse frequency
When looking at the simulated rainfall patterns, we found that smaller, more frequent
watering pulses were beneficial in terms of net photosynthesis. The observed differences
between treatments increased with differences in soil moisture, and were higher during
the last days of the experiment (when temperature and radiation increased). Our findings
suggest a synergetic effect between the individual watering pulse size, the frequency of
its occurrence, and other environmental factors such as antecedent moisture, temperature,
and radiation. Apart from the size and frequency of rainfall events, temperature is an
important control for moisture availability in drylands (Tietjen et al., 2017) and
evaporative losses increase with it. Consequently, the response of biocrusts to altered
precipitation frequencies is seasonally different because the water amount necessary to
exceed the photosynthetic net compensation point differs between summer and winter
(Lange, 2001; Büdel et al., 2009). There is evidence that, apart from the indirect effect
of temperature on water availability, desiccation tolerance is also a seasonally dynamic
physiological property in lichens and mosses (Green, Sancho & Pintado, 2011).
For example, the carbon balance of the biocrust moss S. caninervis was higher for the
same watering event when collected in winter compared to summer despite identical
laboratory conditions (Coe, Belnap & Sparks, 2012).

The interacting effect of season and temperature with alterations in rainfall patterns on
the performance of biocrust constituents is a common observation in many studies.
The correlation between rainfall frequency and biocrust growth was found to be positive
for winter rain and negative for summer rain areas in a study across southern African
sites (Büdel et al., 2009). In the southwestern United States, the carbon balance of
S. caninervis in response to rainfall frequency and amount was modulated by season
and events leading to a positive carbon balance in winter could result in carbon losses in
summer (Coe, Belnap & Sparks, 2012). Other studies from the same area reported a
negative effect of an increased summer precipitation frequency on different variables
related to the photosynthetic performance of cyanobacterial- and lichen-dominated
soil crusts (Belnap, Phillips & Miller, 2004; Johnson et al., 2012; Zelikova et al., 2012).

To our knowledge, there are no rainfall manipulation studies assessing the response of
D. diacapsis dominated biocrusts to different rainfall frequencies. Most of the studies
evaluating how alterations in the precipitation frequency affect physiology and functioning
of biocrust constituents have been conducted in summer, and therefore reported a
negative impact of a higher frequency of small pulses. We conducted this study in early
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spring, with rather cold nights and maximum temperatures around 30 �C. These moderate
temperatures enabled a constant activation of lichen photosynthesis during daily
measurements. The rainfall patterns applied in this study provided a total water amount
of 60 mm, which is well above the monthly saturation rainfall of 40 mm that is reported
for maximum biocrust activity across Europe (Raggio et al., 2017). In combination,
this led to a positive net photosynthesis and crust activity during the experiment. Field
measurements with lichen-dominated biocrusts in Spain show that periods of net carbon
fixation occur during the winter months, and are commonly restricted to a few hours
in the morning or the late afternoon; in summer and during midday, net photosynthesis is
mostly negative (Maestre et al., 2013; Ladrón De Guevara et al., 2014; Raggio et al., 2014).
In summer, potential evaporation rates are high and both biocrusts and the underlying
soil dry out relatively quickly upon rewetting. For an identical experiment conducted in
the summer time, we would therefore expect results that are more similar to those
reported from the summer studies mentioned above. However, since most rainfall
events in central Spain occur during the spring and autumn/winter period (Lafuente et al.,
2018), the impact of different rainfall patterns should also be studied during these phases
of high biocrust activity.

CONCLUSION
In accordance with other studies, we showed that precipitation frequency plays an
important role for the carbon balance of lichen-dominated biocrusts in central Spain.
Previous studies revealed a large variability in the carbon exchange response of different
biocrust constituents and communities to rainfall. To our knowledge, no studies so far
have assessed the responses of D. diacapsis dominated biocrusts to altered early spring
precipitation frequency. In contrast to what has been found in previous studies at high
summer temperatures and conducted with other biocrust-forming lichens and mosses,
our results indicate that at moderate temperatures, a higher rainfall frequency is beneficial
given the same overall water amount over a short period. This clearly shows that
the gas exchange response to different rainfall frequencies is modulated by radiation
and temperature conditions leading to seasonal differences. We therefore call for detailed
cross-site and cross-season comparisons of the impacts of altered rainfall patterns on
the carbon fluxes of biocrust-dominated soils.
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