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Abstract

This thesis addresses important algorithms and data structures used
in sequence analysis for applications such as read mapping. First, we
give an overview on state-of-the-art FM indices and present the latest
improvements. In particular, we will introduce a recently published
FM index based on a new data structure: EPR dictionaries. This
rank data structures allows search steps in constant time for unidi-
rectional and bidirectional FM indices. To our knowledge this is the
first and only constant-time implementation of a bidirectional FM
index at the time of writing. We show that its running time is not
only optimal in theory, but currently also outperforms all available
FM index implementations in practice.

Second, we cover approximate string matching in bidirectional in-
dices. To improve the running time and make higher error rates suit-
able for index-based searches, we introduce an integer linear program
for finding optimal search strategies. We show that it is significantly
faster than other search strategies in indices and cover additional im-
provements such as hybrid approaches of index-based searches with
in-text verification, i.e., at some point the partially matched string is
located and verified directly in the text.

Finally, we present a yet unpublished algorithm for fast computa-
tion of the mappability of genomic sequences. Mappability is a mea-
sure for the uniqueness of a genome by counting how often each k-mer
of the sequence occurs with a certain error threshold in the genome
itself. We suggest two applications of mappability with prototype im-
plementations: First, a read mapper incorporating the mappability
information to improve the running time when mapping reads that
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match highly repetitive regions, and second, we use the mappabil-
ity information to identify phylogenetic markers in a set of similar
strains of the same species by the example of E. coli. Unique regions
allow identifying and distinguishing even highly similar strains using
unassembled sequencing data.

The findings in this thesis can speed up many applications in bioin-
formatics as we demonstrate for read mapping and computation of
mappability, and give suggestions for further research in this field.
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1 Introduction

1.1 Sequence Analysis

In the field of sequence analysis, searching biological data is an es-
sential step in many bioinformatics applications. These applications
such as read mapping or protein search tools, to name a few, rely
on searching enormous amounts of data, such as DNA or protein
sequences, that have been sequenced at some point and have been
accumulated in databases over decades. The main challenges that we
come across in this field are due to the advancements in sequencing
technologies.

Since sequencing costs dramatically decrease as new methods are
developed, the amount of accumulated data grows faster and faster.
The growth can be observed in large sequence databases such as the
Sequence Read Archive (SRA) which is a public repository led by an
international collaboration including the National Center for Biotech-
nology (NCBI). It contains primarily DNA sequencing data from
high-throughput sequencing experiments. High-throughput sequenc-
ing (next-generation sequencing, NGS) classifies multiple sequencing
technologies that were developed for low-cost and highly paralleliz-
able sequencing.

Figure 1.1 compares the data growth of the SRA to Moore’s law,
an observation that the number of transistors in integrated circuits
doubles every 18 to 24 months which comes along with a similar
performance increase of CPUs [Moore, 1965]. It indicates that ad-
vancements in computer architecture are not sufficient to process the
ever growing databases.

11



1 Introduction

2007 2009 2011 2013 2015 2017
107

108

109

1010

1011

1012

1013

Year

Mega bases in the SRA
Transistors in a CPU

Figure 1.1: The number of mega bases sequenced in the SRA com-
pared to the transistor count on a logarithmic scale.1

One of the major applications in bioinformatics is read mapping.
When a genome is sequenced, instead of a single sequence many short
sequences (so-called reads) are outputted by the sequencing machine.
Depending on the sequencing technology common read lengths for
high-throughput sequencing range from 100 to 250 base pairs such
as for Illumina HiSeq experiments. Multiple sequencing runs are
performed. In each run the reads are likely to begin at slightly dif-
ferent positions in the genome, i.e., the reads of different sequencing
runs overlap and can be reassembled to retrieve the original genome.
There are two kind of assemblies: de-novo and mapping assembly.
While de-novo assembly is typically used if the genome is sequenced
for the first time and no reference genome exists, mapping assembly
requires a reference genome and maps each read to it [Mäkinen, Veli
and Belazzougui, Djamal and Cunial, Fabio and Tomescu, Alexan-
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1.1 Sequence Analysis

dru I, 2015]. The mapping locations are then used to reconstruct the
genome.

Going a step further to the field of metagenomics, reads are not
searched in a single reference genome, but in a large database of dif-
ferent genomes. This is done when sequencing an unknown sample
to determine the species present in the sample. Similar applications
are protein search tools. Samples can be sequenced for RNA tran-
scripts that will later be translated to proteins. These transcripts
are searched in transcript or protein databases such as UniProtKB
[Apweiler et al., 2004] to analyze the transcriptome of cells.

All these applications that map sequences to a reference sequence
or search them in a large database of sequences share common charac-
teristics: the databases searched are rather static. Reference genomes
are seldom updated, databases such as UniProt are currently updated
every 4 weeks2. Due to the large throughput of next-generation se-
quencing machines (e.g., 160 GB per day, HiSeq 2500 [Reuter et al.,
2015]), an enormous amount of reads is produced. Since each read is
searched in the reference sequence or database, the data is indexed
prior to searching. This significantly improves the running time of
the search.

Another challenge that is addressed in this thesis is the demand
for higher accuracy in many applications. Whenever sequences are
searched in a reference data set, a certain amount of errors has to be
taken into account. Due to sequencing errors [Yang et al., 2012] or
genetic variations [Pavlopoulos et al., 2013], reads from the sample
might not occur exactly in the reference data set. The most com-
mon form of genetic variations are single nucleotide polymorphisms

1The transistor count data was taken from https://ourworldindata.org/
technological-progress and the SRA statistics from https://trace.
ncbi.nlm.nih.gov/Traces/sra/sra.cgi, accessed on January 3rd, 2019

2https://www.uniprot.org/help/synchronization, accessed on December 11th,
2018
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1 Introduction

(SNPs), i.e., a single base mutates. It can either be replaced by a
different base (i.e., a substitution) or a base is inserted respectively
deleted. The same kind of error types can occur during the sequenc-
ing process, while the error profile varies depending on the sequencing
technology. Illumina sequencing for example produces mostly substi-
tution errors.

To account for these errors, approximate matches are also consid-
ered, i.e., matches that are identical except up to a certain percentage
of substitutions, insertions, or deletions. Searching and allowing for
errors, which is referred to as approximate string matching, is expen-
sive for larger number of errors. Thus, most read mappers and search
tools only have a feasible running time for a small number of errors.

1.2 Outline

This thesis will cover two crucial steps in the aforementioned appli-
cations: indexing of biological sequences for efficient searching and
approximate string matching algorithms in indices.

In chapter 2 we introduce one of the most common state-of-the-art
string indices. The FM index is used by many notable read mapping
tools such as Bowtie 2 [Langmead and Salzberg, 2012b], BWA [Li and
Durbin, 2009a], and search tools for nucleotide sequences or proteins
such as LAST [Kielbasa et al., 2011] or Lambda [Hauswedell et al.,
2014]. We also present improved unidirectional and bidirectional FM
indices that are significantly faster, both in theory and in practice.
Their open-source implementations are currently the fastest avail-
able [Pockrandt et al., 2017]. Due to the rapidly growing sequence
databases and the faster sequencing technologies, not only more data
is being sequenced that has to be mapped or searched, but also larger
databases increase the time for searching. Using faster indexing data
structures such as an improved FM index, the algorithmic side can
keep pace with the technological advancements in sequencing.
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1.2 Outline

In chapter 3 we introduce algorithmic approaches for approximate
string matching in indices. We present an improved framework and
an integer linear program to compute optimal search strategies in
bidirectional indices leading to a faster string matching algorithm
[Kianfar et al., 2018] that proves to be faster in practice than other
approaches. This allows for even higher error rates for many bioin-
formatics applications.

An example for applications with higher error rates is presented
in section 3.9. For CRISPR/Cas9 experiments we searched for off-
targets in the human genome for given guideRNA sequences. These
guideRNA are short RNA sequences that are designed to bind to spe-
cific locations in the genome that – hopefully – will not bind anywhere
else. These locations of other potential matches are called off-targets.
Since RNA-binding can also be prone to errors, we have to perform
approximate string matching when searching for off-targets. As part
of the pipeline, guideRNA of length 23 were searched in the genome
with up to 8 errors which corresponds to an error rate of more than
33%, which many read mapping tools are not suited for.

In chapter 4 we present some of our applications that make use
of the two presented improvements in the field of sequence analy-
sis: faster string indices and faster approximate matching in indices.
We will cover the concept of mappability, i.e., determining which
regions of a genome or a set of genomes are unique and which are
repetitive. We will give a faster algorithm for the computation of
the mappability and suggest new applications of mappability. First,
we introduce an improved read mapper incorporating mappability
information into the mapping process. Second, we use mappability
information on a set of similar strains of the same species to iden-
tify marker genes. These are short unique sequences in the data set
that allow determining the specific strain using only its unassembled
sequencing data.
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2 Indexing Data Structures

2.1 Notation

First, we introduce some notation that will be used throughout this
thesis.

Definition 2.1.1 (Strings).
We call T a string of length |T | = n over the alphabet Σ, i.e., T ∈ Σn.
Strings are indexed from 1 to n, T [i] represents the ith character with
1 ≤ i ≤ n.

In most programming languages strings and arrays are indexed
from zero. Since this makes the notation and formulas more complex,
all strings and arrays will be indexed beginning from one, if not stated
otherwise.

Definition 2.1.2 (Infixes, Suffixes and Prefixes).
An infix of T is a substring written as T [i..j] with 1 ≤ i ≤ n+ 1 and
1 ≤ j ≤ n. If i > j, the infix is empty, e.g., T [1..0] = ε. Suffixes
T [i..n] with 1 ≤ i ≤ n + 1 can be denoted as T [i..], a prefix T [1..i]
with 0 ≤ i ≤ n as T [..i].

Definition 2.1.3 (String concatenation).
Two strings can be concatenated using the concatenation operator
· : Σm × Σn → Σm+n. Characters are considered strings of length 1.
Let T1 and T2 be two strings of length m and n:

(T1 · T2)[i] =

{
T1[i] , i ≤ m
T2[i−m] , otherwise

If not stated otherwise, all logarithms in this work are to base 2.
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2 Indexing Data Structures

2.2 Overview

In bioinformatics applications such as read mapping many short se-
quences are searched in a text. Both, the query sequences and the
text are represented as strings over the same ordered, finite alphabet
Σ = {c1, c2, . . . , cσ}. < ⊆ Σ × Σ is a total order with c1 < c2 <
· · · < cσ. Since the text T is in general much longer than each query
sequence and mostly static, i.e., does not change often over time, T
is preprocessed before the search and a so-called string index is built
to speed up the searches. A query sequence (also referred to as the
pattern) is denoted as P .

There are multiple string indices that mainly differ in space con-
sumption and time complexity to search them. Before we introduce
some of these indices we define some common terms.

Definition 2.2.1 (Full-text index).
A full-text index, sometimes also referred to as a (sub-)string index,
is a data structure that allows searching substrings in the text in
sublinear time of the text’s length.

Definition 2.2.2 (Searching and locating).
When introducing full-text indices, we will look at two operations
separately: searching a query sequence and locating it. Searching
determines whether it occurs in the text and if so, to count the num-
ber of occurrences. Locating retrieves the starting positions of the
searched query sequence in the text. Locating requires searching the
query sequence in advance. Since these two operations require dif-
ferent data structures and operations on these, we will cover them
separately.

18



2.2 Overview

Definition 2.2.3 (Forward and backward searches).
In most indices query sequences are searched character by character,
either starting from the left or from the right. Searching a pattern P
of length m starting from the left and extending the prefix character
by character to the right is referred to as forward searches. A search
step is denoted as P [..j] → P [..j + 1] for 0 ≤ j < m. Searching a
pattern from right to left by extending the suffix, is referred to as
backward searches. A backward search step is denoted as P [i..] →
P [i− 1..] for 1 < i ≤ n+ 1.

Definition 2.2.4 (Unidirectional index).
Unidirectional indices support either only forward searches or back-
ward searches.

Definition 2.2.5 (Bidirectional index).
Bidirectional indices support both forward and backward searches. A
query sequence can be extended by a character to the left or to the
right, regardless of the direction of the previous character extension.
Hence, one can start the search at any position in the pattern and
extend the infix of P to the left or to the right in any arbitrary order.

We will only consider full-text indices that allow to search sub-
strings of arbitrary length. Some indices are limited in the length
of the substring, such as k-mer indices, which are also referred to as
n-gram indices. The idea is to speed up the search by storing a pre-
computed dictionary containing the text positions of each Σk (or just
the number of occurrences). As the applications are more limited due
to the fixed length k of substrings, we will not further consider these
kind of indices.

For building an index, we need to define a sentinel character and
the lexicographical order on strings over Σ.

19
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Definition 2.2.6 (Sentinel character).
For comparing strings of different length and to define a unique or-
dering of cyclic rotated strings, we introduce a sentinel character,
denoted as $ /∈ Σ. It is defined to be smaller than any character
in Σ. It will be appended to the end of a string and cannot occur
anywhere else in the string. For simplicity of notation, we assume
when introducing a string T of length n over Σ that it already has
the sentinel character appended, i.e., T [n] = $.

Definition 2.2.7 (Lexicographical order).
The lexicographical order of two strings X and Y of equal length with
X = x0x1 . . . xk and Y = y0y1 . . . yk is defined such that

X <lex Y iff. ∃ i ∀i′ < i : x′i = y′i ∧ xi < yi .

Strings of different lengths are compared by padding the shorter
string with sentinel characters. This definition corresponds to alpha-
betical sortings generally used in conventional dictionaries. ≤lex is
defined analogously. Additionally, we define the comparison opera-
tor <lex,m (and ≤lex,m analogously) that compares only the first m
characters, i.e.,

X <lex,m Y iff. X[1..min{|X|,m}] <lex Y [1..min{|Y |,m}] .

20



2.3 Suffix Arrays

2.3 Suffix Arrays

2.3.1 Definition

Before we take a look at the state-of-the-art indices for many bioin-
formatics applications, we introduce suffix arrays which are funda-
mental for understanding FM indices and give a short introduction
into building and searching these indices.

Definition 2.3.1 (Suffix array).
Given a string T of length n over the alphabet Σ, the suffix array
SA[1..n] is an integer array indicating the starting positions of each
suffix of T in lexicographical order.

To put it another way, T [SA[i]..] is the ith lexicographically small-
est suffix of T for every 1 ≤ i ≤ n. Figure 2.1 shows the suffix array
of the text T = mississippi$ with the corresponding suffixes.

i 1 2 3 4 5 6 7 8 9 10 11 12

T[i] m i s s i s s i p p i $

SA[i] 12 11 8 5 2 1 10 9 7 4 6 3

$ i$ ippi$
issippi$
ississippi$
m

ississippi$
pi$
ppi$
sippi$
sissippi$
ssippi$
ssissippi$

Figure 2.1: Suffix array of the text T = mississippi$.

Since the largest value in SA is n, we need dlog ne bits per value
leading to a space consumption of n · dlog ne ∈ Θ(n log n) bits when
storing it in a bitcompressed array.
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2.3.2 Construction

The suffix array can be trivially constructed by sorting the range of
integers [1, n] such that i < j if and only if T [i..] <lex T [j..]. Using
a comparison-based sorting algorithm such as Merge Sort [Knuth,
1997] with Θ(n log n) comparisons, this approach yields an overall
worst-case running time of Θ(n2 log n).

Proof. A comparison of two suffixes takes O(n) time leading to a
worst-case running time of O(n2 log n). We show that the worst-case
bound is tight. Let T = aa . . . a$ and n even (to avoid rounding).
We only consider the n

2 suffixes starting in the first half of T . Since
all suffixes have a length larger than n

2 , each comparison takes more
than n

2 steps. This results in more than n
2 ·

n
2 log

(
n
2

)
∈ Ω(n2 log n)

steps for sorting the first half of suffixes.

This trivial approach is not recommended in practice. Especially
for strings such as whole genomes containing repetitive subsequences,
comparison-based algorithms can be disadvantageous. There are
much more advanced algorithms such as the Skew algorithm which
also achieve linear running time for the construction of the suffix
array [Kärkkäinen and Sanders, 2003].

2.3.3 Search

Once the suffix array is constructed, a query sequence or pattern P
of length m can be searched in T using the suffix array. The general
idea is to find all suffixes whose prefixes are P . The positions of
these suffixes in the text are also the locations of P in T . Since the
positions of suffixes are sorted in lexicographical order of the suffixes,
the indices, whose corresponding prefix is P , form a continuous block
in the suffix array. Thus, the occurrences of P in T can be represented
as an interval [a, b] where a represents the first and b the last position
in the suffix array whose values are the starting positions of P in T .
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2.3 Suffix Arrays

The positions of all occurrences in T can be written as {SA[i] | i ∈
[a, b]}. Equation 2.1 shows the mathematical computation of [a, b].
If P does not occur in T the suffix array range is empty, i.e., a > b.

a = min({i | P ≤lex,m T [SA[i]..]} ∪ {n+ 1})

b = max({i | T [SA[i]..] ≤lex,m P} ∪ {0})
(2.1)

Example 2.3.1.
The occurrences of P = iss in T = mississippi$ are represented by
the suffix array range [4, 5]. The text positions can be retrieved from
the suffix array: SA[4] = 4 and SA[5] = 1 (see figure 2.1).

Computing such a suffix array range can simply be performed by
two binary searches on the suffix array to find the first and the last
suffix whose prefix is P . This leads to a running time of O(m log n),
since in the worst case the comparison of P with a suffix takes O(m)
in each step of the binary search. Algorithm 1 gives a trivial search
algorithm computing the left and right suffix array bound [a, b] with
binary searches [Gröpl and Reinert, 2013].

There are multiple improvements to this search algorithm. By
using enhanced suffix arrays with additional data structures faster
running times of O(m + log n) [Manber and Myers, 1993] or even
O(m) [Abouelhoda et al., 2004] can be achieved. These running
times only reflect search queries, i.e., determining whether P occurs
in T or to count the number of occurrences. Locating the occurrences
by a lookup in the suffix array takes additional time which is linear
in the number of occurrences.
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Algorithm 1 Computing the suffix array bounds for a pattern

1: procedure search(P[1..m], T[1..n], SA[1..n])
2: if P ≤lex,m T [SA[1]..] then . Left bound
3: a← 1
4: else if P >lex,m T [SA[n]..] then
5: a← n+ 1
6: else
7: (`, r)← (1, n)
8: while r − ` > 1 do
9: m←

⌈
`+r

2

⌉
10: if P ≤lex,m T [SA[m]..] then
11: r ← m
12: else
13: `← m
14: a← r
15: if P ≥lex,m T [SA[n]..] then . Right bound
16: b← n
17: else if P <lex,m T [SA[1]..] then
18: b← 0
19: else
20: (`, r)← (1, n)
21: while r − ` > 1 do
22: m←

⌈
`+r

2

⌉
23: if P ≥lex,m T [SA[m]..] then
24: `← m
25: else
26: r ← m
27: b← `
28: return (a, b)

24
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2.4 FM Indices

2.4.1 Definition

The FM index, short for Full-text index in Minute space [Ferragina
and Manzini, 2000], is a very fast and space efficient full-text index
that allows searching a text similarly to the suffix array. It is based on
the Burrows-Wheeler transform (BWT) [Burrows and Wheeler, 1994]
and uses significantly less space than suffix array implementations.1

Definition 2.4.1 (Burrows-Wheeler transform).
Let T [1..n] be a text and SA[1..n] the corresponding suffix array. The
Burrows-Wheeler transform L[1..n] of T is defined as

L[i] =

{
T [SA[i]− 1] , SA[i] > 1
$ , otherwise

The Burrows-Wheeler transform, which is a reordering of the char-
acters in T , can be seen and constructed from a different angle. For
that reason we define cyclic shifts on strings.

Definition 2.4.2 (Cyclic shift).
Given a string T of length n, the ith cyclic shift or cyclic rotation of
T is denoted as T (i) and defined as T (i) = T [i..n] · T [1..i − 1], i.e.,
the text is shifted in a cyclic manner by i − 1 characters to the left
respectively n− i+ 1 to the right.

Conceptually the Burrows-Wheeler transform can be interpreted
as the last column in a matrix by writing down all cyclic shifts T (1),
T (2), . . . , T (n) of the text T and sorting them lexicographically. Since
the text has a trailing unique sentinel character $, the sorted cyclic
shifts correspond to the sorted suffixes of T . Figure 2.2 illustrates
this concept for the text T = mississippi$.

1The structure and notation of this chapter on FM indices is based on the lecture
script by David Weese and my master thesis. [Weese, 2013, Pockrandt, 2015]
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T (1) mississippi$
T (2) ississippi$m
T (3) ssissippi$mi
T (4) sissippi$mis
T (5) issippi$miss
T (6) ssippi$missi
T (7) sippi$missis
T (8) ippi$mississ
T (9) ppi$mississi
T (10) pi$mississip
T (11) i$mississipp
T (12) $mississippi

sort
=⇒

F L
T (12) $mississippi
T (11) i$mississipp
T (8) ippi$mississ
T (5) issippi$miss
T (2) ississippi$m
T (1) mississippi$
T (10) pi$mississip
T (9) ppi$mississi
T (7) sippi$missis
T (4) sissippi$mis
T (6) ssippi$missi
T (3) ssissippi$mi

Figure 2.2: Cyclic shifts and lexicographically sorted cyclic shifts
of T = mississippi$. The last column of the right
matrix represents the BWT read from top to bottom:
L = ipssm$pissii.

We denoteM as the matrix of lexicographically sorted cyclic shifts
of T , andMi as the ith row ofM, i.e.,Mi = T (SA[i]). Based on this
conceptual view of the BWT, important properties can be observed
between the first column, denoted as F and the last column, denoted
as L, the Burrows-Wheeler transform.

Definition 2.4.3 (LF mapping).
The LF mapping is a bijective function LF : [1..n]→ [1..n], mapping
the rank of a row inM to the rank of this row shifted by one character
to the right (or n− 1 characters to the left).

LF (`) = f ⇔Mf = M
(n)
`

This mapping is crucial for searching T using the Burrows-Wheeler
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transform.

Lemma 2.4.1 (Character identity).
Given any f and ` with f = LF (`), the characters F [f ] and L[`]
are identical and furthermore, correspond to the same position in the
text, i.e., SA[f ] = SA[`] + n− 1 (mod n).

Proof. This results directly from the definition of the LF mapping
and the matrix M.

LF (`) = f

⇐⇒ Mf = M
(n)
`

⇐⇒ T (SA[f ]) = T (SA[`])(n)

⇐⇒ T (SA[f ]) = T (SA[`]+n−1)

⇐⇒ SA[f ] ≡ SA[`] + n− 1 (mod n)

Example 2.4.1.
Given the example in figure 2.3, let ` = 8 and f = LF (8) = 3. Both
characters are identical L[8] = F [3] = i and both refer to the same
character T [8].

Lemma 2.4.2 (Rank preservation).
For all i, j ∈ [1..n] with L[i] = L[j]: i < j ⇒ LF (i) < LF (j).

Proof. From i < j we can conclude that Mi <lexMj . Furthermore,
from L[i] = L[j] follows that Mi[1..n− 1] <lexMj [1..n− 1].

L[i] · Mi[1..n− 1] <lex L[j] · Mj [1..n− 1]

⇐⇒ M(n)
i <lex M(n)

j

⇐⇒ MLF [i] <lex MLF [j]

⇐⇒ LF [i] < LF [j]
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An example of the rank preservation property is illustrated in fig-
ure 2.3. From lemma 2.4.1 and 2.4.2 we can conclude the following
observation.

Observation 2.4.1.
The ith occurrence of a character c ∈ Σ in L corresponds to the same
position in the text as the ith occurrence of c in F .

Example 2.4.2.
The 2nd i ∈ Σ in F occurs in M3, the 2nd i in L in M8 (see figure
2.3). Both refer to the same position in the text, i.e., the 3rd i in
T = mississippi$, which is T [8].

Observation 2.4.1 is crucial in the design and implementation of
the FM index. It allows us to formulate the LF as a function, that
can easily be computed from L:

Definition 2.4.4 (LF mapping tables).
We define two functions on L that can be stored as precomputed
values in a table:

� C : Σ → [0..n]: C(c) counts the number of occurrences of
characters in T that are strictly smaller than c, including the
sentinel character $.

� Occ : Σ× [1..n]→ [0..n]: Occ(c, i) counts the number of occur-
rences of c in the prefix L[1..i].

The LF mapping can then be formulated as

LF (`) = C(L[`]) +Occ(L[`], `) .
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Theorem 2.4.3.
The definitions of the LF mapping in 2.4.3 and 2.4.4 are equivalent.

Proof. By definition, the characters in F are sorted lexicographically.
Thus, C(L[`]) points to the beginning of the block of L[`]. Occ(L[`], `)
counts the number of occurrences of L[`] in L[1..`]. From observa-
tion 2.4.1 follows that the character in column F in row C(L[`]) +
Occ(L[`], `) maps to the same position in the text as the character in
column L in row `.

F L

1 $ mississipp i
2 i $mississip p
3 i ppi$missis s
4 i ssippi$mis s
5 i ssissippi$ m
6 m ississippi $
7 p i$mississi p
8 p pi$mississ i
9 s ippi$missi s

10 s issippi$mi s
11 s sippi$miss i
12 s sissippi$m i

Figure 2.3: Illustration of the LF mapping. The ranks of the charac-
ters in F and L are preserved.

In the next two subsections we will take a look at how to search
query sequences in the text using C and Occ, both unidirectionally
and bidirectionally. For that we will only use the BWT L. Locating
the text positions of the occurrences will be covered in section 2.4.5.
While C is trivially implemented as an array of size σ consuming
O(σ · log n) bits of space and thus is neglectable especially for small
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alphabets, Occ requires a lot more space. Possible data structures
and implementation details with running time and space consumption
analyses are postponed to section 2.4.6. Instead, we will substitute
the running time for Occ queries as TOcc.

2.4.2 Unidirectional Search

Definition 2.4.5 (Backward search).
Let [ai, bi] be the suffix array interval whose suffixes start with the
query P . The suffix array interval [ai−1, bi−1] representing the occur-
rences of cjP for cj ∈ Σ can be computed as follows:

ai−1 = C(cj) +Occ(cj , ai − 1) + 1
bi−1 = C(cj) +Occ(cj , bi)

(2.2)

Proof. Given [ai, bi], one is interested in all rows within this range
whose character in the last column ofM is cj (as the rows are cyclic
rotations of the text). From the lexicographical sorting we can con-
clude that the range [ai−1, bi−1] will form a continuous block. The
size of the new range is the number of occurrences of cj in L[ai..bi].
The last open question is how to determine ai−1. Due to the rank
preservation property, an LF mapping could be performed on the first
row in [ai, bi] whose last character is cj . Since the tables do not allow
to determine this efficiently, an LF mapping on the last occurrence
of cj before row Mai is performed and the value is increased by one.

ai−1 = C(cj) +Occ(cj , ai − 1) + 1

Having computed the beginning of the range and the size of the
new range, determining the end of the range can be simplified by
substituting ai−1:

bi−1 = ai−1 +Occ(cj , bi)−Occ(cj , ai − 1) = C(cj) +Occ(cj , bi)
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When searching a sequence P of length m, one starts with the
empty pattern and extends it character by character from right to left.
The empty sequence ε is represented by the interval [am, bm] = [1, n].
The formula for the first backward search of the rightmost character
cj in P , i.e., P [m] can be simplified to:

am = C(cj) + 1
bm = C(cj+1)

(2.3)

cj+1 is the smallest character in Σ that is larger than cj . If there
is no such character, the C value is defined to be n. Note, that
using these definitions the first backward search can actually not
be computed by equation 2.2 as Occ(cj , am − 1) = Occ(cj , 0) is not
defined. This is only relevant for the first backward search as we do
not allow the sentinel character to be part of the pattern P and thus
ai 6= 1 except for the very first backward search (i = m).

The running time for algorithm 2 is O(m · TOcc). The running
times for retrieving Occ values depend on the implementations which
are introduced and compared in section 2.4.6. Figure 2.4 shows the
intermediate steps for searching P = iss.

a3 = 1
b3 = 12
a2 = C(s) = 9
b2 = C(s+ 1) = 12
a1 = C(s) +Occ(s, 9− 1) + 1 = 8 + 2 + 1 = 11
b1 = C(s) +Occ(s, 12) = 8 + 4 = 12
a0 = C(i) +Occ(i, 11− 1) + 1 = 1 + 2 + 1 = 4
b0 = C(i) +Occ(i, 12) = 1 + 4 = 5

(2.4)
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F L

1 $ mississipp i

2 i $mississip p

3 i ppi$missis s

4 i ssippi$mis s

5 i ssissippi$ m

6 m ississippi $

7 p i$mississi p

8 p pi$mississ i

9 s ippi$missi s

10 s issippi$mi s

11 s sippi$miss i

12 s sissippi$m i

(a) P [4..3] = ε

F L

1 $ mississipp i

2 i $mississip p

3 i ppi$missis s

4 i ssippi$mis s

5 i ssissippi$ m

6 m ississippi $

7 p i$mississi p

8 p pi$mississ i

9 s ippi$missi s

10 s issippi$mi s

11 s sippi$miss i

12 s sissippi$m i

(b) P [3..3] = s

F L

1 $ mississipp i

2 i $mississip p

3 i ppi$missis s

4 i ssippi$mis s

5 i ssissippi$ m

6 m ississippi $

7 p i$mississi p

8 p pi$mississ i

9 s ippi$missi s

10 s issippi$mi s

11 s sippi$miss i

12 s sissippi$m i

(c) P [2..3] = ss

F L

1 $ mississipp i

2 i $mississip p

3 i ppi$missis s

4 i ssippi$mis s

5 i ssissippi$ m

6 m ississippi $

7 p i$mississi p

8 p pi$mississ i

9 s ippi$missi s

10 s issippi$mi s

11 s sippi$miss i

12 s sissippi$m i

(d) P [1..3] = iss

Figure 2.4: Searching for P = iss using backward searches (figure
taken from [Pockrandt, 2015]). The computation steps of
the ranges are listed in equation 2.4.
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Algorithm 2 Searching P in a unidirectional FM index

1: procedure search(P, C, Occ)
2: a← 1
3: b← n
4: i← length(P )
5: if P 6= ε then
6: a← C(P [i]) + 1
7: b← C(P [i] + 1) . next larger character

8: while i > 1 do
9: i← i− 1

10: a← C(P [i]) +Occ(P [i], a− 1) + 1
11: b← C(P [i]) +Occ(P [i], b)
12: if a > b then
13: break
14: return [a, b]

2.4.3 Bidirectional Search

While backward searches can be performed efficiently on a unidirec-
tional FM index, a forward search is not suitable to do in a uni-
directional FM index without accessing the suffix array. To search
patterns from left to right instead from right to left, the text only
needs to be reversed upon construction of the FM index. The text po-
sitions of the occurrences then have to be translated as the positions
are pointing to the last character of the pattern instead of the first.
Assuming that the query sequences to be searched are not derived
from a stream and thus can be reversed before searching, there is no
algorithmic benefit to reverse the text to perform forward searches
instead of backward searches.

This is different for bidirectional FM indices, i.e., to allow for both,
forward and backward searches, in any arbitrary order. That is, the
direction in which the pattern is extended to can be switched between
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search steps. There are multiple algorithmic benefits, e.g., running
time improvements on approximate string matching which will be
covered extensively in chapter 3.

The bidirectional FM index was first introduced by Lam et al.
[Lam et al., 2009]. An FM index I is built on the text T to support
backward searches, another FM index Irev is built on the reversed
text T rev to allow for forward searches. This means that the BWT
of Irev is also constructed on the reversed text.

To search a pattern from right to left, one performs regular back-
ward searches on the index I. To search the entire pattern into the
opposite direction, one performs backward searches on the index Irev
which correspond to forward searches in I. To switch directions dur-
ing the search, it is crucial that for each search step performed in
one index, the other index is synchronized, i.e., the suffix array range
is updated. This allows us for every single search step to use I for
backward searches and Irev for forward searches.

Consider the scenario in figure 2.5. We have searched the pattern
P using backward and/or forward searches. [ai, bi] represents the
occurrences of P in I and [arevi , brevi ] the occurrences of P rev in Irev,
i.e., I and Irev are synchronized.

When P is extended by another character, a backward search is
performed, either in I or Irev. W.l.o.g. we assume that a forward
search P → Pcj , cj ∈ Σ is performed, which corresponds to a back-
ward search P rev → cjP

rev in Irev. The new suffix array interval
[arevi−1, b

rev
i−1] is computed as in equation 2.2, i.e., a regular backward

search in Irev is performed. The suffix array interval in I representing
the occurrences of Pcj can be computed according to lemma 2.4.4.
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I

Pcj P

ai

ai−1

bi−1

bi

Irev

P rev

cj P rev

cj−2P
rev

cj−1P
rev

arevi−1

brevi−1

arevi

brevi

Figure 2.5: Synchronization of a bidirectional FM index [Pockrandt
et al., 2017]. First, the backward search P rev → cjP

rev is
performed and afterwards the interval of Pcj is computed
by determining the interval sizes of every cj′P

rev with
j′ < j.

Lemma 2.4.4 (Synchronization in a bidirectional FM index).
Let [ai, bi] be the suffix array range of P in I and [arevi−1, b

rev
i−1] the suffix

array range of cjP
rev in Irev. For the range [ai−1, bi−1] representing

the occurrences of Pcj in I the following holds:

ai−1 = ai +
∑
j′<j

[a,b] representing cj′P
rev

b− a+ 1

bi−1 = ai−1 + brevi−1 − arevi−1

(2.5)

Proof. First of all, the range [ai−1, bi−1] must be a subrange of [ai, bi],
since the suffixes whose prefix is Pcj are also suffixes starting with
P . Second, the range must be of the same size as [arevi−1, b

rev
i−1], since

P occurs in T the same number of times as P rev occurs in T rev. The
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interval is then computed by counting the suffixes in [ai, bi] that are
lexicographically smaller than Pcj , i.e., that are starting with Pcj′ for
cj′ < cj . These can be computed by performing a separate backward
search for each cj′ and adding up the number of occurrences.

Using Occ queries the forward search can be computed by equation
2.6. To simplify the formula and lay the foundation of new data
structures presented in section 2.4.6, we introduce a new kind of
query, Prefix-Occ. Prefix-Occ(c, i) counts the number of occurrences
of all characters lexicographically smaller than c in L[1..i].

ai−1 = ai +
∑
j′<j

(
Occ(cj′ , b

rev
i ) − Occ(cj′ , a

rev
i − 1)

)
ai +

∑
j′<j

Occ(cj′ , b
rev
i ) −

∑
j′<j

Occ(cj′ , a
rev
i − 1)

ai + Prefix-Occ(cj−1, b
rev
i ) − Prefix-Occ(cj−1, a

rev
i − 1)

(2.6)

Definition 2.4.6 (Prefix-Occ queries).
We introduce a new table Prefix-Occ : Σ × [1..n] → [0..n]. It stores
the number of occurrences of characters lexicographically smaller or
equal to c in the prefix L[1..i], i.e.,

Prefix-Occ(c, i) =
∑
c′≤c

Occ(c′, i)

2.4.4 Constant Time Rank Support

Before we finally take a look at the core data structure of FM indices,
the representation of the BWT to perform Occ queries, we introduce
an abstract data type and show one of many possible implementations
that are later used for supporting efficient Occ and Prefix-Occ queries.
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Definition 2.4.7 (Rank dictionary).
A rank dictionary on a bit vector B of length n supports rank queries
rankb(B, i) with b ∈ {0, 1} and 1 ≤ i ≤ n. Rank queries count the
numbers of bits set or not set in the prefix B[1..i]. b indicates whether
0s or 1s are counted.

Since we are only interested in counting 1s for our applications, we
will omit the notation of b. The computation of rank0(B, i) can be
reduced to counting 1s, since rank0(B, i) = i− rank1(B, i).

An efficient way to perform rank queries was proposed by Jacobson
[Jacobson, 1988]. An additional data structure can be built on top of
a bit vector of length n that requires only o(n) additional space and
can perform rank queries in constant time.

The general idea is to precompute rank queries in a two level hierar-
chy of arrays, L1 and L2. The precomputed values L1[q] are referred
to as superblocks. They span `2 bits each of the bit vector and count
the bits set in B[1..(q · `2)]. L2[p], which we call blocks are of size `
and count the number of bits set starting from the overlapping su-
perblock until the end of the pth block, i.e., B[(1 + k)..(p · `)] where
k = b(p− 1)/`c · `2.

A rank query rank(B, i) can then be translated into a lookup in
both L1 and L2. The bits that lie in the last block containing the
position i need to be counted separately, which we refer to as an in-
block query. This can be done by using a lookup table P containing
all possible bit vectors V of length ` and all possible positions within
a block: P [V ][j] = rank(V, j) for 1 ≤ j ≤ `.

Lemma 2.4.5.
To compute rank(B, i) the indices of the previous superblock q =
b(i− 1)/`2c and block p = b(i− 1)/`c are needed.

rank(B, i) = L1[q] + L2[p] + P [B[(1 + p`)..((p+ 1)l)]][i− p`] (2.7)
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Example 2.4.3.
Figure 2.6 shows the precomputed blocks, superblocks and the lookup
table P of a given bit vector. The bits set to 1 in the bit vector up
to position 15 can be computed by the formula in equation 2.7 as
follows (q = b(15− 1)/32c = 1 and p = b(15− 1)/3c = 4):

rank(B, 15)

= L1[1] + L2[4] + P [B[(1 + 4 · 3)..(4 · 3)]][15− 4 · 3]

= L1[1] + L2[4] + P [B[13..15]][3]

= L1[1] + L2[4] + P [010][3]

= 5 + 3 + 1 = 9

Assuming all arithmetic operations are performed in constant time
in the underlying machine model, the running time of a rank query
is clearly constant, since only three table lookups are necessary.

Theorem 2.4.6 (Space consumption).
The rank support by Jacobson requires only o(n) additional space for
a bit vector of length n.

Proof. For arbitrary ` the space consumption is as follows:

� L1: There are n
`2

values in superblocks that each need log n bits
per entry, i.e., n

`2
· log n bits in total.

� L2: There are n
` values in blocks that each need log `2 bits per

entry, since they count the bits within a superblock of length
`2, i.e., n

` · log `2 bits in total.

� P : There are 2` possible bit vectors and ` positions leading to
` · 2` entries of log ` bits per entry, i.e., ` · 2` · log ` bits in total.

To obtain a sublinear bound, the choice of ` is important. This
can be achieved by choosing ` = blog n/2c.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
B 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 · · ·

L2 0 2 4 0 3 4 · · ·

L1 0 5 · · ·
(a) Bit vector B of length 64 with ` = blog 64/2c = 3 bits per block and

`2 = 9 bits per superblock.

V P [V ][1] P [V ][2] P [V ][3]

000 0 0 0
001 0 0 1
010 0 1 1
011 0 1 2
100 1 1 1
101 1 1 2
110 1 2 2
111 1 2 3

(b) Vector P [{0, 1}3][1..`]

Figure 2.6: Additional tables for rank support on B illustrated at an
exemplary bit vector.

� L1: O
( n
`2

log n
)

= O
(

n

log n

)
= o(n)

� L2: O
(n
`

log `2
)

= O
(
n

log log n

log n

)
= o(n)

� P : O
(
` · 2` · log `

)
= O

(
log n · 2

logn
2 · log log n

)
= O(log n

√
n log log n) = o(n)
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In practice the lookup table P [V ][j] is replaced by a shift and a
popcount operation [González et al., 2005]. Popcount is a hardware
CPU operation that works on 64 bit words and counts the number of
bits set in a 64 bit integer within a constant number of clock cycles.
A popcount operation on modern Intel CPUs has a latency of 3 clock
cycles and a throughput of 1 cycle [Granlund, 2017]. Latency is the
number of cycles until the data of the instruction is available for
the next instruction, throughput is the number of cycles it takes to
perform the instruction. Since we only count the bits set before or at
the position considered, all bits set behind j are shifted out and the
remaining bits set are counted. If we index the bit vector from zero,
the in-block query can be computed as follows:

P [V ][j] = popcount(V � (j mod `))

2.4.5 Sampled Suffix Array

Even though the search itself is performed entirely without using the
suffix array (except for building the Burrows-Wheeler transform), we
still require the suffix array. So far we are only able to answer decision
queries whether a pattern occurs in the text, and to count the number
of occurrences. For locating the occurrences in the text, we need to
access the suffix array the same way as we did in section 2.3.3. Since
the motivation for the FM index is to reduce the space consumption
by avoiding to keep the entire suffix array, only a part of the suffix
array is stored.

If only a subset of suffix array values are stored, the missing values
can be computed upon request using the LF mapping. Let SA[i] be
the position of any suffix in T . Then SA[LF (i)] represents the suffix
in T starting one character to the left of SA[i] and SA[LF (LF (i))]
starting two characters to the left. With this approach missing SA
values can be computed from existing SA values.
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Lemma 2.4.7.
For any 1 ≤ i ≤ n and k ∈ N the following equation holds:

SA[i] = ((SA[LF (. . . (LF (i)) . . . )︸ ︷︷ ︸
k times

] + k − 1) mod n) + 1

Note that for some i the LF mapping LF (i) = 1. For T =
mississippi$ this is true for i = 5, see figure 2.3. It follows, that
the ith smallest suffix is T [SA[i]..] = T . The LF mapping cannot re-
trieve the suffix starting one position further to the left, since the ith
suffix is already the longest suffix of T . Due to the cyclic rotations
while constructing the BWT, it will instead retrieve the last suffix in
T , which is $. This is taken into account by using modulo.

A single SA value is sufficient to recompute any other SA value
using the LF mapping. To reduce the space consumption only a few
suffix array values are kept and the missing ones are computed upon
request using the LF mapping. There are different approaches on
how to sample the suffix array values. The two main strategies are
suffix order sampling and text order sampling. Let η ∈ N. Both
have in common that only η−1 elements from the suffix array are
stored in the sampled suffix array SSA. The two approaches differ in
the strategy which values to sample, leading to different worst-case
running times for locating an occurrence (i.e., the maximum number
of LF mappings necessary to encounter a sampled suffix array value)
and partly additional space requirements to identify the positions of
sampled values.

2.4.5.1 Suffix Order Sampling

The simplest approach to sample the suffix array is to keep every ηth
SA value, e.g., SA[i] is stored if and only if i mod η = 1. While this
can be implemented straightforward as in algorithm 3, the running
time to compute a missing SA value is O(η−1

η · n · TOcc), the space
consumption for SSA is reduced from O(n log n) to O(nη log n) bits.
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Algorithm 3 Locating occurrences in a SSA (suffix order sampling)

1: procedure locate(i, SSA)
2: steps← 0
3: while i mod η 6= 1 do
4: i← LF (i)
5: steps← steps+ 1

6: return ((SSA[i div η] + steps− 1) mod n) + 1

Lemma 2.4.8.
The worst-case running time of locating an occurrence using suffix
order sampling is O(η−1

η · n · TOcc).

Proof. Figure 2.7 illustrates the worst-case scenario. Consider η to be
fixed (W.l.o.g. we assume η = 3) and set the text T = AkCAkCAkC$
(i.e., η repetitions of the string AkC) on the binary alphabet Σ =
{A,C} for arbitrary k ∈ N. All suffixes SA[i] with i mod η = 1
are sampled, dn/ηe suffixes in total. These suffixes are T [SA[1]..] =

T [n..] = $ and T [SA[1 + i ∗ η]..] = T [(1 + i)..] = Ak−iC · (AkC)
η−1

for 0 ≤ i < dn/ηe. Thus retrieving the suffix array value storing
the text position of C$ = T [(n − 1)..] = T [SA[n − η + 1]..] will take
the most LF mappings to reach the first sampled suffix array value,
which is the one storing the suffix T [dnη e − 1] = CAkCAkC$, i.e., in

total (n− 1)− (dnη e − 1) ∈ O(η−1
η n) LF mappings.

This proof works with any sampling condition i mod η = x for
0 ≤ x < η, since by construction the suffixes whose values are sampled
always lie in a continuous block in the text. Thus, the worst-case
running time is achieved by simply retrieving the suffix array value
whose position in the text is one character left from the sampled block
or the last position in the text if the sampled block is starting at the
beginning of the text.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13

T[i] A A A C A A A C A A A C $

SA[i] 13 9 5 1 10 6 2 11 7 3 12 8 4

i 1 2 3 4 5

SSA[i] 13 1 2 3 4

Figure 2.7: Worst-case running time example for suffix order sam-
pling. T = AAACAAACAAAC$ with η = 3. Sam-
pled suffix array values are encircled. To retrieve the
value SA[11] a total of 8 LF mappings are necessary:
SA[11] = SA[8] + 1 = SA[5] + 2 = · · · = SA[13] + 8 =
SSA

[⌊
13
3

⌋]
= 3 + 8 = 11.

2.4.5.2 Text Order Sampling

A better worst-case performance can be achieved by sampling the SA
values that fulfill SA[i] mod η = 1. This guarantees a running time of
O(η ·TOcc), since every ηth position in the text is sampled in SSA and
it takes at most η−1 LF mappings to encounter a sampled suffix array
value. The downside is that during the location we cannot evaluate
whether the ith smallest suffix has been sampled or not, since we do
not know the value of SA[i] mod η. Thus, a bit vector of length n
is necessary for indicating the sampled positions, i.e., B[i] = 1 if and
only if SA[i] mod η = 1. Furthermore, we need rank support for this
bit vector to retrieve the rank of the sampled suffix array value, i.e.,
how many suffix array values SA[j] with j < i have been sampled.
The rank value indicates the index where the value in SSA is stored.
This approach improves the worst-case running time, but requires
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n(1 + o(1)) additional bits of space for the bit vector and the rank
support data structure by Jacobson.

Algorithm 4 Locating occurrences in a SSA (text order sampling)

1: procedure locate(i, SSA)
2: steps← 0
3: while B[i] 6= 1 do
4: i← LF (i)
5: steps← steps+ 1

6: return ((SSA[rank1(B, i)] + steps− 1) mod n) + 1

By additionally enforcing the sampling of position i such that
SA[i] = 1, the return statement in algorithm 4 can be simplified
to SSA[rank1(B, i)] + steps, since an overflow can be ruled out.

The space consumption of the sampled suffix array can be reduced
further, since the least significant bits do not have to be stored. If
η is a power of two, the lowest log η bits are equal for each value in
SSA. In practice one would select values such that SA[i] mod η = 0
and shift them by log η bits to the right. Hence, each value can be
stored using dlog(n/η)e bits. To restore the original SSA values, they
have to be shifted by log η bits to the left again.

2.4.5.3 Summary

Now we have all it needs for fully functional unidirectional and bidi-
rectional full-text indices allowing backward and forward searches.
Searching a pattern in the FM index needs an efficient way to answer
C, Occ and Prefix-Occ queries on the BWT, locating a pattern addi-
tionally requires a sampled suffix array. All this together constitutes
the FM index.

Searching a query takes O(m·TOcc), locating all of its z occurrences
takes additionally O(z ·η ·TOcc) using a sampled suffix array with text
order sampling.
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2.4.6 Representation of the Burrows-Wheeler Transform

The last remaining question is how to store the BWT. It has to
support three kind of queries:

1. Occ(c, i), c ∈ Σ and 1 ≤ i ≤ n

2. Occ(L[i], i), 1 ≤ i ≤ n

3. Prefix-Occ(c, i), c ∈ Σ and 1 ≤ i ≤ n

Occ queries are needed for searching a sequence in the index, ran-
dom access to the BWT itself is needed by the LF mapping for locat-
ing text positions in the sampled suffix array and Prefix-Occ queries
are needed for synchronizing a bidirectional FM index which can be
reduced to Occ queries.

The operations can be trivially implemented by precomputed ta-
bles. To answer Occ queries in constant time n σ log n bits are neces-
sary if the values are stored for each character and each position in L.
Since this implementation requires a lot of space, we present differ-
ent data structures supporting these operations and compare them in
terms of asymptotic running time, space complexity and benchmarks.

All data structures in table 2.1 will be covered for unidirectional
FM indices only. For bidirectional indices they have to be built on
the BWT of the reversed text as well, leading to twice the amount of
space. For better readability ceiling functions were omitted.
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Data structure Backward search Forward search Space consumption in bits

Array O(1) O(σ) nσ log n

BV + RS O(1) O(σ) nσ(1 + o(1))

WT + RS O(log σ) O(log σ) O(n log σ) + o(n log σ) +O(σ log n)

r-ary WT + RS O(logr σ) O(logr σ) O
(

logr σ
(
rn log logn

logr n

))
+O(σ log n)

BV + PRS O(1) O(1) n(σ − 1) · (1 + ·o(1))

EPR O(1) O(1) O(n log σ) + o(nσ log σ)

Table 2.1: Comparison of data structures for representing the BWT. We will present two im-
proved implementations, both supporting constant running time for backward and
forward searches. (BV = plain bit vectors, RS = rank support by Jacobson, PRS
= prefixsum rank support, WT = wavelet tree, EPR = enhanced prefixsum rank
dictionary). Small data structures such as the C table are neglected.
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2.4.6.1 Bit Vectors with (Prefixsum) Rank Support

A straightforward approach to answer Occ queries in constant time
is to store a bit vector Bc[1..n] with rank support for each c ∈ Σ
indicating whether L[i] = c. An example is given in Figure 2.8.

Definition 2.4.8 (Bit vectors for BWT).
We define bit vectors Bc of length n for all characters c ∈ Σ such that
Bc[i] = 1 if and only if L[i] = c for 1 ≤ i ≤ n.

Theorem 2.4.9.
Backward searches in a unidirectional FM index can be performed
in constant time, backward and forward searches in a bidirectional
FM index in O(σ) time each, and LF mappings in O(σ). The data
structure takes up nσ(1+o(1)) bits of space for a unidirectional index.

Proof. Occ queries can be reduced to constant-time rank queries on
the bit vector, Prefix-Occ queries need O(σ) Occ queries leading to
a synchronization overhead in bidirectional FM indices of O(σ) for
both forward and backward searches. Random access to the BWT
takes also O(σ), since L is not stored explicitly and all bit vectors Bc
have to be examined at position i to determine L[i].

i 1 2 3 4 5 6 7 8 9 10 11 12

T[i] i p s s m $ p i s s i i

B$[i] 0 0 0 0 0 1 0 0 0 0 0 0
Bi[i] 1 0 0 0 0 0 0 0 0 0 1 1
Bm[i] 0 0 0 0 1 0 0 1 0 0 0 0
Bp[i] 0 1 0 0 0 0 1 0 0 0 0 0
Bs[i] 0 0 1 1 0 0 0 0 1 1 0 0

Figure 2.8: BWT of T = mississippi$ stored in separate bit vectors
for each character with rank support.
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When using bit vectors with rank support for each character, we
suggest a different definition of the bit vectors to improve the asymp-
totic running time of Prefix-Occ queries and random access to the
BWT [Pockrandt et al., 2017]:

Definition 2.4.9 (Prefixsum bit vectors for BWT).
We define prefixsum bit vectors PBc of length n for all characters
c ∈ Σ such that PBc[i] = 1 if and only if L[i] ≤ c for all 1 ≤ i ≤ n.

Theorem 2.4.10.
Occ queries and Prefix-Occ queries can be computed in O(1), random
access to the BWT in O(log σ) while taking up n(σ − 1)(1 + o(1))
bits of space. This improves backward and forward searches to O(1)
for bidirectional FM indices while storing one bit vector less.

Proof. Adding rank support to the prefixsum bit vectors, leads to
constant time Prefix-Occ queries instead of Occ queries. An Occ
query can be performed by two (prefixsum) rank query. To access
L[i] a binary search on Σ can be performed:

Prefix-Occ(c, i) = rank(PBc, i)

Occ(cj , i) =

 rank(PBcj , i)− rank(PBcj−1 , i) , j > 0

rank(PBcj , i) , j = 0

L[i] = cj , s.t. PBcj [i] = 1 ∧ (j = 1 ∨ PBcj−1 [i] = 0)

Since PBcσ [i] = 1 and rank(PBcσ , i) = i for all i, PBcσ does not
have to be stored. Thus one bit vector less is needed, including rank
support tables.

We will refer to rank support on prefixsum bit vectors as prefixsum
rank support. As there is only one sentinel character in T , it is not
necessary to store the bit vector for $. Instead it is sufficient to store
the index position pos of $ in L.
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i 1 2 3 4 5 6 7 8 9 10 11 12

T[i] i p s s m $ p i s s i i

PB$[i] 0 0 0 0 0 1 0 0 0 0 0 0
PBi[i] 1 0 0 0 0 1 0 0 0 0 1 1
PBm[i] 1 0 0 0 1 1 0 1 0 0 1 1
PBp[i] 1 1 0 0 1 1 1 1 0 0 1 1
PBs[i] 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.9: BWT of T = mississippi$ stored in separate prefixsum
bit vectors for each character with rank support. PBs
can be omitted.

B$[i] = PB$[i] =

 1 , i = pos

0 , otherwise

rank(B$, i) = rank(PB$, i) =

 1 , i ≥ pos

0 , otherwise

(2.8)

This trick can be applied similarly to all of the data structures
presented in this chapter.

2.4.6.2 Wavelet Trees with Rank Support

A more space efficient data structure for representing the BWT and
answer Occ queries are wavelet trees [Grossi et al., 2003] that were
later suggested for bidirectional FM indices by Schnattinger et al.
[Schnattinger et al., 2010]. Wavelet trees are balanced binary trees.
Each node v has an alphabet Σv associated. The root node is denoted
as root and represents the entire alphabet of the BWT, i.e., Σroot = Σ.
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Each node v with |Σv| > 1 has a left and a right child, denoted
as v.left and v.right. At each node v the alphabet is partitioned
into two sets of roughly equal size. Let Σv = {c`, c`+1, . . . , cr} with
1 ≤ ` < r ≤ σ. Then we split it into Σv.left = {cj | ` ≤ j ≤ m} and
Σv.right = {cj | m + 1 ≤ j ≤ r} with m = b(`+ r)/2c. Σv.left and
Σv.right are the alphabets associated with the left and right child of
v. A node v becomes a leaf if |Σv| = 1.

Observation 2.4.2.
The binary tree is balanced and of height Θ(log σ).

Additionally, each node v has a string Lv associated which is the
BWT L with only the characters that are in Σv, i.e., all other char-
acters Σ\Σv are removed from L. This string is not stored, but used
conceptually to build and store a bit vector Bv[1..|Lv|] for each inner
node v. Bv[i] = 1 if and only if Lv[i] ∈ Σv.right, i.e., a one indicates
that the character belongs to the alphabet of the right child.

Figure 2.10 illustrates the conceptual wavelet tree. Only the bit
vectors and the tree structure are stored. Additionally, rank support
is needed on all bit vectors to answer Occ queries and perform random
access on the BWT string efficiently.

Theorem 2.4.11.
The data in the wavelet tree with rank support takes O(n log σ) +
o(n log σ) bits of space. For representing the tree structure O(σ log n)
additional bits are needed.

Proof. The bit vectors on each level of the tree can be concatenated
leading to a bit vector of length n taking up n(1 + o(1)) bits of space
including rank support. As there are dlog σe levels, no more than
O(n log σ) + o(n log σ) bits are needed. Let Bd be the concatenated
bit vector of nodes on level d. For each of the σ − 1 inner nodes
an interval [αv, βv] is stored indicating the start and end position of
Bv in Bd, i.e., Bd[αv, βv] = Bv. This requires O(σ log n) additional
space. Rank queries can still be computed in constant time. If Bv is
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Σroot {$, i,m, p, s}
i 123456789012
Lroot[i] ipssm$pissii
Broot[i] 011110101100

Σv1 {$, i}
i 12345
Lv1[i] i$iii
Bv1[i] 10111

Σv3 {$} Σv4 {i}

Σv2 {m, p, s}
i 1234567
Lv2[i] pssmpss
Bv2[i] 1110111

Σv5 {m} Σv6 {p, s}
i 123456
Lv6[i] psspss
Bv6[i] 011011

Σv7 {p} Σv8 {s}

Figure 2.10: Wavelet tree of the BWT string L = ipssm$pissii.
Lroot[7] is highlighted to illustrate random access and
Occ queries.

not the first bit vector in Bd, the rank query is computed as follows:
rank1(Bv, i) = rank1(Bd, αv + i− 1)− rank1(Bd, αv − 1).

Theorem 2.4.12.
Occ queries and random access to the BWT can be performed in
Θ(log σ).

Algorithm 5 gives the pseudocode for accessing a character L[i].
Starting from the root node of the tree, the bit at Broot[i] is examined.
If it is set, then L[i] ∈ Σroot.right = {cm+1, cm+2, . . . , cσ}, otherwise
L[i] ∈ Σroot.left with m = b(1 + σ)/2c. This is continued recursively
in the corresponding child. W.l.o.g. we assume that Broot[i] = 1 and
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continue in the right child. Since Lroot.right only contains the char-
acters from L that are in Σroot.right, the position to consider in node
root.right changes. Let i′ = rank1(Bv, i), then Broot[i] corresponds to
Broot.right[i

′]. The recursion ends when a leaf is encountered and the
character represented by the leaf is returned.

Algorithm 5 Random access to L

1: procedure WT-GetValue(i, v, [`..r])
2: if ` = r then
3: return c`
4: m←

⌊
`+r

2

⌋
5: if Bv[i] = 0 then
6: return WT-GetValue(rank0(Bv, i), v.left, [`..m])
7: else
8: return WT-GetValue(rank1(Bv, i), v.right, [m+ 1..r])

9:

10: procedure WT-GetValue(i)
11: return WT-GetValue(i, r, [1..σ])

Example 2.4.4 (Random access).
Consider retrieving L[7] from the wavelet tree in figure 2.10. As
pointed out earlier, only the bit vectors Bv with rank support are
stored. Since Broot[7] = 1, it follows that L[7] ∈ {m, p, s}. The search
is continued in the right child root.right. Lroot.right only contains the
characters {m, p, s}, the character from L[7] = Lroot[7] is located in
Lroot.right[rank1(Broot, 7)] = Lv2[5] and thus Bv2[5] is considered now.
Since the bit is set, the search is again continued in the right child
with the recomputed position, i.e., Lv2.right[rank1(Bv2, 5)] = Lv6[4].
Since Bv6[4] = 0, the search is continued in the left child. The left
child is a leaf, the alphabet size is reduced to 1, hence we can conclude
that L[7] = p.
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Performing Occ queries works similarly as it can be seen in algo-
rithm 6. While in algorithm 5 the child is chosen based on whether the
corresponding bit is set or not, for Occ(c, i) queries the child whose
associated alphabet contains c is chosen. The result of the Occ query
is the last rank query performed before ending in a leaf. This rank
query returns the number of occurrences up to the original position
in L of the character that is represented in the leaf, which is c. Tak-
ing up on the previous example (assuming Occ(p, 7) is computed),
rank0(Bv6, 4) = 2 represents the occurrence value Occ(p, 7).

Additionally a value s, which is short for smaller can be computed.
While going down in the tree, the number of occurrences in L[1..i]
that are smaller than c are counted. This is achieved by adding up
rank0(Bv, i) in each node whenever we go down the right child and
thus eliminate characters smaller than c in Lv.right. Hence, while
computing the Occ(c, i) value, s = Prefix-Occ(c−1, i) is computed as
well without increasing the time complexity for bidirectional searches.

Algorithm 6 Computing Occ and Prefix-Occ values

1: procedure WT-Occ(cj , i, v, [`..r], s)
2: if ` = r then
3: return (i, s)

4: m←
⌊
`+r

2

⌋
5: if Bv[i] = 0 then . equivalent to j ≤ m
6: return WT-Occ(cj , rank0(Bv, i), v.left, [`..m], s)
7: else
8: s← s+ rank0(Bv, i)
9: return WT-Occ(cj , rank1(Bv, i), v.right, [m+ 1..r], s)

10:

11: procedure WT-Occ(cj , i)
12: return WT-Occ(cj , i, r, [1..σ], 0)
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2.4.6.3 Generalized Wavelet Tree with Rank Support

The idea of wavelet trees for storing the BWT has been generalized
from a binary wavelet tree to an r-ary wavelet tree [Ferragina et al.,
2007]. Wavelet trees are balanced binary trees partitioning the al-
phabet Σv at each node v into two sets and storing a bit vector Bv
indicating which set the corresponding character in the sequence Lv
belongs to. r-ary wavelet trees partition the alphabet at each node
into r sets of roughly equal size and store an integer string Iv over
the alphabet [1, r] (instead of a bit vector Bv). Iv[i] indicates which
set the character in Lv[i] belongs to. Figure 2.11 shows the same
Burrows-Wheeler transform from figure 2.10 represented in a 3-ry
wavelet tree.

Σroot {$, i,m, p, s}
i 123456789012
Lroot[i] ipssm$pissii
Iroot[i] 123321213311

Σv1 {$, i}
i 12345
Lv1[i] i$iii
Iv1[i] 21222

Σv4 {$} Σv5 {i}

Σv2 {m, p}
i 123
Lv2[i] pmp
Iv2[i] 212

Σv6 {m} Σv7 {p}

Σv3 {s}

Figure 2.11: 3-ary wavelet tree of the BWT string L = ipssm$pissii.
L[7] is highlighted to illustrate random access and Occ
queries.

Similarly to binary wavelet trees, rank support is needed on the
integer strings.
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Definition 2.4.10 (Rank queries on integer strings).
Let I be an integer string over the alphabet [1, r]. rankc(Bv, i) counts
the number of occurrences of c in the prefix I[1..i] for 1 ≤ c ≤ r and
1 ≤ i ≤ |I|.

The details of the sequence representation and constant-time rank
support on integer strings [Raman et al., 2002] are not elaborated here
as the data structure is more of theoretical interest. Instead, we will
show in the next section how efficient rank support on integer strings
can be realized in practice while still achieving optimal running time.

Performing queries on the wavelet tree is identical for both, binary
and generalized wavelet trees. While the height of the tree is reduced
and thus the running time of Occ queries and random access is im-
proved, the space consumption increases. Occ queries and random
access can be performed in O(logr σ) time. The space consump-
tion of the sequence representation of the BWT and rank support is

O
(

logr σ
(
rn log logn

logr n

))
. Additionally O(σ log n) bits are needed for

storing the tree structure respectively the bounds of delimiters of the
concatenated sequences on each level similar to the binary wavelet
tree.

The authors showed further that for σ ∈ O(polylog(n))2 the pa-
rameter r can be chosen such that Occ queries and random access take
only constant time while still having an efficient space consumption.
The details are omitted here as they are purely theoretical.

However, generalized wavelet trees do not support efficient Prefix-
Occ queries and thus no efficient synchronization of bidirectional FM
indices. When going down a node in the wavelet tree the smaller
value has to be computed similarly to binary wavelet trees. Consider
the 3-ary wavelet tree from figure 2.11. When Occ(s, 9) is computed
and the algorithm goes down to the rightmost child of the root node,
the rank value rankc(Iroot, 9) for each 1 ≤ c < s has to be computed.

2O(polylog(n)) = O(logk n) for some k ∈ N
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This increases the running time to O(r logr σ) as for each level there
can be up to r−1 characters smaller than c that need to be considered.

2.4.6.4 Enhanced Prefixsum Rank Dictionary

An optimal running time with fast practical implementations can be
achieved by EPR dictionaries, short for Enhanced Prefixsum Rank
dictionaries [Pockrandt et al., 2017]. All three, Occ and Prefix-Occ
queries as well as random access to the BWT can be performed in con-
stant time leading to FM indices with backward and forward searches
in O(1), and locating in O(η) for each occurrence.

Broadly speaking, EPR dictionaries store the BWT string L in its
binary representation Lbin and build a constant time rank support
data structure on top. The alphabet Σ = {c1, c2, . . . , cσ} is repre-
sented by the binary encoding of the integers [0, σ − 1]. Thus, a
single character needs w = dlog σe bits. L takes up n ·w bits of space
when stored with bit packing, i.e., storing multiple characters in a
single byte or larger word.

Now rank support is built on top of Lbin counting prefixsum rank
values for each character c ∈ {c1, c2, . . . , cσ−1}. As we have seen in
section 2.4.6.1, it is not necessary to build prefixsum rank support for
cσ, thus it is neglected throughout this section. It has to be considered
that a position does not correspond to a single bit, but to w bits in
Lbin. We assume for now that the block length ` is a multiple of 2w.
If this is not the case, padding strategies can be applied.

We define a few precomputed bitmasks, all of length `: Meven, that
has the bits set at even positions (considering the character width w),
Mcarry storing the value 1 in binary representation at odd positions
and Mcj for each character cj with 1 ≤ j < σ storing the value j − 1
at even positions and the value 1 at odd positions (cj is represented
as j − 1, since the alphabet is mapped from [1, σ] to [0, σ − 1] in the
computer representation):
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Meven = 0w 1w 0w 1w ... 0w 1w

Mcarry = 0w−11 0w 0w−11 0w ... 0w−11 0w

Mcj = 0w−11 (j−1)bin 0w−11 (j−1)bin ... 0w−11 (j−1)bin

We will now introduce the EPR bit vector BEPR(cj) that is of
length |Lbin| and indicates by a bit at each characters position whether
the character in Lbin is smaller or equal to cj . It can be computed
block by block. We denote Lbin as a block of length ` of Lbin. The
fundamental idea is to use the precomputed bitmask Mcj , perform
a subtraction and count how many carry bits were introduced. This
is done for even and odd positions separately to generate space for
an overflow bit and avoid interference with carry bits of adjacent
positions.

Step 1 To count occurrences of a character cj at even positions,
the characters at odd positions are masked out by Lbin &Meven. If
the result is subtracted from Mcj , characters at even positions that
are larger than cj will introduce a carry bit that will be eliminated
by the subtraction, since the rightmost bit at odd positions in Mcj

is set. If the character is smaller or equal to cj there will not be an
underflow, hence no carry bit. The preset bit in Mcj remains. In
the end we can count the remaining carry bits (the rightmost bit at
odd positions) by selecting them with a bitwise and with Mcarry. By
shifting the result by w bits to the right, the bits are aligned with the
corresponding character positions in Lbin. The resulting bit vector is
called BEPR(cj)even indicating the characters smaller or equal than
cj by a single bit.

BEPR(cj)even = ((Mcj − (Lbin &Meven)) &Mcarry)� w
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Step 2 The same is done for odd positions of Lbin by shifting it by w
bits to the right and applying the same strategy as for even positions
again. The resulting bit vector is called BEPR(cj)odd. No shifting of
the resulting bit vector has to be performed, since the carry bits are
already aligned with the odd character positions.

BEPR(cj)odd = (Mcj − ((Lbin � w) &Meven)) &Mcarry

Step 3 The EPR bit vector for cj is then retrieved by merging both
bit vectors BEPR(cj)even and BEPR(cj)odd with a bitwise or.

BEPR(cj) = BEPR(cj)even | BEPR(cj)odd

Figure 2.12 illustrates these steps in a small example. We omit
the representation of the sentinel character as described in section
2.4.7.2, hence w = 2 for the DNA alphabet.

Prefixsum rank support on L can now be defined using rank queries
on its transformed EPR bit vector:

Prefix-Occ(cj , i) = rank(BEPR(cj), i · w) (2.9)

Occ queries can be computed from Prefix-Occ queries:

Occ(cj , i) =

 Prefix-Occ(cj , i)− Prefix-Occ(cj−1, i) , j > 0

Prefix-Occ(cj , i) , j = 0

(2.10)

In practice ` will be the size of CPU registers, which is 64 bit (or
another power of two). There can never be an odd number of values
in a 64 bit word (assuming w | 64). Hence, we can always shift Lbin
to the right to compute BEPR(c)odd. If w - 64, it is guaranteed that
there will be at least one unused bit (at the right end) which will allow
us shifting Lbin (and the bitmasks) by at least one bit to the right.
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MG 01 10 01 10 01 10 01 10

Lbin &Meven − 00 01 00 01 00 11 00 11
- (C) - (C) - (T) - (T)

= 01 01 01 01 00 11 00 11
Mcarry & 01 00 01 00 01 00 01 00

= 01 00 01 00 00 00 00 00

BEPR(G)even �w 00 01 00 01 00 00 00 00

(a) retrieving BEPR(G)even

MG 01 10 01 10 01 10 01 10

(Lbin � w) &Meven − 00 00 00 10 00 10 00 00
- (A) - (G) - (G) - (A)

= 01 10 01 00 01 00 01 10
Mcarry & 01 00 01 00 01 00 01 00

BEPR(G)odd = 01 00 01 00 01 00 01 00

(b) retrieving BEPR(G)odd

BEPR(G)even 00 01 00 01 00 00 00 00
BEPR(G)odd | 01 00 01 00 01 00 01 00

BEPR(G) = 01 01 01 01 01 00 01 00

(c) retrieving BEPR(G)

Figure 2.12: An example for Σ = {A,C,G, T} that shows how to
retrieve the EPR transformed bit vector BEPR(G) from
L = ACGCGTAT . The resulting bit vector BEPR(G)
has a 1 for each character smaller or equal to G.
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This will create enough space on the left of the word for counting the
carry bit of the very first character.

The space consumption can be analyzed similarly to rank support
on bit vectors by Jacobson. A two-level hierarchy is built on top
of BEPR(cj) for every cj ∈ {c1, c2, . . . , cσ−1}. Thus, superblocks of
length `2 and blocks of length ` are precomputed and stored in L1

and L2 respectively as follows.

L1[q][cj ] = rank(BEPR(cj), q · `2)

L2[p][cj ] = rank(BEPR(cj)[1 + k..], p · `)
(2.11)

k = b(p− 1)/`c · `2 is the number of bits before the beginning
of the corresponding superblock. The lookup table P [V ][m][cj ] =
rank(V,m ·w) stores precomputed prefixsum rank values for each bit
vector V of length `, representing a block of BEPR(cj), each position
m in V and each character cj .

Again, we choose ` = b(log n)/2c to achieve only an additional
space consumption of o(σ log σn) bits.

Superblocks We have σ − 1 EPR bit vectors of length ndlog σe.
Each bit vector is split into b(ndlog σe)/`2c superblocks. Each entry
takes dlog ne bits for storing the prefixsum rank value:

O
(
σ · n log σ

`2
· log n

)
= O

(
σ · log σ · n

log n

)
= o(σ log σn)

Blocks Each bit vector is split into b(ndlog σe)/`c blocks. Every
entry takes dlog `2e bits of space for storing the prefixsum rank value
within a superblock:

O
(
σ · n log σ

`
· log `2

)
= O

(
σ · log σ · n · log logn

log n

)
= o(σ log σn)
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Lookup table There are 2b
`
w
c possible bit vectors of length ` (i.e.,

for each position only the rightmost bit can be set to 1) and b`/wc
characters represented in V . The result takes up dlog(`/w)e bits
(w = dlog σe). Since the lookup table only counts carry bits and is
independent of the character, it only needs to be stored once:

O

(
2

`
w · `

w
· log

`

w

)
= O

(
2

logn
2w · log(n− σ) · log log(n− σ)

)

= O
(

2w
√
n · log n · log logn

)
= o(n)

Theorem 2.4.13.
Backward and forward searches as well as LF mappings in an FM
index can be computed in O(1) using EPR dictionaries taking only
O(n log σ) + o(nσ log σ) bits of space and O(σ log n) bits to store C.

Proof. Similarly to Jacobson prefixsum rank queries can be computed
in constant time. Applying theorem 2.4.10, we can compute Occ and
Prefix-Occ queries in constant time. Random access to the BWT can
be performed by accessing L directly. Storing L takes O(n log σ) bits.
With ` = blog n/2c the size of the additional tables is o(nσ log σ).

Theorem 2.4.14.
For small alphabets, i.e., σ ∈ O

(
logn

log logn

)
EPR dictionaries achieve

the same asymptotic space consumption as wavelet trees, O(n log σ).

Proof. The largest of all rank support tables are the precomputed
blocks for ` = blog n/2c. For sufficiently small alphabet sizes the
o-term meets the O-term for storing the BWT.

O
(
σ · log σ · n · log logn

log n

)
= O(n log σ)

61



2 Indexing Data Structures

2.4.7 Implementation Details

2.4.7.1 Rank Support in Practice

In the previous sections we chose the block lengths of bit vectors with
rank support such that a good asymptotic behavior in terms of space
consumption is achieved, especially for the precomputed lookup table
P . Since we replace P by a popcount operation in practice and it
would also be advisable to take the CPU architecture into account,
we show two different implementations of a hierarchical rank support
that are currently used in the SDSL and SeqAn2.

SDSL The fastest constant-time rank support implemented in the
SDSL is called rank9 [Vigna, 2008]. It increases the space consump-
tion by 25% when built on a bit vector. The hierarchy consists of two
levels: superblocks and blocks. A superblock spans 512 bits of the
bit vector and stores the values in 64 bits, a block spans 64 bits and
stores the values in log2 512 = 9 bits. Since the first precomputed
block value is 0, it does not need to be stored explicitly. Thus 9 block
values of 7 bits each, can be stored in a 64 bit word. This leads to
128 bits of precomputed information for each 512 bits of the original
bit vector, hence a 25% overhead.

SeqAn2 This approach [Reinert et al., 2017] is a more general ap-
proach for arbitrary alphabets, i.e., it can also be used for rank sup-
port for non-binary alphabets, such as the EPR dictionary. SeqAn2
rank support allows up to 3 levels. The underlying string (such as
the BWT or a bit vector) is stored in an array of 64 bit words. Each
64 bit word contains 64/dlog σe values. If dlog σe - 64, some bits in
each word are left unused. For the block, superblock (and possibly
ultrablock) no bit packing is performed for a faster running time,
but at the expense of a higher space consumption. The block size
is 64 bit (resp. 64/dlog σe values) and can be increased by a multi-
ple of this value leading to more than one popcount operation. The
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highest level (in our example ultrablocks) is stored in a 64 bit array,
superblocks and blocks in a 32 respectively 16 bit array. To reduce
the number of ultrablocks and superblocks, they span the maximum
number of possible values. Ultrablocks span at most 232 − 1 values
and superblocks at most 216−1, since superblocks and blocks cannot
represent values larger than 232 − 1 respectively 216 − 1.

The size of the data structure can be reduced for smaller bit vectors
by using a 32 bit array for the highest level instead of a 64 bit array.
The integer size of the lower levels are divided by 2 as well.

For plain bit vectors used such as in wavelet trees the value size is
set to σ = 2.

2.4.7.2 Eliminating the Sentinel Character

One trick used by libraries such as SeqAn2 is the elimination of the
sentinel character. When appending it to the text to be indexed,
it increases the alphabet size leading to a larger space consumption
and possibly increased running time for some of the data structures.
This can be significant for small alphabets such as the DNA alphabet
which grows by 25% when adding the sentinel character.

Since the sentinel character only occurs once in the text at an un-
known position in the BWT, it can be replaced by a character from
the original alphabet and the position sen pos of the sentinel is stored.
Whenever an Occ(c, i) query is performed, the result needs to be ad-
justed if c is the sentinel substitute and i ≥ sen pos by decrementing
the result. The same applies to Prefix-Occ(c, i) queries. If the sen-
tinel substitute is larger than c, the result has to be incremented.
For random access to the BWT L[i] one has to return the sentinel
character if and only if i = sen pos. This eliminates the need for rank
support for the sentinel character.
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2.4.8 Benchmarks

After analyzing the asymptotic running time and space consumption,
we will now compare different implementations in practice. The only
available implementations of FM indices are based on binary wavelet
trees and EPR dictionaries. We compare our implementations of
wavelet trees and EPR dictionaries for both, unidirectional and bidi-
rectional FM indices and also compare them to other open source
implementations of bidirectional FM indices based on wavelet trees,
one from the SDSL (Succinct Data Structure Library) [Gog et al.,
2014] and the first implementation of a bidirectional FM index using
wavelet trees [Schnattinger et al., 2010]. We will refer to these two
bidirectional implementations as 2WTSDSL and 2WTSchna.

Our FM index implementations are part of the sequence analysis
library SeqAn2 [Reinert et al., 2017] that are based on wavelet trees
and EPR dictionaries. The benchmarks were run on both unidi-
rectional and bidirectional indices [Pockrandt et al., 2017]. They are
referred to as WTSeq and EPRSeq respectively 2WTSeq and 2EPRSeq.

Other bidirectional indices such as bidirectional suffix arrays (called
affix arrays [Strothmann, 2007]) are excluded as the construction of
the index did not terminate within several days on our test data set
for alphabets with σ > 4.

All tests were conducted on Debian GNU/Linux 7.1 with an In-
tel Xeon E5-2667V2 CPU. To avoid dynamic overclocking effects in
the benchmark, the CPU frequency was fixed to 3.3 GHz and the
benchmark was performed on a single thread. The data was stored
on a virtual file system in main memory to avoid loading it from
disk during the benchmark which might affect the results due to I/O
operations.

A text of length 108 and 1 million sampled query sequences of
length 200 were generated for different, typical biological alphabet
sizes:
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� 4 (DNA and RNA alphabet)

� 10 (reduced amino acid alphabets such as Murphy10 [Murphy
et al., 2000])

� 16 (DNA alphabet for representing uncertainties via subsets)

� 27 (20 amino acids plus additional characters, e.g., for repre-
senting ambiguities or stop codons)

The queries were searched from right to left in unidirectional in-
dices. In bidirectional indices, the first half of each query was searched
using forward searches and the second half using backward searches.
Table 2.2 shows the running times measured for the benchmark.

EPR dictionaries achieve a speedup between 40% (DNA) and 240%
(amino acid) for unidirectional FM indices and are between 110%
(DNA) and 360% (amino acid) faster for bidirectional FM indices
when compared to wavelet trees. As bidirectional indices require
synchronization, they are slower than unidirectional indices. The
table also shows that the wavelet tree based indices in SeqAn are
comparable to those of other libraries. 2WTSDSL and 2WTSeq are
both faster than 2WTSchna, but 2WTSDSL catches up in terms of
running time with 2WTSeq for larger alphabets. One of the reasons
is that SeqAn eliminates the sentinel character, while the SDSL does
not. This leads to an increased alphabet size. As a search step
takes O(log σ), the effect is getting smaller for larger alphabets. The
unidirectional indices, WTSDSL and WTSeq show a similar pattern,
however less significant.

Furthermore the running time of EPR dictionaries across different
alphabet sizes increases only slightly compared to wavelet trees. It is
not constant as in theory, since larger alphabets increase the size of
the data structures which lead to more cache misses.

EPR dictionaries reduce the running time from O(log σ) to O(1)
in theory. This holds also in practice as the speedup factor is very
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close to log σ. Similar results were observed for the DNA alphabet
with real biological data on the human genome (except for 2WTSchna

which crashed during the construction of the larger FM index).

The same benchmark for 2EPRSeq was also performed on multiple
threads. The speedup for 4, 8 and 16 threads is 3.4, 7 and 12.9 which
shows that it is suitable for parallelized algorithms, but has a memory
bottleneck which is expected for string indices with frequent random
memory access and only few computations.

DNA Murphy10 DNA16 Amino acid

Index Time Factor Time Factor Time Factor Time Factor

WTSeq 20.7s 1.00 52.4s 1.00 66.5s 1.00 85.6s 1.00
EPRSeq 15.1s 1.37 22.3s 2.35 23.4s 2.84 25.3s 3.38
WTSDSL 28.2s 0.73 59.3s 0.88 73.3s 0.91 94.4s 0.91

2WTSeq 41.2s 1.00 66.6s 1.00 98.7s 1.00 121.0s 1.00
2EPRSeq 20.1s 2.05 23.8s 2.80 24.4s 4.05 26.1s 4.64
2WTSDSL 43.5s 0.95 74.7s 0.89 89.1s 1.11 109.4s 1.11
2WTSchna 59.6s 0.69 91.3s 0.73 107.0s 0.92 130.0s 0.93

Table 2.2: Running times of various implementations in seconds and
their speedup factors with respect to the unidirectional
respectively bidirectional wavelet tree in SeqAn.

Table 2.3 compares the space consumption of different rank data
structures. It only includes the wavelet trees and the EPR dictio-
naries. Additional data structures such as sampled suffix arrays are
not included as their space is independent from the BWT representa-
tion and depend on further parameters such as the sampling strategy,
sampling rate and bit packing. As expected, 2WTSeq and 2EPRSeq

take exactly twice the amount of space as their unidirectional coun-
terparts. Again, 2WTSDSL is smaller for all alphabets than 2WTSchna

and approaches the space consumption of the SeqAn implementation
2WTSeq for larger alphabets which is due to the explicit sentinel char-
acter in the SDSL. For smaller alphabets the space increases only by
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40% (DNA), and are up to 6.6 as big for large alphabets (amino acid).
The space consumption for affix arrays is significantly larger. That

makes it impractical for many biological applications. We included
the index size for DNA alphabet and refer to it as AF [Meyer et al.,
2011].

Index DNA Murphy10 DNA16 Amino acid

WTSeq 30 51 60 72
WTSDSL 34 53 61 73
EPRSeq 42 156 227 478

2WTSeq 60 102 120 144
2WTSDSL 68 105 122 145
2WTSchna 75 108 123 146
2EPRSeq 84 311 454 955
AF 2670 - - -

Table 2.3: Space consumption of the rank data structure in Megabyte
of various implementations.

For larger alphabets it can be beneficial to increase the number
of levels of prefixsum rank support to 3. As table 2.4 shows, the
space consumption can decrease by up to 40% (amino acid) while the
running time increases by 23% for another array lookup.

Index DNA Murphy10 DNA16 Amino acid

2 level 42 156 227 478

3 level 36 109 150 291

Table 2.4: Space consumption of unidirectional EPR dictionaries
with 2 and 3 level prefixsum rank support in Megabyte.

67



2 Indexing Data Structures

Finally, we take a look at the o(n log σ)-term of wavelet trees and
the o(nσ log σ)-term of EPR dictionaries. To verify that for both data
structures the O(n log σ)-term in practice is more dominant than the
o-term, we build the EPR dictionary and wavelet tree on strings of
different lengths and alphabets. For σ = 4 respectively σ = 16 (DNA
and DNA16 alphabets) and lengths 104, 105, . . . , 109 we measured
the space consumption and divided the space by the O-term, namely
ndlog σe. This is the space that is used by both data structures for
storing the BWT respectively the bit vectors (without rank support).
Figure 2.13 visualizes the impact of the o-term. As expected, for both
data structures the ratio converges to a constant. Since the o-term of
EPR dictionaries is larger than the o-term of wavelet trees, the ratio
converges more quickly. Furthermore, the space consumption for the
rank support of EPR dictionaries is higher.

104 105 106 107 108 109

0

2

4

6

Text length

EPR(4)

EPR(16)

WT(4)

WT(16)

Figure 2.13: Decreasing impact of the o-term with respect to the O-
term in the space complexity.
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In summary, EPR dictionaries improve the running time of both,
unidirectional and bidirectional FM indices. They achieve an optimal
running time in theory which we verified in benchmarks. It is also
the first constant-time implementation. Other approaches with opti-
mal running times do not have (publicly available) implementations
[Ferragina et al., 2007, Belazzougui et al., 2013]. This makes EPR
dictionaries probably the fastest bidirectional indices available at the
time of this writing, especially useful for small alphabets as they are
already twice as fast as wavelet trees for DNA alphabets while the
total increase in space for the entire FM index is significantly less
than 40% for text order sampling with a sampling rate of η = 10.
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3.1 Introduction

In the previous chapter we have shown how to search a query se-
quence in an index. For many bioinformatics applications one is
not only interested in the locations of a given query sequence in the
indexed text, but also the locations of approximate matches, i.e., se-
quences that are similar to the original query sequence based on some
similarity measure.

Depending on the use case, there are different kind of error types
and distance metrics to be considered. In sequence analysis we focus
on substitutions (also referred to as mismatches), insertions and dele-
tions, accounting for both sequencing errors and genetic mutations
[Yang et al., 2012, Pavlopoulos et al., 2013]. Other error types such
as translocations (swapping two characters at arbitrary positions) are
not considered here as they are less relevant for sequence analysis.

Text ...GTGAACACCAAATGACG-GGGGGGAG...
Alignment |||x|||||| ||| |||||
Query AACTCCAAAT-ACGCGGGGG

01234567890123456789

Figure 3.1: Example of different error types. At position 3 is a sub-
stitution, at position 10 a deletion and at position 14 an
insertion of a character in the query sequence.
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Definition 3.1.1 (String metric).
String or distance metrics measure the distance of two strings, i.e.,
the inverse of the strings similarity. A metric D : Σ∗ × Σ∗ → N0 has
to fulfill four properties. Let x, y and z be strings of any length:

1. D(x, y) ≥ 0 (non-negativity)

2. D(x, y) = D(y, x) (symmetry)

3. D(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

4. D(x, z) ≤ D(x, y) +D(y, z) (triangle-inequality)

Two widely used distance metrics are the Hamming distance and
the Levenshtein distance, the latter is often referred to as Edit dis-
tance.

Definition 3.1.2 (Hamming distance).
Given two strings S and T of equal length, the Hamming distance
DH(S, T ) is the minimum number of character substitutions to trans-
form one string into the other [Hamming, 1950].

Definition 3.1.3 (Levenshtein distance).
Given two strings S and T of arbitrary length, the Levenshtein dis-
tance DL(S, T ) is the minimum number of character substitutions,
insertions and deletions to transform one string into the other [Lev-
enshtein, 1966].

An important problem in applications such as read mapping is
approximate string matching: a query sequence S is searched in the
indexed reference genome T with up to e errors given a distance
metric.

Definition 3.1.4 (Approximate string matching).
Approximate string matching refers to finding all sequences S′ in a
text T with D(S, S′) ≤ e for a given sequence S, error threshold e
and distance metric D [Galil and Giancarlo, 1988].
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The number of sequences S′ grows exponentially in the number of
errors. Given a sequence S of length k over an alphabet of size σ,
equation 3.1 counts the number of sequences S′ with DH(S′, S) ≤ e.

e∑
i=0

(
k

i

)
· (σ − 1)i (3.1)

Since this number gets even larger considering additional error
types such as insertions and deletions, a lot of research has been ded-
icated to this area trying to speed up approximate string matching
in an index. Instead of searching every single possible approximate
match S′ in the index, one makes use of combinatorial arguments to
reduce the computational effort. Some of these are being introduced
and compared in the following sections. If not stated otherwise, we
will only consider Hamming distance. Many of the arguments and
algorithms can be applied to Levenshtein distance just as well, but
get more complex in the details.

In this chapter we only consider approaches that use full-text string
indices such as suffix trees, (enhanced) suffix arrays, or FM indices
that allow searching a query sequence of arbitrary length character
by character. Furthermore we require a bidirectional index, i.e., we
have to be able to extend characters to the left as well as to the right
in any order. Thus we do not consider approaches using other string
indices such as k-mer indices that only allow for a fixed query length.

In the following sections we will present different approaches to the
approximate string matching problem. Starting from the trivial al-
gorithmic solution of enumerating all possible approximate matches
S′ of a given query sequence S via backtracking, we will continue
with combinatorial arguments such as the pigeonhole principle. Sub-
sequently a framework called search schemes by Kucherov et al. is
introduced. It allows formalizing search strategies for approximate
string matching in indices and comparing their efficiency. After that,
we will give an integer linear program to solve the approximate string
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matching problem optimally (with certain constraints). We will com-
pare the aforementioned strategies and search schemes given by Ku-
cherov et al. to our optimal search schemes computed by the ILP
from theoretical aspects as well as benchmarks on sequencing data.
In the end we will discuss an additional technique to speed up exact
and approximate string matching in indices that can be combined
with all algorithms mentioned in this thesis.

3.2 Simple Backtracking

One of the simplest solutions to approximate string matching, be-
sides searching each sequence S′ one after the other in the index, is
to search each common prefix of two sequences only once. This is
achieved by a backtracking approach, illustrated in figure 3.2, first
proposed by Ukkonen for approximate string matching in suffix trees
[Ukkonen, 1993]. Starting from the root node, the original sequence
S is searched in the index character by character. Each search step
in the index is represented by an edge. Edges downwards represent
matches, diagonal edges represent substitutions. For illustration pur-
poses we display the character searched in the index next to some of
the edges. The occurrences of the approximate matches are repre-
sented by leaves. We allow for substitutions at each position in S
and continue the search recursively while keeping track of the re-
maining number of errors allowed. This strategy not only works for
suffix trees, but for any of the aforementioned string indices.

The pseudocode is given in algorithm 7. The iterators wrap suf-
fix array ranges of a suffix array or FM index. Instead of forward
searches, backward searches can be performed if the sequences are
reversed in advance. In line 10 the result of the Boolean expression is
interpreted as an integer and used to decrement the number of errors
in case of a mismatch.

The improvements in the following sections are all based on the
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B

Figure 3.2: Simple backtracking approach for the query sequence S =
AAABBB on the binary alphabet Σ = {A,B} with up
to 1 substitution (Hamming distance).

backtracking approach and try to reduce the number of edges in the
backtracking tree by the use of combinatorial arguments. To compare
different strategies for the approximate string matching problem we
will compare the number of edges in such backtracking trees, since
going down an edges corresponds to a search step in the index.

The number of edges for this approach is given be the recursive
formula in equation 3.2. Searching an error-free k-mer requires k
search steps in an index. A non-error-free search leads to σ edges
going down from the current node, one for each character. One of
them matching the character in the query sequence, the others leading
to a substitution.

ck,e =

{
σ + ck−1,e + (σ − 1) · ck−1,e−1 , k > 0 ∧ e > 0
k , otherwise

(3.2)

75



3 Indexed Search

Algorithm 7 Simple Backtracking

1: procedure backtracking(iterator, S, e)
2: if S = ε then . leaf reached
3: report iterator
4: else if e = 0 then . no errors left
5: if iterator′ ← forward search(iterator, S) then
6: report iterator′

7: else . errors left
8: for c ∈ Σ do
9: if iterator′ ← forward search(iterator, c) then

10: e′ ← e− (c 6= S[0])
11: BACKTRACKING(iterator′, S[1..], e′)

12:

13: procedure backtracking(S, e)
14: iterator← root . iterator stores suffix array ranges
15: BACKTRACKING(iterator, S, e)

It is noteworthy that we only consider complete backtracking trees,
i.e., we assume that all possible sequences S′ occur in the text. In
general, this not true. Some paths in the tree will be cut because
the corresponding prefix does not occur in the text. In that case
the search will not be continued in the corresponding subtree, since
no approximate match with this prefix can occur in the text. While
we assume in our model that the tree is complete, this should be
kept in mind throughout the entire chapter. As we will see later
in the experiments and benchmarks, the number of edges in a com-
plete backtracking tree is still a suitable measure for comparing the
performance of different search strategies.
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3.3 Pigeonhole Search Strategy

Similar to the pigeonhole principle [Fletcher and Patty, 1987], which
gives a lower bound when distributing objects into boxes we can
derive the following observation giving an upper bound:

Theorem 3.3.1.
If we distribute n objects over m boxes, then there must be at least
one box that contains at most

⌊
n
m

⌋
objects.

Proof. By contradiction, we assume that the statement is not true,
i.e., all boxes contain more than

⌊
n
m

⌋
objects, given m boxes and n

objects. We conclude that when counting the objects in all boxes, we
would have at least m+ 1 objects, a contradiction:

n ·
(⌊m

n

⌋
+ 1
)
≥ n ·

(
m

n
− n− 1

n
+ 1

)
= m− (n− 1) + n

= m+ 1

The general idea of improving the previous backtracking approach
is to conceptually divide the sequence S into p pieces (representing
boxes). The errors represent objects that can be distributed in any
manner onto the pieces. Applying theorem 3.3.1, we consider the
number of errors e fixed and set p accordingly. Thus we know that
no matter how the errors (at most e) in S′ are distributed, at least

one of the pieces of that sequence contains at most e′ =
⌊
e
p

⌋
errors.

The search algorithm then searches each of the p pieces separately
with at most e′ errors using the simple backtracking approach from
the previous section, and after a successful search continues with the
remaining pieces allowing for up to e errors in total. These cases all
together guarantee that each possible error pattern (distribution of
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errors onto pieces) is covered. The pieces can be chosen of any length
as long as they remain fixed over all cases. For now we consider all
pieces of equal length (for simplicity we assume p | k). If we set p > e
there is at least one piece that has to match without any error as⌊

e
e+1

⌋
= 0. Any p > e + 1 will not improve the algorithm further

with respect to theorem 3.3.1.

Definition 3.3.1 (Pigeonhole Search Strategy).
We call the strategy of choosing p = e + 1 the pigeonhole search
strategy. It consists of p searches where each search starts with a
different piece that is searched error-free and afterwards extended
with up to e errors.

Figures 3.3 and 3.4 show the backtracking approach for e = 1 and
e = 2 using the pigeonhole search strategy. This leads to two cases
respectively three cases in which one piece is searched without errors
and extended by the other piece(s) allowing for one respectively two
errors. In the second tree for e = 2 one can see that it is necessary to
have a bidirectional string index. The piece P2 in the middle of the
pattern is searched first and is extended afterwards to the right and
to the left.

Just as for the simple backtracking approach, it is guaranteed that
every error pattern is covered. While the simple backtracking ap-
proach guarantees that every error pattern is covered exactly once,
this is not the case for the pigeonhole search principle. As the exam-
ple in figure 3.3 shows, the exact match S = AAABBB is covered
by both cases.

Observation 3.3.1.
Every error pattern with no more than

⌊
e
p

⌋
errors in each piece will

be covered by more than one case.
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Figure 3.3: Searching the query sequence S = AAABBB on the bi-
nary alphabet Σ = {A,B} with up to one substitution
(Hamming distance). The sequence is divided conceptu-
ally into two pieces P1 and P2 of equal size.
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Figure 3.4: Searching the query sequence S = AAABBB on the bi-
nary alphabet Σ = {A,B} with up to two substitutions
(Hamming distance). The sequence is divided conceptu-
ally into three pieces P1, P2, and P3 of equal size. Each
case starts searching a different piece without errors.
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Example 3.3.1.
If we searched a sequence with e = 5 errors and p = 2 pieces, all error
patterns that have up to

⌊
5
2

⌋
= 2 errors in each piece are covered

by both cases, i.e., occurrences in the text that match these error
patterns will be reported twice.

If multiple cases cover the same error pattern, occurrences of ap-
proximate matches are reported multiple times. For many applica-
tions such as read mapping this requires filtration of duplicates after
searching. This is only true for Hamming distance though. For Lev-
enshtein distance, even cases with disjoint error patterns or the simple
backtracking approach can lead to redundant matches. This lies in
the nature of the Levenshtein distance. A match can have multiple
alignments, e.g., a single substitution can be expressed as an insertion
followed by a deletion. It is also possible that different alignments
have the same start and end positions in the text.

Applying the pigeonhole search strategy does not improve the run-
ning time of approximate string matching asymptotically, since after
searching the first piece the rest of the sequence will be searched
with the remaining error count. It still makes each of the backtrack-
ing trees sparser by the elimination of branching in the k

p topmost
nodes and thus decreasing the effect of the exponential growth. In
the given example, the reduction of edges can be up to 50% depend-
ing on k. The simple backtracking approach for e = 1 according to
equation 3.2 leads to ck,1 = σ · k+ (σ− 1)k·(k−1)

2 edges for a sequence

of length k whereas the pigeonhole search strategy leads to k
2 edges

in the exact matching piece and c k
2
,1 edges for the erroneous piece.

For both cases this adds up to k + 2c k
2
,1. For growing k a reduction

of 50% of edges is achieved. W.l.o.g. we assume that k is even.

Equation 3.3 quickly approaches 1
2 . For the DNA alphabet (σ = 4)

sequences as short as 6 base pairs have a reduction of 30% of edges,
while sequences of length 14 already save 40% of edges. Searching a
sequence of length 100 such as Illumina reads using the pigeonhole
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search strategy, reduces the number of edges by 48.5%.

limk→∞
2
(
k
2 + c k

2
,1

)
ck,1

= limk→∞
2k2 + 2σ k2 + 2(σ − 1)1

2
k
2 (k2 − 1)

σk + (σ − 1)k(k−1)
2

= limk→∞

1
k + σ 1

k + (σ − 1)(1
4 −

1
2k )

σ 1
k + (σ − 1)(1

2 −
1
2k )

=
(σ − 1)1

4

(σ − 1)1
2

=
1

2

(3.3)

As shown later in section 3.7 the speedup in practice is greater than
2. This divergence comes from our assumption that the backtracking
trees are complete. In general, we do not find every approximate
match S′ in the text. Intuitively speaking, the simple backtracking
approach has to do many search steps near the root node as for
short prefixes of S all approximate prefixes occur in the text. Thus,
branching nodes close to the root should be avoided. This is addressed
by the pigeonhole search strategy.

In comparison to the simple backtracking approach which requires
only a unidirectional index, we need to be able to search into both
directions when applying the pigeonhole principle. Especially for
searches starting with a piece in the middle of the query sequence
we need a bidirectional index such that one can switch directions
during the search of the sequence.

The reduction of edges gets smaller with growing e. For two errors
it approaches 11%, for more errors it even gets negative as we will
see later in the experiments. Thus, we will need to consider stronger
combinatorial arguments.
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3.4 01*0 Search Strategy

Another combinatorial argument was given by [Vroland et al., 2016].
It is based on the following theorem.

Theorem 3.4.1 (01*0 Seeds).
If we have n+ 2 ordered boxes and distribute n objects among them
(n ∈ N), there must be a sequence of boxes such that the left- and
rightmost boxes contain no object and the boxes in between exactly
one object each.

Proof. There are at least 2 empty boxes. If µ is the number of boxes
that contain more than one object, we can conclude that there are
at least µ + 2 empty boxes. Hence, there are µ + 1 pairs of boxes
with only non-empty boxes in between. Since there are only µ boxes
with more than one object inside, only µ pairs can be interleaved by
such a box. Thus, at least one pair of empty boxes remains that does
not have a box in between with multiple objects. We conclude that
there can only be boxes in between that each contain exactly one
object or none. This guarantees that there is such a sequence of 01∗0
boxes.

This theorem also holds when less than n objects are distributed
among n + 2 boxes. Thus it can be applied straightforward to the
approximate string matching problem with up to e errors. The se-
quence is split into p = e+2 pieces representing boxes. Up to e errors
can be distributed among those pieces. Each approximate match S′

as well as the exact match S will have at least two error-free pieces
where all pieces in between have exactly one error. This subsequence
is called a 01∗0 seed. It can then be extended to search the rest of
the sequence.
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Example 3.4.1.
Taking up the example from the previous section, the query sequence
is divided into three pieces for e = 1. There are three possible error
patterns containing 01∗0 seeds: 00x, 010 and x00 where x represents
a wildcard, i.e., any distribution of the remaining errors. Again, as
for the pigeonhole principle, the sizes of pieces can be arbitrary as
long as they are fixed over all cases.

Let S be a sequence that shall be searched with up to e errors in a
string index. It is split into p = e+ 2 pieces with S = P1 ·P2 · ... ·Pp.
The simplest, straightforward approach is to consider each possible
pair (i, j) of pieces with 1 ≤ i < j ≤ p separately. In the first step,
Pi · Pi+1 · ... · Pj is searched from left to right where no errors are
allowed in Pi and Pj . During the search of the pieces in between,
backtracking is performed requiring exactly one error in each piece.
In the second step, if the search did not abort beforehand, the entire
sequence is extended to the right Pj+1 · Pj+2 · ...Pp and to the left
P1 ·P2 · ...Pi−1 allowing for the remaining e− (j− i−1) errors. This is
implemented using simple backtracking again. It leads to

(
e+2

2

)
cases

respectively backtracking trees. Figure 3.5 illustrates an example
with the corresponding backtracking trees.

To reduce the number of cases and thus the total number of search
steps, one does not consider each pair separately, but each error-free
starting piece leading to p−1 cases.Consider the search starting with
piece Pi. It searches Pi without errors and continues with backtrack-
ing of Pi+1 allowing for up to one error. If there is a path in the
backtracking tree that matches Pi+1 without errors, a 01∗0 seed has
been found with no erroneous pieces in between and that path is con-
tinued by extending the sequence to the right and to the left with the
remaining number of errors, i.e., e errors.

The other paths must have had exactly one error in Pi+1. They
are continued by performing the previous step recursively, i.e., the
next piece Pi+2 is searched with up to one error. An exact match
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Figure 3.5: Searching the query sequence S = AAABBB on the bi-
nary alphabet Σ = {A,B} with up to one substitution
(Hamming distance) applying the 01∗0 search strategy.
Backtracking is performed for each 01∗0 seed separately.

of Pi+2 finishes this step and continues extending the rest of the
query sequence with the remaining number of e−1 errors. The paths
that spent an error in Pi+2 are continued recursively until the search
aborts as no partial approximate matches can be found or the last
piece Pp is reached, that must be error-free. Figure 3.6 illustrates
the (complete) backtracking trees for e = 1 using this approach. It
is superior to the previous one considering each 01∗0 seed separately,
since it avoids searching redundant prefixes multiple times.

By taking a quick glance one can see the improvement of 01∗0
seeds over the pigeonhole search strategy. The 01∗0 search strategy
splits the sequence into e + 2 pieces, while the pigeonhole search
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Figure 3.6: Searching the query sequence S = AAABBB on the bi-
nary alphabet Σ = {A,B} with up to one substitution
(Hamming distance) applying the 01∗0 search strategy.
Backtracking is performed for each piece Pi separately
with 1 ≤ i < p.

strategy splits it into e+ 1 pieces. Thus, the pieces are slightly larger
when using the pigeonhole search strategy. This leads to a marginally
longer exact string search before errors are allowed which reduces the
edges further. Whereas the pigeonhole search strategies continues
with the maximum number of errors e from the second piece on,
01∗0 seeds only allows for up to one error in the next piece. This
reduction of edges is much higher than the increase by the slightly
shorter exact match before, which makes the 01∗0 approach superior
to the pigeonhole principle for e > 1.

Analogously to the pigeonhole search strategy redundant approx-
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imate and exact matches can occur, since they can contain multiple
01∗0 seeds. For example, an exact match contains multiple 00 seeds
for e > 0, p − 1 seeds in total. This might require a subsequent
filtration phase for duplicates depending on the application.

Vroland et al. implemented this approach in a tool called Bwolo.
It is noteworthy, that they only use a unidirectional FM index, i.e.,
they search for 01∗0 seeds in the index and can only extend the seed
afterwards to the right. It does not allow extending the sequence
to the left (the indexed sequence as well as the query sequence are
reversed to search it from left to right). Therefore after searching
the 01∗0 seed Pi · Pi+1 · ... · Pj , they extend it to Pi · Pi+1 · ... · Pp
using backtracking, locate the positions in the text and verify whether
P1 · P2 · ...Pi−1 matches at those text positions with the remaining
number of errors. The authors use this approach, since at the time
of publication SeqAn did not offer a bidirectional FM index. As
we will see later in the benchmarks, this approach has significant
speedups to pure index-bases searches. We will discuss so-called in-
text verification in section 3.8.

3.5 Search Schemes

When Lam et al. introduced bidirectional FM indices [Lam et al.,
2009], they also suggested search strategies for one and two errors
in a bidirectional string index. For e = 1 they apply the pigeonhole
search strategy as described in section 3.3, for e = 2 they suggest
to split the query sequence into 3 pieces and describe their strategy
verbally.

Kucherov et al. took up on that and introduced search schemes
[Kucherov et al., 2016], a generalized framework to formalize and
evaluate search strategies in a bidirectional full-text index.
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Definition 3.5.1 (Search).
A search S = (π, L, U) is a triplet that combines multiple error pat-
terns. It defines a permutation string π and two integer strings L
and U for lower and upper error bounds. π is a permutation of
{1, 2, . . . , p} indicating the order in which the pieces are searched. L
and U are both integer strings over {0, 1, . . . , e} of length p determin-
ing the number of errors allowed for each piece as cumulative values,
i.e., when the ith piece is processed the number of accumulated errors
must be between L[i] and U [i].

For a search to be valid, it needs to fulfill the connectivity prop-
erty in equation 3.4 that ensures that the sequence can actually be
searched in a bidirectional index, e.g., when beginning with pieces P2

and P3, the next pieces to be searched can only be P1 and P4, not
P5.

∀i > 1 : π[i] ∈ {minj<i π[j]− 1,maxj<i π[j] + 1} (3.4)

Definition 3.5.2 (Error pattern).
Error patterns are formalized as integer strings A of length p that
define the number of errors for each piece. Its weight is the number
of total errors

∑p
i=1A[i].

Definition 3.5.3 (Error pattern coverage).
A search S covers an error pattern if and only if

∀1 ≤ i ≤ p : L[i] ≤
i∑

j=1

A[π[j]] ≤ U [i] .

We adjusted the original definition of error pattern coverage by
Kucherov et al., since their definition is more restrictive and does not
allow to increase the minimum number of errors during the search of
the last piece. In particular, they require L[i+1] ≤

∑i
j=1A[π[j]] and

define L[p+ 1] = 0.
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Definition 3.5.4 (e-mismatch search scheme).
An e-mismatch search scheme S is a set of search triplets covering all
possible error patterns with up to e errors.

Table 3.1 lists the one and two error mismatch search schemes by
Lam et al. using the original definition of error pattern coverage
by Kucherov at al. While their described search strategies allow for
exactly one respectively two errors, Kucherov extended them to allow
for fewer errors as well. All of the aforementioned search strategies
in this chapter (except for simple backtracking), as well as the search
schemes in table 3.1 have error patterns that are covered by multiple
searches.

Strategy Search scheme Error patterns

SLam,1
(12, 00, 01) 00, 01

(21, 00, 01) 00, 10

SLam,2

(123, 000, 022) 000, 001, 010, 011, 002, 020

(321, 000, 012) 000, 100, 010, 110, 200

(231, 001, 012) 001, 100, 101

Table 3.1: Formalized search schemes based on Lam et al.

Definition 3.5.5 (Disjoint searches).
We call the searches of a search scheme disjoint, if no error pattern
is covered by more than one search.

Using the adjusted definition of error pattern coverage, we can
formulate more efficient search schemes, e.g., SLam′,1 = {(12, 00, 01),
(21, 01, 01)} which reduces the number of edges by one and covers
each error pattern only once. The number of edges saved increases
with more errors and a higher lower bound in the last piece. As we
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will see later the search scheme SLam,2 formulated by Kucherov et al.
is not optimal either.

All of the strategies we presented in the previous sections can be
formalized as searches and search schemes.

Observation 3.5.1 (Simple backtracking search schemes).
The simple backtracking approach with up to e mismatches is simply
one search with one piece allowing between 0 and e errors: Ssimple =
{(1, 0, e)}.

Observation 3.5.2 (Pigeonhole search schemes).
The pigeonhole search strategy with e errors can be represented by
a search scheme with e + 1 searches and e + 1 pieces. Each search
starts with a different piece while all searches have the lower and
upper bounds L = 00...0 and U = 0ee...e.

Observation 3.5.3 (01∗0 search schemes).
01∗0 seeds can be formalized as search schemes such that each pair
of error-free pieces is defined as a separate search. Searches with the
same first error-free block can also be merged into a single search. The
L strings are merged by selecting the minimum at each position, the
U strings by selecting the maximum at each position, i.e., L = 00...0
and U = 01ee...e. Since there is only one search starting at Pp−1, no
merging is necessary, hence U = 00ee...e. This reduces the number
of searches from

(
e+2

2

)
to e+ 1.

Example 3.5.1 (01∗0 search schemes).
Let e = 2 and consider the 01∗0 seeds whose left error-free piece is P1,
i.e., the error patterns 00xx, 010x and 0110 (where x can be any num-
ber of the remaining errors). They can be represented by the searches
(1234, 0000, 0022), (1234, 0111, 0112) and (1234, 0122, 0122). These
three searches can be merged into a single search (1234, 0000, 0122).
All 01∗0 search schemes with merged searches for up to 4 errors are
listed in the appendix in table A.4.
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To compare the efficiency of different search schemes, the number of
nodes for backtracking in an index can be computed using dynamic
programming. This is done analogously to counting the edges for
simple backtracking in equation 3.2. The number of nodes for a
sequence of length k of a single search can be computed by equation
3.5 given L and U . These integer strings are derived from L and U
as follows. Let π be the order of pieces, X[1..p] the length of each
piece and L and U the lower and upper bounds. Each character L[i]
and U [i] is then replaced by a run of the same character of length
X[π[i]], e.g., for L = 0012 with pieces of length 2 each, L = 00001122
is derived.

The number of nodes is computed by equation 3.5. nk,e counts
the number of prefixes of length k with exactly e mismatches, i.e.,
the number of leaves in the backtracking tree of this prefix. If we
sum up the number of leaves for each prefix of length k and each
allowed number of errors, we count the number of nodes in the entire
backtracking tree.

nk =
U [k]∑
e=L[k]

nk,e

nk,e =


nk−1,e + (σ − 1)nk−1,e−1 , k > 0 ∧ L[k] ≤ e ≤ U [k]

1 , k = 0 ∧ e = 0

0 , otherwise

(3.5)

Kucherov et al. show two improvements over the search strategies
by Lam et al. It can be beneficial to split the sequence into more
than e+ 1 pieces and it might be more efficient if not all pieces are of
equal length. The backtracking tree of the first search of SLam,2 has
significantly more nodes than the other searches (which can already
be observed by looking at the U string: the second piece allows up to
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two errors, while the other searches only allow for up to one error).
Hence, it can be beneficial to decrease the size of the second piece.
In their paper they show that up to some point, enlarging the first
and shrinking the second piece leads to a larger decrease of nodes in
the first search than an increase of nodes in the other two searches.
We will discuss these two improvements in the experiments in section
3.6.3.

All search schemes suggested by Kucherov et al. were computed
by a greedy algorithm. It tries to minimize the critical U string,
which is the lexicographically largest U string among all searches of
a search scheme. They solved it for P = K+1 and P = K+2 pieces.
While this approach computes search schemes that turn out to be
quite efficient, they are in general not optimal or do not have disjoint
searches.

This leads to the question how search schemes can be computed
that are optimal in the number of nodes, even for more than K + 2
pieces, and how to retrieve optimal search schemes that have disjoint
searches, i.e., each error pattern is covered by exactly one search.

3.6 Optimum Search Schemes

Kucherov et al. made an important step to formalize search schemes
and allow comparing different search strategies by the number of
nodes. By introducing an integer linear program (ILP) [Kianfar
et al., 2018], we try to improve the performance of approximate string
matching further using search schemes that are optimal, i.e., minimal
in the number of nodes and also more practical, e.g., have disjoint
searches to avoid filtration of duplicate matches.

92



3.6 Optimum Search Schemes

3.6.1 Definition

The underlying problem that we want to solve is the optimal e-
mismatch search scheme problem.

Definition 3.6.1 (Optimal e-mismatch search scheme problem).
What is the e-mismatch search scheme that minimizes the number of
search steps in an index while covering all possible error patterns by
at least one search?

We will formulate an integer linear program, that will solve this
problem by minimizing the number of nodes across all searches. An
ILP is a mathematical optimization problem in the form of equation
3.6. A given objective function has to be maximized while not violat-
ing any given constraint. The variables are required to be integers. To
solve a minimizing problem or give lower bounds in the constraints,
the expressions can be negated. A Boolean variable yi can be intro-
duced as an integer variable with the additional constraints 0 ≤ yi
and yi ≤ 1.

max cTx

s.t. Ax ≤ b

xi ∈ Z

(3.6)

We will introduce an ILP solving the optimal e-mismatch search
scheme problem. Given an upper bound of the number of searches,
the pattern length and the number of pieces the pattern is partitioned
into, the search scheme with the fewest number of nodes is computed.
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3.6.2 ILP Formulation

We introduce the following input parameters of the ILP:

� S (maximum number of searches)

� R (length of the pattern)

� K (maximum number of errors allowed)

� P (number of pieces)

� σ (alphabet size)

The objective function is the number of nodes across all searches,
which is to minimize. We will later show how to compute ns,l,d in the
ILP.

min

S∑
s=1

R∑
l=1

K∑
d=0

ns,l,d (3.7)

To represent the π string of a search, we introduce decision vari-
ables. xs,i,j = 1 if and only if search s searches the jth piece of the
pattern at iteration i. We have to ensure that for each search every
piece of the pattern is searched exactly once (i.e., a search cannot
search the same piece twice and there cannot be two pieces at the
same iteration of the same search). To simplify the notation of the
subsequent constraints, we define xs,i,0 = xs,i,P+1 = 0 for all searches
s and iterations i.

P∑
i=1

xs,i,j = 1 for all s and j

P∑
j=1

xs,i,j = 1 for all s and i

xs,i,j ∈ {0, 1} for all s, i and j

(3.8)
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Next, we have to ensure that the connectivity property is fulfilled.∑i
h=1 xs,h,j indicates whether piece j has been searched until the ith

iteration. We sum up the absolute values of the differences of adjacent
iterations: ∑P

j=1

∣∣∣∑i

h=1
xs,h,j −

∑i

h=1
xs,h,j−1

∣∣∣ = 2

For one piece the difference will be +1 and for another one −1,
which are the first and last pieces searched. For the other pieces the
difference will be zero. This equation can be formulated as a linear
equation by introducing the binary auxiliary variables t+s,i,j and t−s,i,j .

i∑
h=1

xs,h,j −
i∑

h=1

xs,h,j−1 = t+s,i,j − t
−
s,i,j

for all s, i = 2, ..., P − 1 and j = 1, ..., P + 1

P+1∑
j=1

(t+s,i,j + t−s,i,j) = 2 for all s, i = 2, ..., P − 1

t+s,i,j , t
−
s,i,j ∈ {0, 1} for all s, i and j

(3.9)

Now we have to consider the L and U strings of each search. We
first enforce that both, L and U are non-decreasing.

Ls,i ≤ Ls,i+1 for all s and i = 1, ..., P − 1

Us,i ≤ Us,i+1 for all s and i = 1, ..., P − 1

Ls,i, Us,i ≥ 0 for all s and i

Ls,i, Us,i ∈ Z for all s and i

(3.10)

95



3 Indexed Search

Furthermore, we need to ensure that every error pattern is covered
at least once. We precompute all possible error patterns up to e errors
for P pieces. Error pattern q is represented by aq,j for j = 1, 2, ..., P

with
∑P

j=0 aq,j ≤ K errors. We introduce a binary decision variable
λq,s that captures whether error pattern q is covered by search s. The
first line of the equation enforces λq,s = 1 if the search s covers that
error pattern.

Ls,i +K(λq,s − 1) ≤
i∑

h=1

P∑
j=1

aq,jxs,h,j ≤ Us,i +K(1− λq,s)

for all q, s and i

S∑
s=1

λq,s ≥ 1 for all q

λq,s ∈ {0, 1} for all q and s

(3.11)

Finally, the computation of the nodes ns,l,d used in the objective
function is enforced by the constraints of the ILP. The formula is
taken from equation 3.5. zs,l,d and zs,l,d are binary variables that are
both set to 1 by the first two constraints if and only if Ldl/me ≤ d ≤
Udl/me where l refers to the level in the backtracking tree. ns,l,d is
then computed by the third constraint. If zs,l,d = zs,l,d = 1, it reduces
to ns,l,d ≥ ns,l−1,d − (σ − 1)ns,l−1,d−1. Since the objective function
is minimized, this computes ns,l,d. The left-hand side of the third

constraint
(
l
d

)
(σ − 1)d is a lower bound of the right-hand side not

affecting the computation of ns,l,d in the recursive case and evaluates
to 1 for ns,0,0. The ILP only considers even partitions, i.e., each piece
has the same length.
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d− (Ls,dl/me −mdl/me+ l) + 1 ≤ (K +m)zs,l,d

for all s, l and d

Us,dl/me + 1− d ≤ (K + 1)zs,l,d

for all s, l and d (3.12)(
l
d

)
(σ − 1)d(zs,l,d + zs,l,d − 2) ≤ ns,l,d − ns,l−1,d − (σ − 1)ns,l−1,d−1

for all s, l and d

zs,l,d, zs,l,d ∈ {0, 1} for all s, l and d

ns,l,d ≥ 0 for all s, l and d

This completes the ILP. As experiments showed, solving this op-
timization problem even for small instances can be computationally
expensive. Hence, we further improved upon it by eliminating sym-
metric solutions to speed up solving the ILP.

First of all each search scheme can be transformed into a search
scheme with the same number of nodes by reversing the π string of
all searches. Since for each search the last piece searched is always
either piece 1 or piece P , we enforce that the first search must end
with the last piece. Thus, we disallow the symmetric solution where
all the π strings are in reversed order and the first search ends with
the last piece.

x1,P,P = 1 (3.13)

Search schemes are defined as a set of searches, but in the ILP they
can only be represented as a sequence of searches. Thus, the same
search scheme can be represented by S! search schemes by simply
reordering the searches. To address this issue, searches are sorted by
the piece in the first iteration. This is achieved by enforcing that if
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piece j is assigned in the first iteration of search s, the subsequent
searches cannot have pieces 1 to j−1 assigned in the first iteration. If
xs,1,j = 1, the right-hand side is evaluated to 0, i.e., no piece 1, ..., j−1
can be searched in the first iteration of the searches stored in larger
indices s + 1, ..., S. If xs,1,j = 0, the constraint does not impose any
new restrictions that is not enforced by previous constraints already.
The right-hand side evaluates to S − s which is an upper bound as
the left-hand side sums up the decision variables of the first iteration
of S − s searches.

S∑
t=s+1

j−1∑
k=1

xt,1,k ≤ (S − s)(1− xs,1,j)

for all s and j = 2, ..., P

(3.14)

The number of searches S chosen as input is an upper bound. If
the optimal search scheme with up to S searches has actually less
searches, the ILP will make those searches invalid, i.e., for some i:
Ls,i > Us,i.

This ILP is already very powerful as it can solve the optimiza-
tion problem for a arbitrary number of pieces and errors for which
Kucherov et al. only solved some instances using a greedy algorithm.

Nonetheless, computing optimal search schemes have shown that
the running time for slightly larger input parameters can be quite
slow, e.g., for more than 3 errors, it is not suitable to allow more
than S = 4 searches. The ILP can be improved further by opti-
mizing search schemes for uneven partitions or eliminate the input
parameter P to determine the optimal number of pieces when solving
the ILP. Before that, more research has to be done to improve upon
the running time of solving the ILP.

The ILP can be modified to enforce a minimum number of errors
by omitting error patterns that have less errors. While this does not
significantly improve the number of nodes or the running time as the
dominating factor are the U strings, it is of practical interest for read
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mappers. Read mappers come with different search modes, such as
best, all, all-best and strata modes. The all mode finds all approx-
imate matches with up to the maximum number of errors allowed.
This is the case that we considered throughout this chapter. The
best and all-best modes find a single respectively all occurrences with
the lowest number of errors possible. The x-strata mode finds all
approximate matches with b + x ≤ K errors where b the number of
errors of a best match and K is still the maximum number of errors
allowed.

Search schemes with lower error and upper error bounds can be
used by these additional search modes to iteratively increase the max-
imum number of errors allowed until a best match is found. For the
x-strata mode one iteratively increases the maximum number of er-
rors allowed until a best match is found. Afterwards one performs an
additional search allowing up to b+ x errors. During these iterations
error patterns can be neglected that have been searched for in an
earlier iteration.

3.6.3 Experiments

We formulated the ILP in C++ using the CPLEX 12.7.1 solver
[CPLEX, 2009] and solved instances with up to S = 3 searches and
K + 1, K + 2 and K + 3 pieces for read lengths of R = 101 and an
alphabet size of σ = 4. The computed optimal search schemes are
listed in table A.3 in the appendix.

Observation 3.6.1.
All searches of optimal search schemes computed in table A.3 are
disjoint. No error pattern is covered multiple times.

While it is uncertain whether this is always the case, the ILP can
be changed to enforce this in the third constraint in equation 3.11
by enforcing that each error pattern is not covered at least once, but
exactly once.
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Hamming distance Edit distance

K 1 2 3 4 1 2 3 4

Backtracking 15.55 15.60 11.62 6.86 4.12 11.15 2.26 3.67
Pigeonhole 8.00 13.94 14.68 11.15 2.09 9.98 2.88 6.06
01∗0 pairs 8.88 9.75 9.10 6.59 2.31 6.90 1.77 3.57
01∗0 merged 8.82 11.92 12.19 8.98 2.30 8.45 2.37 4.83
Kucherov K + 1 9.38 8.76 6.56 6.64 1.70 3.47
Kucherov K + 2 9.85 7.22 7.22 6.94 1.39 3.85

OSS3 K + 1 8.00 8.92 6.78 4.06 2.09 6.31 1.29 2.13
OSS3 K + 2 8.92 8.54 6.51 3.92 2.33 6.02 1.24 2.05
OSS3 K + 3 8.00 8.35 6.40 3.88 2.09 5.89 1.22 2.03
OSS4 K + 2 6.50 1.24
MANbest 3.91 2.05

Scale 103 105 107 109 104 106 109 1011

Table 3.2: Number of nodes for different search strategies formulated
as search schemes and optimum search schemes for Ham-
ming and Edit distance for read length R = 101 and σ = 4.
K + x indicates the number of pieces of search schemes.

Table 3.2 compares the optimal search schemes to the aforemen-
tioned search strategies: simple backtracking, the pigeonhole search
strategy, 01∗0 seeds by Vroland et al. and the search schemes by
Kucherov et al. The 01∗0 seeds are formulated as 01∗0 pairs where
each search covers a pair of error-free pieces representing the seed,
and 01∗0 merged where all searches beginning with the same error-
free piece are merged into one (see table A.4). The search scheme by
Kucherov et al. for K = 2 and P = 3 is close to the one suggested
by Lam et al., which also allows for fewer errors (see table A.1), but
is not optimal.

Most of the non-trivial search schemes have in common that each
of their searches start with an error-free piece. This is not true for
the optimal search schemes for K = 3 and K = 4 though. They
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contain a search that allows already for up to 2 respectively 3 errors
in the first iteration. Hence, we computed an optimal search scheme
for K = 3 with S = 4 searches and P = 5 pieces, which happened to
have zero errors in each first iteration. For K = 4 the ILP solver did
not finish within several days for more than S > 3 searches. Instead,
we manually improved upon the optimal search scheme for K = 4
and P = 6 with 3 searches and recursively divided each search with
errors in the first piece by multiple searches with a lexicographically
smaller U string until the first piece of each search was error-free.
This result is most likely not optimal with respect to the number of
nodes, but as we will see later, performs much better in practice. We
refer to the optimal search scheme with 4 searches as OSS4 and to the
manually constructed search scheme for K = 4 as MANbest (see table
A.2). We also ran the ILP for K = 1 and K = 2 for different P and
up to 4 searches. Each of them returned the same search scheme as
OSS3, i.e., those searches were already optimal for up to 4 searches.

Interestingly, the simple backtracking approach is not the worst
strategy, as for K > 2 the pigeonhole search strategy produces signif-
icantly more nodes across all searches. 01∗0 seeds are an improvement
over both approaches. Despite 01∗0 pairs having significantly more
searches than 01∗0 merged, their backtracking trees have fewer nodes.
The lexicographically smaller U string of the searches have a larger
reduction in nodes than the overhead by performing more searches.

The table confirms the observation by Kucherov at al, that K + 2
pieces can sometimes be superior to K+1 pieces. This is true for the
search schemes by Kucherov as well as the optimal search schemes.
Thanks to the ILP we were able to compute optimal search schemes
for P = K+3, which are even more efficient than all the other search
schemes with respect to the number of nodes.

Whereas it is not surprising that optimal search schemes do not
improve for K = 1 over the pigeonhole search strategy, we observe
significant improvements for more errors to trivial approaches and
even to advanced approaches such as 01∗0 seeds. For K = 4 we were

101



3 Indexed Search

able to improve the search schemes by Kucherov et al. by more than
40%.

Even though the ILP is based on Hamming distance and the com-
puted search schemes might not be optimal for Edit distance, the
search schemes can be used for an Edit distance based search as well
with similar improvements compared to Hamming distance.

R and σ have been chosen to represent typical sizes used for map-
ping Illumina reads. For larger common read lengths we obtained
similar results. We believe that even for other read sizes and al-
phabet sizes, the computed search schemes might still be optimal.
Nonetheless, this remains an open research question.

Uneven partitions of optimal search schemes only achieved an im-
provement of up to 5% in the number of nodes and an even smaller
improvement with respect to the running time in practice. The best
partitioning of an optimal search scheme was found by brute force.
Due to this neglectable improvement, we do not cover uneven parti-
tions for our experiments and benchmarks. Instead, we recommend
for further research to include uneven partitioning into the ILP, since
different partitioning could lead to different optimal search schemes
and thus might achieve better improvements.

3.7 Benchmarks

To compare the performance of different search strategies in practice,
we indexed GRCh38 (build 38 of the human genome by the Genome
Reference Consortium) and searched 100 000 reads sampled from a
whole genome sequencing experiment1 using Illumina HiSeq 2500.
The paired end reads of length 202 were truncated to 101 base pairs
to obtain single end reads. All reads and their reverse complement
were searched and located in the genome to be more comparable to
read mapping tools. Since every read mapper handles N bases a

1Experiment ERX1959065 on the Sequence Read Archive
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bit differently, we replaced them randomly by A, C, G or T in the
reads and in the genome prior to indexing. Search schemes used a
bidirectional FM index based on EPR dictionaries and a sampled
suffix array with text order sampling and a sampling rate of 10. The
benchmarks were run on the same computer with the same setup as
described in section 2.4.8.

Strategy K = 1 K = 2 K = 3 K = 4

Backtracking 22.8s 276s 42m 32s 5h 5m
Pigeonhole 7.5s 28.6s 2m 9s 8m 28s
01∗0 pairs 8.3s 24.7s 1m 13s 3m 23s
01∗0 merged 7.4s 22.8s 1m 19s 4m 17s
Kucherov K + 1 22.2s 56s 2m 51s
Kucherov K + 2 25.0s 56s 3m 12s

OSS3 K + 1 7.4s 20.9s 1m 20s 6m 56s
OSS3 K + 2 8.2s 21.0s 1m 17s 7m 7s
OSS3 K + 3 7.8s 21.3s 1m 20s 48m 42s
OSS4 K + 2 57s
MANbest 3m 1s

01∗0 bidir. 7.5s 21.4s 1m 3s 2m 56s
Bowtie 28s 76s 3m 16s N/A

Reads mapped 91.2 % 93.8 % 94.7 % 95.2 %

Table 3.3: Running times of different search strategies formulated
as search schemes using Hamming distance. Additionally
comparing to the read mapper Bowtie and 01∗0 seeds im-
plemented without search schemes. 78.4% of the reads
could be mapped without errors to at least one strand. A
timeout of 9 hours was set for all runs.

Table 3.3 compares all the aforementioned search strategies that
can be formalized as search schemes using Hamming distance. Fur-
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thermore we compare them to a C++ implementation of 01∗0 seeds
in a bidirectional FM index2. This is not the original implementation
by Vroland et al., since the original one does not support Hamming
distance. We also benchmark against a widely used read mapper
tool named Bowtie [Langmead et al., 2009] that supports searching
and locating all possible occurrences with up to K mismatches using
Hamming distance. Bowtie uses two unidirectional FM indices on the
original genome and the reversed genome. To allow for mismatches,
they perform backtracking in the index. Since the two unidirectional
indices are not synchronized, they cannot switch directions during
the search and thus can only speed up backtracking for K = 1 using
the pigeonhole search strategy. To find all approximate matches, we
ran Bowtie with the options -v <K> -a -t (more than 3 errors are
not supported). The best running times of search schemes for each
K are highlighted in the table. Since the follow-up version Bowtie 2
[Langmead and Salzberg, 2012a] is significantly slower for all map-
ping (i.e., not terminating within 12 hours), we exclude it from our
benchmarks.

Except for the pigeonhole search strategy, which performs signif-
icantly better than the comparison of node counts would suggest,
the results show a correlation between the number of nodes and the
performance in practice. The improvements of OSS4 and MANbest

over the optimal search schemes with fewer searches confirm that it
is beneficial to enforce an error-free piece at the beginning of each
search. It might be surprising that for 4 errors the optimal search
schemes with K + 3 pieces are several factors slower than for K + 2
pieces. Taking a look at table A.3 in the appendix this seems rea-
sonable. While most of their searches are similar, the first search for
K + 3 starts with up to 3 errors in the very first piece where the
corresponding search for K + 2 pieces starts with 2 errors in the first
piece. At the same time the pieces of K + 3 are several characters

2https://github.com/7/bav, commit id 8b134d3
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shorter, since the read is partitioned into more pieces. To improve
the search scheme one would have to allow for more than 3 searches.

It seems worthwhile to improve the ILP further to solve harder
instances with more searches and find even better performing search
schemes. Since MANbest was generated manually trying to enforce
an error-free piece in the first iteration, we are optimistic that with
an even stronger ILP we might outperform the non-optimal search
schemes by Kucherov et al. As for now, optimal search schemes
respectively MANbest seem to perform similar as the search schemes
by Kucherov et al.

Similar results were obtained for Edit distance for K = 1 and
K = 2, shown in table 3.4. Surprisingly optimum search schemes
and MANbest perform significantly better than other search schemes,
many of them did not even terminate within 9 hours.

We also compared the search schemes to Bwolo (01∗0 seeds), the
original implementation by Vroland et al., as well as the two read
mappers BWA [Li and Durbin, 2009b] (with the options aln -N -n
<K> -i 0 -l 101 -k <K>) and Yara [Siragusa, 2015] (with the options
-e <K> -s <K> -y full) in all mapping modes.

For Edit distance we can see that the search schemes by Kucherov
et al. perform worse than the optimum search schemes whereas they
were evenly efficient for Hamming distance. This supports our hy-
pothesis that the optimal search schemes for Hamming distance do
not have to be optimal for Edit distance and vice versa. Even more
importantly, one cannot in general infer the performance of a search
scheme with respect to a distance metric from the performance based
on other metrics.

It is remarkable that Bwolo achieved a running time significantly
faster than any of the search schemes and was even faster than the
bidirectional 01∗0 seed algorithm. The speedup can be explained
mainly by three improvements of Bwolo. Since it uses only a unidi-
rectional FM index, after finding a seed and extending it to the right
in the index, it has to locate the preliminary matches in the text
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Strategy K = 1 K = 2 K = 3 K = 4

Backtracking 43.6s 21m 9s 7h 40m N/A
Pigeonhole 11.0s 3m 52s 59m 29s N/A
01∗0 pairs 11.7s 2m 43s 37m 16s N/A
01∗0 merged 11.0s 2m 41s 38m 44s N/A
Kucherov K + 1 2m 23s 25m 23s 7h 29m
Kucherov K + 2 2m 33s 24m 58s 8h 57m

OSS3 K + 1 10.8s 2m 3s 22m 20s 4h 56m
OSS3 K + 2 11.9s 1m 56s 22m 14s 5h 5m
OSS3 K + 3 11.4s 1m 58s 22m 20s N/A
OSS4 K + 2 21m 31s
MANbest 4h 44m

01∗0 bidir. 11.0s 2m 33s 34m 29s N/A
Bwolo 1m 13s 2m 26s 5m 46s 18m 18s
BWA 15.9s 2m 52s 31m 56s 5h 21m
Yara 21s 1m 53s 3m 44s 14m 38s

Reads mapped 91.8 % 94.7 % 95.8 % 96.4 %

Table 3.4: Running times of different search strategies formulated as
search schemes using Edit distance. Additionally compar-
ing to the read mappers BWA and Yara, as well as Bwolo,
the original implementation of 01∗0 seeds by Vroland et al.
and 01∗0 seeds in a bidirectional FM index. A timeout of
9 hours was set for all runs.
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and perform a verification step, i.e., verify the left unmapped part
in the text with the remaining number of errors. This in-text veri-
fication can be significantly faster than a search in an index. From
table 2.2 we can conclude that a single search step in an FM index
(i.e., an edge in the backtracking tree) costs at least 100 clock cycles.
When during the search of a read the number of potential matches
already reduces to only a few (which is the case for many reads that
do not fall into repeat-rich regions), it can be much faster to verify
each potential match instead of finishing the search in the subtree of
the backtracking tree. This can be done by simply comparing the
remaining characters by a linear scan over the remaining part of the
read for Hamming distance or performing a verification for Edit dis-
tance using dynamic programming algorithms or the Myers bit vector
algorithm [Myers, 1999].

The second improvement from Bwolo stems from the improved
backtracking for Edit distance. While search schemes allow at any
point for any kind of error, Bwolo reduces the amount of possible
alignments. For example, there are no insertions allowed at the be-
ginning or end of a sequence. Insertions followed by a deletion and
vice versa are excluded as they can be represented as a single sub-
stitution leading to a better alignment. For compatibility with other
approximate string matching algorithms in SeqAn2 we did not change
the behavior and searched for every possible alignment.

Finally, Bwolo tries to filter duplicate occurrences as early as pos-
sible. When searching for 01∗0 seeds it performs backtracking in a
combination of breadth-first and depth-first search manner. When
searching a single block with one error backtracking is performed
as usual in a depth-first search manner. At the end of searching a
block, all suffix array ranges of the searched prefix of the 01∗0 seeds
are stored in a hash map and the search with the next block contin-
ues again for suffix array ranges one by one using backtracking in a
depth-first search fashion. The hash map filters the occurrences such
that no suffix array range with respect to the length of the matched
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prefix is considered twice when processing the next block. To put it
differently, the position of an error in the block does not matter as
long as the searched sequence in the index is identical. Hence, the
same occurrences are not processed multiple times even though they
might stem from different alignments.

The effect of in-text verification can also be observed on the read
mappers: Yara works similarly to Bwolo. A seeding phase is per-
formed in a unidirectional FM index followed by locating the matches
and verifying them using the Myers bit vector algorithm. It is slightly
faster than Bwolo. BWA performs the entire search in a unidirec-
tional FM index using backtracking. Consequently it is slower than
the optimal search schemes and MANbest. In section 3.8 we will in-
vestigate the effect of in-text verification in combination with search
schemes further.

We also compared the strata mapping mode of Yara to optimum
search schemes. Table 3.5 shows the running time of Yara in x-strata
mode (with the options -e <K> -sc <x> -y full) for x ∈ {0, 1}. Op-
timal search schemes were computed that enforce a minimum number
of errors greater than zero. We denote such an optimal search scheme
as OSSminK,K .

For 0-strata, which is equivalent to all-best mapping each read is
searched without any errors first. Only if no occurrence was found,
it is then searched with OSS1,1. This is repeated with OSSK′,K′

until the read eventually matches or the maximum number of errors
allowed is reached, i.e., K ′ = K.

For 1-strata mode this becomes a bit more tricky. The read is
first searched using OSS0,1. If there is match with zero errors, the
mapping is continued with the next read. If only occurrences with 1
error are found, one also has to find matches with two errors using
OSS2,2 (since we search all occurrences with b + 1 errors where b is
the number of errors of a best match). If during the search of OSS0,1

no match was found and K > 1, one continues with OSS2,min(3,K).
Again, this is repeated until a read is eventually found and has been
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searched with one error more than its best match or the maximum
number of errors allowed is reached.

Strategy K = 0 K = 1 K = 2 K = 3 K = 4

OSS 0-strata 2.1s 2.9s 4.1s 11.2s 98.5s
Yara 0-strata 3.7s 4.7s 11.9s 19.3s 64.1s

OSS 1-strata 10.5s 16.1s 28.4s 144.3s
Yara 1-strata 21.0s 27.3s 43.0s 111.6s

Table 3.5: Yara and optimum search schemes compared in strata
mode using Edit distance. For zero errors an index-based
search is performed, for one and two errors OSS3 K + 1
respectively OSS3 K + 2 was chosen, for three and four
errors OSS4 and MANbest. The search schemes have a lex-
icographically larger L-string to account for the minimum
number of errors.

When we computed OSSmin,max using the ILP, we chose the pa-
rameters P and S by selecting the best search schemes from tables
3.3 and 3.4, i.e., P = K + 1 for one error, P = K + 2 for more than
one error. For three errors we set a maximum of S = 4 searches. For
four errors we did not compute an optimum search scheme, but mod-
ified MANbest. All these optimum search schemes with minK > 0 are
identical to the optimum search schemes with minK = 0 except that
for each search the minimum number of errors in the last block is set
to minK, i.e., L[P ] = minK. Hence, we updated MANbest accord-
ingly. This yields disjoint searches with a minimum number of errors
for each error pattern.

In strata mode the search schemes perform significantly better than
Yara for up to 3 errors. Since optimum search schemes in the all
mapping mode are significantly faster for 1 error and about as fast
as Yara for 2 errors, the strata approach can maintain its lead for up
to 3 errors.
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From now on we will always consider the best performing search
schemes from tables 3.3 and 3.4 and refer to them as OSS*, i.e., for
one error OSS3 K + 1, for two errors OSS3 K + 2 and for three and
four errors OSS4 respectively MANbest.

We emphasize that optimum search schemes are not supposed to
replace the entire read mapping process, but improve the speed of the
seeding phase or increase the number of errors that are suitable for
an index-based approximate search. Many read mapping tools still
perform seeding in unidirectional or bidirectional string indices using
exact string matching or simple backtracking. Our experiments have
shown that optimal search schemes have significantly fewer nodes
than other approaches or search schemes. There is still room for
improvements as we have manually found search schemes with larger
bounds that we were not able to compute with the current ILP. The
practical benchmarks confirm that optimal search schemes are also
faster in practice. For Hamming distance and K ∈ {3, 4} it seems
that better optimal search schemes can still be found.

3.8 In-Text Verification

As it can be concluded from table 2.2, a single search step, i.e., going
down an edge in the backtracking tree in an FM index based on EPR
dictionaries costs at least 100 clock cycles, which gets even more
expensive for wavelet tree based indices. If only a couple of potential
matches are left while going down the backtracking tree, it can be
beneficial to locate these potential matches early and verify them
in the text, i.e., check whether the partially searched pattern at its
position in the text can be extended to the entire pattern with regard
to the remaining number of errors.

The break-even point at which it pays off in a node to leave the
index-based search and perform an in-text verification is hard to com-
pute as it depends on a number of factors, of which an important one
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is unknown. Given the node of a backtracking tree, we know the
number of occurrences from the size of the suffix array range, but
we do not know the number of matches eventually remaining after
processing the entire subtree. This can be estimated, but is prone
to errors as the text as well as the patterns of sequencing data do
not have an underlying random distribution of characters. Other fac-
tors are known such as the number of remaining errors, the distance
metric, the number of characters left to be matched, the alphabet
size and the suffix array sampling rate. Assuming text order sam-
pling with a sampling rate of η, locating an occurrence requires an
expected number of η/2 LF mappings which are equally expensive as
a unidirectional search step. The overhead of locating false positive
matches (i.e., an occurrence is discarded after the verification) has to
be taken into account.

Furthermore it has to be considered whether a search query is
performed to only count occurrences or whether they also have to be
located. For search queries, in-text verification requires locating all
potential matches while not even the verified occurrences are needed
in the end which means an additional overhead compared to pure
index-based searching has to be considered.

While this topic can be addressed in an entire chapter and ana-
lyzed from a theoretical point of view by estimating the number of
true positive matches in a subtree of the backtracking tree, we will
show pitfalls and benefits of in-text verification for index-based ap-
proximate string matching using optimum search schemes.

From the experiments in table 3.4 we have seen that in-text verifi-
cation can lead to a significant speedup as achieved by Bwolo. Their
implementation switches from an index-based search to in-text veri-
fication at a fixed point. Since they use a unidirectional FM index,
the unmatched pattern left of the 01∗0 seed is verified, independent of
factors such as the number of potential matches or remaining number
of errors left. That this can be highly unfavorable is shown in table
3.6. We sampled 10 reads of length 101 from the human genome and
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planted 104, 105 and 106 instances each with 3 errors in the genome,
50 % of them as their reverse complement. 33% of the errors were
insertions or deletions. This leads to large suffix array ranges in the
backtracking tree which are expensive to verify. We then searched
the 10 sampled reads in the modified genome. It shows clearly that
for repeat regions an early or even any in-text verification should be
avoided. For reads that were found 105 times, Bwolo is 2.7x slower
compared to optimum search schemes when allowing for up to 3 er-
rors. On a genome with 106 planted repeats it is even 44x slower.
On real Illumina reads Bwolo was up to 4 times faster than optimum
search schemes, for K = 4 even up to 16 times.

Occurrences
per read

Strategy K = 1 K = 2 K = 3

104 OSS* <1s <1s 43s
Bwolo 2s 4s 30s

105 OSS* <1s 3s 44s
Bwolo 3s 6s 120s

106 OSS* <1s 3s 68s
Bwolo 3s 29s 3000s

Table 3.6: Running time comparison of pure index-based searches
with optimum search schemes and Bwolo, a hybrid ap-
proach of index-based search and in-text verification.

While there are no repeats of length 101 in the human genome
with millions of occurrences, there are plant genomes that are more
repetitive. Other applications than read mapping also perform ap-
proximate string matching on much shorter sequences and even higher
error rates. An example is given in section 3.9.

For reads that are not highly repetitive in-text verification can be
very advantageous. We implemented in-text verification for Ham-
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ming distance in combination with optimum search schemes. As a
condition to leave the index-based search we simply chose an upper
bound on the size of the suffix array range. This already shows sig-
nificant improvements, i.e., the optimum search schemes get about
twice as fast. This approach is also immune against repetitive reads
as shown in table 3.7 (b).

The experiment of section 3.7 is conducted again with OSS* and in-
text verification in table 3.7 (a). Our in-text verification is tested on
the simulated repetitive data in table 3.7 (b). Again, we sampled 10
reads from the human genome and planted 106 approximate matches
with 3 errors, this time only considering Hamming distance.

We chose the condition for switching from an index-based search to
in-text verification (ITV) to be dependent on the size of the suffix ar-
ray range as this should be immune to repetitive data as well. ITVocci

leaves the index as soon as the suffix array range stores less than i
occurrences. Additionally we compared it to ITVblocks, which simi-
larly to Bwolo leaves the index-based search at a certain depth of the
backtracking tree. Here we chose the last block in each search to be
verified in the text. ITVoff is the pure index-based search with OSS*

given as a reference from the benchmarks in the previous section.

Our benchmarks show that a simple in-text verification such as
ITVocc25 that is robust to repeats already can achieve significant im-
provements. For Illumina reads OSS* with in-text verification is be-
tween 1.6x and 2.1x faster than OSS*. For repetitive reads it shows
even speedups of up to 5.5x. The impact of the size of the suffix
array range is only minor. While ITVocc50 leads to a significant in-
crease in the number of verifications, it has almost no effect on the
running time. We observed the same also for higher values such as
250 and 500. Verifying the last block of search schemes also improves
the running time in both scenarios, but the speedups are significantly
smaller. The disadvantage for repetitive data is not as big as in table
3.6, since we consider only Hamming distance which can be veri-
fied faster by a linear scan over the pattern than Edit distance by a
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K = 1 K = 2 K = 3 K = 4

Strategy Time Verif. Time Verif. Time Verif. Time Verif.

ITVoff 7.4 0 21 0 57 0 181 0
ITVocc25 4.7 3.3 11 5.0 27 2.2 86 9.5
ITVocc50 4.7 4.2 11 6.3 28 2.9 89 12.7
ITVblock 6.4 92.6 18 9.6 48 1.6 158 2.4

Scale 105 106 107 107

(a) Mapping 100.000 Illumina reads of length 101 to GRCh38 (as in section 3.7).

K = 1 K = 2 K = 3 K = 4

Strategy Time Verif. Time Verif. Time Verif. Time Verif.

ITVoff <1 0 1.5 0 19 0 61 0
ITVocc25 <1 0.06 1.7 2.1 8 7.0 11 1.2
ITVocc50 <1 0.1 1.9 4.2 8 7.1 11 1.3
ITVblock 1.7 175.5 2.7 17.9 13 5.4 33 1.1

Scale 104 105 106 107

(b) Mapping 10 reads of length 101 with 106 approximate occurrences in a modi-
fied version of GRCh38.

Table 3.7: Running time in seconds and the number of potential
matches verified for OSS* with different in-text verifica-
tion conditions and errors for Hamming distance. ITVoff

is equivalent to OSS*. ITVocci starts in-text verification
if the subtree has less than i potential matches, ITVblock

verifies that last block of OSS* in the text.
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banded dynamic programming algorithm as performed by Bwolo.

The running time of mapping does not correlate with the number
of verifications performed in most cases. As described earlier a lot
of factors such as the depth in the backtracking tree as well as the
number of potential matches in relation to the expected number of
matches has to be considered as well. This can be examined in great
detail for developing better conditions for in-text verification to gain
even higher speedups as well as an implementation for Edit distance.
This is out of the scope of this thesis and we consider it as future
research.

3.9 High Error Rates

Read mapping tools are not only used for mapping reads to reference
genomes, but for all kind of sequence mappings. We will introduce
an application requiring significantly higher error rates than conven-
tional read mapping and show that optimum search schemes with
in-text verification can be a suitable choice for high error rates in an
index-based search.

In the past years, CRISPR/Cas9 has become a popular method for
genome editing [Doudna and Charpentier, 2014]. CRISPR/Cas9 is
originally found as an adaptive immune system in prokaryotes, i.e.,
bacteria and archaea. The Cas9 enzyme targets sequence-specific
RNA as a defense mechanism against viruses or plasmids. To detect
invasive RNA of viruses and plasmids, it uses so-called CRISPR se-
quences which store known RNA of such viruses. If the Cas9 nuclease
detects complementary RNA to CRISPR sequences, it binds to the
invasive RNA, cleaves this region and ultimately destroys it.

The process can be adapted for genome editing by designing syn-
thetic CRISPR sequences to bind to certain locations in the genome
where a gene is to be knocked out. These sequences are referred to as
single guideRNA (sgRNA). The designed sgRNA and the Cas9 nucle-
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ase are then delivered to the cell where the genome is cut. The cells
DNA repair mechanisms will reassemble the two pieces of the genome
leading to some errors at the cut site. This knocks out the gene in
most cases. To deliver the Cas9 enzyme and sgRNA into the cell,
one possible way is to attach them to viruses that will dock onto the
hosts cell membrane and inject its viral DNA, including the sgRNA
and Cas9 nuclease. While CRISPR/Cas9 is found in prokaryotes,
this approach can also be applied to eukaryotes, e.g., human cells.

To knock out a certain gene, one has to choose a single guideRNA
that is complementary to a part of that gene and can bind there.
When using the Cas9 enzyme, the sgRNA needs to have a length of
23 base pairs. Furthermore the region must be flanked by a Proto-
spacer Adjacent Motif (PAM) that allows the Cas9 nuclease to bind
to the DNA and eventually cleave it. The PAM depends on the
nuclease used. For Cas9 the region must by flanked by the 3-mer
NGG where N can be any nucleotide. The computational challenge
is to find guideRNA that flanks a PAM, but that also does not oc-
cur anywhere else in the genome to prevent binding and cleaving at
a wrong location. Those other locations are called off-targets. For
the human genome of over 3 billion base pairs a 23-mer is often not
unique. Furthermore, sgRNA can also bind to locations that are only
an approximate match. Hence, when searching for off-targets one
has to allow for errors as well. In experiments it has been observed
that single guideRNA can potentially bind with up to 8 substitutions
[Tsai et al., 2015, Cameron et al., 2017]. However, not all of these
off-targets become active off-targets, i.e., the Cas9 nuclease will not
cleave at these loci.

Searching for off-targets is often performed with read mapping
tools. Since they are not designed for high error rates and all map-
ping, we developed VARSCOT, a variant-aware detection and site-
scoring tool to search for off-targets and use a predictive model to
identify possible active off-targets [Wilson et al., 2018].

We searched 9 guideRNA and their reverse complement of length
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23 in the human genome (GRCh38) with up to 8 mismatches while
the last two bases had to be an exact match (NGG). Since computing
optimal search schemes with up to 8 errors seemed to be infeasible
with the current ILP, we split the single guideRNA into two pieces
and searched each of them with up to 4 errors using OSS*. An in-
text verification is then performed on the other half of the RNA, also
checking for an exact match of the PAM.

With the same setup as before it took 80 seconds per guideRNA
and its reverse complement to search and locate all occurrences with
up to 8 mismatches in the human genome. When executed in paral-
lel, it takes less than 2 minutes to search all guideRNA on 9 threads.
This is magnitudes faster than Elevation [Listgarten et al., 2018], the
state-of-the-art pipeline for off-target detection and activity predic-
tion. Elevation took 4 hours for searching a single read with up to 8
mismatches. Common read mappers either do not support high error
rates as high as 33% or have infeasible running times.

This shows that even short sequences with high error rates can be
searched quickly using optimum search schemes and in-text verifica-
tion.
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4.1 Introduction

We will now cover a concept in sequence analysis that is similar to
read mapping, and which again can be used for the read mapping
process itself: mappability. Given a genomic sequence, we are inter-
ested in distinguishing unique and non-unique, i.e., repetitive regions
in it. This concept is defined as genome or sequence mappability and
was introduced by Koehler and Derrien [Koehler et al., 2010, Derrien
et al., 2012].

Definition 4.1.1 ((k, e)-frequency and (k, e)-mappability).
The (k, e)-frequency of a sequence T of length n counts for every
single k-mer in T its number of occurrences in T with up to e errors.
We denote the k-mer starting at position i as Ti. The values are
stored in a frequency vector F of length n− k + 1 such that

F [i] = |{j | D(Ti, Tj) ≤ e, 1 ≤ j ≤ n− k + 1}| (4.1)

The inverse of it is called the (k, e)-mappability and stored in a
mappability vector M with M [i] = 1/F [i] for 1 ≤ i ≤ n− k + 1. D
can be any distance metric on strings such as Hamming or Edit dis-
tance.

Again, we will for now only consider Hamming distance, but it can
be applied to other distance metrics such as Edit distance as well.
For applications in sequence analysis one often also considers the re-
verse strand of a sequence when computing the genome mappability.
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Hence, F [i] not only counts the occurrences of Ti in T , but also in its
reverse complement. If not stated otherwise, we do not consider the
reverse complement in our examples.

Example 4.1.1.
In figure 4.1 we give an example of the frequency vector for 4-mers
with 0 and 1 error, denoted as F0 and F1. Consider the 4-mer T2 =
TCTA. It occurs two times without errors (at positions 2 and 15),
hence F0[2] = 2. Since there is another 4-mer that has only one
mismatch, namely T10 = GCTA, the frequency value F1[2] is 3.

In practice, one usually uses the mappability instead of the fre-
quency, since it is normalized and reduced to the interval (0, 1]. For
reasons of clarity we will instead consider the frequency throughout
this chapter.

In the next sections we will present the algorithm by Derrien et al.
on how to compute F . The algorithm uses a heuristic to compute the
frequency even for long repetitive genomes, i.e., some of the values
are only approximated, but are expected to be close to the correct
value. It can also be run in an exact mode at the expense of a longer
running time.

We then introduce a new, unpublished algorithm to compute the
mappability a magnitude faster without the use of any heuristics
and compare its running time against the approximate and exact
algorithm by Derrien et al.

Afterwards we will cover some of the applications of mappability. It
can be used straightforward to examine the repetitiveness of genomes,
even highly repetitive plant genomes. We further show how it can
be incorporated into read mapping. As searching and aligning reads
from repeat regions is the most expensive part in read mapping, and
the user might not be interested in every single alignment to repeat
regions, it is beneficial to detect repeat regions as soon as possible
during the search and only map the reads to those locations that are
rather unique.
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4.1 Introduction

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T [i]: A T C T A G C T T G C T A A T C T A

F0[i]: 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2

(a) (4, 0)-frequency

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T [i]: A T C T A G C T T G C T A A T C T A

F1[i]: 3 3 3 2 4 2 2 2 2 4 2 1 1 3 3

(b) (4, 1)-frequency

Figure 4.1: (k, e)-frequency vectors Fe for k = 4 and e ∈ {0, 1} on
the same sequence. A frequency of 1 indicates that the
k-mer starting at that position in the text is unique in the
entire sequence without errors respectively with up to 1
mismatch.

Mappability can also be applied to multiple genomes, species or
strains at once. Unique regions that belong to so-called marker genes
among a set of strains allow distinguishing them by short k-mers.
When sequencing an unknown sample one can search for such unique
k-mers in the reads to determine the species or even the strain with-
out assembling it or searching the sequenced data in a database of
reference genomes.
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4.2 An Inexact Algorithm

Derrien et al. propose an algorithm for computing the frequency of a
sequence by searching each k-mer in T in an index and use a heuristic
for computationally expensive repeat regions, i.e., some frequency
values are approximated to speed up the computation (see algorithm
8). The frequency vector F is first initialized with zeros. In the next
step the algorithm iterates over the text and searches each k-mer Ti
with up to e mismatches in the text. The occurrences are counted
and stored in F [i]. If the number of occurrences is greater than some
threshold parameter t, the computed occurrences are located in the
text. Let j be the position of such an occurrence in T . Since Ti
has a sufficiently high frequency (i.e., F [i] > t) and D(Ti, Tj) ≤ e,
it is likely that Tj also has a high frequency as both share common
approximate matches, hence F [j] is set to the same value as F [i].

Algorithm 8 Inexact algorithm to compute the (k, e)-frequency

1: procedure inexact frequency(T, k, e, t)
2: F [1..|T | − k + 1]← {0}
3: for i = 1, ..., |F | do
4: if F [i] = 0 then
5: F [i]← |P|
6: P ← approximate matches with e errors
7: if |P| > t then
8: for j ∈ P do
9: F [j]← max(F [j], |P|)

10: return F

k-mers that already have an approximate frequency value assigned
will be skipped while iterating over the text to save time. If a position
j is located multiple times as an approximate match of a repetitive
k-mer, F [j] is assigned the maximum frequency of all these k-mers
to avoid underestimating the frequency value F [j]. This algorithm
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is exact for e = 0. To turn off the heuristic for e > 0, the threshold
only has to be set high enough, i.e., t ≥ n− k + 1.

The frequency values are stored using 8 bit. Since much higher
frequency values than 256 are not unusual, the frequency values are
grouped to bins, i.e., each bin represents a continuous range of fre-
quency values. The bins are represented as 8-bit numbers. Lower
values represent small frequency values and rather small intervals.
Large 8-bit numbers represent high frequency values that are grouped
to larger intervals, since the difference of a frequency value of 2 or 3
is more significant than a value of 1002 or 1003. Figure 4.1 illustrates
this at the binning of frequency values of C. elegans. The packing
into bins depends on the data, but is not elaborated by the authors.

Bin: 0 1 ... 6 7 ... 12 13 ... 18 19 ... 255

Frequency: 1 2 ... 7-8 9-10 ... 24-28 29-35 ... 81-97 120-146 ... MAX

Table 4.1: Bins to store the (50, 2)-frequency of C. elegans.

The authors show that their approximation leads to an equal dis-
tribution among under- and overestimated values for the (50, 2)-
frequency of the C. elegans genome and chromosome 19 of the human
genome with a threshold of t = 6 respectively t = 7. Their experi-
ments on the human genome chromosome show that almost 90 % of
the 50-mers with a frequency of 3 are correct, for 50-mers with fre-
quency values between 8 and 12 only 75 % are correct (similar errors
for C. elegans). This can be led back to an overestimation of rather
unique k-mers.

The algorithm is part of the GEM (GEnome Multitool) suite that
is based on an FM index.
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4.3 A Fast and Exact Algorithm

We present an exact algorithm for computing the (k, e)-frequency and
will benchmark it against the GEM algorithm by Derrien et al. in the
exact and approximate mode. Similar to their algorithm we search
every k-mer of T with errors in an index. With a few improvements
we try to eliminate redundant computations as much as possible.

1st improvement First, we try to reduce redundant computations
due to approximate string matching in an index. Hence, we choose a
bidirectional index that allows the use of advanced approximate string
matching algorithms such as optimum search schemes. In particular,
we use a bidirectional FM index based on EPR dictionaries and search
the k-mers with at most e errors using OSS*.

2nd improvement Second, adjacent k-mers in T are highly similar,
since they have a large overlap. Hence, it should be avoided to search
every k-mer separately. Consider the k-mers Tj , Tj+1, . . . , Tj+s−1 for
some integer s ≤ k which all share the common sequence T [j + s −
1..j+k−1]. Since we already need to allow for up to e errors in their
common sequence when searching each k-mer, this infix should only
be searched once. Hence, we propose not to search the entire k-mer
with optimum search schemes, but only this infix with up to e errors
using OSS*.

After searching this infix using optimum search schemes, the num-
ber of occurrences for each k-mer Tj , Tj+1, . . . , Tj+s−1 still needs to
be retrieved. This can be done using simple backtracking to the left
as well as to the right allowing for the remaining number of errors
not spent in the search of the infix. Figure 4.2 (a) illustrates this
approach. To reduce the number of redundant computations further,
the set of overlapping k-mers is recursively divided into two equally
sized sets of k-mers that each share a larger common overlap among
each other. This overlap is then searched using simple backtracking
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before the next recursive partitioning of k-mers. The recursion ends
when a single k-mer is left and the number of occurrences can be re-
ported and summed up, or no hits are found. The recursive extension
is shown in figure 4.2 (b).

Note, that there are two recursions involved: subdividing the set
of k-mers and simple backtracking in each recursion step. Hence, the
same partitioning steps and backtracking steps have to be performed
for each set of preliminary matches represented by suffix array ranges.

The question remains on how to choose s. The optimal value for s
depends on a variety of factors: the length of k-mers, the number of
errors, the considered distance metric and finally the data itself. Since
searching the infix using optimum search schemes is more efficient
than extending this infix with simple backtracking, the infix should
be longer for larger number of errors. Similarly, if k grows, so should
s. As a rule of thumb we choose

s =

{
bk · 0.7c , e = 0⌊
k ·
(
clamp

(
k

100 , 0.3, 1.0
)
· 0.7e

)⌋
, otherwise

(4.2)

where clamp(v, l, r) returns v if it lies within the range, i.e., l ≤
v ≤ r, and returns l or r if it is less or greater. s is set in proportion
to k: without any errors s is set to 0.7 · k. If we allow for errors, this
percentage grows with larger k and shrinks with larger e. The formula
is close to the optimal choice of s that we verified experimentally
on the human genome and turns out to be a good choice for more
repetitive genomes such as barley (hordeum vulgare) as well.

3rd improvement After reducing the number of redundant compu-
tations for approximate string matching as well as similar k-mers,
searching and counting the same k-mer multiple times is eliminated.
Especially for computationally expensive repeat regions some k-mers
may occur multiple times in the genome, even without errors. During
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4 Mappability

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

T [i] A G C C G T A C A A G T A T . . .

T1 A G C C G T A C A A G

T2 G C C G T A C A A G T

T3 C C G T A C A A G T A

T4 C G T A C A A G T A T

(a) First, the common overlap (light gray) is searched using optimum
search schemes. Second, the search of T1 and T2 is continued recur-
sively by extending the previously identified approximate matches of
the infix in the index by GC to the left (allowing for the remaining
number of errors; medium gray). T1 and T2 are then retrieved sepa-
rately by simple backtracking in the index by one character to the left
and one character to the right (allowing for an error, if any left; dark
gray). T3 and T4 are extended analogously in a recursive manner.

T [4, 11]

T [2, 11]

T1

A

T2

T

←−−
G C

T [4, 13]

T3

C

T4

T

−−→
T A

(b) The same strategy presented as a backtracking tree. It is traversed
for each suffix array range reported by the search of the infix
T [4, 11] using optimum search schemes. Each edge also has to
account for remaining errors, i.e., approximate string matching is
performed using simple backtracking.

Figure 4.2: Searching s overlapping k-mers using optimum search
schemes for the infix and extending it using simple back-
tracking. Illustrated for k = 11 and s = 4.
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the previously described search, the suffix array range representing
the exact matches of a k-mer is stored (using OSS* and simple back-
tracking there can only be one suffix array range without errors for
each k-mer). After the approximate search the positions of the exact
matches are located and the total number of occurrences (including
errors) are assigned to the frequency vector at these positions. Since
all these k-mers are identical, they share the same frequency value.

We observed in our experiments that this leads to longer runs of
frequency values to be forwarded to positions with uncomputed fre-
quency values. A small technical improvement can now be added:
when the search of a set of s k-mers reaches such a run, it is not
necessary to recompute these values and they can be skipped. If only
some of the s positions have been computed already, we skip lead-
ing and trailing k-mers with computed frequency values, such that
a smaller, but continuous block of k-mers can be searched with the
aforementioned strategies. This leads to a larger infix to be searched
by optimum search schemes and fewer extensions necessary using sim-
ple backtracking. It is still possible that some frequency values are
recomputed in the reduced set of k-mers. To discard these k-mers
one would have to split it into subsets and search the common infix
of each subset separately. Since this introduces further redundant
computations, we neglect it and accept that some frequency values
might be recomputed.

The algorithm can also search each k-mer on the reverse strand.
The previously explained steps are executed for each set of k-mers
as well as their reverse complement which leads to a doubling of
the running time. Some tools instead create the reverse complement
of the genome during indexing which doubles the size of the index,
but is only slightly slower than computing the frequency without
considering the reverse strand. This is only suitable for genomes
that are not too large, but since the running time gets only critical
for large, repetitive genomes such as plants, we do not index the
sequence of the reverse strand.
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Our algorithm is implemented in a C++ stand-alone application
called GenMap using SeqAn 2 and is available on GitHub1. Table
A.5 in the appendix lists the available parameters and features for
computing the frequencies. Besides computing the frequencies, we
also offer a binary to convert the frequency vector into a mappability
vector and into common formats such as wig-files that can be loaded
into genome browsers to visualize the mappability.

Currently our implementation only supports Hamming distance.
It can easily be extended to Edit distance, but one has to carefully
consider the definition of frequency based on Edit distance. While
for Hamming distance it is highly unlikely that a k-mer matching a
position j in the text is also matching positions j − 1 or j + 1, this
is not true for Edit distance. Multiple alignments to the same re-
gion are possible with slightly different starting and ending positions.
Implementing the mappability for Edit distance in a straightforward
manner would assign these k-mers a high frequency even though they
might not belong to a repeat. Hence, the definition of frequency based
on Edit distance has to be defined thoroughly depending on the ap-
plication.

4.4 Benchmarks

For comparison we used the only available version (1.759 beta) of
the GEM suite that included the mappability program. We did not
reach the authors for a newer version including the mappability tool.
Other available and newer versions do not offer this feature anymore.
The approximation mode was run with t = 7 which Derrien et al.
suggested for the human genome. For GenMap we computed the
parameter s (number of overlapping k-mers) according to equation
4.2. Again, we run the benchmarks on the same computer with the
same setup as described in section 2.4.8.

1https://github.com/cpockrandt/mappability
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Table 4.2 (a) compares the running times on the human genome
for computing the (k, e)-frequency for shorter k that are of interest
for applications such as identifying marker genes, presented in section
4.6, whereas table 4.2 (b) shows typical instances used for applications
in read mapping which we will present in section 4.5.

Tool (36, 0) (24, 1) (36, 2) (50, 2) (75, 3)

GEM exact 5h 10m N/A N/A N/A N/A

GEM approx. 22m 44s N/A 7h 11m 5h 50m 4h 26m

GenMap 3m 8s 23m 12s 1h 19m 42m 12s 1h 36m

(a) Instances are taken from [Derrien et al., 2012].

Tool (101, 0) (101, 1) (101, 2) (101, 3) (101, 4)

GEM exact 44m 10s 7h 28m 7h 34m 7h 45m 8h 8m

GEM approx. 28m 8s 2h 40m 3h 17m 3h 31m 3h 49m

GenMap 2m 29s 7m 5s 16m 35s 49m 27s 3h 7m

(b) Comparing the running times for a typical Illumina read length with growing
number of mismatches.

Table 4.2: Running times for computing the frequency of the human
genome (GRCh38) using 16 threads. Timeouts of 1 day
are represented as N/A.

For all computed instances, GenMap is faster than GEM. Com-
pared to the approximate mode we are almost a magnitude faster for
smaller number of errors, but for 4 errors the heuristic of GEM pays
off and is almost as fast as our algorithm. Interestingly the increase
of the running time of GEM in its exact mode gets smaller with more
errors. For 101-mers with 1 to 4 errors the running time is always
about 7 to 8 hours, nonetheless GenMap is still faster by a factor
from 2.5 of up to 50 (4 and 1 errors).
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Even in the exact mode where no advanced backtracking such as
optimum search schemes is performed, our tool is faster by a factor
of between 17 and 100 (for 101-mers and 36-mers). Especially for
short k-mers with errors, GEM takes significantly longer, often does
not even terminate within 24 hours and 16 threads.

The running times we measured for GEM approx. differs consid-
erably from the running times published by the authors. Even when
we ran it on a similar CPU with the same number of cores we were
2 to 5 times slower than their published benchmarks. One reason
might be that the only available version of GEM with the mappa-
bility functionality was published as a beta version, however it was
published in 2013, one year after the paper. Nonetheless, GenMap is
still faster than the running times published by Derrien et al.

We are also significantly faster than GEM when computing the
mappability of small genomes like D. melanogaster. Since smaller
genomes are generally less challenging, we omit the benchmarks here.
For the human genome the memory consumption of GenMap is about
10 GB (using a bidirectional FM index with EPR dictionaries and a
suffix array sampling rate of 10), while GEM takes up 4.5 GB (using
an unspecified FM index implementation with a suffix array sampling
rate of 32).

In conclusion, GenMap is a magnitude faster than GEM in its exact
mode, and still faster than GEM using its heuristics, while GenMap is
always exact. For even up to 4 errors GenMap achieves a reasonable
running time. This is due to the three techniques described in the
previous section. Without using optimum search schemes and search-
ing the infix of overlapping k-mers only once, our tool would achieve
a comparable running time to GEM in its exact mode. Further im-
provements can be implemented which might speed up the algorithm
even further, such as in-text verification. The benefit might be even
greater than the benchmarks in the previous chapter suggest, since
extending the infix is performed using simple backtracking which is
not only considerably slower than optimum search schemes but also
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has to be performed on multiple suffix array ranges separately, which
are reported by the searches of OSS*.

GenMap is also suitable to compute the mappability of larger and
more repetitive genomes than the human genome. We computed the
(50, 2)-frequency of the barley genome (hordeum vulgare, [Mascher
et al., 2017]) as it contains large amounts of repetitive DNA [Ranjekar
et al., 1976].

Barley has 4.8 billion base pairs while the human genome has 3.2
billion base pairs. As expected the human genome has considerably
more unique regions than the barley genome. When examining the
(50, 2)-frequency of both genomes, 75.4 % of the k-mers were unique
in the human genome, and only 26.4 % in the barley genome. There
are 12.0 % (54.4 %), 7.6 % (42.1 %) and 4.8 % (25.6 %) k-mers
in human DNA (resp. barley DNA) with at least 10, 100 and 1,000
occurrences. Computing the (50, 2)-frequency of barley on 16 threads
took less than 1h 15m with GenMap and nearly a day with GEM
using its heuristic with t = 6 (automatically chosen by GEM).

4.5 Read Mapping

As shown in the previous chapter, read mapping gets computation-
ally more expensive with growing error rates for obvious reasons.
Precisely, this is due to reads that match to many locations in the
reference genome. When mapping those reads, subtrees in the back-
tracking tree are cut less frequently, hence the exponential growth in
the number of edges is more significant.

When a read mapper is run in best mapping mode, mapping reads
to repeat regions is rather neglectable than for all-best, strata or even
all mapping modes. For some applications the user might not be
interested in mapping the read to all the repeat regions, but only to
the less repetitive regions. This can be taken care of by performing
repeat masking, i.e., masking repeats in the genome prior to indexing
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the reference genome. Tools such as RepeatMasker [Smit et al., 1996]
search the reference genome or any input sequence for repeat regions
by comparing it to a database of known repeats and replace them by
runs of N’s. While there are also tools that identify repeats without
using existing libraries [Edgar and Myers, 2005], so-called de-novo
repeat annotation, they all have in common that the parameters for
masking repeats have to be set prior to indexing and no adjustments
are possible without masking and rebuilding the index again, another
time consuming step.

Instead, we suggest a technique that takes the mappability infor-
mation into account during the mapping of reads [Bönigk, 2018].
Once the reference genome is indexed, the (k, e)-frequency is com-
puted prior to mapping the reads where k is the read length and e is
set with respect to the error rate of the sequencing technology, e.g.,
the maximum number of errors that the reads are later mapped with.
A threshold parameter T ∈ N is introduced.

Definition 4.5.1 (Mappable and unmappable locations).
Given the (k, e)-frequency of a sequence T , a position i is called
mappable if F [i] ≤ T , and unmappable otherwise.

Reads are guaranteed to be mapped to mappable locations, i.e., to
positions in the text with a frequency value of up to T . If a read
matches a location with a greater frequency than T , this position
might not be mapped to as one tries to skip unmappable positions
as soon as possible during the read mapping process. When a read
matches a position, only the frequency value at the starting position
of the read is considered to determine whether it is mappable. It
is possible that a read matches uniquely with up to e errors to the
reference genome, while the location itself is unmappable, i.e., has a
high frequency, see figure 4.3 (b) for an example. Even though this
rarely happens, the different terms of matching and mapping reads
should be kept in mind.
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Read: TAAAA

Genome: AAAAC ... AAACA ... TCCAA ... AAACA

Frequency: 3 .......... ... 3 .......... ... 1 .......... ... 3 ..........

2 2 2 2

(a) Mapping a read with up to 2 mismatches to a genome with computed
(5, 2)-frequency. The read matches multiple locations of which only
one is mappable and the others are unmappable, since their frequency
value is greater than T .

Read: TAAAA

Genome: TACAC ... TAACC ... TAAAC ... TCAAC

Frequency: 4 .......... ... 4 .......... ... 4 .......... ... 4 ..........

2 2 1 2

(b) Mapping a read with up to 1 mismatch to a genome with computed
(5, 1)-frequency. The read matches only one position in the genome,
even though it belongs to a mappable position. The other locations
and the read each have a Hamming distance of 2.

Figure 4.3: Example of matching and mapping reads with T = 2.
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4.5.1 Constructing Frequency Vectors

The actual frequency values are not of interest since we only need
to determine whether a location has a value greater than T , hence
we reduce the frequency vector F to a frequency bit vector, denoted
as B. For simplicity we extend the frequency bit vector of length
n − k + 1 to n by appending 1s with n = |T |. Since the reads of
length k are too long to map to the last k − 1 text positions, they
will be discarded at some point during backtracking anyway.

B[i] =

{
0 , i ≤ n− k + 1 and M [i] ≤ T
1 , otherwise

∀ 1 ≤ i ≤ n (4.3)

A read matching a location i with up to e errors is considered
mappable if and only if B[i] = 0, i.e., it only depends on the frequency
value of the first position of the read in the genome and the threshold
parameter T .

We want to be able to identify repeat regions during the mapping
of a read. Since the preliminary occurrences during the backtracking
are represented as suffix array ranges, the frequency bit vector has
to be reordered. We will show how to access the frequency bit vector
during approximate string matching in a bidirectional FM index using
(optimum) search schemes to determine whether the eventual starting
positions of the read are mappable or not. Most search schemes
consist of three searches: a forward search (searching the read from
left to right), a backward search (searching the read from right to
left) and a bidirectional search (starting in the middle of the read and
switching directions at some point). For each of these three searches
we describe how the frequency bit vector has to be reordered and
how the relevant information in a search step can be accessed. Let I
and Irev be the indices on the original and the reversed text’s index
forming the bidirectional FM index.
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i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T [i]: A C C C A A C G A C G G A A C G $

SA[i]: 17 13 5 1 14 6 9 4 3 2 15 7 10 16 12 8 11

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T rev[i]: G C A A G G C A G C A A C C C A $

SArev[i]: 17 16 11 3 12 8 4 15 10 2 7 14 13 9 1 6 5

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F [i]: 1 2 2 3 3 2 2 3 2 1 1 2 3 ∞ ∞ ∞ ∞

B[i]: 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1

Figure 4.4: (4, 1)-frequency with appended frequency values set to∞
for the text T = ACCCAACGACGGAACG$. Since a
sentinel character is appended, not only the last k−1 text
positions have undefined frequency values, but also the
kth position from behind. Bit vector is built for T = 2.

Example 4.5.1.
We consider the text given in figure 4.4 and want to map reads of
length 4 with up to 1 mismatch. The (4, 1)-frequency vector is com-
puted and reduced to a bit vector for T = 2. The read ACCG
matches the locations 1, 5 and 13 with one substitution and location
9 without any error. Only the locations 1 and 9 are mappable and
5 and 13 belong to a repeat with respect to T . Hence, we want to
skip the locations 5 and 13 before they are matched in the index,
preferably as soon as possible.
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Forward search If we want to search a read P [1..k] from left to right
in a bidirectional FM index, we will perform backward search steps
on the reversed text’s index Irev. The text positions stored in the
corresponding suffix array range of I point to the first character of
the partially matched read P [1..j] for 1 ≤ j ≤ k. Since we need to
retrieve the corresponding frequency bit of the beginning of the fully
mapped read and since we search the read from left to right, we can
simply define a bit vector Bfwd in suffix array order of I:

Bfwd[i] = B[SA[i]] ∀ 1 ≤ i ≤ n (4.4)

Hence, while searching in Irev the suffix array range [a, b] of I can
be used to examine the frequency values of the potential matches of
the read at any time by accessing Bfwd[i] for i ∈ [a, b], see figure 4.5
for an example. This allows filtering repetitive locations during the
search. We will explain the details later.

Example 4.5.2 (Forward search).
We consider the read ACCG from the previous example. During
approximate string matching when extending the partial read from
A to AA (allowing a mismatch), the suffix array range [a, b] = [2, 3]
in I (highlighted in red) reveals that all positions are not mappable,
since Bfwd[i] = 1 for i ∈ [a, b] and the backtracking does not have to
be continued for this branch.

In another branch during backtracking we will have searched for
ACG represented by the suffix array range [a, b] = [5, 7] (highlighted
in blue). The algorithm might continue with an in-text verification.
Since Bfwd[5] = 1 the position 5 in the genome does not have to be
verified and can be discarded immediately.

136



4.5 Read Mapping

i F L Bfwd

1 $ ACCCAACGACGGAAC G 1

2 A ACG$ACCCAACGACG G 1

3 A ACGACGGAACG$ACC C 1

4 A CCCAACGACGGAACG $ 0

5 A CG$ACCCAACGACGG A 1

6 A CGACGGAACG$ACCC A 0

7 A CGGAACG$ACCCAAC G 0

8 C AACGACGGAACG$AC C 1

9 C CAACGACGGAACG$A C 0

10 C CCAACGACGGAACG$ A 0

11 C G$ACCCAACGACGGA A 1

12 C GACGGAACG$ACCCA A 0

13 C GGAACG$ACCCAACG A 0

14 G $ACCCAACGACGGAA C 1

15 G AACG$ACCCAACGAC G 0

16 G ACGGAACG$ACCCAA C 1

17 G GAACG$ACCCAACGA C 0

Figure 4.5: Index I on T with the frequency bit vector Bfwd for for-
ward searches ((4, 1)-frequency with T = 2).
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Backward search For searching a read P [1..k] from right to left it
is the other way around. Backward searches are performed in I.
The suffix array range of I represents the occurrences of P [j..k] for
1 ≤ j ≤ k in the text. Thus, with every backward search the locations
refer to a different starting position of a suffix of P in the text. To be
able to access the frequency information after each backward search,
we need the starting positions of the read to be fixed. Hence, we use
the suffix array range [arev, brev] of Irev which stores the locations of
P rev[1..(k − j + 1)]. We will arrange the bit vector in suffix array
order of Irev. Since B is in text order and not in reversed text order,
it is accessed via B[n − SArev[i] + 1] with i ∈ [arev, brev]. As the
occurrences of the read in the reversed text are also reversed, the
frequency bit vector Bbwd needs to be shifted by k − 1 to the right
such that the frequency values of the k-mers are not aligned to the
left, but to the right. If SArev[i] ≥ n− k+ 1 the read will eventually
not match, since there are not enough characters left at the end of the
text, hence we set the corresponding bits of the frequency bit vector
to 1, i.e., mark these positions as unmappable, allowing the matching
to these locations to abort earlier. For 1 ≤ i ≤ n we define Bbwd:

Bbwd[i] =

{
B[n− SArev[i]− k + 2] , SArev[i] ≤ n− k + 1
1 , otherwise

(4.5)

Example 4.5.3 (Backward search).
Again, we search the read ACCG with up to one substitution from
right to left. We consider a backtracking branch that checks for an
error at the very first position searched, i.e., the last character in
the read. Let the mismatch character be C. The suffix array range
in Irev is [arev, brev] = [8, 13]. Since the first four locations are not
mappable, i.e., Bbwd[i] = 1 for i ∈ [8, 11], one only has to consider
the subrange [12, 13].

The running time improvement in this example is negligible, since
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we only allow for one substitution in total and [8, 11] would be elimi-
nated anyway when trying to match the next character. However, it
should be kept in mind that these are minimal examples. For many
applications we allow for more errors and deal with significantly larger
suffix array ranges.

i F L Bbwd

1 $ GCAAGGCAGCAACCC A 1

2 A $GCAAGGCAGCAACC C 1

3 A ACCCA$GCAAGGCAG C 1

4 A AGGCAGCAACCCA$G C 0

5 A CCCA$GCAAGGCAGC A 0

6 A GCAACCCA$GCAAGG C 0

7 A GGCAGCAACCCA$GC A 0

8 C A$GCAAGGCAGCAAC C 1

9 C AACCCA$GCAAGGCA G 1

10 C AAGGCAGCAACCCA$ G 1

11 C AGCAACCCA$GCAAG G 1

12 C CA$GCAAGGCAGCAA C 0

13 C CCA$GCAAGGCAGCA A 0

14 G CAACCCA$GCAAGGC A 0

15 G CAAGGCAGCAACCCA $ 1

16 G CAGCAACCCA$GCAA G 0

17 G GCAGCAACCCA$GCA A 0

Figure 4.6: Index Irev on T with the frequency bit vector Bbwd for
backward searches ((4, 1)-frequency with T = 2).
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Bidirectional search Pure forward and backward searches have al-
ways one end of the read aligned that will not be extended. This
ensures that the frequency bit vector can always be accessed using
one of the two suffix array ranges. For bidirectional searches this is
different. Let us assume that the search starts at some position j in
the read, performs an extension to the right and afterwards extends
it to the left. When searching to the right, the read is anchored to
the left at position j, when it is extended to the left, it is anchored to
the right at the end of the read. For the extension to the left we can
access Bbwd like for pure backward searches, for the extension to the
right we need another frequency bit vector Bbi that is built similarly
to Bfwd, but aligned j−1 positions to the right. An example is given
in figure 4.7. Again, if SA[i] < j the matching will eventually fail,
hence we set the corresponding bits of the frequency bit vector to 1.

Bbi[i] =

{
B[SA[i]− (j − 1)] , SA[i] ≥ j
1 , otherwise

∀ 1 ≤ i ≤ n (4.6)

Example 4.5.4 (Bidirectional search).
Again, we search the read ACCG with up to one substitution, start-
ing from the third character, extending it to the right and afterwards
to the left, hence, the bit vector Bbi is needed for j = 3. If we start the
search with an exact match of the 3rd character, the suffix array range
[a, b] = [8, 13] is retrieved. Bbi[i] for i ∈ [8, 13] indicates that only the
first two text positions SA[8] and SA[9] might eventually match a
mappable position in the text, which are SA[8]− (j − 1) = 4− 2 = 2
and SA[9] − (j − 1) = 3 − 2 = 1. Eventually the read will only be
mapped to position 1 and not to position 2 as this requires more than
one mismatch.
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i F L Bbi

1 $ ACCCAACGACGGAAC G 1

2 A ACG$ACCCAACGACG G 0

3 A ACGACGGAACG$ACC C 0

4 A CCCAACGACGGAACG $ 1

5 A CG$ACCCAACGACGG A 0

6 A CGACGGAACG$ACCC A 1

7 A CGGAACG$ACCCAAC G 0

8 C AACGACGGAACG$AC C 0

9 C CAACGACGGAACG$A C 0

10 C CCAACGACGGAACG$ A 1

11 C G$ACCCAACGACGGA A 1

12 C GACGGAACG$ACCCA A 1

13 C GGAACG$ACCCAACG A 1

14 G $ACCCAACGACGGAA C 1

15 G AACG$ACCCAACGAC G 0

16 G ACGGAACG$ACCCAA C 0

17 G GAACG$ACCCAACGA C 0

Figure 4.7: Index I on T with the frequency bit vector Bbi for bidi-
rectional searches beginning at position j = 3 in the read
and extending it to the right first ((4, 1)-frequency with
T = 2).
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While going down the backtracking tree, the frequency values of a
suffix array range can always be examined by using one of the created
bit vectors. In the next step we want to examine the frequency bit
vectors during the index-based search and skip as many partially
matched reads that map to repetitive regions, i.e., have the frequency
bit set to 1. To better analyze the amount of mappable positions for
a given suffix array range, we add constant-time rank support to all
bit vectors. We present two approaches for eliminating unmappable
locations from the search during backtracking. In general the infix
of the frequency bit vector contains both, zeros and ones in a mixed
order. To skip unmappable locations, a suffix array range can be
split into multiple subranges and backtracking is continued with each
subrange separately, or in case the infix contains only few mappable
positions, they can be located and verified by an in-text verification
as presented in section 3.8.

4.5.2 Splitting Suffix Array Ranges

While splitting suffix array ranges into subranges to skip unmappable
locations sounds promising, it has two downsides. First, splitting one
range into multiple smaller ones requires continuing backtracking sep-
arately on each of the subranges, increasing the overall running time.
To compensate for this, one has to cut out large continuous blocks of
unmappable locations. Second, when choosing a subrange or splitting
the range into subranges, in most cases the bidirectional FM index
cannot be synchronized anymore. An arbitrary suffix array range is
generally not a continuous suffix array range in the reversed text’s in-
dex (see example 4.5.5). Hence, when selecting a subrange one has to
finish the entire mapping of these locations using a unidirectional FM
index or in-text verification. Furthermore, one also loses the ability
to access the frequency information during a unidirectional search.
The unidirectional search always performs backward searches, but
one needs the suffix array range of the other index to retrieve the
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text locations and its frequency bits of the matched prefix.

Example 4.5.5 (Selecting subranges).
Consider the suffix array range [2, 7] in I matching the prefix A (sin-
gle character) in figure 4.5. When shrinking this range to [2, 5], the
longest common prefix is still A. The corresponding suffix array in-
dices in Irev are 2, 4, 5 and 7, hence they do not form a continuous
block.

In conclusion, one can examine the frequency information after
each search step, but one can only split the suffix array range once
on each path in the backtracking tree. In the subsequent search
steps the frequency information cannot be examined anymore. If the
splitting is performed in a bidirectional search of the search scheme
before switching directions, eventually an in-text verification has to
be performed. Hence, it should be carefully considered if and when
to shrink or split the suffix array range.

As an indicator whether to split the suffix array range, we exam-
ine the infix of the corresponding frequency bit vector with respect
to the number of mappable locations and whether they form larger
continuous blocks. The former is rated by the percentage of map-
pable locations which can be computed using rank queries, the latter
by the percentage of bits flipped in the infix of the bit vector, see
equation 4.7. The number of bit flips can efficiently be counted by
count(B[a..b]⊕ (B[a..b]� 1)) where ⊕ denotes bitwise xor. Count-
ing can be performed by using popcount on each 64-bit word.

rank0(B, b)− rank0(B, a)

b− a
≤ c0

|{` | ` ∈ [a, b− 1] ∧B[`] 6= B[`+ 1]}|
b− a

≤ c1

(4.7)

The partition into subranges is performed by a linear scan over
the infix of the frequency bit vector. Instead of selecting subranges
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that contain only mappable locations, a small number of unmappable
locations are allowed in each subrange to reduce the number of sub-
ranges.

4.5.3 In-Text Verification

In-text verification can be used at any time during the backtracking
by retrieving the text positions and verify whether the rest of the
read matches, especially if the suffix array range [a, b] or a subrange
only has few mappable locations, i.e.,

rank0(B, b)− rank0(B, a) ≤ c2 (4.8)

Determining the optimal parameters c0, c1 and c2 is even more
challenging than for pure in-text verification. Again, this depends on
the number of errors and characters left as they have an impact on
the running time needed for the remaining backtracking, but even
more importantly on the underlying data and its repetitiveness.

4.5.4 Benchmarks

To evaluate the performance of read mapping using mappability in-
formation, we implemented a prototype for Hamming distance which
is available on GitHub2. We ran the benchmarks using 100, 000 sam-
pled Illumina reads from a whole genome sequencing experiment of
the human genome from section 3.7. As parameters we chose c0 = 0.1,
c1 = 0.3 and c2 = 25, i.e., suffix array ranges are only split if they
contain at most 10 % mappable positions and at most 30 % of bit flips
in the corresponding infix of the frequency bit vectors. This ensures
that suffix array ranges are only split when there is a large subset
of unmappable positions and they are not too widespread into small
blocks. In-text verification is performed for less than 25 occurrences
as in the previous chapter.

2https://github.com/svnbgnk/mappability
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Table 4.3 compares the running times of OSS*and OSS*with in-
text verification to our new approach incorporating mappability in-
formation into the search. We evaluate the performance for different
threshold values T . We can observe a noticeable drop in running
times for larger errors of up to 30 % (for K = 3) when comparing
it to optimum search schemes with in-text verification. It is worth
mentioning that a large increase of T from 7 to 100 only reduces the
performance increase by 6 %, and an increase to 250 only by another
2 %. Hence, we can still improve the running time while guarantee-
ing that reads are mapped to all locations with a frequency of less or
equal than 250.

Strategy K = 1 K = 2 K = 3

OSS* 7.4s 21.0s 57.0s

OSS*+ ITV 4.7s 11.0s 27.0s

OSS*+ ITV, T = 7 4.0s 7.4s 19.3s

OSS*+ ITV, T = 10 4.0s 7.5s 19.6s

OSS*+ ITV, T = 100 4.3s 8.2s 21.0s

OSS*+ ITV, T = 250 4.3s 8.4s 21.5s

Table 4.3: Running times for approximate string matching with map-
pability information. Reads do not have to be mapped to
locations with a frequency value greater than T .

Tables 4.4 (a) and (b) show the percentage of reads that only
mapped to unmappable locations and were not reported, and reads
that mapped to both, mappable and unmappable locations where un-
mappable locations were dropped during the search by splitting the
suffix array range or performing in-text verification on single suffix
array values. Naturally, the number of unmappable reads shrinks for
greater threshold values, but at the same time the number of reads,
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for which unmappable locations were dropped tends to increase. This
supports our choice of the parameters c0, c1 and c2 as even for greater
threshold values and hence fewer unmappable positions, more unmap-
pable locations were dropped by splitting the suffix array range.

T K = 1 K = 2 K = 3

7 2.09 % 4.26 % 5.37 %

10 1.54 % 3.61 % 4.65 %

100 0.48 % 1.74 % 2.45 %

250 0.32 % 1.23 % 1.86 %

(a) Percentage of completely unmap-
pable reads that match at least one
position in the genome.

T K = 1 K = 2 K = 3

7 2.35 % 1.54 % 1.66 %

10 2.50 % 1.73 % 1.87 %

100 2.48 % 2.34 % 2.60 %

250 2.25 % 2.53 % 2.75 %

(b) Percentage of reads that match
both, mappable and unmappable lo-
cations.

Table 4.4: Percentage of reads that were not mapped at all respec-
tively only mapped to some of its location based on the
frequency bit vectors. Reads are only considered if they
match at least once in the genome.

The experiments show that our prototype implementation of a read
mapper incorporating mappability information even further speeds
up the mapping of reads to repeat regions. Instead of mappability
information one can also use the masking information of a repeat
masked genome to construct a bit vector to neglect mapping to repeat
regions identified by repeat masking tools. No rebuilding of the FM
index is necessary, only the bit vectors have to be constructed and
reordered.

All the frequency vectors have only to be computed once for a
given read length and error rate. The frequency bit vectors can be
constructed by a linear scan over the suffix arrays for a given T , i.e.,
for each read mapping run the threshold parameter can be adjusted
at low cost in terms of running time.
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For one error the optimal search scheme consists of a forward and
a backward search, i.e., only two bit vectors are necessary. For two
errors a third bit vector is needed for the bidirectional search. Since
OSS* for three errors has four searches of which two are bidirectional
with different starting positions, four bit vectors are required in total.
We did not evaluateK = 4 since our best search scheme for four errors
contains searches that switch the direction multiple times. This is not
yet supported by our prototype and would also require additional bit
vectors. The space consumption of each bit vector is exactly the
length of the genome in bits, this yields 383 MB per bit vector for
the human genome. Since rank support can be built quickly by a
linear scan over the bit vector, it is not stored on disk, but created
when the index and bit vectors are loaded by the read mapper.

The chosen parameters c0, c1 and c2 show a significant speedup for
mapping the reads, but more research on choosing these parameters
or even other strategies for eliminating unmappable locations during
the search might improve the running time even further. An extension
of the prototype is currently being developed to also support Edit
distance with mappability information and in-text verification based
on the Myers bit vector algorithm.

4.6 Marker Genes

Marker genes, also referred to as phylogenetic markers or marker
sequences, are short subsequences of genomes whose presence or ab-
sence allows determining the organism, species or even strain when
sequencing an unknown sample or help building phylogenetic trees
[Patwardhan et al., 2014]. These subsequences can be rather short or
span entire genes. Depending on the data set a single gene might not
be sufficient, e.g., to distinguish different strains of the same species
with a high sequence similarity. Hence, the combination of multiple
marker genes might be necessary.
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Without assembling the sequencing data we cannot search for mar-
ker genes straightforward. Depending on the marker length it can
span dozens of reads. Instead of assembling the strain or applying
experimental methods such as PCR-based AFLP (amplified fragment
length polymorphism) [Vos et al., 1995], we propose using the map-
pability. The mappability can be computed on a set of strains, i.e.,
each k-mer is searched and counted in all strains at once. We con-
sider two use cases: on the one hand we want to identify k-mers that
match a sequence uniquely to determine the exact strain. On the
other hand, we want to search for k-mers shared by many strains in
the same phylogenetic group.

Small adjustments to the mappability algorithm are necessary. The
frequency vector can be computed on multiple strains at once, but
the algorithm does not distinguish whether a k-mer of some strain
matches the same strain multiple times or different strains. While
the original algorithm simply counts the occurrences, we are now
interested in the number of different strains it matches for finding
marker sequences. A k-mer with a frequency greater than 1 can still
be a suitable marker sequence if it only matches one of the strains.

An adapted version of our mappability algorithm to search for mar-
ker genes is available on GitHub on a separate branch3. We ran ex-
periments on E. coli strains to demonstrate the use of mappability
information for identifying marker sequences.

It was shown that E. coli can be grouped into four major phy-
logenetic groups (A, B1, B2, and D) [Clermont et al., 2000]. The
authors identified two marker genes (chuA and yjaA) and an anony-
mous DNA fragment (TspE4.C2) whose combination of presence or
absence in the genome can determine the phylogenetic group. They
used 230 E. coli strains and achieved an accuracy of 99 % in classify-
ing these strains based on the correlation of genes and groups listed
in figure 4.8.

3https://github.com/cpockrandt/mappability, branch marker genes
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Group chuA yjaA TspE4.C2

A - -

B1 - +

B2 + +

D + -

chuA

yjaA

B2

+

D

-

+

TspE4.C2

B1

+

A

-

-

Figure 4.8: Genes and DNA fragments for classifying E. coli strains
into four phylogenetic groups A, B1, B2, and D. + and
- represent a correlation for the presence or absence of a
gene or sequence in 100 % of all cases. 77 % of A strains
and 9 % of B1 strains contained the yjaA gene, 93 % of B2
and 10 % of D strains contained the TspE4.C2 sequence.
Based on this data, a decision tree can be built.

For the first experiment we select four different strains of the phy-
logenetic group B1 and compute the (30, 2)-mappability. According
to the study all strains within B1 share the anonymous DNA frag-
ment TspE4.C2 of 152 base pairs. We used the mappability tool to
search for both, unique k-mers among all strains as well as k-mers
that occur in each strain at least once. We observed that TspE4.C2
is an exact match in all strains and the 30-mers in this region also
have a mappability value of exactly 0.25. We further found numer-
ous 30-mers with a mappability of 1, thus allowing to determine a
strain among those four, while still accounting for sequencing errors
and mutations. Figure 4.9 (a) illustrates the experiment, statistics
on the identified unique 30-mers are given in table 4.5. We counted
the number of k-mers matching only one strain, i.e., the strain the
k-mer originated from. We refer to this count as unique. Addition-
ally, we counted how many of these k-mers matched multiple times
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to the strain, referred to as pseudo. To avoid counting highly over-
lapping k-mers in large unique regions, we break down the numbers
for non-adjacent k-mers as well, i.e., for a k-mer to be considered it
must have a preceding k-mer with a frequency value greater than 1.

all k-mers non-adjacent k-mers

Strain Unique Pseudo ∅ Dist. Unique Pseudo ∅ Dist.

IAI1 171,942 4,992 27± 627 1,829 81 2, 476± 5, 560
SE11 305,439 10,365 15± 447 2,356 176 1, 942± 4, 708
11128 260,305 40,101 20± 953 2,494 685 2, 049± 9, 517
11368 434,033 108,968 13± 912 3,142 1,116 1, 674± 10, 592

Table 4.5: (30, 2)-mappability on four strains of E. coli assigned to the
phylogenetic group B1 based on the known marker genes
by Clermont et al. The number of unique 30-mers with up
to 2 errors were counted (unique), as well as unique k-mers
among the strains with multiple occurrences in the strain
itself (pseudo). We computed the mean distance of the
unique marker sequences and their standard deviation. We
also filtered out adjacent unique k-mers to count regions
with many overlapping unique k-mers only once.

In table 4.6 we present the data of a second experiment, where we
select strains from more than one group (A and B1), see figure 4.9
(b) for an illustration. Again, we computed the (30, 2)-mappability,
but this time we counted k-mers that match all strains in one group
but no strain in the other group. As the data shows the number
of unique k-mers inside a group does not have to be equal for each
strain. Consider a k-mer k1 from W3110 matching in HS with one
error (we call the corresponding k-mer in HS k2), and matching no
strain in B1, since at least three errors might be required for k1 to
match. Hence, k1 is counted as a unique k-mer for group A. Due to
the symmetry of distance metrics, k2 of HS matches k1 in W3110,
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Strain 4

Strain 3

Strain 2

Strain 1

(a) Four strains belonging to the same phylogenetic group. The sequence
in red is conserved within this group and a marker gene. The red
k-mers belonging to this marker gene are also all found in the other
strains. The k-mers in blue are unique among all four strains and allow
distinguishing each of the strains.

B1, Strain 6

B1, Strain 5

B1, Strain 4

B1, Strain 3

A, Strain 2

A, Strain 1

(b) Six sequences belonging to two different phylogenetic groups. Marker
sequences are highlighted in red and blue that only occur in one the
groups and are present in all of its strains.

Figure 4.9: Illustration of the experiments performed on E. coli se-
quences in tables 4.5 and 4.6.
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but this time it might also match a k-mer in B1 with only two errors.
For e = 0 the number of unique k-mers in a group are identical for
each strain.

all k-mers non-adjacent k-mers

Group Strain Unique ∅ Dist. Unique ∅ Dist.

A W3110 109,375 41± 731 2,398 1, 867± 4, 577
A HS 111,179 39± 709 2,414 1, 796± 4, 471

B1 IAI1 125,042 37± 680 3,063 1, 485± 4, 091
B1 SE11 127,302 38± 690 3,123 1, 510± 4, 148
B1 11128 121,325 42± 766 3,275 1, 548± 4, 408
B1 11368 131,121 41± 814 3,473 1, 537± 4, 763

Table 4.6: (30, 2)-mappability on six strains of E. coli of the groups
A and B1. Only k-mers were counted that perfectly sep-
arated the strains in A from B1, i.e., if and only if the
k-mer matched all strains of A and no strain of B1 and
vice versa.

We downloaded the whole genome assemblies of the strains listed
in table A.6 and computed the (30, 2)-mappability on the entire data
set. We were able to verify the marker genes from Clermont et al. for
groups A and B1, although on a small data set. Our experiments enu-
merate large numbers of possible marker sequences. Since computing
the (30, 2)-mappability on a few E. coli takes even on a consumer lap-
top less than a minute, this method is suitable to run on large sets of
similar E. coli strains to identify marker sequences, even with errors
accounting for uncertainty from sequencing and mutations such as
SNPs.
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In this thesis we covered two important parts of many bioinformatics
applications: indexing data structures and approximate string match-
ing algorithms for an index-based search. We improved both areas by
introducing unidirectional and bidirectional FM indices based on a
novel data structure, EPR dictionaries. To our knowledge this is not
even the only available implementation with constant running time
per search step in bidirectional indices, but also outperforms all other
available FM index implementations in practice.

Furthermore we improved backtracking strategies for approximate
string matching in bidirectional FM indices both, in theory and prac-
tice. We formulated the concept of search schemes as an integer linear
program and computed optimal search schemes. We showed that they
can easily speed up the seeding phase of state-of-the-art read map-
pers and even allow searching short sequences with high-error rates
in an index. We have seen that there are even better search schemes
than we were able to compute with the ILP. We are optimistic that
improving the ILP to handle larger instances will allow us to find
even better performing search schemes. Additionally, we have in-
vestigated hybrid approaches using in-text verification and observed
that it is beneficial to stop an index-based search at some point and
verify the partial matches directly in the text. Even though we have
achieved significant speedups already, we expect that this strategy
can be improved even more.

These advancements in indexing data structures and approximate
string matching allowed us to develop an algorithm for computing the
mappability that is a magnitude faster than the efficient read map-
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5 Conclusion

ping tool suite GEM while not using any heuristics. Based on the
mappability we accomplished even further speedups for read map-
ping due to reads mapping to highly repetitive regions. What has
proven to be effective for Hamming distance, such as in-text verifica-
tion or read mapping with mappability information can be continued
for other distance metrics such as Edit distance and is considered as
future research.
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[Mäkinen, Veli and Belazzougui, Djamal and Cunial, Fabio and Tomescu, Alexandru I, 2015]
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Appendix

On the next pages all search schemes used in the experiments and
benchmarks are listed.

K = 2 K = 3 K = 4

Kucherov

(P = K + 1)

(123, 000, 022)

(321, 000, 012)

(213, 001, 012)

(1234, 0000, 0133)

(2134, 0011, 0133)

(3421, 0000, 0133)

(4321, 0011, 0133)

(12345, 00000, 02244)

(54321, 00000, 01344)

(21345, 00133, 01334)

(12345, 00133, 01334)

(43521, 00011, 01244)

(32145, 00013, 01244)

(21345, 00124, 01244)

(12345, 00034, 00444)

Kucherov

(P = K + 2)

(1234, 0000, 0112)

(4321, 0000, 0122)

(2341, 0001, 0012)

(1234, 0002, 0022)

(12345, 00000, 01233)

(23451, 00000, 01223)

(34521, 00001, 01133)

(45321, 00012, 00333)

(123456, 000000, 012344)

(234561, 000000, 012344)

(654321, 000001, 012244)

(456321, 000012, 011344)

(345621, 000023, 011244)

(564321, 000133, 003344)

(123456, 000333, 003344)

(123456, 000044, 002444)

(342156, 000124, 002244)

(564321, 000044, 001444)

Table A.1: Search schemes proposed in [Kucherov et al., 2016].
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K = 3 K = 4

OSS4

(12345, 00003, 02233)

(23451, 00022, 01223)

(34521, 00111, 01123)

(54321, 00000, 00333)

MANbest

(123456, 000004, 033344)

(234561, 000000, 022334)

(324561, 011111, 022334)

(432561, 012222, 012334)

(654321, 000033, 004444)

Table A.2: Optimal search scheme for K = 3 (with P = K + 2 and
S = 4) and non-optimal search scheme for K = 4 de-
rived from an optimal search scheme by lexicographically
minimizing the U -string such that each string starts with
0.
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K = 1 K = 2 K = 3 K = 4

OSS3

P = K + 1

(12, 00, 01)

(21, 01, 01)

(123, 002, 012)

(321, 000, 022)

(231, 011, 012)

(1234, 0003, 0233)

(2341, 0000, 1223)

(3421, 0022, 0033)

(12345, 00004, 03344)

(23451, 00000, 22334)

(54321, 00033, 00444)

OSS3

P = K + 2

(123, 001, 001)

(321, 000, 011)

(1234, 0011, 0022)

(3214, 0000, 0112)

(4321, 0002, 0122)

(12345, 00022, 00333)

(43215, 00000, 11223)

(54321, 00003, 02233)

(123456, 000004, 033344)

(234561, 000000, 222334)

(654321, 000033, 004444)

OSS3

P = K + 3

(1234, 0000, 0011)

(4321, 0001, 0011)

(12345, 00011, 00222)

(43215, 00000, 00112)

(54321, 00002, 01122)

(123456, 000003, 022233)

(234561, 000000, 111223)

(654321, 000022, 003333)

(1234567, 0111111, 3333334)

(1234567, 0000000, 0044444)

(7654321, 0000004, 0333344)

Table A.3: Optimal search schemes for different number of errors and parts with at most
S = 3 searches. The schemes were computed using the ILP with σ = 4 (e.g.,
DNA alphabet) and a read length of R = 101.
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K = 1 K = 2 K = 3 K = 4

01∗0 merged
(123, 000, 011)

(231, 000, 001)

(1234, 0000, 0122)

(2341, 0000, 0122)

(3421, 0000, 0022)

(12345, 00000, 01333)

(23451, 00000, 01333)

(34521, 00000, 01333)

(45321, 00000, 00333)

(123456, 000000, 014444)

(234561, 000000, 014444)

(345621, 000000, 014444)

(456321, 000000, 014444)

(564321, 000000, 004444)

Table A.4: 01∗0 seeds by Vroland et al. formulated as search schemes. All 01∗0 seeds with
the same first error-free block are merged into one search.
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Argument Description

--index path to the pre-built index (required)
--output path to the mappability vector file (required)
--length length of k-mer (required)
--errors number of errors (required)
--revcompl searches each k-mer also on the reverse strand (flag)
--high increases the maximum mappability value stored

from 255 to 65535 when set (flag)
--threads number of threads (default: maximum supported by

the system)
--mmap turns on memory-mapping, i.e., the index is not

loaded into main memory at the beginning, but in
a lazy loading fashion (flag)

--overlap number of adjacent k-mers searched at once (de-
fault: see equation 4.2)

Table A.5: Arguments and flags of GenMap
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Strain Group GenBank accession

K-12 substr. W3110 A GCA 000010245.1

HS O9:H4 A GCA 000017765.1

IAI1 O8 B1 GCA 000026265.1

SE11 O152:H28 B1 GCA 000010385.1

11128 O111:H- B1 GCA 000010765.1

11368 O26:H11 B1 GCA 000091005.1

Table A.6: List of E. coli strains with their phylogenetic groups and
accession numbers used in the experiments.
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Zusammenfassung

Diese Arbeit behandelt zentrale Algorithmen und Datenstrukturen
aus der Sequenzanalyse am Beispiel von Read Mapping. Zuerst geben
wir einen Überblick über den Stand der Forschung von FM-Indizes
und stellen die aktuellsten Fortschritte vor, insbesondere die kürzlich
veröffentlichten EPR-Dictionaries. Sie ermöglichen uni- und bidirek-
tionale Suchen in FM-Indizes mit konstanter Laufzeit pro Suchschritt.
Nach unserem Kenntnisstand handelt es sich dabei um die erste und
derzeit einzige Implementierung bidirektionaler FM-Indizes mit kon-
stanter Laufzeit. Wir zeigen, dass unsere Datenstruktur nicht nur op-
timale Laufzeiten für FM-Indizes in der Theorie erreichen, sondern
auch in der Praxis schneller sind als andere frei verfügbare Implemen-
tierungen.

Im zweiten Kapitel widmen wir uns der approximativen Suche in
bidirektionalen Indizes. Um die Laufzeit weiter zu verbessern und so-
mit auch höhere Fehlerraten in indexbasierten Suchen zu ermöglichen,
haben wir ein ganzzahliges lineares Programm entwicklt, um optimale
Suchstrategien in bidirektionalen Indizes zu finden. Wir zeigen, dass
die berechneten Strategien schneller sind als andere bisherige Ansätze
und zeigen zusätzlich weitere Möglichkeiten der Laufzeitverbesserung
auf. Mittels Verifizierungen kann eine index-basierte Suche vorzeitig
abgebrochen, die möglichen Treffer lokalisiert und anschließend direkt
im Text verifiziert werden.

Abschließend stellen wir einen noch unveröffentlichten Algorith-
mus vor um die Mappability von Genomen zu berchnen. Sie ist ein
Maß für die Eindeutigkeit einer Sequenz. Sie wird berechnet, indem
jede Subsequenz der Länge k im Genom selbst gesucht und ihre Vor-
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kommen unter Berücksichtigung einer maximalen Anzahl von Feh-
lern gezählt wird. Wir zeigen zwei Anwendungen von Mappability
auf. Zum einen, dass durch diese Informationen Read Mapper beim
Suchen von Reads aus hoch repetitiven Regionen beschleunigt, und
zum anderen wie phylogenetische Marker gefunden werden können.
Innerhalb einer Menge von ähnlichen Stämmen der gleichen Spezies
können so eindeutige Subsequenzen ermöglichen Stämme untereinan-
der auf Grund von Sequenzierungsdaten zu unterscheiden.

Die Erkenntnisse dieser Arbeit können zahlreiche Anwendungen
in der Bioinformatik verbessern. Dies zeigen wir anhand von Read
Mappern und Mappability. Außerdem zeigen wir weitere Forschungs-
möglichkeiten in diesem Bereich auf.
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