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Introduction: Brain atrophy is a widely accepted marker of disease severity with

association to clinical disability in multiple sclerosis (MS). It is unclear to which extent

this association reflects common age effects on both atrophy and function.

Objective: To explore how functional performance in gait, upper extremities and

cognition is associated with brain atrophy in patients with Clinically Isolated Syndrome

(CIS) and relapsing-remitting MS (RRMS), controlling for effects of age and sex.

Methods: In 27 patients with CIS, 59 with RRMS (EDSS ≤3) and 63 healthy controls

(HC), 3T MRI were analyzed for T2 lesion count (T2C), volume (T2V) and brain volumes

[normalized brain volume (NBV), gray matter volume (NGMV), white matter volume

(NWMV), thalamic volume (NThalV)]. Functional performance was measured with short

maximum walking speed (SMSW speed), 9-hole peg test (9HPT) and symbol digit

modalities test (SDMT). Linear regression models were created for functional variables

with stepwise inclusion of age, sex and MR imaging markers.

Results: CIS differed from HC only in T2C and T2V. RRMS differed from HC in NBV,

NGMV and NThalV, T2C and T2V, but not in NWMV. A strong association with age was

seen in HC, CIS and RRMS groups for NBV (r = −0.5 to −0.6) and NGMV (r = −0.6

to −0.8). Associations with age were seen in HC and RRMS but not CIS for NThalV

(r =−0.3; r =−0.5), T2C (rs = 0.3; rs = 0.2) and T2V (rs = 0.3; rs = 0.3). No effect of age

was seen on NWMV. Correlations of functional performance with age in RRMS were seen

for SMSW speed, 9HPTand SDMT (r = −0.27 to −0.46). Regression analyses yielded

significant models only in the RRMS group for 9HPT, SMSW speed and EDSS. These

included NBV, NGMV, NThalV, NWMV, logT2V, age and sex as predictors. NThalV was

the only MRI variable predicting a functional measure (9HPTr) with a higher standardized

beta than age and sex (R2 = 0.36, p < 1e-04).
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Conclusion: Thalamic atrophy was a stronger predictor of hand function (9HPT) in

RRMS, than age and sex. This underlines the clinical relevance of thalamic atrophy and

the relevance of hand function as a clinical marker even in mildly disabled patients.

Keywords: multiple sclerosis, clinically isolated syndrome, atrophy, thalamus, clinical outcomes, MSFC, functional

performance

INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory and
neurodegenerative disease of the central nervous system
and the primary neurological disease causing disability in young
adults (1). The number and location of hyperintense lesions
on T2 weighted MRI (lesion load) have classically been used as
a surrogate of inflammatory disease activity and an outcome
in clinical studies of disease-modifying drugs. Other imaging
features like global and focal brain and spinal cord atrophy have
been described to occur even early in the course of MS (2, 3)
and are now widely accepted as outcome parameters of disease
progression (4, 5). In contrast to markers of inflammatory
disease activity, such volume changes are thought to reflect
the neurodegenerative trait of the disease (6, 7). Special focus
has been given to thalamic atrophy, since it occurs early and
progresses consistently during the disease course and thus might
serve as an applicable MRI-marker in neuroprotective trials
(3, 8). Clinically, MS may present with a variety of neurological
signs and symptoms with impaired locomotor function among
the most frequently reported and disabling symptoms (9–11).
The Expanded Disability Status Scale (EDSS) is considered the
gold standard and most widely used clinical scale to describe
MS related disability (12, 13). Its organization on a non-linear
scale makes structure-function correlation analyses difficult.
Further, as a compound measure it does not allow for an analysis
of specific symptoms of MS with respect to imaging findings.
Quantitative functional testing has among other approaches
been proposed as a more appropriate and sensitive measure of
disability progression in MS (14, 15). The Multiple Sclerosis
Functional Composite (MSFC), which has been developed
for this purpose, assesses clinical dimensions of arm, leg and
cognitive function in terms of performance and processing
speed (16, 17). Whilst the original MSFC included the Paced
Auditory Serial Addition Test (PASAT) as a measure of cognitive
processing speed, this has largely been replaced by the Symbol
Digits Modalities Test (SDMT) (18). A recent review series
of the Multiple Sclerosis Outcome Assessments Consortium
reported on the components of this modified MSFC (SDMT,
nine-hole peg test and timed 25-foot walk) and proposed them

Abbreviations: CIS, clinically isolated syndrome; EDSS, expanded disability
status scale; HC, healthy controls; logT2C, logarithmic T2 lesion count; logT2V,
logarithmic T2 lesion volume; MRI, magnetic resonance imaging; MS, multiple
sclerosis; MSFC, multiple sclerosis functional composite; NBV, normalized brain
volume; NGMV, normalized gray matter volume; NThalV, normalized thalamic
volume; NWMV, normalized white matter volume; RRMS, relapsing-remitting
MS; SDMT, symbol digit modalities test; SMSW, short maximum speed walk;
T2C, T2 lesion count; T2V, T2 lesion volume; 9HPT, nine-hole peg test; 9HPTr,
transformed 9HPT score.

as the relevant measures in these functional domains (19–21).
Another recent development aims to make instrumented motor
testing clinically more feasible. In this respect, different groups
have described visual perceptive computing (VPC), which
makes use of the Microsoft Kinect R© infrared depth sensor, as
a promising assessment tool in different neurological disorders
(22–28). The VPC derived short maximum speed walk has been
proven as highly comparable to timed 25-foot walk results in a
previous study in 83 people with RRMS and 57 healthy subjects.
Both measures were highly correlated (rp = 0.75, p < 0.001 in
healthy subjects and rp = 0.78, p < 0.001 in RRMS) and mean
between-method difference was 0.001± 0.2 m/s (28).

The association of MRI atrophy markers and disability in
MS is well-established (29, 30). Whilst the existing body of
literature generally confirms such association in MS cohorts
with significant disability, evidence on functional correlates of
brain atrophy in CIS and early RRMS patients is less compelling
(31, 32). The scope of this study was therefore to explore the
relation of imaging markers of disease severity with the above-
mentioned hallmark parameters of functional decline in a cohort
of mildly disabled CIS and RRMS patients (EDSS ≤3).

We expected to reproduce the occurrence of CNS tissue
volume loss even in people with CIS or RRMS andmild disability,
i.e., in absence of pronounced functional impairment.We further
assumed age effects to be seen on both, global or compartmental
volume loss and quantitative functional testing. The main
hypothesis was, that an effect of structural MRI could be shown
on functional performance, independent of effects of age and
sex. There was no a priori hypothesis concerning the relation of
motor function with lesion burden. An analysis of this parameter
was included to allow inferences on the impact of inflammatory
activity as opposed to markers of neurodegeneration.

METHODS

Study Population
We included clinical and MRI Data from different observational
studies in clinically isolated syndrome (CIS) and MS
at the Neurocure Clinical Research Center, Charité–
Universitätsmedizin Berlin (EA1/182/10, EA1/077/11, and
EA1/163/12). The studies were approved by the local ethics
commitee of Charité–Universitätsmedizin Berlin in accordance
with the Declaration of Helsinki in its current applicable state. All
participants provided written informed consent for participation
and publication of results. For restriction to mildly affected
patients, we chose a cut-off of EDSS score of ≤3 (33), but no
restriction was made regarding disease duration. Data of 27
people with CIS and 59 people with relapsing-remitting type
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of MS (RRMS), diagnosed according to the revised McDonald
criteria from 2010 (34) and 63 healthy subjects (HC), matched as
a group with respect to age distribution and sex, were included
in this post-hoc analysis. No restrictions were made as to type
of disease modifying treatment. Data were collected between
September 2011 and December 2017 according to standardized
protocols. All study visits were planned in stable remission
of relapse, defined as at least 3 months after onset of most
recent relapse. On average there was a delay between motor and
imaging assessments of 0.6 days (SD± 1.9) in CIS and 2.9 (SD±

9.5) in RRMS patients. Demographic and clinical data are shown
in Table 1.

Clinical Assessment and VPC Motor
Measures
Experienced trained raters assessed EDSS, 9HPT and SDMT.
Short maximum walking speed was quantified by a VPC system
consisting of Microsoft Kinect R© Version 2 video and infrared
camera (Kinect SDK, Microsoft Corp., Redmont WA, USA)
along with custom-written software (PASS-MS, Motognosis
Labs Version 1.2–1.4, Motognosis GmbH, Berlin) as described
previously (22). Short maximum speed walk yields the SMSW
speed in m/s as the mean of three trials of <5 meters length,
known to equal closely the T25FW performance speed (28).

MRI Acquisition and Imaging Measures
All study subjects were scanned using a 3 Tesla Siemens
TimTrio scanner according to standardized protocols. Native
3D T1-weighted magnetization prepared rapid gradient-echo
(MPRAGE) images (resolution 1 × 1 × 1 mm3; TR = 1,900ms,
TE = 3.03ms, TI = 900ms, flip angle 9◦) were put into
standard space and lesion in-filled with lesion segmentation
masks for structural measurements. Native 3D T2-weighted fluid
attenuated inversion recovery (FLAIR) images (resolution 1 × 1
× 1 mm3; TR= 6,000ms, TE= 388ms, TI= 2,100ms, flip angle
120◦) were used for T2-weighted lesion segmentation using the
lesion prediction algorithm as implemented in the LST toolbox
version 2.0.15 (35) and then co-registered to standard space.
MPRAGE and lesion masks were edited using ITK-SNAP (36)
manually.

Whole brain T2 lesion burden is given as T2 total lesion
volume (T2V) and the number of T2 lesions (T2C), including
cerebellum and brainstem. T2C and T2V were not normalized,
since an influence of brain size on lesion count / volume deemed
unlikely.

Volumes for whole brain, gray and white matter, were
estimated using the lesion in-filled MPRAGE images by fsl
SIENAX (37). Thalamic volume was calculated using fsl FIRST
(38), the sum of both sides was used for further calculations.
All volumes were normalized using the normalization factor
provided from SIENAX, which accounts for variable brain sizes.

Statistical Analysis
All statistical analyses were performed using R (Version 3.3.2)
via R-Studio (Version 1.0.136). Imaging and clinical parameters
were tested for normal distribution per group of CIS, RRMS
and HC, using the one-sample Kolmogorov Smirnoff test and

calculation of skewness. A p-value >0.05 in the Kolmogorov
Smirnoff test and an absolute amount of skewness of <1 was
set as criterion for normal distribution. For skewed parameters
(T2C and T2V), common log transformed values were used for
regression analyses. In order to include patients and controls
without cerebral lesions (CIS n = 1, RRMS n = 0, HC n = 18)
in correlation analysis, the logT2C was given a value at the
lower border within the observed distribution (0). Similarly, the
logT2V of patients and controls without lesions were given a
logT2V value at the lower border of the observed distribution
(−2). Comparison between CIS, RRMS and HC was performed
using the Wilcoxon Test or Students t-test as indicated in
Table 1. Three group comparisons were carried out using Anova
or Kruskall-Wallis test accordingly. Individual performance on
quantitative functional testing was classified using previously
published own normative data for SMSW speed (28). More
precisely, expected normal SMSW speed was calculated for each
individual according to the following formula:

SMSWspeed
(m

s

)

= −0.008 × age
(

years
)

+ 2.161

This formula was derived from a univariate regression analysis
for the age effect on gait speed in a cohort of n = 57 HC
subjects with an average SMSW speed of 1.83 m/s ± 0.26 (28).
From there, individual observed SMSW speeds in CIS and RRMS
were classified as pathologic if they were beyond a threshold of
1.95-fold standard deviation below the expected normal value.

For 9HPT, the performance time of each hand was defined
as pathologic if values were beyond a threshold of 1.95-fold
standard deviation around age- and sex-related normative means
(39, 40). For further correlation and regression analysis, we
used the transformed 9HPT score (9HPTr) as suggested in the
MSFC manual (41) which combines both hands’ performance.
SDMT performance was classified as pathologic if values were
below a threshold of 1.95-fold standard deviation with respect to
published age- and sex-related norms (42).

Effects of age on MRI findings and parameters of functional
performance were explored by Pearson correlation except for
T2C and T2V, where Spearman correlation was used. A possible
confounding effect of disease duration (time since onset) was
explored by correlation of age vs. time since onset. This approach
showed a significant association that was based on two relatively
old subjects (50 and 55 years of age) with a time since onset
of 13 and 15 years (Supplementary Figure 1). However, both
subjects were only mildly affected in the assessed clinical domains
and thus are not expected to determine the age effects in
our regression models. When excluding these subjects only a
trend remained between age and time since onset. We therefore
decided to treat age as an independent variable in our analysis.

To answer the main objective, functional performance
parameters were put in separate linear regression models and
fitted with a set of predictors in a hierarchical succession,
using the lm.beta function for linear regression objects and the
stargazer package in R-Studio (43, 44). We performed a stepwise
inclusion of age, sex and the respective MRI parameter. A similar
approach was also applied with EDSS as dependent variable.
This part of the analysis was done only on CIS and RRMS
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TABLE 1 | Demographics, clinical and MRI data reported as mean along with standard deviation or median (range).

HC (n = 63) CIS (n = 27) RRMS (n = 59) Between group comparison HC and RRMS

Age (y) 35.3 ± 9.9 34.3 ± 7.0 37.5 ± 9.7 t = −1.21 p = 0.23

Gender (F/M) 40/23 19/8 33/26 X2 = 0.72 p = 0.39

Time since onset (y) 2.3 ± 1.4 4.1 ± 2.7

NBV (ml) 1,586.2 ± 72.7 1,599.8 ± 72.0 1,553.6 ± 67.6 t = 2.57 p = 0.01

NGMV (ml) 846.2 ± 57.4 858.3 ± 56.3 823.7 ± 55.0 t = 2.21 p = 0.03

NThalV (ml) 21.5 ± 1.6 21.7 ± 1.1 20.6 ± 1.8 t = 3.01 p = 0.003

NWMV (ml) 740.0 ± 37.3 741.5 ± 38.2 729.9 ± 33.2 t = 1.59 p = 0.11

T2C (n) 3 (0–98) 9 (0–92) 27(1–199) W = 349.5 p = 9.57e-15

T2V (ml) 0.3 ± 0.8 1.2 ± 2.6 4.3 ± 5.3 W = 215 p < 2.2e-16

EDSS median (range) 1.5 (0–3.0) 1.5 (0–3.0)

EDSS Score n n

0 7 10

1 5 13

1.5 7 13

2.0 7 10

2.5 0 7

3.0 1 6

SMSW speed (m/s) 1.8 ± 0.2 1.7 ± 0.3

9HPTdom (s) 17.8 ± 2.3 18.7 ± 3.1

9HPTnondom (s) 19.1 ± 2.6 20.5 ± 6.9

9HPTr (1/mean perf. time) 0.055 ± 0.006 0.053 ± 0.008

SDMT (n) 53 ± 6.8 56.6 ± 11.7

Test statistics from unpaired t-test, Chi-squared or Wilcoxon test as indicated. Values in bold denote significance.

data. P-values <0.05 were defined as significant for exploratory
parts of analysis. For regression models, we applied Bonferroni
correction per MRI parameter (n = 6), which set significance
level to p < 0.008.

RESULTS

Demographic, clinical andMRI data are presented inTable 1. CIS
and RRMS groups differed in numbers and were imbalanced with
respect to sex with a F/M ratio in CIS of 2.4 and in RRMS of 1.3
and disease duration with time since onset of 2.3 and 4.1 years,
respectively. Regarding the EDSS, there was no difference in the
median score, but a higher proportion of patients with EDSS >2
in RRMS (n= 13, 22%) in comparison to one patient (4%) in the
CIS group.

Brain Volumetric Measures
CIS subjects showed no significant differences compared to
HC regarding the brain volumetric measures (Figure 1). There
was a significant group difference with lower values for RRMS
compared to HC and CIS for NBV (t = 2.57, p = 0.01; t = 2.82,
p = 0.007), NGMV (t = 2.21, p = 0.03; t = 2.67, p = 0.01),
NThalV (t = 3.01, p= 0.003; t = 3.43, p= 0.0009; Figure 1). No
significant between-group difference was observed for NWMV
(p = 0.1–0.2), although visual inspection of the distributions
suggested a tendency toward higher volumes in HC in respect
to CIS and RRMS (Figure 1). As expected, CIS and RRMS
differed from HC in T2C and T2V (Figure 1). CIS patients had
significantly increased T2C (W = 359.5, p < 0.0001) and T2V

(W = 273, p < 0.0001) compared to HC, while T2C and T2V
were higher in RRMS compared to HC (W = 349.5, p < 0.0001;
W = 215, p < 0.0001) and CIS (W = 359.5, p = 0.0005;
W = 352, p = 0.0004; Figure 1). There was a significant number
of T2 lesions in single HC subjects that were reevaluated by
a radiologist (M.S.) in order to exclude relevant comorbidity.
Lesions were all classified as unspecific white matter lesions and
no controls had to be excluded.

Clinical Parameters
For the SMSW Speed, none of the 27 CIS patients and only
three of 59 RRMS patients (5%) had an abnormal maximum
walking speed (defined as <1.95 times normative SD below
the individually estimated age-related norm). Regarding 9HPT,
3 of 27 (11%) CIS patients showed performance times >1.95
times normative SD above the age- and sex-related norms in the
dominant or non-dominant hand. The combined proportion of
patients showing an abnormal value in either one or both hands
accounted to 5 of 27 (19%). In RRMS, 10 of 56 (18%) showed a
pathologic performance time in the dominant hand. A pathologic
performance time in the non-dominant hand was seen in 9 of 56
(16%) and the variance was higher than in the dominant hand.
The combined proportion of RRMS patients showing abnormal
value in either one or both hands accounted to 14 of 56 (25%).
For three individuals 9HPT data was not available. Regarding the
SDMT, one of 27 (4%) CIS and four of 59 (7%) RRMS patients
showed abnormally low numbers of responses with respect to
age- and sex-adjusted norms.
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FIGURE 1 | Group comparisons of MRI parameters. Displayed are the respective MRI Parameters in healthy controls (HC), patients with clinically isolated syndrome

(CIS) and relapsing-remitting multiple sclerosis (RRMS). The horizontal line represents the median, the box represents the upper and lower quartiles, whiskers

represent the 1.5-fold IQR, outliers are encircled.

Effects of Age
In bivariate correlations, we saw an association with age in HC,
CIS and RRMS for NBV (r = −0.48, p < 0.0001; r = −0.51,
p = 0.006; r = −0.61, p < 0.0001) and NGMV (r = −0.60,
p < 0.0001; r = −0.75, p < 0.0001; r = −0.72, p = <0.0001).
In HC and even more so in RRMS, NThalV (r =−0.3, p= 0.017;
r = −0.51, p < 0.0001) also showed an association with age.
While a similar slope regarding NThalV and Age in HC was
also observed in CIS patients, this remained non-significant
(r = −0.27, p = 0.18). No correlation with age was seen for
NWMV in either group. Regarding T2C, only HC showed a
significant association with age (rs = 0.33, p = 0.008). No
association was seen in CIS (rs = 0.25, p = 0.21), while a
trend was seen in RRMS patients (rs = 0.24, p = 0.072).
Likewise, T2V was associated with age in HC (rs = 0.31,
p = 0.013 and RRMS (rs = 0.28, p = 0.031), but not in CIS
(rs = 0.18, p = 0.37; Figure 2). Regarding logT2C and logT2V
an association with age was seen only in HC (r = 0.4, p = 0.001;
r = 0.4, p = 0.0005), while no such association was observed
in CIS (r = 0.26, p = 0.19; r = 0.14, p = 0.49) or RRMS
(r = 0.16, p = 0.23; r = 0.07, p = 0.6), respectively (not
shown). Concerning clinical parameters in CIS, no significant
correlations with age were found for SMSW speed (r = −0.21,
p = 0.28), 9HPTr (r = −0.09, p = 0.67) or SDMT (r = 0.06,
p = 0.77). Concerning clinical parameters in RRMS, significant
correlations with age were found for SMSW speed (r = −0.27,
p = 0.035), 9HPTr (−0.46, p = 0.0004) and SDMT (r = −0.34,
p= 0.009).

Regression Analyses
In the CIS subgroup, no significant multivariate models
were found (Supplementary Table 1). In the RRMS subgroup
however, several significant multivariate linear regression models
were found that explained little (<20%) to moderate (20–35%)
proportions of the variance in the dependent clinical variable:

With SMSW speed as the dependent variable, age alone
accounted for a marginal proportion in the variance (5.5%).
This proportion increased to 19.1% after adding sex into
the model, probably due to larger decline with age in
females (Supplementary Figure 2). Among MRI parameters, the
NWMV had the largest relative effect on SMSW speed with a
standardized beta (std. beta) of 0.275 (Table 2). This was however
outweighed by sex (std. beta 0.284), while age had a std. beta
of −0.225. The overall model had a R2 of 0.26 and retained
significance after correction for multiple testing. Weaker relative
effects on SMSW speed were also seen for NBV (std. beta 0.238)
and NThalV (std. beta 0.248), although both parameters’ effects
were outweighed by sex (std. beta 0.373 and 0.408).

Several models with 9HPTr as the dependent variable
remained significant when correcting for multiple testing. Age
alone explained 24.1% of the variance in 9HPTr. When adding
sex, this increased to 26.8%. Among the MRI parameters, NBV
and NThalV explained relevant proportions in the variance
of 9HPTr when age and sex effects were taken into account
(Table 2). For NBV, the std. beta (0.206) was smaller than the
amount of the std. beta for age (−0.365) and larger than that for
sex (−0.165) with a model R2 of 0.30 (p < 0.0001). NThalV was
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FIGURE 2 | (A) Age dependency of MRI parameters in healthy controls (HC), patients with clinically isolated syndrome (CIS) and relapsing-remitting multiple sclerosis

(RRMS). Displayed are the Pearson’s r and p, except for T2C and T2V, where Spearmans rho and p are displayed. (B) Age dependency of functional performance in

patients with clinically isolated syndrome (CIS) and relapsing-remitting multiple sclerosis (RRMS). Displayed are the Pearsons r and p.

the sole imaging parameter in this analysis that had a higher std.
beta (0.365) than the amount of the std. beta for age (−0.300)
and sex (−0.107), the R2 was highest among all models with 0.36
(p < 0.0001).

For SDMT as the dependent variable, only a trend was seen
regarding age. Sex played no significant part in explaining SDMT
variance. Of the imaging parameters, NBV and NGMV had the
largest std. beta (0.251 and 0.295, both p < 0.0001) but both
overall models had a small R2 and were non-significant.

LogT2V explained part of the variance of SMSW speed with
a beta of −0.191 but the effects of age (std. beta −0.224) and
sex (std. beta 0.368) were stronger (model R2 0.227). There
were no sex differences in respect to age-related change in
logT2V, therefore the high standardized beta for sex in the model

stems mainly from its influence on age-related decline in SMSW
speed (Supplementary Figure 2). LogT2C and T2V explained
a marginal proportion of the variance in 9HPTr (beta −0.054;
−0.150), but only the model including T2V remained significant
after correction for multiple testing (Supplementary Table 1).
No effect on SDMT was seen for both lesional parameters.

Regarding the EDSS as dependent variable, several models
remained significant after correction for multiple testing. Age
alone was the strongest predictor with an R2 of 0.178. After
inclusion of Sex, the R2 increased only slightly to 0.182. Among
the MRI parameters, NBV, NGMV, NWMV and NThalV showed
relative effects in predicting EDSS variance. The amount of the
std. beta for NBV and NWMV was larger than for sex (NBV std.
beta=−0.164, sex std. beta= 0.078; NWMV std. beta= −0.174,
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sex std. beta= 0.135). NThalV had the largest relative effect with
a std. beta of −0.212, while the std. beta for sex was 0.047 and
the model R2 amounted to 0.214. However, none of the MRI
parameters had a larger std. beta than age, which remained the
strongest predictor for EDSS (std. beta 0.319–0.411).

DISCUSSION

In the current study, we explored the relation of structural
MRI parameters (T2 lesions, compartmental brain atrophy) with
different domains of functional performance in mildly affected
patients with CIS and RRMS (EDSS ≤3). Our aim was to further
clarify the role of brain atrophy in predicting functional outcomes
and to differentiate between physiologic effects of age and disease
specific effects. Although we consider the same pathophysiologic
mechanisms to be active in CIS and RRMS we could not confirm
differences to HC in our (smaller) CIS group. When comparing
compartmental MRI volumetric data of CIS and RRMS with HC,
differences on group level where found for NBV, NGMV and
NThalV between RRMS vs. HC and RRMS vs. CIS, but not in CIS
compared to HC. No overall group differences were observed for
NWMV in total. T2 lesion load and T2 lesion volume showed a
significant difference on group level as expected in CIS and RRMS
compared to HC. Regarding CIS, the lack of group differences
in respect to HC for all brain volume measures studied, might
be explained by the inclusion criterion of only mild clinical
disability for this analysis. In a longitudinal study by Fisniku et al.
(45) patients with an EDSS >3 had a significantly higher gray
matter atrophy than patients with an EDSS ≤3. This selection
criterion and a diagnosis of CIS also resulted in a rather short
disease duration with a mean time since onset in this group
of 2.3 years. A limiting factor for the group comparison of the
CIS and HC subgroups as well as linear regression analysis in
the CIS group was the relatively small number (n = 27) of CIS.
However, our observations suggest, that compartmental atrophy
in the CIS subgroup was not pronounced and would probably
need more sensitive imaging methods. Accordingly, we observed
only small numbers of pathologic functional performance in the
CIS group and structural-functional regression analysis could not
show marked associations with either of the analyzed predictors
for CIS (Supplementary Table 2).

Although effects of age and time since disease onset cannot
be completely disentangled, we concluded from exploratory
analysis (see Methods section) that it is rather unlikely that
the effects of age determined in our study are mere reflections
of disease duration. Further, the notion of similar age effects
on compartmental volumes in both, CIS, RRMS and HC,
strongly argues for a predominant effect of age. In the RRMS
group, several compartmental volumes with significant group
differences were observed in our cohort, which confirms that
neurodegeneration has taken place at an early stage of disease.
Group differences were most pronounced in NThalV (percent of
difference 4.3%), which confirms that early neurodegeneration is
most visible in this structure. This is in line with previous data
suggesting that thalamic atrophy occurs early and at consistent
rates throughout the disease course (3, 8, 46). Our results indicate

further that thalamic atrophy is a promising marker especially in
mildly disabled patients. Accordingly, the imaging marker with
largest group difference—NThalV-displayed stronger age effects
in the RRMS group than in CIS and HC.

Considering maximumwalking speed in the RRMS group, the
prevalence of pathologic values was very low (4%). This might
again be explained by the selection of our cohort based on EDSS
that accordingly only includes subjects that are at least considered
fully ambulatory based on maximum walking distance (47).
As expected, bivariate correlations suggested a weak decline of
SMSW speed with age. Several significant multivariate regression
models with SMSW speed as the dependent variable including
age, sex and the various MRI parameters were found. Of note,
NWMV had the largest relative impact on SMSW speed among
all imaging markers, whereas the strongest predictor was sex at
the disadvantage of women. This might be attributed to a larger
body size and step length in males but remains a surprising
finding. Different studies have reported on associations of
atrophy markers with gait speed [see Rocca et al. for review (29)].
For example, decreases in maximum walking speed (T25FW)
were seen with progression of NWMV atrophy as well as atrophy
in subcortical gray matter volumes, including thalamus, but
not NGMV, which would be in line with our findings, if sex
was not included in the regression model (48). However, in
partial correlations adjusting for age and sex in their study,
only caudate and putamen volume retained a significant effect
in predicting T25FW speed. In another study, Shiee et al.
reported on a negative correlation of T25FW performance time
with normalized thalamic volume [r = −0.32 (p = 0.01)], and
normalized brainstem volume [r = −0.31 (p = 0.01)] in partial
correlations adjusting for age and sex, while they found no
significant associations with lesion load, normalized gray matter
or white matter volume in a cohort of 60MS patients (mean age
43), with mixed subtypes (median EDSS 2.7 (0–6.5) (49). Van
de Pavert et al. on the other hand have found no associations
with regional deep gray matter volume and maximum walking
speed or 9HPT in a voxel-based analysis on a total of 80MS
patients (median EDSS 5.75 (0–8.5). However, they reported on
associations of maximum walking speed with cerebellar volume
and atrophy in the post-central gyrus, as well as with gray
matter lesion volume in these regions (50). In sum, although
conflicting results exist on correlations of maximum speed gait
performance with deep gray matter volumes (that may in part
be due to use of performance time vs. performance speed),
there is no report of a correlation for maximum gait speed with
global gray matter volume even in large cohorts of more disabled
patients which is in line with our findings. The tendency for an
association of NWMV with maximum gait speed has also been
reported by Motl et al. (48). If white matter atrophy is a disease
specific characteristic in MS has been a matter of debate. A
difficulty for the analysis of volume related functional association
poses its natural pattern of volume change, since white matter
volume shows a volume increase until the age of approximately
40 in healthy adults and subsequently declines (51). This non-
linearity hampers longitudinal structural-functional analysis.
Evidence is also growing, that functional and microstructural
methodologies to assess white matter integrity might be more
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suitable than volumetric analyses to describe subtle structural-
functional associations in this compartment (52). However,
Shiee et al. have reported that patients with lower white matter
volume tend to have more disability (49) and Howard et al.
showed a significant difference in NWMV in those patients who
required ambulatory assistance vs. those who do not while the
difference was even greater for NGMV and NBV (53). This
implies that largest effects of structural-functional analyses with
NWMV might be expected in later disease stages (or older
subjects). However, maximum walking speed is obviously no
applicable parameter of functional performance in later disease
stages, as most subjects will be unable to perform. In our
RRMS cohort with mild disability, in contrast, analysis with
maximum walking speed might be limited by rather narrow
range of observed performance. Other studies in early MS have
captured abnormalities of gait despite normal maximum walking
speed (54). This and the suggestion of non-linearity also for this
parameter (55) cast some doubt on the use of maximum walking
speed as a marker of functional decline even in fully ambulatory
patients, despite its otherwise excellent metric properties (19) and
current recommendations.

Impairment of hand function was the most prevalent deficit
among the three hallmark functional domains within our RRMS
cohort. Based on published reference values, 24% of our patients
showed pathologic 9HPT performance times in one or both
hands without obvious preponderance of either hand. This
proportion is surprisingly close to published proportions of self-
reported mild to severe hand dysfunction (26%) at a disease
duration of 3 years in a large sample of MS patients (56) but
proportions can be expected in up to 66% in unstratified MS
cohorts (57). It has to be noted that a less conservative cut-
off of 1 SD from age and sex related norms is often used (58).
When applied to our population, the proportion of patients with
a pathologic 9HPT score rises to 41%. The high proportion of
pathologic 9HPT performance supports the clinical relevance of
upper limb function when evaluating mildly affected MS patients
for functional impairment which contrasts common perception,
that hand testing becomes more relevant in those where gait
tests are no longer applicable. Across the MS spectrum, the most
consistent association of MRI and 9HPT performance has been
reported for cerebellar atrophy (50, 59, 60), which was not looked
at in this study. Besides the association with cerebellar atrophy,
D’Ambrosio et al. also found a weak association with NBV and
cerebral T2LV but not with NGMV or NWMV in univariate
linear regression (59). Shiee et al. have reported a correlation
of 9HPT performance with thalamus volume in a cohort of
60MS patients with mixed subtypes (median EDSS 2.7) (49),
although they also found significant associations with other MRI
structures. With averaged 9HPT performance time (from both
hands) as the dependent variable, they reported negative partial
correlations for Thalamic volume [r=−0.35 (p= 0.005)], White
matter volume [r = −0.45 (p < 0.001)] and cerebral volume
fraction [r =−0.46 (p < 0.001)], as well as a positive correlation
with lesion load [r = 0.34 (p = 0.008)], when accounting for
age and sex. Similar to maximum gait speed performance, the
comparison of studies using 9HPT are hampered by the fact that
performance is reported in different ways (21). We have used

the transformed 9HPTr score as described in the MSFC manual,
which does not take into account the sidedness of the actual
performance. It is however unlikely, that this approach influences
the correlation analyses per se, since neurodegeneration is not
known to take place with particular asymmetry.

Cognitive processing speed, as assessed with SDMT, was in
the pathological range in only 7% of RRMS patients. This again
underlines the relatively mild affection of our cohort and poses
some limitation to regression analyses, as discussed with SMSW
speed. According to Kister et al., the self-perceived cognitive
impairment at 3 years of disease is higher with up to 38% of
patients reporting mild to moderate cognition problems (56).
However, as has been pointed out by the authors, mismatch
between patient reported and objective outcomes in different
functional domains may be explained by a diverging patient
awareness of deficits and this holds particularly true for the
cognitive domain (61, 62). Concerning the structural-functional
association, no significant models where found for SDMT. This
contrasts findings in MS cohorts with a wider spectrum of
disability in which a relation of SDMT to whole brain measures
(brain volume, T2 lesion volume) was evident (63), while
evidence of such relationship in patients with early relapsing-
remitting MS or CIS is sparse (63, 64). Consistent with our
findings, more recent studies in early RRMS or CIS cohorts
(32, 65, 66) were unable to confirm correlations of SDMT
performance with volumetric brain measures while Bisecco et al.
have reported on thalamic atrophy as an independent and
additional contributor to SDMT variance in a cross-sectional
analysis controlled for sex and age of 125 RRMS patients (mean
age 37 years, median EDSS 2) (67). However, they used a different
analytic approach (voxel-based morphometry analysis) and the
MS group differed more significantly in several compartmental
volumes (NBV, NGMV and NWMV) from the HC group,
suggesting higher overall atrophy compared to our CIS and
RRMS groups. In sum, while associations of SDMT with atrophy
of gray matter and thalamus, as well as T2LC and T2LV are
evident in MS patients with a wider spectrum of disability, this
relation is less frequently reported in CIS or early RRMS patients,
which is in line with our findings.

As the key finding of this study we report that variance
in 9HPT performance speed in mildly disabled patients with
RRMS was significantly predicted by thalamic volume, more so
than by age or sex. The functional domain of hand dexterity
as well as thalamus volume obviously show early involvement
within the disease course of MS, as differences to HC were
most prominent among all functional and imaging parameters
evaluated in this study and results beyond normal range were
also observed in 19% of CIS patients. The structural-functional
relationship between thalamic atrophy and 9HPT performance
can be put into a pathophysiological context when taking into
account that the thalamus is highly involved in motor control,
integrating information from the cortex, the basal ganglia and the
cerebellum (68). It seems possible that the correlation of 9HPT
with thalamic atrophy in our study mirrors the correlations of
9HPT performance with cerebellar atrophy reported in other
studies, but this awaits further investigation. Regarding the other
MRI parameters their effect on the performance measures in
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the cognitive and gait domain was outweighed by age and to
some extent by sex. This age dependency of MRI and functional
parameters has thus to be thoroughly accounted for, especially
when evaluating cross sectional data in early and or mildly
affected MS patients.

Our study is limited due to its cross-sectional character
and due to the low overall variance in the parameters of
functional impairment. Further, as functional performance was
only tested in CIS and RRMS, differences to physiological
performance as well as age dependency of these parameters
can only be inferred from published normative datasets. While
thalamic atrophy has been credited functional importance
for gait function and cognitive performance in MS patients
previously, our data support its role also for manual dexterity.
Our results underline the relevance of both, thalamic atrophy and
quantitative functional testing of upper limb function in CIS and
RRMS patients with mild disability.
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