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INTRODUCTION

In experimental psychology, including consciousness research, within-participant designs are
typically more powerful than between-participant designs. During the last decades or so, the
most widely used statistical method to analyze data from within-participant designs has been the
repeated-measures (rm-) ANOVA. In recent years, however, empirical studies have increasingly
turned toward using linear mixed effects models (LMM) to analyze data from within-participant
designs (Baayen et al., 2008; Magezi, 2015).

LMMs are sometimes preferred over rm-ANOVA for a single practical reason, namely their
ability to deal with unbalanced and incomplete data sets. For the sake of illustration, I will briefly
describe a simple psychophysical experiment. Participants are instructed to respond as quickly and
as accurately as possible to some predefined feature of a visual target (e.g., its semantic category).
Response times (RTs) are recorded as the dependent variable. Immediately before the presentation
of the target, another visual stimulus is presented. In the following, I will refer to this stimulus as
the cue stimulus. The cue stimulus is presented at the threshold (liminally) or near the threshold of
perception (peri-liminally), so that participants sometimes see the stimulus, and sometimes miss it.
Liminal presentation can be achieved by low visual contrast, brief presentation times, and various
psychophysical suppression methods (Breitmeyer, 2015). On each trial, participants first provide
the speeded response to the target stimulus, and then rate the subjective visibility of the liminal cue
stimulus using a binary scale (“seen,” “not seen”). Alternatively, a continuous subjective visibility
scale such as the perceptual awareness scale (PAS) can be binarized by selecting and/or pooling
across ratings.

A classical research question would be whether some features of the cue facilitate the response
to the target (i.e., priming). Based on the subjective trial-based assessment of awareness, or post
hoc trial sorting, priming can be compared when the cue is not consciously perceived relative to
when it is (Van den Bussche et al., 2013; Avneon and Lamy, 2018). Another research question could
be whether the visibility of the cue stimulus itself affects the RTs to the target stimulus. Due to
cognitive costs associated with seeing the cue, responses to targets preceded by “seen” cue stimuli
may be slower or less accurate than the responses to targets preceded by “unseen” cue stimuli.
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In these examples, one commonly used statistical approach is to
first sort trials into “seen” and “not seen” trials, and then average
and submit the data to rm-ANOVA1.

In the absence of individual adjustment of stimulation
parameters, it is a realistic scenario that the distribution of
visibility ratings will be different for individual participants. In
the extreme case, some participants might only rarely, or even
never provide “seen” ratings, while other participants mostly
provide “seen” ratings and therefore hardly any or no “not
seen” ratings. Since the rm-ANOVA is based on the mean RTs
per condition, participants with no “seen” trials or no “not
seen” trials will be removed from the statistical analysis. Some
researchers might also be reluctant to use mean RTs based
on <10 trials or so. In this situation, and primarily for the
pragmatic reason to use most of the obtained experimental
data, the researcher might decide to calculate LMMs, which
can accommodate missing data. Before introducing the data
simulation, the next paragraph provides a brief overview of the
assumptions for rm-ANOVA and LMMs.

ASSUMPTIONS OF RM-ANOVA AND LMMS

Rm-ANOVA and LMMs are extensions of linear regression,
and a number of assumptions are therefore common to both
methods (Field, 2012). Among these, the absence of correlation
with external variables is most important for the current
data report. Beyond the common assumptions, rm-ANOVA
additionally requires compound symmetry and complete data
(Magezi, 2015). Compound symmetry means that the variances
as well as the covariances of the repeated measures are similar
(or, homogeneous). If the stringent assumption of compound
symmetry is violated, then the sphericity assumption is still
a necessary and sufficient condition for the F-tests to be
valid. Sphericity means that the variances of the difference
scores (between the levels of the repeated factor) are similar.
The assumption of sphericity is often violated in experimental
psychology, which may increase Type I errors, but this violation
can be accounted for by correcting the degrees of freedom (e.g.,
using the Greenhouse-Geisser correction). Please note that in the
current data simulation, the sphericity assumption is met because
the repeated factor has only two levels (“seen” and “not seen”;
see data simulation below). Follow-up simulations employing
graded levels of visibility will need to consider sphericity when
calculating rm-ANOVA. Complete data, the second additional
assumption of rm-ANOVA, means that, for each participant,
measurements must be available for all levels of the repeated
factor. In contrast to rm-ANOVA, LMMs do not depend on
assumptions about the variance-covariance matrix, and LMMs
can accommodate missing data (Magezi, 2015).

SIMULATED DATA SETS (METHODS)

In this data report, unbalanced within-participant data sets were
generated in a numerical simulation, in order to compare the

1Please note that statistical test including a factor that was not under experimental

control are generally considered exploratory, not confirmatory (de Groot, 2014).

statistical outcomes of rm-ANOVA and LMMs. The R code for
the data simulation is available at the Center for Open Science
(OSF; https://osf.io/d7y8h/).

In total, 100 trials per participant (N = 50) were generated.
The level of balancedness ranged from 1 to 50. At level
1, one trial was rated as “seen,” while 99 trials were rated
as “not seen” (Figure 1A). At level 50, 50 trials were rated
as “seen,” and 50 trials were rated as “not seen,” thus
indicating maximal balancedness (Figure 1B). Negative levels of
balancedness indicate the inverse pattern, such that at level −1
one trial was rated as “not seen,” while 99 trials were rated as
“seen.” Accordingly, levels 1 and −1 indicate the lowest level of
balancedness.

Figures 1A,B illustrates that two subsets of participants were
simulated: participants with short RTs (subset “Fast”, F), and
participants with long RTs (subset “Slow,” S). Subset “Fast”
(N = 25) had RTs ranging from 0s to 1s (mean 0.5s), while subset
“Slow” (N = 25) had RTs ranging from 1s to 2s (mean 1.5s).
Both RT distributions were based on the rnorm function in R
(mean= 1, standard deviation= 1), and rescaled to the range 0–
1s. For subset “Slow”, 1s was added to each RT data point. Note
that for the sake of illustration, Figures 1A,B plots the data from
only 20 participants (subset “Fast”: 1–10, subset “Slow”: 11–20).

Two different relationships between the participants’ subset
membership and the pattern of subjective visibility ratings were
simulated. In the “correlated” case, a tight relationship was
simulated (Figure 1A). For example, at balancedness level 1 in
subset “Fast,” one trial was rated as “seen,” and 99 trials were rated
as “not seen.” Subset “Slow” showed the inverse rating pattern
so that at level 1 one trial was rated as “not seen,” while 99
trials were rated as “seen.” This scenario is not implausible, as
it might be the case that participants with shorter RTs (subset
“Fast”) consciously perceive the liminal cue stimulus less often
than participants with longer RTs (subset “Slow”). For the sake
of consistency, we simulated the inverse pattern for each level
of balancedness: at levels 1–49, subset “Fast” was the subset with
short RTs, while at levels−1 to−49 the same subset showed long
RTs. In the “random” case, participants were randomly assigned
to the subsets so that there was no relationship between the
participants’ subset membership and the pattern of subjective
visibility ratings (data not shown). In both cases, 1,000 data sets
were generated for each level of balancedness. Crucially, no effect
of factor “visibility” was simulated, neither in the correlated case
nor in the random case.

STATISTICAL OUTCOMES (RESULTS)

Data analysis focused on the relative frequency of significant
(p < 0.05) tests of the two-level factor “visibility” (i.e., false
positive rate), as resulting from the 1,000 rm-ANOVAs and
1,000 LMMs at each level of balancedness. The rm-ANOVA
was calculated using the aov_car() function of the afex package
in R. Type III sums of squares were used, as these are default
in many commercially available statistical packages (e.g., SPSS).
The LMM was calculated using the lmerTest package in R, with
Satterthwaite’s approximation of degrees of freedom. The LMM
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FIGURE 1 | Simulated data sets and statistical outcomes. (A) Maximally unbalanced data set (level 1). Participants 1–10 produced 1 trial in condition 1 (“seen”, red

bars), and 99 trials in condition 0 (“not seen,” blue bars). Participants 11–20 showed the inverse pattern. Simulated is a tight relationship between the visibility ratings

and RTs, such that participants 1–10 had shorter RTs than participants 11–20 (correlated case). (B) Fully balanced data set (level 50). Each participant produced 50

trials in condition 0, and 50 trials in condition 1. (C) Mean RT differences between the two visibility conditions, across all levels of balancedness. (D) False positive rate

for rm-ANOVA. (E) False positive rate for LMM. (F) Mean LMM estimates for fixed effect “visibility” across all levels of balancedness. (C–F) magenta squares indicate

the correlated case, and black triangles indicate the random case.

included the two-level factor “visibility” (cond) as fixed factor as
well as random slope [“RT∼ (1+cond|subj)+ cond”]. Note that
“subset” was not part of the LMMs, as the relationship between
the participants’ subset membership and the subjective visibility
ratings was assumed to be unknown to the researcher prior to the
experiment.

Figure 1C plots the mean RT difference between the two
visibility conditions across all levels of balancedness, separately
for the “correlated” case and the random case. “Mean RT” refers
here to the global mean across the 1,000 mean RT differences
from the simulated data sets. As expected, the mean RTs vary
around zero, since no effect of factor “visibility” was simulated.

Figure 1D plots the false positive rate for the rm-ANOVA. For
each level of balancedness, the false positive rate is close to 0.05.
Figure 1E plots the false positive rate for LMMs. When the level
of balancedness is approx. below 10, the false positive rate begins
to exceed 0.05. For maximally unbalanced data, the false positive
rate is about 30%. However, this increase of false positives is only
observed in the correlated case.

Figure 1F plots the mean LMM estimates for the fixed
effect “visibility” across all levels of balancedness. In

the random case, the estimates vary around zero. In the
correlated case, the estimates deviate from zero for massively
unbalanced data sets (i.e., toward the left/right limits of
the x-axis), in agreement with the increased false positive
rate.

Figure 2 provides a number of diagnostic plots.
Figure 2A plots the p-value distributions of rm-ANOVA
and LMM, when the data are maximally unbalanced
(balancedness level 1, correlated case). As can be seen,
the distribution is heavily skewed in the case of LMM.
Figure 2B plots the residuals for one simulated data set
with p = 0.005 (balancedness level 1, correlated case). The
figure suggests that a violation of the normality assumption
cannot explain the observed increase in false positives for
LMMs.

CONCLUSION

LMMs yielded strikingly more false positives than rm-ANOVA
in the case of massively unbalanced within-participant data
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FIGURE 2 | Distribution of p-values and diagnostic plots. (A) Distribution of p-values from 1000 LMMs. Right panel: Distribution of p-values from 1,000 rm-ANOVAs.

The red vertical lines indicate p = 0.05. The skewness was computed using the skewness() function of the moments package in R. (B) Normal Q-Q plot of LMM

residuals for one simulated data set with p = 0.005. Right panel: Boxplot of LMM residuals for one simulated data set with p = 0.005, separately for condition 0 (“not

seen”) and condition 1 (“seen”). Data from maximally unbalanced data sets (level 1) in the correlated case.

sets, when a previously unknown grouping factor remained
unaccounted for. In the specific example used in this data
report, the LMMs frequently indicated an effect of factor
“visibility,” while only a RT difference between two subsets
of participants was present in the simulated data. One
solution to this problem would be to include the rating
behavior of each participant in the linear model (e.g., the
ratio between “seen” and “not seen” trials). The behavior of
LMMs in more realistic and complex scenarios (e.g., including
participants with missing data in one visibility condition)
awaits further investigation. Follow-up data simulations
should also investigate the rate of false negatives in similar
scenarios.

While LMMs are more flexible than rm-ANOVA, and
therefore are becoming increasingly popular in experimental
psychology, researchers using LMMs for unbalanced data sets
should be aware of the caveat described in this data report. It is
generally advisable to carefully visualize the data prior to analysis,
as well as to consult diagnostic plots when using LMMs. Finally, if

a data set turns out to be massively unbalanced such that subsets
of participants have only few trials at a specific factor level, or that
participants show very different patterns of visibility ratings, the
experimental design per se might have to be reconsidered.
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