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English Summary
This thesis is concerned with the study of a reaction-diffusion system with a nonlinearity
that obeys a hysteresis law. This law is realized as an ensemble of scalar hysteresis
operators, one defined at each spatial point and operating independently of one another.
This independent ensemble approach is inspired by initial biological applications where
combinations of diffusing and non-diffusing substances interact according to a hysteresis
law.

The individual operators are either non-ideal relays or solutions to an ordinary differ-
ential equation with a small parameter. Under a very general condition called spatial
transversality we prove the well-posedness of the system with non-ideal relays and that
it is approximated by the system with ordinary differential equations as the parameter
goes to zero. For the first time in the partial differential equation setting, we prove
explicit asymptotics with respect to this parameter.

This work was supported by the Project A9: Reaction-diffusion systems: hysteresis
and nonlocal interactions as part of Collaborative Research Center 910 Control of self-
organizing nonlinear systems: Theoretical methods and concepts of application.
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1. Introduction

This thesis is concerned with the study of a reaction-diffusion equation with a nonlinearity
that obeys a hysteresis law. This law is realized as an ensemble of scalar hysteresis
operators, one defined at each spatial point and operating independently of one another.
This independent ensemble approach is inspired by initial biological applications where
combinations of diffusing and non-diffusing substances interact according to a hysteresis
law.

The two constituent operators we study are a non-ideal relay which switches states in-
stantaneously (cf. Section 1.2.1), and a Fast-ODE system that switches on a "fast" time
scale compared to the evolution of its input (cf. Section 1.2.3). We encode this time
scale difference in a small parameter ε where 0 < ε� 1. The question of how the ODE
system approximates the system with non-ideal relays as ε→ 0 will be a central scientific
question of this thesis.

We answer this question in the affirmative by demonstrating that the system with non-
ideal relays is well-posed under very general assumptions, and that it is approximated
by the system of Fast-ODEs in the L∞-norm. We also show that this convergence takes
place at a rate arbitrarily close to ε

2
3 depending on the regularity of the initial data.

1.1. Problem Overview

These two systems straddle multiple research areas, which we have collated into several
loose categories:

(i) Biological Applications. Applications of our mathematical problem in biology pro-
vides crucial context in so much as it provides helpful working examples for the
technical exposition, as well as highlighting the relevant phenomena we should be
on the look out for.

(ii) Limiting PDE Hysteresis Problem. This refers to a system with instantaneous
jumps, the well posedness of which has thus far only been partially addressed in
the literature.

(iii) General Theory of Slow-Fast ODE Systems. There is already substantial literature
on systems of coupled “Fast” and “Slow” ODEs. Such systems also contain param-
eters that encode different time scales, and we will describe some of the general
machinery for analysing these systems for small parameter values.
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(iv) Hysteresis Phenomena in ODEs. Beyond the general machinery, we will highlight
how hysteresis plays a role in several classical ODE settings.

1.1.1. Biological Applications

The first appearance of equations of this type came in [HJ80] and [HJP84] in an attempt
to model spatio-temporal patterns observed in bacterial growth. More specifically, the
emergence of a concentric ring pattern (see Figure 1.2) when several drops of a requisite
amino acid are added to the center of a colony of Salmonella Typhimurium fixed to a petri
dish. The top layer of agar in the dish is stiff which stops the bacteria from migrating.
The authors considered a system of two diffusing and one non-diffusing substance, which
in their notation reads

Bt = αV B,

Ht = DH∆H − βV B,
Gt = DG∆G− γV B.

(1.1.1)

In (1.1.1) B is the concentration of bacteria, H is the concentration of the amino acid
(Histidine) and G is the concentration of an acidic by-product which inhibits bacterial
growth, and V (G,H) is a hysteresis operator describing a bacterium’s internal metabollic
processes.

Because the bacteria are not migrating, one only needs to know the values of G and H
at a given spatial point in order to evaluate V at the point in question. If a spatial point
is fixed then we should think of G and H as two positive, time varying scalar inputs
that parametrize a curve in the upper left quadrant of the plane as in Figure 1.1. To
define V , take two non-intersecting curves Γon and Γoff in the first quadrant of the G-H
plane. If V (G,H) is initially equal to one, then V remains equal to one until the time
parametrized curve reaches the curve Γoff at which point it switches to zero. Switching
from zero to one can only occur upon reaching Γon.

The authors of [HJP84] implemented a functional V with an instantaneous jump, and
though their numerics agreed well with experiments, the existence and uniqueness of
solutions to (1.1.1) was not addressed.

Moreover, the authors noted that it may have been more natural to treat the V as
a solution to an ordinary differential equation with a small parameter ε encoding the
problem’s two time scales, i.e., the difference between diffusion rates (slow) and the
bacteria’s reaction to the changing environment (fast). The ordinary differential equation
would take the form

εvt = f(u, v), (1.1.2)

where u is a time varying input representing a bacterium’s immediate environment, ε is a
small parameter and the curve f(u, v) = 0 is a curve with two disjoint branches of stable
equilibria. Such an f is often called S-shaped. In model (1.1.1), u would be determined
by the value of the diffusing variables at the bacterium’s location.

2



Figure 1.1.: The functional V (G,H) fol-
lows the law of mass-action, i.e., the
switch curves are nullclines of G · H =
aon/off + bon/off for appropriate choices
of aon/off and bon/off .

Figure 1.2.: Typical concentric ring pat-
tern observed over a seven day incuba-
tion period. The central circle grows
first, and the rings further out grow in
succession with the first band from the
center being particularly high density.

A familiar working example with a scalar input u = u(t) is the Van der Pol oscillator
f(u, v) = v− v3

3 − u (see Figure 1.3). Moreover, the two disjoint branches indicates that
the system can exhibit hysteresis (see Section 1.1.4).

The other hysteresis operator we consider is the solution v to (1.1.2), which we call the
Fast-ODE. Of particular concern is how the solution v converges to the operator V as
ε → 0. If (1.1.2) takes the place of V in systems of the form (1.1.1), then we call the
resulting set of equations the corresponding Slow-Fast System.

Such systems appeared in the study of reaction-diffusion systems where all of the species
diffuse but at wildly different rates. In [Fif76] and [MTH80], the authors replaced species
with slow diffusion by equations of the form (1.1.2). Because the solution v to (1.1.5)
does not necessarily have spatial regularity, the authors of [Fif76] and [MTH80] were able
to find solutions with jump discontinuities. Using the implicit function theorem, one can
show that these solutions perturb to functions with steep smooth interfaces when a slowly
diffusing term is introduced to (1.1.2).

A related question which falls beyond the scope of this thesis is to study the limit where
the diffusion rates of species’ with fast diffusion tends to infinity. This leads to the so
called shadow system, the dynamics of which is treated in detail in [Kok+97]. A detailed
description of the bifurcations that occur in these systems can be found in [Nis82].

More recent research on slow-fast systems can be found in [Mar03], [Mar06] and [Köt13].
Their model organism was a fresh water Polyp (or Hydra) which can regenerate into
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Figure 1.3.: A cubic, with input u(t) whose distance from the stable branch increases
as u(t) approaches the critical point u = α. After this, a fast motion occurs and the
trajectory is close to the stable branch H+. Note that the variable t parametrizes u(t)
and v(t), where the curve (u(t), v(t)) is light grey. In particular, t does not correspond
to one of the axes.

two separate Hydras after being cut in two. Moreover, upon having cells anterior to
its central axis (the head) grafted onto cells at its posterior (the foot), a second head
can grow at the site of the transplantation. A diffusing substance present in all models
under consideration was a ligand which would bind to non-diffusing receptors on the
cell’s surface. In [Mar03] and [Mar06] the concentration of bound receptors then informs
the extent to which the cell should differentiate into anterior or posterior parts of the
Hydra’s body.

If the bounded-receptor concentration has a monotone pattern, this represents an adult
hydra without a transplant. Steady state solutions that divide the spatial domain into
distinct regions of high bound-receptor concentration indicates the presence of multiple
heads.

None of the models studied in [Mar03] contained hysteresis, however one the main mech-
anisms that was addressed was whether cells could autocatalyse additional free receptors
on their surface. In a model with 1 diffusing substance, this autocatalysis was a necessary
condition for Turing instabilty. Furthermore, multiple heads could be found numerically
but it was necessary to increase the size of the domain. In a model with two diffusing sub-
stances without autocatalysis of free receptors, numerics indicated that the outcomes of
some cutting experiments could be correctly modelled, and other simulations of random
perturbations of the constant steady state evolved into a monotone pattern.
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Hysteresis entered into the models of [Mar06] as the production rate of the diffusing
ligands was modelled as the solution to an ODE with an S-shaped nonlinearity, i.e., one
that exhibits hysteretic behavior. For a model with one diffusing substance, solutions
with monotone bound-receptor concentration could be found analytically. Moreover, a
model with two diffusing substances contained several numerical phenomena. Solutions
with monotone bound-receptors and solutions with multiple peaks of bound-receptors
could be found. However, in contrast to a model without hysteresis, the only cutting
experiments that could be successfully simulated would only allow one half of the hydra
to regenerate.

The last results we will discuss in this class of models was [Köt13]. The author considered
one diffusing substance (the ligands) and one ODE for ligand production. When this ODE
had a nonlinearity with monotone nullcline that is not S-shaped, all non-homogenous
stationary solutions are unstable, but for S-shaped nullclines it is possible to construct
infinitely many (for any diffusion rate) stable non-homogenous solutions with spatial
discontinuities in the non-diffusing variable.

Bear in mind that the term slow-fast system is widely used when the “input variable” u
is a solution to an ODE, not a PDE (see [Kue15]). This thesis contains new results for
both the ODE (cf. Chapter 7) and PDE (cf. Chapters 3 and 4) case, but the distinction
will always be made clear.

1.1.2. Limiting PDE Hysteresis Problem

First attempts to prove the well-posedness of (1.1.1) can be attributed to Alt [Alt85] and
Visintin [Vis86]. More recent work can be found in [GTS13], [GT12] and [Cur14]. All
these papers deal with the scalar reaction diffusion equation (see [AK08], [Kop06] and
[GT14] for systems of equations)

ut = ∆u+ v, (1.1.3)

where (x, t) ∈ QT := Q×(0, T ), Q is a bounded domain with smooth boundary, u satisfies
Neumann boundary conditions and v is an ensemble of hysteresis operators defined at
every spatial point. By delinieating regions in QT where hysteresis is is in one state or
the other, (1.1.3) becomes a free boundary problem, and the regularity of u near this
free boundary was studied in [AU15]. A summary of all these works can be found in
[CGT16], but in the present discussion we will ask two questions: How is v defined and
is the solution to (1.1.3) in such a setting unique?

Each invidual hysteresis operator responds to a continuous scalar input, i.e., for fixed
x ∈ Q, u(x, ·) is a scalar input into an operator with output v(x, ·). For the purposes of
explanation let us write u(t) and v(t), and let us denote the constituent scalar operators
of [Alt85], [Vis86] and [GTS13] by v = HAlt(ξ0, u), v = HVis.(ξ0, u) and v = H(ξ0, u)
respectively. A schematic of these scalar operators is shown in Figure 1.4. Arrows indicate
how the v(t) is permitted to vary for varying values of u(t).
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Figure 1.4.: A comparison of three hysteresis operators as displayed in [CGT16]. In this
simplified diagram the counterpart to the branches of stable equilibria from Figure 1.3
are just straight lines where the hysteresis output is ±1.

All three operators are defined in reference to two threshold values for u which are
denoted α and β. If u(t) > β then v(t) = −1 for all three operators, and if u(t) < α,
then v(t) = 1 for all three operators. Moreover, if u(t) ∈ (α, β), then v(t) is constant in
a smal neighborhood of t. If u(0) ∈ [α, β] then v(0) is not uniquely defined, so we let
ξ0 = v(0).

The key differences occurs when u(t) ∈ {α, β}. Suppose for instance that u(t∗) = β, and
u(t∗) = β is a local maximum.

(i) H(ξ0, u)(t∗) = −1 and H(ξ0, u)(t) = −1 for all t > t∗ provided u(t) > α.

(ii) HVis.(ξ0, u)(t∗) ∈ [−1, 1] and HVis.(ξ0, u)(t) = HVis.(ξ0, u)(t∗) for t > t∗ provided
u(t) ∈ (α, β).

(iii) HAlt(ξ0, u)(t∗) ∈ [−1, 1] andHAlt(ξ0, u)(t) is non-decreasing for t in a neighborhood
of t∗.

Note that HVis.(ξ0, u) and HAlt(ξ0, u) are not uniquely defined.

The operator H(·, ·) is called the non-ideal relay. The precise Definition used in this
thesis is given in Section 1.2.1.

Returning to the PDE setting with u and v taking values in QT and Q ⊂ Rn, the author
of [Vis86] proves that there exists a solution to a suitable weak formulation of (1.1.3)
with v = HVis.(ξ0, u) and n ≥ 1. In [Alt85], the author proves that there exists a solution
to a suitable weak formulation of (1.1.3) with v = HAlt(ξ0, u) and n = 1. We will omit
the technical details and refer the reader to [CGT16] for more information.

The case of v = H(ξ0, u) depends crucially on the initial data for u, which we denote by
ϕ : Q → R. In [GTS13; GT12], the authors proved the existence and uniqueness of a
solution to (1.1.3) for a class of initial data referred to as transverse initial data, which
give rise to transverse solutions. Loosely speaking this means that if u(x, t) ∈ {α, β}
and v(x, t) has a discontinuity at (x, t), i.e., there is no neighborhood of (x, t) where v is
constant, then ∇xu(x, t) 6= 0. These solutions are “strong” in the sense that u has two
weak derivatives in x one in t that belong Lq(QT ) (the space of q integrable functions).
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The key result is that transverse solutions are in fact unique. This is also the case for
systems of diffusing and non-diffusing substances [GT14], and there are partial results
for n ≥ 2 [Cur14]. For the n ≥ 2 case, the point of discontinuity of v could possibly be
an n − 1 dimensional manifold, and in [Cur14] an additional regularity assumption on
this manifold was required. In the current work, we will prove well-posedness for n ≥ 2
requiring only that ∇xu(x, t) 6= 0 where v is discontinuous.

1.1.3. General Theory of Slow-Fast ODE Systems

Though we will only study Fast-ODEs coupled with a PDE, there is an expansive lit-
erature on Fast-ODEs couple with a second ODE, appropriately called the Slow-ODE.
We will discuss three sub topics that most resemble properties of the PDE system. Let
u ∈ Rm and v ∈ Rn satisfy the equations

u̇ = g(u, v), (1.1.4)
εv̇ = f(u, v). (1.1.5)

If we let τ = t
ε and ′ denote differentiation with respect to τ we also have

u′ = εg(u, v), (1.1.6)
v′ = f(u, v). (1.1.7)

For ε > 0, (1.1.4)–(1.1.5) is equivalent to (1.1.6)–(1.1.7). Let u ∈ Rm and v ∈ Rn
with (u, v) := m ∈ Rm+n denoting initial data. Moreover, let ψ[t1,t2](m) be the piece
of the trajectory between t1 and t2 of the initial data m ∈ Rm+n under the flow of
(1.1.6)–(1.1.7).

Fenichel Theorems

For ε = 0, (1.1.6)–(1.1.7) is called the fast subsystem. Of particular importance is the
set

Mcrit := {(u, v) ∈ Rn+m | f(u, v) = 0}. (1.1.8)

This is just the set of equilibria of the fast subsystem (1.1.7) with the variable u treated
as a parameter. We call a connected compact subset of M0 ⊂Mcrit normally hyperbolic
if for every (u, v) ∈ M0 the linearization Dvf(u, v) is hyperbolic (no purely imaginary
eigenvalues). Note that by the implicit function theorem Mcrit is locally the graph of
some function, e.g., u 7→ H−(u) and the v coordinate is the normal direction to this
graph.

Note that the term normally hyperbolic has a more specific meaning that compares the
expansion/contraction of (1.1.4)–(1.1.5) in both u and v directions [Fen71], however, for
ε sufficiently small slow-fast systems always fulfil these criteria.
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Given anyM0 ⊂ Rn+m, we say thatM0 is locally invariant if there exists a neighborhood
O of M0 such that for all m ∈ M0, ψ[0,t](m) ⊂ O implies that ψ[0,t](m) ⊂ M0, and
ψ[−t,0](m) ⊂ O implies that ψ[−t,0](m) ⊂ M0. In other words a trajectory cannot leave
M0 without also leaving O.

The Fenichel Theorems relate M0 to a nearby invariant manifold Mε of (1.1.6)–(1.1.7)
when ε > 0 is sufficiently small. The Theorems are valid for Rn with n ≥ 2. An overview
of these results can be found in [Jon95].
Theorem 1.1.1 ([Jon95, Thm. 1],[Kue15, Thm. 3.1.4]). Suppose that M0 is compact,
Cr, and normally hyperbolic. Then there is an ε0 such that for all 0 < ε < ε0, there is a
manifold Mε that is:

(i) Diffeomorphic to M0.

(ii) Is Cr for any r <∞, including in ε.

(iii) Hausdorff distance O(ε) from M0.

(iv) Locally invariant.

LetW s(M0) andW u(M0) be the union of the stable (resp. unstable) manifolds of the set
equilibriaM0 of (1.1.7). Suppose that the negative eigenvalues of Dvf(u, v) are bounded
above by αs < 0, uniformly for every (u, v) ∈M0. BecauseM0 is connected and normally
hyperbolic, it follows that the number of negative eigenvalues, denoted ns, is independent
of (u, v) ∈M0.
Theorem 1.1.2 ([Jon95, Thm. 3]). Under the assumptions of Theorem 1.1.1, there is
an ε0 such that if 0 < ε < ε0, there exists manifolds W s(Mε) and W u(Mε) that are
diffeomorphic to and lie within O(ε) of W s(M0) and W u(M0) respectively. They are
both locally invariant and Cr, including Cr in the paramater ε.
Theorem 1.1.3 ([Jon95, Thm. 5]). For every m ∈W s(Mε), there is a constant Cs

dist(ψ[0,t](m),Mε) ≤ Cs exp(αst),

as long as ψ[0,t](m) ⊂ O. A similar statement for t < 0 holds for W u(M0).

Due to the implicit function theorem (cf. Appendix C), we can locally consider M0 as
being a graph over some subset Ou ⊂ Rm. For sufficiently small ε0, so too is Mε. Let
H0 and Hε be two functions such that

M0 = {(u,H0(u)) | u ∈ Ou},

Mε = {(u,Hε(u)) | u ∈ Ou}.
Theorem 1.1.4 ([Jon95, Thm. 6]). For every (u,Hε(u)) ∈Mε, there is an ns-dimensional
manifold W s((u,Hε(u))) ⊂ W s(Mε), that is Hausdorff distance O(ε) from W s(H0(u)).
This manifold is locally invariant in the sense that

ψ[0,t]

(
W s((u,Hε(u)))

)
⊂W s(ψ[0,t]

(
(u,Hε(u)))

)
,

provided that ψ[0,t∗]((u,H
ε(u))) ⊂ O for every t∗ ∈ [0, t].
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Asymptotic Expansions near Fold Points

This is the first of two methods for studying (1.1.6)–(1.1.7) at points whereMcrit is not
normally hyperbolic. These techniques are not well studied in arbitrarily high dimensions
[Kue15], so we will only discuss the planar case u ∈ R, v ∈ R. Let (0, 0) ∈ Mcrit satisfy
f ′(0, 0) = 0, f ′(0, 0) > 0 and g′(0, 0) < 0. Such a critical point is called a generic fold.
As an example consider Figure 1.11 where A±quad are neighborhoods of generic folds.

For generic folds it is always possible to change coordinates such that in a neighborhood
of (0, 0), f(u, v) = v2 − u and

g = −1 + cv +O(v2, u), (1.1.9)

so let’s assume from the outset that this is the case (see [Kue15, Chap.4] and the ref-
erences therein). Note that for any initial condition where the Fast-ODE is normally
hyperbolic (u > 0), (1.1.9) implies that such an initial condition will drift below the fold
point, inevitably resulting in a bifurcation. It is also clear that any trajectory of (1.1.6)–
(1.1.7) can be written in the form u = u(v). [MR80] attempts to find an asymptotic
expansion for u in terms of ε raised to some power. The exact form of the expansion
depends crucially on the proximity to the fold, also expressed as ε raised to some power.

The authors refer to the region −εµ ≤ v ≤ −C with µ ∈ (0, 1
3) as the initial part of

the trajectory in a neighborhood of the fold (see Figure 1.5). For such values of u, the
authors prove that u(v) has an asymptotic expansion

u(v) = v2 +
J∑
j=1

vjε
j +O(εJ+1−µ(3J+1)). (1.1.10)

Since the hysteresis branch is just the 0-th order approximation, we are interested in the
case

u(v) = v2 +O(ε1−µ). (1.1.11)

More specifically we want to know how well v approximates the hysteresis branch, so if
u > ε2µ then the displacement of v from the hysteresis branch is ε1−2µ.

In the neighborhood (0, 0) where |v| ≤ ε
1
3 the expansion (1.1.10) is no longer valid, and

an asymptotic expansion is developed in powers ε−
1
3 . In fact such an expansion needs to

be split into smaller expansions depending on if v is positive or negative, but the more
pertinent question is what to take as the 0-th order approximation.

Under the rescaling
u = ε

2
3U,

v = ε
1
3V,

t = ε
2
3 τ.

(1.1.12)

One obtains an equation for V of the form

Vτ = −U + V 2. (1.1.13)
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Figure 1.5.: The generic fold with a trajectory that transitions from slow to fast motion
(grey line). The piece of the trajectory in the shaded region is the initial part of the
trajectory (in the nomenclature of [MR80]).

The equation for Uτ depends on the higher order terms of (1.1.9). One can divide
Uτ by Vτ , and substituting into the author’s proposed asymptotic expansion [MR80,
Chap. 2,(10.5)] which we omit here, the equation for the 0th-order approximation reads

dU

dV
=

1

V 2 − U
. (1.1.14)

Note that this equation is defined with V ∈ R, i.e., when ε = 0 the domain of the
0th-order approximation becomes unbounded. (1.1.14) is a Riccati equation that can be
solved in terms of Bessel functions, and there is a unique solution that is asymptotic to
the parabola V 2 = U for negative values of V .

Blow-up Techniques

An alternative method for studying (1.1.6)–(1.1.7), first used by [DRR96] and later by
[KS01a], was based on making a coordinate change in a neighborhood of the fold point
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that is singular at (0, 0). In a sense, we already know the behavior of the system at (0, 0);
it is an equilibrium. As such, we are not compelled to make a coordinate change that is
defined there. A simple example would be changing from Cartesian to polar coordinates,
though the variant that is often applied actually blows up (0, 0) to a circle S1.

Figure 1.6.: Unfolding a cusp singularity as shown in [Dum93][Fig.2]. A series of polar
coordinate changes creates new equilibria which eventually desingularize the vector field.

Assume that (0, 0) is mapped under the blow-up map to a set A. The central idea of
the blow-up technique is that after applying the blow-up map to the non-hyperbolic
fixed point (0, 0), one can always extend the vector field to A but might have introduced
additional equilibria on A itself. One can hope that these equilibria will be hyperbolic.

Fortunately, Dumotier [Dum77] proved that if one keeps applying blow-up maps to any
newly created non-hyperbolic equilibria, a large class of planar vector fields eventually
become desinguralized vector field on R2\A, where A is homeomorphic to A. See Figure
1.6 for a schematic of this technique applied to a cusp singularity. In general, all critical
poins on ∂A are either

(i) Isolated, and if the critical point is not hyperbolic, the vector field is not identically
zero on its center manifold.

(ii) Smooth closed curves along which the vector field is normally hyperbolic.

In [DRR96], the authors designularized the generic fold as it appears in the Van der Pol
equation

u̇ = ε(v − a), (1.1.15)

v̇ = u− v2

2
− v3

3
, (1.1.16)

ε̇ = 0. (1.1.17)

In the desingularized coordinates, they proved the already well known [Eck83] existence of
Canard orbits, i.e., orbits that follow the unstable branch ofMcrit for an appropriately
defined “long" time. Note that in (1.1.15)–(1.1.17) the singularity (u, v, ε) = (0, 0, 0)
blows up to S2, but there is no general theorem guaranteeing this is possible in R3.
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Because these orbits are close to the critical manifold Mcrit of (1.1.16), with the ex-
ception of jumps between attracting branches, the approach of [KS01b] was to use the
desingularized vector field only near the fold point, and to use Fenichel Theorems to
track the orbits near the normally hyperbolic parts of Mcrit. This required linking the
manifolds Mε to orbits on the local center manifold of (0, 0, 0), which was the work of
[KS01a].

Tracking orbits across S2 meant using three different coordinate charts. In the chart
normal to the ε-axis, the desingularized vector field takes the form of (1.1.14), and the
analysis mimics that of [MR80]. A schematic of the blown-up phase space of (1.1.15)–
(1.1.17), including Mε is shown in Figure 1.7, with an overline indicating one is in the
blow-up coordinates.

Figure 1.7.: The blown-up phase space of (1.1.15)–(1.1.17). On the set {ε = 0} there
are four hyperbolic equilibrium points on the circumfrence of the circle. One of these
connects to the blown up representation of Mε (shaded grey), which by an abuse of
notation we have also used to label the trajectories that traverse the sphere and exit
via the second equilibrium point. This diagram is a simplified reproduction of [KS01a,
Fig. 2.7] with our notation.

1.1.4. Hysteresis Phenomena in ODEs

ODE Approximation of Hysteresis Operators

The question of whether hysteresis operators could be approximated using Fast-ODEs
was first attributed to Nuteschil (in the Russian literature), however the results are
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Figure 1.8.: A comparison of three hysteresis operators as displayed in [CGT16]. The
counterpart to the branches of stable equilibria from Figure 1.3 are just straight lines
where the hysteresis output is ±1

formulated in English in [KNP12]. These results in fact concern the Play operator, a
schematic of which is shown in Figure 1.8.

The value of HPlay(ξ0, u) remains constant unless it reaches one of the two lines Γ+ or
Γ−. To formulate Nuteschil’s result, let ψ be the function such that

ψ(v) = v + 1, if v ≤ −1,

ψ(v) = 0, if v ∈ (−1, 1),

ψ(v) = v − 1, if v ≥ 1,

(1.1.18)

and let v be the solution to
εvt = ψ(u− v). (1.1.19)

Nuteschil’s Theorem as stated in [KNP12] is that

lim
ε→0
‖HPlay(ξ0, u)− v‖L∞(0,T ) = 0. (1.1.20)

If u is the solution to an additional ODE coupled to v, then an appropriate reformulation
of (1.1.20) was recently obtained in [KM17].

Similar results for the non-ideal relay can be found [LSK93] and [Kre05]. Here the authors
study a Fast-ODE with a forcing of the form

εv̇ = h(v)− u. (1.1.21)
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where h is a negative cubic function such that in the language of Section 1.1.3, Mcrit

has two branches of stable equilibria, H+ and H−, and two folds at u = α, u = β (cf.
Figure 1.3). Moreover, u is a given regulated function, i.e., for every t ∈ (0, T ), both
one-sideded limits u(s) → u(t)+ and u(s) → u(t)− exist. The result we state here also
assumes that u is left continuous.
Theorem 1.1.5 ([Kre05]). Let [t1, t2] ⊂ (0, T ). If u(t+1 ) > β and u(t) ≥ α for every
t ∈ [t1, t2], then for every t∗ ∈ (t1, t2] there exists an ε0 > 0 such that

vε(t) > H−(α), for all t ∈ [t∗, t2], ε ∈ (0, ε0].

Moroever, one has
lim
ε→0+

vε(t) = H−(u(t)).

Note that under this hypothesis the non-ideal relay never switches back to H+ because
u(t) ≥ α for t ∈ [t1, t2]. This Theorem does not make conclusions about the rate of
convergence with respect to ε.

Implicit Hysteresis Phenomena in Slow-Fast ODEs

We have already observed in Section 1.1.1, that in the applications we would like to study
the stable equilibria of the fast subsystem form the branches of the non-ideal relay H(·, ·)
we defined in Section 1.1.2. The slow subsystem is the differential algebraic equation
obtained by taking ε = 0 in (1.1.4)–(1.1.5). One would expect the slow subsystem to
approximate the output of the operator H(ξ0, u).

Several classical slow-fast ODE systems have solutions where several mutually disjoint
components of the trajectory spend an O(1) amount of time near one of the two branches
of H(ξ0, u). In certain cases this corresponds to H(ξ0, u) switching from one branch to
the other, and then switching back.

The Van der Pol oscillator is one such example, the full form of which is

u̇ = v, (1.1.22)

εv̇ = v − v3

3
− u. (1.1.23)

Periodic orbits of (1.1.22)–(1.1.23) that switch between fast and slow motion are called
as relaxation oscillations. In [MR80], the authors use the stable branches of 1.1.23 as the
0th-order approximation in their asymptotic expansions of the solution segments away
from the fold points. When 1.1.23 has a large amplitude sinusodal forcing term, there
are solutions whose period is a multiple of the driving frequency [GRA80], [GNV84].
These authors also use the stable branches as the 0th-order approximation in asymptotic
expansions of solution segments away from the fold point.

In Section 1.1.3, we alluded to [KS01b] which combined the blow up technique with
the Fenichel theorems to construct the Canard cycle. The same technique of linking
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slow manifolds with their extension’s near the fold points can be used to find relaxation
oscillations. It was imperative to know the rates at which orbits are attracted to the
slow manifolds (and their extensions near the fold point) to allow one to construct a
contraction mapping on a section perpendicular to one the stable branches.

The FitzHugh-Nagumo equations model electrical pulses propogating along a nerve fibre
[Jon84]. They are a set of reaction-diffusion equations with a diffusing fast variable,

uτ = ε(v − δu), (1.1.24)
vτ = vxx + h(v)− u, (1.1.25)

where h is a cubic function, x ∈ R and 0 < ε, δ � 1. Even though the general model falls
outside the scope of the thesis (for our purposes the slow variable diffuses), a travelling
wave solution turns (1.1.24)–(1.1.25) into a 3 dimensional ODE. If we define the variable
y = x − ct for some c > 0, then a travelling wave solution is a solution of the form
u(x, t) = u(y) and v(x, t) = v(y). The goal is to find solutions of the system

uy = −ε
c

(v − δu), (1.1.26)

vy = w, (1.1.27)
wy = −cw − h(v) + u. (1.1.28)

Solutions that satisfy (u, v, w) → (0, 0, 0) as y → ±∞ are called travelling pulses, in
other words, they are homoclinic solutions of (1.1.26)–(1.1.28).

Homoclinic solutions to (1.1.26)–(1.1.28) have been found using a number of different
methods. In [Has76] the author defines a plane in R3 which cuts through the middle of
the set

{(h(v) + cw, v, w) ∈ R3 | (v, w) ∈ R2},
If c is small this is approximately slow subsystem of (1.1.23)–(1.1.23). From here one can
show that the set of parameters (ε, c) where there is an orbit that cuts the plane twice,
has two connected components. One can prove the simultaneous existence of pulses of
different speeds.

[Car77] constructs isolating blocks around the stable branches of 1.1.27 and 1.1.28, and
uses results attributed to [CE71] to infer the existence of k-pulses, i.e., pulses that make
several loops before converging to (0, 0, 0).

[Jon84] proves stability of pulse solutions in the context of perturbations to (1.1.24)–
(1.1.24). The key step is augmenting (1.1.26)–(1.1.28) with the equation

cy = 0,

and showing that the center unstable and center stable manifolds of (0, 0, 0, c∗) intersect
(where c∗ is the wave speed of the pulse solution). This necessitates tracking the ori-
entation of these manifolds globally, even as the trajectory changes direction during the
transitions between fast and slow motion. The technical tool used here was the exchange
lemma, which first appeared in the PhD thesis of Robert Langer, but was not published
until [JKL91] (private communication with CKRT Jones).
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1.2. Technical Setting

We now introduce our technical setting. This will include fixing notation for the remain-
der of the thesis beginning with the declaration α = 0.
Condition 1.2.1. Set the left most threshold α = 0.

Condition 1.2.1 is purely for notational convenience and preventing clutter in diagrams.
Conditions of mathematical importance will be declared shortly.

1.2.1. Hysteresis Operators

Definition 1.2.2 ([CGT16]). Let H− : [0,∞)→ R, H+ : (−∞, β]→ R and ξ0 ∈ {+,−}.
Let u, v : [0, T ] → R, where u is a continuous function. We say that v = H(ξ0, u) if the
following hold:

(i) (u(t), v(t)) ∈ {(u,H−(u)) | u > 0} ∪ {(u,H+(u)) | u < β} for every t ∈ [0, T ].

(ii) If u(0) ∈ (α, β), then v(0) = Hξ0(u(0)).

(iii) If u(t0) ∈ (α, β), then v(t) is continuous in a neighorhood of t0.

If H(ξ0, u)(t) = H±(u(t)), then we call ξ(t) = ± the configuration of H(ξ0, u) at the
moment t, and we call ξ0 the initial configuration.

Note that we defineH−(0) andH+(β) for later convenience, even thoughH(ξ0, u) cannot
attain these values.
Condition 1.2.3. If u(0) < 0 then ξ0 = −, if u(0) > β then ξ0 = +.

Let Q ⊂ Rn with n ≥ 1 be a bounded domain with smooth boundary, and for T > 0 let

QT = Q× (0, T ),

be the corresponding cylinder of height T . We will denote points in QT with the letters
(x, t) ∈ QT .
Definition 1.2.4. Let u : QT → R and ξ0 : Q→ {+,−}. Then H(ξ0, u)(x, t) is defined
as per Definition 1.2.2 by treating x as a parameter. In this case, we call H(ξ0, u) spatially
distributed hysteresis and ξ : QT → {+,−} the configuration function.

1.2.2. Reaction-Diffusion Equations with Hysteresis

The functions u and v without superscript satisfy the system
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Figure 1.9.: A schematic of the non-ideal re-
lay with the left most threshold at u = 0.

Figure 1.10.: A schematic of the spatially
distributed hysteresis.



ut = ∆u+ v,

v = H(ξ0, u),

∂u

∂ν

∣∣∣
∂Q

= 0, u|t=0 = ϕ(x),

v|t=0 = Hξ0(ϕ).

(1.2.1)
(1.2.2)

(1.2.3)

(1.2.4)

We will also consider functions uε and vε, defined on the same spatial domain and with
the same the initial data as u and v. We will only study the functions uε and vε for
n = 1, and they will satisfy the system

uεt = uεxx + vε,

εvεt = f(uε, vε),

∂uε

∂ν

∣∣∣
∂Ω

= 0, uε|t=0 = ϕ,

vε|t=0 = Hξ0(ϕ).

(1.2.5)
(1.2.6)

(1.2.7)

(1.2.8)

It is possible to formulate the results of this thesis for the case where the initial data
of the non-diffusing variable vε|t=0 for ε > 0 also depends on ε. However, for technical
clarity we have also assumed that for for every ε > 0, vε|t=0 only takes values on the
hysteresis branches.
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1.2.3. Assumptions on the Fast-ODE

Definition 1.2.5 (Critical Manifold). We call the nullcline of f the critical manifold
and denote it

Mcrit := {(u, v) ∈ R2 | f(u, v) = 0}.

We now list our assumptions on f . Our goal is to encompass general “S-shaped" nullclines
and it may be helpful to remember that the Van der Pol oscillator f(u, v) = v − v3

3 − u
satisfies the following Condition if you ignore the higher order terms near the fold point
(cf. Figure 1.11).
Condition 1.2.6 (Assumptions on the Nonlinearity).

(i) f is a C2 function.

(ii) There is a C1 function g : R→ R such that

Mcrit = {(g(v), v) | v ∈ R}.

(iii) There exists a real number 0 < β and two functions H− : [0,∞) → R and H+ :
(−∞, β]→ R such that

{(u, v) ∈Mcrit | g′(v) < 0} = {(u,H−(u)) | u > 0} ∪ {(u,H+(u)) | u < β},
{(u, v) ∈Mcrit | g′(v) = 0} = {(0, 0), (β,H+(β))},
{(u, v) ∈Mcrit | g′(v) > 0} = {(g(v), v) | v ∈ (0, H+(β))}.

(1.2.9)

(iv) For every u ∈ (0,∞)

∂f

∂v
(u,H−(u)) < 0,

∂f

∂u
(u,H−(u)) < 0.

Similarly, for every u ∈ (−∞, β)

∂f

∂v
(u,H+(u)) < 0,

∂f

∂u
(u,H+(u)) < 0.

(v) There exists a neighborhood A−quad (resp. A+
quad) of (0, 0) (resp. (β,H+(β))) such

that

f(u, v) = v2 − u, for all (u, v) ∈Mcrit ∩A−quad,

f(u, v) = β − u− (v −H−(β)2, for all (u, v) ∈Mcrit ∩A+
quad.

(1.2.10)

As a simple consequence of item (iii) in Condition 1.2.6, there is a u∞ > 0 such that
H−(u∞) < 0, H+(−u∞) > 0 and ‖ϕ‖L∞(Q) ≤ u∞. We fix such a u∞ > 0 and then fix
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Figure 1.11.: The nullcline of f with neighborhoods indicating where the function is lo-
cally quadratic.

an additional constant c∞ > 0 such that the following inequalities are satisfied:

H−(u∞) + c∞u∞ < 0,

H+(−u∞)− c∞u∞ > 0,

H−(u∞) < 0, H+(−u∞) > 0 and ‖ϕ‖L∞(Q) ≤ u∞,
(1.2.11)

where the redundant third inequality in (1.2.11) is included to simplify referencing
(1.2.11) in future Chapters.

1.2.4. Function Spaces and Embedding Theorems

We now introduce some standard function spaces:

(i) Let Lq(·) be the standard Lebesgue space, q > 1.

(ii) Let Cγ(·) denote the standard Hölder space, where γ ∈ (0, 1).

(iii) For an integer l, let W l
q(·) denote the Sobolev space of functions with weak deriva-

tives up to and including order l, all of which are in Lq.
Definition 1.2.7 ([LSU68, Chap. 2,Sec. 3.3]). For l > 0, noninteger (with integer part
[l]) we denote by W l

q(Q) the space consisting of all functions u ∈W l
q(Q)) with the norm

‖u‖W l
q(Q) = ‖u‖

W
[l]
q (Q)

+
∑
j=[l]

(ˆ
Q
dx

ˆ
Q

|Dj
xu(x)−Dj

yu(y)|q

|x− y|n+q(l−[l])
dy

) 1
q

, (1.2.12)

where Dj
x and Dj

y denotes the weak derivative with respect to the multi-index j.
Definition 1.2.8. Denote by W 0,1

∞ (QT ) the space of functions such that u ∈ L∞(QT )
and the weak derivative with respect to the variable t exists with ut ∈ L∞(QT ).
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Definition 1.2.9. Denote by W 2,1
q the anisotropic Sobolev space, i.e., the space of func-

tions with weak derivatives Dr
tD

s
xu ∈ Lq(QT ) where 2r + s ≤ 2. The space W 2,1

q (QT ) is
endowed with the norm

‖u‖
W 2,1
q (QT )

=
∑

2r+s≤2

‖Dr
tD

s
xu‖Lq(QT ).

Lemma 1.2.10 ([LSU68, Chap. 2,Lemma 3.3]). For q > n + 2, 0 ≤ γ < 1 − n+2
q and

T0 > 0, the inclusion W 2,1
q (QT0) ⊂ Cγ(QT0) is a compact embedding, and there is a

constant C > 0 such that

‖u‖Cγ(QT0 ) +
n∑
i=1

‖uxi‖Cγ(QT0 ) < C
(
‖u‖

W 2,1
q (QT0 )

)
, (1.2.13)

where C = C(T0, q, n, γ), but C is independent u.
Lemma 1.2.11 ([LSU68, chap. 2, Lemma 3.4]). If u ∈ W 2,1

q (QT ) with q > 2, then for

every t ∈ [0, T ] the trace u(·, t) is well defined and u(·, t) ∈W
2− 2

q
q (Q).

Lemma 1.2.12 ([Tri78, Section 4.6.1]). If q > n + 2, 1 < γ ≤ 1 − n+2
q , then there is a

constant C > 0 such for every ϕ ∈W
2− 2

q
q (Q)

n∑
i=1

‖ϕxi‖Cγ(Q) + ‖ϕ‖Cγ(Q) ≤ C‖ϕ‖
W

2− 2
q

q (Q)
, (1.2.14)

where C = C(n, q, γ), but C is independent of u.

Definition 1.2.13. The functions fromW
2− 2

q
q (Q) and q > 2 with homogeneous Neumann

boundary conditions form a well defined subspace [Tri78, section 4.3.3], and we will denote
it by W.

We now fix some constants for the remainder of the thesis. There will be more constants
to fix as we delve into the techincalities of the coming Chapters, but to begin with we
need a functional setting.
Condition 1.2.14. If we specify n and ϕ, then we shall assume we have also specified
a q, u∞, c∞ and γ such that:

• q > n+ 2.

• 0 < γ < 1− n+2
q .

• u∞ and c∞ satisfy inequalities (1.2.11).

• T0 > 0, where we always assume that T ∈ (0, T0).

• ϕ ∈ W (cf. Definition 1.2.13).

In particular, we shall assume that such a choice of q, u∞, c∞ and γ exists.

We will also need uniform bounds on the nonlinearities of (1.2.2) and (1.2.6). In order
to define these we specify two further constants.
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Condition 1.2.15. Given u∞ and c∞ satisfying inequalities (1.2.11), choose v∞ such
that v∞ < max|u|≤u∞{|H+(u)| + |H−(u)| + 2c∞} where we mean H−(u) = 0 for u < 0
and H+(u) = 0 for u > β. Moreover, let

f∞ = max
|u|+|v|≤v∞+u∞

|f(u, v)|.

Finally, defnine the constant

f0,q :=

(ˆ T0

0

ˆ
Q

(f∞ + v∞ + 2c∞u∞)q
) 1
q

. (1.2.15)

1.2.5. Definition of Solution

Definition 1.2.16. We say u is a solution of (1.2.1)–(1.2.4) with ϕ ∈ W if the following
hold:

(i) u ∈W 2,1
q (QT ) and H(u, ξ0) ∈ Lq(QT ).

(ii) (1.2.1), (1.2.2) and (1.2.4) are satisfied almost everywhere.

(iii) (1.2.3) is satisfied in terms of traces.
Definition 1.2.17. We say (uε, vε) is a solution of (1.2.5)–(1.2.8) with ϕ ∈ W if the
following hold:

(i) uε ∈W 2,1
q (QT ) and vε ∈W 0,1

∞ (QT ).

(ii) (1.2.5), (1.2.6) and (1.2.8) are satisfied almost everywhere.

(iii) (1.2.7) is satisfied in terms of traces.

We will now formulate a well-posedness Theorem for (1.2.5)–(1.2.8) but relegate an out-
line of its proof to Appendix D. The reason being is that the proof borrows on the
functional setting used in the proof of the well-posedness of (1.2.1)–(1.2.4) as well as
some additional standard results on parabolic equations that we introduce in Chapter
2. Deriving the necessary apriori estimates for the well-posedness (1.2.1)–(1.2.4) is the
novel part of its proof, while the corresponding estimates for (1.2.5)–(1.2.8) simply boil
down to the nonlinearity f in (1.2.6) being locally Lipshitz continuous.
Theorem 1.2.18. The system (1.2.5)–(1.2.8) has a unique solution (uε, vε) in the sense
of Definition 1.2.17, and for every ε > 0 both uε and vε are uniformly bounded by the
constants

‖uε‖L∞(QT ) ≤ u∞, ‖vε‖L∞(QT ) ≤ v∞.

1.2.6. Spatial Transversality

Definition 1.2.19. Let Q± := {x ∈ Q | ξ0(x) = ±}. We say that ϕ is transverse with
respect to ξ0 if the following hold:
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(i) Q− and Q+ are measurable.

(ii) If ϕ(x) = 0 and ∇ϕ(x) = 0, then there exists a neighborhood A of x such that
ξ0(x) = + for a.e. x ∈ A.

(iii) If ϕ(x) = β and ∇ϕ(x) = 0, then there exists a neighborhood A of x such that
ξ0(x) = − for a.e. x ∈ A.

We say a function u : QT → R is transverse with respect to H(ξ0, u) if for every t ∈ [0, T ],
u(·, t) : Q → R is transverse with respect to ξ(·, t) : Q → {−,+}, i.e., transverse with
respect to the configuration of H(ξ0, u)(·, t).

Figure 1.12.: An example of simply transverse initial data for case b(t) 6= x̃(t).

In [GTS13] and [GT12], the authors also address the possibility of u(·, T ) failing to be
transverse. More specifically, they find the maximal time Tmax > 0 such that (1.2.1)–
(1.2.4) has a unique solution on the time interval [0, Tmax] where u(·, t) is transverse for
every t ∈ [0, Tmax) and u(·, Tmax) is not transverse. In the current exposition we note
that finding such a Tmax is possible using similar arguments, however we choose to focus
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Figure 1.13.: An example of transverse initial data where n = 1 and ϕx(x′) = 0. Note
that ξ0 must be constant in in neighborhood of x′.

on the essential issues of existence and uniqueness of solutions for n ≥ 2.

We will in fact only prove that (1.2.6)–(1.2.8) converges to (1.2.1)–(1.2.4) for a simpli-
fied transversality assumption, and only in the case n = 1. Nonetheless, this model
case still addresses the novel technical difficulties that need to be overcome to prove a
corresponding result using Definition 1.2.19
Definition 1.2.20. We say ϕ is simply transverse with respect to ξ0 if n = 1, and there
are constants Cdx > 0 and Cspace > 0 such that the following holds:

(i) ξ0 has only one discontinuity point denoted b(0).

(ii) If x̃(0) ∈ BCspace(b(0)) (the closed ball of radius Cspace) and ϕ(x̃(0)) = 0, then for
all x ∈ BCspace(b(0)) one has ϕx(x) > Cdx. In particular, such an x̃(0) is unique.

(iii) ϕ(x) < −CdxCspace for x ≤ b(0)− Cspace.

(iv) ϕ(x) > CdxCspace for x > b(0) + Cspace.

We say a function u : QT → R is simply transverse if there are constants Cspace and

23



Cdx independent of t ∈ [0, T ] such that u(·, t) : Q → R is simply transverse with re-
spect to ξ(·, t) : Q → {−,+}, i.e., simply transverse with respect to the configuration of
H(ξ0, u)(·, t). In this case let x̃(t) and b(t) denote the equivalent quantities to b(0) and
x̃(0) respectively.

In Definition 1.2.20 we defined simple transversality as a spatially local phenomena in
the sense that ξ(x, t) always has one discontinuity point where H(ξ0, u) is transitioning
at the threshold u(x, t) = 0. To describe how u(x, t) could behave more generally let
{Ti}∞i=1, {Cdx;i}∞i=1 and {Cspace;i}∞i=1 be sequences such that u(x, t) is simply transverse
on the interval [Ti, Ti+1] with the associated constants Cdx;i and Cspace;i.

(i) Suppose that Ti → Tmax, and either Cdx;i → 0 or Cspace;i → 0. Then there could
exist an x0 ∈ Q such that x0 6= b(Tmax) and u(x0, Tmax) = ux(x0, Tmax) = 0, i.e.,
the function has become non-transverse away from the discontinuity point b(Tmax).
Observe that (iii) and (iv) in Definition 1.2.20 no longer exclude this outcome.

(ii) Suppose that Ti → Tmax and b(Ti) → 1. Then due to (1.2.3), one necessarily has
Cdx;i → 0. If u(·, Tmax) doesn’t lose transversaliy like in the previous item, then
u(x, Tmax) is transverse and ξ(Tmax) has no discontinuity.

(iii) If ξ(t) has more than one discontinuity, denoted b1 and b2, then we could have
limi→∞ b1(Ti) = limi→∞ b2(Ti), i.e., the discontinuities merge together. In this
case the constants Cdx;i for b1 (or b2) approach zero, but u(x, Tmax) could still be
transverse, albeit ξ(Tmax) has less discontinuities (cf. Figure 1.14).

Figure 1.14.: [CGT16, Figure 6.]. Discontinuities merging at the threshold β. As Ti →
Tmax, u(x, Tmax) is still transverse with respect to ξ(x, Tmax) even though transversality
holds in ever shrinking neighborhoods of the two discontinuity points.
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1.3. Statement of Main Results

This thesis contains three Theorems divided into two categories. The first category
contains two Theorems concerning the well-posedness of the hysteresis problem (1.2.1)–
(1.2.4). Their proof is the content of Chapter 3.
Theorem 1.3.1 (Existence). Assume that n ≥ 1 and ϕ ∈ W is transverse with respect
to ξ0. Then there is a Tdx > 0 such that

(i) There is at least one transverse solution u ∈W 2,1
q (QTdx) to (1.2.1)–(1.2.4).

(ii) Any solution u ∈W 2,1
q (QTdx) must be transverse.

Theorem 1.3.2 (Uniqueness). Let n ≥ 1. Given any Tmax > 0, if u1, u2 ∈W 2,1
q (QTmax)

are two transverse solutions to (1.2.1)–(1.2.4), then u1 = u2 almost everywhere.

The second category concerns the behavior of (1.2.5)–(1.2.8).
Definition 1.3.3. Let q > 3 and 2

3( 2
q−1) < λ0 <

2
3 . Define

2

3−
:=

2

3
− λ0.

Theorem 1.3.4. Let n = 1, ϕ ∈ W and assume that there are three positive constants
T,Cspace, Cdx > 0 such that the solution u to (1.2.1)–(1.2.4) is simply transverse on QT
with said constants.

Then there exists four constants Ci, ε0 > 0 (i = 1, 2, 3) such that for every ε ∈ (0, ε0) the
following holds:

(i) The solution uε to (1.2.6) is simply transverse on QT .

(ii)

‖uε − u‖L∞(QT ) ≤
C1

√
T

Cdx(1− γ)
exp

((
C2

Cdx

)2

T

)
ε

2
3− . (1.3.1)

(iii) For p ∈ {1, q} and t ∈ [0, T ]

‖vε(·, t)−H(uε, ξ0)(·, t)‖Lp(Q) ≤
C3

Cdx(1− γ)
ε

2
3−·

1
p (1.3.2)

The constants Ci and ε0 do not depend on ε or p, however, ε0 → 0 as λ0 → 2
3( 2
q−1).

Definition 1.3.5. We define the constant ε0 explicitly

ε0 = min
1≤i≤6

εi,

where the quantities εi are, in increasing order, defined in:

1) Lemma 4.2.1.

2) Definition 5.1.9.
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3) Definition 5.2.6.

4) Definition 5.3.2.

5) Definition 7.3.5.

6) The end of Section 7.3, in the proof of Lemma 6.1.5.

The most important feature to highlight is that the exponent of ε
2
3− is strictly less than

2
3 . In other words we do not prove that

‖(uε, vε)− (u, v)‖L∞(QT ) = O(ε
2
3 ),

(recall that the solution to (1.2.1)–(1.2.4) is always written without superscript). The
reason this is significant is related to the question of whether there exists a ϕ ∈ W and
a T > 0 such that (uε, vε) converges to (u, v) on QT with a rate faster than O(ε

2
3−). We

cannot construct such an example, however we conjecture that O(ε
2
3 ) should be the best

possible rate, i.e., the convergence rate of the PDE should not be faster that of the ODE
(1.1.6)–(1.1.7) in the planar case (see (1.1.10) and the accompanying discussion).

What limits our methods is the time regularity of uε ∈ Cγ(QT ), where Hölder continuity
in place of Lipshitz continuity severly complicates matters. This will become clear in
Chapter 7. Observe that γ is in turn informed by the regularity of ϕ ∈ W (cf. Lemma
1.2.12 and Condition 1.2.14). If ϕ is smooth, then we can take the q in Definition 1.2.13
arbitrarily large and thus we can make our convergence rate in Definition 1.3.3 as close
to ε

2
3 as possible.

1.4. Structure of the Thesis

In Chapter 2 we present more auxiliary results that will be needed to prove Theorems
1.3.1 and 1.3.2. The proofs themselves appear in Chapter 3, with Section 3.2 devoted to
establishing the necessary apriori estimates.

The remaining Chapters are devoted to proving Theorem 1.3.4, however the order is
nonlinear. In Chapter 4 we prove items (i) and (ii), however, assuming that (iii) already
holds.

Chapters 5—7 are devoted to proving item (iii) of Theorem 1.3.4. In Chapter 5 we
describe the phase space of 1.2.6. This description is indispensible to understanding the
proofs contained in 6 and 7.

Chapter 6 proves item (iii) of Theorem 1.3.4, modulo three technical Lemmas pertaining
to the behavior of (1.2.6) with u treated as a non-autonomous forcing. These Lemmas
are ODE results.

Chapter 7 is where the necessary study of the Fast-ODE take place, and the three afore-
mentions Lemmas are proved. Those who are particularly interested in the Forced Fast-
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ODE can read Chapter 5 to familliarize oneself with the terminology, and then read
Chapter 7 independent of the rest of the thesis.

The linear order of the exposition would be Chapters; 2, 3, 5, 7, 6 then 4.

At the end of the thesis we make some concluding remarks and discuss directions for
future research.
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2. Auxilary Results

2.1. Strong Solutions in W 2,1
q (QT )

Theorem 2.1.1 ([LSU68, Chap. 4, Sec. 9]). Let T0 > 0, F ∈ Lq(QT0) and ϕ ∈ W.
Consider the equation 

ut = ∆u+ F (x, t),

u|t=0 = ϕ,

∂u

∂ν

∣∣∣
∂Q

= 0.

(2.1.1)
(2.1.2)

(2.1.3)

Then (2.1.1)–(2.1.3) has a unique solution u ∈W 2,1
q (QT0) that satisfies

‖u‖
W 2,1
q (QT0 )

≤ C
(
‖F‖Lq(QT0 ) + ‖ϕ‖W

)
, (2.1.4)

where C = C(T0, n) but C does not depend on u, ϕ or F . By combining with (1.2.13)
one obtains

‖u‖Cγ(QT0 ) +
n∑
i=1

‖uxi‖Cγ(QT0 ) ≤ Cstrong

(
‖F‖Lq(QT0 ) + ‖ϕ‖W

)
, (2.1.5)

where Cstrong = Cstrong(T0, n, q, γ, ) but Cstrong does not depend on u, ϕ or F .

Note that for any T ≤ T0 and F ∈ Lq(QT ), one can extend F by zero, to an F ∈ Lq(QT0)
and use the same constant Cstrong as (2.1.5).

2.2. Mild Solutions to Semilinear Parabolic Problems

Let f0 : R×Q× [0,∞)→ R and consider the semilinear problem.
ut = ∆u+ f0(u, x, t),

u|t=0 = ϕ,
∂u

∂ν

∣∣∣∣
∂QT

= 0,

f0|t=0 = f0(ϕ(x), x, 0).

(2.2.1)

(2.2.2)

(2.2.3)

Condition 2.2.1. For every bounded set Ω ⊂ R×Q× [0,∞):
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(i) |f0(u, x, t)| ≤ L(Ω) for all (u, x, t) ∈ Ω.

(ii) |f0(u1, x, t)− f0(u2, x, t)| ≤ L(Ω)|u1 − u2| for all (u1, x, t), (u2, x, t) ∈ Ω.

(iii) For every fixed u ∈ R, the function f0(u, x, t) is measurable in QT .
Definition 2.2.2. We say that u is an E∞,T -mild solution of (2.2.1)–(2.2.3) for initial
data ϕ ∈ L∞(Q) on the interval [0, T ), if u is a measureable function on QT and satisfies
the following:

(i) u(·, t) ∈ L∞(Q) for a.e. t ∈ [0, T ).

(ii) sups∈(0,t)‖u(·, s)‖L∞(Q) <∞ for all t ∈ (0, T ).

(iii) u(·, t) = P(t)ϕ+
´ t

0 P(t− s)(f0(u(·, s), ·, s) ds for all t ∈ (0, T ).

Here P is a semigroup on L∞(Q) defined in [Rot84, pg.111] and the integral is an abso-
lutely convergent Bochner integral in L∞(Q).
Theorem 2.2.3. If f0 satisfies Condition 2.2.1, then for each initial function ϕ ∈
L∞(Q), there exists a T ∈ (0,∞] such that (2.2.1)–(2.2.3) has a unique E∞,T mild
solution on the interval [0, T ).

Proof. The proof of Theorem 2.2.3 is formulated in [Rot84, Theorem 1, pg.111].

Theorem 2.2.4. Let f0 satisfy Condition 2.2.1. Then the E∞,T solution u coincides
with the strong solution u ∈W 2,1

q (QT ).

Proof. See [Rot84, pg. 120,Thm. 2].

2.3. Uniformly Bounded Mild/Strong Solutions

Lemma 2.3.1. Assume that u ∈W 2,1
q (QT ) satisfies (2.2.1)–(2.2.3), ϕ ∈ W and F (x, t) =

f0(u, x, t) ∈ Lq(QT ). Further assume that there is some u∞ > 0 such that

(i) f0(·, x, t) : R → R is continuous at the points ±u∞ uniformly with respect to
(x, t) ∈ QT , i.e., for all δ > 0 there is a δ′ > 0 such that |u∞ − u∞| < δ′ implies
that |f0(u∞, x, t)− f0(u∞, x, t)| < δ where δ′ can be chosen independently of (x, t).

(ii) f0(u∞, x, t) < 0, f0(−u∞, x, t) > 0 for all (x, t) ∈ QT .

(iii) ‖ϕ‖C(Q) < u∞.

Then ‖u‖C(QT ) < u∞.

Proof. We refer the reader to Appendix B.

Definition 2.3.2. We say that T1 ∈ (0,∞) is a maximal existence time for the initial
data ϕ ∈ L∞(Q) if problem (2.2.1)–(2.2.3) has an E∞,T -mild solution on the interval
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[0, T1) but for any T ′ > T1, there does not exist an E∞,T1-mild solution on the interval
[0, T ′).
Lemma 2.3.3. Assume that ϕ ∈ L∞(Q) and that Condition 2.2.1 is satisfied. Then
there is a maximal existence time T1 ∈ (0,∞] and problem (2.2.1)–(2.2.3) has a unique
E∞,T -mild solution on the interval [0, T1). If T1 is finite then

lim
t→T1

‖u(·, t)‖L∞(Q) =∞.

Proof. The proofs of Theorem 2.2.3 and 2.3.3 are formulated in [Rot84, Theorem 1,
pg.111].

2.4. Green Functions

Theorem 2.4.1 ([CK13, Thm. 3.21]). Let n ≥ 1 and let Q ⊂ Rn be a bounded domain
with smooth boundary. Then for 0 < t− s ≤ T and x, y ∈ Q, the Green function for the
heat equation satisfies

|G(x, y, t, s)| ≤ C1

(t− s)
n
2

exp

(
−C2‖x− y‖2

t− s

)
,

where C1 and C2 depend on n, u∞ and Q but not on x, y, t or s.
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3. Well-Posedness of the Limiting
Hysteresis Problem

3.1. Specific Functional Setting for Solutions to
Reaction-Diffusion Equations

For the remainder of this Chapter, let n ≥ 1 and ϕ ∈ W unless specifically stated
otherwise (cf. Condition 1.2.14).

For λ ∈ (0, γ), let cλ,γ > 0 be the embedding constant

‖u‖Cλ(QT ) ≤ cλ,γ‖u‖Cγ(QT ).

Moreover, let f0,q be the constant defined in Condition 1.2.15 and Cstrong the embedding
constant defined in Theorem 2.1.1. Now define the constant

CP := cλ,γCstrong(f0,q + ‖ϕ‖W). (3.1.1)

Definition 3.1.1. Let P λ(QT ) be the set of all functions u ∈ Cλ(QT ) such that u(x, 0) =
ϕ(x), there exists uxj ∈ Cλ(QT ) (j = 1, · · · , n), and

‖u‖Pλ(QT ) ≤ CP , (3.1.2)

where

‖u‖Pλ(QT ) := ‖u‖Cλ(QT ) +
n∑
j=1

‖uxj‖Cλ(QT ). (3.1.3)

Note that the set of functions u ∈ Cλ(QT ) such that (3.1.3) is finite forms a Banach space
and P λ(QT ) is a closed covex set. For brevity, we will write ‖ · ‖Pλ(QT ) as the restriction
of (3.1.3) to the set P λ(QT ). Using the same CP , let P γ(QT ) be defined similarly.

3.2. Apriori Estimates

3.2.1. Temporal Input

Lemma 3.2.1. Suppose aj ∈ C[0, T ] and let bj(t) = max0≤s≤t aj(s). Then

‖b1 − b2‖C[0,T ] ≤ max
0≤s≤t

|a1(s)− a2(s)|.
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Proof. Define the time t∗ via the formula

t∗ = min
t∈[0,T ]

{|b1(t)− b2(t)| = ‖b1 − b2‖C[0,T ]},

and suppose without loss of generality that b1(t∗)− b2(t∗) = ‖b1− b2‖C[0,T ]. Note that if
t∗ = 0 then we are done.

For the case t∗ > 0, we claim that b1(t∗) = a1(t∗). If not, then there is a t ∈ [0, t∗]
such that b1(t∗) = a1(t), and since b1 is non-decreasing this means that b1(t∗) = b1(t).
However, b2 is also non-decreasing which leads to

b1(t)− b2(t) ≥ b1(t∗)− b2(t∗) = ‖b1 − b2‖C[0,T ],

a clear contradiction of the definition of t∗. We are now left with the inequality

‖b1 − b2‖C[0,T ] = b1(t∗)− b2(t∗) = a1(t∗)− b2(t∗) ≤ a1(t∗)− a2(t∗),

from which the two results follow.

3.2.2. Local Apriori Estimates in QT

Let us write the spatial variable x as x = (x′, xn) where x′ ∈ Rn−1. If n = 1 then x′ as
a singleton. An alternative derivation of some of these estimates for n = 1 can be found
in [GT12].

We recall Theorem C.0.9 from Appendix C. This Theorem relates to a mapping between
Banach spaces, so first let us first address some simple technicalities.

Suppose there is an x0 ∈ Q such that ϕ(x′0, x0n) = 0 and ϕxn(x′0, x0n) > 0. Let us choose
a neighborhood of (x′0, x0n) of a particular form

(x′0, x0n) ∈ Q′ ×Bδ(xn0) := Qloc, Qloc
T := Qloc × [0, T ], (3.2.1)

where Q′ ⊂ Rn−1 is an open set. Since ϕxn is continous, let us further suppose that
ϕxn(x′, xn) > 0 for every (x′, xn) ∈ Qloc. When we write functions u(x′, xn, t), with
(x′, xn) ∈ Qloc, and t ∈ [0, T ] we tacitly mean an extension of u to Rn+1 that is zero
outside of a neighborhood of Qloc

T . We will also extend ϕ into Qloc
T using the shorthand

ϕ(x′, xn, t) := ϕ(x′, xn). Note that this means that if ‖u−ϕ‖Pλ(QT ) ≤ C, then for every
t ∈ [0, T ]

‖u(·, ·, t)− ϕ‖
Cλ(Qloc)

+
n∑
j=1

‖u(·, ·, t)xj − ϕxj‖Cλ(Qloc)
≤ C. (3.2.2)

If (x′, xn) ∈ ∂Q, then it a straightforward procedure to straighten the boundary and
reflect ϕ over the plane tangent to the boundary of Q. Note that by using the Neumann
boundary conditions this reflection gives an extension that is also in P λ, albeit P λ(RnT ).

Finally note that we are applying Theorem C.0.9 on the Banach space of functions such
that (3.1.3) is finite, however we restrict to functions belonging to P λ(QT ) (cf. Definition
3.1.1).
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Lemma 3.2.2. Suppose ϕ(x′0, x0n) = 0, ϕxn(x′0, x0n) > 0 and consider ϕ ∈ P λ(Qloc
T ).

Then there are constants Cdx, δ, p
′ > 0, and a neighborhood Q′ ⊂ Rn−1 such that for all

x′ ∈ Q′, t ∈ [0, T ] and u1, u2 ∈ Bp′(ϕ) ⊂ P λ(Qloc
T )

ˆ δ

−δ
|H(ξ0, u1)−H(ξ0, u2)|(x′, xn, t)dxn ≤

C

Cdx
‖u1 − u2‖L∞(Qloc

t ), (3.2.3)

where Cdx is a lower bound on ‖∇u1‖ and ‖∇u2‖ in Bp′(ϕ).

Proof.
(Step 1/5) Apply implicit function theorem:

Recall that Qloc can be chosen such that for every (x′, xn) ∈ Qloc the spatial derivative
ϕxn(x′0, x0n) > 0. Define the function

F : {P λ(QT )× Rn−1 × R× R} → R; F(u, x′, xn, t) = u(x′, xn, t),

where {P λ(QT )× Rn−1 × R× R} has the L1-norm.

Possibly by reducing the size of Q′, δ, p′, we see that

F : {Bp′(ϕ)×Q′ ×Bδ(xn0)× (0, T )} → R

satisfies the following:

(i) Because ϕ(x′0, x0n) = 0, we can shrink the domain of F such that for every
(u, x′, xn, t) in its domain, u(x′, xn, t) ∈ πuA−quad (cf. Condition 1.2.6).

(ii) There is a constant C such that u(x′, xn, t) < C < β for every (u, x′, xn, t) in the
domain of F .

(iii) F is Lipshitz continuous in u, x′ and xn.

(iv) F(ϕ, x′0, x0n, 0) = 0.

(v) The Fréchet derivativeDxnF(u, x′, xn, t) = uxn(x′, xn, t) exists and moreoverDxnF(ϕ, x′0, x0n, 0)
is invertible.

(vi) DxnF(u, x′, xn, t) ∈ L(R,R) is Lipshitz continuous in the variables u and x′.

Observe that once we have chosen Bp′(ϕ), (3.2.2) proves that the above properties are
true irrespective of the value of t ∈ (0, T ). By Theorem C.0.9 there exists a unique
function such that

a : Bp′(ϕ)×Q′ × (0, T )→ Bδ(x
0
n), F(u, x′, a(u, x′, t), t) = 0.

Note that Theorem C.0.9 does not facilitate a non-Lipschitz parameter, however, we
apply the Theorem anyway because we will not need any conclusions about t regularity
in this Lemma. Now fix an x′ ∈ Q′, and for any u1, u2 ∈ Bp′(ϕ) define

a1(x′, t) = a(u1, x
′, t), b1(x′, t) = max

0≤s≤t
a1(x′, t),
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with a2 and b2 defined similarly. Assume without loss of generality that b2(x′, t) <
b1(x′, t). To finish the proof we will need three crude estimates.

(Step 2/5) Estimate distance between b1 and b2:

First consider ˆ b1(x′,t)

b2(x′,t)
|H(ξ0, u1)−H(ξ0, u2)|(x′, xn, t)dxn. (3.2.4)

Now using the Mean-Value Theorem (cf. Figure 3.1) one obtains

|a1(x′, t)− a2(x′, t)| ≤ 1

Cdx
|u1(x′, a1(x′, t), t)− u1(x′, a2(x′, t), t)|

≤ C

Cdx
|u2(x′, a2(x′, t), t)− u1(x′, a2(x′, t), t)|,

(3.2.5)

where Cdx is a lower bound of ‖∇u1‖ and ‖∇u2‖ on the neighborhood Bp′(ϕ).

Figure 3.1.: The Mean-Value Theorem for the functions u1 and u2.

Now applying Lemma 3.2.1 to (3.2.5) we get the first estimate

‖b1(x′, ·)− b2(x′, ·)‖C[0,t] ≤ max
0≤s≤t

‖u1(·, ·, s)− u2(·, ·, s)‖L∞(Qloc)

≤ ‖u1 − u2‖L∞(Qloc
t ).

(3.2.6)

(Step 3/5) Estimate on the H+ branch:

The upper hysteresis branch H+ is locally Lipshitz away from u = β (cf. item (iii) of
Condition 1.2.6) so we have our second estimate

ˆ δ

−δ
|H+(u1)−H+(u2)|(x′, xn, t)dxn ≤ C‖u1 − u2‖L∞(Qloc

t ). (3.2.7)

(Step 4/5) Estimate on the H− branch:
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ξ(x′, xn, t) = −1 is possible only if u1(x′, xn, s) > 0 for all s ∈ [0, t], which in turn means
xn > b1(x′, t) > b2(x′, t). Moreover, because u1(x′, xn, t) ∈ πuA−quad we have

H(ξ0, u1)(x′, xn, t) = H−(u1(x′, xn, t)) = −
√
u1(x′, xn, t),

where the same conclusions hold for u2. Notice that for xn > b1(x′, t)

|u1(x′, xn, t)| = |u1(x′, xn, t)− u1(x′, a1(x′, t), t)|
≥ Cdx|xn − a1(x′, t)|
≥ Cdx|xn − b1(x′, t)|,

(3.2.8)

where Cdx is a lower bound of ‖∇u1‖ and ‖∇u2‖ on the neighborhood Qloc. Let’s omit
the variable (x′, xn, t) to write the next inequality, namely

|H−(u1)−H−(u2)| ≤ |u1 − u2|
|√u1 +

√
u2|
≤ |u1 − u2|√

|xn − b1(x′, t)|
. (3.2.9)

With this algebraic manipulation in hand we can now write our third estimate
ˆ δ

b1(x′,t)
|H−(u1)−H−(u2)|(x′, xn, t)dxn ≤

ˆ δ

b1(x′,t)

|u1 − u2|(x′, xn, t)√
Cdx|xn − b1(x′, t)|

dxn

≤ C√
Cdx
‖u1 − u2‖L∞(Qloc

t ). (3.2.10)

(Step 5/5) Final estimate:

By combining (3.2.6), (3.2.7) and (3.2.10) we obtain
ˆ δ

−δ
|H(ξ0, u1)−H(ξ0, u2)|(x′, xn, t)dxn ≤

C

Cdx
‖u1 − u2‖L∞(Qloc

t ).

Lemma 3.2.3. Suppose ϕ(x′0, x0n) = 0 and ϕxn(x′0, x0n) > 0. Then there are constants
δ, Cdx > 0, a neighborhood Bp′(ϕ) of ϕ ∈ Bp′(ϕ) ⊂ P λ(Qloc

T ), and a neighborhood Q′ ⊂
Rn−1 such that for every t ∈ [0, T ]

‖H(ξ0, u1)(·, t)−H(ξ0, u2)(·, t)‖Lq(Qloc)

≤ C

Cdx

(
‖u1 − u2‖L∞(Qloc

t ) + ‖u1 − u2‖
1
2

L∞(Qloc
t )

+ ‖u1 − u2‖
1
q

L∞(Qloc
t )

)
.

(3.2.11)

Moreover, u(x′, xn, t) ∈ πuA−quad for every (u, x′, xn, t) ∈ Bp′(ϕ)×Q′ × Bδ(x0
n)× (0, T ),

and Cdx is a lower bound of ‖∇u‖ on Bp′(ϕ).
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Proof. One repeats the steps of the proof of Lemma 3.2.2, however one calculates the
three key inequalities (3.2.6), (3.2.7) and (3.2.10) in the Lq norm. (3.2.6) becomes(ˆ b1(x′,t)

b2(x′,t)
|H(ξ0, u1)−H(ξ0, u2)|q(x′, xn, t)dxn

) 1
q

≤ C‖b1(x′, ·)− b2(x′, ·)‖
1
q

C[0,t]

≤ C

Cdx
‖u1 − u2‖

1
q

L∞(Qloc
t )
.

(3.2.12)

(3.2.7) becomes (ˆ δ

−δ
|H+(u1)−H+(u2)|q(x′, xn, t)dxn

) 1
q

≤C
(ˆ δ

−δ
|u1 − u2|q(x′, xn, t)dxn

) 1
q

≤C‖u1 − u2‖L∞(Qloc
t ).

(3.2.13)

To finish the proof one uses the simple algebraic trick (written here for u1 > u2 > 0)

|
√
u1 −

√
u2| =

|u1 − u2|√
u1 +

√
u2

=
√
|u1 − u2|

√
u1√

u1 +
√
u2
≤
√
|u1 − u2|,

and calculates (3.2.10) in the Lq norm which yields(ˆ δ

b1(x′,t)
|H−(u1)−H−(u2)|q(x′, xn, t)dxn

) 1
q

≤

(ˆ δ

b1(x′,t)
|u1 − u2|

q
2 (x′, xn, t)dxn

) 1
q

≤‖u1 − u2‖
1
2

L∞(Qloc
t )
.

(3.2.14)

3.2.3. Estimates on H(ξ0, u) for Simply Transverse Functions

We finish this subsection by rephrasing the previous two Lemmas for functions that are
simply transverse. These results do not directly relate to the proofs of Theorem 1.3.1
and Theorem 1.3.2, but interrupting the flow of the present Chapter will be offset by
streamlining the exposition later on.
Lemma 3.2.4. Let n = 1 and ϕ ∈ W be given. Suppose that u1 ∈ P γ(QT ) is simply
transverse. Then there is a constant pdx > 0 such that any u2 ∈ Bpdx(u) ⊂ P γ(QT )
is simply transverse with the same defining constants Cdx, Cspace > 0. If x̃j(t) are the
values where uj(x̃j(t), t) = 0, then x̃2(t) ∈ BCspace(x̃1(t)).
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Proof. The statement is more or less clear in light of the definition of the norm for P γ

(cf. Definition 3.1.1). Indeed, if ‖u1 − u2‖Cγ(QT ) and ‖u1 − u2‖Cγ(QT ) are small enough,
then u2 also satisfies Definition 1.2.20.

Lemma 3.2.5. Let n = 1 and ϕ be given. Suppose that u1 ∈ P γ(QT ) is simply trans-
verse. Then there is a constant pdx such that for every u2 ∈ Bpdx(u1) ⊂ P γ(QT ) and
every t ∈ [0, T ] satisfies

‖H(ξ0, u1)(·, t)−H(ξ0, u2)(·, t)‖L1(QT ) ≤
C

Cdx
‖u1 − u2‖L∞(Qt). (3.2.15)

One also has

‖H(ξ0, u1)(·, t)−H(ξ0, u2)(·, t)‖Lq(Q)

≤ C

Cdx

(
‖u1 − u2‖L∞(Qt) + ‖u1 − u2‖

1
2

L∞(Qt)
+ ‖u1 − u2‖

1
q

L∞(Qt)

)
.

(3.2.16)

Proof. For (3.2.15) one follows the procedure laid out in the proof of Lemma 3.2.2 and
notes that for j = 1, 2 we considered uj ∈ Bp′(ϕ), where p′ was chosen so that we could
find (xj , tj) ∈ Qloc

T with uj(xj , tj) = 0. If we have a u1 ∈ P γ(QT ) that is apriori simply
transverse, then using Lemma 3.2.4 there is a pdx > 0 such that every u2 ∈ Bpdx(u1) is
also simply transverse. In particular, we have the points x̃j(t) where uj(x̃j(t), t) = 0 and
a lower bound |ux(x, t)| > Cdx which is all one needs to obtain (3.2.15).

(3.2.16) follows by making the necessary adjustments found in the proof of Lemma 3.2.3.

3.2.4. Global Apriori Estimates

Lemma 3.2.6. Suppose that ϕ is transverse with respect to ξ0. Then there exists two
constants pdx > 0 and Cdx > 0 with the following properties:

(i) Every u ∈ Bpdx(ϕ) ⊂ P λ(QT ) is transverse with respect to H(ξ0, u).

(ii) For every u1, u2 ∈ Bpdx(ϕ) ⊂ P λ(QT ) one has

‖H(ξ0, u1)−H(ξ0, u2)‖L1(QT ) ≤
C√
Cdx
‖u1 − u2‖L∞(QT ).

Proof. We begin by proving item (ii). Consider the set Q0 := {x ∈ Q | ϕ(x) = 0} and
the two subsets

{x ∈ Q | ϕ(x) = 0,∇ϕ(x) = 0} := Q0,∇=0,

{x ∈ Q | ϕ(x) = 0,∇ϕ(x) 6= 0} := Q0,∇6=0.
(3.2.17)

Define Qβ,∇=0 and Qβ,∇6=0 similarly, however for simplicity assume these sets are empty.
The set Q0 can be covered by a combination of two types of open sets:
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(i) The spatial transversality assumption (Definition 1.2.19) prescribes that for all
x ∈ Q0,∇=0, there exists a neighborhood Qloc,k ⊂ Q of x such that ξ0(x) = + for
all x ∈ Qloc,k. As such, there is a Bp′(ϕ) ⊂ P λ(QT ) for some p′ > 0, such that
u(x, t) < p′ < β for every u ∈ Bp′(ϕ) and (x, t) ∈ Qloc,k

T .

(ii) For all x ∈ Q0,∇6=0, there is an integer 1 ≤ i ≤ n such that ϕ(x)xi 6= 0 and there
exists a neighborhood Qloc ⊂ Q and a neighborhood Bp′(ϕ) ⊂ P λ(Qloc

T ) such that
Lemma 3.2.2 applies with i in place of n. To keep our notation concise assume that
i = n for every such Qloc, and that ϕxn(x) > 0.

Since the set Q0 is compact, consider a finite subcover of Q0

O =

K⋃
k=1

J⋃
j=K+1

{Qloc,k, Qloc,j},

where Qloc,k are sets of the type in item (i) and Qloc,j are sets of the type in item (ii),
more specifically

(x′, xn) ∈ Qloc,j = Q′ ×Bδj (0).

Note that for x ∈ Qloc,0 := Q\O, there is a p0 > 0 such that both |ϕ(x)| > 2p0 and
|ϕ(x)− β| > 2p0.

Let pk and pj be the radii of the sets Bp′(ϕ) prescribed in items (i) and (ii) above, and
define

pdx :=
1

2
min

1≤k≤K,K+1≤j≤J
{p0, pk, pj}.

For all x ∈ Qloc,k with 0 ≤ k ≤ K, |u(x)| > pdx if H(ξ0, u) = H+(u). As such, for
0 ≤ k ≤ K, t ∈ (0, T ) and u1, u2 ∈ Bpdx(ϕ) one has

‖H(ξ0, u1)(·, t)−H(ξ0, u2)(·, t)‖L∞(Qloc,k) ≤ ‖H+(u1)−H+(u2)‖
L∞(Qloc,k

t )

≤ C‖u1 − u2‖L∞(Qloc,k
t )

.
(3.2.18)

Note that (3.2.18) also applies for k = 0.

Next, observe that for any u1, u2 ∈ Bpdx(ϕ) and K + 1 ≤ j ≤ J , Lemma 3.2.2 applies.
In particular, one can write Qloc,j = Q′ ×Bδj (0) and
ˆ
Q′

ˆ δj

−δj
|H(ξ0, u1)−H(ξ0, u2)|(x′, xn, t)dxndx′ ≤

C√
Cjdx

‖u1 − u2‖L∞(Qloc
t ), (3.2.19)

holds for any t ∈ (0, T ), where Cjdx is a lower bound on ‖∇u1‖ and ‖∇u2‖ on the
neighborhood Qloc,j . The current Lemma now follows from (3.2.18) and (3.2.19), where
in the later we replace Cjdx with

Cdx = min
K+1≤j≤J

Cjdx.
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To prove item (i), note that if u(x, t) = 0, then x ∈ Qloc,j for some K + 1 ≤ j ≤ J . On
such a set ‖∇u‖ 6= 0 by construction.

Lemma 3.2.7. Suppose ϕ is transverse with respect to ξ0, then there is a pdx such that
for all u1, u2 ∈ Bpdx(ϕ) ⊂ P λ(QT )

‖H(ξ0, u1)(·, t)−H(ξ0, u2)(·, t)‖Lq(Q)

≤ C

Cdx

(
‖u1 − u2‖L∞(Qt) + ‖u1 − u2‖

1
2

L∞(Qt)
+ ‖u1 − u2‖

1
q

L∞(Qt)

)
.

(3.2.20)

Proof. Repeat the steps of the proof of Lemma 3.2.6, however applying the local Lq
estimates of Lemma 3.2.3 instead of the local L1 estimates of Lemma 3.2.2.

3.3. Proof of Theorem 1.3.1

Theorem 3.3.1. Suppose that ϕ is transverse with respect to ξ0. Then there is a Tdx > 0
such that for any u0 ∈ P λ(QTdx), there exists a unique solution u ∈ W 2,1

q (QTdx) to
(2.2.1)–(2.2.3) with nonlinearity

f0(u, x, t) = H(ξ0, u0) + c∞(u0 − u), (3.3.1)

that satisfies the following:

(i) u ∈ P λ(QT ) and u ∈ P γ(QTdx).

(ii) For every t ∈ [0, Tdx]
‖u(·, t)− ϕ‖Pλ(QTdx ) ≤ pdx,

where pdx is the constant from Lemmas 3.2.6 and 3.2.7.

(iii) Let u0n ∈ P λ(QTdx) be a sequence of functions such that u0n → u0 in P λ(QTdx). If
un denotes the solution to (2.2.1)–(2.2.3) with nonlinearity

f0n(un, x, t) = H(ξ0, u0n) + c∞(u0n − un),

then un → u in P γ(QTdx).

Proof. We first establish that for any T > 0 and any u0 ∈ P λ(QT ), there is a unique
solution to (2.2.1)–(2.2.3) with nonlinearity (3.3.1) such that both u ∈ W 2,1

q (QT ) and
‖u‖L∞(QT ) ≤ u∞.

Clearly f0 satisfies Condition 2.2.1. By Theorem 2.2.3, there is an E∞,T -mild solution
u, and a maximal existence time T1 > 0 (cf. Definition 2.3.2 and Lemma 2.3.3).

Since f0 is not defined beyond time T clearly T1 ≤ T . We claim in fact that T1 = T .
Indeed, we see from (1.2.11), that our nonlinearity satisfies the dissipativity conditions
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of Lemma 2.3.1. In particular, ‖u(·, T1)‖L∞(Q) < u∞ <∞ which would not be the case if
T1 < T . Finally observe that by Theorem 2.2.4, u is also a strong solution u ∈W 2,1

q (QT ).

Now let’s address item (i) of the present Theorem. Applying inequality (2.1.5) we see
that

‖u‖P γ(QT ) ≤ ‖u‖Cγ(QT ) +
n∑
i=1

‖uxi‖Cγ(QT ) ≤ Cstrong
(
‖f0n‖Lq(QT ) + ‖ϕ‖W

)
,

≤ Cstrong(f0,q + ‖ϕ‖W).

(3.3.2)

Because ‖u‖Pλ(QT ) ≤ cλ,γ‖u‖P γ(QT ), (3.3.2) implies that u ∈ P λ(QT ) (cf. Definition
3.1.1). Note that ‖u‖P γ(QT ) ≤ CP is already clear from (3.3.2) and thus u ∈ P γ(QT ).

We can now determine Tdx and prove item (ii). Indeed because ‖u‖P γ(QT ) ≤ CP one
obtains

‖u(·, t)− ϕ‖Cγ(QT ) +

n∑
j=1

‖uxj (·, t)− ϕxj‖Cγ(QT ) ≤ CPTdx ≤ pdx, (3.3.3)

for Tdx sufficiently small.

For item (iii) take the said sequence {u0n} and note that it is bounded in P λ(QT ).
Using inequality (2.1.5) the sequence of solutions {un} is also bounded in W 2,1(QT ),
so the compactness of the embedding W 2,1(QT ) ⊂ C(QT ) (cf. Lemma 1.2.10), yields a
convergent subsequence (not relabelled)

‖un − u′‖L∞(QTdx ) → 0. (3.3.4)

Consider the inequality

‖f0n(un, x, t)− f0(u′, x, t)‖Lq(QTdx ) ≤C‖H(ξ0, u0n)−H(ξ0, u0)‖Lq(QTdx )

+ c∞(‖u0n − u0‖Lq(QTdx )

+ ‖un − u′‖Lq(QTdx )).

(3.3.5)

Using the assumptions of the present Theorem, (3.3.4) and Lemma 3.2.7, we see that the
right-hand side of (3.3.5) goes to zero. This means that ‖un − u′‖W 2,1

q (QTdx )
goes to zero

and hence u′ solves 
u′t −∆u′ = f0(u′, x, t),

u′|t=0 = ϕ,

∂u′

∂ν

∣∣∣∣
∂QT

= 0.

(3.3.6)
(3.3.7)

(3.3.8)

This problem has a unique E∞,T -mild solution (cf. Theorem 2.2.3), and hence for every
subsequence u0n → u0, one has un → u′.
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Proof of Theorem 1.3.1. Consider u0 ∈ P λ(QTdx) and let u solve the auxiliary problem
(2.2.1)–(2.2.3) with nonlinearity

f0(u, x, t) = H(ξ0, u0) + c∞(u0 − u).

By Theorem 3.3.1 we have u ∈ P γ(QTdx) and u ∈ P λ(QTdx), therefore the map u0 7→ u
maps P λ(QTdx) into itself. This map is continuous by item (iii) of Theorem 3.3.1, and
compact since Cγ(QTdx) ⊂ Cλ(QTdx) is a compact embedding. More specifically

Cλ(QTdx) −→
u0→u

Cγ(QTdx) −→
Identity

Cλ(QTdx),

where the first map is continuous and the second is compact. By the Schauder Fixed
Point Theorem [GT01, Corollary 10.2, pg.222] u0 7→ u has a fixed point which is a
solution to (1.2.1)–(1.2.4).

3.4. Proof of Theorem 1.3.2

Lemma 3.4.1. There is a T ≤ Tmax such that if u1, u2 ∈W 2,1
q (QT ) are two solutions to

(1.2.1)–(1.2.4), then u1 = u2 a.e. on QT .

Proof. Let u1, u2 be two solutions to (1.2.1)–(1.2.4) on QT . If we define

h = H(ξ0, u1)−H(ξ0, u2), w = u1 − u2,

then w satisfies the differential equation,

wt = ∆w + h, (3.4.1)

w|t=0 = 0,
∂w

∂ν

∣∣∣
∂Q

= 0, (3.4.2)

and w can be represented as a convolution with the Green function

w(x, t) =

ˆ t

0

ˆ
Q
G(x, y, t, s)h(y, s)dyds. (3.4.3)

Let T ≤ Tdx. By item (ii) of Theorem 3.3.1, Lemma 3.2.6 is applicable, and so let us
again consider the open cover

{Qloc,k, Qloc,j}0≤k≤K,K+1≤j≤J Qloc,j = Q′ ×Bδj (0),

from the proof of the Lemma.
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For a fixed (x, t) ∈ QT consider the integral (3.4.3), where the variable of integration y
is restricted to Qloc,k, with 0 ≤ k ≤ K. Applying inequality (3.2.18) (which also holds
for k = 0) and Theorem 2.4.1 one obtains

ˆ t

0

ˆ
Qloc,k

|G(x, y, t, s)|h(y, s)dyds,

≤C‖u1 − u2‖L∞(Qloc,k
T )

ˆ t

0

ˆ
Qloc,k

|G(x, y, t, s)|dyds,

≤C‖u1 − u2‖L∞(Qloc,k
T )

ˆ t

0
ds

ˆ
Rn

C1

(t− s)
n
2

exp

(
−‖x− y‖

2

t− s

)
dy

≤Ct‖u1 − u2‖L∞(Qloc,k
T )

≤CT‖u1 − u2‖L∞(Qloc,k
T )

.

(3.4.4)

Note that the constant C in the last line of (3.4.4) does note depend on (x, t) ∈ QT .

For the case Qloc,j we let y = (y′, yn) with y′ ∈ Rn−1, and focus on the integral with
respect to the variable yn ∈ R. To this end, let’s factorize the Green Function as follows:

|G(x, y, t, s)| ≤ C1

(t− s)
n
2

exp

(
−C2‖x− y‖2

t− s

)
≤

(
1

(t− s)
n−1
2

exp

(
−C2(x′ − y′)2

t− s

))
C1√
t− s

.

(3.4.5)

We can now invoke Lemma 3.2.2 and integrate over yn and y′ separately, more specifically

ˆ t

0

ˆ
Qloc,j

|G(x, y, t, s)|h(y, s)dyds,

≤
ˆ t

0

ˆ
Q′

C1

(t− s)
n−1
2

exp

(
−C2(x′ − y′)2

t− s

)ˆ δ

−δ

C1√
t− s

|h(y′, yn, s)|dyndy′ds

≤
ˆ t

0

C‖u1 − u2‖L∞(Qloc,j
t )√

t− s

ˆ
Q′

1

(t− s)
n−1
2

exp

(
−C2(x′ − y′)2

t− s

)
dy′ds

≤C
√
T‖u1 − u2‖L∞(Qloc,j

T )
.

(3.4.6)

Note that the constant C in the last line of (3.4.6) does not depend on (x, t) ∈ QT .

Combining (3.4.4) and (3.4.6) one obtains

h(x, t) ≤ C
√
T‖u1 − u2‖L∞(QT ).

Taking the supremum over all (x, t) ∈ QT and T > 0 sufficiently small one obtains

‖w‖L∞(QT ) ≤
1

2
‖w‖L∞(QT ),
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which is only possible if ‖w‖L∞(QT ) = 0.

Proof of Theorem 1.3.2. Suppose that u1 6= u2 in QTmax on a set of positive measure.
Let

T ′ = sup{T ∈ [0, Tmax] | u1 6= u2 a.e. in QT }.

Note that T ′ is well defined because u1(·, 0) = u2(·, 0). Because both u1 and u2 are
continuous, u1(·, T ′) = u2(·, T ′). Moreover, because u1(·, T ′) is transverse by assumption,
Lemma 3.4.1 implies that there exists a T > T ′ such that u1 = u2 in QT , a contradiction.
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4. Convergence of the Diffusing Variable

The standing assumptions for this Chapter are that n = 1, ϕ ∈ W is simply transverse
with constants Cdx and Cspace, and that Condition 1.2.14 holds.

4.1. Convergence Results when uε is apriori Simply
Transverse

Lemma 4.1.1. Suppose that the solution uε ∈ W 2,1
q to (1.2.6)–(1.2.8) is simply trans-

verse and let t ∈ [0, T ]. Then the inequality

‖vε(·, t)−H(uε, ξ0)(·, t)‖Lp(Q) ≤
C

Cdx(1− γ)
ε

2
3−·

1
p , (4.1.1)

holds when p = 1 or p = q.
Lemma 4.1.2. Suppose that the solution u ∈ W 2,1

q (QT ) to (1.2.1)–(1.2.4) is simply
transverse and that uε ∈ Bpdx(u) ⊂ P γ(QT ) where pdx is the constant from Lemma
(3.2.4) and (3.2.5). Moreover, assume that Lemma 4.1.1 holds. Then for every t ∈ [0, T ]

‖uε − u‖L∞(Qt) ≤
C1

√
T

Cdx(1− γ)
exp

((
C2

Cdx

)2

t

)
ε

2
3− , (4.1.2)

where C1, C2 > 0.

Proof. Consider uε − u and the diffusion equation

(uε − u)t = (uε − u)xx + (vε −H(ξ0, u)), (4.1.3)

with zero Neumann boundary conditions and zero initial conditions. If we fix (x, t) ∈ QT ,
then we can represent uε − u as a convolution with the Green function on QT to obtain

|(uε − u)|(x, t) ≤
ˆ t

0

ˆ
Q
|vε −H(ξ0, u

ε)|(y, s)|G(x, y, t, s)|dyds

+

ˆ t

0

ˆ
Q
|H(ξ0, u

ε)−H(ξ0, u)|(y, s)|G(x, y, t, s)|dyds.
(4.1.4)

Consider the second term in (4.1.4),
ˆ t

0

ˆ
Q
|H(ξ0, u

ε)−H(ξ0, u)|(y, s)|G(x, y, t, s)|dyds. (4.1.5)
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If one applies Lemma 3.2.5 and Theorem 2.4.1 one obtains,

(4.1.5) ≤
ˆ t

0

C√
t− s

‖(H(ξ0, u
ε)−H(ξ0, u))(·, t)‖L1(Q)ds

≤
ˆ t

0

C

Cdx

√
t− s

max
σ∈[0,s]

‖(uε − u)(·, σ)‖L∞(Q)ds.

For convenience define the following notation:

Maxε(s) := max
σ∈[0,s]

‖(uε − u)(·, σ)‖L∞(Q),

hε(t) := sup
x∈Q

ˆ t

0

ˆ
Q
|vε −H(uε, ξ0)|(y, s)|G(x, y, t, s)|dyds.

Taking the supremum over all x ∈ Q in inequality (4.1.4), one has the inequality

‖(uε − u)(·, t)‖L∞(Q) ≤ hε(t) +

ˆ t

0

C

Cdx

√
t− s

Maxε(s). (4.1.6)

Consider t∗ = infs∈[0,t]{Maxε(s) = Maxε(t)}. Then because Maxε(t∗) ≥ Maxε(s) for
every s ∈ [0, t∗],

ˆ t

0

1√
t− s

Maxε(s)ds−
ˆ t∗

0

1√
t∗ − s

Maxε(s)ds

=

ˆ t

t∗

1√
t− s

Maxε(t∗)ds−
ˆ t∗

0
(

1√
t∗ − s

− 1√
t− s

)Maxε(s)ds

≥Maxε(t∗)
ˆ t

t∗

1√
t− s

ds−
ˆ t∗

0

1√
t∗ − s

− 1√
t− s

ds

≥2Maxε(t∗)(
√
t−
√
t∗)

≥0.

Now rewrite (4.1.6) to obtain

Maxε(t) = Maxε(t∗) ≤ sup
τ∈[0,t∗]

hε(τ) +

ˆ t∗

0

C̃2

Cdx

√
t∗ − s

Maxε(s)ds

≤ sup
τ∈[0,t∗]

hε(τ) +

ˆ t

0

C̃2

Cdx

√
t− s

Maxε(s)ds,

where we have labelled the constant C̃2 to help keep track of its role later on. Using
Lemma 4.1.1 and Theorem 2.4.1 we can bound hε(τ) by a constant independent of τ ,
namely

hε(τ) ≤ C̃1

√
T

Cdx(1− γ)
ε

2
3− , (4.1.7)
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where C̃1 is a positive constant. We can now apply Grönwall’s Lemma (cf. Lemma A.0.2
in Appendix A) to obtain

‖uε − u‖L∞(Qt) ≤ Maxε(t) ≤ 2C̃1

√
T

Cdx(1− γ)
exp

( C̃2

Cdx

)2

πt

 ε
2
3− . (4.1.8)

4.2. Proof of Theorem 1.3.4

Lemma 4.2.1. Let Tmax > 0 and suppose that the solution u to (1.2.1)–(1.2.4) is simply
transverse on QTmax. Then there exists an ε1 > 0 such that for every ε ∈ (0, ε1],

‖u− uε‖P γ(QTmax ) ≤
pdx

2
,

where pdx is the constant from Lemma (3.2.4) and (3.2.5), and ε1 does not depend on
Tmax.

Proof. Fix ε > 0 and consider

T ′ = inf
T∈[0,Tmax]

{‖uε − u‖P γ(QT ) ≤
pdx

2
}.

We claim that T ′ > 0. Indeed, by combining inequality (2.1.5), Theorem 1.2.18, and
Condition 1.2.15 we conclude that

‖u‖P γ(QT ) ≤ CPT, ‖uε‖P γ(QT ) ≤ CPT. (4.2.1)

In particular, for T sufficiently small

‖u− ϕ‖P γ(QT ) ≤
pdx

4
, ‖uε − ϕ‖P γ(QT ) ≤

pdx

4
,

which proves that T ′ > 0. If T ′ = Tmax, then we are done, so suppose that T ′ < Tmax.

Let T ′ < T ′ + δ < Tmax where δ > 0 will be specified shortly. Using (4.2.1) again one
obtains

‖u− uε‖P γ(QT ′+δ)
≤‖u− uε‖P γ(QT ′ )

+ ‖u− uε‖P γ(Q×(T ′,T ′+δ)),

≤‖u− uε‖P γ(QT ′ )
+ CP δ.

(4.2.2)
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Since uε ∈ Bpdx(u) ⊂ P γ(QT ′) we can apply Lemmas 3.2.5, 4.1.1 and 4.1.2, as well as
(2.1.5) which yields

‖u− uε‖P γ(QT ′ )
≤ Cstrong‖v − vε‖Lq(QT ′ )
≤ ‖H(ξ0, u)−H(ξ0, u

ε)‖Lq(QT ′ ) + ‖H(ξ0, u
ε)− vε‖Lq(QT ′ )

≤ C3

√
Tmax

Cdx(1− γ)
exp

((
C2

Cdx

)2

T ′

)
ε

2
3−·

1
q ,

(4.2.3)

where C3 is a positive constant, denoted as such because it is not the same as C1 in
Lemma 4.1.2. Choose ε1 such that

C3

√
Tmax

Cdx(1− γ)
exp

((
C2

Cdx

)2

T ′

)
ε

2
3−·

1
q

1 ε
2
3−·

1
q

1 =
pdx

4
, (4.2.4)

and δ ∈ (0, Tmax − T ′) such that
CP δ ≤

pdx

4
.

Returning to (4.2.2), we see that if we define ε1 as in (4.2.4), which only depends on Cdx,
Tmax and γ, then we can find a δ that contradicts the assumption that T ′ < T . The
Lemma follows because this argument is valid whenever ε < ε1.

Proof of Theorem 1.3.4. By Lemma 4.2.1 there is an ε1 > 0 such that for every ε ∈ (0, ε1]
‖u−uε‖P γ(QT ) ≤ pdx

2 . In particular, Lemmas 3.2.4 and 4.1.2 are applicable which finishes
the proof .
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5. Fast-ODE Phase Space

In this Chapter we divide the phase space of (1.2.6) into a number of smaller regions. One
must be familiar with these Definitions in order to follow the proofs in Chapters 6 and 7.
The division of the phase space will facilitate the analysis of simply transverse functions
(cf. Definition 1.2.20). In particular, the subdivision will depend on the constants Cspace

and Cdx, as well as ε. Let us begin with a common piece of notation.
Definition 5.0.2. For any set A ⊂ R2, let πuA be the projection onto the u-axis and πv
the projection onto the v-axis.

5.1. Critical Region

Definition 5.1.1. We define a set A−crit of the form A−crit = (−M,M) × (−2M2, 2M2)
(cf. Figure 5.1), where A−crit satisfies the following:

• A−crit ⊂ A
−
quad (cf. Condition 1.2.6).

• πuA−crit ⊂ B2CdxCspace(0).

It’s vital to emphasize that M → 0 if Cdx → 0 (cf. Section 1.2.6). However, for the
purposes of simplifying our calculations we let the following hold.
Condition 5.1.2. Take M = 1, in particular, (u, v) = (1,−1) ∈ A−crit.

This Condition will not distract from the central idea of the proof of Theorem 1.3.4.

Inside A−crit we will denote quantities using capital letters wherever possible, with the
exception of the coordinate v.

5.1.1. Critical Sleeve

Recall the constants λ0 and γ from Definition 1.3.3. In addition, define the constant

µ0 :=
1

3−
=

1

3
− λ0

2
. (5.1.1)

If λ0 and γ satisfy Definition 1.3.3 and µ0 is as defined as in (5.1.3), it is possible to
choose two additional constants λ1, λ2 satisfying the following Condition.
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Figure 5.1.: A−crit lies in A
−
quad with the point (u, v) = (1,−2) indicated with a black dot.

The quadratic scaling near (u, v) = 0 will be very important in tracking trajectories as
they approach the fold. That A−crit is contained in the shaded region will help us choose
good coordinates for calculating the Lq-norm in Theorem (iii).

Definition 5.1.3. Choose two constants 1
3 > λ1, λ1 > 0 such that

γ(1− λ1)− (2 + γ)µ0 > λ2 > 0. (5.1.2)

Note that if µj < µ0, then (5.1.2) holds with µj in place of µ0.

These convoluted definitions can be understood (in principle) in the following way. If
the initial data ϕ is smooth, then q can be taken arbitrarily large, or formally speaking
q =∞. In this case one can formally take

• γ = 1.

• λ0 = 0, i.e. 2
3− = 2

3 .

• µ0 = 1
3− = 1

3 .

• λ1 = λ2 = 0.

In other words, we have matched the asymptotics of the 0th-order approximation of the
Slow-Fast ODE (cf. Section 1.1.3).

Definition 5.1.3 will give a precise description of how close we can get to the Slow-Fast
ODE asymptotics. The role of λ1 and λ2 will become clear shortly.
Definition 5.1.4. As a matter of notation, if we are given any u, U ∈ R, then let
w =

√
|u| and W =

√
|U |. Moreover, let

uε+ := ε
2
3− , wε+ := ε

1
3− . (5.1.3)
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Definition 5.1.5. Given a sequence {µj}j≥0 ⊂ R define

Wj = εµj ,

Uj = ε2µj ,

δj = γ(1− λ1)− µj(1 + γ)− λ2,

Dj = εδj .

(5.1.4)

Definition 5.1.6. Let W0 = ε
1
3− (cf. (5.1.3) and Definition 5.1.4), and let δ0 be defined

as in Definition (5.1.5). Define Wj+1 by the recursive formula

Wj+1 = Wj + εδj+λ2 , (5.1.5)

and define δj+1 via (5.1.4).
Lemma 5.1.7. There exists a positive integer J such that UJ < 1 ≤ UJ+1.

Proof. If there is no such J , then the step size εδj must go to zero (δj → ∞), which by
(5.1.4) implies that Wj = εµj and Uj = ε2µj must go to infinity, i.e., µj → −∞, a clear
contradiction.

Definition 5.1.8. We define the critical sleeve (denoted by χ−crit(ε) and schematized in
Figures 5.2 and 5.3) via the formula

χ−crit(ε) :=

J−1⋃
j=0

{(u, v) | (u, v) ∈ [Uj , Uj+1]× [−Uj+1 −Dj+1,−Uj +Dj ]}.

Due to Definition 5.1.3,

0 ≤ εµ0 − εδ0 = εµ0(1− εγ(1−λ1)−µ0(2+γ)−λ2), (5.1.6)

for ε sufficiently small. Note that (5.1.6) holds for all j ∈ {0, · · · , J}. Moreover, because
λ1, λ2 > 0 we can formalize the following Condition.
Definition 5.1.9. Let ε2 be the supremum of all ε satisfying the inequalities

2
(

exp
(
−2c(γ)ε−λ1

)
+ ελ2

)
≤ 1,

0 ≤ εµ0 − εδ0 ≤ εµ0(1− εγ(1−λ1)−µ0(2+γ)−λ2).
(5.1.7)

5.2. Normally Hyperbolic Region

Lemma 5.2.1 (Normally hyperbolic region). There are two bounded open sets A±hyp ⊂
R2 which we call normally hyperbolic regions (cf. Figure 5.4), where A−hyp satisfies the
following conditions (with analogous conditions for A+

hyp):
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Figure 5.2.: The critical sleeve in u coordinates between U0 and UJ . The point (u, v) =
(1,−1) on ∂A−crit is indicated by a black dot.

(i) πuA−hyp ⊂ (0, u∞) and (1,−1) ∈ A−hyp. In particular, A−crit

⋂
A−hyp 6= ∅.

(ii) For every (u, v) ∈ πuA−hyp, f(u, v) = 0 if and only if u = H−(u).

(iii) If (u, v) is in the closure of A−hyp, then

∂f

∂v
(u, v) < 0,

∂f

∂u
(u, v) < 0.

In particular f(u, v) < 0 if v > H−(v) and f(u, v) > 0 if v < H−(v).

(iv) If we define the constant

1

CLip
= min

(u,v)∈A−hyp
{1,
∣∣∣∣∂f∂v (u, v)

∣∣∣∣ ∣∣∣∣∂f∂u (u, v)

∣∣∣∣−1

}, (5.2.1)

then CLip satisfies the inequality

|H−(u1)−H−(u2)| ≤ CLip|u1 − u2|. (5.2.2)

Proof. For every u > 0 there exists a δu > 0 and a neighborhood Bδu(u,H−(u)), such
that for every (u, v) ∈ Bδu(u,H−(u))

∂f

∂v
(u, v) < 0,

∂f

∂u
(u, v) < 0,

f(u, v) = 0 iff v = H−(u).

(5.2.3)
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Figure 5.3.: A diagram of the internals of χ−crit(ε) where only two “boxes” are highlighted
grey. Parts of the adjacent boxes are shown with dotted lines. Note that this is a plot
of w and v so the quadratic scaling of f in a neighborhood of the fold point means that
H− is a straight line in these coordinates.

This follows from items (i) and (iv) of Condition 1.2.6. Let C ∈ (1
2 , 1) and define

Cheight :=
1

2
min{δu, |H+(−u∞)|, |H−(u∞)| where u ∈ [

1

2
, u∞]}.

Next, define A−hyp via the formula

A−hyp := {(u, v) | u ∈ (
1

2
, u∞) and |v −H−(u)| ≤ 2Cheight}.

All that remains is to find the constant CLip. To this end, note that H− is the local
invserse of the nullcline v 7→ g(v) when v < 0. Moreover, g′ can be found by calculating

0 =
∂

∂v
f(g(v), v) = g′(v)

∂f

∂u
(g(v), v) +

∂f

∂v
(g(v), v).
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Figure 5.4.: The normally hyperbolic region connects the edge of the critical region A−crit

to the edge of the invariant region for uε at the value u∞ (cf. Theorem 1.2.18). A−hyp is
constructed to have constant height Cheight.

If we define

1

CLip
= min{(u, v) ∈ A−hyp | |

∂f

∂v
(u, v)| ·

(
|∂f
∂u

(u, v)|
)−1

},

Then CLip satisfies (5.2.2).

Note that Cheight, A−hyp and CLip do not depend on ε.

5.2.1. Normally Hyperbolic Sleeve

Definition 5.2.2. Define δnh = δJ (cf. Lemma 5.1.7) and d = εδnh , in particular

εδnh = d = DJ . (5.2.4)

Definition 5.2.3. Choose µ > 0 satisfying 1 > γ > µ > δnh.
Definition 5.2.4 (Normally Hyperbolic Sleeve). Let u0 = UJ ∈ {πuA−hyp} and define
uk = u0+kεµ, up to some integer K such that uK−1 ≤ u∞ < uK . We define the normally
hyperbolic sleeve χ−hyp(ε) ⊂ R2 (see Figure 5.5) as the set of pairs

χ−hyp(ε) :=

K−1⋃
k=0

{(u, v) | (u, v) ∈ [uk, uk+1]× [H−1(uk)− d,H−1(uk+1) + d]}, (5.2.5)

with a corresponding Definition of χ+
hyp(ε) for H+.

Remark 5.2.5. We make a couple of observations about Definition 5.2.4. First, note that
for all (u, v) ∈ χ−hyp(ε)

|v −H−(u)| ≤ 2εnh.
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Second, because of the strict inequalities specified in Condition 1.2.15, χ−hyp(ε) should
always be contained in the invariant region of the solution (uε, vε) of (1.2.6)–(1.2.8) (cf.
Definition 1.2.17), provided the height of χ−hyp(ε) in the v-direction is sufficiently small.
Definition 5.2.6. Let ε3 > 0 is the supremum over all ε > 0 satisfying:

exp

(
−c(γ)C

−1− 1
γ

Lip ε
−1+µ

γ

)
+ CLipε

−δnh+µ ≤ 1,

{UJ} × (−1− εδδnh ,−1 + εδnh) ⊂ A−hyp ∩A
−
crit,

χ−hyp(ε) ⊂ (−u∞, u∞)× (−v∞, v∞).

Figure 5.5.: A segment of χ−hyp(ε) is whereH−(u) is drawn as a straight line for simplicity.
Note that unlike Figure 5.3, here u is plotted against v.

5.3. Drop and Fast-Motion Sections

Definition 5.3.1. There is a positive constant C1 > 0 and two constants 0 < vfast < vdrop

that taken together define two sections Sdrop and Sfast (cf. Figure 5.6) via the formulas

Sdrop = (−C1, C1)× {vdrop},

Sfast = (−C1, C1)× {vfast}.

Sdrop and Sfast have the following properties:
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(i) There is a neighborhood of the rectangle (−C1, C1) × (vfast, vdrop) where f(·, ·) is
strictly positive.

(ii) Sfast ⊂ A−crit and Sdrop ⊂ A+
hyp.

Definition 5.3.2. Let ε4 be the supremum over all ε such that −ε
2
3− ∈ πuSfast

Figure 5.6.: The two sections Sdrop and Sfast. The highlighted region between the two
indicates where the fast motion will occur.

5.4. Critical Sleeve Scaling Lemmas

In this section we present Lemmas describing how the quantities Dj and Wj scale as j
increases. We will need them in Chapters 6 and 7, but because they are just contortions
of the Definitions encountered so far in the present Chapter, we will include them here.
Lemma 5.4.1. If ε < min1≤i≤4{εi} and (U, v) ∈ χ−crit(ε), then v < 0.

Proof. We must check that for every j ∈ {0, · · · , J}, εµj − εδj ≥ 0. It sufficies to check
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Figure 5.7.: A complete picture of the phase space for the forced Fast-ODE. The quantity
uε− will be rigorously defined in Chapter 7.

for j = 0, which is just Definition 5.1.9.

Lemma 5.4.2. If ε < min1≤i≤4{εi}, then for all j > 0

εδj − εδj+1 < |Wj+1 −Wj | < εδj+1 .

Proof. We treat each side of the inequality separately.

Inequality |Wj+1 −Wj | < εδj+1 :

From the Definition of |Wj+1 −Wj−1| in (5.1.5) we must show that

εδj−δj+1 < ε−λ2 ,
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so it is sufficient to show that εδj−δj+1 is bounded. Calculating directly yields

εδj−δj+1 = ε(1+γ)(µj+1−µj)

=

(
Wj+1 + (Wj −Wj)

Wj

)1+γ

=
(
εδj+λ2−µj + 1

)1+γ
. (5.4.1)

A sufficient condition for the inequality to hold is that δj + λ2 − µj is positive, which is
indeed the case since Definition 5.1.3 states that

δj + λ2 − µj = γ(1− λ1)− (2 + γ)µj > λ2 > 0. (5.4.2)

Inequality εδj − εδj+1 < εδj+λ2 :

First observe that the inequality

εδj − εδj+1 < εδj+λ2 , (5.4.3)

is equivalent to
εδj−δj+1 < (1− ελ2)−1. (5.4.4)

Moreover, we already know the RHS of (5.4.4) is equal to (5.4.1). Using Definition 5.1.3
we see that (5.4.1) satisfes the inequality(

εδj+λ2−µj + 1
)1+γ

≤ (ε2λ2 + 1)2 ≤ 1 + (2ελ2)ελ2 + ε4λ2 ≤
∞∑
m=0

εmλ2 , (5.4.5)

where 2ελ2 ≤ 1 due to Definition 5.1.9. Now note that the right-most term in (5.4.5) is
the geometric series representation of the RHS of (5.4.3).

Lemma 5.4.3. If ε < min1≤i≤4{εi}, then

[Wj−1,Wj+1]× [−Wj −Dj ,−Wj +Dj ] ⊂ χ−crit(ε).

Proof. The Lemma can be divided into two smaller statements. We already know from
Definition 5.1.8 that

[Wj−1,Wj ]× [−Wj −Dj ,−Wj−1 +Dj−1] ⊂ χ−crit(ε),

so the first thing to check is if

−Wj +Dj ≤ −Wj−1 −Dj−1.

However, this is trivial because Dj −Dj−1 is negative and Wj −Wj−1 is positive. The
second thing to check, again in light of Definition 5.1.8, is if

−Wj+1 −Dj+1 ≤ −Wj −Dj .

But this inequality is a restatement of Lemma 5.4.2.
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6. Convergence of the non-Diffusing
Variable

6.1. Standing Assumptions about the Forced Fast-ODE

To begin this section we formulate an ODE with its associated notation convention. It
will be analogous to the case where x ∈ Q is fixed and vε(x, ·) is interpreted as a scalar
valued function satisfying the non-autonomous ODE (1.2.6) with forcing term uε(x, ·).
Definition 6.1.1 (Notation Convention for the Forced Fast-ODE). vε : [0, T ]→ R is a
solution to

εv̇ε = f(u, vε), (6.1.1)

where u : [0, T ] → R is a non-autonomous input. This notation convention will be in
place in Section 6.1 and the entirety of Chapter 7.
Condition 6.1.2. u ∈ Cγ [0, T ] with

‖u‖Cγ [0,T ] ≤ Cγ , c(γ) := C
− 1
γ

γ .

This Condition will be in place in Section 6.1 and the entirety of Chapter 7.

In order to proceed directly to a proof of Theorem 1.3.4 we need three Lemmas pertaining
to (6.1.1). We delay the proofs until the subsequent Chapter so that we can prove our
main result as quickly as possible. If a reader is so inclined, they may read Chapter 7
first and return to the current Chapter afterwards.
Lemma 6.1.3. Suppose that u satisfies Condition 6.1.2, ε < ε3 (cf. Definition 5.2.6),
and that for every t ∈ [0, T ], u(t) ∈ (u0, uK) (cf. Definition 5.2.4). Also assume that one
of the following holds (see Figure 6.1):

(i) u(0) = uk and |vε −H−(uk)| ≤ εδnh .

(ii) vε(0) = H−(u(0)).

Then for all t ∈ [0, T ],
(u(t), vε(t)) ∈ χ−hyp(ε).

Lemma 6.1.4. Suppose that (u, vε) satisfy Condition 6.1.2, ε < ε2, and that w(t) ∈
(W0,WJ) for every t ∈ [0, T ] (cf. Definitions 5.1.4–5.1.6 and Definition 5.1.8). Also
assume that one of the following holds (see Figure 6.2):

(i) w(0) = Wj and |vε(0) +Wj | ≤ εµj .
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Figure 6.1.: An illustration of Lemma 6.1.3 with two sample trajectories, one of which
has an initial condition satisfying item (i), the other has an initial condition satisfying
item (ii).

(ii) vε(0) = w(0).

Then for all t ∈ [0, T ],
(u(t), vε(t)) ∈ χ−crit(ε).

Lemma 6.1.5. Suppose that (u, vε) satisfy Condition 6.1.2 . Then there exists an ε6

and a C0 > 1 that defines a value uε− := −C0ε
2
3− with the following properties: If ε < ε6

and if there is a t∗ > 0 such that (see Figure 6.3):

(i) u(0) = 0.

(ii) u(t) ∈ (uε−, 0) for t ∈ (0, t∗).

(iii) u(t∗) = uε−.

Then (u(t∗), vε(t∗)) ∈ χ+
hyp(ε). Moreover, C0 is independent of ε.
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Figure 6.2.: An illustration of Lemma 6.1.4 with two sample trajectories, one of which
has an initial condition satisfying item (i), the other has an initial condition satisfying
item (ii).

6.2. Unstable Interfaces

Definition 6.2.1. If uε : QT → R is simply transverse (cf. Definition 1.2.20) we mean
the following:

(i) For uε(·, t) : Q→ R, we let x̃ε(t) denote the equivalent of x̃(0) and bε(t) denote the
equivalent of b(0).

(ii) The constants Cdx and Cspace are independent of ε.

We now state a straightforward consequence of the Mean Value Theorem that is true of
any simply transverse function.
Lemma 6.2.2. If there exists an x̃(t) ∈ BCspace(b

ε(t)) (cf. Definition 6.2.1), then the
following hold:
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Figure 6.3.: An illustration of Lemma 6.1.5 with a sample trajectory (dashed line with an
arrow head). After the trajectory crosses the line {u = −C0ε

2
3−}, then it will eventually

reach χ+
hyp(ε), even if u(·) subsequently increases.

(i) For every x, y ∈ BCspace(b
ε(t)), one has the inequality

|x− y| < 1

Cdx
|uε(x, t)− uε(y, t)|.

(ii) For x ∈ BCspace(b
ε(t)) the map x 7→ uε(x, t) is injective and

|uε(x, t)| ≤ 2Cdx · Cspace.

We are now ready to define two fundamental objects that act as the equivalent to the
free boundary in the study of (1.2.1)–(1.2.4). In the language of [MR80] and [KS01a],
we are describing the analogue of two sections they place on either side of the fold point
to separate slow and fast motion. This is where the stable branch ofMcrit dissapears in
a saddle node bifurcation hence our descision to use the following nomenclature.
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Definition 6.2.3 (Unstable Interfaces). If uε is simply transverse then we define the
unstable interfaces as the quantities

bε−(t) = max
s∈[0,t]

{x̃ε−(s), b(0)},

bε+(t) = max
s∈[0,t]

{x̃ε+(s), b(0)},

where x̃ε±(t) are the unique values such that uε(x̃ε±(t), t) = uε± and |x̃ε±(t)−bε(t)| ≤ Cspace.
Note that x̃ε±(t) need not necessarily exist.

The most important property of the unstable interfaces is that they separate the critical
sleeve χ−crit(ε) (cf. Definition 5.1.8) and the normally hyperbolic sleeve on the opposite
branch χ+

hyp(ε) (cf. Defnition 5.2.4). We know the height (in the v-direction) of both of
these regions and that a solution (uε(x, t), vε(x, t)) is in a certain sense contained inside
of them (cf. Lemmas 6.1.3 and 6.1.4). However, between bε−(t) and bε+(t) our estimate of
the integrand of (4.1.1) is O(1). For the remainder of this section we will formalize how
to transition between these regions.
Lemma 6.2.4. If x < bε−(t) and uε is simply transverse (cf. Definition 6.2.1) then
(uε(x, t), vε(x, t)) ∈ χ+

hyp(ε).

Proof. In Definition 1.2.20 we stipulated that uε(x, s) < −CdxCspace for every s ∈ [0, t],
and as such if

(uε(x, 0), vε(x, 0)) =
(
uε(x, 0), H+(uε(x, 0))

)
∈ χ+

hyp(ε),

then there does not exist a time t > 0 such that (uε(x, t), vε(x, t)) ∈ χ−hyp(ε). In other
words |uε(x, t) − β| = O(1) so we may suppose that uε(x, t) /∈ πuχ

+
crit(ε). The other

possibility is that we started on the branch H−, namely

(uε(x, 0), vε(x, 0)) = (uε(x, 0), H−(uε(x, 0))) ∈ χ−hyp(ε) ∪ χ−crit(ε).

Then because x < bε−(t), this means that there is a t∗ ∈ [0, t] such that x = x̃ε−(t∗). Now
Lemma 6.1.5 is applicable and hence uε(x, t∗) ∈ χ+

hyp(ε).

Lemma 6.2.5. If x > bε+(t) then one the following holds:

(i) (uε(x, t), vε(x, t)) ∈ χ−hyp(ε).

(ii) (uε(x, t), vε(x, t)) ∈ χ−crit(ε).

Proof. Before starting the proof, recall that (1.2.8) reads vε(x, 0) = H−(ϕ(x)), i.e., we
start on the hysteresis branch.

Let’s begin with treating the cases where uε(x, s) 6= UJ (cf. Definition 5.1.8 and Definition
5.2.6) for every s ∈ [0, t].
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• Suppose that (ϕ(x), H−(ϕ(x)) ∈ χ−hyp(ε) and uε(x, s) ≥ UJ for every s ∈ [0, t]. In
this case one can apply Lemma 6.1.3 directly to conclude that (uε(x, t), vε(x, t)) ∈
χ−hyp(ε).

• Suppose that (ϕ(x), H−(ϕ(x)) ∈ χ−crit(ε) and u
ε(x, s) ≤ UJ for every s ∈ [0, t]. Now

note that the assumption of the current Lemma states that uε(x, s) > uε+ for every
s ∈ [0, T ], or equivalently wε(x, s) > wε+ (cf. Definition 5.1.4) . In this case Lemma
6.1.4 implies that (wε(x, t), vε(x, t)) ∈ χ−crit(ε).

To treat the case where uε crosses UJ suppose that (uε(x, 0), vε(x, 0)) ∈ χ−hyp(ε) and there
exists a t1 ∈ [0, t] such that uε(x, t1) = UJ . Note that this is equivalent to wε(x, t1) = WJ .
However, it is also true that |vε(x, t1) −WJ | ≤ εδnh ≤ DJ , and as such Lemma 6.1.4
holds until there exists a time t2 > t1 where wε(x, t2) = WJ . But indeed this is just
uε(x, t2) = UJ and one repeats a similar argument under the auspices of Lemma 6.1.3.

Lemma 6.2.6. There is a constant C, such that for every t ∈ [0, T ],

|bε+(t)− bε−(t)| ≤ Cε
2
3− .

Proof. Combining Lemmas 3.2.1 and 6.2.2 yields

|bε+(t)− bε−(t)| ≤ |x̃ε−(t)− x̃ε+(t)| = 1

Cdx
|uε− − uε+| ≤

1

Cdx
ε

2
3− .

6.3. Convergence of the non-Diffusing Variable when uε is
apriori Simply Transverse

Remark 6.3.1. Lemma 1.2.10 implies that for every fixed x ∈ Q, uε(x, ·) ∈ Cγ [0, T ].
Moreover, Theorem 1.2.18 and inequality (2.1.5) imply that there is a Cγ such that
for every x ∈ Q and ε > 0, one has ‖uε(x, ·)‖Cγ [0,T ] ≤ Cγ , i.e., every uε(x, ·) satisfies
Condition 6.1.2.
Definition 6.3.2.

Qεcrit(t) :=
{

(x, t) ∈ QT | (uε(x, t), vε(x, t)) ∈ χ−crit(ε)
}
,

Qεhyp(t) :=
{

(x, t) ∈ QT | (uε(x, t), vε(x, t)) ∈ χ−hyp(ε) ∪ χ+
hyp(ε)

}
.

Proof of Lemma 4.1.1. We will provide a proof for q = 1 and highlight where one
needs to modify for the case q > 1.

If one recalls Lemmas 6.2.4 and 6.2.5, any y ∈ Q must belong to one of three sets:
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(i) y ∈ Qεcrit(t).

(ii) y ∈ Qεhyp(t).

(iii) y ∈ (b−(t), b+(t)).

Step-One: Integrate over Qεcrit(t)

Assume that Qεcrit(t) 6= ∅. Consider the integral

ˆ
Qεcrit(t)

|vε −H(ξ0, u
ε)|(y, t)dy.

Note that the map y 7→ uε(y, t) with domain y ∈ Qεcrit(t) is invertible on Qεcrit(t) (cf.
Lemma 6.2.2). As such, we can make a coordinate change that treats U := uε(y, t) as
paramaterizing a curve in the ODE phase space.ˆ

Qεcrit(t)
|vε −H(uε, ξ0)|(y, t)dy =

1

Cdx

ˆ
uε(Qεcrit(t),t)

|vε(U, t)−H−(U)|dU. (6.3.1)

If U ∈ [U0, UJ ] but U /∈ [U0, UJ ] define |vε(U, t)−
√
U | = 0. In addition, replace H−(U)

with −
√
U (cf. item (v) of Condition 1.2.6). With these substitions, let us continue the

calculation in (6.3.1).

1

Cdx

ˆ
uε(Qεcrit(t),t)

|vε(U, t)−H−(U)|dU

=
1

Cdx

ˆ UJ

U0

|vε(U, t) +
√
U |dU

=
1

Cdx

ˆ WJ

W0

|v(W 2, t) +W | · wdw. (6.3.2)

The width of the j-th component of χ−crit(ε) is (Wj+1 −Wj) + Dj+1 + Dj . This allows
us to write (6.3.2) as

1

Cdx

ˆ WJ

W0

|vε(t,W ) +W | · wdw

≤ 1

Cdx

J−1∑
j=0

|Wj+1 −Wj | · |Wj+1 −Wj +Dj+1 +Dj | ·Wj+1

≤ C

Cdx

J−1∑
j=0

|Wj+1 −Wj | · εµj+1 ·Wj+1, (6.3.3)

where in (6.3.3) we have used Dj ≤ 2Dj+1 (cf. Definition 5.1.6 and Lemma 5.4.2).

This sum will in fact be bounded using a second integral (see Figure 6.4). To this end
note that Dj = εγ(1−λ1)−λ2W

−(1+γ)
j (cf. Definition 5.1.5).
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We now encounter a step where we use q ≥ 1. One would need to replace εµj in (6.3.3)
by εqµj , but since εµj < 1 one could argue that εqµj < εµj and proceed. We opt for the
more transparent option of introducing the factor q into the computation. In the next
series of inequalities we will need to bound the quantities W−q(1+γ)+1

j+1 by an integral as
indicated in Figure 6.4.

(6.3.3) ≤ C

Cdx
εq(γ(1−λ1)−λ2)

J−1∑
j=0

W
−q(1+γ)+1
j+1 |Wj+1 −Wj |

≤ C

Cdx
εq(γ(1−λ1)−λ2)

ˆ WJ

W0

W−q(1+γ)+1dW

=
C

Cdx
εq(γ(1−λ1)−λ2)W

−q(1+γ)+2
0

≤ Cε2µ0+q

Cdx(1− γ)
. (6.3.4)

Note that in (6.3.4) we have used Definition 5.1.3. If one recalls (5.1.3) then it’s imme-
diately clear that

ˆ
Qεcrit(t)

|vε −H(uε, ξ0)|(y, t)dy ≤ Cε
2
3−

Cdx(1− γ)
. (6.3.5)

Figure 6.4.: The area enclosed by χ−crit(ε) is bounded above by the integral of W 7→
W−q(1+γ)−1.

Step Two: Integrate over Qεhyp(t)

Assume that Qεhyp(t) 6= ∅ and let us take y ∈ Qεhyp(t) such that (uε(y, t), vε(y, t)) ∈
χ−hyp(ε) (the case y ∈ χ+

hyp(ε) is treated similarly). In particular, there is a k ∈ {0, · · · ,K}
such that uε(x, t) ∈ [uk, uk+1], and the maximum distance of vε(x, t) from H−(uε(x, t))
is εnh + εµ ≤ Cεnh. If we recall Definitions 5.1.6 and 5.2.2, then

|vε(x, t)−H−(uε(x, t))| ≤ Cεδnh ≤ CεδJ ≤ Cεδ0 .
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One can now consult Definition 5.1.3 to see that εδ0 ≤ εµ0 , and as such
ˆ
Qεhyp(t)

|vε −H(ξ0, u
ε)|(y, t)dy ≤ Cεδnh ≤ Cε

2
3− . (6.3.6)

Step Three: Integrate between the unstable interfaces

It remains to calculate the integral over (bε−(t), bε+(t)). Using Lemma 6.2.6 and that
(uε, vε) is uniformly bounded (cf. Theorem 1.2.18), one has that

(ˆ b+(ε)

bε−(t)
|vε −H(uε, ξ0)|q(y, t)dy

) 1
q

≤ C

Cdx
|U− − U+|

1
q ≤ C

Cdx
ε

2
3−·

1
q . (6.3.7)

Combining (6.3.5), (6.3.6) and (6.3.7) one obtains inequality (4.1.1).
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7. Forced Fast-ODE

The goal of this chapter is to prove Lemmas 6.1.3–6.1.5 under Condition 6.1.2. This
means we will be treating (1.2.6) where uε is replaced with a scalar function acting as a
non-autonomous forcing term. We already discussed this briefly in the beginning of the
previous Chapter where we decided to write u without superscript for the forcing term.
We also emphasized that the regularity of u should be the same as that of uε(x, ·).

7.0.1. Some Preliminaries

Lemma 7.0.3. Let vεj and uj for j = 1, 2 satisfy Condition 6.1.2. Suppose that there is
a set A such that (uj(t), v

ε
j (t)) ∈ A for every t ∈ [0, T ], and that for every (u, v) ∈ A

∂f

∂v
(u, v) < 0,

∂f

∂u
(u, v) < 0.

Suppose that for every t ∈ [0, T ], u1(t) > u2(t), and v1(0) = v2(0). Then for all t ∈ (0, T ],
v1(t) < v2(t).

Proof. Observe that uj , vj and f are continuous and that

f(u1(0), v1(0))− f(u2(0), v2(0)) < 0.

In particular, there exists a t∗ ∈ (0, T ] such that for every s ∈ (0, t∗]

f(u1(s), v1(s))− f(u2(s), v2(s)) < 0. (7.0.1)

Now taking t ∈ (0, t∗] one sees that v1(t) > v2(t) since

v1(t)− v2(t) =

ˆ t

0
(f(u1(s), v1(s))− f(u2(s), v2(s))) ds < 0. (7.0.2)

Define tmin = inf{s ∈ (0, T ] | v1(s) = v2(s)} and note that if tmin is well defined, then
due to (7.0.2) one has tmin > 0 and v1(t)− v2(t) < 0 for every t ∈ (0, tmin].

Since u1(tmin) − u2(tmin) > 0, (7.0.1) holds with s = tmin, and because the functions
uj , vj and f are continuous, there exists a δ > 0 such that (7.0.1) indeed holds for
s ∈ (tmin − δ, tmin). As a consequence

v1(tmin)− v2(tmin) = (v1(tmin − δ)− v2(tmin − δ))

+

ˆ tmin

tmin−δ
(f(u1(s), v1(s))− f(u2(s), v2(s))) ds < 0,
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contradicting the definition tmin. Therefore, tmin is not well defined and the Lemma
follows.

Observe that we have so far only encountered regions where f fits the framework of
Lemma 7.0.3, namely f(u, v) for (u, v) ∈ A±hyp and f(u, v) = v2 − u for (u, v) ∈ A−crit (cf.
Condition 1.2.6).

7.1. Invariance Lemma for the Normally Hyperbolic Sleeve

Definition 7.1.1. Consider a fixed uk ∈ πuχ−hyp(ε) with k ∈ {0, 1, · · · ,K} (cf. Definition
5.2.4). The anchored solution vεk is the solution to

εv̇εk = f(uk, v
ε
k). (7.1.1)

Lemma 7.1.2. Anchored solutions satisfy the bound

|vεk(t)−H−(uk)| ≤ |vεk(0)−H−(uk)| exp

(
− t

CLipε

)
.

Proof. Suppose vεk(0) > H−(uk), in particular f(uk, v
ε
k(t)) < 0 for all t ≥ 0 (cf. item

(iii) of Lemma 5.2.1). Expressing vεk(t)−H−(uk) with the variation of constants formula
yields

vεk(t)−H−(uk) = vεk(0)−H−(uk) +
1

ε

ˆ t

0

(
f(uk, v

ε
k(s))− f(uk, H

−(uk))
)
ds.

(7.1.2)
Note that f(uk, H

−(uk)) = 0. If we recall the definition of CLip (cf. item (iv) of Lemma
5.2.1), then a simple application of the mean value theorem yields

f(uk, v
ε
k(s))− f(uk, H

−(uk)) ≤ −
1

CLip
(vεk(s)−H−(uk)). (7.1.3)

Substituting (7.1.2) into (7.1.3) yields

vεk(t)−H−(uk) ≤ vεk(0)−H−(uk)−
1

ε

ˆ t

0

1

CLip
(vεk(s)−H−(uk))ds.

The result now follows from Grönwall’s Lemma (cf. Appendix A).

Proof of Lemma 6.1.3.

• Case: u(0) = uk and |vε −H−(uk)| ≤ d.
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Define the time t1 as

t1 = inf{t ∈ [0, T ] | u(t) = uk−1 or u(t) = uk+1},

otherwise let t1 = T . We now treat three subcases.

Subcase t1 = T :

We claim that the set

(u, v) ∈ [uk−1, uk+1]× [H−(uk)− d,H−(uk) + d], (7.1.4)

is invariant as long as u(t) ∈ (uk−1, uk+1). Indeed the vector field for vε always points
towards {H−(u) = u} (cf. item (iii) of Lemma 5.2.1). Moreover, (7.1.4) is a subset of
χ−hyp(ε).

Subcase u(t1) = uk+1:

Note that since u(t0) = uk and u is continuous, there exists a t0 ≥ 0 such that u(t) ∈
[uk, uk+1] for t ∈ [t0, t1]. Also note that because the RHS of (7.1.4) is invariant we
need only concern ourselves with the possibility that |vε(0) − H−(uk+1)| > d, or more
specifically, that vε(0) > H−(uk+1) + d (see Figure 7.1).

Figure 7.1.: Illustration of the proof of Lemma 6.1.3. vεk(·) (solid line) is an upper bound
for vε(·) (curved dashed line).

Let vεk be the anchored solution satisfying (7.1.1) with vεk(0) = vε(0). Then because
(u(t), vε(t)) and (uk, v

ε
k(t)) satisfy Lemma 7.0.3, we can conclude that vε(t1) < vεk(t1)

(cf. Figure 7.1).

Moreover, the direction of the vector field in χ−hyp(ε) implies that vεk(t1) is also bounded
below, namely

H−(uk+1) < vεk(t1).
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It now suffices to check if vεk(t1)−H−(uk+1) ≤ d.

Recall that d = εδnh by assumption and that vε(0)−H−(uk) ≤ εδnh , so applying Lemma
7.1.2 yields

(vεk(t1)−H−(uk+1)) ≤ (vεk(t1)−H−(uk)) + (H−(uk)−H−(uk+1)),

≤ εδnh exp

(
−(t1 − t0)

εCLip

)
+ CLip|uk − uk+1|.

(7.1.5)

One can factor εδnh from the RHS of the last line of (7.1.5) to obtain

εδnh
(

exp

(
−(t1 − t0)

εCLip

)
+ ε−δnhCLip|uk − uk+1|

)
. (7.1.6)

Because u is Hölder continuous and H− is Lipschitz continuous (cf. Conditions 6.1.2 and
1.2.6 respectively), we can substitute the inequality

|t0 − t1| ≥
(

1

CγCLip

) 1
γ

|uk − uk+1|
1
γ = c(γ)C

− 1
γ

Lip |uk − uk+1|
1
γ ,

into (7.1.6), which when taken together with (7.1.5) means that

(vεk(t1)−H−(uk+1)) ≤ εδnh
(

exp

(
−c(γ)C

−1− 1
γ

Lip ε
−1+µ

γ

)
+ CLipε

−δnh+µ

)
.

The term in the brackets is strictly less than one by Definition of ε3 (cf. Definition 5.2.6),
which completes the proof of the subcase when u(t1) = uk+1.

Subcase u(t1) = uk−1:

This is proved in an almost identical manner to the subcase u(t1) = uk+1 (cf. Figure
7.2).

• Case: v(0) = H−(u(0))

If u(t) ∈ (uk, uk+1) for t ∈ [0, t1), then the maximum distance vε(t) can move from the
critical manifold is |H−(uk) − H−(uk+1)| (see Figure 7.3). Therefore, because ε0 < ε3

(cf. Definitions 5.2.6 and 1.3.5) we have

|vε(t)−H−(u(t))| ≤ |H−(uk)−H−(uk+1)|,
≤ CLipε

µ,

≤ εδnh .
(7.1.7)

If u(t1) = uk, then we are back in the case where u(0) = uk and |vε(t1)−H−(uk)| ≤ εδnh ,
albeit with t1 in place of 0. The same argument applies for u(t1) = uk+1.
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Figure 7.2.: Illustration of the proof of Lemma 6.1.3. vεk(·) (solid line) is a lower bound
for vε(·) (curved dashed line).

7.2. Invariance Lemma for the Quadratic Sleeve

Lemma 7.2.1. For every t ∈ [0, T ] assume u(t) ≥ 0 and define w(t) =
√
u(t) (cf.

Definition 5.1.4). Then for every t0, t1 ∈ [0, T ]

min{w(t0), w(t1)}|w(t0)− w(t1)| ≤ Cγ |t0 − t1|γ . (7.2.1)

Proof. Write w(t) explicitly as
√
u(t) = w(t), apply the mean value theorem to u(t) 7→√

u(t), and note that u(t) is Hölder continuous in t (cf. Condition 6.1.2).

Definition 7.2.2. Consider a fixed Wj ∈ (ε
1
3− , 1) with j ∈ {1, · · · , J} (cf. Definition

5.1.6). The anchored solution vεj is the solution to

εv̇εj = (vεj )
2 − (Wj)

2. (7.2.2)

Lemma 7.2.3. There is a C independent of j and ε such that if vεj (0) < 0, then the
anchored solution vεj satisfies the bound

|vεj (0) +Wj | ≤ C|vεj (0) +Wj | exp

(
−2Wjt

ε

)
, (7.2.3)

In particular, Definition 5.1.9 means that (7.2.3) if (Wj , v
ε
j (0)) ∈ χ−crit(ε).

Proof. Start by writing

(vεj )
2 −W 2

j = (vεj −Wj)(v
ε
j +Wj).
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Figure 7.3.: Illustration of the case v(0) = H−(u(0)) in the proof of Lemma 6.1.3. Be-
cause the vector field point towards H−, all trajectories that start in the dotted box will
remain there until there is a time t1 such that u(t1) = uk or u(t1) = uk+1.

As such, the reciprocal of (vεj )
2 − (Wj)

2 can be expressed in the following way

v̇εj

(
1

vεj −Wj
− 1

vεj +Wj

)
=

2Wj

ε
.

We can now integrate from 0 to t to obtain

|vεj (t)−Wj | = K(t)|vεj (0)−Wj | exp(−2Wk

ε
), K(t) =

|vεj (t)−Wj |
|vεj (0)−Wj |

.

Observe that |vεj (t) − Wj | ≤ 2Wj , and that |vεj (0) − Wj | ≥ Wj . Therefore, K(t) is
bounded independent of j and ε.

Proof of Lemma 6.1.4.

• Case: w(0) = Wj and |vε(0) +Wj | ≤ Dj :

Define the the time t1 as

t1 = inf{t ∈ [0, T ] | u(t) = Wj−1 or u(t) = Wj+1},

otherwise define t1 = T . We now treat three sub-cases.

Subcase t1 = T :

First note that as a consequence of Lemma 5.4.3 we have the inclusion

[Wj−1,Wj+1]× [−Wj −Dj ,−Wj +Dj ] ⊂ χ−crit(ε). (7.2.4)
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Moreover, it’s clear that w(t) ∈ (Wj−1,Wj+1) and as such the LHS of (7.2.4) is invariant
due to the direction of the vector field in A−crit (see Figure 7.4).

Subcase w(t1) = Wj−1:

Because w(·) is continuous and w(0) = Wj , there is a t0 ∈ [0, t1], such that w(t0) = Wj

and
w(t) ∈ (Wj−1,Wj) for t ∈ (t0, t1).

We know from (7.2.4) (see also Lemma 5.4.3) that we only need to to concern ourselves
with the case where

vε(t0) /∈ [−Wj −Dj ,−Wj +Dj ].

The only remaining possibility in this scenario is that vε(t0) < −Wj−1−Dj−1 (cf. Figure
7.4).

Figure 7.4.: Illustration of proof of Lemma 6.1.4 for the case w(t1) = Wj−1. The vector
field in the grey region points toward the line {v + w = 0}. vεj (·) (solid line) is a lower
bound for vε(·) (cuved dashed line).

Consider the anchored solution vεj with v
ε
j (0) = vε(0). Because of Lemma 7.0.3, we know

that vε(t1) > vεj (t1). Moreover, vεj (t1) < Wj−1 because of the direction of the vector field
in A−crit. We therefore obtain

|vε(t1) +Wj−1| ≤ |vεj (t1) +Wj−1|.
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Applying Lemma 7.2.3 and taking out εδj−1 as a pre-factor leads to the series of inequal-
ities

|vεj (t1) +Wj−1| ≤ |vεj (t1) +Wj |+ |Wj −Wj−1|,

≤ εδj−1

[
Cεδj−δj−1 exp

(
−2ε−1Wj(t1 − t0)

)
+ε−δj−1 |Wj −Wj−1|

]
.

(7.2.5)

Let’s now treat the second line of (7.2.5). By the definition of |Wj−1 −Wj | in (5.1.5),
we have

|Wj−1 −Wj |ε−δj−1 = ελ2 . (7.2.6)

Moreover, using Lemma 7.2.1 and replacing Wj with Wj−1 (note that Wj−1 < Wj) we
obtain

exp
(
−2ε−1Wj(t1 − t0)

)
≤ exp

(
−c(γ)ε

−1+µj−1+ 1
γ

(δj−1+λ2+µj−1)
)

≤ exp
(
−c(γ)ε−λ1

)
,

(7.2.7)

where in the second line of (7.2.7) we have used the definition of δj (cf. Definition 5.1.5).
By recalling the Definition of ε2 (Definition 5.1.9) we see that the sum of the RHS of
(7.2.6) and the RHS of (7.2.7) is strictly less than one. This in turn implies that the
term in the square brackets on the RHS of (7.2.5) is strictly less than one.

Subcase w(t1) = Wj+1:

As a consequence of Lemma 5.4.3 we have the inclusion

[Wj ,Wj+1]× [−Wj −Dj ,−Wj +Dj ] ⊂ χ−crit(ε),

and the direction of the vector field in A−crit (see Figure 7.5) tells us we only need to
consider the initial data

vε(t0) ∈ [−Wj+1 +Dj+1,−Wj +Dj ].

We define t0 as in the previous case with Wj+1 in place of Wj−1, and again consider the
anchored solution vεj with vεj (0) = vε(0).

Because of Lemma 7.0.3, we know that vε(t1) < vεj (t1). Moreover, vεj (t1) > Wj+1 because
of the direction of the vector field in A−crit. Using Lemmas 7.2.3 and 7.2.1 we get a series
of inequalities:

|vε(t1) +Wj+1| ≤ |vεj (t1) +Wj+1|
≤ |vεj (t1) +Wj |+ |Wj+1 −Wj |
≤ εδj exp

(
−2ε−1Wj(t1 − t0)

)
+ |Wj+1 −Wj |

≤ εδj+1

(
εδj

εδj+1

)(
exp

(
−2c(γ)ε

−1+
µj
γ

(1+γ)+ 1
γ

(δj+λ2)
)

+ ελ2
)

≤ 2εδj+1

(
exp

(
−2c(γ)ε−λ1

)
+ ελ2

)
,
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Figure 7.5.: Illustration of proof of Lemma 6.1.4 for the case w(t1) = Wj+1. The vector
field in the grey region points towards {U +w = 0}. vεj (·) (solid line) is an upper bound
for vε(·) (curved dashed line).

where to make the f to the last inequality we used Dj < 2Dj+1 (cf. Lemma 5.4.2). Now
invoke the Definition of ε2 (cf. Definition 5.1.9) to obtain

|vε(t1) +Wj+1| ≤ |vεj (t1) +Wj+1| ≤ εδj+1 .

Case vε(0) = w(0):

If w(t) ∈ (Wj−1,Wj) for t ∈ [0, t0], then vε(t) ∈ (Wj−1,Wj) (the analagous argument
for the normally hyperbolic sleeve is shown in Figure 7.3) and hence by Lemma 5.4.3
(w(t), vε(t)) ∈ χ−crit(ε). If w(t0) = Wj−1, then

|vε(t0)−Wj−1| ≤ |Wj −Wj−1| ≤ εδj ≤ Dj−1, (7.2.8)

where the second inequality is just Lemma 5.4.2. This puts you back in the first case of
the current Lemma, in other words, the case which this proof has already addressed. If
w(0) = Wj , then replace |vε(t0)−Wj−1| by |vε(t0)−Wj | in (7.2.8).
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7.3. Fast Motion and Drop Part of a Trajectory

Definition 7.3.1. Given Uexit < 0, let vεexit be the solution to the ODE

εv̇εexit = (vεexit)
2 − Uexit. (7.3.1)

Lemma 7.3.2. The exact solution to (7.3.1) on the time interval t ∈ (t0, t1) is

arctan(
vεexit(t1)

Uexit
)− arctan(

vεexit(t0)

Uexit
) =

Uexit(t1 − t0)

ε
.

Proof. Recall the well known formula.

d

dθ
arctan(θ) =

1

θ2 + 1
. (7.3.2)

We also have
εv̇εexit = (vεexit)

2 + w2
exit,

where Wexit =
√
|Uexit|. The result know follows by making the substitution θ =

vεexit
Wexit

into (7.3.2).

Lemma 7.3.3 (Exiting the Critical Region). Let ε < ε4 (cf. Definition 5.3.2) and
suppose that t0 ≥ 0 and that (−ε

2
3− , vε(t0)) ∈ A−crit. Then there exists a t1 > t0 such that

the solution vεexit to (7.3.1) with fixed Uexit = −ε
2
3− satisfies (−ε

2
3− , vε(t1)) ∈ Sfast and

|t1 − t0|γ ≤ Cε
2
3−, where C is independent of ε.

Proof. From Lemma 7.3.2 we have an explicit formula for vεexit (cf. Definition 5.3.1)
which we can solve for vεexit(t1) = vfast. Since arctan(·) is bounded we obtain

|t1 − t0| ≤ Cε(1− 1
3−)

, |t1 − t0|γ ≤ Cε
2
3− , (7.3.3)

where the last inequality follows from γ(1 − µ0) − 2µ0 > γλ1 + λ2 > 0 (cf. Definition
5.1.3).

Lemma 7.3.4 (Fast Motion). Suppose that t1 ≥ 0 and (ufast, v
ε(t1)) ∈ Sfast where vε(·)

is a solution to (6.1.1) with constant forcing term u ≡ ufast ∈ πuSfast. Then there exists
a t2 > t1 such that (ufast, v

ε(t2)) ∈ Sdrop, and |t1 − t2|γ ≤ Cε
2
3− where C is independent

of ε.

Proof. Because ufast ∈ πuSfast = πuSdrop, there is a constant C > 0 such that |f(ufast, v)| >
C > 0 for v ∈ (vfast, vdrop) (cf. Definition 5.3.1). As such, there must exists a t2 such
that (ufast, v

ε(t2)) ∈ Sfast. In particular, one has

vε(t2) > vε(t1) +
C(t− t1)

ε
.
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Note that |vdrop − vfast| does not depend on ε and hence

|t1 − t2| ≤ Cε, |t1 − t2|γ ≤ Cε
2
3− ,

where the last inequality follows from γ − µ0 > γλ1 + λ2 + µ0 + γµ0 > 0 (cf. Definition
5.1.3).

Definition 7.3.5. Let ε5 be the supremum over all ε such that

CLipCγ

(
ε log

(
6v∞
εnh

)
CLip

)γ
≤ εδnh

3
.

Note that ε5 is well defined because γ > δnh (cf. Definition 5.2.3).
Lemma 7.3.6 (Dropping to χ+

hyp). Suppose that t2 ≥ 0, u ∈ Cγ [t2,∞), and (u(t2), vε(t2)) ∈
Sdrop. Then there exists a t3 ≥ t2 such that for all ε < ε5, (u(t3), vε(t3)) ∈ χ+

hyp(ε), and

|t3 − t2|γ ≤ Cε
2
3− where C is independent of ε.

Figure 7.6.: Illustration of the proof of Lemma 7.3.6. vεanchor(·) with u = uanchor (solid
line) is a lower bound for vε(·) (curved dashed line).

Proof. The maximum height of χ+
hyp(ε) is 2εδnh so the Lemma is certainly true if |vε(t3)−

H+(uε(t3))| ≤ εδnh (cf. Remark 5.2.5). Note that if there exists a t > t2 such that
H+(u(t)) = vε(t), then we are done. Therefore, we need to find a t3 > t2 such that

|H+(u(t3))− vε(t3)| = H+(u(t3))− vε(t3) ≤ εδnh .

For all fixed uanchor ∈ πuA+
crit, let v

ε
anchor be the solution of (7.1.1) with uanchor in place

of uk. Lemma 7.1.2 and Theorem 1.2.18 still hold, in particular, the terminal and initial
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conditions

|vεanchor(t3)−H+(uanchor)| =
εδnh

3
, |vεanchor(t2)−H+(uanchor)| ≤ 2v∞, (7.3.4)

hold if
|t3 − t2| ≤ CLipε log(

6v∞
εnh

). (7.3.5)

Moreover, if ε < ε5 (cf. Definition 7.3.5), then

|H+(u(t2))−H+(u(t3))| ≤ CLip|u(t2)− u(t3)| ≤ CLipCγ |t2 − t3|γ ≤
εδnh

3
. (7.3.6)

Note that because of (7.3.6) we also have

|u(t2)− u(t3)| ≤ εδnh

3CLip
. (7.3.7)

Now let’s make an informed choice of uanchor, namely

uanchor = u(t2) +
εδnh

3CLip
, (7.3.8)

which by (7.3.7) means that Lemma 7.0.3 applies with uanchor > u(t) for t ∈ (t2, t3) (cf.
Figure 7.6). From here we conclude that vεanchor(t3) < vε(t3) and more generally

|H+(u(t3))− vε(t3)| = H+(u(t3))− vε(t3) ≤ H+(u(t3))− vεanchor(t3).

Note that |H+(u(t2)) −H+(uanchor)| ≤ εδnh
3 , and that we can combine this observation

(7.3.4), (7.3.6) to obtain
H+(u(t3))− vε(t3) ≤ εδnh .

To conclude the proof note that by (7.3.5) and because γ > 2µ0 (cf. Definition 5.1.3)

|t3 − t2|γ ≤ Cε
2
3− .

Proof of Lemma 6.1.5.

To begin with let C0 = 1, though we will increase C0 if necessary. Choose ε6 sufficiently

small so that −ε
2
3−
6 ∈ πuA

−
crit, in other words ε6 ≤ ε4 (cf. Definition 5.3.2). Because

u(0) = 0 we have a lower bound on t∗, namely

|u(0)− u(t∗)| = |uε−| = C0ε
2
3− ≤ (t∗)γ . (7.3.9)

78



The goal is to show that we can choose C0 in a way that forces t∗ to satisfy both
(uε(t∗), vε(t∗)) ∈ χ+

hyp(ε) and that (t∗)γ ≤ Cε
2
3− (cf. Figure 7.7). Because u is continu-

ous, there is a t0 ∈ (0, t∗) such that u(t) ∈ [uε−,−ε
2
3− ] for every t ∈ [t0, t

∗]. By Lemma
7.3.3 there is a τ1 > t0 such that

(−ε
2
3− , vεexit(τ1)) ∈ Sfast.

Increase C0 so that C0ε
2
3− < τγ1 and decrease ε6 so that −C0ε

2
3−
6 ∈ πuA

−
crit. By

Lemma 7.0.3 one has vε(τ1) > vεexit(τ1). In particular, there is a t1 ∈ (t0, τ1) such
that (u(t1), vε(t1)) ∈ Sfast.

Next, by Lemma 7.3.4 there is a t2 > t1 such that

(u(t2), vε(t2)) ∈ Sdrop.

Increase C0 so that C0ε
2
3−
6 < tγ2 and decrease ε6 so that −C0ε

2
3−
6 ∈ πuA−crit.

If is not already the case, let ε6 < ε5 and using Lemma 7.3.6, let t3 by a time such

that (uε(t3), vε(t3)) ∈ χ+
hyp(ε). Increase C0 so that C0ε

2
3−
6 < tγ3 and decrease ε6 so that

−C0ε
2
3−
6 ∈ πuA−crit.

Lemmas 7.3.3–7.3.6 also establish that |t3 − t0|γ ≤ Cε
2
3− , more specifically

|t3 − t0|γ ≤ 3 max
i=1,2,3

|ti − ti−1|γ ≤ Cε
2
3− .
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Figure 7.7.: The combined motion of exiting the critical region, making a fast transition
and dropping to A+

hyp. Note that this picture does not indicate the estimates in the
statements of Lemma 7.3.3–7.3.6, but in their respective proof’s.
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8. Conclusion

In this thesis, our main object of study was a reaction-diffusion system with a nonlinearity
that obeys a hysteresis law. This law is realized as an ensemble of scalar hysteresis
operators, one defined at each spatial point and operating independently of one another.

The two scalar hysteresis operators we studied were the non-ideal relay (the limiting
hysteresis problem (1.2.1)–(1.2.4) ) and an ODE with a small parameter ε (the Slow-Fast
System (1.2.6)–(1.2.8)) where the section of its nullcline consisting of stable equilibria
corresponds to the branches of the non-ideal relay (cf. Condition 1.2.6).

The two issues we addressed were:

(i) Well-posedness of the limiting hysteresis problem; Chapter 3

(ii) In what way does the Slow-Fast System approximate the limiting hysteresis problem
as ε→ 0, in particular, with what asymptotics; Chapters 4–7.

We were able to address item (i) in any spatial dimension when the initial data is trans-
verse (cf. Definition 1.2.19) and item (ii) in one spatial dimension when the data is simply
transverse (cf. Definition 1.2.20). The later is restricted to only one spatial dimension,
however, the novel technical difficulties of a general result would aleady appear in the
one-dimensional case. Though item (ii) had been addressed in other PDE settings (cf.
Sections 1.1.1 and 1.1.4), this is the first result to include asymptotics in the variable ε.
Moreover, we established that the order of convergence can be made arbitrarily close to
ε

2
3 depending on the spatial regularity of the initial data. Note that this means one can

be arbitrarily close to the 0th-order approximation of a system of a Fast-ODE coupled
with a Slow-ODE (cf. Section 1.1.3).

8.1. Directions for Future Research

8.1.1. Slow-Fast Approximations for General Transverse Initial Data

In Theorem 1.3.4 we proved that system (1.2.6)–(1.2.8) approximates (1.2.1)–(1.2.4) in
the L∞-norm and that a spatially distributed Forced Fast-ODE (1.2.6) approximates the
corresponding spatially distributed non-ideal relays under the same forcing (1.2.2). Both
had the asymptotics described above.

The main assumption was simple transversality, which can fail if Cdx approaches zero.
Moreover, this can occur if the discontinuities bε(t)→ {0, 1}, in which case the function
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uε(x, t) is still transverse in the general sense, and the limiting problem u(x, t) is still
well defined. The question of how to proceed was not addressed in this thesis.

A possible way forward is to adapt the method of “merging discontinuities" described in
[GTS13], where the authors described how the limiting problem behaves as the disconti-
nuity in H(ξ0, u) approaches the boundary of the domain. In this thesis, we circumvented
this complication by proving uniqueness of the limiting problem with what was effectively
an application of Zorn’s Lemma. (cf. Theorem 1.3.2)

8.1.2. Nonlinearity with Generic Folds

In this thesis we always assumed that the nonlinearity f in the Fast-ODE (1.2.6) was
identical to a quadratic function in a neighborhood of the fold point. However, any
generic fold can be transformed into a quadratic in a neighborhood of a the fold [MR80].
The other crucial Lemma we needed to study the forced Fast-ODE was Lemma 7.2.3.
This Lemma concerned the convergence rate of the fast-subsystem to the equilibria on
the parabola u = v2, in particular, the eigenvalues had to approach zero linearly as
v → 0. This is still true after the coordinate transform described in [MR80] and [Kue15]
that transforms a generic fold into a parabola of equilibria. As such, treating the generic
case should be a technicality.

8.1.3. Blow-up Technique for Non-transverse Initial Data

We have alluded to the similarity of the ε
2
3− asymptotics of Theorem 1.3.4 and its re-

semblance to the ε
2
3 asymptotic expansions of [MR80] and [KS01a]. The authors of both

results tackle the region

{(u, v) ∈ R2 | |u| ≤ ε
2
3 , |v| ≤ ε

1
3 },

by applying a rescaling in u, v and t.

u = ε
2
3U,

v = ε
1
3V,

t = ε
2
3 τ.

(8.1.1)

We amend this rescaling with an additional rescaling in space, namely

x = yε
1
3 . (8.1.2)

Under the rescalings (8.1.1) and (8.1.2), the system (1.2.5)–(1.2.8) becomes

Uτ = Uyy + ε
1
3V, (8.1.3)

Vτ = −U + V 2. (8.1.4)
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Of particular interest is how the initial data ϕ scales in a neighborhood of zero. Let
ϕ ∈ C∞(Q) with a Taylor expansion

ϕ(x) = ϕ(0) + ϕ′(0)x+ ϕ′′(0)x2 + ϕ′′′(0)x3 +O(x4).

If ϕ is not transverse, then necessarily ϕ(0) = ϕ′(0) = 0, and under the rescaling (8.1.2)
one has

ϕ(y) = ϕ′′(0)y2 + ϕ′′′(0)y3ε
1
3 +O(ε

2
3 y4).

So for ε = 0 the 0th-order approximation is ϕ(y) = ϕ′′(0)y2 with y ∈ R.

We know the Riccati ODE is solvable in terms of Bessel functions, and there is one
solution which is asymptotic to the stable part of the parabola for large values of U . In
(8.1.3)–(8.1.4), these special solutions are unfortunately not available. However, recent
work in [GT17] and [GT18] proved the existence of oscillating patterns (which the authors
called rattling) in a spatially discrete version of (1.2.1)–(1.2.4). These oscillations were
independent of the size of the discretization, and as such they may provide some insight
into what sort of asymptotics one should expect in (8.1.4)–(8.1.3).
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A. Grönwall’s Lemma

Lemma A.0.1 ([Hen93, Lemma 7.1.1]). Suppose u is nonnegative and locally integrable
on 0 ≤ t ≤ T < +∞, a is an arbitrary real constant, β > 0, and b > 0. If

u(t) ≤ a+ b

ˆ t

0
(t− s)β−1u(s)ds, (A.0.1)

then
u(t) ≤ aEβ(θt), (A.0.2)

where θ = (bΓ(β))
1
β and Eβ(z) =

∑∞
n=0

znβ

Γ(nβ+1) .

We will use Lemma A.0.1 in the following way.
Lemma A.0.2. Suppose u is nonnegative and locally integrable on 0 ≤ t ≤ T < +∞,
a ∈ R, and b > 0. If

u(t) ≤ a+ b

ˆ t

0
(t− s)

1
2u(s)ds, (A.0.3)

then
u(t) ≤ 2a exp

(
πb2t

)
, (A.0.4)

Proof. The results will follow from Lemma A.0.1 if we can prove the estimate (cf. [Hen93,
Chap. 7,Exercise 1])

d

dz
E 1

2
(z) =

1

(πz)
1
2

+ E 1
2
(z). (A.0.5)

Let’s begin by writing out the first few terms in E 1
2
(z), more specifically

E 1
2
(z) = 1 +

z
1
2

Γ(3
2)

+

∞∑
n=2

z
n
2

Γ(n2 + 1)
. (A.0.6)

Since Γ(3
2) = 1

2

√
π, we get the first term on the RHS of (A.0.5)

d

dz
E 1

2
(z) =

1

(πz)
1
2

+
∞∑
n=2

λ(n)z
n−2
2 , where λ(n) =

n

2Γ(n2 + 1)
. (A.0.7)

It now suffices to show that
λ(n) =

1

Γ(n−2
2 + 1)

.

We divide this last step into two cases.
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• Case: n = 2j

In this case a simple calculation yields

λ(n) = λ(2j) =
j

Γ(j + 1)
=

1

(j − 1)!
=

1

Γ(2j−2
2 + 1)

=
1

Γ(n−2
2 + 1)

. (A.0.8)

• Case: n = 2j − 1

We resort first to the well known formula

Γ(j +
1

2
) =

(2j)!

22jj!
,

which allows us to rewrite λ(2j − 1) as

λ(2j − 1) =
2j − 1

2Γ(j + 1
2)

=
22j−1(2j − 1)j!

(2j)!
.

Writing (2j)! = 2j(2j − 1)! yields

λ(2j − 1) =
22j−2(j − 1)!

(2j − 1)!
=

1

Γ((j − 1) + 1
2)

=
1

Γ(2j−3
2 + 1)

=
1

Γ(n−2
2 + 1)

.
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B. Uniformly Bounded Solutions to
Scalar Reaction-Diffusion Equations

The proofs of these statements are largely based on [Cur14] but for convenience are
reproduced here. Let Q ⊂ Rn be a bounded domain.
Definition B.0.3. Let u ∈ C(QT ) and suppose that u(x, 0) < U∞ for all x ∈ Q. We
say that t ∈ (0, T ] is a U∞-attainability moment of u if there exists an x ∈ Q such that
u(x, t) = U∞. We call the set of all U∞-attainability moments the U∞-attainability set,
and denote it τ .

If (xj , tj) is a sequence of points such that tj → t′ and u(xj , tj) = U∞, then by considering
a convergent subsequence on the compact set QT and noting that u is continuous, it
becomes clear that τ is a closed set.
Definition B.0.4. For any t ∈ τ let X(u, t) = {x ∈ Q | u(x, t) = U∞}.
Definition B.0.5. We call the minimal element of τ the first U∞-attainability moment.
Lemma B.0.6. Let u ∈ C(QT ) and {uj}j>0 ⊂ C(QT ) have U∞-attainability sets τ 6= ∅
(resptively τj 6= ∅) and first U∞-attainability moments t (resptively tj). Moreover, assume
that the following hold:

(i) ‖uj − u‖C(QT ) → 0.

(ii) For all x ∈ Q, both u(x, 0) < U∞ and uj(x, 0) < U∞.

(iii) |tj − t′| → 0.

Then t′ ∈ τ and for any δ > 0, there exists an N ∈ N such that for all n ≥ N , the set
X(uj , tj) lies in the δ neighbourhood of X(u, t′).

Proof. We will first show that t′ ∈ τ . Take xj ∈ X(uj , tj) and form a sequence (xj , tj) ∈
QT . Choose a convergent subsequence (not relabelled) such that (xj , tj)→ (x′, t′) in QT .
Then

|u(x′, t′)− U∞| ≤|u(x′, t′)− u(xj , tj)|+ |u(xj , tj)− uj(xj , tj)|
+ |uj(xj , tj)− U∞|.

(B.0.1)

Consider the RHS of inequality (B.0.1). Reading from left to right, the first term goes
to zero because u is continuous, the second because uj → u in C(QT ) and the term on
the second line is equal to zero because (xj , tj) ∈ X(uj , tj). Thus u(x′, t′) = U∞.
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It remains to show that for all δ > 0 there exists an N ∈ N such that if xj ∈ X(uj , tj)
and n ≥ N , then there is an x′ ∈ X(u, t′) such that ‖x′ − xj‖ < δ. Consider a sequence
of points (xj , tj) with xj ∈ X(uj , tj). Take a convergent subsequence (xj , tj) → (x′, t′),
then reasoning as above we conclude that u(x′, t′) = U∞. If there was a δ > 0 and a
sequence xj ∈ X(uj , tj) such that

inf
x∈X(u,t′)

{‖xj − x‖} > δ,

then converse to this assumption we have just shown that there is necessarily a subse-
quence converging to something in X(u, t′).

Proof of Lemma 2.3.1. Choose U∞ < u∞ sufficiently close to u∞ such that

‖ϕ‖C(QT ) < U∞,

and using the continuity of f0 in the first argument further assume that there is a C > 0
such that for all (x, t) ∈ QT and U sufficiently close to U∞

f0(U, x, t) < C and f0(−U, x, t) > −C. (B.0.2)

We will show that max(x,t)∈QT u(x, t) ≤ U∞ (the statement min(x,t)∈QT u(x, t) ≥ −U∞
is proved similarly).

Let ϕj ∈ C∞(Q) and Fj ∈ C∞(QT ) be sequences of functions such that ϕj → ϕ in W
and Fj → F in Lq(QT ). The functions Fj and ϕj can be constructed by mollifiers (c.f.
[Eva10, App. C,Thm. 6]).

By [LSU68, Chap. 4,Thm. 5.3], for each j the problem
uj;t = ∆uj + Fj(x, t),

uj |t=0 = ϕj ,

∂uj
∂ν

∣∣∣∣
∂QT

= 0,

(B.0.3)
(B.0.4)

(B.0.5)

has a unique classical solution where uj;t means the partial derivative of uj with respect
to t. By Theorem 2.1.1 uj → u in W 2,1

q (QT ) and thus by Lemma 1.2.10 also in C(QT ).
Therefore, it suffices to show that max(x,t)∈QT uj(x, t) < U∞.

To this end, we begin by taking j sufficiently large and then relabel the index in such a
way that ϕj(x) < U∞ for all x ∈ Q and j ∈ N. Let τj , τ ′ be the U∞-attainability sets of
uj , u respectively.

If τ ′ = ∅ or if there is a subsequence τj = ∅ (i.e. uj(x, t) < U∞ for all (x, t) ∈ QT ),
then the Lemma is proved. Therefore, assume that τ ′, τj 6= ∅. Let tj be the first U∞-
attainability moment of uj . Choose a converging subsequence with limit tj → t′ (and
relabelled index j) and note by Lemma B.0.6 that t′ ∈ τ ′.
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Because of (B.0.2)
f0(u(x′, t′), x, t) = f0(U∞, x, t) < −c,

for all (x′, t′) ∈ X(u, t′) and (x, t) ∈ QT . Let Yδ be the intersection of the δ-neighbourhood
of the set X(u, t′)×{t′} with QT . Since u is continuous and f0 is continuous in the first
argument, (B.0.2) implies we can choose δ small enough so that for all (x, t) ∈ Yδ, u(x, t)
is sufficiently close to U∞ to imply that

F (x, t) = f0(u(x, t), x, t) < −C.

If the Fj were constructed via mollifiers, then for sufficiently large j

Fj(x, t) < C − c, (B.0.6)

for all (x, t) ∈ Y δ
2
. By Lemma B.0.6 X(uj , tj)× {tj} can be chosen within distance δ

2 of
X(u, t′)× {t′} for sufficiently large j, i.e., X(uj , tj)× {tj} ⊂ Y δ

2
. Hence

Fj(x, tj) ≤ −C, (B.0.7)

for all x ∈ X(uj , tj). However since ϕj(x) < U∞ and tj was was the first U∞-attainability
moment we must have for k = 1, · · · , n

∂2uj
∂x2

k

(x, tj) < 0, (B.0.8)

for every x ∈ X(uj , tj). Moreover, by (B.0.6) and (B.0.8) every x ∈ X(uj , tj) satisfies

∂uj
∂t

(x, tj) < 0.

Therefore, tj is not the first U∞-attainability moment of uj . This contradiction proves
that τj = ∅, which in turn proves the Lemma.
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C. The Implicit Function Theorem with
Lipshitz Parameters

In this Appendix let X, Y and Z be Banach spaces, X × Y has the L1 -metric

F : X × Y → Z,

and for every x ∈ X, let Fx(y) := F(x, y). This Appendix is loosely based on [CH12,
Chapt. 2].
Condition C.0.7 (Differentiable with Lipshitz Parameter). We assume throughout that
(x0, y0) ∈ X × Y and that there exists a convex neighborhood U of (x0, y0) with the
following properties:

(i) F is Lipschitz continuous in U .

(ii) F(x0, y0) = 0

(iii) For every (x, y) ∈ U , the Fréchet derivative DyFx(y) ∈ L(Y, Z) exists, where
L(Y, Z) is the space of bounded linear operators from Y to Z.

(iv) The map from X × Y to L(Y, Z) defined by (x, y) 7→ DyFx(y) is Lipschitz contin-
uous.

Lemma C.0.8. If F satisfies Condition C.0.7, then for every (x, y) ∈ U and h ∈ Y such
that y + h ∈ U , the function F satisfies

‖F(x, y + h)−F(x, y)‖Z ≤ max
0≤t≤1

‖DyF(x, y + th)‖L(Y,Z)‖h‖Y . (C.0.1)

Proof. This is a simple consequence of the formula found in [CH12, Chap. 2,Thm. 1.3]
which holds for any function with a Fréchet derivative, namely

F(x, y + h)−F(x, y) =

ˆ 1

0
DyFx(y + sh)ds.

Theorem C.0.9 (Implicit function theorem with a Lipschitz parameter). If Condition
C.0.7 holds and DyFx0(y0) is invertible, then there exists a δ > 0, a neighborhood V ⊂
Bδ(x0) and a function a : V → Bδ(y0) such that for every (x, y) ∈ V×Bδ(y0), F(x, y) = 0
if and only if y = a(x).
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Proof. Consider the map Ax : Y → Y defined by

Ax(y) = y − [DyFx0(y0)]−1Fx(y). (C.0.2)

We first claim that for δ > 0 sufficiently small, Ax maps Bδ(y0) to itself. More specifically,
first choose δ > 0 so that B2δ(x0, y0) ⊂ U . Now for ‖h‖Y ≤ δ consider the series of
inequalities

‖Ax(y0 + h)− y0‖Y
≤‖Ax(y0 + h)−Ax(y0)‖Y + ‖Ax(y0)− y0‖Y ,
≤ max

0≤t≤1
‖DyAx(y0 + th)‖L(Z,Z)‖h‖Y + ‖(DyFx0(y0))−1‖L(Z,Y )‖Fx(y0)‖Z , (C.0.3)

where in the second inequality we have used Lemma C.0.8. We now treat each term on
the RHS of (C.0.3). Firstly, note that for every (x, y) ∈ U ,

DyAx(y) = I − [DyFx0(y0)]−1DyFx(y),

= [DyFx0(y0)]−1[DyFx0(y)−DyFx(y0)].
(C.0.4)

Now use that DyFx(y) is Lipshitz in both parameters to obtain

max
0≤t≤1

‖DyAx(y0 + th)‖L(Y,Z) ≤ C‖DyFx0(y0)‖−1
L(Y,Z)(δ + ‖x− x0‖X). (C.0.5)

We also know that Fx(y0) is Lipshitz in the the parameter x and that Fx0(y0) = 0, hence

‖Fx(y0)‖Z ≤ C‖x− x0‖X . (C.0.6)

By choosing δ and ‖x−x0‖X small enough we see that both terms on the RHS of (C.0.3)
are less than δ

2 . In particular, one obtains

‖Ax(y0 + h)− y0‖Y ≤ δ.

We now show that for a suitable choice of δ, Ax is a contraction. To this end, choose
two h1, h2 ∈ Bδ(y0) and consider the difference

‖Ax(y0 + h1)−Ax(y0 + h2)‖Y ,
‖Ax(y0 + h1)−Ax(y0 + h1 + (h2 − h1))‖Y .

(C.0.7)

We now recall that DyAx(y0 + h1) exists on Bδ(y0 + h1) because at the outset we chose
δ such that B2δ(x0, y0) ⊂ U . Using lemma C.0.8 on the map DyAy(y0 + h1) yields

‖Ax(y0 + h1 + (h2 − h1))‖Y ≤ max
0≤t≤1

‖DyAx(y0 + h1 + t(h2 − h1))‖L(Y,Y )‖h1 − h2‖Y .

Because DyAx0(y0) = 0 we have the estimate

max
0≤t≤1

‖DyAx(y0 + h1 + t(h2 − h1))‖L(Y,Y ).

≤C max
0≤t≤1

‖(x0, y0)− (x, y0 + t(h2 − h1))‖X×Y ,

≤C(‖x0 − x‖X + 2δ).

(C.0.8)

Now for ‖x−x0‖X < C−1(1−2δ) we get a contraction. By [CH12, Chap. 2,Thm. 2.1] there
is a unique fixed point of (C.0.2) which we denote y = a(x), such that a(x) = Ax(a(x)),
i.e., Fx(a(x)) = 0.
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D. Well-Posedness of the Slow-Fast
System

In this Appendix we outline a proof that there is a uε ∈ W 2,1
q (QT ) and vε ∈ W 0,1

∞ (QT )
that is a solution (1.2.5)–(1.2.8) in the sense of Definition 1.2.17, and that both uε and
vε are uniformly bounded independent of ε and T . The proof will borrow on the general
framework from Chapter 3 and use some results from Chapter 7.

Firstly consider u0 ∈ Rλ(QT ). We will determine a precise value of T shortly. According
to [Hen93, Theorem 3.3.3], for every x ∈ Q there exists a solution v0(x, ·) ∈ C1(0, T ) to
the ordinary differential equation

εv0;t(x, t) = f(u0, v0). (D.0.1)

where the subscript 0; t means differentiation with respect to the variable t. If we assume
that u∞ is taken sufficiently removed from the fold point at zero, then whenever u0(x, t) is
in a neighborhood of u∞, we must have v0(x, t) ∈ A−hyp. If A

−
hyp is narrow enough (in other

words c∞ is small enough, cf. (1.2.11)), then v0(x, t) < 0. A similar conclusion holds for
A+

hyp and −u∞. Note that ‖v0j‖L∞(QT ) < v∞ where v∞ is defined as in Condition 1.2.15.
Now let

f0(u, x, t) = v0 + c∞(u0 − u), (D.0.2)

and consider the semi-linear equation (2.2.1)–(2.2.3). We would like to prove a result
corresponding to Theorem 3.3.1 by following the steps of that proof. The only main
point of difference is showing continuous dependence of the solution on u0.

Let u0j → u0 in Rλ(QT ) and let v0j be the solution of (D.0.1) with nonlinearity
f(u0j , v0j). We want to know if uj → u where uj solves (2.2.1)—(2.2.3) with nonlin-
earity

f0n(uj , x, t) = v0j + c∞(u0j − uj).
Note that because of Lemma 2.3.1 one has ‖uj‖L∞(QT ) < u∞. The main thing one needs
to check is

‖v0 − v0j‖Lq(QT ) → 0.

We can in fact prove an inequality for L∞(QT ). To this end let u0, u
′
0 ∈ Rλ(QT ) and

temporarily dropping the variable x to make the equations compact, consider

1

ε

ˆ t

0
|f(u0(s), v0(s))− f(u′0(s), v′0(s))|ds,

≤ Ct

ε
‖u0 − u′0‖L∞(QT ) +

C

ε

ˆ t

0
|v0(s)− v′0(s)|ds.

(D.0.3)
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Then according to Appendix A one has

‖v0(·, t)− v′0(·, t)‖L∞(Q) ≤
Ct

ε
‖u0 − u′0‖L∞(QT ) exp

(
Ct√
ε

)
. (D.0.4)

Thus as ‖u0−u′0‖L∞(QT ) goes to zero, so too does ‖v0−v′0‖L∞(QT ). This proves existence
of solutions to (1.2.5)–(1.2.8).

For uniqueness, one can use (D.0.4) for T sufficiently small to conclude that for two pairs
of solutions (u, v) and (u′, v′), one has

‖v − v′‖L1(QT ) < ‖u− u′‖L∞(QT ). (D.0.5)

This gives an analogue of Lemma 3.4.1 from which the uniqueness of solutions follows.
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E. Formalities (Deutsche
Zusammenfassung,
Selbstständigkeitserklärung,
Curriculum Vitae )

Deutsche Zusammenfassung
In dieser Arbeit untersuchen wir Reaktions-Diffusionsgleichungen, deren Nichtlinearität
einem Hysterese-Gesetz folgt. Das Hysterese-Gesetz wird als eine Sammlung skalarer Op-
eratoren umgesetzt, je einer an jedem räumlichen Punkt, die alle unabhängig voneinander
reagieren. Diese Herangehensweise wird durch biologische Anwendungen gerechtfertigt,
bei denen Kombinationen diffundierender und nicht-diffundierender Substanzen inter-
agieren und dabei einem Hysterese-Gesetz folgen.

Die einzelnen Operatoren sind entweder nichtideale Schalter („Relais") oder Lösungen
einer gewöhnlichen Differentialgleichung mit einem kleinen Parameter. Unter einer sehr
allgemeinen Bedingung, der sogenannten räumlichen Transversalität, beweisen wir die
Existenz und Eindeutigkeit der Lösungen des Systems mit den nichtidealen Schaltern.
Außerdem beweisen wir, dass das System mit den gewöhnlichen Differentialgleichungen
das System mit den nichtidealen Schaltern approximiert, wenn der kleine Parameter
gegen Null geht. Im Zusammenhang mit partiellen Differentialgleichungen beweisen wir
zum ersten Mal die explizite Asymptotik in Bezug auf diesen Parameter.
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