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Abstract

Purpose

The purpose of this work is to investigate if the curve-fitting algorithm in Dynamic Contrast

Enhanced (DCE) MRI experiments influences the diagnostic quality of calculated parameter

maps.

Material and methods

We compared the Levenberg-Marquardt (LM) and a Bayesian method (BM) in DCE data of

42 glioma patients, using two compartmental models (extended Toft’s and 2-compartment-

exchange model). Logistic regression and an ordinal linear mixed model were used to inves-

tigate if the image quality differed between the curve-fitting algorithms and to quantify if

image quality was affected for different parameters and algorithms. The diagnostic perfor-

mance to discriminate between high-grade and low-grade gliomas was compared by apply-

ing a Wilcoxon signed-rank test (statistical significance p>0.05). Two neuroradiologists

assessed different qualitative imaging features.

Results

Parameter maps based on BM, particularly those describing the blood-brain barrier, were

superior those based on LM. The image quality was found to be significantly improved

(p<0.001) for BM when assessed through independent clinical scores. In addition, given a

set of clinical scores, the generating algorithm could be predicted with high accuracy (area

under the receiver operating characteristic curve between 0.91 and 1). Using linear mixed

models, image quality was found to be improved when applying the 2-compartment-

exchange model compared to the extended Toft’s model, regardless of the underlying fitting

algorithm. Tumor grades were only differentiated reliably on plasma volume maps when
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applying BM. The curve-fitting algorithm had, however, no influence on grading when using

parameter maps describing the blood-brain barrier.

Conclusion

The Bayesian method has the potential to increase the diagnostic reliability of Dynamic Con-

trast Enhanced parameter maps in brain tumors. In our data, images based on the 2-com-

partment-exchange model were superior to those based on the extended Toft’s model.

Introduction

Dynamic Contrast Enhanced (DCE) MRI enables the estimation of hemodynamic parameters

in tissue and is used to investigate the microvasculature and blood-brain-barrier permeability

in a variety of brain pathologies [1–4]. Clinical trials indicate the usefulness of this technique

for evaluating for example the treatment response in brain tumor patients [4–6]. DCE has,

moreover, the potential to become an important component of routine clinical management

of tumor patients, as microvascular structure and function are altered during the course of

radio-chemotherapy [3, 7]. DCE is in many respects superior to the clinically more prevalent

Dynamic Susceptibility Contrast (DSC) MRI method, because it appears more reliable in the

presence of contrast agent leakage across a corrupted blood-brain barrier [8], provides quanti-

tative measurements, and as DCE is a T1-weighted technique, it is less affected by susceptibility

artifacts. This allows the evaluation of brain regions in the vicinity of air-containing structures

as the posterior fossa or the temporal lobes, but also around hemorrhages, or adjacent to surgi-

cal devices as coils, clips, catheters, sensors etc. In addition, DCE is the option for performing

gadolinium-based perfusion imaging outside the brain.

However, insufficient imaging protocols, poor image quality, and unreliable parameter esti-

mations have so far prevented the more widespread DCE implementation of DCE in neuroim-

aging so far. Recent improvements in scanner hard- and software have substantially

minimized acquisition issues, but data post-processing remains a challenge. The clinician is

often presented with noisy and unreliable parameter maps, which keeps hampering the accep-

tance of DCE within the clinical community and calls for an improved approach to data

analysis.

DCE data are typically analyzed through employment of compartmental models (see ref.

[9] for a review). A popular model and one that has been used extensively in clinical studies is

the three-parameter extended Toft’s model (ETM) [10], which enables the measurement of the

vascular-to-extravascular leakage parameter Ktrans, the intra-vascular plasma volume vp, and

the extravascular interstitial volume ve. Alternatively, the so-called 2-compartment-exchange

model (2CXM) [11] is employed, which enables the separation of Ktrans into the permeability

rate K1 and the plasma flow Fp. However, parameter estimation depends more critically on

temporal sampling and is more affected by data noise [12], which requires a robust fitting

algorithm.

The standard approach to estimate the parameters of the ETM or the 2CXM models is to fit

one of these models to some observed data using the so-called Levenberg-Marquardt (LM)

method [13, 14]. Here, the sum of the squared differences between model and observed data

points is minimized in order to find an optimal solution. However, due to the complexity of

the problem, this simple approach may converge to a non-optimal local minimum in the cost

function space, with the resulting parameters bearing no or only limited physiological
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meaning. This problem might be identified by spurious voxels in the resulting hemodynamic

parameter maps and can, if present to a substantial degree, lead to considerable image

degradation.

An alternative algorithm for estimating the model parameters is a Bayesian method (BM).

The BM is a probabilistic approach based on the assumption that the model parameters follow

a normal distribution. The mean and covariance of this distribution are determined (prior dis-

tribution) and afterwards used to infer the posterior distribution of the measured variables by

maximizing the log-likelihood function. This has previously been observed to be more robust

with respect to image noise and provides substantial improvements in tissue differentiation,

while at the same time being capable of estimating perfusion indices independently across a

wide range of values [15–18]. Bayesian models have also been employed in DCE models before

and appear to yield consistent and accurate results [19, 20].

While our phantom studies and initial clinical examples published in the same issue of this

journal indicate that BM allows estimation of compartmental parameters, which are more

robust against experimental noise (“Robust estimation of hemo-dynamic parameters in tradi-

tional DCE-MRI models”; submitted to PLoS One, PONE-D-18-01462), the immediate clini-

cal utility has not been examined. Here we compare the diagnostic quality of hemodynamic

maps based on the conventional LM to those resulting from BM. We evaluate the impact of

both curve-fitting algorithms on two compartmental models (ETM and 2CXM), calculated

from DCE data acquired in 42 untreated cerebral glioma patients. The primary focus is on the

clinical usefulness, i.e. if the calculated maps enabled better assessment of tumor heterogeneity,

to distinguish between pathological and normal appearing tissue, or better separation of

tumor vasculature from normal vessels. The aim of our study is hereby to assess image quality

and the extent of spurious voxels and image artifacts, potentially distorting quantitative

analyses.

Materials and methods

Patients

This study was approved by the Danish Committee on Health Research Ethics. All included

patients provided informed written consent to be part of this study and to have their data used

in research. MRI data were pseudo-anonymized after collecting. The study population con-

sisted of 42 untreated glioma patients [23 glioblastoma, 7 astrocytoma grade III, 2 oligoden-

droglioma grade III, 10 astrocytoma grade II; all of them diagnosed by either biopsy or

resection).

Imaging

MRI data were acquired on an Achieva 3.0 T Philips system (Philips Healthcare, Best, Nether-

land) with a standard eight-element head coil. DCE imaging was performed using a turbo-

FLASH sequence (TR/TE = 3.5/1.57 ms; flip angle = 25˚; voxel size = 1.7x1.7x5 mm3;

FOV = 220 x 220 x 75 mm3; dynamic scan time = 2s; dynamic scan duration = 5 min.) before,

during, and after the administration of 0.05 mmol/kg gadobutrol at 2.5 ml/s, flushed with 30

ml saline at 2.5 ml/s. Baseline T1 values were measured and corrected for B1 field inhomoge-

neity as described in [21].

Image analysis

Post-processing was done using in-house developed modules run in SPM8 (Statistical

Parametric Mapping, Wellcome Trust Centre for NeuroImaging, Inst. of Neurology,
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University College London, UK) and MatLab (Mathworks, Natick, MA, USA). B1 field-cor-

rected T1 maps were estimated, and the DCE concentration-to-time curves were obtained as

described previously [21]. The ETM and 2CXM were fitted to the concentration-to-time

curves using the two curve-fitting algorithms. In LM, a penalty to the sum-of-squares cost

function was added if parameters were out of a physiological range (Fp: 0–500 ml/100g/min;

Ve: 0–1 ml/g; vp: 0–1 ml/g; K1: 0–100 ml/100g/min). This was carried out by adding the arbi-

trary number of 100,000 to the sum-of-the squares, such as to discourage the algorithm from

pursuing this route. For BM, the expectation-maximization optimization method in a Bayesian

framework was used as described in refs. [15, 16]. To avoid negative values parameter estima-

tion was performed on log-transformed parameters, with no upper bounds on the parameters

in BM. The starting guess (LM) and prior mean (BM) used to initialize the curve fitting proce-

dures was: K1 and vp from the Patlak’s model [22], Fp and Ktrans using a standard singular

value decomposition [23], and Ve as the area under the curve (AUC) of the tissue concentra-

tion curve (from 60s after baseline to 300s). For BM, it is also necessary to specify a prior

parameter covariance matrix. Similar to ref. [24], we chose the prior covariance as a diagonal

matrix with entries, which, through simulation studies, were found to allow an independent

and robust estimation of DCE model parameters over wide ranges of values. Specifically, for

ETM we used a prior covariance matrix with diagonal elements (0.1, 10, 0.1, 10) for the param-

eters (Fp, Fp/ve, vp, delay), while for 2CXM the prior covariance matrix (0.1, 1, 10, 1, 10) for the

parameters (Fp, vp, Fe, ve, delay) was applied (for details the reader is referred to “Robust esti-

mation of hemo-dynamic parameters in traditional DCE-MRI models”; submitted to PLoS

One, PONE-D-18-01462). Data were corrected for internal motion if necessary. The arterial

input function was obtained semi-automatically using MatLab from either the anterior or mid-

dle cerebral artery on the unaffected side. To improve local signal-to-noise ratios, spatial 2D

smoothing was performed with a 3 x 3 voxel uniform filter on the concentration maps prior to

perfusion calculation. While this may blur edges between different tissue compartments, such

effects were outweighed by the benefit in increased hemodynamic parameter map quality. We

also note that Schmid et al. [19] have put forward a Gaussian Markov random field solution to

incorporate local spatial information in the prior distribution, which may alleviate such

phenomena.

Qualitative image analysis

The above analysis resulted in 7 different parametric perfusion maps (K1, vp, Fp, ve from the

2CXM; Ktrans, vp, ve from the ETM) for each patient and each fitting algorithm (LM and BM).

These maps were presented for two board certified neuroradiologists (reader 1: 6 years of expe-

rience in neuroradiology, reader 2: 15 years of experience), ordered by hemodynamic parame-

ters, but in a random order with respect to the underlying fitting algorithm. Three image

features were scored: (i) tumor-to-background discrimination (t2b), (ii) tumor-to-‘surrounding

normal vessels’ discrimination (t2v), and (iii) overall impression (oai). A 4-step-scale was used

with 1 = not interpretable due to severe image degradation, 2 = considerable image artifacts lim-

iting interpretation, 3 = good quality, and 4 = excellent quality. For examples, see Fig 1.

Statistical analysis

Statistical analysis was performed using R (Boston, MA, USA).

For an overall illustration of clinical assessment scores, we calculated and plotted the aver-

age scores for image features t2b, t2v and oai for the 7 parameter maps (3 in the ETM and 4 in

the 2CXM) for both raters and both fitting algorithms. In addition, we looked at the average

scores for high-grade and low-grade gliomas separately, in order to assess if tumor grade and,
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thus, the extent of contrast agent leakage or neo-angiogenesis might influence image quality

indirectly.

Two complementary statistical approaches were used to quantify the differences in image

quality between the two algorithms. First, logistic regression was used to differentiate between

the two fitting algorithms. This was done in order to investigate whether the image quality, as

quantified by the scores, was sufficiently different to make this grouping possible. With 168

samples (42 patients � 2 raters � 2 fitting algorithms) we fitted a model with the type of fitting

algorithm as response and the quality scores (7 parameters � 3 image features [t2b, t2v, oai]) as

predictors. To protect against overfitting the data were divided into a training set (120 samples)

and a test set (48 samples). The parameters of the logistic regression were estimated with the

training set. The resulting model was subsequently applied to the test data, and the accuracy to

1 2

3 4

Fig 1. Examples of the 4-step-scale, used for quality assessment. Tumor-to background discrimination is evaluated

for Ve maps. (1) is not interpretable, as spurious voxels (in red and black) partly obscure the tumor. In (2), the tumor is

discernible, but still affected by artifacts both in and around the lesion. The image quality is good in (3), but the tumor

is difficult to spot due to the surrounding structures and artifacts. The tumor-to-background discrimination is

excellent in (4).

https://doi.org/10.1371/journal.pone.0202906.g001

Bayesian modeling of Dynamic Contrast Enhanced MRI data in cerebral glioma patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0202906 September 26, 2018 5 / 14

https://doi.org/10.1371/journal.pone.0202906.g001
https://doi.org/10.1371/journal.pone.0202906


determine whether the samples in the test set were based on LM or BM was evaluated. The

training and estimation procedure was repeated on 1000 randomly sampled training and test

sets. A penalty was used in the logistic regression to enable automatic variable selection [25].

The selected variables reflect which combination of the 7 parameter maps and 3 image features

were most informative in distinguishing between the two fitting algorithms for each repetition.

The ability to differentiate between the two fitting algorithms based on clinical image quality

was quantified by the area under the receiver operating characteristic (ROC) curve (AUC).

Second, we estimated the extent to which fitting algorithm, parameter, and image features

affected clinical scores. We used an ordinal linear mixed model [26] with score as dependent

variable (response) and algorithm, parameter, image feature, and rater as independent explan-

atory variables. Random effects were added for patients and raters to account for the correla-

tion between repeated measures. The ordinal linear mixed model was fitted using an

expectation-maximization algorithm (EM) [26]. The EM approach enabled the calculation of

p-values and thereby testing of the significance of the individual explanatory variables.

Finally, we evaluated if the two fitting algorithms had an impact on the diagnostic perfor-

mance at all by using by Ktrans/K1 and vp parameter maps, calculated by 2CTX and ETM, respec-

tively, to discriminate between high-grade and low-grade gliomas. The mean Ktrans, K1, and vp

were determined in the contrast enhancing part of the tumor or in the T2FLAIR hyperintense

part for non-enhancing lesions and normalized by the mean value in non-affected white matter.

We applied a Wilcoxon signed-rank test and regarded a p<0.05 as statistically significant. Fur-

thermore, we calculated the ROC curves and AUCs for Ktrans, K1, and vp and tumor grades.

Results

Qualitative evaluation of patient data

Representative images for a high-grade glioma (glioblastoma multiforme) and a low-grade gli-

oma (astrocytoma grade II) are shown in Fig 2A–2F. Fig 2B and 2E demonstrates K1, vp, Fp,

Fig 2. Representative K1 (permeability rate), Ktrans (leakage-flow), Ve (interstitial volume), vp (plasma volume), and Fp (plasma flow)

images of a patient with glioblastoma multiforme (A-C) and astrocytoma grade II (D-F). Dynamic Contrast Enhanced MRI data are

fitted to the 2-compartment-exchange model (2CXM; B and E) and the extended Toft’s model (ETM; C and F) using either the

Levenberg-Marquardt (LM) method or Bayesian modeling (BM). Conventional images (contrast enhanced T1, CE T1, and T2 FLAIR)

are demonstrated in (A) and (D).

https://doi.org/10.1371/journal.pone.0202906.g002
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and Ve maps based on 2CXM, whereas Fig 2C and 2F displays Ktrans, vp, e from the ETM. Data

are fitted with the LM method in the upper row and with the BM approach in the bottom row

of the subfigures B, C, E, and F. Sensitivity to image artifacts is particularly apparent on LM-

based maps, but only to minor degree on the BM-based Ktrans maps. The remaining BM maps

are largely unaffected by artifacts. Spurious hyperintensity voxels disguise partly the tumor or

the transition zone between tumor and normal appearing tissue, which impedes the t2b dis-

crimination, the assessment of tumor heterogeneity, and the reliable identification of small sat-

ellite lesions. The difference between LM- and BM-fitted parameter maps is most apparent on

ve images and to a minor degree on K1, and Ktrans maps.

In Fig 3A, we show the average scores for the different parameters maps. Scores of BM-

based maps are plotted in red, those of LM-based maps in blue (rater 1 in light, rater 2 in dark

color). It is observed that the raters consistently rank BM-based maps higher than LM-based

maps, regardless of model (green: 2CXM; purple: ETM), parameter, and image feature (t2b,

t2v, oai). The difference is most profound in t2b assessment, illustrating the excellent tumor

demarcation when using BM. In Fig 3B, the scores (here averaged for both raters) are plotted

separately for high-grade and low-grade tumors (high-grade with dashed, low-grade with solid

lines; BM in red and LM in blue). The figure suggests that the algorithm influences primarily

the t2b, whereas the tumor grade dominates when assessing t2v and oai.
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A Score values for all tumors;
red: BM; blue: LM

Score values for high-grade and low-grade gliomas; red: BM; blue: LM

Fig 3. Observed mean score values in all tumors (A): Images based on the Bayesian model are scored higher (red

colors with light red for rater 1 and dark red for rater 2) than those based on the Levenberg-Marquardt method (blue

colors with light blue for rater 1 and dark blue for rater 2) for most parameter maps and imaging features. A sub-

analysis (B; averaged for both rater) for high-grade (dashed lines) and low-grade gliomas (solid lines) suggests that this

is most pronounced for tumor-to-background (t2b) discrimination. Green labels indicate parameters from the

2-compartment-exchange (2CXM), purple labels those from the extended Toft’s model (ETM). t2v: tumor-to-

‘surrounding normal vessels’ discrimination; oai: overall impression. Ve: interstitial volume; K1: permeability rate; vp:

plasma volume; Ktrans: leakage-flow parameter; Fp: plasma flow.

https://doi.org/10.1371/journal.pone.0202906.g003
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The logistic regression shows that the two fitting algorithms can be differentiated by just

using scores. The average AUC is 0.98 (confidence interval ± 0.018) with the lowest being 0.91,

and an AUC of 1 was reached in 26% of repetitions. The automatic variable selection yields

that the quality of t2b on ve maps (2CXM) is sufficient in 58% of cases to identify the fitting

algorithm (lowest AUC 0.91; mean AUC 0.91, confidence interval ± 0.019). In the remaining

cases, classification was made with K1 (2CXM), Ktrans, and ve (ETM) maps, illustrating that the

image quality of leakage maps can be improved by using BM.

In Fig 4, the results of the ordinal linear mixed model are presented with predicted values as

bars and observed values as lines (blue are LM-based and red are BM-based scores). The figure

shows good agreement between the observed and predicted values with just slight overestima-

tion. The scores are generally predicted to be higher on BM-based (red bars) than on LM-

based maps (blue bars). The results of the ordinal linear mixed model are summarized in

Table 1. In order to assess if the algorithm is critical for scoring, we removed it as an explana-

tory variable and found it to be significant with p<0.001. Moreover, Fig 4 shows that BM yields

particularly high scores when assessing t2b. This is emphasized by the large positive coefficient

of BM (1.518) in Table 1, whereas t2v and oai were less affected by the type of algorithm (illus-

trated by the negative interactions t2v:BM and oai:BM). This is consistent with the findings

from Fig 3. Changing from 2CXM to ETM reduced the expected scores for all image features

and parameters, regardless of the algorithm type (as the coefficient of ETM is negative).

Table 1 shows a positive coefficient for rater 2. This is consistent with Fig 3, where the dark

lines representing the scores given by rater 2 are above the lines representing the scores giving

by rater 1. The positive coefficient of the interaction ETM:rater 2 means that this difference is

most distinct, when ETM is used as model.

The diagnostic performance to discriminate high-grade from low-grade gliomas is higher

for the BM-based approach when using vp maps (for both 2CXM and ETM with p<0.001 and

AUCs of 0.97 and 0.87; for LM p>0.05 for both models, AUCs of 0.69 and 0.62) and equal for

Expected values
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Fig 4. Results of the ordinal mixed model, estimating the predicted scores of image quality, which is generally

predicted to be higher using Bayesian modeling (BM, red columns) compared to the Levenberg-Marquardt

method (LM, blue columns). The blue line represents the mean observed values of the LM-based scores, whereas the

red shows BM-based mean values. Ve: interstitial volume; K1: permeability rate; vp: plasma volume; Ktrans: leakage-flow

parameter; Fp: plasma flow. Green labels indicate parameters from the 2-compartment-exchange (2CXM), purple

labels those from the extended Toft’s model (ETM).

https://doi.org/10.1371/journal.pone.0202906.g004
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K1 and Ktrans maps (K1 with p>0.05, AUCs of 0.57 and 0.56, and Ktrans with p<0.001, AUCs of

0.92 and 0.92).

Discussion

We have shown that the diagnostic quality of most of our BM-based parameter maps is supe-

rior to those fitted with the widely used LM-based approach, which was here even adjusted to

avoid erroneously high parameter estimates. Especially the leakage-related parameters K1,

Ktrans, and ve appear to benefit from using the Bayesian parameter estimation. Our qualitative

assessment revealed a particular improvement t2b as well as an enhancement of the general

image appearance (oai) when applying BM. These results were partially influenced by tumor

grade and independent of the underlying model, i.e. also the more complex 2CXM resulted in

substantially improved image quality.

DCE data are easily affected by a relatively low signal-to-noise ratio, and fitting the model

to data results in noisy images that in severe cases impede reliable image interpretation. Differ-

ent regularization techniques are usually employed to minimize extensive image noise [27, 28].

LM is a robust method, used successfully in many curve-fitting problems. The multi-

Table 1. Coefficients, standard error, t- and p-values from the fitted mixed linear model. Baseline parameters are

represented with coefficient 0.

Value Std.Error t-value p-value

Intercept 1.250 0.100 12.567 0.000

K1 or Ktrans 0.000

Fp 1.095 0.083 13.238 0.001

Ve 0.213 0.066 3.244 0.000

Vp 0.745 0.066 11.331 0.000

t2b 0.000

t2v 1.334 0.065 20.657 0.000

oai 0.830 0.065 12.847 0.000

LM 0.000

BM 1.518 0.065 23.661 0.000

rater 1 0

rater 2 0.194 0.025 7.681 0.000

2CXM 0.000

ETM -0.270 0.038 -7.108 0.000

BM:ETM -0.184 0.054 -3.425 0.001

Fp:BM -0.421 0.085 -4.963 0.000

Ve:BM 0.508 0.066 7.725 0.000

Vp:BM -0.121 0.066 -1.840 0.066

Fp:t2v -1.551 0.099 -15.722 0.000

Ve:t2v -0.438 0.081 -5.433 0.000

Vp:t2v -0.813 0.081 -10.090 0.000

Fp:oai -1.271 0.099 12.885 0.000

Ve:oai -0.06 0.081 -0.813 0.416

Vp:oai -0.762 0.081 -9.461 0.000

t2v:BM -1.090 0.061 -17.908 0.000

oai:BM -0.951 0.061 -15.617 0.000

ETM:rater 2 0.267 0.050 5.352 0.000

2tv:rater 2 -0.043 0.061 -0.703 0.482

oai:rater 2 0.175 0.061 2.894 0.004

https://doi.org/10.1371/journal.pone.0202906.t001
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dimensional non-linear deconvolution problem, inherent to the ETM and 2CXM models may,

however, be afflicted by a too complicated cost-function surface to allow optimization by LM.

Computer simulations have shown that especially ve in the 2CXM gives rise to spurious high-

intensity voxels unrelated to physiology (Robust estimation of hemo-dynamic parameters in

traditional DCE-MRI models; submitted to PLoS One, PONE-D-18-01462). These voxels

might be misinterpreted as representing regions with high and low perfusion values, respec-

tively, or might obscure important, pathology-related structures. Quantitative studies are par-

ticularly affected by the inclusion of noisy voxels, as this will inevitably lead to non-

physiological values in the resulting parameters. It was found that insufficient sampling time,

in conjunction with slow extra-vascular tracer kinetics, resulted in ever-increasing concentra-

tion-time curves during the entire scan duration. Such effects were found to result in particu-

larly poor estimations of LM-based ve values, with both over- and underestimation occurring.

Conversely, the BM approach was found to consistently underestimate ve, which results in

smoother images. The noisy 2CXM-based ve maps, encountered in the present work, are likely

to be an extension of these findings. In brain tissue, and especially healthy white matter, rela-

tively low blood volume induces only limited signal intensity variation. In such a case, the

poor signal-to-noise ratio, affecting particularly the tail of the concentration curves, prevents

the LM approach from producing meaningful ve values. The type of curve-fitting algorithm

appears to influence the appearance of parameter maps, which are, primarily, based on the

first part of the contrast bolus passage to a much less extent. Very similar oai scores on e.g. Fp

maps support this supposition.

BM differs from LM in various ways. It is, for instance, based on the maximization of a neg-

ative log-likelihood function, which we speculate represents a beneficial transformation of the

optimization landscape. Recent clinical and phantom studies have indicated that BM might be

more suitable than LM for perfusion data [15–18, 20, 29, 30]. Our results are therefore in line

with these findings, showing the superiority of the Bayesian approach when generating hemo-

dynamic and in particular leakage-related parameter maps.

We note that other research groups have previously published work on Bayesian methodol-

ogy in the context of DCE hemodynamic parameter estimation [19, 20], which are similar the

one presented in this and the associated work (“Robust estimation of hemo-dynamic parame-

ters in traditional DCE-MRI models”; submitted to PLoS One, PONE-D-18-01462). There are,

however, some significant differences. First, the algorithm used here utilizes the measured

arterial input functions rather than, which is quite common in DCE studies, a bi-exponential

fit to a measured input function or a universal input function [31]. Second, the delay between

the site of measurement of the AIF and any particular tissue curve is an adaptive parameter in

our model alongside the actual hemodynamic parameters, such as Fp and ve.

We have demonstrated the superiority of BM in glioma, which are mostly solitary brain

lesions. We note, however, that spurious voxels on leakage-related LM-based parameter maps

were most pronounced in normal appearing tissue on leakage-related LM-based parameter

maps, and they might therefore prevent the detection of peri-lesional changes or small satellite

tumors. One might argue that spurious voxels have less impact on the diagnostic performance

of DCE. We showed, however, that tumor grades could only be differentiated reliably on BM-

based, but not on LM-based vp maps. This was not the case for leakage-related parameter

maps. 40% of our low-grade gliomas showed contrast enhancement in parts of the lesion,

explaining the reduced performance of K1, regardless of the underlying fitting algorithm. This

was, however, the case for ETM-based Ktrans, which is known to be considerably influenced by

blood flow, a strong discriminator of tumor grades.

A limitation to the application of curve fitting approaches in a clinical setting is the rela-

tively high demand on computational resources, which implies long post-processing times.
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Processing time can, however, be sped up considerably by grouping of voxels with similar sig-

nal curve characteristics or through the use of parallel processing paradigms, such as multiple

compute threads, distributed computing, and using graphics processing units for computa-

tionally intensive tasks.

Another technical limitation pertains to the assumption that the functional form of the AIF

represents the actual input supplied to each voxel. Hence, dispersion effects, local T1 effects,

and other phenomena are not handled adequately, which may result in incorrect hemody-

namic parameters. This is discussed in greater detail in “Robust estimation of hemodynamic

parameters in traditional DCE-MRI models” (submitted to PLoS One, PONE-D-18-01462).

While potentially representing a general issue, we have in this work chosen to allow the Bayes-

ian model to adapt to the curve without posing restrictions on the parameters. Taking the sim-

ple ETM as an example, this may in the case of ve result in voxels with> 1 ml/100 ml.

Imposing limits on that particular parameter would have resulted in hindered Fp determina-

tion, as Fp would have to compensate for these effects alone.

A limitation of our study is that only two readers rated the parameter maps. Both are expe-

rienced neuroradiologists, but with different degrees of expert knowledge in reading DCE-

images, allowing the level of experience as an additional confounder. A further limitation is

the natural heterogeneity of glioma. We included both low- and high-grade glioma, as our

intention was to evaluate a typical clinical spectrum. Low-grade glioma can, however, be chal-

lenging to distinguish on all parameter maps, which is likely to influence the quality scores to

some extent. This could, however, be argued to represent a strength, rather than a weakness of

our study, as the method appears to be applicable to both glioma grades and thereby maybe

also to other brain pathologies.

Out of ethical reasons, we refrained from performing DCE-guided biopsies and are there-

fore not able to debilitate possible satellite tumors outside the primary lesion or even in the

contralateral hemisphere. Thorough evaluation of the conventional images makes it, however,

unlikely that the numerous spurious voxels, particularly on LM-based leakage maps, represent

dissemination.

In summary, we have demonstrated that BM has the potential to improve the quality of

DCE-derived parameter maps in glioma patients, thereby increasing the diagnostic reliability

of especially leakage-related images. Our DCE data could even be fitted to a more complex

compartmental model, allowing the separation of flow and permeability, without compromis-

ing image quality. Our results suggest that integrating the Bayesian approach in clinical soft-

ware solutions might increase the confidence and applicability of DCE imaging, in particular

when using this technique in quantitative imaging studies, for example to evaluate new treat-

ments affecting the blood-brain barrier. It is, moreover, possible that the assessment of more

global brain diseases as multiple sclerosis, cerebrovascular diseases, dementia etc. that are char-

acterized by subtle and widespread changes of the blood-brain barrier [32] may in particular

profit of the BM approach.
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