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Abstract

In our daily lives we are faced with thousands of decisions: from complex ‘should I cross

while it’s on a red light?’, to abstract ‘do I spell color with o or ou?’, to sensory dominated

questions like ‘did my phone just vibrate?’. To navigate all of these different types of

decisions, the brain has to incorporate a plethora of information from sensory and memory

systems, requiring many neuronal populations from distinct cortical areas to work together.

Neuroscientists posit that cortical oscillations play an important part in this process. I

investigated the role of such cortical rhythms for the short retention of information in

working memory and decision making with three experimental studies.

In all experiments, participants were asked to compare two sequentially presented stimuli.

To solve this task, the first stimulus has to be kept in memory for a short while and is then

compared to the second. While participants held the first stimulus in memory, magneto-

and electroencephalographic recordings revealed a parametric modulation of parietal

and prefrontal beta oscillations with the to-be-remembered stimulus feature. At the same

time, we observed a previously unknown prefrontal gamma power decrease that was

negatively correlated with the beta band effects. Therefore we suspect that there is a

fronto-parietal network that communicates in these two frequency bands during working

memory. In addition, we found decision-related activity in premotor beta power that

encoded participants’ choices 0.7 seconds before they enacted their responses. Moreover,

we also found a well-known parietal signal, which tracked the evolution of the decision

over time. Interestingly, this signal was modulated by the difficulty of the decisions,

indicating that present theories about perceptual decision making need to be extended.
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Zusammenfassung

Der Mensch trifft täglich tausende Entscheidungen, von komplexen (”Gehe ich über die

rote Ampel?“), über abstrakte (”Buchstabiere ich Foto mit F oder Ph?“), zu sensorisch ge-

prägten (”Hat mein Telefon gerade vibriert?“). Das Gehirn muss dabei flexibel auf eine Viel-

zahl von sensorischen Reizen und Entscheidungstypen reagieren. Um dies zu ermöglichen,

arbeiten viele Neurone in ganz unterschiedlichen kortikalen Arealen zusammen. Neuro-

wissenschaftler vermuten, dass kortikale Oszillationen dabei eine zentrale Rolle spielen.

Sie reflektieren das Zusammenwirken vieler Neurone und werden zur Kommunikation

neuronaler Populationen genutzt. In der vorliegenden Arbeit wurde die Rolle einzelner

Rhythmen für das kurzfristige Speichern von Informationen im Arbeitsgedächtnis, sowie

das Treffen von Entscheidungen untersucht.

Dieser Dissertation liegen drei Studien zugrunde, im Rahmen derer Versuchspersonen zwei

nacheinander dargebotene Stimuli vergleichen sollten. Um diese Aufgabe zu bewältigen,

muss der erste Stimulus kurz im Gedächtnis behalten werden. Dann kommt es zur ei-

gentlichen Entscheidung, dem Abgleich der beiden Stimuli. Bei diesem Versuch konnten

wir mit Hilfe von Magneto- und Elektroenzephalographie Oszillationen messen, die sich

mit den Stimuluseigenschaften veränderten. Arbeitsgedächtnisprozesse waren dabei mit

Beta-Oszillationen assoziiert. Insbesondere zeigten sich parietale und präfrontale Beta-

Oszillationen, die mit Gamma-Oszillationen im präfrontalen Kortex zusammenspielten.

Daher vermuten wir, dass ein fronto-parietales Netzwerk für das Behalten von Stimulus-

Information von Bedeutung ist und diskutieren im Folgenden zugrundeliegende Mecha-

nismen. Außerdem konnten wir während des Treffens von Entscheidungen prämotorische

Beta-Oszillationen messen, die 0,7 Sekunden vor der Antwort der Versuchsteilnehmer die

Entscheidung reflektierten. Darüber hinaus zeigten sich auch bekannte parietale Signale,

die den Prozess der Entscheidungsfindung abbildeten. Interessanterweise waren diese

Signale vom Schwierigkeitsgrad der Aufgabe abhängig. Dies spricht dafür, dass aktuelle

Theorien zu neuronalen Grundlagen der Entscheidungsfindung ergänzt werden müssen.
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Introduction 1
In this particularly hot summer it is not beyond imagination that you choose to buy

a watermelon from a small stand on the way home. Of course, you wish to buy not

any watermelon, but a ripe and juicy one. According to humourist literature (”fixating

the melon’s secret”, Kishon & Labatzke, 1975) the procedure of selecting a ripe and

juicy melon consists of looking, feeling, smelling, and listening for a hollow sound and

then comparing these features to another watermelon. Moreover, if the quality of tested

watermelons doesn’t suit you, you go to the next stand and try the ones there. This example

encompasses several features of typical decision-making tasks used in neuroscience. To

find just the right watermelon you need to perceive the colour, texture, smell, and sound.

Then, you must keep this information for a short while in memory before testing the

subsequent watermelon. Finally, you are tasked with judging which one was better:

making a decision. Neuroscientists use such tasks in simple form to have control about

the mental steps necessary to correctly solve this problem. For example, they would

typically let participants only see the melons and let them decide between two, a challenge

called ‘sequential comparison task’. Or an experimenter would give participants the job

of testing watermelons from multiple stands and deciding whether they were of good or

poor quality. In this case, a person would need to sequentially sample watermelons up until

she is confident that the particular stand sells good- or poor-quality fruit. In contrast with

the study of psychophysics, which tests only the behaviour of participants, neuroscientists

typically also record signals from the brain during such tasks and try to determine the

neural basis of each mental step (e.g., perceiving, memory, making a decision).

In the present thesis, I will introduce how neuroscientists study such decisions in humans

and other species. I will describe major lines of research investigating the neural substrates

of the outlined mental steps using two well-studied experimental paradigms that fit to the

aforementioned watermelon selection: sequential comparison and sequential sampling

tasks. Then I will present my contribution to this field of research in the form of three
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1 Introduction

studies that provide new insights into human working memory and decision making with

magneto- and electroencephalography (M/EEG). Subsequently, I will link my findings to

the larger context of current research and point to future avenues.

1.1 Researching perceptual decision making

The study of human decisions has a long history reaching back to ancient Greece (Aristotle,

1987; Epicurus, 1940). Whereas Greek philosophers argued for a nonmaterial soul deter-

mining all behaviour, the Enlightenment challenged this view and in particular Descartes

(1649) advocated a dualist approach, where simple motor behaviours could be explained

by actions of the material body (Descartes & Hall, 1664; Descartes & Monnoyer, 1988).

In the 19th century Gustav Fechner went one step further and used empirical methods

(Bacon, 1620) to unite behavioural measures with subjective, individual perception (Fech-

ner, 1860). Similar to my introductory task with watermelons, Fechner tasked volunteers

to lift two weights in succession and questioned them which was heavier, a sequential

comparison task. This simple task provides a powerful tool to study human behaviour,

because it allows to control an objective stimulus variable – the weight – and observe

subjective perceptual differences between stimuli. Using this approach, Fechner was able

to describe a logarithmic mapping between the physical magnitude of a stimulus and the

extend of sensation it produces, the Weber-Fechner law that gave first insights into possible

constraints of how information is processed by humans. Psychophysics, as Fechner called

his mathematical descriptions of human psychology, has been aided in the study of the

human brain by the invention of signal detection theory (SDT). Originally used to classify

the detection of weak signals, the SDT proposes that an observer can respond to a stimulus

in four ways: detect (hit), not detect (miss), detect the absence (correct reject), erroneously

detect (false alarm). The advantage over conventional methods of only analysing hits and

misses is that the SDT assumes an internal measurement of the stimulus feature that is

proportional to the actual feature but includes noise. Therefore, also correct rejections and

false alarms provide evidence for the internal measurement. The decision process for a

2



1.2 Sequential comparison tasks

given stimulus can be modelled as taking a sample of two overlapping noisy (gaussian)

distributions and applying a simple criterion. Most notably for the present thesis, we can

take multiple samples from a stimulus over time and get ever-improving estimates of

whether the stimulus belongs in one or the other part of the two overlapping distributions.

Conceptually, this can be seen as accumulating evidence before applying a criterion. In the

context of decision making studies, the internal measurement that we take for a stimulus

is often referred to as a decision variable (DV). This DV has been linked closely to neuro-

science, because an area involved in decision making should exhibit neural activity that

correlates with the DV throughout an experimental task (Gold & Shadlen, 2007; Tanner &

Swets, 1954). Experiments therefore are usually optimized to separate the mental steps

involved in the decision processes in time or include only one stimulus feature that has

to be detected by accumulating evidence. In the following, I will introduce results from

two of the most common experiments operationalized to investigate the neural activity

underlying decision making.

1.2 Sequential comparison tasks

Sequential comparison tasks, as Fechner used, are still an important tool to study psy-

chophysics and have had a great impact onto neuroscience when used in conjunction with

measurements of neural responses from the brain of primates and rodents. Mountcastle,

Talbot, Sakata, and Hyvärinen (1969) were first to train monkeys in a vibrotactile version

of this task, termed sequential frequency comparison (SFC) task, and recorded neural data

(Mountcastle, Steinmetz, & Romo, 1990; Mountcastle, Talbot, Dar-Smith, & Kornhuber,

1967). In this setup (figure 1.1), a subject is presented with two vibrotactile frequencies

in the flutter range ( 5-50 Hz), namely frequency 1 (f1) and frequency 2 (f2). The task

is to decide whether the second (f2) frequency is higher or lower than the first (f1). To

solve this challenge the subject must sequentially go through cognitive processes that

are classically split into four parts. First, f1 is perceived. Second, f1 is being kept in

memory, while the subject waits for the subsequent stimulus. Third, f1 is compared with

3



1 Introduction

Figure 1.1: Sequential frequency comparison (SFC) task. Two vibrotactile frequencies are presented
to the index finger in succession, f1 and f2. The task is to decide whether f2 is larger than f1 or
vice-versa. Between f1 and f2 is a working memory interval in which the frequency of the first
stimulus has to be retained. After perception of f2, responses are made, typically via button press
or saccade.

the perception of f2, thereby forming a decision. Fourth, the subject reports the choice,

usually by pressing a button or enacting a saccade to a choice-specific visual target.

1.2.1 Sequential comparison tasks: perception

Perception of the first stimulus drives quickly adapting (QA) neurons in Brodmann areas

1 and 3b of the contralateral primary somatosensory cortex (SI). These neurons receive

afferent signals from mechanoreceptors in the skin, which are routed via the Thalamus and

are closely interconnected (Merzenich & Harrington, 1969; Mountcastle et al., 1967; Talbot

& Mountcastle, 1968). The majority of monkey SI neurons align their spiking activity to

the periodicity of the stimulus, which can also be observed in human M/EEG as steady-

state evoked potentials/fields (SSEP/F) (Mountcastle et al., 1990; Nangini, Ross, Tam,

& Graham, 2006; Tobimatsu, Zhang, & Kato, 1999). Moreover, a portion of S1 neurons

increase their firing rate monotonically with increasing vibrotactile frequency (Hernández

et al., 2010; Hernández, Zainos, & Romo, 2000; Lemus, Hernández, Luna, Zainos, & Romo,

2010; Luna, Hernández, Brody, & Romo, 2005; Salinas, Hernández, Zainos, & Romo,

2000). Notably, only those QA neurons that modulate their firing rates by the vibrotactile

frequency showed differential patterns in error trials, indicating that the brain uses these

neurons to inform behaviour (Salinas et al., 2000). Therefore, it is well-established that the

firing rates and the rhythmic SSEF/Ps observed with M/EEG represent the encoding of
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1.2 Sequential comparison tasks

sensory evidence on which later decisions are based. Interestingly, the firing rate predicts

the monkeys’ behaviour better than the periodicity of the neural responses and while

periodicity is high in SI, it is almost absent in SII, speaking against a communication

mechanism through periodic firing as would be predicted from SSEF/Ps (Hernández et al.,

2000; Luna et al., 2005; Salinas et al., 2000). An alternative possibility is that QA neurons

encode stimuli by the number of discrete bursts of spikes instead of single spikes. Such

a coding scheme has been observed in visual tasks and has been suggested to efficiently

encode stimulus features (Kepecs & Lisman, 2003; Kepecs, Wang, & Lisman, 2002; Krahe &

Gabbiani, 2004; Reinagel, Godwin, Sherman, & Koch, 1999; Romo & de Lafuente, 2013).

Notably, because other relevant monkey work has focused on bursts (e.g., Lundqvist et al.,

2016), the stimulation times extend beyond the time of a burst in these vibrotactile studies

(always 500ms) and therefore a code based on spikes is indistinguishable to one based

upon bursts (Romo & de Lafuente, 2013). However, it remains unclear if bursting covaries

with behavioural performance on a trial-by-trial level as has been observed for spikes

(Luna et al., 2005). Regardless whether bursting or spiking underlies an encoding by rate,

such a code could be positively or negatively correlated in upstream areas, as is observed

throughout the sensorimotor hierarchy in this task including SII, prefrontal and motor

cortices (Hernández et al., 2010; Salinas et al., 2000).

1.2.2 Sequential comparison tasks: working memory

Such a dual rate code, with populations either increasing or decreasing with stimulus

frequencies, was also observed in the absence of stimulation: during the short retention

interval between f1 and f2. In particular, Romo, Brody, Hernández, and Lemus (1999)

recorded from the inferior convexity of the prefrontal cortex and identified neurons whose

firing rate changed monotonically with the vibrotactile frequency held in working memory

(WM). Visual tasks have long associated sustained prefrontal firing with WM (Funahashi,

Bruce, & Goldman-Rakic, 1989; Fuster & Alexander, 1971; Goldman-Rakic, 1995), however,

this study demonstrates that the contents of WM can directly map onto firing rate changes

in single neurons. Further analyses indicate that the representation of stimulus information
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1 Introduction

by population dynamics of prefrontal neurons degrades after stimulus presentation, but

re-emerges with different tunings towards the end of the working memory delay (Barak,

Tsodyks, & Romo, 2010). This is particularly interesting, because it challenges the view that

WM is encoded in sustained firing throughout delay periods, with biophysically plausible

alternatives both in rhythmicity (Fiebig & Lansner, 2017; Lundqvist, Herman, Warden,

Brincat, & Miller, 2018; Lundqvist et al., 2016) and synaptic changes (Mongillo, Barak, &

Tsodyks, 2008; Stokes, 2015). This current high-level debate (for either side, see: Constan-

tinidis et al., 2018; Lundqvist, Herman, & Miller, 2018) is so interesting for vibrotactile SFC

studies, because firing rates directly represent the contents of WM, not overall changes.

Recent evidence, however, suggests that both single neurons and populations may be

responsible for WM in this task. Haegens, Vergara, Rossi-Pool, Lemus, and Romo (2017)

recorded local field potentials (LFPs), which reflect local neuronal ensembles, and single

neurons from monkey premotor cortex during a multimodal version of the SFC task. They

found a modulation of LFP beta oscillations reflecting the stimulus features during WM.

In addition, premotor spike-field coherence with the beta band was also related to the

stimulus features, indicating a tuning of firing rate to this rhythm. These findings suggest

that both population-related beta modulations and the closely affiliated spike activity

encode the contents of WM.

This close coupling of beta oscillations with spiking activity underlying tactile WM has

also been suspected from a series of EEG studies. Spitzer, Wacker, and Blankenburg

(2010) gave human volunteers a similar SFC task and found a parametric modulation of

the beta band in the right inferior frontal gyrus (IFG), suggesting that both monkey and

human prefrontal cortices (PFC) exhibit content-specific activity during WM. In a follow-

up study, Spitzer and Blankenburg (2011) demonstrated that this prefrontal activity was

independent of encoding processes, by retro-cueing to one of two presented vibrotactile

stimuli. Furthermore, Spitzer and Blankenburg (2012) hypothesized that this parametric

encoding of abstract magnitudes was supramodal. In addition to the tactile task, they

implemented a sequential visual flicker and a sequential acoustic flutter comparison task.

Across all these modalities, prefrontal beta power monotonically encoded the frequency
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1.2 Sequential comparison tasks

information of the stimulus. However, this parametric code consists of a monotonic

increase in beta power with the vibrotactile stimulus held in working memory and did

not exhibit the negative component of a dual code as had been observed in monkey PFC

(Romo et al., 1999). Because the precise link between the large-scale signals recorded with

EEG and single neuron firing rates are poorly understood, it remains unclear whether

the difference in power reflects a population imbalance of the dual code observed in

monkeys, where about 60% of modulated neurons reflected a monotonic increase (Romo

et al., 1999; Spitzer et al., 2010). This is of particular note, because working memory has

been associated with sustained firing rates in the PFC (Funahashi et al., 1989; Fuster &

Alexander, 1971; Goldman-Rakic, 1995; Pasternak & Greenlee, 2005) and gamma, not beta,

appears to be closely related to neural firing rates even when recorded with surface EEG

(Whittingstall & Logothetis, 2009). However, increases in gamma activity during working

memory do not necessarily reflect sustained firing rates, but a more dynamic system of

neural firing patterns (Cromer, Roy, & Miller, 2010; Durstewitz & Seamans, 2006; Shafi

et al., 2007; Stokes et al., 2013). Indeed, recent monkey recordings revealed a pattern of

brief gamma bursts accompanying encoding and re-activation of stimulus information

while beta bursts reflected a default state of maintenance that was interrupted by gamma

(Lundqvist et al., 2016). Notably, it is quite possible that such short gamma bursts have

been averaged out of datasets by summation over multiple trials to increase the signal to

noise ratio in previous human recordings (Stokes & Spaak, 2016). Furthermore, during

EEG recordings the skull acts as a low-pass filter (Pfurtscheller & Cooper, 1975), making it

difficult to pick up on gamma oscillations. The only MEG study investigating gamma in

an SFC task, found overall gamma increases in SI, SII and frontal cortices during working

memory, but did not investigate the parametric encoding of stimulus features (Haegens,

Osipova, Oostenveld, & Jensen, 2010). Therefore, it remains an open question how the

parametric beta band modulations observed by Spitzer and colleagues are associated with

dynamic changes in gamma frequencies.
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1 Introduction

1.2.3 Sequential comparison tasks: decision making

The next part of the SFC task, comparing f1 and f2 to form a decision is associated

with neural firing in premotor cortices (PMC) that are modulated by subtracting f1 from

f2 (Hernández et al., 2010; Hernández, Zainos, & Romo, 2002; Jun et al., 2010; Romo,

Hernández, & Zainos, 2004), which has also been observed in SII (Romo, Hernández,

Zainos, Lemus, & Brody, 2002). Notably, the decisions were indicated by button press and

therefore likely associated with PMC rather than with FEF when responses are indicated

with saccades (see also Gold & Shadlen, 2007). Underlining this function, the PMC firing

rates were modulated reversely during incorrect trials, indicating that they followed the

monkey’s choice rather than the physical attributes of the stimuli (Hernández et al., 2002;

Romo et al., 2004). Most interestingly, because the retention of vibrotactile stimuli was

associated with beta power in humans (Spitzer et al., 2010), Haegens, Nacher, Luna,

Romo, and Jensen (2011) recorded local field potentials (LFPs) from monkey PMC and

found that beta band power reflected the difference between f2 and f1. Importantly,

when monkeys were instructed to respond independent of the task, neural firing and

beta LFPs were not modulated by the decision process in PMC (see also Haegens et al.,

2017). These findings in monkeys correspond well to recent EEG studies extending a role

of the beta band for decision making to humans during this task (Herding, Ludwig, &

Blankenburg, 2017; Herding, Spitzer, & Blankenburg, 2016). Agreeing with Haegens et al.

(2011), Herding et al. (2016) demonstrated that beta band power in premotor areas was

modulated by participants’ choices, always with the decision outcome f2 > f1 resulting in

a larger beta response than the outcome f2 < f1. These same findings were replicated for

saccade responses, and in line with an intentional framework for decision making (Shadlen,

Kiani, Hanks, & Churchland, 2008), the beta modulation was source localized to the FEF

instead of PMC (Herding et al., 2017). Moreover, these studies used Bayesian modelling of

participants’ behaviour to estimate the subjective contribution of beta to choices, revealing

both a clear pattern of beta invariant to the response mapping (index/middle finger) and

a scaling by choice even when trials were incorrect. Yet, it remains unclear whether this

choice-related beta band effect in the EEG extends beyond somatosensory processing,

8



1.3 Accumulation of evidence tasks

which has been associated closely with this frequency band (Pfurtscheller, 1981).

Building upon this finding of choice-related beta modulation, Ludwig, Herding, and

Blankenburg (2018) added a response delay to this task, in which the response mapping

was not provided. With this slight change in setup, they found an almost identical beta

band effect in the posterior parietal cortex (PPC), but not in premotor areas. This indicates

that premotor areas are only directly involved in the decision process when the decision

outcome is known. The PPC on the other hand appears to fulfil an effector-unspecific role

and might have a more general role in the decision process. This is particularly interesting,

because another parietal signal, the classic P300 (Chapman & Bragdon, 1964; Sutton,

Braren, Zubin, & John, 1965), has long been associated with decision making (Donchin

& Cohen, 1967; Rohrbaugh, Donchin, & Eriksen, 1974). More so, the P300, recently also

termed centro-parietal positivity (CPP - more on it later), has been theorized not to reflect

a unitary neural event after stimulus onset, but a dynamically changing neural signature

of making a decision over time (Twomey, Murphy, Kelly, & O’Connell, 2015). Thus, the

question remains how the choice related beta band effect in SFC tasks relates to decision

signals in other paradigms, specifically the CPP and beta-gamma modulations observed

with MEG in accumulation of evidence tasks (Donner, Siegel, Fries, & Engel, 2009; Donner

et al., 2007; Kelly & O’Connell, 2013, 2015; O’Connell, Dockree, & Kelly, 2012; Philiastides,

Heekeren, & Sajda, 2014; Twomey, Kelly, & O’Connell, 2016; Twomey et al., 2015)

1.3 Accumulation of evidence tasks

The other line of research I want to introduce builds also on Fechner’s work on psy-

chophysics, and in particular is the result of his legacy in mathematical psychology that

drove ever-improving accounts of choice behaviour throughout the 20th century. This led

to the development of signal detection theory, which as previously mentioned, has the ad-

vantage of taking into account noise behaviour and the structure of incorrect trials (Tanner

& Swets, 1954). Neuroscientific experiments have used this theory to model perceptual

9



1 Introduction

Figure 1.2: Example of random-dot motion kinematogram. The white dots represent the dots
moving randomly, the black ones the coherently moving dots. The task is usually to detect coherent
motion, varying the number of coherently moving dots determines the difficulty and time needed
to perform the judgement.

decision making as a process of sequential sampling that results in an accumulation of

evidence for a decision. Underlying this model is the idea that a decision variable (DV)

represents the set of all evidence for a decision and for binary choices modern models

posit a single mechanism that accumulates evidence over time for one choice over another

(Shadlen & Kiani, 2013). For example, in our introductory example when we strive to find

a good watermelon stand, we would sample melons from one stand sequentially, until we

are sure the stand sells fruit of high or low quality. Every time we try a fruit, we would

get a piece of evidence in favour of one possible choice, which over time accumulates

to inform a decision – typically modelled as crossing an absolute bound. The neurosci-

entific hypothesis is that one decision variable tracks the current state of such evidence

accumulation and that we can observe such a variable in the brain.

To track this neural correlate of perceptual decision making, neuroscientists have used

predominantly one decision making task: the random-dot motion (RDM) direction discrim-

ination. In the RDM task (figure 1.2) participants are shown dots on a monitor that move

around. A portion of these dots move coherently in the same direction and the challenge is

to detect this movement. Because the number of dots moving coherently is typically low

and movement can only be spotted through a change over time, the perceptual challenge is

usually difficult, and it can take between a few hundred milliseconds to seconds to detect

the motion. Moreover, because the dots typically move randomly, it is possible to perceive

a wrong direction.
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This task is particularly powerful for psychophysics, because it requires no distinct working

memory process and it lends itself well to be modelled as an accumulation-to-bound

process (O’Connell, Shadlen, Wong-Lin, & Kelly, 2018). In such models it is assumed

that subjects continuously sample from the dot-motion stimulus, perceive the motion

direction of individual dots and accumulate evidence for one direction over time. When

participants have a level of confidence in the direction, the decision bound is crossed

and the decision communicated. This is usually done in monkey experiments by eye

movements. The model can be further simplified by having the subjects decide between

two opposite directions that are known in advance, thus becoming a binary accumulation

process. Notably, because choices are typically indicated by performing a saccade to

one of two targets associated with the choices, the decision process can be treated as a

process of movement selection. Therefore, beyond motion sensitive neurons in MT/V5,

recordings are primarily carried out in those areas associated with motor preparation

and eye-movement execution, resulting in neural correlates of a decision variable in the

superior colliculus (SC), frontal eye fields (FEF), lateral intraparietal area (LIP) and the

dorsolateral prefrontal cortex (DLPFC) (for review see Gold & Shadlen, 2007).

1.3.1 Accumulation of evidence tasks with nonhuman primates

Employing the RDM task while recording from macaques, Britten, Shadlen, Newsome,

and Movshon (1992) were able to link a small set of middle temporal visual area (MT/V5)

neurons to concurrent choice behaviour. Even when the coherence was at 0% and all dots

were moving randomly, MT firing rates predicted choices significantly (Britten, Newsome,

Shadlen, Celebrini, & Movshon, 1996). Motion sensitive neurons in area MT are well-

known to respond strongly to visual stimuli moving in a particular direction, exhibiting

tuning to stimuli moving through their receptive fields (Baker, Petersen, Newsome, &

Allman, 1981; Van Essen, Maunsell, & Bixby, 1981; Zeki, 1974, 1980). Using this knowledge

of systematic motion direction organization in MT, microstimulation has been used to

successively activate motion direction specific systems, thereby demonstrating a causal

relationship of MT neurons for task performance (Ditterich, Mazurek, & Shadlen, 2003;

11
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Salzman, Britten, & Newsome, 1990; Salzman, Murasugi, Britten, & Newsome, 1992). Most

interestingly, when using a version of the RDM task with the opportunity to respond as

soon as possible, MT microstimulation influences both choice and RTs in the stimulated

neurons’ preferred motion direction. In turn, when MT neurons are deactivated, the

decision making process is impaired, likely because the sensory encoding is interrupted

(Katz, Yates, Pillow, & Huk, 2016). On a functional level these findings indicate that

MT processes the motion information and thus provides the sensory evidence on which

decisions are formed.

To find out the neural substrates of a decision variable, a large body of monkey recordings

targeted the FEF, because it is well-connected to visual areas, and known to encode the

saccade processing required to respond in the RDM paradigm (Felleman & Van Essen,

1991; Hanes & Schall, 1996; Schall, Hanes, Thompson, & King, 1995; Schall & Morel, 1995;

Thompson, Hanes, Bichot, & Schall, 1996; Van Essen, Anderson, & Felleman, 1992). More-

over, suprathreshold electrical stimulation evokes saccades while subthreshold stimulation

elicits changes to saccade selection and spatial attention (Burman & Bruce, 1997; Moore &

Armstrong, 2003; Moore & Fallah, 2001; Robinson & Fuchs, 1969). Gold and Shadlen (2000)

interrupted motion viewing during the evidence accumulation process while monkeys

viewed the RDM stimuli. Then they immediately applied a short electrical current to the

FEF, which resulted in a saccade whose direction and amplitude was influenced by the

current state of the decision process, reflecting the evolution of a decision variable (Gold &

Shadlen, 2000; Gold, Shadlen, & Munoz, 2003). However, while the FEF is clearly involved

in the decision process, it appears that only a small part of FEF neurons track the DV, while

others encode stimulus properties during and after the decision, possibly to evaluate the

outcome (Ding & Gold, 2012). Together, these studies indicate that the FEF is related to

action-performance in RDM tasks with saccade responses, but also encodes stimulus and

outcome related information.

Besides the more perceptual aspects of MT and the action-related activity in FEF, the

lateral intraparietal area (LIP) has been extensively studied in RT-dependent versions of

the RDM task. LIP has been focused on, because anatomically it receives inputs from
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MT and outputs to the FEF (Andersen, Brotchie, & Mazzoni, 1992; Blatt, Andersen, &

Stoner, 1990; Lewis & Van Essen, 2000). In particular, the LIP is tightly coupled to areas

involved in eye movement control (Andersen, Asanuma, Essick, & Siegel, 1990). LIP

neurons fire when a saccade is planned into their receptive fields (Andersen, Essick, &

Siegel, 1987) and its neurons fire persistently when an animal withholds a saccade to a

target (Barash, Bracewell, Fogassi, Gnadt, & Andersen, 1991; Gnadt & Andersen, 1988).

Thus, LIP function appeared to be between perceptual processing and eye-movement

execution, responsible for sensorimotor integration mediated by cognitive control (for

review, Andersen & Buneo, 2002). Therefore, it was unsurprising when Shadlen and

Newsome (1996, 2001) demonstrated that activity in LIP neurons, whose receptive fields

were aligned with visual targets in the RDM task, increased before saccades to these

targets were executed. Surprisingly however, single neuron activity was modulated by

the presentation of dot-motion and correlated with RDM coherency. That is, activity

reflected the difficulty of individual RDM patches by faster increases of firing rates in easy

trials, indicating that LIP neurons tracked the evolution of the decision process. Most

interestingly, LIP firing rates accumulated to a fixed threshold at the time of response

independent of trial difficulty, fitting to drift-diffusion models of decision processing

(Roitman & Shadlen, 2002a; Shadlen & Newsome, 1996, 2001). Contrary to MT however,

LIP microstimulation appears to only slightly affect choice and RT (Hanks, Ditterich,

& Shadlen, 2006). Moreover, when short motion pertubations were added to the RDM

kinematogram, RT and choices were modulated by these over a sustained period of time

(Huk, 2005). Together, these findings indicate that LIP neurons reflect the integration

of decision information over time and microstimulaton pertubations drive the encoded

decision variable with respect to a decision bound.

Most relevant to the present thesis (task design study 1 & 3), when responses could not

be immediately taken and monkeys had to map targets to a spatially undetermined color-

code, LIP neurons still represented the DV even though no specific saccade planning

was possible (Bennur & Gold, 2011). This indicates that LIP function includes tracking

the evolving DV independent of a specific motor response. However, a recent study
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using causal de-activation of LIP neurons during decision formation suggests that LIP

neurons may not be critical for computing perceptual decisions, and may only reflect

secondary processes that correlate with the actual computation (Katz et al., 2016). This

is particularly interesting, because concurrent recordings from six regions involved in

decision making including MT, FEF and LIP suggest that information is not confined

to specific cortical regions but shared among relevant brain areas and transmitted via

bursts (Siegel, Buschman, & Miller, 2015). This observation ties in well with earlier studies

suggesting that decision information is present even in areas functionally specific to early

visual processing and may be communicated there via feedback from downstream cortices

(Donner, Sagi, Bonneh, & Heeger, 2008; Nienborg & Cumming, 2009; Siegel, Engel, &

Donner, 2011). If information is shared along the whole perception-action loop in a network

between distributed regions, studying the whole system instead of isolated areas might be

necessary, as is done in human neuroimaging.

1.3.2 Accumulation of evidence tasks using M/EEG in humans

Studies of perceptual decision making with nonhuman primates have discovered that

many different areas throughout the cortical hierarchy are involved and share information

across large distances. Yet, we know little about how these areas dynamically interact to

form decisions, because studies recording from single cells are always limited to small

populations and few cortical areas. In contrast, studies using neuroimaging with human

subjects can trace neuronal dynamics across the whole head and concurrently throughout

cortices. In addition, human subjects can be asked directly on what their perceptions

and decisions were, e.g. how confidently they made a choice, and are recorded in much

larger number, leading to better inferences about common mechanisms. Notably however,

little is known about how many of the rhythms measured with M/EEG correspond to

single-cell recordings and how they compare to signals detected in fMRI BOLD contrasts

(Buzsáki & Wang, 2012; Jann, Kottlow, Dierks, Boesch, & Koenig, 2010; Keller et al., 2013;

Lee et al., 2014; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Scheeringa et al.,

2011; Whittingstall & Logothetis, 2009).

14



1.3 Accumulation of evidence tasks

Coherent oscillations between cortical areas may dynamically regulate the information

flow across sets of neuronal populations (Engel, Fries, & Singer, 2001; Fries, 2015; Salinas

& Sejnowski, 2001; Sejnowski, 2006; Varela, Lachaux, Rodriguez, & Martinerie, 2001) and

MEG is well-suited to study such cortical dynamics (Siegel et al., 2011). Using MEG to

discover the role of cortical oscillations for perceptual decision making, Donner et al. (2007)

asked human volunteers to detect RDM motion (rather than choosing between directions)

and found that beta power was elevated throughout the dorsal visual pathway including

MT, intraparietal sulcus (IPS) and dlPFC for correct vs. incorrect trials. Interestingly, this

activity predicted the accuracy and not the content of the upcoming choice, suggesting

that beta reflected the computation of decisions rather than the content (see also Siegel

et al., 2011). In another experiment, volunteers were shown an RDM patch at different

coherence levels and had to indicate the motion direction (Siegel, Donner, Oostenveld,

Fries, & Engel, 2007). After a typical event-related field, they observed a parametric scaling

of occipital gamma power with the stimulus coherence and the opposite, but less robust,

pattern in alpha and beta bands. Because the visual areas partial to this effect are known to

be involved in motion processing, such as MT, this suggests that gamma reflects processing

of the evidence on which decisions are based.

To investigate the action component of such perceptual choices, in another experiment

Donner et al. (2009) presented RDM stimuli for a fixed time and before responses were

given with either hand, a short delay was enforced onto the participants. Gamma band

activity increased over the contralateral (pre-) motor cortex, and low frequency alpha and

beta oscillations decreased with respect to the ipsilateral hemisphere. Notably, this pattern

built up during stimulus viewing, likely reflecting the accumulation of evidence for a

decision that would be source localized to FEF when responding with saccades instead

(Herding et al., 2017). The lateralization of beta-band activity over central electrodes

in particular appears to reflect an emerging motor plan that is directly associated with

participants’ choices. Building upon this finding, de Lange, Rahnev, Donner, and Lau

(2013) demonstrated that pre-stimulus variance of lateralized power in the beta band

predicted choices and that the accumulation of beta lateralization was modulated by
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motion coherence. In sum, these MEG studies demonstrate signals corresponding to the

sensory processing in MT and the action-related activity in FEF as observed in nonhuman

primates and suggest an active role of beta and gamma oscillations in encoding the stimulus

content. However, monkey studies have found extensive correlates of neuronal activity

in the posterior parietal cortex with the evolution of a decision variable, which could not

be identified with MEG. This is particularly curious, because recent EEG studies have

observed consistent evidence of a centro-parietal potential (CPP or P300) that may be a

candidate signal for such a parietal mechanism (Kelly & O’Connell, 2015).

The CPP has been identified as a rhythm matching the evolution of a decision variable

during perceptual decision making tasks (Kelly & O’Connell, 2013, 2015; Philiastides

et al., 2014; Twomey et al., 2015). One strategy to find this signal in RDM tasks has been

to eliminate the typically observed ERPs resulting from stimulus onsets by presenting

a field of randomly moving dots before coherent motion onset, thereby allowing for a

seamless transition (Kelly & O’Connell, 2013). Moreover, responses are often made by

button press using either left or right hands, to enable observation of lateralized beta power

(as in de Lange et al., 2013; Donner et al., 2009). Using this setup, Kelly and O’Connell

(2013) recorded EEG while humans performed the RDM task. They found that the CPP

exhibited an accumulation-to-bound with respect to the decision of up- vs downward

motion. In addition, the rate of CPP build-up was modulated by the sensory evidence

strength, exhibiting a defining property of theoretical accounts of a decision variable. Even

though effector specific activity in form of the lateralized readiness potential (Eimer, 1998;

Smulders & Miller, 2012) did also show a ramping up, this activity was driven by the

abstract, centroparietal signal. Moreover, in a previous study with a change detection task,

hand movement specific motor signals, such as the previously observed beta lateralization,

also exhibited a pattern of build-up to a threshold just before responses were executed,

however, were abolished when manual responses were not carried out (O’Connell et

al., 2012). This indicates that the CPP appears one directional in this process and only

represents the accumulation-to-bound in a positive manner. This means that it doesn’t

represent different choices – a signed value - but the absolute value of the DV. The effector-
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specific beta activity on the other hand includes information about choices, because they

have to be enacted on. Such an interpretation of the CPP is in line with observations in LIP

neurons and theoretical accounts that posit the supramodal accumulation of evidence for

distinct alternatives in the same cortical areas that race each other (Brown & Heathcote,

2008; Roitman & Shadlen, 2002b; Usher & McClelland, 2001). Moreover, recent evidence

suggests that neural correlates of a DV are independent of motor plans in LIP (Bennur &

Gold, 2011) and corresponding human area IPS includes distinct systems implementing

motor and perceptual decisions, suggesting functional heterogeneity (Filimon, Philiastides,

Nelson, Kloosterman, & Heekeren, 2013). Therefore, it remains unclear what exactly is

encoded by the centroparietal signals observed with EEG from this area and what precise

cognitive function underlies the ramping up of activity.

If the CPP is the same signal as the P300, as recently suggested (Twomey et al., 2015),

then a large body of evidence has indicated a relationship with a plethora of alternative

cognitive processes (Nieuwenhuis, 2011; Nieuwenhuis, Aston-Jones, & Cohen, 2005). One

measure in particular appears to fit well to recent observations of the CPP: confidence

(Hillyard, Squires, Bauer, & Lindsay, 1971; Squires, Hillyard, & Lindsay, 1973). Because

the CPP is not selective in its accumulation for one choice over another, it may only reflect

the absolute value of a DV. Such a signal is closely related to confidence, which can be

viewed as the distance between the DV and the closest decision bound (Urai & Pfeffer,

2014). A confidence signal would therefore not be selective for choices; however, it would

still be affected by them. If participants commit an error, the DV should reach the same

threshold as in a correct trial, while confidence should be lower (Shadlen & Kiani, 2013).

Most interestingly, Philiastides et al. (2014) used a face-house discrimination task in which

participants also had to sequentially sample and integrate information over time. They

found that a CPP gradually built-up over time with the amount of evidence for either

choice, as predicted from drift-diffusion models (DDM) and corresponding to RDM tasks.

However, the signal did not reach a fixed threshold, but was still modulated by the amount

of evidence for a choice. Because a simple DDM could not account for this, the authors

demonstrated that adding a proxy for confidence on each trial could. This indicates that
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at the time of response, the CPP includes information about choice confidence. However,

participants weren’t specifically asked how confident they were in their decisions, and

it remains unclear whether this part of the CPP can be related directly to confidence

judgements, as has been done in fMRI (e.g., Hebart, Schriever, Donner, & Haynes, 2016).

1.3.3 Accumulation of evidence tasks using fMRI in humans

Functional magnetic resonance imaging (fMRI) has indeed provided another avenue of

human neuroimaging research to investigate perceptual decision making and confidence

with high spatial acuity. Heekeren, Marrett, Bandettini, and Ungerleider (2004) gave

participants a similar face-house discrimination task as described in the previous section

(Philiastides et al., 2014) and used the spatial specificity of face processing in the fusiform

face area (FFA) and house processing in the parahippocampal place area (PPA) to investi-

gate relative blood-oxygen-level dependent (BOLD) increases. BOLD is known to increase

in the FFA and PPA when faces and houses are perceived, respectively and can be related

to single neuronal codes for either stimulus (Epstein & Kanwisher, 1998; Haxby, Hoffman,

& Gobbini, 2000; Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999; Kanwisher, Mc-

Dermott, & Chun, 1997; Logothetis et al., 2001; Logothetis & Wandell, 2004; McCarthy,

Puce, Gore, & Allison, 1997). A region responsible for decision making should covary

with either FFA or PPA activity depending on whether faces or houses were perceived

(Heekeren et al., 2004). Because the BOLD response is sluggish, it can only pick up on

the overall activity during a trial and a modulation by evidence in either area is likely

difficult to detect. However, the authors postulated that a candidate decision making area

should show a pattern of easy trials associated with higher BOLD responses than hard

trials, because in easy trials BOLD responses should reach a high level faster. They found

that the left dorsolateral PFC (dlPFC) showed such an activity pattern and in a follow-up

demonstrated that this was independent of the response modality (Heekeren, Marrett,

Ruff, Bandettini, & Ungerleider, 2006). In addition, the role of the dlPFC appears to be one

of integrating evidence, modeled as the drift in DDM, because when repetitive transcranial

magnetic stimulation (TMS) was applied to this area to interrupt the decision process,
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accuracy and response times were stymied in line with an interpretation as decreasing drift

rate (Philiastides, Auksztulewicz, Heekeren, & Blankenburg, 2011). Notably in the context

of the present thesis, this prefrontal activity appears to be co-activated with the IPS and

FEF, suggesting a frontoparietal network involved in encoding of stimulus information and

decision making (Heekeren et al., 2006; Ho, Brown, & Serences, 2009; Kayser, Buchsbaum,

Erickson, & D’Esposito, 2010; Liu & Pleskac, 2011). In particular, Liu and Pleskac (2011)

designed an RDM task where they gave information about the response modality, either

button press or saccade, before or after the stimulus presentation (see design of study 1

of this thesis). Because participants could answer as fast as they wanted, with no forced

delay as in Heekeren et al. (2004), the BOLD responses were increased for more difficult

trials (Hanks & Summerfield, 2017), indicating that participants accumulated evidence for

a longer time. Besides frontal areas and the anterior insula, the modulation was present in

saccade-related areas FEF and IPS. Crucially, the foreknowledge and response modality

did not have an effect on this activity pattern, suggesting no effector specificity of the

neural system underlying evidence accumulation. These findings fit well with recent

observations in monkey LIP, indicating that information about RDM direction was present

before monkeys knew where the saccade target was going to be (Bennur & Gold, 2011).

Together, human neuroimaging provides a complimentary view to monkey recordings

and provides evidence for the involvement of prefrontal and parietal areas in perceptual

decision making1. Most notably, the dlPFC appears to fulfil the role of a domain general

evidence accumulator, not evident from monkey single-cell recordings. Apart from these

prefrontal findings, human fMRI and M/EEG studies show a remarkable similarity with

monkey recordings in the areas involved in perceptual decision making. Especially the

pattern of parietal signals tracking the evidence accumulation of noisy input and (pre-)

motor areas exhibiting variability with the execution of choices is consistent across species

and methods. Moreover, it appears that the information about the current state of decision

making, a DV, is available to many areas and not restricted to a central decision maker.

1In addition, fMRI has revealed a role for the anterior insula during evidence accumulation (Ho et al., 2009;
Liu and Pleskac, 2011). Because the insula is related to many different cognitive functions and because
the present studies haven’t found signals corresponding to such activity, I have left this introduction for
another place (Menon and Uddin, 2010).
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This is particularly important, as neural oscillations studied with M/EEG often reflect the

dynamics of a cortical representation. More so, the dynamics of a general decision making

mechanism are likely to be similar across cognitive tasks, such as the RDM and the SFC

task, even if sensory modality or stimuli involve distinct cortical areas.

1.3.4 Common neural codes across perceptual decision making tasks

Evidence of common neural codes was found in studies using the RDM stimulus in a

sequential comparison setup. Zaksas and Pasternak (2006) recorded from areas MT and

PFC, while monkeys performed a delayed match-to-sample task on the motion direction

of two sequentially presented RDM stimuli. During perception of the first stimulus, MT

and PFC neurons were direction selective, but selectivity in PFC emerged 40ms after MT.

During the delay period, neurons in both areas were attuned to direction, but through

transient, not sustained firing. Similarly, the decision information was present in both MT

and PFC, but the PFC was modulated 100 ms later and predictive of the upcoming choice.

This indicates that PFC neurons encode task-relevant features about visual motion and

represent the decisions that are based on comparisons taking place in MT. In addition,

Hussar and Pasternak (2012) recorded from two distinct principal types of PFC neurons,

pyramidal and interneurons, during the same task. They found that while both were

involved in perception, mostly pyramidal cells carried information throughout the delay

period, in a transient, dynamic code. Furthermore, the cell type determined whether the

neuron was attuned to matching versus non-matching RDM directions. This suggests

that the PFC employs a dual code for decision making in which different cell types have

distinct contributions. To investigate the network states involved in this visual comparison

task, Wimmer, Ramon, Pasternak, and Compte (2016) analysed LFPs from the lateral PFC

from monkeys comparing either the motion directions or speeds of two RDM patches.

During perception, theta and gamma power was increased, while beta decreased. In the

subsequent delay, beta power encoded the relevant RDM feature, agreeing with findings

in human neuroimaging (Spitzer & Blankenburg, 2012; Spitzer et al., 2010). Broadband

LFP activity reflected the difference between S2 and S1 and was split into an early signed
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modulation (S2-S1) and a later absolute choice-related component that reflected the buildup

of the perceptual decision. Albeit in different areas, these results appear remarkably similar

to findings of decision beta in SFC tasks on the one hand (Haegens et al., 2011; Herding

et al., 2016), and the CPP (Kelly & O’Connell, 2013) on the other. However, until the studies

included in the present thesis, there have not been any human neuroimaging approaches

investigating these common cortical dynamics.

1.4 Objectives of this dissertation

Throughout the research for this dissertation, my primary aim has been to find the neural

substrates underlying working memory and decision making with the intention to under-

stand these cognitive functions better. Neural oscillations have been associated with these

specific mental tasks, however, several important questions on the role of beta and gamma

oscillations, in particular, remain unanswered. I addressed these gaps in our knowledge in

three studies using a sequential comparison task with tactile (study 1+2) and visual stimuli

(study 3). Moreover, I bridged the gap of perceptual decision making research using the

predominant random-dot motion stimuli in a new comparison task setup (study 3). In

conjunction with neural oscillations, I investigated broadband centro-parietal signals, and

related them to motor beta, trial difficulty and confidence (study 2+3). Finally, this thesis

accumulates the information from these three very related studies and outlines common

themes surrounding the beta and gamma band as well as possible common ground with

the CPP.
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Articles 2
2.1 Study 1: Gamma and Beta Oscillations in Human MEG

Encode the Contents of Vibrotactile Working Memory

From single-cell recordings in monkeys to large-scale human EEG, the parametric encoding

of vibrotactile frequency during working memory is well-established (Romo et al., 1999;

Spitzer et al., 2010). As reviewed in the introduction, a number of recent EEG studies

have identified cortical oscillations in the beta band to represent the frequency information

during a short delay in a vibrotactile sequential frequency comparison task. However,

visual and auditory working memory studies have found a crucial role of gamma oscil-

lations for working memory, not observed in previous vibrotactile EEG studies (Roux

& Uhlhaas, 2014). In addition, the only MEG study investigating tactile working mem-

ory found a modulation of SI and - most interestingly - of SII during stimulus retention,

but didn’t investigate a parametric modulation in prefrontal areas (Haegens et al., 2010).

While the authors did find an overall increase in frontal gamma during WM, this was

limited to contrasting periods of working memory with a prestimulus baseline and was

not content specific. Therefore, our first goal was to investigate whether frontal gamma

encodes stimulus features during WM. In addition to this aim, a line of monkey and human

neuroimaging studies has identified the intraparietal sulcus (IPS) as a hub for numerosity

processing, a mental task very similar to the vibrotactile features in our design (Nieder,

2016). However, studies using EEG have not been able to localize IPS activity reflecting

the vibrotactile frequency held in WM as is known from fMRI (Wu et al., 2018). Therefore,

we aimed at detecting both high frequency oscillations in the gamma band and stimulus

information from the IPS for the first time.

We recorded 306-channel whole-head magnetoencephalography while participants per-

formed a version of the vibrotactile frequency comparison task. Notably, our original

task design intended to also investigate how beta-gamma codes of decision making were
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influenced by foreknowledge of the response modality, and therefore the task included

responses with button press and saccades. However, due to technical problems, we had to

discard the analysis of decision making related activity.

Our main analysis probed with a zero-mean contrast of the four different vibrotactile

frequencies held in working memory at 15, 19, 23 and 27 Hz, whether there were channels,

frequencies or time points in which a parametric code of vibrotactile frequencies was

present. With a nonparametric cluster-based permutation test we identified three areas

that showed such a pattern, all around the center of the WM interval. First, replicating

previous EEG findings, beta power in the right IFG at around 30-35 Hz. Second, low beta

power (10-20Hz) in bilateral parietal channels which was source localized to the IPS. Third,

matching the beta effect in source location in the right IFG, gamma power (74-90 Hz) was

negatively modulated by the vibrotactile frequency, thus showing the opposite pattern of

the beta band effects. Notably, we did not replicate effects of overall broadband gamma

power increases in SI, SII and frontal cortices as had been observed in a similar vibrotactile

task (Haegens et al., 2010), while replicating the patterns typically observed in vibrotactile

SFC tasks with M/EEG (Bauer, 2006; Spitzer et al., 2010).

These results indicate that there is a frontoparietal network underlying the retention of

vibrotactile stimuli with an extended role of the beta band that may interact with gamma

to enable working memory. We demonstrate for the first time with MEG that the IPS is also

involved in this process and that the gamma band, which is associated more directly with

neuronal firing than beta, might drive the prefrontal processing (Lundqvist et al., 2016;

Whittingstall & Logothetis, 2009).

2.2 Study 2: Centro-parietal EEG Potentials Index Subjective
Evidence and Difficulty

Recent studies indicate that the CPP in human EEG tracks the integration of noisy sen-

sory input over time. It remains unclear however, whether the comparison of two short
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vibrotactile frequencies elicits a similar response, as this percept does not include the

accumulation of noisy evidence over an extended period. Moreover, it remains unknown

whether the premotor beta band that scales with subjects’ upcoming choices is related to

the CPP. This is particularly interesting, because the CPP reflects the absolute, unsigned

strength of accumulated evidence (|S2 − S1|), while choice dependent beta is a signed

value (S2 − S1) reflecting the direction of the decision (e.g., Siegel et al., 2011; Urai &

Pfeffer, 2014).

In this study, we used EEG data from six variants of the SFC task (n=116) and applied a

model based on Bayesian inference to the behavioural data to estimate the subjectively

perceived frequency differences (SPFDs). We found that parietal ERPs reflected the SPFCs

shortly after the second stimulus offset (168-709ms) in a signed fashion, thus indicating the

direction of choice. Crucially, this early parietal signal was correlated with choice-related

beta power on a single trial level. While not implying causation, this can be viewed as first

evidence for a previously unknown EEG signature that indexes the updating of subjective

evidence in relation to the ensuing choice. The timing of these two signals as well as their

source locations in parietal and premotor cortex further underline the possibility that the

early ERPs serve to communicate the evidence for one motor plan or its alternative and

the premotor beta band reflects the choice planning based upon this evidence.

In addition to this early parietal modulation by signed difference, we observed later

parietal ERPs (273-953ms after stimulus offset) that correlated with the absolute strength

of evidence. Interestingly, this later modulation was source localized not only to parietal

areas, but also included the bilateral IFG, which relates it to the parametric encoding of

the vibrotactile frequencies during WM. Similar to study 3 we also did not observe an

absolute threshold of CPP accumulation, but rather a scaling of the late ERPs by subjective

task difficulty. Further analysis revealed that this effect complied with the definition of

statistical decision confidence in all aspects (Hangya, Sanders, & Kepecs, 2016; Sanders,

Hangya, & Kepecs, 2016).

In summary, these findings indicate that early centroparietal ERPs reflect the evidence on

which decisions are based, while later modulations might refer to the strength of evidence
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informing a decision, which is closely related to measures of confidence.

2.3 Study 3: Neuronal Signatures of a Random-Dot Motion
Comparison Task

Both the vibrotactile frequency comparison task and the random-dot motion task have been

studied extensively in humans and monkeys, as I introduced earlier. However, there is

remarkably little research aiming at finding common codes across these perceptual decision

making tasks. So far, no human neuroimaging study has investigated the RDM task with

vibrotactile stimuli nor studied the sequential comparison of random-dot motion stimuli.

This is particularly curious, because pupillometry in humans and electrophysiological

recordings in monkeys using a combination of these classical tasks have produced high-

impact studies that gave novel insights into the encoding of decision information (Urai,

Braun, & Donner, 2017; Wimmer et al., 2016). Here, we recorded EEG while human

volunteers were tasked to compare the coherence of two sequentially presented random-

dot motion stimuli (S1, S2) and responded by button press. If findings from SFC studies

indeed transfer to the visual domain, we should observe a parametric beta band code in

PFC as well as a modulation of premotor beta by choice. Moreover, RDM stimuli should

elicit typical visual effects as well as a correlate of the accumulation of evidence in the

form of a CPP. Crucially, the decision variable in this task reflects the comparison of the

first with the second stimulus, thus we should not observe a CPP during perception of S1.

Moreover, the CPP should scale with the difference between the two, not the coherence of

S2.

We asked 28 subjects to perform this task and used their behavioral data to model the

subjectively perceived coherence difference (SPCD) for each subject and trial. Using

variational Bayes, our model accounted for the time-order effect/error (Hellström, 1985), a

bias typically observed in sequential comparisons. In analogy to study 1, our WM analysis

was a parametric contrast of the four S1 coherence levels. To look into the decision making
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interval, we performed a 2x2 GLM of choice (S2 > S1 vs S2 < S1) and performance

(correct vs incorrect). Moreover, we investigated the CPP and contrasted it by subjects’

choices and each trial’s SPCD in three levels of ‘easy’, ‘medium’ and ‘hard’.

In our WM analysis we found a significant cluster of prefrontal channels that were mod-

ulated by the level of S1 coherence retained throughout the inter-stimulus-interval. In

agreement with previous EEG studies using vibrotactile stimuli (Spitzer & Blankenburg,

2012; Spitzer et al., 2010), this effect source localized to the right IFG, suggesting that the

working memory related beta is supramodal and can be observed with stimuli not relying

on frequency magnitudes. We also found a negative modulation of gamma, replicating

findings from study 1. However, this effect was mainly driven by the lowest coherence

stimuli and will require further investigation. Curiously, we also found a negative modula-

tion of low beta band activity by the S1 coherence level in centroparietal channels, source

localizing to bilateral MI and precuneus.

The analysis of decision-related activity found a modulation of premotor beta band activity

700ms before responses were made that was elevated for choices of S2 > S1 in comparison

to those of S2 < S1. This is in line with recent vibrotactile SFC studies in humans,

corresponding in time, frequency and location (Herding et al., 2016) and also agrees with

monkey LFPs (Haegens et al., 2011; Haegens et al., 2017). There was no effect when

splitting trials into 3 levels by SPCD (easy, medium, hard), thus reflecting the choices in a

binary code. The CPP was modulated both in response to the perception of S2 and with

respect to responses. S2-locked activity accrued during the stimulus presentation and

stayed on a fixed level afterwards. Crucially, the amplitude of this level was modulated by

the trials’ difficulty (S2− S1′) and not by the coherence of S2. Furthermore, the S2-locked

CPP was modulated by choice and reached a higher amplitude for choices S2 < S1 than

S2 > S1, the opposite of the beta band effect. Response-locked CPP showed a pattern

of signal accumulation to a peak at the time of response. Notably, this peak was both

influenced by choice and the difficulty of trials. At the time of response the CPP did not

reach a fixed threshold, like in simple boundary-crossing models, but was scaled by the

SPCD, with difficult trials exhibiting smaller amplitudes and incorrect trials demonstrating

27



2 Summary of Original Research Articles

even smaller amplitudes. This effect was only evident in the last 300ms before responding

and in particular, seemed to be driven by a lower starting point to the accumulation rather

than variance during the accumulation.

Our findings indicate an extended role of the beta band for both working memory and

decision making in comparison tasks, regardless of sensory modality. Beta has been

suggested to reflect the “status quo” of information (Engel & Fries, 2010). In our studies

however, it appears to reflect more than that. It is modulated by the abstract magnitudes

in comparison tasks (vibrotactile frequency or RDM coherence) and therefore reflects

the WM content, as well as the content of decision making, already very early, 700ms

before responding. In conjunction with fast, transient gamma it might therefore reflect the

re-activation of content (Spitzer & Haegens, 2017) and/or the maintenance state (also of

choice) that is interrupted by gamma (Lundqvist, Herman, & Miller, 2018).

The CPP was strongly modulated by trial difficulty at the time of response, suggesting it

reflects a cognitive process that is not wholly explained by crossing a bound in a simple

drift-diffusion model. More complex models based on sequential Bayesian updating

or with collapsing bounds may be necessary to keep the drift-diffusion view in place.

Moreover, it is possible that the CPP reflects an accumulation to an absolute bound, but

the signal we observed included other parietal signals encoding the decision confidence.

Finally, the CPP was also modulated by participants’ choices, indicating a relationship

with premotor beta that is yet to be investigated.

In sum, this study was able to bridge gap between decision making paradigms and sensory

domains, indicating a common role for beta band driven content encoding and the CPP as

an evidence accumulation mechanism that has ties to confidence.
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In the research summarized in the previous section, we gained new insights into the role of

neural oscillations ascribed to cognitive functions, especially working memory modulated

beta and gamma, decision-related beta power and the supramodal nature of the CPP for

tracking decisions.

In the first study, we were able to uncover previously hypothesized but never demonstrated

modulations of prefrontal gamma and parietal beta power by vibrotactile frequencies held

in working memory. Most interestingly, the parietal beta modulations could be source

localized to the IPS, an area known to be involved in numerosity processing. These results

indicate that a frontoparietal network underlies working memory that employs beta and

gamma oscillations in a mechanistic fashion.

The second study encompassed six EEG experiments, whose analysis consistently showed

a CPP that accumulated during decision making. With respect to the second stimulus, we

observed a scaling of the CPP, first by the subsequent choice and later by trial difficulty,

which we relate to confidence. In addition, we found a correlation between choice-related

beta and the CPP, suggesting common codes during decision processing. Our findings

point to a role of the CPP that goes beyond signaling the status of a DV and insinuate that

such a role is related to the decision outcome.

In the most recent experiment, we showed that the functional roles attributed to beta

oscillations in the tactile task hold up in a visual variant, indicating a general, supramodal

mechanism. Similarly, we demonstrated that non-lateralized choice-dependent beta can

also account for decisions when using RDM stimuli. In addition, both stimulus- and

response-locked CPPs reflected the tracking of a decision variable during a comparison

task that was informed by working memory. This is of particular note, because there

was no relationship of the CPP during RDM perception, suggesting independence from

sensory processes. Finally, the CPP scaled with subjectively perceived difficulty at the time

of response, which further indicates that the CPP incorporates confidence signals.
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3.1 Unifying accounts of prefrontal beta band oscillations
during working memory

All experiments reviewed here replicated the finding that beta band power from IFG is

parametrically modulated by abstract quantitative information (vibrotactile frequency or

RDM coherence) held in working memory during a short interval between two stimuli.

Spitzer et al. (2010) had identified this effect at 20-25 Hz with EEG during a similar

vibrotactile SFC task. Interestingly, when we used a visual variant of the task, but the

same EEG equipment as these authors, the effect was surprisingly similar at 18-26 Hz,

however, was found significantly higher (30-35 Hz) in MEG recordings on almost the same

vibrotactile task. Because in EEG the skull acts as a low-pass filter (Pfurtscheller & Cooper,

1975) and the observed effect may be an epiphenomenon of averaging further temporally

smeared beta bursts, it is quite possible that the prefrontal oscillations even extend into

the gamma range. Recent monkey recordings appear to concur with a representation in

higher beta oscillations, with a medial premotor beta peak above 25 Hz (Haegens et al.,

2017). This may particularly important, as lower beta modulations (13-20 Hz) occur jointly

with alpha (Hanslmayr, Spitzer, & Bäuml, 2009) and decrease in task-relevant areas while

higher beta-band rhythms (20-35) mirror gamma and increase with engagement (Tallon-

Baudry, Bertrand, Peronnet, & Pernier, 1998). It may therefore be necessary, in the future,

to separate lower beta activity more clearly from higher beta oscillations to avoid grouping

them in one beta band.

Our findings in the prefrontal cortex were clearly in the upper beta band and appeared

to be related to active processing rather than inhibitory in nature. Enhanced beta has

been hypothesized to signal the “status quo” of maintaining the current sensorimotor or

cognitive state (Engel & Fries, 2010). However, our findings go beyond overall changes.

We provide evidence that beta oscillations hold information about the content (vibrotactile

frequency or RDM coherence) of working memory on a given trial, joining a growing body

of evidence for such a role (Spitzer & Blankenburg, 2011; Spitzer et al., 2010; Wimmer et al.,

2016). This type of feature specific activity has also been found in neuronal spiking and

high frequency LFPs (Nieder & Miller, 2003; Pesaran, Pezaris, Sahani, Mitra, & Andersen,

30



3.2 Diverging findings with MEG and EEG

2002; Romo et al., 1999) and has been studied extensively with fMRI (Christophel, Hebart,

& Haynes, 2012; Christophel, Klink, Spitzer, Roelfsema, & Haynes, 2017; Uluc, Schmidt,

Wu, & Blankenburg, 2018; Wu et al., 2018). Yet, it remains unclear how neural activity

measured as spike firing rates and BOLD signals relate to the previously observed EEG

beta band oscillations. In particular, it is unknown, whether beta activity correlates

positively or negatively with these activity measurements (Spitzer & Haegens, 2017).

Upper beta band oscillations are likely to correspond closer to those in gamma, who

have been associated with higher spike rates and increases in BOLD, while low beta may

be associated negatively with activity, corresponding to alpha (Hanslmayr et al., 2011;

Michels et al., 2010). However, it is also possible that beta is neither associated with activity

increases nor decreases, as observed in some studies (Rule, Vargas-Irwin, Donoghue, &

Truccolo, 2017; Whittingstall & Logothetis, 2009). Therefore our findings with MEG are

of particular note, because we demonstrated that both high prefrontal and low parietal

beta were associated with the abstract magnitudes held in working memory in the same

fashion. We did not, however, observe overall changes, further underlining that beta

fulfills a content-specific role. I therefore suspect that the functional role of beta is not

directly related to overall spiking/BOLD activity increases as has been observed in gamma,

but reflects the updating of content (Spitzer & Haegens, 2017).

3.2 Diverging findings with MEG and EEG

One major difference between our MEG recordings and previous EEG studies was that we

observed parametric changes in gamma spectral power by the to-be-maintained frequency

f1. One explanation why parametric WM in high frequency gamma oscillations was not

detected in the large amount of previous vibrotactile EEG studies (Herding et al., 2016;

Spitzer & Blankenburg, 2011, 2012; Spitzer, Fleck, & Blankenburg, 2014; Spitzer et al.,

2010) is the previously mentioned nature of the human skull to act as a low-pass filter

(Pfurtscheller & Cooper, 1975). Specifically, EEG and MEG can exhibit distinct frequency

versus power relationships in high frequencies, because the capacitive properties of the
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extracellular medium, i.e. skin and scalp muscle artefacts, distort the EEG, but not the

MEG signal (Buzsáki & Wang, 2012; Dehghani, Bédard, Cash, Halgren, & Destexhe, 2010;

Demanuele, James, & Sonuga-Barke, 2007). In addition, we used a multitaper approach

based on Slepian sequences with a fixed window of 200 ms in the MEG study compared to

a window of 400 ms in previous EEG recordings. This shorter time window results in less

smoothing in the time domain, which gives rougher estimates, but may have provided

us with the possibility to detect more short-lived effects. Because of these differences,

we also used the shorter window for exploratory analysis in more recent experiments,

for example study 3, resulting in the same negative gamma modulation by the abstract

quantity held in working memory as observed with MEG. For prospective WM studies or

an eventual meta-analysis of the present findings I therefore also recommend trying out a

short window for multitaper analysis of higher frequencies.

In addition to gamma, the MEG recordings differed from EEG recordings in one more

area: the IPS. We found that low beta band power (10-20) from this area was parametri-

cally modulated by the abstract quantity retained in WM. There are two methodological

reasons that could account for why we detected this modulation with MEG and not EEG

(cf. Spitzer et al., 2014). One, MEG has a higher signal-to-noise ratio for shallow sources

(Goldenholz et al., 2009). Two, MEG is more sensitive to sulcal than gyral sources, because

it is blind to radial dipoles, biasing source analysis in favor of sulcal sources (Ahlfors,

Han, Belliveau, & Hämäläinen, 2010). However, while unexpected from the previous EEG

literature, the involvement of the IPS in quantity processing was not wholly surprising.

Concurrent to our research, fMRI studies found a role of the IPS for vibrotactile, visual,

and auditory frequency maintenance (Uluc et al., 2018; Wu et al., 2018). Moreover, similar

to the abstract stimuli we employ, tasks using concrete numbers have found a direct link

between multivariate BOLD-responses in the IPS and quantity (Eger et al., 2009). This

finding builds upon a body of work with nonhuman primates that has revealed a crucial in-

volvement of intraparietal regions for the encoding of quantitative features that are ordered

along a continuum (Jacob, Vallentin, & Nieder, 2012; Nieder, 2016), including supramodal

frequency (Vergara, Rivera, Rossi-Pool, & Romo, 2016). Furthermore, the IPS has been
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well-established as a hub for working memory in junction with the prefrontal cortex in

studies on capacity limits and appears to be essential for short term object retention (Todd

& Marois, 2004, 2005; Vogel & Machizawa, 2004; Xu & Chun, 2006). Therefore, a role of the

IPS in conjunction with the PFC has been well-established, yet it remains unclear what role

beta band oscillations at low frequencies contribute to working memory in this area. In

particular, the low beta we observed with MEG includes frequencies associated with the

mu rhythm (Chatrian, Petersen, & Lazarte, 1959; Gastaut & Bert, 1954), whose functional

role has been viewed as alpha-like suppression for somatosensation1. Contrary to this

interpretation, we did not observe overall ERD/ERS, but a parametric modulation of lower

beta/mu power by the content held in working memory. It is therefore unlikely that the

observed effect reflects a generic inhibition or gating mechanism. One possibility is that

the inhibition is content specific, explicitly because another stimulus is being presented

subsequently that is sure to be different in vibrotactile frequency. Thus, the stimulus fre-

quency held in working memory could be inhibited. However, the parametric modulation

of IPS did not extend to the time of f2 stimulation, rendering this interpretation unlikely.

Similarly, the mu rhythm is associated with attention (Anderson & Ding, 2011) and it is

possible that participants paid more attention to higher frequencies. This is unlikely for

two reasons. First, we did not observe behavioral effects in this direction, and second,

prefrontal gamma band and occipital alpha would be expected to be similarly modulated,

which we also did not observe (in this direction). Therefore, a role of the IPS for numerosity

processing and working memory is well-established and it appears that our observations

are difficult to reconcile with the inhibitory nature of low frequencies. I speculate that our

observations reflect an active maintenance mechanism, possibly interacting with prefrontal

gamma.

1Note that there is a different view on mu as a correlate of the mirror neuron system: (Naeem, Prasad, Watson,
and Kelso, 2012; Pineda, 2005)
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3.3 A frontoparietal beta-gamma code

One idea could be that the IPS maintains the information and is top-down controlled

by prefrontal areas in a periodic replay based upon interactions of beta and gamma.

This idea is analogous to computational modeling of neuronal firing patterns in animals

proposing that working memory arises from periodically reactivating the content held in

working memory, guided by gamma and theta oscillations (Fuentemilla, Penny, Cashdollar,

Bunzeck, & Düzel, 2010; Jensen & Lisman, 2005; Lisman, 1999; Lisman & Idiart, 1995).

This concept likely extends beyond the theta-related hippocampus to other areas and

frequency bands (Lundqvist et al., 2016; Mongillo et al., 2008) and could be modulated

on short time scales by attention (Awh, Jonides, & Reuter-Lorenz, 1998). Moreover, there

is evidence of PFC-PPC coupling in the beta and delta bands, with delta reflecting task-

irrelevant stimulus dimensions and beta only those immediately relevant (Antzoulatos

& Miller, 2016). Yet so far, a gamma-beta relationship has only been shown within the

prefrontal cortex (Lundqvist et al., 2016) and not across frontoparietal areas. However,

this same idea may serve to explain the pattern of concurrent high beta band increases

and gamma decreases with the abstract quantity held in working memory I observed

both with MEG and EEG in separate tactile and visual studies. Lundqvist et al. (2016)

observed brief gamma (45-100 Hz) and beta (20-35 Hz) bursts during single cell and LFP

recordings of monkeys performing a working memory task. The gamma bursts increased

during encoding and recall, while the beta bursts reflected a default network state that

was interrupted by gamma. My findings could be an epiphenomenon of such a coding

scheme, but reflected in mean power differences due to averaging over trials smoothing

out individual bursts. Further analysis using SFC tasks in humans should concentrate

on understanding the single trial dynamics. Because signal to noise ratios in M/EEG

can be low, this has proven difficult in the past. One avenue may lie in observing the

cross-frequency coupling, both in power changes and rhythmicity (Fransen, van Ede, &

Maris, 2015). Another promising method to investigate the network configuration of

oscillations may lie in the extraction of frequency-specific timecourses with high temporal

resolution (Vidaurre et al., 2018; Vidaurre et al., 2016). However, perhaps more importantly,
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mechanistic accounts of PPC-PFC function will have to evaluate whether gamma from

superficial cortical layers and beta from deep layers also enact a similar relationship in

other cortical areas (Christophel et al., 2017; Miller, Lundqvist, & Bastos, 2018).

Under close examination this idea of a dynamic frontoparietal beta-gamma code speaks

against working memory as a function grounded in sustained prefrontal firing rates

(Funahashi et al., 1989; Fuster & Alexander, 1971; Goldman-Rakic, 1995; Pasternak &

Greenlee, 2005). Studies demonstrating continuous delay activity have relied heavily

on trial and spike averaging, convoluting more complex single trial dynamics (Rainer &

Miller, 2002; Shafi et al., 2007). Indeed, similar to the previously mentioned beta-gamma

patterns (Lundqvist et al., 2016), most neurons are variable in their spiking behavior

in both timing and duration throughout retention intervals and show dynamic coding

schemes transitioning between coding states (Cromer et al., 2010; Durstewitz & Seamans,

2006; Spaak, Watanabe, Funahashi, & Stokes, 2017; Stokes et al., 2013). Moreover, recent

neuroimaging studies suggest that working memory can be ‘activity silent’ when stimuli

are unattended or irrelevant for current task demands (Lewis-Peacock, Drysdale, Oberauer,

& Postle, 2012; Stokes, 2015; Wolff, Ding, Myers, & Stokes, 2015; Wolff, Jochim, Akyürek,

& Stokes, 2017). While the role of such silent states is currently under high-level debate

(Christophel, Iamshchinina, Yan, Allefeld, & Haynes, 2018), evidence converges on the idea

that working memory does not rely on sustained prefrontal firing as a solitary mechanism

(Lundqvist, Herman, & Miller, 2018; Spaak et al., 2017). My data agrees with this notion.

First, contrary to Haegens et al. (2010) we did not observe an overall increase of gamma

power during working memory as would be expected from sustained firing, while EEG

findings for alpha and beta were replicated. Second, irrespective of whether gamma power

changes reflected bursting, the observed changes in gamma were in a finite time window

and not sustained throughout the whole interval. Third, while single-trial dynamics

remain unclear, the pattern of gamma decrease with concurrent beta increase in PFC and

PPC hint at a relationship between these frequency bands for working memory. The key

to a unifying explanation for these effects may be provided by a very recent monkey

study: Lundqvist, Herman, and Miller (2018) found that gamma increased, and beta
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decreased shortly before items in working memory had to be used for decision making,

while gamma decreased and beta increased when stimuli were not needed anymore. The

authors interpret this as beta oscillations regulating control over gamma and working

memory, a view summarily fitting to our results and recent investigations into the role

of beta “beyond the status quo” (Haegens et al., 2017; Ludwig et al., 2018; Lundqvist,

Herman, & Miller, 2018; Spitzer & Haegens, 2017). In this view, beta oscillations provide a

mechanism to guide neural ensembles for the (re-)activation of maintained information.

This builds on the observation that beta facilitates top-down driven communication across

long distances and cortical areas (Antzoulatos & Miller, 2016; Arnal & Giraud, 2012; Bastos

et al., 2015; Engel & Fries, 2010; Michalareas et al., 2016; Sejnowski, 2006; Siegel, Donner,

& Engel, 2012; Varela et al., 2001; Wang, 2010), but beyond static maintenance can be

characterized as a dynamic mechanism that can facilitate content-specific encoding and

read-out by “waking up” in the form of short temporal bursts (Fries, 2015; Jones, 2016;

Lundqvist, Herman, & Miller, 2018; Spitzer & Haegens, 2017). The question remains

however, whether beta facilitates information “wake up” over long range connections,

e.g. from sensory areas or if it is a mechanism of central processing in the prefrontal

cortex. This is particularly interesting, because during visual and tactile tasks I have found

consistent parametric modulations of beta oscillations in the PFC while none from sensory

areas.

3.4 Distributed codes or central working memory?

While we observed working memory related activity consistently only in the prefrontal

cortex, recent accounts also focus on a role for parietal and sensory cortices (Bettencourt

& Xu, 2015; Christophel et al., 2017; Sreenivasan, Curtis, & D’Esposito, 2014; Xu & Jeong,

2015). In particular, studies using MVPA on fMRI recordings during the maintenance of

precise visual details could reliably decode stimulus content from sensory cortices, yet

failed in frontal areas (Christophel et al., 2012; Emrich, Riggall, LaRocque, & Postle, 2013;

Riggall & Postle, 2012). When operationalizing the retention of vibrotactile frequencies
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however, fMRI has revealed multivariate parametric codes in prefrontal and sensory

areas (Schmidt, Wu, & Blankenburg, 2017; Wu et al., 2018). Thus, multiple avenues of

research into working memory have found very distinct regions to be involved - how can

these findings be consolidated? One idea is that the locus of working memory follows

the processing in terms of the cortical hierarchy (Eriksson, Vogel, Lansner, Bergström,

& Nyberg, 2015; Fuster & Bressler, 2012; Zimmer, 2008). Moreover, Christophel et al.

(2017) postulate that for one, all cortical regions can maintain information over a short

period of time. And for two, that the nature of the task dictates the relevant region in the

cortical hierarchy depending on low level sensory features and the level of abstraction

of the to-be-remembered stimulus. With such an interpretation of previous results, the

areas involved in working memory can range from the prefrontal cortex for abstract,

complex stimuli to low-level features in primary sensory cortices. Contrary to early

MVPA fMRI studies tasking volunteers to remember low-level sensory details, we used

abstract magnitude information, either in the form of vibrotactile flutters or the perceived

coherence of a random dot kinematogram. Therefore, it is expected from this account that

the representation in our studies materializes in areas such as the PFC and higher-order

parietal regions, which process abstract, supramodal information. Furthermore, this idea

may serve to explain the beta band modulation in motor areas before pressing a button

we observed in terms of active perceptual memory. In this case, the motor-specific areas

would also maintain information over a short period of time relevant to their place in the

cortical hierarchy: the motor code for a subsequent button press.

3.5 Beta band during decision making

Beyond a role for working memory, we found an involvement of premotor beta band

activity during decision making in a visual task and used previous findings of decision-

related beta in tactile tasks to establish an association with concurrent centroparietal signals.

Unfortunately, due to technical difficulties with both the vibrotactile stimulation device

and the eye-tracking system, an analysis of our MEG data set in relation to decision making
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was unsuccessful (cf. Chandler, Hayes, Townsend, & Thwaites, 2015). This is particularly

lamentably, because Donner et al. (2007) used MEG in a RDM task and found that beta

band activity predicted the accuracy and not the content of upcoming perceptual reports,

for which we found no evidence with EEG.

The modulation of upper beta band power by subjects’ choices we observed in sequential

comparison tasks is in accord with choice signals in monkey LFPs (Haegens et al., 2011)

in frequency, timing and cross-species location. Moreover, the increase in beta power

for choices S2 > S1 vs. S2 < S1 follows the same direction common to all previous

studies (Haegens et al., 2011; Herding et al., 2017; Herding et al., 2016; Ludwig et al.,

2018). Remarkably, when comparing patterns of visual (study 3, figure 4) and tactile

studies (Herding et al., 2016, figure 4) the time-frequency maps and topographies appear

incredibly similar even though stimulus processing relied on distinct sensory modalities

and the tasks had divergent timings.

This similarity between tactile and visual decision making indicates that the underlying

process is supramodal and might indeed depend on the motor output rather than the

sensory domain as predicted from the intentional framework of decision making (Shadlen

et al., 2008). Further evidence stems from data used in study 2, experiments 1 and 2.

Published also as Herding et al. (2016, 2017), this data demonstrates that depending on

the response modality, the choice-selective beta band modulation can be source localized

either to the premotor cortex for button press or the FEF for saccade responses. While

these tasks used essentially the same sequential frequency comparison, we can now add

that also in the comparison of sequentially sampled RDM stimuli the decision-related

beta band modulation can be observed. This is particularly interesting, because during

motor processing the beta frequency band does not solely represent motor preparation, as

historically thought (Pfurtscheller, 1981). Indeed, when participants responded with either

their left or right hand, lateralized beta band power over contralateral MI scaled with the

process of accumulating evidence for a decision, tracking the evolving decision variable

(Donner et al., 2009; O’Connell et al., 2012). In our recordings with button-press responses,

we used the right index and middle fingers, which in addition were counterbalanced
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across volunteers, eliminating the possibility that contralateral sensorimotor beta band

modulations accounted for choice-dependent beta exclusively. Moreover, because in

study 3 we used a visual task and found almost identical results, we can separate such

decision-beta from the beta oscillations observed during somatosensory perception. If this

modulation is indeed independent from perception and is related to the choice information,

then we should only be able to find it if a response mapping is provided. Therefore, in

study 2, experiments 3+4, also published as Ludwig et al. (2018), participants were only

provided with the response mapping after a short delay and had to transform the decision

information onto a colour code. Interestingly, in those trials where responses could not

be immediately transformed into motor commands the beta band was also similarly

modulated, but in posterior parietal cortex, not premotor areas. Taken together with

our visual and tactile experiments employing direct mappings, this implies that the way

we respond determines where in the sensorimotor hierarchy the decision is processed

and supports an intentional framework (Shadlen et al., 2008). Furthermore, our findings

indicate that the beta band reflects the categorical, abstract content of a decision, even

in the absence of a motor plan. This is particularly interesting, because also broadband

centroparietal signals (CPP) have been theorized to reflect the closely related process of

accumulating evidence.

3.6 Common ground for CPP and decision beta

Both the premotor beta oscillations and the CPP we observed are candidate signals to

reflect large-scale neural ensembles expressing the repeated sequential sampling and

integration in sensorimotor neurons observed in studies with nonhuman primates (Gold

& Shadlen, 2007; Hanks & Summerfield, 2017; Kelly & O’Connell, 2015; Spitzer & Haegens,

2017). In particular, they correspond well to studies focusing on the role of the PPC for

decision formation. As introduced earlier, the LIP is closely connected to the accumulation

of motion information from direction-selective neurons in MT, but also with frontal areas

such as the FEF (Ding & Gold, 2012). Notably, the LIP and FEF can both exhibit ramping
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up of neural activity and can reach a fixed level prior to saccade responses (Ding & Gold,

2010, 2012; Hanes & Schall, 1996; Roitman & Shadlen, 2002b). While the function of single

neurons in these areas has been studied extensively, the precise role of the large-scale

signals recorded with EEG, decision beta and CPP, remains uncertain.

The closest link between monkey and our human studies might be found between my

third study and Wimmer et al. (2016). They recorded LFPs from monkey lateral prefrontal

cortex during a sequential comparison task of the speed and direction of two RDM patches.

During stimulus perception beta power was reduced, but theta and gamma increased.

Throughout the working memory interval beta power encoded the task-relevant S1 feature,

matching our findings in visual and tactile recordings. After S2 onset broadband LFP

activity tracked the difference between S1 and S2 with an early sensory-related component

reflecting the stimulus difference and a later component associated with the behavioural

decision build-up. This is remarkably similar to our findings concerning the CPP, but in

a wholly different area. However, the lPFC is very well-connected with the PPC (Cole,

Pathak, & Schneider, 2010) and my own findings add to a well-established relationship

between these areas (Cole et al., 2013; Cole & Schneider, 2007; Duncan, 2010; Muhle-Karbe,

Duncan, De Baene, Mitchell, & Brass, 2017; Nieder, 2016). These results, in conjunction

with ours, indicate that during cognitive tasks a network of prefrontal and parietal areas

transition dynamically between neural coding states in a variety of frequency bands rather

than one type of oscillation or broadband signal underlying perceptual decision making.

The coupling between CPP and choice-related beta in our findings, however, indicates

that broadband signals and the beta band fulfil very related roles. I speculate that the

CPP reflects the absolute value of a DV - maybe confidence - in an accumulation-to-bound

manner, while the choice-related beta band serves to communicate the result of this process,

continuously over time as is crucial for response preparation. This serves to explain, why

choice-related beta appears so early in all our recordings (studies 2 & 3), about 150 ms

after onset of the second stimulus, and disappears long before motor action is taken. This

observation indicates that choice-related beta is strongest, when the CPP accumulates the

most and the most updating of information is necessary (Twomey et al., 2015). Moreover,
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this explains also why premotor beta band modulations could only be observed when

the response modality was clear (Ludwig et al., 2018): the information was retained in

the PPC till responses could be made. If the choice-related beta was exclusively related

to response preparation, we would have observed such a modulation before subjects

responded, regardless. However, further research into the beta band – CPP relationship

will be necessary, to which I want to point in the next section.

3.7 Future Avenues

The present studies call for follow-up experiments. First, similar to our task design in

study 1 (see attached study: von Lautz et al., 2017), it may be interesting to know where

choice-beta will originate if there is a delay before responding and the response modality

(button press / saccade) is either known or unknown on a trial-by-trial basis. I would

hypothesize that in trials with unknown response modality beta band modulations source

localize to the PPC, while in trials where subjects know how to answer, this effect originates

from premotor areas or FEF.

Second, we observed a scaling of the CPP with subjectively perceived stimulus differences

and related these changes to statistical decision confidence. A crucial next step will be to

record actual ratings of confidence on single trials to uncover how confidence interacts with

the accumulation of evidence tracked by the CPP. In particular, it remains unclear whether

at the time of response a fixed threshold bound is reached or if the signal is modulated

by confidence (Gherman & Philiastides, 2015; Kelly & O’Connell, 2013, 2015; Philiastides

et al., 2014; Twomey et al., 2016). For example, our recordings in study 3 demonstrate

that the CPP builds-up as expected from an accumulation process, but is scaled by trial

difficulty at the time of response. A drift-diffusion model with non-collapsing bounds

would have predicted that a fixed threshold of CPP amplitude is reached independent

of trial difficulty as observed in similar recordings (Kelly & O’Connell, 2013). For future

mechanistic explanations and the large body of modelling work on such decision processes
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we should identify if confidence signals, e.g. from the ventral striatum as observed with

fMRI (Hebart et al., 2016), are either mixed with or alternatively directly influence the

CPP.

Third, it will be important to investigate gamma oscillations in this task more thoroughly,

because – as previously discussed – the beta band is theorized to reflect the re-activation of

content (Spitzer & Haegens, 2017) and might reflect a maintenance state that is interrupted

by short gamma bursts (Lundqvist, Herman, & Miller, 2018; Lundqvist et al., 2016). Because

re-activation of content may only be necessary across timespans above one second, it will

be important to investigate gamma during a longer WM interval. Moreover, gamma has

not been investigated during decision making in the SFC task and a possible relationship

with the CPP should be investigated. MEG however, appears unsuited to detect a centro-

parietal field2, and previous MEG studies were not able to find such a parietal signal (e.g.,

Donner et al., 2009). One avenue would be to record concurrent M/EEG and use both

signals to detect high-frequency gamma and the CPP. In addition, recent developments

based on the Hidden Markov Model have been used to identify fast transient states in

M/EEG data (Vidaurre et al., 2018; Vidaurre et al., 2016), and could be a promising method

to characterize such a mechanism.

3.8 General Summary

As climate change leads to ever higher temperatures (Parmesan & Yohe, 2003), buying good

quality watermelons will become more important. So, what can we say about the neural

basis of finding the right melon? First, when we feel the watermelon, the power of neural

oscillations in the alpha band increase over task-irrelevant visual areas. Concurrently, low

beta (mu) oscillations increase over the ipsilateral hemisphere of the hand doing the feeling,

while decreasing over the contralateral. Then, while we keep how the watermelon felt

in memory before selecting another to test, beta band power increases with this abstract

2It would be called ’field’, and not ’potential’ because flux is measured in terms of space
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quantity, while gamma decreases. Finally, before we point to the watermelon we want to

buy, broadband centroparietal signals characterize the process of accumulating evidence

for one melon or the other while beta band activity from premotor areas reflects our choice.

These large-scale neural oscillations reflect the dynamic, fast-paced changes in single

neurons and neuronal populations that unite their rhythms, making them detectable with

neuroimaging methods from outside the human skull. This suggests that the brain uses

neural oscillations to communicate information between different areas and that the more

we understand about these rhythms the better we can understand the language the brain

uses.
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Ample evidence suggests that oscillations in the beta band represent quantitative
information about somatosensory features during stimulus retention. Visual and auditory
working memory (WM) research, on the other hand, has indicated a predominant role
of gamma oscillations for active WM processing. Here we reconciled these findings
by recording whole-head magnetoencephalography during a vibrotactile frequency
comparison task. A Braille stimulator presented healthy subjects with a vibration to the
left fingertip that was retained in WM for comparison with a second stimulus presented
after a short delay. During this retention interval spectral power in the beta band from the
right intraparietal sulcus and inferior frontal gyrus (IFG) monotonically increased with the
to-be-remembered vibrotactile frequency. In contrast, induced gamma power showed
the inverse of this pattern and decreased with higher stimulus frequency in the right
IFG. Together, these results expand the previously established role of beta oscillations
for somatosensory WM to the gamma band and give further evidence that quantitative
information may be processed in a fronto-parietal network.

Keywords: working memory, MEG, somatosensory, gamma, beta, oscillations

INTRODUCTION

The ability to maintain behaviorally important sensory information over short periods of time is
a key component of working memory (WM). The neural basis of this cognitive function has been
attributed to the lateral prefrontal cortex (PFC), whose neural firing rates are modulated during
stimulus retention (for review, see D’Esposito, 2007). Research in the somatosensory domain
provides evidence that single neurons in the PFC can encode WM content by monotonically
increasing and decreasing their firing rate (Romo et al., 1999; Brody et al., 2003). In these studies
responses of neurons from the right inferior convexity of the PFC were recorded in behaving
monkeys trained to decide whether the second (f2) of two sequentially presented frequencies
was higher or lower than the first (f1). Hence, this task requires remembering f1 throughout a
short retention interval between both stimuli. Firing rates observed during this retention interval
changed as a function of f1 and were directly related to behavior, in line with an interpretation as a
neural substrate of parametric WM (for review, see Romo and de Lafuente, 2013).

Complementing these findings from non-human primates, human electroencephalography
(EEG) recordings during the same task have revealed a parametric increase of oscillatory
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power in the beta band (15–35 Hz) as a function of f1 (Spitzer
et al., 2010; Spitzer and Blankenburg, 2012). The source of this
modulation was consistently found in the right inferior frontal
gyrus (IFG) of the PFC. Expanding on these findings, Spitzer and
Blankenburg (2012) and Spitzer et al. (2014) demonstrated this
effect across sensory modalities and stimulus features, indicating
a generalized role of prefrontal beta oscillations for maintaining
quantitative information.

Magnetoencephalography (MEG) studies on the other
hand have identified modulations of high frequency gamma
oscillations (>40 Hz) accompanying somatosensory WM (Bauer
et al., 2006; Haegens et al., 2010). In a vibrotactile delayed
match-to-sample task, Haegens et al. (2010) demonstrated that
relative to a pre-stimulus baseline, gamma power increased
during the WM interval in the secondary somatosensory
(SII) and frontal cortices. Furthermore, the frontal power
increase correlated positively with behavioral performance,
suggesting a functional role for gamma oscillations around
65–80 Hz. These results corroborate findings from other
sensory domains (for reviews, see Benchenane et al.,
2011; Roux and Uhlhaas, 2014; Lara and Wallis, 2015)
and intracranial recordings in monkeys (Pesaran et al.,
2002). Specifically, MEG studies in humans have shown
that visual and auditory WM is accompanied by sustained
gamma band activity in modality specific sensory areas
(Lutzenberger et al., 2002; Kaiser et al., 2003; Jokisch and Jensen,
2007).

However, the available evidence for an involvement of
high frequency oscillations in somatosensory WM is limited
to contrasting periods of high vs. low WM load. Indeed,
while investigations into the functional role of the beta-band
demonstrated a parametric mapping of stimulus identity to
oscillatory power, the role of gamma in maintaining stimulus
features remains unclear.

In the present study, we investigated the role of cortical
oscillations for the parametric encoding of human somatosensory
WM. Subjects performed a vibrotactile frequency comparison
task with stimuli consisting of different frequencies delivered to
the left index finger. The neural substrates of performing this task
were measured non-invasively with whole-head MEG, allowing
for the tracking of fast oscillatory changes in high frequencies. We
hypothesized that in addition to the well-established modulation
of frontal beta band power by f1, oscillations in the gamma
band would also be modulated by the to-be-maintained stimulus
frequency.

MATERIALS AND METHODS

Participants
Twenty-three healthy volunteers (12 females, 23–37 years of age,
median: 28) participated in the study and underwent a 30-min
behavioral training session to learn the task one week before the
MEG recording. All participants reported being right-handed,
according to the Edinburgh Handedness Inventory (Oldfield,
1971), having no history of neurological illness and normal
or corrected-to-normal vision. Volunteers provided written

informed consent as approved by the local ethics committee
of the Freie Universität Berlin in accordance with the Human
Subjects Guidelines of the Declaration of Helsinki.

Experimental Paradigm
Participants were asked to decide whether the second of two
sequentially presented vibrotactile frequencies was higher or
lower than the first, either by making a saccade to a visual
target or by selecting the target via button press (Figure 1).
Each trial started with a fixation cross being presented at the
center of a screen in front of the participant for a variable
duration (750–1250 ms) at a viewing distance of 90 cm. The
response type (saccade or button press) for a given trial was
indicated subsequently by a square or diamond presented at
the location of the fixation cross for 250 ms (first response
cue, RC1; Figure 1). Alternatively, in 50% of trials, a circle
appeared at this time, indicating that the response mapping
would only be disclosed via a second response cue just
before participants were allowed to respond (RC2; Figure 1).
Then, the two vibrotactile flutter stimuli (with frequencies
11–31 Hz) were briefly presented to the left index finger (250 ms
each), separated by 1000 ms. The frequency of the first stimulus
(f1) was varied between 15 and 27 Hz in steps of 4 Hz while
the frequency of the second stimulus (f2) was either 2 or 4 Hz
higher or lower than f1. The f2 presentation was followed by
a delay of 1000 ms, after which the second response cue was
presented for 250 ms (RC2; Figure 1). If the first response cue
had already provided the response mapping (i.e., RC1= diamond
or square), a circle was presented. In case the first response cue
was uninformative (i.e., RC1 = circle), the second response cue
revealed whether participants should respond via button press
or saccade (i.e., RC2 = diamond or square). Following this, two
colored target dots were presented at the left and right side of
the screen with eccentricity of 12◦ visual angle (‘go’-cue). One
dot was blue, and the other one yellow, with the specific spatial
configuration being counterbalanced across trials (i.e., blue dot
was equally likely on either side). Each participant applied one
of two possible color mappings (i.e., if f2 > f1, choose blue; if
f2 < f1, choose yellow, or vice versa) that were counterbalanced
across participants, and selected one of the colored dots according
to their decision as soon as the target dots appeared (i.e., either
by button press or saccade, depending on the cued response
modality).

Partipants completed six blocks with 128 trials each. Within
each block, half the trials were answered by button press, the
other half by saccades (64/64). Similarly counterbalanced was
the position of the informative response cue, with half the
response types indicated before and the other half after stimulus
presentation (64/64). The total of 768 trials per participant
resulted in a scanning time of about 75 min.

Stimuli
All stimuli were created using a PC running the MATLAB-
based Psychophysics toolbox (Brainard, 1997). Vibrotactile
stimulation was delivered by a piezoelectric Braille stimulation
device (QuaeroSys, Schotten, Germany) to the left index
finger. The 16 pins of the 4 × 4 Braille display were driven
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FIGURE 1 | A schematic of the task for one example trial. First, a response cue (RC1) was presented for 250 ms to indicate whether to answer by saccade or button
press. In half the trials a circle appeared instead, which indicated that the response modality would be indicated just before responding. After a 750 ms delay, the
base frequency f1 was presented for 250 ms, followed by a 1000 ms retention interval. After presentation of the comparison frequency f2, the decision was delayed
for 1000 ms until a second response cue (RC2) was shown for 250 ms. Participants responded by selecting one of the two colored targets, e.g., blue for f2 > f1, by
saccade or button press. In the schematic, the top section depicts visual input; the middle the tactile; and the bottom the timing (in ms) of input.

by a constant 121 Hz carrier signal whose amplitude was
modulated by sinusoids with frequencies between 11 and
31 Hz, resulting in a percept of vibrotactile flutter at the
modulation frequency (Tobimatsu et al., 1999). The stimuli
were loaded into the buffer of the Braille stimulation device
1 s before the presentation of f1, as the communication of
PC and Braille stimulator created noticeable artifacts. To mask
the noise of the Braille display, white noise was replayed
at 66 dB from electromechanical transducers and transmitted
via sound conducting tubes to the ears inside the MEG
helmet.

Data Acquisition
Participants were positioned upright in the MEG system with
their arms placed comfortably on a table in front of them. They
were instructed to keep fixation on the presentation screen and
not to move during the experiment. Magnetoencephalography
was recorded using a whole-head MEG Vectorview NM2169N
(Elekta Neuromag Oy, Helsinki, Finland) with a total of 306
MEG channels (102 magnetometers, 204 planar gradiometers).
A band-pass filter of 0.03–500 Hz was applied during acquisition
at 1500 samples/second and five head position indicator (HPI)
coils attached to the scalp, three on the forehead and one on
each mastoid, tracked the head movements continuously. Three
fiducials (nasion, left and right preauricular points) as well as
over 500 scalp points were measured with a Polhemus FASTRAK
3D digitizer to obtain the head shape of each participant.
We did not employ electrooculography, because initial tests
revealed that electrodes placed on the head increased artifacts
from the QuaeroSys stimulation device (cf. Chandler et al.,
2015).

Participants’ responses were tracked via a NNL-Response
Grip from Nordic Neuro Lab (BNC – serial port) and an
iView X MEG eye-tracking system (SensoMotoric Instruments
GmbH, Berlin, Germany) sampled at 50 Hz. Saccades to
the left or to the right further than nine degrees off-
center were interpreted as a response to the according side.
Trials in which participants showed lateral eye movements
before the colored targets appeared and those in which
the wrong response modality was used were excluded from
further analysis. Before each block started, the eye-tracker

was calibrated and validated with a standard five-point
procedure.

Data Processing
All MEG data were preprocessed using the Oxford Centre
for Human Brain Activity software library (OSL)1 drawing
on the Fieldtrip toolbox2 (Oostenveld et al., 2011) and
SPM12 (Wellcome Department of Cognitive Neurology, London,
United Kingdom3).

As a first preprocessing step, we identified noisy channels
and periods of strong artifacts by visually inspecting the
continuous recordings. Then, using the MaxMove software
(Elekta Neuromag), noise sources outside the skull were removed
by applying signal-space separation with its temporal extension.
Head movement compensation based on continuous tracking of
the HPI coils was used and each individual’s data transformed to
the co-ordinate frame of their third scanning block. Subsequently
the continuous data were bandpass filtered at 0.1–165 Hz, down-
sampled to 512 samples per second and cut into epochs with
respect to f1 onset in a time window of −1000 to +1500 ms.
After visual inspection of individual trials to identify extreme
muscle artifacts, squid jumps and signal drop out, an independent
component analysis (ICA), as implemented in the EEGLAB
toolbox (Delorme and Makeig, 2004), was calculated to identify
blink, saccade and heart beat components, which were excluded
in the remixing of the data. We conservatively rejected only
those components that showed a very typical artifactual nature.
In a final visual inspection, trials with persisting artifacts were
manually removed.

To obtain a time-frequency (TF) representation of spectral
power we used a sliding window Fourier transform at steps
of 20 ms and applied a Hann taper with seven cycles length
for frequencies 5–40 Hz. For higher frequencies, we used a
multitaper Fourier transform with a fixed sliding window of
200 ms and±10 Hz smoothing.

Evoked power was calculated for each f1-f2 stimulus pair by
computing the TF representation of the according event related

1http://ohba-analysis.github.io/
2http://www.fieldtriptoolbox.org
3www.fil.ion.ucl.ac.uk/spm/
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fields (ERFs). ERFs were obtained by averaging all baseline-
corrected trials (with respect to 650–150 ms prior to f1) for each
stimulus pair in the time domain. Induced power was calculated
by subtracting the ERFs of each stimulus pair from according
single trials before transforming the single-trial data into the
TF domain. The resulting single-trial TF representations were
averaged for each condition (i.e., per stimulus pairs) to yield
estimates of average induced power per condition. Finally, we
applied a frequency-specific baseline correction by subtracting
the average power in each frequency band 650–150 ms before
f1 onset from the whole trial. For further analyses and display
purposes, we combined the set of two orthogonal gradiometers at
each location, resulting in 102 rectified planar gradiometers.

Statistical Analysis
Time-frequency maps were convolved with a 3 Hz × 300 ms
Gaussian smoothing kernel (Kilner et al., 2005) to reduce
variability between trials. To investigate parametric coding of
f1 frequency during the retention interval, we implemented
a general linear model (GLM) with a one-factorial repeated
measures design for individual trials with the four f1 conditions
as factor levels (i.e., f1 = 15, 19, 23, or 27 Hz). The accordingly
estimated parameter maps (beta images) were weighted with a
zero-mean contrast vector of [−0.75, −0.25, 0.25, 0.75]. The
resulting contrast images depict the parametric difference across
the four conditions in each TF bin.

These images from all individuals were statistically validated
via a cluster-based permutation test procedure over all subjects
(Maris and Oostenveld, 2007). This test controls the false-
alarm rate by using a cluster statistic that is evaluated
under a permutation distribution of summary statistics of the
observed data, which we established with 5000 randomly sign-
flipped permutations. A cluster was defined as a group of
adjacent time-frequency bins whose cluster-defining threshold
surmounted pthreshold < 0.05. Clusters exceeding the family-
wise error (FWE) corrected threshold of pFWE < 0.05 (corrected
for time, frequency, and channels) were considered to be
statistically significant. Cluster-based inference, which serves
to reject the null hypothesis of the whole time-frequency-
channel window, was supplemented by conventional linear trend
analysis over time, pooled over the channels and frequency
bands in which a significant effect had been observed. The
aforementioned analysis steps were also applied to equal-sized
subsets of correct and incorrect trials. For each cluster, the
statistical comparisons were then based upon those channels
and frequencies exhibiting a significant effect in the main
parametric contrast of induced power. This cluster analysis
was supplemented by conventional t-tests between correct and
incorrect trials on all timepoints where significant clusters
had been identified and were subjected to Bonferroni–Holm
correction.

To maximize the power of these parametric contrasts, we
pooled trials over both response modalities (i.e., saccades
and button presses) and response cues (i.e., before and after
stimulus presentation). To ensure that there were no differences
between the underlying subgroups for the parametric WM
effects, we applied the same procedure for these separate

conditions. Moreover, to verify that response times (RTs) –
as a measure of WM load – did not have an influence
on the parametric coding of vibrotactile frequencies, we
contrasted the four estimated parameter maps from the GLM
inversion (i.e., one beta image for each base frequency) by
the according individual mean RTs, instead of the actual f1
frequencies as in the main analysis. Both control analyses did
not reveal any significant clusters during the WM period of this
task.

Source Reconstruction
The 3-D sources of the observed effects at the sensor level were
reconstructed using T1-weighted structural magnetic resonance
(MR) images. The images were acquired with a Siemens 3.0 Tesla
TIM Trio or Verio scanner, either using a T1-weighted MPRAGE
sequence (TR = 2300 ms, TE = 2.96 ms, flip angle = 9◦,
FOV = 256 mm × 240 mm × 176 mm, voxel size = 1.0 mm
isotropic) or a T1-weighted MP2RAGE sequence (TR= 5000 ms,
TE= 2.92 ms, TI1= 700 ms, TI2= 2500 ms, flip angle 1= 4◦, flip
angle 2= 5◦, matrix size= 240× 256× 176, voxel size= 1.0 mm
isotropic). The individual structural MR images were used to
create cortical meshes of 8196 vertices by warping meshes from a
brain template to the inverse spatial normalization of individual
brains. The MEG recording sites were co-registered with the MRI
using three fiducials: the nasion as well as the left and right pre-
auricular points. The forward model (i.e., leadfield matrix) was
estimated as a realistic single shell (Nolte, 2003).

The inversion of the forward model was based on the
preprocessed MEG data in the time domain, prior to TF
transformation. Before model inversion, the time domain signal
was bandpass-filtered and epoched to representative time-
frequency windows that reflected the features of the sensor space
analysis; namely the significant times and frequencies of the
cluster-based permutation test for the localization of the WM
effect, and the time of f1 presentation in combination with
according frequency bands (i.e., frequency of f1 ±1 Hz) for the
localization of somatosensory steady-state evoked fields (SSEFs).
The forward model was inverted using multiple sparse priors
(MSP; Friston et al., 2008) under group constraints (Litvak and
Friston, 2008) as implemented in SPM12 for each condition
separately. For each participant, the results of model inversion
were summarized by 3-D images reflecting the spectral source
amplitude averaged over the corresponding TF windows of
interest. These matched the significant clusters of the sensor level
analysis for the WM effect, and were according to time and
frequency of f1 presentation for the localization of SSEFs. For
the source reconstruction of the WM effect, the summary images
were contrasted in analogy to the sensor space analysis, namely
by a parametric contrast corresponding to the four different f1
values (i.e., f1 = 15, 19, 23, 27 with contrast vector = [−0.75,
−0.25, 0.25, 0.75]). For the source reconstruction of SSEFs,
the 3-D summary images of spectral source power during f1
presentation (at corresponding frequencies) were weighted by
the individual amplitudes of SSEFs as observed at the sensor
level. Since somatosensory SSEFs (i.e., somatosensory steady-
state evoked potentials recorded with EEG) are known to show
a bell-shaped amplitude profile over stimulus frequencies in
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the flutter range when recorded at the scalp (e.g., Snyder,
1992; Tobimatsu et al., 1999), this specific amplitude profile
was also used to identify the most likely cortical sources of
SSEFs. On the group level, individual source estimates were
contrasted using conventional t-tests. Sources that exceeded
a statistical threshold of p < 0.01 (p < 0.001 for SSEFs;
both uncorrected) were displayed to indicate the most likely
sources underlying the effects observed at the sensor level.
References to anatomical landmarks were established with the
SPM anatomy toolbox (Eickhoff et al., 2005) and are expressed
in the Montreal Neurological Institute and Hospital (MNI)
coordinate system.

RESULTS

Behavior
Participants correctly discriminated on average 69% (SD = 7%,
Table 1) of all presented stimulus pairs and each participant’s
correct responses exceeded the guess rate of 50%. A within-
subjects ANOVA with the factors ‘base stimulus frequencies’
in Hz (15, 19, 23, 27) and ‘difficulty’ (±4 Hz vs. ±2 Hz) was
performed on percentages of correct responses (PCR), logit-
transformed to account for the non-normality of the residuals.
This analysis revealed no effect of base stimulus frequency (i.e.,
f1) on the percentage of correct responses [F(3,66) = 1.25,
p > 0.05]. However, as expected, participants were more
successful on easy trials (f2-f1 = ±4 Hz) as compared to difficult
trials [f2-f1=±2 Hz; F(1,22)= 101.64, p < 0.001]. Similarly, we

TABLE 1 | Average task performance.

Behavioral performance

Frequency (Hz) % Correct RT (ms)

15 67 (12) 437 (106)

19 69 (9) 430 (97)

23 71(9) 428 (93)

27 66 (7) 425 (93)

Total 69 (7) 430 (97)

f1-f2 (Hz)

−4 69 (11) 432 (98)

−2 62 (9) 433 (101)

2 65 (9) 435 (100)

4 79 (11) 420 (90)

Response cue before

Button press 69 (8) 379 (109)

Saccade 69 (7) 443 (91)

Response cue after

Button press 68 (8) 419 (110)

Saccade 69 (8) 478 (99)

The top part shows the performance for the four base (f1) frequencies as proportion
of correct responses (PCRs; in %) as well as the median reaction times (RTs)
in milliseconds. The middle part depicts PCRs and RTs as a function of the
difference between base (f1) and comparison (f2) frequency. The bottom part
shows the performance for the different response modalities, separate for whether
the response cue appeared before or after vibrotactile stimulation. All entries are
followed by the corresponding standard deviation in brackets.

performed a 2× 2 within-subjects ANOVA with factors ‘response
type’ (button vs. saccade) and ‘response cue’ (before vs. after
stimulus presentation) on the logit transformed PCRs, which
revealed no significant differences (all p > 0.05, see Table 1).

On average, participants responded 430 ms after the ‘go’-
cue, i.e., after displaying the response mapping on the screen.
Because we applied a forced-delay decision task, RTs were
not expected to show large variability across different stimulus
conditions. Accordingly, a within-subjects ANOVA with factors
‘base stimulus frequencies’ and ‘difficulty’ of the median RTs
did not reveal any significant differences (all p > 0.05, see
Table 1). The same analysis with the factors ‘response type’
and ‘response cue’ showed faster answers by button press than
saccades [F(1,22) = 24.82, p < 0.001]. One reason for this
difference was that detecting saccades accurately was slower than
reading out button presses. Participants also gave faster responses
when the response cue was delivered before stimulus presentation
[F(1,22)= 30.71, p < 0.001, for a list of all RTs see Table 1].

Stimulus-Evoked Fields
Stimulus evoked MEG activity from all planar gradiometers
are depicted in Figure 2A for one exemplary stimulus pair
(f1 = 23 Hz; f2 = 27 Hz). The vibrotactile stimulus evoked
strong frequency-specific steady-state evoked fields (SSEFs),
contralateral to the stimulated hand (Figure 2B). Source
reconstruction localized the steady-state evoked response focally
to the right somatosensory cortex, with a cluster spanning areas
3b, 1 and 2 (peak: 24, −38, 57). Crucially, evoked responses were
limited to the duration of stimulus presentation and were absent
during the retention interval.

We were interested whether subjects’ performance was related
to their steady-state evoked responses as previously reported
with EEG (Spitzer et al., 2010). Figure 2C shows the grand
average narrow band evoked activity at the frequency of f1
and f2 stimulation, computed over all stimulus conditions for
equal subsets of correct and incorrect trials. The illustrated
time-courses are based on averages from planar gradiometers
over right somatosensory areas, where SSEFs were most
pronounced. Statistical analysis revealed differences between
correct and incorrect trials during both base (f1) and comparison
(f2) stimulus presentation (p < 0.05). This difference is
likely due to participants increased attention during correct
trials, which has been shown to enhance somatosensory
evoked potentials (Bardouille et al., 2010). Additionally, we
tested whether individual SSEFs were related to behavioral
performance across participants. The correlation between
subject’s PCRs and SSEF amplitude was not significant [Pearson’s
r(21) = 0.34, p = 0.11; Figure 2D], however, there was
a trend toward stronger SSEFs in subjects with higher
performance.

Induced MEG Responses
The overall induced responses observed in higher and lower
frequencies pooled over all trials are illustrated in Figure 3.
Transient and steady-state evoked potentials were eliminated
by subtracting the average waveform before time-frequency
transformation for each base and comparison frequency pair.
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Because the piezoelectric stimulation device created an artifact
that varied trial-by-trial, subtracting the average waveform left
a residual artifact that was restricted to the time of stimulus
presentation (Figure 3B).

In comparison to a prestimulus baseline, vibrotactile
stimulation induced the typically observed changes in the beta
band (15–25 Hz) over somatosensory areas (see Spitzer et al.,
2010). During and immediately after stimulation, we observed
a beta power decrease over bilateral somatosensory channels
(Figures 3B,C; peak: 42, −26, 52), which was followed by a
rebound, dominantly contralateral to the side of stimulation
(Figures 3B,D; peak: 46, −34, 63). Moreover, alpha band
(7–12 Hz) activity was increased during the retention phase
in posterior channels (Figures 3B,E). Source reconstruction
of this effect revealed a distributed activation pattern over
visual regions that was most robust ipsilateral to the stimulated
hand (peak: −12, −90, 45). Furthermore, this effect was more
pronounced in correct than incorrect trials (pFWE < 0.05).
As visual input was inconsequential for task performance
during this time, alpha power appears to reflect top-down
inhibition of task-irrelevant cortical areas (Klimesch et al., 2007;
Jensen and Mazaheri, 2010).

While there were no changes in induced gamma power
(>40 Hz, Figure 3A) with respect to the prestimulus baseline,
frontal gamma power between 70 and 110 Hz was related to
task performance. In particular, we found higher broadband
gamma band power for correct as compared with incorrect
trials (pFWE < 0.01). However, this effect neither correlated
with changes in occipital alpha power across subjects, nor with
participants’ overall performance (both p > 0.05), as had been
reported previously (Haegens et al., 2010).

Parametric Contrast of Induced Beta
Oscillations
The central aim of this study was to identify changes in oscillatory
power that scale with the stimulus held in WM throughout
the delay period. Figure 4 illustrates such a parametric WM
effect for low frequencies (5–40 Hz). A cluster-based permutation
test revealed TF windows in which the effect was statistically
significant (Figure 4A). Interestingly, this analysis indicated
two distinct clusters in the beta band (both pFWE < 0.05),
centered at the middle of the retention interval. One cluster
spanned frequencies in the lower beta band (10–20 Hz) and
showed the strongest modulation over bilateral parietal channels
(Figure 4E). Source localization of this effect indicated focal
activity in the right intraparietal sulcus of posterior parietal
cortex (PPC; Figure 4E; peak: 50, −44, 53), an area closely
linked to numerosity processing (Nieder, 2016). Markedly, the
average time courses of lower beta power scaled monotonically
with the frequency held in WM (Figure 4D), as confirmed by
linear trend analysis (600–1050 ms, p < 0.05). The second cluster
extended to the upper beta frequency range (30–35 Hz) and
peaked in right frontal channels (Figure 4C). The most likely
source of this effect was located in the right IFG of the lateral
PFC (Figure 4C; peak: 48, 12, 35). Similar to the effect in the
lower beta band, high beta power scaled with the remembered

stimulus frequency throughout a large portion of the retention
interval (Figure 4B).

To investigate a link to behavior, we compared the observed
modulations of beta band power between correct and incorrect
trials. When the analysis was based exclusively on incorrect trials,
the observed parametric contrast did not reveal any significant
effects. However, while analyses of only correct trials revealed
the same pattern as the main analysis, the difference between
correct and incorrect was not significant. Note that this analysis
was limited to a fraction of trials to match the amount of correct
with incorrect trials, which strongly reduced statistical power.
Figure 4F illustrates an example of the performance related
differences and displays the parametric contrast statistic at 30–
35 Hz for equal-numbered subsets of correct and incorrect trials
separately.

Parametric Modulations of Induced
Gamma Activity by f1
The main focus of the present MEG study was the possible
parametric modulation of higher frequency oscillations
throughout f1 retention, complementing the previously
established effects in lower frequencies with EEG. Statistical
analysis of frequencies in the gamma band revealed a cluster
of prefrontal channels, whose power at 74–90 Hz declined
monotonically with increasing f1 frequency (Figures 5A,E;
pFWE < 0.05). Source reconstruction of the TF cluster identified
the right IFG as the origin of this negative gamma band
modulation (Figure 5B; peak: 50, −44, 53). In comparison
with the high beta effect, which showed the opposite pattern
(i.e., an increase with stimulus frequency), the modulation of
gamma band activity was localized to more anterior and inferior
areas, also reflecting the differences in their respective scalp
topographies (viz. Figures 4C, 5B). Linear trend analysis of the
average power in this frequency range for each of the four f1
stimuli was significant between 550 and 800 ms after f1 onset
(Figure 5C).

The separate analysis of equal-numbered subsets of correct
and incorrect trials resulted in the same pattern as observed
in lower frequencies. While an analysis based exclusively on
correct trials appeared more similar to the effects of all trials (i.e.,
showed a modulation by f1), incorrect trials did not show this
pattern. However, because this analysis was based upon random
permutations of a fraction of trials, statistical power was strongly
reduced and no significant differences manifested between the
two subsets (Figure 5D).

DISCUSSION

In the present study, we recorded MEG in humans to determine
the neural oscillations underlying vibrotactile frequency
maintenance during WM. In a sequential frequency comparison
task, we identified modulations of spectral power by the to-be-
remembered vibrotactile stimulus frequency (i.e., f1) in the beta
(at 10–20 and 30–35 Hz) and gamma (at 74–90 Hz) range during
the WM period of the task. Oscillatory power in the beta band
parametrically increased in parietal and prefrontal areas with
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FIGURE 2 | (A) Grand average of stimulus evoked fields over all participants and planar gradiometers for an example stimulus pair (base = 23 Hz;
comparison = 27 Hz). The steady-state evoked field (SSEF) at the time of f1 and f2 stimulation appears prominent in a narrow frequency band around the perceived
vibrotactile frequency. (B) Top: Average topography of the SSEFs for all f1 stimuli. Bottom: Source reconstruction of the mean SSEF, weighted by relative amplitude,
thresholded at p < 0.001 (uncorrected). Sources span the somatosensory areas 1, 2, and 3b. (C) SSEFs expressed as average of channels with strongest response
during stimulus presentation (marked with ∗ in topography), depicted in the center. The four time-courses show the mean narrow-band power around the
frequencies of base (f1) and comparison (f2) stimuli for equal-numbered correct and incorrect trials. The gray shading indicates time points of significant difference
between the two subsets from cluster analysis (pFWE < 0.05). (D) Scatterplot of mean narrow-band SSEF amplitude and percent correct responses (PCR) for each
subject. The correlation of these two metrics was not significant (r = 0.34, p = 0.11).

FIGURE 3 | Grand average induced power for high (40–110 Hz; A) and low frequencies (5–40 Hz; B), compared to pre-stimulus baseline for central parieto-occipital
channels as marked in the top left corner. The dashed rectangles illustrate time-frequency windows with increases and decreases induced by stimulus presentation.
Beta power first decreased after stimulus presentation (C), then rebounded with an increase in right somatosensory areas, contralateral to the stimulated hand (D).
Alpha power was elevated throughout the delay period, most strongly in occipital areas (E). (C–E) Show the topographies and source reconstructions (p < 0.01,
uncorrected) of observed stimulus induced changes.

the magnitude of f1. In contrast, prefrontal gamma oscillations
parametrically decreased with increasing f1.

The sequential frequency comparison task employed in this
study required participants to maintain the stimulus frequency
of the first stimulus (i.e., f1) in WM. Consistent with previous
EEG studies of somatosensory WM (Spitzer et al., 2010;
Spitzer and Blankenburg, 2011, 2012) we identified oscillations

in the beta band (10–35 Hz) that encoded the frequency
of f1 in a parametric manner during the delay period of
the task. The parametric change of high beta power was
localized to the IFG in full agreement with previous EEG
(Spitzer et al., 2010), fMRI (Kostopoulos et al., 2007) and
electrophysiological recordings (Romo et al., 1999; Brody et al.,
2003) that demonstrated a crucial role of the IFG for parametric
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FIGURE 4 | Overview of low frequency oscillations modulated by f1. (A) Statistical parametric map of oscillatory power as a function of f1, averaged over bilateral
fronto-parietal electrodes denoted in the top left corner. Statistical analysis revealed two separate clusters, one in a higher and one in a lower beta band (p < 0.05,
FWE), which are marked with dashed lines. (B) Illustration of the average power at 30–35 Hz for the four f1 stimuli throughout the retention interval for right frontal
channels. The gray area denotes a significant linear trend. (C) Topographical scalp distribution and corresponding source reconstruction of the TF cluster in the
upper beta band as marked in (A). (D,E) Time-course, topography and source reconstruction in analogy to (B) and (C) for the TF cluster in the lower beta band
(10–20 Hz) as depicted in (A). (F) Grand average time-course of WM effect in correct and incorrect trials over right frontal channels at 30–35 Hz.

somatosensory WM. Contrary to previous EEG recordings
(Spitzer et al., 2010; Spitzer and Blankenburg, 2011, 2012), in
which the skull typically acts like a low-pass filter (Pfurtscheller
and Cooper, 1975), the observed effect extended above 30 Hz
and might therefore be termed a change in the gamma, not the
beta band.

Interestingly, we also observed modulations of high frequency
gamma power in the right IFG. However, this effect displayed
the opposite pattern of the parametric modulation of spectral
power in the beta band, i.e., gamma band power decreased
monotonically with stimulus frequency. The observed effect in
the gamma band appeared in the same frequency range (74–
90 Hz) as other correlates of WM in MEG (Kaiser et al., 2003;
Fuentemilla et al., 2010; Haegens et al., 2010) and was estimated
to be located slightly anterior to the high beta band modulation.
Whereas the overall induced gamma power was additionally

related to performance within subjects, it neither correlated
with performance across subjects, nor with alpha power as was
previously observed in a similar task by Haegens et al. (2010).
The same study also observed a sustained broad band gamma
increase in SII during the retention phase for which we found
no evidence in the present study. The lack of such a sustained
signal favors the notion that WM exhibits dynamic oscillatory
changes – not sustained activity – as evidenced in single-cell
recordings (cf. Shafi et al., 2007; Stokes et al., 2013; Lundqvist
et al., 2016).

As signal detection with MEG depends on large-scale
oscillatory changes, we speculate that our observations reflect a
population-level correlate of the heterogeneous encoding as a
complex pattern of increases and decreases in firing rate observed
in single cells (Barak et al., 2010). This is in line with previous
EEG studies (Spitzer and Blankenburg, 2011, 2012) hypothesizing
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FIGURE 5 | Modulation of induced high frequency activity by f1. (A) Statistical parametric map of the linear contrast of the four base (f1) frequencies. The dashed
rectangle marks the right frontal cluster (p < .05, FWE) for which (B) shows the scalp topography and corresponding source reconstruction. (C) Time-course of
average stimulus induced power for the four different base (f1) stimuli; gray area denotes significant time points. (D) Grand-average time courses of gamma band
power (74–90 Hz) for equal-numbered subsets of correct and incorrect trials. (E) Channels used for (A–D), marked with ∗.

that parametric prefrontal WM effects may indicate an abstract
internal scaling of analog quantity information, according to task
demands. While the basis of this interpretation was confined to
prefrontal oscillations in the beta band, the present results extend
this view to prefrontal gamma. This is particularly interesting,
because gamma amplitudes recorded with EEG, but not beta,
have been found to predict neural responses from multiunit
activity recordings in monkeys (Whittingstall and Logothetis,
2009), thus being more likely to represent commonalities between
monkey and human research.

Contrary to previous EEG studies, we found that low beta
band power (10–20 Hz) was also parametrically modulated by the
stimulus frequency held in WM. Interestingly, this effect localized
to the right intraparietal sulcus (IPS), an area well-established
in its role for supramodal number processing (Eger et al., 2003;
Castelli et al., 2006; Nieder, 2012). In particular, blood-oxygen-
level dependent (BOLD) responses in the IPS can be used for
multi-voxel pattern analysis to distinguish between quantities
(Eger et al., 2009) and have been shown to activate in conjunction
with inferior frontal areas in numerosity tasks (Piazza et al., 2007;
Knops et al., 2014). The present results therefore join growing
evidence that indicates a common representation of abstract
quantity in the IPS and PFC.

It is unclear, however, why previous EEG studies (Spitzer
et al., 2010, 2014; Spitzer and Blankenburg, 2011, 2012; Herding
et al., 2016) did not detect the observed changes in the IPS.
Besides the higher signal-to-noise ratio for shallow sources with

MEG compared to EEG, one reason may be that MEG is more
sensitive to sulcal than gyral sources, making the detection of
oscillations from the intraparietal sulcus more likely than those
from, e.g., the IFG (Hämäläinen et al., 1993; Goldenholz et al.,
2009).

Notably, the parametric changes in low beta (10–20 Hz)
included frequencies as low as those in the alpha range
(8–12 Hz – also called ‘mu’), which are commonly associated with
the functional disengagement of particular brain areas (Klimesch
et al., 2007). However, the low beta signal was parametrically
modulated by the stimulus frequency, suggesting a feature-
specific role of the underlying neural process. We suggest that
our findings may be explained by frequency specific inhibitory
processes in sensorimotor areas themselves, as proposed by
the discrete coding and periodic replay hypothesis (Sandberg
et al., 2003; Lundqvist et al., 2011), and might be an expression
of passive maintenance states as theorized by the dynamic
coding framework (Stokes, 2015). In agreement with this idea,
the observed beta-gamma dynamics may reflect feature specific
differences in brief beta and gamma bursts, which would agree
with recent observations in monkeys (Lundqvist et al., 2016).
Overall, it appears that an intricate interplay of beta and
gamma oscillations in fronto-parietal areas underlies tactile WM,
as has recently been observed for attention (van Ede et al.,
2014).

In summary, we have shown that beta and gamma oscillations
in the IFG parametrically encode stimulus features while
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retaining vibrotactile frequencies in working memory.
Interestingly, in contrast to increases in the beta band, gamma
oscillations decreased with the to-be-maintained frequency.
Additionally, we found a modulation of spectral power by
stimulus frequency in a lower frequency range in the intraparietal
sulcus, which underlines the close coupling of IPS and IFG for
the processing of abstract quantities. Our findings suggest a
functional role of neural oscillations for WM in a fronto-parietal
network, with an extended role of beta and gamma oscillations
for the somatosensory domain.
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Abstract 

Recent studies suggest that a centro-parietal positivity (CPP) in the EEG signal tracks the absolute 

(unsigned) strength of accumulated evidence for choices that require the integration of noisy sensory 

input. Here, we investigated whether the CPP might also reflect the evidence for decisions based on a 

quantitative comparison between two sequentially presented stimuli (a signed quantity). We 

recorded EEG while participants decided whether the latter of two vibrotactile frequencies was higher 

or lower than the former in six variants of this task (n=116). To account for biases in sequential 

comparisons, we applied a behavioral model based on Bayesian inference that estimated subjectively 

perceived frequency differences. Immediately after the second stimulus, parietal ERPs reflected the 

signed value of subjectively perceived differences and afterwards their absolute value. Strikingly, the 

modulation by signed difference was evident in trials without any objective evidence for either choice 

and correlated with choice-selective premotor beta band amplitudes.  Modulations by the absolute 

strength of subjectively perceived evidence – a direct indicator of task difficulty - exhibited all features 

of statistical decision confidence. Together, our data suggest that parietal EEG signals first index 

subjective evidence, and later include a measure of confidence in the context of perceptual decision 

making. 
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Introduction 

Recent studies have suggested a centro-parietal positivity (CPP) in the EEG signal (arguably identical 

to the classic P300 component) as a modality-independent proxy of accumulated evidence in 

perceptual decision making tasks (e.g., Kelly & O’Connell, 2015; Philiastides et al., 2014). In particular, 

when classifying a noisy sensory stimulus interval into one of two categories, the CPP increased faster 

and peaked earlier the weaker the noise was, i.e., the clearer the presented evidence (e.g., random 

dot motion (RDM) discrimination: Kelly & O’Connell, 2013; face-vs-car discrimination: Philiastides et 

al., 2014). Moreover, the CPP reached a fixed threshold at the time of the decision report, suggesting 

an accumulation-to-bound mechanism for response initiation (e.g., O’Connell et al., 2012; but see 

Philiastides et al., 2014). Together, these findings capture the hallmarks of popular sequential-

sampling models of evidence accumulation (e.g., see Smith and Ratcliff, 2004), and may relate to 

similar, or even homologue neuronal processes as identified in the parietal cortex of non-human 

primates (e.g., Roitman and Shadlen, 2002; Gold and Shadlen, 2007; Shadlen and Kiani, 2013). 

The link between decisional evidence and the CPP is not limited to decisions that require the 

accumulation of noisy sensory input over time. In an auditory four-stimulus oddball paradigm, the 

differences between ‘deviant’ and ‘standard’ stimuli (i.e., the evidence for a ‘deviant’ detection) 

modulated the CPP in the very same way as it was modulated by the strength of evidence in 

accumulation-based decisions (Twomey et al., 2015). Notably, the three ‘deviant’ stimuli in this task 

were always higher in pitch than the ‘standard’ stimulus, eliminating the necessity for participants to 

evaluate the sign of the difference (i.e., higher or lower) between ‘deviant’ and ‘standard’. 

In all of the aforementioned EEG studies, a parietal potential tracked the strength of evidence during 

perceptual decision making, however, without indicating for which choice alternative (i.e., unsigned 

evidence; e.g., Kelly and O’Connell, 2013; Philiastides et al., 2014). In the RDM task for instance, only 
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the proportion of coherently moving dots modulated the CPP, without differentiating between the 

directions in which the dots moved (Kelly and O’Connell, 2013).  Here, we examined whether the CPP 

might also index the choice alternative, in addition to the strength of evidence, if we apply a 

sequential comparison task. In particular, does the CPP indicate the decision-relevant signed evidence 

for choices that involve a quantitative comparison? We used a classic vibrotactile two-alternative 

forced choice (2-AFC) task, in which participants compare two stimulus frequencies (f1 and f2) and 

decide whether the second one was higher or lower than the first one (comprehensive review on 

monkey electrophysiology in Romo and de Lafuente, 2013). In this paradigm, a choice-specific (i.e., 

binary) modulation of upper beta band (~20 – 30 Hz) amplitude in premotor cortex, decoupled from 

the motor response, was recently observed in human EEG recordings (Herding et al., 2016, 2017; 

Ludwig et al., 2018), replicating previous findings from monkey LFPs (Haegens et al., 2011, 2017). A 

representation of the graded differences between f1 and f2 (i.e., the signed evidence), however, has 

not yet been identified in the human EEG. For the current study, we pooled EEG data over six 

experiments, utilizing the same vibrotactile 2-AFC task while varying response modality, response 

timing, and response mapping (N = 116). We estimated subjective evidence and difficulty (i.e., the 

subjectively perceived signed and absolute difference, respectively, between f1 and f2) using a 

Bayesian inference model of choice behavior. This way, we accounted for known biases in sequential 

comparisons due to the so-called contraction-bias (e.g., Jou et al., 2004; Ashourian et al., 2011; Karim 

et al., 2012; Raviv et al., 2014) which is a direct consequence of the time-order effect/error (TOE; see 

Fechner, 1861; Woodrow, 1935; Hellström, 1985, 2003). Moreover, the behavioral model allowed us 

to derive a measure of confidence grounded in statistical decision theory (i.e., statistical decision 

confidence) obviating the need for subjective confidence reports. Using the behavioral model, we 

found that signals from the parietal cortex appeared to be first modulated by the subjectively 
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perceived signed difference, and later by the absolute value (i.e., the absolute strength of evidence).  
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Materials and Methods 

Experimental Design 

Participants: A total of 129 datasets were obtained from healthy, right-handed volunteers (21 – 40 

years; 76 females) who participated in six different variants of the experiment. Most participants 

were students from the Freie Universität Berlin, and some participated in more than one variant of 

the experiment. All studies were approved by the local ethics committee at the Freie Universität 

Berlin, and participants gave written informed consent before an experiment started. Thirteen 

datasets were excluded due to chance-level behavioral performance (<55% correct answers) and/or 

excessive EEG artifacts, leaving 116 datasets for further analyses. 

 

Figure 1 Task and stimuli. One after another, two vibrotactile stimuli with frequencies f1 and f2 were 
briefly presented to the left index finger of participants who had to decide whether f2 > f1 or f2 < f1. 
Response timing (immediate / delayed), response modality (saccade / button press), and response 
mapping (direction / color) varied over six variants of the task (exp. 1 – exp. 6). Inset, The stimulus set 
that was used in all experiments, with the exception of zero-difference trials (gray) which were not 
used in exp. 1 and exp. 2. Each square represents one stimulus pair with f1 (x-axis) and f2 (y-axis). The 
color-code denotes the physical stimulus differences f2 – f1. 
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Stimuli and behavioral task: In all six variants of the experiment, stimuli and comparison task were 

identical. Only the response modality and response timing varied across experiments (Figure 1). 

Supra-threshold vibrotactile stimuli with constant peak amplitude were applied to the left index finger 

using a piezoelectric Braille stimulator (QuaeroSys Medical Devices, Schotten, Germany). The stimuli 

consisted of amplitude-modulated sinusoids with a fixed carrier frequency of 133 Hz (137 Hz in 

Experiment 2). Amplitude-modulation of this carrier signal with frequencies between 12 – 32 Hz was 

used to create the sensation of tactile ‘flutter’ (see Talbot et al., 1968; Romo and Salinas, 2003), while 

limiting the spectrum of the physical driving signal to frequencies above 100 Hz (e.g., Tobimatsu et al., 

1999). Thus, the risk of physical artifacts in the EEG analysis range of interest (<100 Hz) was 

minimized. The sound of the stimulator was masked by white noise of ~80 dB that was played 

throughout the experiment (e.g., see Spitzer et al., 2010; Spitzer and Blankenburg, 2011). Participants 

were comfortably seated ~60 cm in front of a TFT monitor. A fixation cross was displayed at the 

center of the screen to minimize eye movements. On each trial, two flutter stimuli were successively 

presented for 250 ms each (with frequencies f1 and f2), interleaved by a retention interval of 1000 ms 

(see Figure 1). The frequencies of the first stimulus (f1) were randomly drawn from 16, 20, 24 or 28 

Hz, whereas f2 differed from f1 by +/- 2 or 4 Hz. In four variants of the experiment (Experiments 3 - 6), 

f2 was identical to f1 in 25% of the trials, without participants knowing. Participants were instructed 

to always decide whether f2 > f1 or f2 < f1.  

In Experiments 1 and 2, participants indicated choices immediately after presentation of the second 

stimulus either by pressing one of two buttons with the right index or middle finger (Experiment 1), or 

by making a saccade to one of two target dots (Experiment 2). The target dots (diameter of ~0.5° 

visual angle) appeared on the left and on the right side of the screen (~12° visual angle off-center). 

Importantly, the response assignment of the two buttons and of the two saccade directions was 
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reversed for half of the participants. This way, the mapping of choices onto specific motor responses 

(which might have been associated with specific motor preparatory signals) was fully counterbalanced 

across participants (see also Herding et al., 2016, 2017). In Experiments 3 and 4, participants reported 

choices analogously to Experiments 1 and 2, however, only after a delay of 2500 ms. In Experiments 5 

and 6, an additional mapping of choices onto a color-code (blue vs. yellow) was required to report 

decisions after the delay. In the experiments with delayed responses (Experiments 3 – 6), 2000 ms 

after the presentation of f2, a blue and a yellow target dot (diameter of ~1° visual angle) appeared on 

the left and on the right side of the screen (fully counterbalanced across trials; ~12° visual angle off-

center). In Experiments 3 and 4, the colors of the dots were irrelevant, and participants selected 

targets based on a fixed association between direction and choices (counterbalanced across 

participants). In Experiments 5 and 6, each color was associated with one of the two choice options 

(counterbalanced across participants). Participants selected a target based on its location 

(Experiments 3 and 4) or color (Experiments 5 and 6) after another 500 ms either by pressing the left-

arrow or right-arrow button with the right index or middle finger (Experiments 3 and 5, see Ludwig et 

al., 2018), or by making a saccade onto the target (Experiments 4 and 6). See Figure 1 for a graphical 

summary of the experimental designs. 

In Experiments 1 and 2, participants received performance feedback after each trial, and completed 

seven blocks of 160 f1-vs-f2 comparisons (each block lasted ~15 minutes including eye-tracker 

calibration) for a total of 1120 trials. In Experiments 3 – 6, feedback based on the performance for 

trials with f1 ≠ f2 was provided after each block, and participants completed eight blocks of 128 

frequency comparisons (each block lasted ~12 minutes including eye-tracker calibration) for a total of 

1024 trials. Before each experiment, participants performed ~50 practice trials.  

Note that the influence of the different response conditions was not subject to the current study. 
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Oscillatory signatures in the EEG signal that are related to these response manipulations have been 

reported elsewhere (Herding et al., 2016; Herding et al., 2017; Ludwig et al., 2018). 

 

Eye-tracking: In Experiment 2, a Tobii T60 eye-tracker (Tobii Technology, Danderyd, Sweden) was 

used to record eye movements of participants during each trial (binocular sampling at 60 Hz). The T60 

is integrated into a 17’’ TFT monitor and is able to track participants that are comfortably seated in 

front of the monitor (i.e., no chin rest required). In Experiments 4 and 6, eye movements were 

recorded (monocular sampling at 500 Hz) using an EyeLink 1000 Desktop Mount with a chin rest (SR 

Research, Ottawa, Canada). Online evaluation of the participants’ gaze directions was implemented 

with custom code using the Tobii toolbox and psychtoolbox 3 for MATLAB (Brainard, 1997; 

Cornelissen et al., 2002). Thus, we were able to monitor that participants kept the gaze on the central 

fixation cross during each trial (with tolerance of ~3° visual angle) and displayed a warning message if 

this was not the case (“Please keep fixation throughout the trial”). Additionally, we read out 

participants’ choices (200 ms fixation on target dot) and provided performance feedback online, 

either after each trial (experiment 2) or after each block (experiments 4 and 6). To maintain a high 

tracking accuracy, the eye-tracker was calibrated before the beginning of each block using a standard 

5-dot (Tobii T60) or 9-dot (EyeLink 1000) calibration procedure. 

 

Statistical Analysis 

Behavioral model of choices and confidence: In order to explain the observed choice pattern, we 

fitted a Bayesian inference model to individual behavioral data, and thereby, estimated subjectively 

perceived frequency differences (SPFDs; Figure 2A, for details see Herding et al., 2016; see also 

Ashourian and Loewenstein, 2011; Sanchez, 2014). In brief, the model targets to account for a known 

87



 

Figure 2 Behavioral model for choices and confidence. A, Graphical illustration of the behavioral 
model based on Bayesian inference. Y-axes display frequencies on a logarithmic scale. Top: 
Representation of f1 during different stages of the task. Pink distribution represents the likelihood 
function of f1. Black distribution is the prior centered on the stimulus set. Purple distribution is the 
posterior of f1 with shifted mean f1’. Lower: The likelihood of f2 (pink distribution) is used for the 
comparison with the posterior of f1. Subtracting the posterior of f1 from the likelihood of f2, yields a 
difference distribution which is used to fit the probability to chose f1 to the behavioral data of each 
participant by optimizing σ²stim,  σ²prior, and decision criterion c. B, Intuition of statistical decision 
confidence. The distance between perceived evidence and decision criterion is proportional to 
confidence. Average perceived evidence is displayed separately for correct and incorrect trials (green 
and red bar, respectively). Difference distribution for hard (f2 – f1’ = 0.1) and easy (f2 – f1’ = 0.3) trials 
illustrate that confidence increases with evidence strength for correct trials but decreases for incorrect 
trials. 
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bias in sequential comparisons (e.g., see Hellström, 1985, 2003; Ashourian and Loewenstein, 2011). 

That is, participants tend to compare f2 not only with the physical value of f1, but also with the 

average frequency of all presented stimuli, as if the representation of f1 is subject to a contraction 

towards the mean (hence, the term ‘contraction bias’, see e.g., Jou et al., 2004; Preuschhof et al., 

2010; Ashourian and Loewenstein, 2011; Karim et al., 2012; Raviv et al., 2014; see time-order effect 

for underlying core principle: e.g., Fechner, 1820; Woodrow, 1935, Hellström, 1985). In other words, 

the quantity that drives choices in the given task is best described by the difference between f2 and a 

representation of f1 that deviates from its physical value toward the mean frequency of the stimulus 

set. In our model, we introduce this shifted quantity – which we will call f1’ – as a weighted average of 

the mean of all stimulus frequencies and the physical value of f1 – implemented in terms of Bayesian 

inference. In particular, f1’ is the expected value of the Gaussian posterior distribution of f1, assuming 

a Gaussian prior centered on the frequencies of the stimulus set (see Figure 2A). The model was fitted 

to the choices of individual participants by optimizing three free parameters (i.e., variance of stimulus 

likelihood σ²stim, prior variance σ²prior, and a decision criterion c) using variational Bayes as 

implemented in the VBA toolbox (Daunizeau et al., 2014). In order to assess the model’s goodness-of-

fit, we computed Bayes Factors (BFs) to compare each model fit with a “null” model in which 

decisions were based on the physical stimulus differences (i.e., f2 – f1). Notably, the model of SPFDs 

as well as the “null” model followed Weber-Fechner’s law and implemented the representation of 

frequency values on a logarithmic scale (see Herding et al., 2016). 

Based on the individual model fits, we quantified the SPFD for each stimulus pair by the difference f2 

– f1’, yielding 16 SPFD values for Experiments 1 and 2, and 20 SPFD values for Experiments 3 – 6. At 

the same time, the difference distribution between the likelihood of f2 and the posterior of f1 

(centered on f1’) additionally allowed us to compute a measure of confidence based on statistical 
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decision theory (e.g., Drugowitsch, 2016; Hangya et al., 2016; Sanders et al., 2016; Figure 2B). The 

difference distribution describes the distribution of percepts that are associated with a given stimulus 

pair, i.e., with the SPFD between both stimuli. According to statistical decision theory (or signal 

detection theory), a single percept can be conceived as a sample d from this distribution, and a choice 

based on this very percept depends on where the sample is located with respect to a decision 

criterion c (i.e., choose f2 > f1 if d > c). The distance between the sample and the criterion (i.e., |d - 

c|) can be transformed into the probability of a correct response given the percept d, which in turn is 

a measure for confidence (Lak et al., 2014; Urai et al., 2017; Figure 2B). For each participant, we 

estimated average confidence based on this approach for SPFDs on the interval [-0.4, 0.4]. For each 

SPFD on this interval, we drew 100,000 samples from the individual difference distributions (i.e., 

based on the estimated parameters), and computed the associated confidence for each sample. 

Confidence values were then averaged separately for correct and incorrect trials. Since results were 

roughly symmetric across zero, the average confidence was grouped according to absolute values of 

SPFDs (e.g., -0.2 and 0.2), and respective mean values were computed. The illustration in Figure 2B 

was obtained by simulating data from an unbiased observer (c=0) with σ²stim  = 0.05 and σ²prior  = 0.347. 

 

EEG recording and analysis: In all experiments, EEG (ActiveTwo; BioSemi) was recorded at 2048 Hz 

(offline down-sampled to 512 Hz) from 64 electrodes positioned in an elastic cap according to the 

extended 10-20 system. Individual electrode locations for each participant were obtained prior to the 

experiments using a stereotactic electrode-positioning system (Zebris Medical GmbH, Isny, Germany). 

Additional electrodes were used to register the horizontal and vertical electrooculogram (hEOG and 

vEOG). For preprocessing, EEG data were high- and low-pass filtered using a non-causal FIR filter (with 

cut-off frequencies of 0.1 and 30 Hz, respectively), and re-referenced to a common average montage. 
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Eye blink artifacts in the EEG data were corrected using adaptive spatial filtering based on individual 

calibration data informed by the vEOG signal (see Ille et al., 2002). For experiment 2, in which 

participants gave immediate responses by saccades, we used the same approach informed by the 

hEOG signal to remove artifacts of horizontal saccades from the EEG signal. The artifact-free EEG data 

were segmented into epochs from -2250 to 2000 ms relative to the presentation time of the second 

stimulus in order to examine evoked EEG responses after the second stimulus as well as to compute 

control analyses after the first stimulus. Noisy trials were identified by careful visual inspection and 

were excluded from further analysis (14.8 % of trials on average). The remaining single-trial data were 

baseline-corrected relative to the 100 ms preceding stimulus onset. All analyses were done in 

MATLAB (The MathWorks) using custom code, functions of the SPM12 toolbox (Wellcome 

Department of Cognitive Neurology, London; www.fil.ion.ucl.ac.uk/spm), and the FieldTrip toolbox for 

EEG/MEG data (Radboud University Nijmegen, Donders Institute; fieldtrip.fcdonders.nl).  

 

Multiple regression and group-level analysis: For each participant, we implemented a multiple 

regression analysis of the preprocessed single-trial EEG data. At each time point, we regressed the 

EEG data onto the SPFDs (i.e., f2 – f1’) and their absolute values (i.e., |f2 – f1’|) over trials, separately 

for correct and incorrect choices. The resulting regression coefficients quantified how strongly the 

trial-specific values of the regressors (i.e., f2 – f1’ and |f2 – f1’|) were related to trial-by-trial 

variability in the EEG data. To identify time periods and channels for which this relation was 

consistently different from zero across participants, we used cluster-based permutation testing (Maris 

and Oostenveld, 2007). That is, we compared the summary statistics of the observed data (one-

sample t-test of regression coefficients across all data sets at each time point) with a distribution of 

summary statistics obtained from 500 randomly sign-flipped permutations. A cluster was defined as a 
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group of adjacent time points that all exceeded a cluster-defining threshold of pthreshold < 0.005 

(uncorrected). Clusters that exceeded a cluster-based family-wise error (FWE) corrected threshold of 

pFWE < 0.05 (corrected for time and channels) were considered statistically significant. 

 

Event-related potentials (ERPs): To visualize the effects identified in the statistical analysis as classic 

ERPs, we binned the individual 16 values of SPFDs (i.e., differences of log-transformed stimulus 

frequencies; one per stimulus pair with f1 ≠ f2) into six discrete levels across participants (i.e., [< -

0.18]; [-0.18 to -0.09]; [-0.09 to 0]; [0 to 0.09]; [0.09 to 0.17]; [> 0.17]). The grand average ERPs were 

computed separately for each level. We defined the six levels symmetrically around a SPFD of zero 

(corresponding to chance-level performance), and in such a way that each participant had at least one 

stimulus pair per level. Since SPFDs were generally small for trials with identical stimuli (i.e., f1 = f2), 

we used only four levels for the computation of ERPs in these trials (i.e., [< -0.09]; [-0.09 to 0]; [0 to 

0.09]; [> 0.09]). Note that by binning the data into discrete levels of SPFDs, the high precision of 

utilizing subjective measures for a single-trial analysis is lost for the visualization of the ERPs.  

 

Source reconstruction: The cortical sources of the observed modulations on the scalp-level were 

localized using the 3D source reconstruction routines provided by SPM12 (Friston et al., 2006). Based 

on the individually recorded electrode positions for each participant, a forward model was 

constructed using an 8196-point cortical mesh of distributed dipoles perpendicular to the cortical 

surface of a template brain (see Friston et al., 2006). The lead field of the forward model was 

computed using the three-shell Boundary Elements Method (BEM) EEG head model available in 

SPM12. Multiple sparse priors (Friston et al., 2008) under group constraints (Litvak and Friston, 2008) 

were applied to invert the forward model. For model inversion, we used a representative time 
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interval (i.e., -200 to 1500 ms relative to f2) of ERPs that were computed separately for each level of 

SPFDs (see ERPs above) drawing on all trials including those with identical stimuli (i.e., f1 = f2). The 

results of the inversion were summarized in six corresponding 3D images (i.e., one for each level of 

SPFDs) that reflected source activity averaged over a time window of interest. In particular, summary 

images were computed for an early (250 to 500 ms) and a late (500 to 800 ms) time window capturing 

the two effects observed at the scalp level (i.e., modulation by signed evidence and strength of 

evidence, respectively). For each time window, contrasting the 3D images within each participant 

analogously to the sensor space analysis served as an estimate for subject-specific source locations of 

both effects. The results of conventional group-level statistical analyses of these source images (see 

Litvak et al., 2011) are displayed at a significance level of p < 0.001 (uncorrected). Anatomical 

references for source estimates were established on the basis of the SPM anatomy toolbox (Eickhoff 

et al., 2005) where possible. 

 

Single-trial correlation of CPP and upper beta band amplitude: In order to explore the relationship 

between the CPP and premotor choice-specific upper beta band amplitude (see Herding et al., 2016, 

2017; Ludwig et al., 2018), single-trial correlations between these two measures were computed. 

Notably, only for experiments 1 and 2; as these experiments required immediate responses, and 

hence, a direct transformation of evidence into a motor response. For each participant, the 

magnitude of the CPP in every trial was specified by a single value for the early and for the late effect, 

respectively. In particular, the single-trial EEG signal from electrode CPz was averaged over a brief 

time period during which a modulation of the CPP by the signed values of SPFDs (i.e., 250 – 500 ms) or 

by its absolute values (i.e., 500 – 800 ms) was observed. Additionally, a measure of the upper beta 

band amplitude in electrodes over premotor areas was computed for each trial. Using response-
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locked time-frequency representations of the single-trial data (reported in Herding et al., 2016, 2017), 

average beta band amplitude was computed over a time-frequency cluster that exhibited a significant 

modulation by participants’ choices (i.e., electrodes FC2, FCz, and C2; 20 – 30 Hz; -750 to -350 ms 

from responses for experiment 1, see Herding et al., 2016; electrodes FC2 and FC4, 24 – 32 Hz, -750 to 

-450 ms from responses for experiment 2, see Herding et al., 2017). We used correct and incorrect 

trials to compute the single-trial correlations for each participant. The correlation coefficients from 

both experiments were pooled (N = 45), and a one-sample t-test was computed to assess whether a 

consistent correlation was present across participants. 
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Results 

Behavioral Results 

Pooled over all experiments, participants made 72.5% correct choices on average. To test whether 

performance varied across the six experiments and across the different frequency differences, we 

performed a two-way repeated measures ANOVA on proportions of correct responses (PCRs) with 

between-subject factor ‘Experiment’ (experiments 1 – 6), and within-subject factor ‘Frequency 

Difference’ (-4, -2, 2, and 4 Hz stimulus difference). We used logit-transformed PCRs to account for 

non-normally distributed residuals. The analysis revealed no significant performance differences 

between experiments (main effect ‘Experiment’, p = 0.125; interaction ‘Experiment’ x ‘Frequency 

Difference’, p = 0.182). Within each experiment, PCRs varied significantly with the factor ‘Frequency 

Difference’ (p < 0.001). For further scrutinization of this effect, we computed post-hoc paired t-tests 

for each study separately to evaluate the influence of difficulty (+/- 4 Hz vs. +/- 2 Hz differences), and 

sign of the frequency differences (positive vs. negative differences). As expected, a larger proportion 

of trials were judged correctly when the (physical) f2 − f1 frequency difference was ±4 Hz compared 

with trials where the difference was only ±2 Hz in all experiments (all p < 0.001; paired t-test; see 

difficulty effect, Table 1). In experiments 1 and 2, we additionally observed more correct responses 

for positive compared with negative frequency differences (p = 0.03, and p = 0.002; paired t-test; see 

sign effect, Table 1) which might be attributed to an observed response bias toward “f2 > f1” choices 

in these two experiments (mean criterion shifts: 0.116 and 0.126 with p = 0.029 and p = 0.002; one-

sample t test). Moreover, the analysis of median response times (RTs) from these two experiments 

revealed that participants responded faster when choosing “f2 > f1” as compared to choosing “f2 < 

f1” for correct choices (Experiment 1: 798 ms vs. 855 ms , p<0.001, paired t-test, see Herding et al., 

2016; Experiment 2: 548 ms vs. 599 ms, p = 0.001, paired t-test, see Herding et al., 2017) and vice 
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versa for incorrect choices (Experiment 1: 952 ms vs. 903 ms,  p = 0.014, paired t-test, see Herding et 

al., 2016; Experiment 2: 665 ms vs. 605 ms, p = 0.002, paired t-test, see Herding et al., 2017). RTs from 

Experiments 3 – 6 did not show any systematic variations and are difficult to interpret, because of the 

delayed decision reports. 

 Frequency difference of stimuli  

(f2 – f1) in Hz 

  

 -4 -2 2 4 difficulty effect sign effect 

Exp.1  
74.8 

±6.3 

63.4 

±5.5 

68.9 

±4.0 

85.0 

±2.9  
p < 0.001 p = 0.030 

Exp. 2 
75.9 

±4.4 

64.7 

±3.5 

70.8 

±4.4 

86.1 

±4.3  
p < 0.001 p = 0.002 

Exp. 3 
74.3 

±6.1 

64.2 

±6.0 

65.2 

±5.2 

78.1 

±5.7  
p < 0.001 p = 0.615 

Exp. 4 
77.7 

±8.8 

65.4 

±7.7 

66.2 

±5.5 

79.8 

±6.6  
p < 0.001 p = 0.871 

Exp. 5 
78.8 

±5.5 

66.6 

±4.2 

67.8 

±4.5 

81.1 

±5.8  
p < 0.001 p = 0.388 

Exp. 6 
74.2 

±5.9 

63.1 

±4.3 

66.9 

±5.3 

80.6 

±5.0  
p < 0.001 p = 0.067 

pooled 
75.9 

±2.4 

64.5 

±2.0 

67.7 

±1.9 

81.8 

±2.0  
p < 0.001 p < 0.001 

Table 1 Proportion of correct responses (PCRs) in % as a function of the physical frequency difference 
f2 – f1 for each experiment. Mean values ± 95% confidence interval are shown. 'Difficulty effect' 
compares easy (+/- 4 Hz) and difficult (+/- 2 Hz) trials in a paired t-test. 'Sign effect' compares trials 
with a positive (2 and 4 Hz) and negative (-4 and -2 Hz) frequency difference in a paired t-test. PCRs 
were logit-transformed before testing, due to non-normally distributed residuals. 
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Figure 3 Behavioral and modeling results. A, Grand average of observed (squares) and modeled (lines) 
proportions of correct responses (PCRs) plotted separately for each f1 (x-axis) and each physical 
stimulus difference f2 – f1 (color-code). B, Same as in A, but for probabilities to choose f1. Note that 
the blue squares/lines are identical as in A, and the red squares/lines correspond to 1-PCRs from A. C, 
Probabilities to choose f1 for each stimulus pair of each participant (dots), color-coded for physical 
stimulus differences (f2 – f1), and plotted against subjectively perceived frequency differences (SPFD; 
f2 – f1’). The solid black line represents the modeled probability to choose f1, averaged over all 
participants +/- 95% confidence interval (dashed lines). D, Histogram of correlation coefficients from 
all participants obtained from correlating absolute physical differences (|f2-f1|) with PCRs (gray), and 
from correlating absolute values of SPFDs (|f2-f1’|) with PCRs (black). E, Histogram of Bayes factors 
(BFs), comparing the SPFD model with a “null” model (based on physical stimulus differences) for each 
participant. Red line marks threshold for positive evidence in favor of SPFD model (BF > 3). 

Bayesian inference model yields good approximations for signed subjective evidence and 

experienced difficulty 

As known from many 2-AFC studies that require the comparison of two sequentially presented 

stimuli, participants typically show a very particular choice pattern due to the contraction bias/TOE 

(e.g., Preuschhof et al., 2010; Ashourian et al., 2011; Karim et al., 2012; see squares in Figure 3A and 

97



B), which we also observed in the current data. That is, for trials with f2 > f1 (i.e., f2 - f1 = +2 Hz or +4 

Hz), participants performed better with increasing f1, whereas for trials with f2 < f1 (i.e., f2 - f1 = -2 Hz 

or -4 Hz), the opposite was true (Figure 3A). In other words, the probability to choose f1 decreased 

with increasing f1 for all frequency differences (interestingly also for those trials with no frequency 

difference; Figure 3B). Our previously proposed Bayesian inference model (Herding et al., 2016) can 

account for this choice pattern (lines in Figures 3A and B). Moreover, with the individually estimated 

SPFDs (i.e., f2 – f1’) we obtained a subjective, fine-grained measure that reliably predicted 

participants’ choices. Hence, we used the signed SPFDs as a proxy for signed subjective evidence 

towards a decision in this task (Figure 3C). Computing Bayes factors (BFs) to formally assess the 

quality of our Bayesian model provided positive evidence (BF > 3) in favour of the SPFD model for 91.4 

% of the participants (106/116), and strong evidence (BF > 20) for 87.9 % (102/116; Figure 3E). 

Accordingly, the absolute values of the SPFDs (i.e., |f2 - f1’|) correlated significantly more with 

participants PCRs than the absolute values of the physical differences (i.e., |f2 – f1|), rendering SPFDs 

an improved predictor of subjectively experienced difficulty (paired t-test, p < 0.001; Figure 3D).  

 

Parietal ERP first reflects signed subjective evidence and then absolute strength of evidence 

We computed a multiple regression analysis on the total EEG data using the signed SPFDs (i.e., f2 – 

f1’) as well as their absolute values (i.e., |f2 – f1’|) as single-trial regressors. This way, we could 

independently assess correlations of scalp potentials with signed subjective evidence and with the 

absolute strength of evidence. For a first analysis, we used trials in which objective sensory evidence 

was present (i.e., physically different stimuli with f2 ≠ f1; >80 % of all trials). For correct decisions, we 

found that a centro-parietal positive ERP after the second stimulus was positively correlated with 

signed subjective evidence early on (168 – 709 ms, 35 electrodes, strongest in P1, Pz, CPz, CP4, CP2, 
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Figure 4 CPP is first modulated by signed subjective evidence and then by the absolute value, 
displayed for trials with available physical evidence (i.e., f2 ≠ f1) from all experiments. Lower, Scalp 
topographies of t-values reflecting group-level statistics for modulations by signed subjective evidence 
(f2 - f1’) and by the absolute strength of evidence (|f2 – f1’|). Displayed topographies are averages 
over 250 ms windows, starting at 0 with the onset of the second stimulus. The modulation by signed 
subjective evidence peaks clearly earlier (250 – 500 ms topography) than the modulation by the 
absolute strength of evidence (500 – 750 ms topography). Upper, ERPs from electrode CPz (white dot 
in scalp topographies), are computed separately for six levels of SPFDs, and display a modulation by 
the signed values of the SPFDs and then by the absolute values of the SPFDs. 

and P2 with pFWE = 0.002; Figure 4). Later, however, the same ERP was positively correlated with the 

absolute strength of the evidence (273 – 953 ms, 33 electrodes, strongest in P1, CPz, Cz, C2, CP2, and 

P2 with pFWE = 0.002; scalp topographies in Figure 4). The overall profile of the underlying ERP strongly 

resembled the classic P300 or CPP (see time courses in Figure 4). Please note that the time courses of 

the grand average ERPs per binned SPFD level provide a much coarser view on the underlying effects 
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Figure 5 Source reconstructions for the early CPP modulation by signed subjective evidence (red), and 
the late modulation by the absolute strength of evidence (blue). 

as compared to the statistical t-maps, because the fine-grained information contained in subject-

specific SPFDs is lost for the ERP visualization. For incorrect decisions, the above-mentioned 

modulations by subjective evidence vanished (all pFWE > 0.05), however, the overall profile of the ERP 

remained unchanged conforming to the shape of a typical P300/CPP. Directly comparing the 

modulations between correct and incorrect decisions revealed significant differences (i.e., interaction 

effects) in both the modulation by signed subjective evidence (326 – 367 ms and 418 – 455 ms, 

electrodes P1, P3, P5, PO7, and PO3 with pFWE = 0.022 and pFWE = 0.032) and in the modulation by 

absolute strength of evidence (723 – 750 ms, electrodes CP5, P7, PO7, O1, Iz, and O2 with pFWE = 

0.028). In sum, parietal ERPs reflected the signed and absolute subjective evidence only for correct 

trials – and significantly more than for incorrect trials. Hence, a faithful representation of the 

subjective evidence is tightly linked to correct decisions, implying the behavioral relevance of these 

effects.  

The significant positive correlations in centro-parietal electrodes in correct trials (both with signed 

and absolute values of SPFDs) were accompanied by significant negative correlations in bilateral 

fronto-temporal electrodes for all described effects, hinting at the rough orientation of underlying 

dipole generators (see scalp topographies in Figure 4). In general agreement with the scalp 

topographies, the reconstructed source locations suggest that the modulation by signed subjective 
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evidence originates from left superior parietal lobule (SPL; Brodman area 7A; MNI peak coordinates: -

24, -62, 54) in the posterior parietal cortex (PPC; Figure 5). On a considerably lower significance level 

(p < 0.05; uncorrected), also the right SPL is implicated as a likely source. The modulation by the 

absolute strength of subjective evidence additionally suggested probable sources in bilateral inferior 

frontal gyrus (IFG, Brodman area 44/45, MNI peak coordinates: -54/+48, 14, 12; Figure 5). 

We challenged our findings in a series of control analyses to exclude confounding factors as the 

driving forces behind the observed effects. First and foremost, we examined whether the observed 

modulations of parietal ERPs were driven by the outermost stimulus pairs alone. That is, in the given 

stimulus set, some choices could have been based on exceptionally high or low f2 alone, possibly 

associated with qualitatively distinct percepts. We excluded these outermost stimuli from the 

stimulus set and repeated the multiple regression analysis on the remaining subset of data (inset 

Figure 6). Notably, the subset only included trials in which any f2 could lead to either choice (i.e., f2 

alone did not predict the correct decision in these trials), resulting in markedly reduced trial numbers 

for the analysis (i.e., 450-700 per subject). Nevertheless, the results were qualitatively identical to 

those obtained when using the full set (compare Figure 4 and 6). After the presentation of f2, the ERP 

was first modulated by the signed subjective evidence (295 – 578 ms, 24 electrodes, strongest in Pz, 

CPz, CP1, CP2, P1, and P3 with pFWE = 0.002) and then by the absolute strength of evidence for correct 

decisions (486 – 676 ms, 14 electrodes, strongest in CPz, Pz, POz, CP1, CP2, and P1 with pFWE = 0.002), 

but not for incorrect decisions (no clusters). A significant difference between correct and incorrect 

trials was only observed for the modulation by absolute strength of evidence (602 – 654 ms, 

electrodes P1, P3, PO7, PO3, POz, and PO4 with pFWE = 0.026). With respect to the computation of 

ERPs, excluding the outermost stimuli led to fewer trials falling into the most extreme bins of SPFDs 

(see ERPs in Material and Methods). In particular, this concerned large negative and large positive 
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Figure 6 CPP modulation persists when using a subset of trials in which f2 alone does not predict 
decision outcome (i.e., f2 and f2 – f1 are orthogonal). Inset in upper left corner highlights the stimulus 
pairs that were used for this analysis (see also Figure 1). Same conventions as in Figure 4. Note that 
only the grand average ERPs for the most negative and most positive level of SPFDs (dark blue and 
dark red) were affected by using a reduced dataset (see text for details). 

SPFDs (dark blue and dark red in upper panel of Figure 6) with 26 and 78 participants respectively 

contributing data to the grand average ERPs (i.e., 35 trials per individual ERPs on average). For 

comparison, all 116 participants contributed individual ERPs (based on 67 trials on average) to the 

grand average for the remaining levels of SPFDs. Again, note that the computation of classic ERPs only 

served displaying purposes. The statistical analysis was based on single-trials (i.e., not binned into 

discrete levels of SPFDs), and was hence unaffected by any imbalances in trial numbers per discrete 

levels of SPFDs. Taken together, this analysis ruled out that the outermost stimulus pairs alone 
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accounted for the observed modulations in the EEG signal.  

In a further control analysis, we focused on the observation that for some participants SPFDs were 

distributed asymmetrically around zero due to an overall response bias. As a consequence, the 

corresponding absolute values were not fully independent from the signed SPFDs. We therefore 

orthogonalized the absolute values with respect to the signed SPFDs by subtracting the individual 

mean before computing the multiple regression and again obtained qualitatively identical results 

(modulation by signed SPFDs: 264 – 537 ms, 29 electrodes, strongest in Pz, CPz, POz, CP2, CP4, and P1 

with pFWE = 0.002; modulation by absolute values of SPFDs: 279 – 947 ms, 32 electrodes, strongest in 

Pz, CPz, CP1, CP2, P1, and P3 with pFWE = 0.002). 

Next, we explored whether the EEG signal was possibly also affected after the first stimulus by the 

quantity that had to be kept in working memory (i.e., in analogy to the presumed subjective 

difference quantity on which the decision is based). That is, we studied whether we could find a 

parietal potential that was modulated by f1 in a similar way as the ERPs after f2 were modulated by 

SPFDs. We did not find any comparable effect (i.e., no cluster with comparable spatial and temporal 

configuration; for a similar result, see Spitzer et al., 2016). 

Finally, when examining the data from each experiment (see Materials and Methods) separately, we 

found a highly similar pattern of modulations by subjective evidence as with the pooled data. In all 

experiments, the ERP was first modulated by the signed subjective evidence, and then by the strength 

of subjective evidence for correct (all effects with pFWE < 0.014, except for Experiment 3, with pFWE = 

0.178 and pFWE = 0.248 for the early and late modulation, respectively), but not for incorrect decisions 

(no clusters in parietal electrodes, except for Experiment 2 showing a negative modulation by the 

absolute strength of evidence with pFWE = 0.018). Note that for Experiments 1 and 2, RTs indicated 

that participants responded faster for “f2 > f1” choices as compared with “f2 < f1” choices even when 
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considering only trials from the subset shown in Figure 6, while for Experiments 3 – 6, RTs were 

uninformative due to the delayed response paradigm. As a consequence, the observed modulation by 

signed SPFDs (i.e., higher ERP for positive SPFDs as compared with negative SPFDs immediately after 

f2) might be explained by faster unfolding decision processes for choices of “f2 > f1”. In particular, the 

observed effect might reflect that the ‘classic’ CPP, only tracking absolute strength of evidence, 

started earlier for positive SPFDs than for negative SPFDs. However, since we only have meaningful RT 

data for two out of six experiments, we can neither confirm nor rule out the possibility that variations 

in the onset of the CPP explain the observed modulation by signed SPFDs. 

 

Signed subjective evidence modulates parietal ERPs even during judgements of physically identical 

stimulus pairs 

We repeated the multiple regression analysis with signed SPFDs and their absolute values as 

regressors, however, this time only using trials without any physical evidence for one or the other 

choice. In other words, we only used trials with two identical stimuli (i.e., f1 = f2: 12 Hz vs 12 Hz, 16 Hz 

vs 16 Hz, 20 Hz vs 20 Hz, 24 Hz vs 24 Hz). Crucially, although the physical difference f2 – f1 is always 

zero for these trials, the individually estimated SPFDs yielded non-zero values for each stimulus pair. 

This is a direct consequence of the known biases in choice behavior that are typically observed in 

sequential comparison tasks (i.e., comparing f2 with mean-biased f1’ instead of the physical value of 

f1). Based on the non-zero SPFDs, we were hence able to divide trials according to decisions that were 

in line with the estimated SPFDs (i.e., SPFD < 0: f1 chosen, and SPFD > 0: f2 chosen), and those that 

were not (i.e., SPFD < 0: f2 chosen, and SPFD > 0: f1 chosen). This way, we could divide trials into 

“consistent” and “inconsistent” with respect to the model outcome. Remarkably, for “consistent” 

decisions, we found a qualitatively similar positive correlation of ERPs with signed SPFDs as for correct 
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Figure 7 CPP is modulated by signed subjective evidence even in the absence of physical evidence (i.e., 
f2 = f1). Same conventions as in Figure 4. Lower, the modulation by subjective evidence peaks in the 
same time window as the modulation for trials with f2 ≠ f1 (250 – 500 ms topography) and displays a 
similar topography (see Figures 4 and 6). A modulation by the absolute strength of evidence is not 
observed. Note the different scale of t-values. Upper, ERPs from electrode Pz (white dot in scalp 
topographies) are computed separately for four levels of SPFDs and display a weak modulation by the 
signed values of the SPFDs. Note that a considerably reduced set of trials (25% of all presented trials) 
and participants (Experiments 3 – 6; 73/116 participants) was available for this analysis. 

trials in which physical evidence for a decision was actually present (236 – 246 ms, electrodes PO3, 

POz, Pz, CP6, CP4, CP2, P2, P4, P6, P8, and PO8, pcluster = 0.016, FWE corrected, Figure 7). For decisions 

identified as “inconsistent”, no such correlation was found. A comparison between “consistent” and 

“inconsistent” trials revealed that the modulation of ERPs by signed subjective evidence was 

significantly different (i.e., an interaction effect) between both sets of trials (322 – 338 ms, electrodes 

105



P3, P5, PO3, Oz, POz, Pz, P2, P8, PO8, and PO4, pcluster = 0.044, FWE corrected). Notably, the 

separation of trials into these two sets was solely based on the modeled SPFDs, and yet, we were able 

to observe a significant difference in the EEG signal. However, the absolute values of the SPFDs did 

not modulate the CPP in trials with identical stimuli. Only a more anterior cluster became statistically 

significant for “consistent” decisions (268 – 279 ms, electrodes F1, F3, Fz, F2, F4, FC2, and FCz, pcluster = 

0.03, FWE corrected), however, this effect did not differ between “consistent” and “inconsistent” 

trials. 

 

Modulation by absolute strength of evidence relates to statistical decision confidence 

That the CPP was correlated with the absolute values of SPFDs may suggest that this modulation 

could be linked with the level of confidence in a decision. To explore such potential relationship, we 

checked whether the late CPP conforms with the predictions of “statistical decision confidence” (see 

Drugowitsch, 2016; Hangya et al., 2016; Sanders et al., 2016). In this framework, confidence exhibits 

four key characteristics that can be tested without the need for explicit confidence ratings, simply 

based on statistical decision theory: (1) confidence is positively correlated with PCRs; (2) confidence 

increases with evidence strength for correct choices, but decreases for incorrect choices (see Figure 

2B for intuition); (3) when (almost) no evidence is available (i.e., in very hard trials), confidence 

exhibits the same intermediate level for correct and incorrect choices; (4) for the same strength of 

evidence, high-confidence trials still yield higher PCRs than low-confidence trials.  

Concerning (1), as reported in our main results, we found that the late CPP was positively correlated 

with the absolute values of SPFDs, which in turn were highly correlated with PCRs (Figure 3D). For (2) 

and (3) we extracted single-trial amplitudes of the CPP (mean amplitude between 500 and 800 ms 

after f2 in electrode CPz), and grouped these amplitudes according to the discrete levels of absolute 
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Figure 8 Late CPP corresponds to statistical decision confidence. A, Average statistical decision 
confidence based on simulations from behavioral models of each participant. Confidence increases 
with evidence strength (i.e., |f2 – f1’|) for correct trials and decreases (initially) for incorrect trials. For 
very hard trials (|f2 – f1’| = 0), confidence is at the same intermediate level for correct and incorrect 
trials. B, Average amplitude (+/- standard error of mean) of late CPP (500 – 800 ms) exhibits same 
pattern as predicted by simulations shown in A, for trials with and without objective evidence (i.e., f2 
≠ f1 and f2 = f1, respectively). 

SPFDs separately for correct and incorrect trials (i.e., three levels for trials with f2 ≠ f1: [0 to 0.09]; 

[0.09 to 0.17]; [> 0.17]; two levels for trials with f2 = f1: [0 to 0.09]; [> 0.09]). As predicted by 

statistical decision confidence, we found that the CPP amplitude increased with evidence strength for 

correct trials, and (initially) decreased for incorrect trials, in remarkable alignment with the average 

confidence computed from individual model fits (Figure 8A, B). Moreover, for the most difficult trials 

(i.e., least evidence strength), the CPP amplitude was at the same intermediate level for correct and 

incorrect trials (Figure 8B). Notably, predictions (2) and (3) were also reflected in CPP amplitudes 

when considering only trials with f2 = f1 (Figure 8B, right panel). Lastly, we did a median split of our 

data based on CPP amplitudes to simulate a division into high- and low-confidence trials (4). We 

compared PCRs between high- and low-amplitude trials for each of the three levels of evidence 

strength (i.e., [0 to 0.09]; [0.09 to 0.17]; [> 0.17]), and found that for the intermediate and high level 

of evidence strength, PCRs were significantly higher in trials with a high CPP amplitude as compared 

to trials with a low CPP amplitude (paired t-test, both p < 0.001). Taken together, the late CPP in the 

present dataset fulfils all requirements posed by statistical decision theory for a measure of 
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confidence. 

 

Parietal ERPs correlate with upper beta band amplitude over effector-specific premotor areas 

Finally, we explored whether the observed modulation of ERPs was related to choice-specific 

modulations of upper beta band amplitude over premotor areas previously identified in the same 

data (i.e., experiments 1 and 2 as reported in Herding et al., 2016, 2017). In this earlier work, beta 

band power was shown to be higher for “f2 > f1” choices as compared to “f2 < f1” choices, regardless 

of whether the choice was correct or incorrect. Indeed, we found a positive correlation between the 

amplitude of parietal ERPs during the early modulation by signed SPFDs and the beta band amplitude 

(one-sample t-test across single-trial correlations of participants, mean rho = 0.03, p < 0.001). 

Notably, we obtained the same positive correlation when considering data from both experiments 

separately (experiment 1: mean rho = 0.03, p = 0.016; experiment 2: mean rho = 0.02, p = 0.002). The 

late CPP (i.e., during the modulation by absolute SPFDs) was also positively correlated with single-trial 

beta band amplitudes (mean rho = 0.02, p = 0.006). However, when considering both experiments 

separately, only data from experiment 1 showed a significant positive correlation (mean rho = 0.02, p 

= 0.02), but not data from experiment 2 (mean rho = 0.01, p = 0.15). Importantly, average response 

times in experiments 1 and 2 (~ 862 ms and ~ 603 ms) intersected with the timing of the late CPP (i.e., 

500 – 800 ms after f2) and thus render a causal relation between this late component and choice-

specific upper beta band amplitude unlikely. For the early parietal signal (i.e., 250 – 500 ms after f2), 

on the other hand, a causal role in choice selection seems chronologically possible. However, such 

potential causality remains to be thoroughly investigated in future studies. 
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Discussion 

In the current study, we investigated human ERP signals during the comparison of two sequentially 

presented vibrotactile stimuli (with frequencies f1 and f2). We pooled a sizeable amount of data (N = 

116) over six different variants of this task, varying in response modality, response timing, and 

response mapping, whereas stimuli and comparison task remained unchanged. Despite the variations, 

we consistently found that ERPs after the second stimulus were first modulated by the signed 

subjective evidence in favour of the ensuing decision (i.e., signed SPFDs), and later by the absolute 

strength of evidence (i.e., absolute values of SPFDs). Notably, both modulations were only observed 

for correct decisions, linking a successful discrimination of f1 and f2 with a faithful representation of 

the perceived stimulus difference (i.e., SPFDs) in the parietal cortex. Even in the absence of any 

objective differences between f1 and f2 (i.e., f1 = f2), ERPs indexed the signed values of SPFDs, but 

not their absolute values. This observation implies that parietal signals may index endogenous 

evidence for subsequent decisions beyond what has been observed in the CPP (see CPP in the 

absence of stimuli in O’Connell et al., 2012). Accordingly, we found a correlation between the early 

ERP effect and choice-selective upper beta band amplitudes in effector-specific premotor areas. The 

late modulation by the absolute values of SPFDs on the other hand seemed to index the amount of 

evidence for a decision, which we related to the concept of statistical decision confidence. The 

putative neuronal sources of both early and late ERP modulation were located in SPL (Brodman area 

7A; primarily in the left hemisphere), whereas the late modulation by absolute differences 

additionally exhibited likely sources in bilateral IFG (Brodman area 44/45). 

Several studies of the broadband human EEG signal have shown that the CPP reflects the accumulated 

evidence for perceptual decisions which require the integration of noisy sensory input over time for 

immediate and delayed responses (e.g., O’Connell et al., 2012; Kelly and O’Connell, 2013; Philiastides 
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et al., 2014, Twomey et al., 2016). These findings might be directly linked to seminal work on visual 

perceptual decision making in monkeys that implicated the PPC as a key site for evidence 

accumulation (see Shadlen and Kiani, 2013). A recent study showed that also in other tasks, i.e., in a 

classic oddball paradigm, the CPP, or rather the P300, was modulated by the evidence in favour of a 

successful ‘deviant’ detection (i.e., a modulation by the difference between ‘deviant’ and ‘standard’ 

stimulus; Twomey et al., 2015). The topography and evolution of the present ERP modulations match 

these reports.  Yet, all previous studies that associated the CPP with decisional evidence, found a 

modulation of the CPP by the evidence within a single choice category, but never a modulation by 

evidence across choice alternatives (e.g., O’Connell et al., 2012; Kelly and O’Connell, 2013; Philiastides 

et al., 2014; Twomey et al., 2015; Twomey et al., 2016). That is, the CPP was shown to track the 

strength of available evidence, albeit concealing for which choice alternative. In particular, Kelly and 

O’Connell (2013) showed that only the proportion of coherent motion, independent of direction (i.e., 

leftward or rightward), modulated the CPP in an RDM task (see also Twomey et al., 2016). Moreover, 

Philiastides et al. (2014) were able to discriminate different levels of presented evidence based on a 

parietal potential (i.e., likely the CPP), no matter whether an image of a face or a car was shown. 

However, a classification between faces and cars was not possible. In the current study, we report for 

the first time that parietal signals were modulated by both the amount of evidence and the choice 

alternative at the same time (i.e., by signed evidence in form of SPFDs). Only later, the absolute 

strength of evidence alone (i.e., absolute values of SPFDs; independent of the specific choice 

category) was reflected by the CPP as known from previous work. We propose that the early 

modulation by the signed values of SPFDs indexes the evidence on which a decision was based. The 

late modulation by the absolute values of SPFDs, on the other hand, might refer to the strength of 

evidence for a decision, which appears closely related to confidence. Given the observed differences 
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in RTs between both choice alternatives (i.e., faster RTs for “f2 > f1” choices) in two out of six 

experiments, another possible explanation for the reported effects is that we observed the ‘classic’ 

CPP, however, with different onset times depending on the subsequent choice. In particular, this 

could implicate that one choice alternative (“f2 > f1”) was processed faster than the other (“f2 < f1”), 

possibly hinting at a preferred/default choice. 

Yet, our findings do not entirely correspond to the ’classic’ CPP, as we did not observe a saturation of 

the CPP at a fixed threshold, but rather a modulation by subjective task difficulty (cf. Kelly and 

O’Connell, 2013; but see Philiastides et al. 2014). A further investigation of this relationship revealed 

that the modulation by absolute values of SPFDs complied in all respects with the definition of 

statistical decision confidence (see Drugowitsch, 2016; Hangya et al., 2016; Sanders et al., 2016). 

Importantly, in line with the classic definition of confidence, statistical decision confidence refers to 

the probability that a choice is correct (given the evidence) and was recently shown to align with 

human confidence judgements (Sanders et al., 2016). That is, this framework allows to infer 

confidence levels even in the absence of explicit confidence ratings. That the CPP, or rather the P300, 

might indicate confidence has been suggested for a long time (e.g., Squires et al., 1973; Sutton et al., 

1982; Curran, 2004), and has recently been reiterated. Gherman and Philiastides (2015), for instance, 

reported a higher amplitude of the CPP for choices that were made with high certainty as compared 

to choices with low certainty (see also Philiastides et al., 2014). Moreover, although the CPP has been 

typically reported to reach a fixed level at the time of the response report (see Kelly and O’Connell, 

2015; but Philiastides et al., 2014), when considering false alarm trials, a clearly lower amplitude was 

observed, possibly indexing lower confidence in those trials (Figure 2C in O’Connell et al., 2012). The 

lack of differences in CPP amplitudes at response time for the remaining results might be related to 

the task demands per se. By applying continuous task designs (e.g., O’Connell et al., 2012, Kelly and 
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O’Connell, 2013), decision-unrelated stimulus evoked EEG signals were elegantly avoided, however, 

an additional level was added to the task, requiring the detection of stimuli. This might have led to a 

rather constant level of confidence before committing to a decision (see Discussion in Philiastides et 

al., 2014). The reconstructed sources of the confidence-related signal in bilateral IFG appear unusual 

at first glance, however, recent fMRI studies also implicated the IFG in the processing of confidence 

(Hebart et al., 2016; Sherman et al., 2016). 

Finally, the present vibrotactile 2-AFC task has been used extensively by Romo and colleagues during 

electrophysiological recordings from monkeys (reviewed in Romo and deLafuente, 2013). In this 

research, premotor areas were identified as one of the first sites to show decision-related firing rate 

patterns that encoded the differences between f1 and f2 (Hernández et al., 2002, 2010; Romo et al., 

2004). Furthermore, a choice-specific (i.e., binary) amplitude modulation of large-scale upper beta 

band oscillations (~20 – 30 Hz) in premotor areas was recently identified in monkey local field 

potentials (Haegens et al., 2011) as well as in human EEG data (Herding et al., 2016, 2017; Ludwig et 

al., 2018). With the current results, we might thus provide first evidence for a previously missing EEG 

signature that indexes the fine-grained subjective evidence in favour of the ensuing choices. Given the 

stimulus-locked early onset of the ERP modulation by signed evidence, the response-locked character 

of the beta band modulation, the conceptually reasonable gradient (i.e., choices are based on 

evidence), and the source locations of both findings (i.e., evidence in parietal cortex and choice in 

premotor cortex), we presume that parietal ERPs precede and potentially drive the beta band effect. 

In fact, using the data from Experiments 1 and 2 with immediate responses (i.e., with a direct 

translation from evidence to choices), we found a positive correlation between single-trial parietal 

ERP magnitude (during the early modulation by signed evidence) and the level of beta band 

amplitude (during the choice modulation). However, since the data could only be pooled from two 
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out of six experiments, this possible connection between CPP and beta band amplitude deserves a 

more thorough investigation in future research. 

To conclude, our data corroborate the notion of the CPP tracking evidence in perceptual decision 

making (see Kelly and O’Connell, 2015). Using a vibrotactile 2-AFC comparison task, we could show, 

however, that this signal may have additional features depending on task demands. Our results 

revealed that parietal ERPs first index signed subjective evidence, and only later the absolute strength 

of evidence. Given that this observation cannot be attributed to differences in the processing time of 

evidence accumulation for both choice alternatives, we propose that the early modulation reflects the 

quantity on which a decision is based, whereas the late modulation indexes the amount of evidence 

or even confidence. In the context of the vibrotactile 2-AFC task, our findings suggest that the fine-

grained signed evidence that is reflected early in the parietal cortex might index the input to more 

categorical choice representations, e.g., in effector-specific premotor areas (see Haegens et al., 2011; 

Herding et al., 2016, 2017; Ludwig et al., 2018). 
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Abstract 10 

The study of perceptual decision making has made significant progress owing to major 11 

contributions from two experimental paradigms: the working memory influenced sequential 12 

comparison task for vibrotactile, haptic stimuli and the random-dot motion task in the visual 13 

domain requiring evidence accumulation over time. On the one hand, electrophysiological 14 

recordings in nonhuman primates and humans have identified changes in firing rates and 15 

power modulations of beta band oscillations with the vibrotactile frequencies held in 16 

working memory, as well as with the mental operation required for decision making. On the 17 

other hand, firing rates and centro-parietal potentials were found to increase to a fixed level 18 

at the time of responding during the random-dot motion task, possibly reflecting an 19 

underlying evidence accumulation mechanism until a decision threshold is met. Here, to 20 

bridge these two paradigms, we presented two visual random-dot motion stimuli in a 21 

sequential comparison task while recording EEG from human volunteers. We identified a 22 

modulation of prefrontal beta band power that scaled with the level of dot motion 23 

coherence of the first stimulus during a short retention interval. Furthermore, beta power in 24 

premotor areas was modulated by participants’ choices approximately 700 ms before 25 

responses were given via button press. At the same time, dot motion patches of the second 26 

stimulus evoked a pattern of broadband centro-parietal signal build-up till responses were 27 

made, whose peak varied with trial difficulty. Hence, we show that known modulations of 28 

beta power during working memory and decision making extend from the vibrotactile to the 29 

visual domain and provide support for the notion of evidence accumulation as an 30 

unconfined decision-making mechanism generalizing over distinct decision types. 31 
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Random-dot motion, working memory, decision making, EEG, centro-parietal positivity, beta 33 
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1. Introduction 35 

The study of perceptual decision making investigates how the brain translates sensory 36 

information to inform decisions (Heekeren et al., 2008; Shadlen & Kiani, 2013). 37 

Investigations into the neural basis of this process have made significant progress with the 38 

use of two tasks: (1) the sequential vibrotactile frequency comparison (SFC) task and (2) the 39 

visual random-dot motion (RDM) task (for review, see: Gold & Shadlen, 2007).  40 

In vibrotactile SFC experiments non-human primates are tasked with the differentiation of 41 

two sequentially presented somatosensory stimuli, f1 and f2, who are set apart by a short 42 

working memory (WM) delay. After both vibrotactile frequencies are presented, decisions 43 

about whether f2 was higher or lower than f1 are reported by button press. Single-cell 44 

recordings in monkeys demonstrate that while retaining f1 in working memory, neural 45 

activity in the PFC is parametrically modulated by the to-be-maintained frequency, both in 46 

firing rate (Romo et al., 1999) and small neuronal populations’ states (Barak et al., 2010). 47 

Moreover, following perception of f2, firing rates in the medial and ventral premotor cortex 48 

(m/vPMC) reflect the mental calculation f2-f1 necessary to perform the task (Romo et al., 49 

2004; Hernandez et al., 2002). Analogous human M/EEG recordings have found 50 

corresponding parametric modulations in prefrontal beta band power with the frequency 51 

held in working memory (Spitzer et al., 2010; Spitzer & Blankenburg, 2011; von Lautz et al., 52 

2017; Ludwig et al., 2018) and recently a choice-selective beta power change during the 53 

formation of a decision in this paradigm (Herding et al., 2016, 2017; Ludwig et al., 2018). 54 

The second task, the discrimination of random-dot motion, requires participants to detect 55 

the overall motion direction of a field of moving dots by accumulating across the entire field 56 

and report the perceived motion direction via oculomotor responses. This decision process is 57 
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driven by orientation selective neurons in the middle temporal area (MT) which projects to 58 

response related areas, such as the lateral intraparietal area (LIP), frontal eye fields (FEF), 59 

superior colliculus (SC) and dorsolateral prefrontal cortex (dlPFC) (Ditterich et al., 2003; Kim 60 

& Shadlen, 1999; Ratcliff et al., 2003; Shadlen & Newsome, 1996, 2001). Examining 61 

broadband signals of the human EEG during a variety of similar paradigms revealed a centro-62 

parietal positivity (CPP; in fact, the classic P300; see Twomey et al., 2015) that built-up until 63 

the time of responding and exerted a pattern reflecting the rate of evidence accumulation 64 

during single trials (O’Connell et al., 2012; Kelly and O’Connell, 2013; Philiastides et al., 65 

2014).  66 

Together, these studies from the vibrotactile and the visual domain have identified distinct 67 

regions that seem to be involved in the respective decision-making processes. The observed 68 

discrepancies can most likely be attributed to the differences in sensory and response 69 

modalities that are usually employed in either paradigm.  However, despite the progress on 70 

a theoretical level (Gold & Shadlen, 2007; Wang, 2012; Romo & de Lafuente, 2013; 71 

Murakami & Mainen, 2015) and the proposal of an intentional framework of decision 72 

making which might be able to bridge the gap between these two lines of research (Shadlen 73 

et al., 2008), experimental progress has been slow. Curiously, until now human 74 

neuroimaging studies have neither investigated the SFC task with RDM stimuli nor the RDM 75 

task with vibrotactile stimuli (but see pupil dilation: Urai et al., 2017; monkey LFP: Wimmer 76 

et al., 2016). This is particularly surprising, because there is evidence that the SFC task can be 77 

applied to other sensory domains (Spitzer & Blankenburg, 2012) and motion direction can be 78 

perceived from tactile inputs (van Kemenade et al., 2014; Krebber et al., 2015). 79 
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Here, we take a first step to reconcile these two avenues of research experimentally by using 80 

the classic visual random-dot motion stimuli in a sequential comparison task. While 81 

measuring EEG, we consecutively presented two random-dot stimuli and gave participants 82 

the task of comparing the magnitude of coherent motion. We hypothesize that the 83 

magnitude of motion coherence held in WM is reflected by a parametric modulation of 84 

prefrontal beta power and that beta oscillations encode the choice (S2>S1, S2<S1) prior to 85 

responding. Moreover, we expect the RDM stimuli to elicit typical responses from occipital 86 

channels during stimulus perception and a modulation of the CPP build-up by the amount of 87 

available decision evidence. Notably, the decision evidence in the current paradigm is not 88 

solely determined by the coherence level of a single RDM stimulus, but by the difference in 89 

coherent motion between two RDM stimuli. 90 

2. Materials and Methods 91 

2.1. Participants 92 

Twenty-nine healthy volunteers (20-34 years; 14 female) participated in the study after 93 

providing written informed consent. Participants received recompense of 10€ per hour. One 94 

participant was excluded from the analysis because of EEG equipment failure during 95 

recording. The local ethics committee at the Freie Universität Berlin approved the study.  96 

2.2. Procedure 97 

Volunteers were asked to observe two consecutively presented random-dot motion stimuli 98 

and to indicate whether the second stimulus (S2) displayed more or less coherent motion 99 

than the first stimulus (S1) (Figure 1). Importantly, participants were asked to compare only 100 

the amount of coherent motion, while the motion direction was not relevant for the task 101 
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and could be upwards or downwards. A trial began by a fixation period of 1 s, which was 102 

followed by the first RDM stimulus for 0.5 s. After a 1 s delay, a second RDM stimulus 103 

appeared for another 0.5 s. Participants then judged whether S2 displayed more coherently 104 

moving dots as compared to S1 by pressing a button with their right hand. One half of the 105 

participants indicated S2>S1 and S2<S1 by a button press with their middle and index finger, 106 

respectively, while the other half responded vice versa. After indicating their choice, 107 

participants were informed whether the decision was correct by a color change of the 108 

fixation cross (green or red) for 0.3 s. The next trial started after a variable period of 1-1.5 s. 109 

Participants were asked to keep their eyes fixated on the central cross throughout the 110 

experiment. 111 

 112 

Figure 1: (A) Trial design. A trial started with a 1000ms fixation period, after which two random-dot motion 113 
patches were presented in succession with a delay period of 1000ms. Each stimulus was on screen for 500ms 114 
and consisted of randomly moving dots, out of which a portion moved non-randomly in the same direction. 115 
Participants indicated which of the two patches had more coherent motion while the direction was irrelevant 116 
for the task. After responding, participants got feedback by a red or green fixation cross. (B) Overall proportion 117 
of correct responses per S1 coherence level for the two possible choices (blue or red). If the coherence level of 118 
the second stimulus was higher (choice S2>S1, blue), participants performed better for high coherence S1 trials. 119 
If the second stimulus was lower (choice S2<S1, red), higher S1 coherence reduced performance. This is a 120 
manifestation of the time-order effect, also termed contraction bias. 121 

After practicing for 64 trials during the EEG setup, participants performed 1024 trials divided 122 

into eight blocks with short breaks in between blocks. Participants were instructed to 123 

respond as quickly as possible without making errors. Response times (RTs) were defined as 124 

the duration between S2 onset and the button press. If a response took longer than 1.5 s, 125 

the fixation cross would flicker to remind participants to respond quickly. These slow trials 126 
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and very fast responses during S2 presentation (<100 ms after S2 offset) were excluded from 127 

subsequent data analyses.  The overall recording time was about 70 minutes. 128 

2.3. Stimuli  129 

The stimuli were generated using MATLAB R2014a (The MathWorks), employing the variable 130 

coherence random dot motion (VCRDM) library for the Psychtoolbox (Brainard, 1997). In a 131 

dimly lit room, the stimuli were presented on a TFT monitor (refresh rate:  60 Hz) that was 132 

placed 65 cm away from the upright sitting participant. 133 

Random dot stimuli were displayed within a circular aperture with a diameter of 5° visual 134 

angle (dva). The placement of dots in each RDM patch followed the standard VCRDM 135 

procedure, which utilizes three independent sets of dots. These are presented for one frame 136 

at a time and are displaced every three frames. For example, dot group one moves on 137 

frames 1, 4, 7..., while group two is modulated only on frames 2, 5, 8… etc. These three sets 138 

are crucial, because while they give the percept of continuous movement, it not possible to 139 

track a single dot on screen. In the standard dot motion detection task, each dot has a small 140 

likelihood of moving coherently, however, the majority is redrawn at a random location. 141 

Here, we used a different implementation in which all dots always move coherently, but in 142 

random directions (as in Hebart et al., 2012).  Only the number of dots moving either 143 

upwards or downwards was modulated. Hence, if the coherence level was e.g. “45% up”, for 144 

every 100 dots, 45 dots consistently moved upwards, while the remaining 55% moved in 145 

random directions. When a dot moved outside the aperture, it was replaced on the opposite 146 

boundary with the same inherent motion. The number of dots was fixed at ~2.5 dots/dva² 147 

on screen at a time. Individual dots had a size of ~0.05 dva² and the motion speed was fixed 148 
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at 3 deg/s. All these parameters were thoroughly tested to minimize the percept of fuzziness 149 

inherent to random dot motion displays. 150 

On each trial, the coherence level for the first stimulus (S1) was randomly set to 45%, 55%, 151 

65%, or 75%, and the coherence level of the second stimulus (S2) varied by ±10 or ±20 %. 152 

The direction of coherent motion was either up- or downwards and was independent 153 

between both RDM patches. Both the proportion of coherent motion and the motion 154 

direction were fully counterbalanced throughout the experiment. 155 

2.4. Behavioral Model 156 

In sequential comparison tasks, the discriminability of stimuli is heavily influenced by the 157 

order in which the two stimuli are presented. This effect is known as the time-order 158 

error/effect (TOE; e.g., Fechner, 1820; Woodrow, 1935; Hellström 1985, 2003) or 159 

contraction bias. In particular, for a given set of stimuli, participants seem to compare the 160 

second stimulus not only with the physical properties of the first stimulus, but also with the 161 

average percept from the given stimulus set (Ashourian & Lowenstein, 2011; Karim et al., 162 

2012). In Bayesian terms, participants seem to form a prior which is centered on the mean of 163 

the stimulus set and compare the second stimulus with a representation of the first stimulus 164 

that was computed by Bayesian inference (i.e., the posterior of the first stimulus). As a 165 

consequence, the representation of the first stimulus is shifted towards the overall mean of 166 

the stimulus set and can account for the observed behavior associated with the TOE. Here, 167 

we used such a Bayesian inference model with a Gaussian prior centered on the set of all 168 

coherence levels. The prior variance, stimulus likelihood variance and decision criterion were 169 

estimated from the choices of individual participants using variational Bayes with the VBA 170 

toolbox (Daunizeau et al., 2014). To quantify the subjectively perceived coherence difference 171 
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(SPCD) for every trial and each participant, we defined the expected value of the posterior 172 

distribution as the mean-shifted percept of S1 (denoted as S1’) to compute S2-S1’ (for a 173 

more detailed description see Herding et al., 2016 and Sanchez, 2014). The computation of 174 

SPCD yielded 16 individual values for each participant that were summarized in six bins 175 

representing easy, medium and hard trials (for either choice) to allow for a comparison 176 

across the group.  177 

2.5. EEG recording and data processing 178 

Sixty-four active electrodes were placed in the extended 10-20 system to record EEG 179 

(ActiveTwo, BioSemi) at 2048 Hz. In addition, four electrodes measured the vertical and 180 

horizontal electrooculogram (vEOG, hEOG). Each cap was centered on the head and every 181 

participants’ electrode placement was measured in 3D with a stereotactic electrode-182 

positioning system (Zebris Medical GmbH, Isny, Germany).  Each recording was 183 

downsampled to 512 Hz, re-referenced to a common average montage and then bandpass 184 

filtered between 0.1 and 96 Hz. Line noise at 50 Hz was removed by an additional linear filter 185 

using the discrete Fourier transform. The vEOG recording was used to calibrate an adaptive 186 

spatial filter that reflected individual eye blinks. These templates were used to inform the 187 

removal of eye-blinks (Ille et al., 2002). The blink-free data was cut into epochs of -3 to +3 s 188 

relative to S2 onset to investigate stimulus processing and working memory effects. To 189 

examine decision-related activity, we alternatively epoched the data with respect to the 190 

time of response on each trial. A final visual inspection of each individual trial ensured the 191 

removal of artefactual and noisy trials (~16% of trials removed). 192 

For time-frequency (TF) analysis, the Fourier transform of the epoched data was computed 193 

separately for low (5-48Hz) and high (40-80Hz) parts of the frequency spectrum. For low 194 
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frequencies we used an adaptive sliding window of 5 cycles per frequency at 2 Hz steps and 195 

multiplied a Hann taper to the data prior to Fourier transformation (i.e., TF bin = 2 Hz x 196 

25ms). For higher frequencies, we used a multitaper approach based on Slepian sequences 197 

with a fixed length of 200 ms at steps of 4 Hz (i.e., TF bin = 4 Hz x 25ms). All data analysis was 198 

performed using FieldTrip (Radboud University Nijmegen, Donders Institute; 199 

fieltriptoolbox.org) and SPM12 (Wellcome Department of Cognitive Neurology, London, UK; 200 

www.fil.ion.ucl.ac.uk/spm).  201 

2.6. Statistical Analysis 202 

The response-locked and S2-locked data were analyzed in analogy. In case of TF transformed 203 

data, response-locked TF maps were square root transformed and smoothed with a 3 Hz x 204 

300 ms full width at half maximum Gaussian kernel, reducing between-subject variance 205 

(Kilner et al., 2005). To identify the difference between decisions (S2>S1 vs. S2<S1) we 206 

performed a general linear model (GLM) analysis with the factors “S2 more/less than S1” 207 

and “correct/incorrect” (2x2). Then, we contrasted the individual subject’s averages to map 208 

the difference between choices. These individual time courses or TF maps then underwent a 209 

cluster-based permutation test procedure (Maris and Oostenveld, 2007). The resulting test 210 

statistic identifies clusters of strong activity differences and corrects for the family-wise error 211 

(FWE) level over channel, time and when applicable also frequency (p_cluster<0.05). The 212 

analysis of S2-locked data followed the same procedure but included a baseline correction to 213 

the prestimulus fixation period (-.65 to -.15 s relative to S1 onset) instead of a square root 214 

transformation. The GLM factor in addition to correctness was in this case the parametric 215 

modulation of S1 coherence level at four levels [45% 55% 65% 75%], which was then zero-216 
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mean contrasted [-1.5 -0.5 0.5 1.5]. Hence, the S2-locked contrast shows the parametric 217 

modulation of neural activity by the coherence level of S1.  218 

2.7. Source Reconstruction 219 

The scalp-level effects identified in the previous step were localized in the cortex using the 220 

individually recorded electrode positions for each participant and routines applying 3D 221 

source reconstruction with multiple sparse priors (MSP) provided by SPM12 (Friston et al., 222 

2006). First, we constructed a forward model using an 8196-point cortical mesh of dipoles 223 

distributed perpendicular to a template brain’s cortical surface. A three-shell Boundary 224 

Elements Method (BEM) EEG head model was used to compute the lead field. Source 225 

inversion of the forward model was computed using MSP (Friston et al.,2008) under group 226 

constraints (Litvak & Friston, 2008). This was done for each condition for the significant time-227 

frequency window from sensor-level analysis. The source inverted 3D images of each 228 

condition were then contrasted in analogy to sensor space analysis and subsequently used 229 

for statistical analysis on the group level (cf. Litvak et al., 2011). Mass-univariate statistical 230 

testing resulted in significance tests for all voxels. For illustration purposes, we display the 231 

significant voxels of each analysis at p<0.05 (uncorrected), indicating the most likely sources 232 

of the FWE-corrected sensor level analysis. The above-threshold sources were attributed to 233 

anatomical landmarks by employing SPM anatomy toolbox (Eickhoff et al., 2005).  234 
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3. Results 235 

3.1. Behavior 236 

Overall, participants responded correctly in 78.5 (7.1) % of trials and with an average RT of 237 

838 (29) ms across conditions (Table 1). A repeated-measures ANOVA of median RTs with 238 

the factors “difficulty” (±20% versus ±10% dot-motion coherence) and “sign” (S1>S2 versus 239 

S1<S2) identified behavioral differences arising from the tasks’ difficulty and the direction of 240 

choice. We performed the same analysis on the logit-transformed proportion of correct 241 

responses, which was only modulated by the difficulty of the coherence comparison and not 242 

the sign. Thus, participants were overall faster when choosing S2<S1, independent of 243 

whether their choice was correct. To establish that this difference was not explained by the 244 

counterbalanced finger assignment across participants for either S1>S2 or S1<S2, we 245 

calculated between groups t-tests for reaction time and performance, which were not 246 

significant (RT: T(13)=1.37, p=0.19; PCR: T(13)=0.14, p=0.89). To exclude the possibility that 247 

different motion directions influenced behaviour, we compared performance between up- 248 

and downward motion (RT: T(27)=1.29, p=0.21; PCR: T(27)=0.98, p=0.34). 249 

 250 

Table 1: Proportion of correct responses and reaction times for the physical coherence difference S2-S1. Mean 251 
values with SD are shown in the left part, the effects are the result of an ANOVA with difficulty and sign as 252 
factors. The analysis of difficulty compares the easy (±20) with hard (±10%) trials, the sign effect the positive 253 
(+10% and +20%) with the negative (-10% and -20%) coherence difference. As expected, participants were 254 
better and faster on easy trials. Interestingly, while participants performed equally on positive and negative 255 
trials, they were faster on negative trials (S2<S1). There was no interaction between difficulty and sign. 256 

Difficulty 

effect
Sign effect Interaction

-20% -10% 10% 20% F(1, 27) F(1, 27) F(1, 27)

PCR (%) 86.3 (6.6) 70.7 (6.6) 71.7 (7.8) 85.15 (7.3)
242.4*, 

p<0.001

0.1, 

p=0.907

3.8, 

p=0.061

RT (ms) 805 (27) 837 (27) 855 (30) 834 (29)
8.1* 

p=0.008

35.1*, 

p<0.001

3.2, 

p=0.083

Coherence level difference (S2-S1)
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Furthermore, we tested whether volunteers performed better in those trials in which the 257 

direction of both S1 and S2 was the same, compared to those where dot-motion was 258 

different (RT: T(27)=0.13, p=0.90; PCR: T(2.79), p=0.009). Hence, while there were no 259 

differences between stimulus directions, participants responded more often correct, but 260 

equally fast, when both RDM stimuli had the same inherent motion. 261 

Interestingly, we observed a pronounced time-order effect/error (contraction bias) that is 262 

characteristic for sequential comparison tasks (see Fig.1B; Herding et al., 2016, 2017; Karim 263 

et al.,2012; Ashourian & Loewenstein, 2011; Preuschhof et al., 2010; Woodrow, 1935; 264 

Fechner, 1860). In particular, we observed an increase in correct S1<S2 choices with higher 265 

S1 stimulus coherence, concurrent with an increase in correct S1>S2 choices with decreasing 266 

S1 coherence. This pattern indicates that participants might compare S2 with a 267 

representation of S1 that regressed to the mean of the stimulus set (S1’). To account for this 268 

substantial effect on performance, we used a behavioral model that estimates the 269 

subjectively perceived coherence difference (S2-S1’; SPCD) for each participant and all 270 

choices (see Methods: Behavioral model).  271 
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 272 

Figure 2: Stimulus-evoked and task induced time-frequency maps. (A) Grand average of relative change in 273 
stimulus-evoked power at 5-48Hz with respect to prestimulus baseline. Data is collapsed over all channels; the 274 
topography corresponds to the TF windows during stimulus presentation marked below. (B) Grand average of 275 
task induced power, expressed as the change in power to a prestimulus baseline. The topographies reflect the 276 
time-frequency window marked in the boxes below. 277 

3.2. Overall stimulus responses 278 

As a first EEG analysis step, we verified that our novel task design showed well-documented 279 

patterns in response to random-dot motion stimuli presentation. Figure 2A illustrates the TF 280 

representation of overall changes in stimulus-evoked power relative to a prestimulus 281 

baseline. Most notably, alpha (7-13 Hz) power increased after stimulus onset, most 282 

pronounced in right occipital channels. Grand-average induced power (Fig.2B) showed an 283 

established pattern of alpha power decreases after stimulus onset relative to the 284 

prestimulus baseline (e.g., de Lange et al., 2013; all p_FWE<0.05). Starting about 0.1 s after 285 

each stimulus onset, occipital channels showed this alpha decrease while dot-motion was 286 

onscreen, with a dimming of the effect after (e.g. 0.5-1 s after S1). While alpha power was 287 

decreased throughout the task, power in the lower beta band at 16-22 Hz first decreased 288 

during stimulus presentation but rebounded in right occipital channels after the RDM 289 

pattern disappeared (0.3 - 0.6 s after S1). Then, during the perception of S2 and the start of 290 

decision processes, we observed a decrease in beta power over contralateral (left) premotor 291 
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cortex, mimicking effects previously observed in the somatosensory SFC tasks (Herding et al., 292 

2016) that fit with choice-related beta modulations associated with button presses (Donner 293 

et al., 2009; de Lange et al., 2013). This was particularly interesting, because beta band 294 

oscillations at 15-25 Hz are typically associated with sensorimotor processing (e.g., Bauer et 295 

al., 2006; van Ede et al., 2011; Pfurtscheller, 1981) and while we did not observe the same 296 

pattern as tactile comparison tasks elicit, our subsequent working memory and decision 297 

making effects mirrored somatosensory modulations in the beta band (Spitzer et al., 2010; 298 

Spitzer & Blankenburg, 2011, 2012; Herding et al., 2016, 2017; Ludwig et al., 2018; von Lautz 299 

et al., 2017), indicating a role for this frequency band beyond somatosensory processes. 300 

3.3. Parametric working memory of S1 stimulus coherence  301 

One of the central findings of previous somatosensory working memory M/EEG studies is the 302 

parametric modulation of oscillatory power in the beta band as a function of the vibrotactile 303 

frequency held in WM (Spitzer et al., 2010; von Lautz et al., 2017). Here, we focused on an 304 

analogous stimulus property – the level of dot-motion coherence. The TF map in Figure 3 305 

depicts the parametric contrast of the four motion coherence levels (45%, 55%, 65%, 75%) 306 

during stimulus retention. The permutation test procedure identified a cluster from right 307 

prefrontal channels in the beta band (18-26Hz) that was modulated by the to-be-308 

remembered stimulus coherence 0.4-0.8 s after S1 offset (p_FWE<0.05). Source 309 

reconstruction of this cluster with the same parametric constrast placed this effect in the 310 

bilateral inferior frontal gyrus (peak MNI: +42,+36,+14; Fig. 3C). Notably, the timecourse of 311 

this frontal beta band modulation (Fig 3D) showed an overall increase in ERS at the center of 312 

the working memory interval whose peak was monotonically greater for higher stimulus 313 

coherences held in working memory, as indicated by linear trend analysis (0.45-0.7s, all time 314 

bins p<0.05). 315 
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 316 

Figure 3: TF analysis and source reconstruction reveal parametric representation in right prefrontal beta band. 317 
(A) Time-frequency map of the zero-mean contrast of low to high coherence levels (45-75%) across channels F4 318 
and AF4. (B) Time course of the average beta band per S1 coherence level during the retention interval. The grey 319 
mark depicts significant time points of linear trend analysis (p<0.05). (C) Source reconstruction of the beta band 320 
effect identified with nonparametric cluster analysis marked in A. The most likely source of this prefrontal effect 321 
was found in the right IFG. The red marking shows the thresholded 3D source (p<0.05, uncorrected). (D) 322 
Topography of the cluster identified in A, corresponding to the source reconstruction in C. 323 

Exploratory analysis of higher frequencies (>48Hz) revealed a parametric modulation of 324 

gamma power at 55-65 Hz throughout the whole WM interval (p_FWE<0.05; Supplementary 325 

Figure 1A). Interestingly, while beta power increased with stimulus frequency, gamma power 326 

decreased. The source of this activity was localized to a large portion in the right inferior 327 

frontal gyrus (IFG; peak MNI: +52,+24,+0) (Supplementary Figure 1C). However, the analysis 328 

of the gamma band timecourse revealed that the highest coherence condition alone was 329 

mainly driving this effect (Supplementary Figure 1B).  330 

Unexpectedly, we identified a cluster of centro-parietal channels whose lower beta power 331 

was modulated by S1 stimulus coherency (p_FWE<0.05, Supplementary Figure 1D). The 332 

timecourse of this effect (Supplementary Figure 1E) showed the same beta power peak as 333 

observed in higher beta frequencies (cf. Fig. 3D), however, displaying a monotonic decrease 334 

with higher stimulus coherence (linear trend 0-0.15 s and 0.5-0.65 s, at p_FWE<0.05). Source 335 
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reconstruction revealed bilateral area 4a of the primary motor cortex as the origin of this 336 

negative modulation (peak MNI: +4, -36, +66) and the precuneus (peak MNI: -16, -54,+68; 337 

Supplementary Figure 1F). 338 

3.4. Beta band indexes subsequent choice 339 

To investigate the oscillatory signatures underlying decision making we contrasted trials by 340 

participants’ choices – S2 > S1 vs.  S2 < S1. This analysis revealed a central cluster in 341 

frequencies of 20-30 Hz at 0.9-0.6 s before answering (p_FWE<0.05). The focal pattern in 342 

topography (Fig, 4 C) as well as source reconstruction (Fig. 4, B) pinpointed the location of 343 

this effecgt to bilateral (pre-) motor cortices (Area 4a, peak MNI: -6, -14, 72).  344 

 345 

Figure 4: Choice-modulated power in upper beta band. (A) Time-frequency representation of response-locked 346 
power in t-values of choice contrast (S2>S1 vs. S2<S1) averaged over electrodes Cz and C2. Histogram above the 347 
TF map depicts the distribution of S2 onsets. Nonparametric cluster analysis revealed a modulation of the beta 348 
band by choice, marked here with the black box. (B) Result of 3D source reconstruction of the significant cluster 349 
marked in the time-frequency window in A. The effect was rendered on a T1 standard brain, red marks the 350 
areas of most likely sources, thresholded at p<0.05 uncorrected. (C) Topography of the central cluster marked 351 
by the box in A. (D) Left: Time course of beta band power from central channels grouped by the subjectively 352 
perceived coherence difference (SPCD) in six levels. Inset zooms into the significant time window, showing a 353 
binary split between higher and lower perceived coherence differences. Right: Time course of beta power as on 354 
the left for incorrect trials, split into S2 higher or lower than S1, and showing the opposite pattern (n.s.). 355 
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We applied our model of subjectively perceived coherence difference (SPCD) that accounts 356 

for the time-order effect on every trial to the analysis of the average central beta band time 357 

course. The resulting trials were binned in six groups, from perceiving much more coherency 358 

in S2 than S1 to the opposite. Figure 3B illustrates the beta band modulation by each 359 

separate SPCD bin, indicating a stronger central beta for S2>S1 trials 0.9-0.5 s before 360 

responding. If this beta band effect reflects subjects’ choice, incorrect trials are expected to 361 

show the inverse pattern, because participants chose the opposite answer. Analysis of the 362 

average beta band time courses did indeed indicate this opposite pattern (Figure 4C), but 363 

was not significantly modulated, likely due to the small amount of incorrect choices.  364 

3.5. Centro-parietal positivity 365 

We used the subjectively perceived coherence differences (i.e. S2-S1’) estimated for each 366 

trial as regressors for the analysis of stimulus- and response-locked epochs (Fig. 5, top and 367 

bottom respectively).  Thus, we contrasted not only trials by participants’ choice, but also by 368 

how difficult each choice was in turn.  369 

A positive modulation of centro-parietal ERPs after S2 onset was clearly visible over a set of 370 

17 electrodes marked in the scalp topography in Figure 5 (p_FWE<0.001), closely matching the 371 

classic P300 and typical CPP topographies. We collapsed analyses across both up- and 372 

downward motion as there was no influence on CPP amplitude, latency and topography (all 373 

p>0.05). In general, the CPP built up shortly after stimulus onset (0.2s) and flattened out 374 

immediately after stimulus offset (0.5 s). 375 
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 376 

Figure 5 Centro-parietal signal increases with perception of S2 and reaches maximum with response. Top: S2-377 
locked broadband EEG response from channels marked in topography with *. The left part shows time courses 378 
of each possible choice, S2>S1 and S2<S1, the right part the modulation by model-based estimates of 379 
subjectively perceived coherence difference (SPCD), split into easy, medium, difficult and incorrect trials. 380 
Bottom: Same as in figures above, but for response-locked signals and channels from the positive cluster 381 
marked in the topography with *. Channels marked in topographies in all plots are those that were significantly 382 
modulated for more than 50% of time in significant time window (p_FWE<0.05). Black and grey lines show the 383 
significant time windows from the cluster-based permutation analysis for choice (left) and difficulty as well as of 384 
correct vs. incorrect trials respectively (right). 385 

Comparing choices of S2>S1 with S2<S1 revealed a modulation of the CPP between 0.2-0.4 s 386 

after S2 onset and a later, likely response related difference starting after 0.75s (thresholded 387 

at p_FWE<0.05, Fig.5, top left). The observation that responses of S2<S1 were slightly faster 388 

(see Table 1), may therefore be explained by faster CPP build-up.  Subsequently, we split 389 

correct trials into subjectively perceived bins of ‘easy’, ‘medium’, and ‘hard’ trials with our 390 

behavioral model. The top right part of Figure 5 illustrates that the CPP increased in 391 
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proportion to the strength of S2-S1’ coherence difference and correspondingly had a higher 392 

peak level (0.4-0.92s, p_FWE<0.05). We were interested, whether this pattern extended to 393 

incorrect trials, and found a slower build-up and lower peak CPP as early as 0.3s after 394 

stimulus onset when compared to the average correct response (threshold at p_FWE<0.05).  395 

Analogous analysis of response-locked data revealed a build-up of centro-parietal signals 396 

from 22 channels that was most pronounced over left posterior parietal areas (p_FWE<0.001, 397 

Fig.5 topography, bottom). Contrary to S2-locked signals this accumulation of signal peaked 398 

with the response button press and dropped to baseline levels shortly after. Subjects’ 399 

choices modulated this signal, with an increased CPP build-up for S2>S1 trials in the last 200 400 

ms before responding (p_FWE<0.05). Split into bins of ‘easy’, ‘medium’ and ‘hard’ trials, we 401 

found a proportional CPP peak at response that scaled with difficulty and was reduced in 402 

incorrect trials (both thresholded at p_FWE<0.05). 403 

To underline that these effects may represent a decision variable and not sensory evidence 404 

in the motion perception of RDM stimuli, we investigated the build-up of CPP relative to S2 405 

stimulus coherence, as this could represent an accumulation of sensory evidence for the 406 

stimulus coherence level rather than the decision of S2-S1’ observed previously. We 407 

constructed a parametric contrast of the eight levels (25%, 35%, …, 95%) of S2 coherence 408 

and tested this against zero with the same permutation test procedure as in previous 409 

analyses. This investigation did not indicate any effect of S2 stimulus coherence on the CPP 410 

time course (all clusters p_FWE>0.05). Since the S2 coherence is confounded with the difficulty 411 

of the task-relevant S2-S1 calculation, we also applied this analysis to the S1 coherence, 412 

again with no significant results (all clusters p_FWE>0.05). While not essential for the present 413 

study, these control analyses on our particular task give further evidence that the CPP may 414 
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reflect a true ‘decision variable’ that tracks decision-relevant evidence and not just sensory 415 

input.   416 
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4. Discussion 417 

We investigated the neural processes underlying working memory and perceptual decisions 418 

using a sequential random-dot motion (RDM) coherence comparison task. We identified 419 

modulations of the beta band during the retention interval of the task and during the 420 

formation of a decision: first, in prefrontal areas, beta band power increased monotonically 421 

with the coherence level held in working memory. Second, in premotor and motor areas, 422 

participants’ choices modulated beta power before responding by button press. Additionally, 423 

the CPP tracked the accumulation of decision-relevant evidence, reflecting the subjectively 424 

perceived coherence differences between the two RDM patches, indexing the trial difficulty. 425 

Our results suggest that inferior frontal (WM), posterior parietal (CPP), and motor regions 426 

(choice) work together to maintain and evaluate decision related stimulus features 427 

independent of sensory modality.  428 

In remarkable agreement with previous reports of vibrotactile parametric working memory 429 

recorded with MEG, EEG, and fMRI in humans (von Lautz et al., 2017; Spitzer et al., 2010; 430 

Kostopoulos et al., 2007; Wu et al., 2018) and single-cell recordings in nonhuman primates 431 

(e.g., Romo et al., 1999), we observed a monotonic scaling of beta band power in the right 432 

IFG with the RDM coherence held in working memory. Moreover, the observed frequency 433 

range (18-26 Hz) and the precise location within the IFG matches results from a visual flicker 434 

frequency task more closely than similar tactile or auditory recordings (see Spitzer & 435 

Blankenburg, 2012; Wu et al., 2018). In particular, a recent fMRI decoding study employing 436 

an SFC task across sensory modalities found WM content-specific activity in the right IFG for 437 

both visual and tactile working memory (Wu et al., 2018).  Interestingly, in an exploratory 438 

analysis we observed a concurrent decrease of prefrontal gamma power with the coherence 439 
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retained in working memory (supplementary Figure 1E-H). This pattern of beta and gamma 440 

power was also recently observed with MEG (von Lautz et al., 2017) and is a known correlate 441 

of WM (Fuentemilla et al., 2010; Haegens et al., 2010). In contrast to MEG however, EEG 442 

may be ill-suited for investigations of high gamma frequencies, because the skull acts as a 443 

low-pass filter (Nunez, 1981). Moreover, the observed decrease appeared to be mostly 444 

driven by the lowest S1 coherence level alone and may therefore not be as reliable as 445 

previous MEG recordings. Together, our findings provide further evidence for a modality 446 

independent role of prefrontal beta oscillations for parametric working memory that may be 447 

a feature of passive maintenance states interrupted by brief gamma bursts as observed 448 

recently during monkey recordings (Lundqvist et al., 2016; Sherman et al., 2016; Stokes, 449 

2015). 450 

In sequential comparison tasks, it is assumed that decisions are the result of mentally 451 

calculating stimulus 2 – stimulus 1. Choice-related neural activity is expected to reflect the 452 

resulting sign (+/-) of this subtraction. Fitting with this notion, we found a modulation of 453 

beta oscillatory power by choice in central regions associated with the response-button 454 

press, for which source reconstruction estimated premotor and motor regions as the most 455 

likely sources. This supports the idea that that neural responses of decision processes are 456 

exhibited in those parts of the brain where subsequent responses are put into action 457 

(Shadlen et al., 2008). Our findings agree with vibrotactile comparison tasks in both non-458 

human primates and humans (Haegens et al., 2011; Herding et al., 2016; Ludwig et al., 459 

2018), where power in the upper beta band from bilateral pre-motor areas was modulated 460 

by subjects’ choices before responding. Remarkedly, the same pattern appears to be 461 

response-modality specific, as Herding and colleagues (2016, 2017) had participants respond 462 

by either button press or saccades and found distinct sources of this effect in premotor areas 463 
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and FEF, respectively. Moreover, firing rate changes reflecting the signed difference between 464 

vibrotactile frequencies, f2-f1, have been recorded in medial and ventral PMC when 465 

monkeys responded by button press (Hernández et al., 2002, 2010; Romo et al., 2004).  466 

Crucially, these studies all used vibrotactile stimuli. In contrast, our present results are the 467 

first to demonstrate choice encoding in the beta band from motor areas for a visual 468 

sequential comparison task.  469 

Interestingly, recordings during sequential comparisons of visual RDM stimuli have been 470 

made in monkey lPFC, where firing rates reflect task-relevant sensory, memory and decision 471 

processes (Zaksas & Pasternak, 2006; Hussar & Pasternak, 2012, 2013). Additionally, 472 

Wimmer et al., (2016) analyzed LFPs during the same task and found that beta power 473 

encoded the task-relevant S1 feature during the working memory delay, matching the 474 

present findings (Fig. 3). Moreover, broadband LFP activity reflected the difference between 475 

S2 and S1, first in proportion to the stimulus difference (S2-S1), then as an index of choice. 476 

While not in the same area, these effects are similar to previous sensorimotor LFP recordings 477 

during a vibrotactile version (Haegens et al., 2011) and have been theorized to communicate 478 

in a top-down fashion with MT and motor areas in a hierarchical network (Wimmer et al., 479 

2015). Agreeing with this idea, we speculate that the present findings complement previous 480 

single-cell recordings by showing the analogous modulatory effects in synchronized neuronal 481 

population activity. 482 

Our findings in the beta band also provide further evidence for a generalized, supramodal 483 

role for the beta band in encoding task-relevant quantitative information (Spitzer et al., 484 

2014; Spitzer & Blankenburg, 2012; Herding et al., 2016). In this view (for review, see Spitzer 485 

& Haegens, 2017), beta band amplitude may reflect quantities at different times of such 486 
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comparison tasks in distinct brain areas, i.e. lPFC during parametric coherence level 487 

retention (Barak et al., 2010; Brody et al., 2003; Romo et al., 1999) and PMC during decision 488 

making (Haegens et al., 2011; Herding et al., 2016; Hernández et al., 2002), as a dynamic, 489 

short-lived brain state for endogenous information processing. Additionally, in a recent EEG 490 

study using an SFC task with delayed decision reports, Ludwig et al. (2018) demonstrated 491 

that premotor beta power only indexed choices when a specific motor mapping was 492 

provided during the decision delay, thereby further extending this view to necessitate 493 

immediate task-relevance of the encoded choice. In the present design, both working 494 

memory and decision information were immediately pertinent to the task, as the retention 495 

interval was short with one second and the decision was not delayed, but responses given 496 

immediately. Therefore, our task is suitable to investigate whether we can extend our 497 

understanding of this quantity- and choice-related signal to the visual domain, providing 498 

evidence for a common quantitative task-relevant code in the beta band irrespective of 499 

sensory modality. Additionally, the decision variable reflected the calculation of S2-S1 and 500 

not the accumulation of evidence for a particular motion direction directly, as in the typical 501 

RDM paradigm. We therefore speculate that when applying the present task to recordings in 502 

nonhuman primates, we may be able to separate the sensory and perceptual aspects of 503 

decision making and relate them to the functioning of MT and LIP/VIP neurons (cf. Huk et al., 504 

2017; Katz et al., 2016). Such recordings may also serve to better understand the association 505 

of beta amplitude and decision accuracy, as previous MEG recordings have indicated that 506 

beta may reflect the accuracy and not the content of upcoming perceptual reports (Donner 507 

et al., 2007), for which we found no evidence here. 508 

Complementing these oscillatory changes, a number of recent studies have suggested that 509 

the CPP - a broadband signal in the human EEG - tracks the accumulated evidence for 510 
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perceptual decisions that require sequentially sampling and integrating input over time 511 

(Kelly & O’Connell, 2013; Philiastides et al., 2014; Twomey et al., 2015). This activity may 512 

directly reflect known single-cell firing variability in the PPC with an accumulation of 513 

evidence in the form of a decision variable (for review, see Gold & Shadlen, 2007; Shadlen & 514 

Kiani, 2013). The present findings agree with these earlier reports of the CPP and extend the 515 

view of the CPP as a token of the current state of decision making. Exceptionally, in our 516 

novel task the tracking of the CPP represented not the accumulation of evidence for a 517 

certain coherence level or direction, but embodied the imminent decision process, i.e., 518 

evidence accumulation for the difference between S1 and S2. Furthermore, we observed a 519 

scaling of the CPP with respect to the subjectively perceived coherence difference, and thus 520 

the difficulty of the trials. This in turn may indicate that the peak of the CPP (or P300) is 521 

related to a participants’ confidence in the decision, as previously observed in RDM 522 

paradigms with other electrophysiological or neuroimaging methods (Hebart et al., 2016; 523 

Kiani & Shadlen, 2009; Ding & Gold, 2012). 524 

Interestingly, we encountered no absolute bound of CPP at the time of the response, as has 525 

been observed in recent studies with RDM patches (O’Connell et al., 2012; Kelly & O’Connell, 526 

2013). On the contrary, our investigations agree with findings from face/house decision 527 

tasks, where scalp potentials appear to be parametrically scaled by the amount of sensory 528 

evidence at the time of choice (Philiastides et al., 2014). Our observations can be explained 529 

by a diffusion-to-bound model with collapsing bounds (for an overview, see O’Connell et al., 530 

2018), where the amount of sensory evidence as indexed by the CPP required for a decision 531 

decreases over time and is therefore lower for the more difficult, slower trials at the time of 532 

response. However, we did not observe a more gradual build-up of CPP for more difficult 533 

trials, but rather a small decrease in CPP 200 ms before the participant responded. 534 
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Therefore, the CPP appears not to index the accumulation of evidence for a single stimulus 535 

direction as in classic RDM paradigms, but the difference in coherence between two of 536 

them. Indeed, it may be that the lagged build-up is also a feature of a sensory process in 537 

RDM tasks, as this effect was also not observed in a face/house distinction task (cf. 538 

Philiastides et al., 2014). To fully understand what the CPP represents, the relation between 539 

the CPP in a comparison task and its counterpart with a single RDM stimulus should be 540 

investigated directly, and differences and common components (e.g., with cross-541 

classification) investigated.  542 

In conclusion, beta power scaled parametrically with the random dot motion coherence in 543 

right prefrontal areas during stimulus retention, then indexed the choice before responding. 544 

These effects mirror findings from the well-studied vibrotactile domain with human M/EEG 545 

and single-cell recordings in nonhuman primates. Moreover, the CPP accrued before 546 

responding and was influenced by the subjectively perceived difficulty on each trial. Notably, 547 

the CPP was not affected by RDM motion perception, but changed with the task of 548 

comparing two stimuli, indicating a close relationship to the decision variable. The present 549 

findings are a first step to unite major lines of decision making paradigms across sensory 550 

domains, with findings pointing to an extended role for the beta band during working 551 

memory and decision making and to further insights into the CPP as an index of evidence 552 

accumulation.  553 
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Supplementary figure 763 

 764 

Supplementary Figure 1: Parametric working memory in low central beta and in prefrontal gamma. (A-D) 765 
Negative modulation of central low beta power throughout perception of S2 and working memory. (A) Time-766 
frequency map of zero-mean contrast of S1 coherence level (45-75%). (B) Timecourse of low beta power (16-767 
22Hz) for each S1 coherence level, grey area marks significant time points (p_FWE<0.05). (C) Source 768 
reconstruction of significant time-frequency window, 3D rendered on a standard brain with red marking of 769 
threshholded effect at p<0.05, uncorrected. (D) Topography of negative cluster, the same as used for C. (E-H) 770 
Negative modulation of prefrontal low beta power during working memory, same as in A-D.  771 
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des Manuskriptes (in Teilen).  
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