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2. Introduction 

 
2.1 cAMP signalling 
 

Second messengers are ubiquitous small intracellular molecules and ions that transmit 

extracellular signals to downstream target effector proteins. The resting cellular levels of 

second messengers are low and are rapidly elevated as a response to extracellular stimuli. To 

enable specific cellular responses to each of a plethora of stimuli, precise temporal and spatial 

control of signal propagation is required. (Lodish et al. 2000, Newton et al. 2016, Ab Naafs, 

2017).  

Cyclic adenosine 3’5’- monophosphate (cAMP), the first second messenger to be 

discovered, plays an integral role in the intracellular responses to various hormones and 

neurotransmitters (Rall and Sutherland, 1958). The levels of cAMP are mainly regulated 

through two enzyme families, the adenylyl cyclases (ACs), which synthesize cAMP and the 

phosphodiesterases (PDEs), which degrade it. The generation of cAMP is induced through the 

binding of an extracellular first messenger to a G-protein coupled receptor (GPCR) (Fig. 1). 

GPCRs constitute a large group of exclusive eukaryotic receptors that interact with 

heterotrimeric G proteins. The heterotrimeric G protein family comprises membrane 

associated proteins, which possess three different subunits, an alpha (α) subunit, a beta (β) 

subunit, and a gamma (γ) one. The binding of on extracellular agonist elicits a conformational 

change in the G-protein complex, causing the receptor to act as a guanine nucleotide 

exchange factor (GEF) for the G protein and resulting in the exchange of GDP for GTP on the 

Gα subunit of the complex. The G-protein heterotrimer then dissociates and the liberated Gα 

subunit activates AC, which in turn converts ATP into cAMP and pyro-phosphate. The Gα 

subunit family comprises four members, Gαs, Gαi/o, Gαq/11 and Gα12/13 subunits, where each of 

these subunits has a unique modulatory function, for instance the Gαs, Gαi/o subunits serve to 

regulate the activity of AC, with the former being a stimulatory subunit that enhances the 

cyclase activity and the latter being an inhibitory subunit that inhibits AC. The elevation of 

cAMP levels above a threshold results in the activation of cAMP downstream effectors, such 

as the exchange proteins directly activated by cAMP (EPACs), the cyclic nucleotide-gated 

channels (CNG)/hyperpolarization-activated cyclic nucleotide–gated channels (HCN), and the 

cAMP-dependent protein kinase A (PKA). All these effector proteins possess a cyclic 

nucleotide monophosphate (cNMP) binding domain comprising around 120 amino acids. 

(Seino and Shibasaki, 2005, Clapham and Neer, 1997, Albert and Robillard, 2002, McCormick 

and Baillie, 2014).  
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Figure 1. GPCR-dependent cAMP signalling cascade. The stimulation of GPCRs by  first messengers/stimuli 

elicits a conformational change in the associated heterotrimeric Gs-protein complex, resulting in the activation of 

the enzyme AC. Active AC converts ATP into the second messenger cAMP, which proceeds to activate its 

downstream effectors, such as PKA, EPACs, and CNG/HCN. PDEs inhibit cAMP signalling by the hydrolysis of 

cAMP to AMP.   

 

ACs comprise a family of enzymes, which catalyse the single step cyclization reaction 

converting ATP to cAMP. Ten different mammalian isoforms of AC have been identified and 

characterized, with AC(1-9) being transmembrane proteins, whereas AC10 is a soluble, 

cytosolic one. The various members of the AC family are divided into groups based on their 

structural homology and regulatory properties. Other than the soluble AC, which is activated 

by Ca2+ and bicarbonate, all the other transmembrane isoforms are activated by Gαs and the 

labdane diterpene, forskolin. Other activators of the transmembrane isoforms include calcium 

(Ca2+), Gβγ, and protein kinase C (PKC) (Hurley 1999, Motiani et al. 2018, Patel et al. 2010). 

PDEs regulate the cAMP and cyclic guanosine monophosphate (cGMP) homeostasis by 

hydrolysing the phosphodiester bond in cAMP/cGMP, yielding AMP and GMP respectively. 

Mammalian PDEs are divided into 11 families comprising more than 100 isoforms. They share 

structural similarities, where all isoforms possess a conserved catalytic domain situated in the 

C-terminal region. They, however, vary in their biological functions, owing to the variable, 

isoform-specific regulatory domain situated in the N-terminal region. PDE isoforms 4, 7, and 8 

hydrolyse cAMP only, whereas isoforms 5, 6, and 9 only catalyse the hydrolytic cGMP 
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conversion, and isoforms 1, 2, 3, 10, and 11 have dual specificity, hydrolysing both cAMP and 

cGMP. The binding affinity of PDEs varies greatly from one isoform to another (Rall and 

Sutherland, 1958, Vezzosi and Bertherat, 2011).  

Epac proteins act as GEFs for Rap1 and Rap2, two small GTPases belonging to the Ras 

superfamily. These GTPases exist in two states, an inactive guanosine diphosphate (GDP)-

bound state and an active guanosine triphosphate (GTP)-bound one, where GEFs mediate 

their activation through catalysing the exchange of GDP for GTP. There are two known 

isoforms of Epac, Epac1 and Epac2, both of which are mostly ubiquitously expressed. 

Structurally, the two isoforms are similar, being multidomain proteins with a C-terminal catalytic 

region that confers the exchange activity and an autoinhibitory N-terminal regulatory region, 

which possesses cNMP binding domains. Epac1 has one cNMP domain, while Epac2 has two 

cNMP domains (Gloerich and Bos, 2010, Schmidt et al. 2013).  

CNG and HCN are voltage gated non-selective potassium (K+) channels that regulate the 

membrane potential of the cells. The direct binding of cAMP to the channels results in their 

opening and consequently changes of membrane potential. CNG channels are present in 

photoreceptors and olfactory sensory neurons, where they play an integral role in signal 

propagation. HCN channels play a role in the regulation of cardiac rhythm and in conjunction 

with TRIP8b, an auxiliary accessory subunit of the channels, they modulate the neuronal firing 

rate (Craven and Zagotta, 2006, Wainger et al. 2001, Bankston et al. 2017).  

 

2.1.1 cAMP dependent protein kinase; protein kinase A 

 
cAMP dependent protein kinase, a serine/threonine kinase, commonly referred to as 

protein kinase A (PKA), is the major effector of cAMP. The origins of the discovery of PKA date 

back to the 1950s, when Nobel prize winner biochemists Edmond Fisher and Edwin Krebs 

hypothesized that glycogen metabolism is regulated by a cAMP dependent enzyme. 

Consequently, Krebs purified the enzyme from rabbit skeletal muscle in 1968 and named it 

cAMP-dependent protein kinase, a denotation to the complete dependence of the kinase on 

cAMP for its activity (Fischer et al. 1955, Walsh et al. 1968). 

The structure of the inactive PKA holoenzyme was gradually uncovered as a tetramer, 

revealing PKA as only one of two kinases from around 540 human kinases, alongside casein 

kinase 2 to exhibit this unique structural arrangement. In the absence of cAMP, the intact 

holoenzyme exists as a dimeric regulatory subunit (R) bound to two catalytic ones (C). The 

binding of two molecules of cAMP to each of the R subunits triggers a conformational change 

on the holoenzyme, marked by the dissociation of the catalytic subunits and the subsequent 

phosphorylation of their targets. Four mammalian isoforms of the R subunit have been 

characterized, RIα, RIβ, RIIα and RIIβ, each of which is encoded by a separate gene. RIα and 

RIIα exhibit ubiquitous expression, whereas RIβ expression is mainly confined to the central 
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nervous system and RIIβ is found in multiple reproductive, fat, and endocrine tissues, as well 

as the brain. Three isoforms of the C subunit, Cα, Cβ, and Cγ have been identified in mammals, 

with the α and β isoforms being mostly ubiquitously expressed and the expression of the γ 

isoform being restricted to the testis. Depending on the isoform of the R subunit (RI or RII), the 

PKA holoenzyme is classified into PKA-I and PKA-II. The two PKA isoforms exhibit different 

characteristics, such as cAMP sensitivity, where PKA-I has a lower cAMP activation threshold 

than PKA-II. PKA-I exhibits mostly cytosolic distribution, whereas PKA-II is anchored to 

subcellular structures. The ability of any R subunit dimer to bind and restrain all C subunits, 

coupled with the presence of various splice variants for the RIα (two splice variants), Cα (two 

splice variants), and Cβ (six splice variants) subunits, constitute one of the main pillars of 

cAMP/PKA signalling diversity. (Corbin et al. 1977, Corbin et al. 1978, Zoller et al. 1979, 

Ringheim and Taylor, 1990, Turnham and Scott, 2016).    

Each R subunit is made up of a dimerization and docking domain (D/D) situated at the N-

terminus, followed by a largely disordered linker region comprising the C subunit auto-inhibitory 

sequence, a motif, which varies greatly between the various R subunits isoforms. Succeeding 

the linker region and located at the carboxy terminus of the R subunits, are two adjoining cAMP 

binding domains. The D/D domains of the R subunits dimer form an antiparallel X-type four 

helix bundle domain comprising a hydrophobic groove for docking the A-kinase anchoring 

proteins (AKAPs), referred to as the AKAP docking domain (Fig. 2A, Fig. 2B). The C subunits 

of PKA, the first protein kinase structures to be identified and characterized, harbour a catalytic 

core motif, which is common among all members of the broad protein kinase family. While the 

kinase core constitutes most of the PKA C subunit sequence (residues: 40-300),  a 

characteristic variable A-helix N-terminus (residues: 1-39) and a C-terminus (residues: 301-

350), shared among members of protein kinase A, C,  and G families, comprise the rest of its 

structure. Whereas the C-terminus plays a role in interacting with the corresponding regulatory 

proteins, the N-terminus is capable of undergoing various posttranslational modifications, 

thereby modulating PKA action and localization.  

Despite the activity of the C subunits being dependent on the local cAMP gradient, a cAMP 

independent regulator of the C subunit activity was uncovered and termed PKA inhibitor 

peptide (PKI). PKI acts a pseudo substrate for PKA, binding the free C subunits with high 

affinity following their cAMP-mediated dissociation from the R subunit dimer. All C subunits, 

other than Cγ, are capable of directly binding PKI. Upon the increase in PKI levels, PKI was 

found to accumulate in the nucleus and bind the free C subunits triggering their nuclear export 

to the cytoplasm through its nuclear export signal sequence. Moreover, Rho GTPase-

activating protein 36 (ARHGAP36) was also recently uncovered as an antagonist of PKA 

signalling. In addition to directly binding and inhibiting the C subunit of PKA through a pseudo 

substrate motif, it enhances the ubiquitylation mediated endolysosomal degradation of the C 
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subunit (Manning et al. 2012, Taylor et al. 2012, Agustin et al. 2000, Di Benedetto et al. 2008, 

Skalhegg and Tasken, 2000, Pidoux and Tasken, 2010, Kinderman et al. 2006, Vigil et al. 

2004, Bastidas et al. 2012, Chen et al. 2005, Eccles et al. 2016). 

 

 
 

Figure 2A. RIIα subunit of PKA showing the N-terminally situated dimerization and docking domain (D/D), followed 

by the catalytic subunit binding PKA inhibitor site and two cAMP binding domains. Based on (Vigil et al. 2004). 

Figure 2B. NMR structure of RIIα dimer D/D domain (Pidoux et al. 2010) showing the anti-parallel X-type four 

helix bundle domain forming a hydrophobic AKAP docking groove. Based on (Newlon et al. 2001, Banky et al. 

2003).  

 

2.2 A-kinase anchoring proteins (AKAPs) 
 

The spatial and temporal modulation of the cAMP/PKA signalling is achieved through A-

kinase anchoring proteins (AKAPs), a family comprising more than 50 scaffolding proteins, 

sharing the ability to specifically bind cAMP-dependent PKA. AKAPs can be generally 

classified into canonical or non-canonical depending on their mode of interaction with the PKA 

R subunits. Canonical AKAPs, which comprise most of the known AKAPs, bind the D/D domain 

of R subunits of PKA through a structurally conserved A kinase binding (AKB) domain. The 

AKB domain spans 14-18 amino acids and forms an amphipathic α- helix that docks its 

hydrophobic face into the hydrophobic groove of the anti-parallel X-type four helix bundle D/D 

domain (Fig. 3). (Jarnaess et al. 2008, Götz et al. 2016, Newlon et al. 1999, Newlon et al. 

2001, Gold et al. 2006, Kinderman et al. 2006, Calejo and Taskén, 2015). 
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Figure 3. NMR structure of RIIα dimer D/D domain (Pidoux et al. 2010) and canonical AKAP helix peptide. 

(Newlon et al. 2001). 

 

Due to the ubiquitous nature of PKA and the large number of its targets, very precise 

control  of PKA activity has to be attained to allow for specific phosphorylation of the substrates. 

This specificity is brought about by AKAPs, which utilize their targeting domains to interact with 

the proteins or lipids of defined subcellular compartments such as the plasma membrane, the 

mitochondria, and the nucleus. 

In addition to their direct interaction with PKA, AKAPs also bind other protein kinases 

(PKC, protein kinase D; PKD, and protein kinase G; PKG), as well as protein phosphatases 

(protein phosphatase 1; PP1 and protein phosphatase 2B; PP2B) and PDEs, hence creating 

confined signalosomes and allowing for high signal relay specificity (Fig. 4). Furthermore, 

some AKAPs possess an intrinsic catalytic activity, for example, AKAP-Lbc acts as a guanine 

nucleotide exchange factor and activates the small GTPase RhoA through its DHPH domain. 

(Schrade et al. 2018, Troger et al. 2012, Asirvatham et al. 2004, Schillace et al. 2001, Perkins 

et al. 2001, Diviani et al. 2001).  

AKAPs tend to have different affinities for the different isoforms of the R subunits of PKA. 

Most AKAPs mainly bind the RII subunits, explaining why the AKB domain is commonly 

referred to as the RII-binding domain (RIIBD). Several AKAPs only bind RI subunits (SKIP and 

smAKAP) and some AKAPs, generally referred to as dual specific (D)AKAPs, bind both R 

subunit isoforms (Opa1, ezrin, and D-AKAP1) ( Skroblin et al. 2010). 
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Figure 4. AKAP compartmentalized cAMP signalling. Through their targeting domains, AKAPs tether PKA to 

specific subcellular organelles, bringing it into close proximity of its substrates to facilitate their phosphorylation. 

The four helix bundle of the D/D domain of PKA R subunits interacts with the AKB amphipathic helix of AKAPs. 

AKAPs also bind other proteins, such as protein phosphatases (PPs), protein kinases (PKs) and 

phosphodiesterases (PDEs), hence facilitating the integration of different signalling systems.  

 
 

The disruption in AKAP maintained compartmentalized signalling has been implicated in 

various widespread diseases, which necessitates the characterization of novel AKAPs at a 

molecular level, to allow for better pharmacological intervention. One of the major kinases, 

whose compartmentalization has been implicated with newly identified AKAPs, is the 

constitutively active glycogen synthase kinase 3 beta GSK3β. 

 
2.2.1 Glycogen synthase kinase 3β (GSK3β) 

  
The conserved Glycogen synthase kinase 3 (GSK3) family of ubiquitous serine/threonine 

kinases was originally discovered in the late 1970s as modulators of glucose metabolism, 

owing to their ability to negatively regulate the enzyme glycogen synthase (Cohen et al. 1979, 

Embi et al. 1980). The vast majority of eukaryotes express two isoforms of GSK3, namely 

GSK3α (51 kDa) and GSK3β (47 kDa), with GSK3α possessing an extra 63 amino residues at 

its N-terminus. Both isoforms are encoded by two highly homologous separate genes 

(Woodgett et al. 1990). However, despite their high structural similarity, they are non-

redundant, since it was found that GSK3β deficient mice suffer from embryonic lethality 
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triggered by enhanced hepatocyte apoptosis, despite these embryos retaining normal 

expression levels of the α isoform (Hoeflich et al. 2000; Pandey et al. 2016).  

The mode of action of GSK3β can vary. The kinase can directly phosphorylate some of its 

substrates, such as the microtubule protein Tau, and the scaffold protein Axin (Cho et al. 2002; 

Hart et al. 1988), or it requires a priming phosphorylation of its substrate by another kinase 

prior to acting, such as the β-catenin-priming phosphorylation at serine 45 by CKIα (Liu et al. 

2002). Thomas et al. demonstrated that the GSK3-mediated phosphorylation in the absence 

of priming takes place 100-1000 folds slower compared to the phosphorylation succeeding 

priming, indicating that priming greatly increases the efficiency of the subsequent 

phosphorylations (Thomas et al. 1999).  

Other than its role in glycogen metabolism, GSK3β has been implicated in the 

phosphorylation of more than 50 substrates in various signalling pathways (Serretti et al. 

2012), among which are cell cycle regulators (cyclin D1; Diehl et al. 1998), microtubule-

associated proteins (tau and kinesin light chain; Cho et al. 2002, Morfini et al. 2002), cellular 

metabolism regulators (pyruvate dehydrogenase; Hoshi et al. 1996), and transcription factors 

and their regulators (CREB and β-catenin; Rubinfeld et al. 1996, Ilouz et al. 2006). 

β-catenin is a crucial structural and signalling molecule, which has been implicated in the 

maintenance of epithelial integrity, as well as the regulation of gene expression in canonical 

Wnt signalling. Upon synthesis, β-catenin is integrated into a complex with E-cadherin at the 

adherens junction (AJ), one of the major epithelial cell junctions, where it also interacts with α-

catenin and influences the associated junctional actin dynamics. Protein kinases or E-cadherin 

downregulation were found to liberate β-catenin from the junctional complex, where it is readily 

phosphorylated and marked for proteasomal degradation by a multiprotein destruction 

complex. The destruction complex comprises the scaffold proteins Axin and adenomatous 

polyposis coli (APC), as well as the kinases GSK3β and casein kinase I (CKI). The activation 

of Wnt signalling is marked by the disassembly of the destruction complex and the inactivation 

of GSK3β, hence β-catenin is not degraded, accumulates in the cytosol and translocates to 

the nucleus, where it acts as a transcriptional co-activator and activates Wnt target genes 

(Caspi et al. 2008, Valenta et al. 2012, Stamos and Weis, 2013). 

One of the defining unique features of GSK3β, is that it exists in a constitutively active 

state. The modulation of its activity is attained by the inhibitory phosphorylation on serine 9 

(Sutherland et al. 1993). Various kinases have been shown to impose negative regulation on 

the activity of GSK3β, among which is PKA (Fang et al. 2000; Li et al. 2000). The ubiquitous 

nature of both PKA and GSK3β and their well-documented roles in various signalling systems, 

hint towards potential inclusion of AKAPs in complexes comprising both kinases. Thus far three 

AKAPs sharing the ability to bind both PKA and GSK3β have been identified, the microtubule-

associated protein 2D (MAP2D), which binds type II PKA (Flynn et al. 2008), AKAP220, which 



 24 
 

is capable of binding both PKA types, at two different sites, with site 1 (residues 610–623) 

interacting with RII PKA subunits and site 2 (residues 1633–1646) showing dual specificity for 

both R isoforms, albeit showing a clear preference to binding the RII isoform (Tanji et al. 2002; 

Whiting et al. 2015), and GSK3β interaction protein (GSKIP), the most recently identified 

member of the trio.  

 
2.2.2 GSK3β interaction protein (GSKIP) 

 
GSK3β interaction protein (GSKIP) is also known as C14orf129/CN129, a denotation to 

the chromosomal location of the encoding gene. In 2004, the NMR structure of GSKIP, back 

then a protein without a known function was uncovered through the Northeast Structural 

Genomics Consortium (Ramelot et al. 2004). It was revealed that the protein is made up of 

139 amino acid residues and comprises four distinct parts, an unstructured N-terminus, 

followed by an α-helix, a central β-sheet and finally a second α-helix at the C-terminus part.  

GSKIP was identified as a GSK3β interaction protein (Chou et al. 2006) by screening a 

human testis cDNA library and a yeast two hybrid system. It was found to contain a 25 amino 

acid region, homologous to the GSK3β interaction domain (GID) of Axin, residing in the C-

terminus (Fig. 5). It was suggested that GSKIP may play a role in GSK3β inhibition and that it 

is involved in GSK3β- Axin-β-catenin complex, which is central to the Wnt signalling.  

 

                   
 

Figure 5. Tertiary and domain structure of the human GSKIP. The NMR-based structure of GSKIP as 

obtained from Protein Data Bank (PDB; ID: 1SGO). 
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GSKIP was identified as an AKAP by our group (Hundsrucker et al. 2010). An AKAP 

consensus sequence, representing the hydrophobic amino acids shared among all canonical 

AKAPs, was determined through aligning the RII-binding domains (RIIBDs) of known canonical 

AKAPs. By employing a bioinformatics approach utilizing the signature AKAP consensus 

sequence and the RIIBD characteristic isoelectric point range of AKAPs as a search tool on 

the SwissProt database, followed by peptide array screens, GSKIP was identified. Being 

capable of directly binding GSK3β and the RII subunits of PKA, GSKIP was found to mediate 

the inhibitory phosphorylation of GSK3β on serine 9 (S9) by PKA (Hundsrucker et al. 2010). 

In the canonical Wnt signalling, GSKIP was found to modulate the stability of β-catenin and 

consequently its transcriptional activity, through its ability to directly interact with PKA and 

GSK3β. GSKIP facilitates the GSK3β-mediated degradative phosphorylation of β-catenin at 

serines 33 (S33) and 37 (S37), and threonine 41 (Thr41), as well as the PKA-mediated 

protective phosphorylation at serine 675 (S675), thus implicating GSKIP in the fine-tuning of 

the canonical Wnt signalling (Dema et al. 2016).  

Insight into the in vivo role of GSKIP was provided by studies of a conditional GSKIP 

knockout (KO) mouse model. E18.5 GSKIP-deficient embryos suffered from perinatal lethality, 

lung inflation failure, and incomplete closure of the palatal shelves, causing a craniofacial 

disorder known as cleft palate. Spanning embryonic days 10.5 through 14.5, GSKIP KO 

embryos exhibited decreased phosphorylation of GSK3β at S9, which translates to increased 

activity, hence pointing towards a potential role of GSKIP in modulating the GSK3β-mediated 

palatal shelf fusion (Deák et al. 2016).  

A potential mitochondrial fission role of GSKIP in HEK293 cells was suggested by Chou 

et al. , where the PKA-mediated inhibitory phosphorylation of dynamin-related protein 1 (Drp1), 

a promoter of mitochondrial fission, was found to be dependent on both GSK3β and GSKIP. 

While the exact mechanism of action through which GSKIP contributes to the associated Drp1 

complex was not elucidated, the data suggest that GSKIP is integral for the inhibitory Drp1 

phosphorylation at serine 637 (S637) (Chou et al. 2015),.  

The Human Protein Atlas (Uhlén et al. 2015) demonstrates that GSKIP is ubiquitously 

expressed in all cancer types (Fig. 6), with the highest abundance recorded in melanoma, 

urothelial, stomach, colorectal, and ovarian cancers, and the lowest in skin cancer. This 

expression pattern suggests a role for GSKIP in cancer. GSKIP was recently uncovered as a 

direct interacting partner of hepatocellular carcinoma-associated long non-coding RNA 

(HANR) in hepatoma cells (Xiao et al. 2017). It was suggested that HANR plays a role in cancer 

cell proliferation and hinders apoptosis, partly through regulating GSK3β phosphorylation and 

hence activity, through its ability to directly associate with GSKIP.  
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Figure 6. GSKIP protein expression in 20 different cancers. The expression level is determined by 

immunohistochemical analysis. The results were manually scored according to the staining intensity (negative, 

weak, moderate, and strong), and the percentage of the stained cells (<25%, 25-75% or >75%). Adapted from The 

Human Protein Atlas. 

 

2.3 Epithelial cells 
 

Epithelial cells are structurally similar but differ greatly in their functions, ranging from 

lining the body surfaces, such as the skin and gut to forming glandular structures, including 

the salivary gland and pancreas. One of the most distinct characteristics of epithelial cells is 

their ability to stack together forming continuous cohesive sheets known as epithelia. The 

individual cells making up the epithelium are linked together forming a functional unit and 

such adhesive linkage maintains the structural integrity through specialized portions of the 

cell membrane, known as cellular junctions (Lowe et al. 2015).  

 
2.3.1 Epithelial cellular junctions 
 

Cellular junctions are multiprotein complex structures that are crucial for various 

physiological and pathological processes. They are subdivided according to their functional 

roles into the occluding junctions and the anchoring junctions. The occluding junctions include 

the tight junctions (TJ), which maintain the outline of the epithelium to avoid the leakage of 

small molecules from one side to the other and the anchoring junctions. The anchoring 

junctions comprise the adherens junctions (AJ) and desmosomes, both of which serve to 

attach the cells and their cytoskeletal components to their neighbours. Alberts et al. 2002, 

Giepmans and Ijzendoorn, 2009, Garcia et al. 2017). 
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The TJ of epithelial cells serves a dual purpose, as a gate and as a fence. The gate 

function of the TJ is attributed to its role in regulating the paracellular permeability and 

transport, whereas the fence function is based on maintaining the cell polarity through 

separating the apical and basolateral membrane molecules. Unlike the AJ and desmosomes, 

which are situated at the basal side of the lateral membrane, the TJ is present at the apical 

side. The TJ is made up of both integral and peripheral membrane proteins, where the 

number of the transmembrane domains in the integral proteins varies from one to four, with 

the junctional adhesion molecule (JAM) being a single pass protein and the occludins and 

claudins being multi-pass ones. The integral transmembrane proteins of neighbouring cells 

form intercellular complexes comprising proteins of the same family, such as occludin-

occludin, JAM-JAM, and claudin-claudin complexes (Fig. 7). These proteins are linked to the 

actin cytoskeleton by peripheral membrane proteins such as the zonula occludin proteins, 

ZO1, ZO2, ZO3, and the actin binding protein, cingulin (Shin et al. 2006; Steed et al. 2010; 

Raya-Sandino et al. 2017). 

The AJs are essential for the maintenance of cellular adhesion, as well as the 

infrastructure of the associated actin cytoskeleton of the adjoining cells. The main proteins 

making up the AJs include cadherins, with E-cadherin being the most common one. The 

extracellular domain of E-cadherin protrudes from the cell surface to bind other cadherins 

located on neighbouring cells. While the intracellular cytoplasmic domain is integrated in a 

cadherin-catenin complex with the canonical Wnt signalling regulator protein, β-catenin and 

the actin filament binding protein, α-catenin (Fig. 7). Both catenins are critical for the integrity 

of the AJ, since their absence disrupts the interaction between the actin filaments and the 

cadherin-complex, resulting in the disorganization of the entire junction (Tian et al. 2011; 

Yonemura et al. 2010). 

Desmosomes also play an integral role in cell-cell contacts and cellular adhesion, since 

they confer resistance to shearing stress. The desmosomes comprise the transmembrane 

proteins known as the desmosomal cadherins, desmoglein and desmocollin, which similarly 

to cadherins in the AJ, mediate the interactions between adjacent cells through the 

association of their extracellular domains. The cytoplasmic tails of the cadherins form a 

complex with the intermediate filaments, which is mediated by the desmosomal plaque 

proteins, desmoplakin (DSP), plakoglobin, and plakophilin (Fig. 7). The interaction between 

the intermediate filament binding protein DSP, and the corresponding intermediate filaments 

is essential for the formation of the functional desmosome unit, since it anchors the filament 

network to the cadherin-plakoglobin/plakophilin complex (Kowalczyk and Green, 2013; 

Neuber et al. 2010). 
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Figure 7. Epithelial cell junction distribution and composition. TJs are the most apical junctions, followed by 

the AJs and the desmosomes. ZO : zonula occludens, JAM : Junctional adhesion molecules. 

 

2.3.2 Epithelial-to-mesenchymal transition (EMT) 
 

The transient or permanent formation of migratory mesenchymal cells from primitive 

epithelial cells during embryonic development through EMT, is one of the hallmarks of 

metazoans. In addition to its function in early development, EMT plays a crucial role during the 

histogenesis of the heart, peripheral nervous system and musculoskeletal system in 

vertebrates. Moreover, the reverse process of EMT, mesenchymal to epithelial transition 

(MET), in conjunction with EMT is involved in the formation of the heart, kidney, and somites. 
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The manipulation of this evolutionarily conserved process is one of the characteristic properties 

of cancer cells, where the epithelial cells transform into mesenchymal stem cells, cancer stem 

cells, and exhibit loss of cell-cell adhesion/ cell-cell junctions, as well as apico-basal polarity 

(Thiery, 2002), (Fig 8).  

The underlying mechanisms modulating EMT are somewhat convoluted. Its induction can 

be attributed to various factors, such as signalling pathways, among which are transforming 

growth factor beta (TGF-β), Wnt and Notch (Thiery & Sleeman, 2006), as well as mechanical 

changes in the stress and the density of the extracellular matrix (Gomez et al. 2010, Kumar et 

al. 2014). Tumor protein p53 (p53) and microRNA 200 and 34, as well as select transcription 

factors act as EMT repressors (Chang et al. 2011, Li and Yang, 2014, Zaravinos and 

Zaravinos, 2015). The master regulation of EMT is attained by interconnected double negative 

feedback loops comprising the Zinc Finger E-Box Binding Homeobox 1/2 (ZEB-1 and -2) and 

the microRNA 200 family on one side, and the miR-34 family and zinc finger proteins SNAI1 

and SNAI2 (SNAIL1/2) on the other (Siemens et al. 2011,  Brabletz and Brabletz, 2010, Jia 

et al. 2017). 

 

2.3.3 EMT-mediated actin cytoskeletal rearrangement 
 

The organization of the actin cytoskeleton in the cell is crucial for various cellular 

processes, among which are cell signalling, and the development and maintenance of cellular 

junctions and cell polarity (Shankar et al. 2015; Doherty and McMahon, 2008; Dominguez and 

Holmes, 2011). The rearrangement of the actin cytoskeleton is one of the characteristic 

properties of EMT (Fig. 8). The presence of cortical actin networks is associated with the 

epithelial phenotype, whereas mesenchymal cells exhibit the formation of actin stress fibers. 

This EMT fundamental reorganization is orchestrated by the Rho GTPases, Ras homolog gene 

family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac-1), and cell division 

control protein 42 homolog (Cdc42) (Bhowmick et al. 2001; Yoon et al. 2017; Kristy Stengel 

and Yi Zheng, 2011).  

The Rho GTPases RhoA, Rac-1, and Cdc42 are the most studied members of the Ras 

superfamily of small GTPases. They share a characteristic Rho-type GTPase-like domain and  

range in size from 190 to 250 residues. In addition to their cytoskeletal organizational roles, 

they also promote growth and hinder apoptosis (Hall, 1998). Moreover, Rac-1 and Cdc42 are 

required for the formation of the cellular motility associated cytoskeletal projections, as well as 

the polymerization of actin (Wennerberg and J. Der, 2004). While RhoA mediates actin-myosin 

contractility and hence modulates cell shape through promoting the formation of focal 

adhesions and stress fibers (Amano et al. 1996). The assembly of stress fibers, which are 

made up of bundles of F-actin, actin binding proteins, and non-muscle myosin II is dependent 
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on the phosphorylation-mediated activity of the latter, a major motor protein involved in actin 

cytoskeleton organization (Chang and Kumar, 2015). Myosin II is activated by the 

phosphorylation of its regulatory light chains (MRLC) (Somlyo and Somlyo, 2003). Mono-

phosphorylation at serine 19 (S19) increases the stability of formed myosin II filaments, and 

actin-activated Mg2+-ATPase activity. Di-phosphorylation at threonine 18 and S19, enhances 

myosin II activity and increases the stability of its filaments to a much higher degree compared 

to the mono-phosphorylated counterpart (Ikebe and Hartshorne, 1985; Ikebe et al. 1988; 

Watanabe et al. 2007). Rho-associated protein kinase (ROCK), the main effector of RhoA, has 

been previously implicated directly in both mono, and di-phosphorylation of MRLC (Amano et 

al. 1996 ; Ueda et al. 2002), and indirectly through the inhibition of myosin light chain 

phosphatase (MCLP), an enzyme that dephosphorylates the MRLC of myosin II (Kawano et 

al. 1999).  

EMT is also associated with disruption in the levels of many actin regulatory proteins 

(Lamouille et al. 2014), such as the actin severing protein cofilin-1, one of the most crucial and 

conserved proteins that promote actin depolymerization in the cell (Wang et al. 2006).  

 

2.4 ADF/Cofilin 
 

The actin-depolymerizing factor (ADF)/cofilin (CFL) family members were identified in the 

1980s as small (around 18 kDa) actin binding proteins that modulate the cellular actin 

dynamics by inducing the disassembly of actin filaments. This family is present in all 

eukaryotes. In mammals it comprises three members, ADF, also termed destrin, non-muscle 

cofilin, commonly referred to as n-cofilin/cofilin-1 (CFL1), and muscle cofilin, known as m-

cofilin/cofilin-2 (CFL2). The three are encoded by separate genes and ADF shares around 

70% amino acid homology with CFL 1 and 2. (Bamburg et al. 1980, Maciver and Hussey, 2002; 

Kanellos and Frame, 2016). 
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Figure 8. Changes in the molecular markers and actin cytoskeleton reorganization during EMT. A: EMT is 

characterized by the disassembly of the epithelial junctions and the loss of polarity. B: Cell junctions/cell-cell contact 

proteins, such as E-cadherin, DSP I/II, α- and β- catenin are characteristic to the epithelial cells and are 

downregulated upon the transition from the epithelial to the mesenchymal state. Whereas N-cadherin, vimentin, 

SNAIL, and ZEB1 are associated with the mesenchymal phenotype and are elevated following EMT transition. C: 

The transition of the cortical actin rich epithelial cells to the actin stress fiber forming mesenchymal counterpart 

through EMT is also marked by the remodelling of the actin cytoskeleton, mediated by the actin severing protein 

CFL-1. Based on (Serrano-Gomez et al. 2016). 
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The affinity of ADF and CFL towards actin is influenced by their localization. Where those 

expressed in tissues, where high degree of actin turnover is required, demonstrated higher 

affinity towards actin. Hence, the neuronal and epithelial cells located ADF and the ubiquitously 

expressed CFL1 show much higher actin affinity than the muscle centric CFL2 (Vartiainen et 

al. 2002).  

CFL1 is the most studied member of the (A/C), owing to its expression pattern, crucial 

developmental roles and unique ability to depolymerize, disassemble, sever, and assemble 

actin filaments (Bamburg and Bernstein, 2010). CFL1 can bind the monomeric globular actin 

(G-actin), as well as its polymerized filamentous counterpart (F-actin) (Fig. 9). The binding of 

myosin sub-fragment (S1) to F-actin filaments confers polarity upon the filament, characterized 

by the presence of a positive barbed end (ATP-bound) and a negative pointed one (ADP-

bound; Moore et al. 1970). Utilizing its very high affinity for ADP-actin, CFL1 acts by inducing 

depolymerization at the pointed end of the actin filaments and inhibiting their reassembly, as 

well as triggering the severing of the filaments through the generation of more barbed ends 

and the release of actin monomers from the pointed ends (Ono, 2007). The key determinant 

of CFL1 action on actin filaments assembly or disassembly is the ratio between CFL and actin, 

as well as other actin binding proteins (Andrianantoandro and Pollard, 2006). At high CFL1 

levels, stabilization of actin filaments is attained along with initiation of the G-actin monomers 

nucleation, leading to filaments branching and elongation through recruiting other actin-binding 

proteins (Bamburg and Bernstein, 2008, Tsai and Lee, 2012).  

 

 

                      
      Figure 9. The actin severing and depolymerizing activity of CFL. Adapted from (Ono, 2007). 
 

The non-phosphorylated form of CFL1 is the active form. Hence its activity is decreased 

through its inhibitory phosphorylation on serine 3 (S3), as well as the consequent 

dephosphorylation (Agnew et al. 1995; Moriyama et al. 1996). The change in CFL1 activity 

and the consequent modulation of the actin filaments is brought about by extracellular stimuli, 

which trigger the activation of the Rho GTPases, RhoA/Rac-1/Cdc42 leading to the activation 

of their downstream effectors, ROCK and p21-activated kinase (PAK) respectively. The 

activated Rho GTPases downstream kinases, ROCK and PAK then proceed to phosphorylate 
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and activate LIM kinases (LIMKs), the main kinases behind the inhibitory phosphorylation of 

CFL1 at S3 (Denhardt, 1996, Zigmond, 1996).  

LIM kinases are serine/threonine kinases which are crucial modulators of the actin filament 

dynamics (Khurana et al. 2002). The LIM kinase family comprises two isoforms, LIMK-1 and 

LIMK-2. Structurally, LIM kinases have two N-terminally situated LIM domain repeats, 

succeeded by the protein targeting and protein complex assembly regulator PDZ domain and 

finally a kinase domain located near the C-terminus (Okano et al. 1995, Hung and Sheng, 

2002). Furthermore, the PDZ domain contains two nuclear export signals, whereas the kinase 

domain includes a nuclear localization sequence, hence conferring the ability on the kinases 

to shuttle between the nucleus and the cytoplasm (Goyal et al. 2005, 2006). Both LIMK 

isoforms share the highest structural homology among their kinase domains (around 70%), 

followed by the LIM (around 50%) and PDZ domains (around 46%) (Manetti, 2012). 

The negative regulation of the activity of LIMK-1 is mediated by the LIM domains. They 

directly interact with the C-terminal kinase domains, resulting in the blocking of the kinase 

substrate binding site, or the locking of the kinase domain in an inactive confirmation (Nagata 

et al. 1999). On the other hand, phosphorylation on specific serine and threonine residues, 

activates LIM kinases. ROCK phosphorylates LIMK-1 and LIMK-2 on threonine residues 508 

and 505 (Thr 508 and 505) respectively within the activation loop (Ohashi et al. 2000; Sumi et 

al. 2001) (Fig 10). 
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                   Figure 10. The structure and regulation of LIMK-1. Based on (Nadella et al. 2009) 
 

The Rac-1 and Cdc42 downstream effector PAK-1, as well the as the Cdc42 effector PAK-

4 also mediate threonine 508 phosphorylation and activation of LIMK-1 (Edwards et al. 1999; 

Dan et al. 2001) (Fig. 11). Kobayashi et al. uncovered a novel role for MAP kinase-activated 

protein kinase-2 (MAPKAPK-2; MK2), a downstream kinase of p38 mitogen-activated protein 

kinase (p38 MAPK) in the activation of LIMK-1, by phosphorylating serine residue 323 (S323), 

which is located in the region between the PDZ and kinase domains (Kobayashi et al. 2006). 

Moreover, another LIMK-1 activating phosphorylation site was identified by Nadella et al.; PKA 

phosphorylates serine residue 596 (S596) in the kinase domain. Hence the enhanced 

phosphorylation of CFL1 at S3, and its inactivation can be attributed to the increased activity 

of LIMK-1, following its phosphorylation at Thr508, and/or S323, and/or S596 (Nadella et al. 

2009).  

Acting in tandem with LIMK to regulate the phosphorylation-dependent activity of CFL1 

are the downstream phosphatases. The first phosphatase family acting on phosphorylated 

CFL1 (P-CFL1; S3) to be identified was the dual specificity Slingshot (SSH) phosphatase 

family. Initially, it was discovered in Drosophila melanogaster as a single gene essential for 

normal epidermal cells morphogenesis. In humans, three genes encoding for three isoforms, 
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SSH1, SSH2, and SSH3, were identified (Niwa et al. 2002, Ohta et al. 2003). The 

phosphatases activities, tissue distribution, and subcellular localization were found to differ. 

SSH1 and SSH2 showed high affinity towards F-actin and structures in which F-actin is 

incorporated, such as stress fibers and cortical actin networks. SSH3 is localized to the nucleus 

and cytoplasm with diminished F-actin binding affinity (Mizuno, 2013, Ohashi, 2015). SSH1 

was also found to inactivate LIMK-1 by directly interacting with its kinase domain and inducing 

its dephosphorylation at Thr508, hence contributing to the activation of CFL1 directly through 

its dephosphorylation and indirectly through LIMK-1 activity manipulation (Soosairajah et al. 

2005).  

The contrast in the ubiquitous expression of CFL1 and the majorly epithelial expression 

pattern of SSH, coupled with the inessentiality of SHH for the biological process associated 

with CFL1-mediated actin turnover, such as cellular adhesion and proliferation, pointed 

towards the existence of another CFL1 regulatory phosphatase. Gohla et al. isolated and 

characterized chronophin, a mammalian evolutionary conserved member of the  haloacid 

dehalogenase (HAD) hydrolases superfamily, which functions as a CFL1 phosphatase (Gohla 

et al. 2005). Unlike SHH, chronophin exhibits broad expression, shows much higher specificity 

towards P-CFL1; S3 and demonstrated very little activity towards LIMK (Huang et al. 2005, 

Kestler et al. 2014). Moreover, the disruption of chronophin activity caused cell division defects 

similar to the ones encountered upon the manipulation of CFL activity (Gohla et al. 2005, 

Huang et al. 2005) .  
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Figure 11. The CFL pathway and the regulation of CFL phosphorylation and activity. The Rho GTPases upon 

activation by guanine nucleotide exchange factors (GEFs), proceed to activate their downstream targets, ROCK 

and PAK, both of which phosphorylate LIMK-1 on Thr508, resulting in its activation and the consequent 

phosphorylation and inactivation of CFL at S3. SSHs dephosphorylate CFL resulting in its activation. ROCK, in 

addition to modulating the phosphorylation of LIMK-1, also mediates the phosphorylation of myosin light chain 

(MLC) and promotes stress fiber assembly. PAK phosphorylates myosin light chain kinase (MYLK), another kinase 

phosphorylating MLC, resulting in its inactivation.  

 
2.4.1 CFL-1 induces EMT 
 

The ubiquitously expressed CFL1 exhibits increased expression levels and activity in 

cancer cells, correlating with the tumours’ EMT (Turhani et al. 2006, Maimaiti et al. 2017). 

CFL1’s role in defining the direction of cells motility by inducing the formation of cytoskeletal 

protrusions has been established (Ghosh et al. 2004). The small interfering RNA (siRNA)-

mediated knockdown (KD) of CFL1, or the promotion of its phosphorylation at S3, owing to the 

overexpression of a constitutively active LIMK domain, resulted in the disruption of the cellular 

motility. (Hotulainen et al. 2004, Zebda et al. 2000, Wang et al. 2006). Wang et al. confirmed 

the role of CFL1 in the cytoskeletal reorganization-mediated promotion of EMT. In gastric 
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cancer, as well as in BGC-823 gastric adenocarcinoma cells, elevated CFL1 levels correlated 

with the EMT markers. Moreover, treatment of BGC-823 cells with the EMT inducer, TGF-β1 

successfully established the EMT phenotype in the un-transfected cells, while cells where 

CFL1 was knocked down, did not demonstrate the phenotype. The inhibition of cytoskeletal 

rearrangement mediated by the abolished F-actin depolymerization upon CFL1 KD in the cells 

was confirmed by TEM. These results were also found in vivo, hence highlighting the important 

role of CFL1 as an EMT inducer (Wang et al. 2017).  

 
2.5 PKA signalling enforces the epithelial phenotype 
 

Nadella et al. suggested a potential role for PKA in MET. The activation of PKA results in 

the downregulation of the mesenchymal markers Vimentin and N-cadherin, as well as the 

upregulation of the epithelial marker E-cadherin. Multiple systems were employed (Mouse 

Embryonic Fibroblasts; MEFs, HeLa, and HEK293 cells) to confirm the generality of the 

phenomenon. Interestingly, even though the phenotype was identified and the associated 

changes in the levels of markers were extensively studied and validated, the protein levels of 

the master regulator transcription factors SNAIL and twist showed no change upon the 

manipulation of PKA activity (Nadella et al. 2008).  

Pattabiraman et al. showed that in mesenchymal human mammary epithelial cells, PKA 

signalling activation induced by cholera toxin (choleragen) and forskolin stimulation, resulted 

in MET. This was marked by a decrease in the protein levels of mesenchymal markers, 

vimentin and fibronectin, as well as increased abundance of the epithelial marker, E-cadherin. 

The epigenetic PKA-mediated alteration in the phenotype of the cells was found to be induced 

by the histone demethylase PHF2, a PKA substrate and tumour suppressor (Baba et al. 2011, 

Lee et al. 2015). PHF2 promoted MET by inducing the demethylation and de-repression of 

epithelial genes, hence implicating PKA as an enforcer of the epithelial phenotype 

(Pattabiraman et al. 2016).  
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2.6 Aims of the thesis 
 

AKAPs tether PKA and various other signalling proteins to defined subcellular 

compartments to create local signalling hubs and bring about spatial and temporal regulation 

of PKA signalling. This thesis aims to shed light on the biological function of the AKAP GSKIP. 

GSKIP directly binds PKA and GSK3β and facilitates the PKA inhibitory phosphorylation of 

GSK3β. The anchoring of PKA to GSKIP also modulates the PKA-mediated phosphorylation 

of various other substrates, such as that of β-catenin at S675 and of Drp1 at S637. In addition, 

the scaffolding of GSK3β to GSKIP was found to modulate the phosphorylation of GSK3β 

substrates, among which is β-catenin. This implicates GSKIP as a modulator of the activity of 

both GSK3β and PKA. 

Previous work in the lab has revealed GSKIP to be a potential regulator of actin dynamics 

in A549 non-small lung cancer cells. The GSKIP-mediated regulation of the phosphorylation 

dependent activity of CFL, a unique actin binding protein possessing the ability to sever and 

depolymerize actin filaments, is the focus of the first part of the thesis. The second part aims 

to characterize the role of GSKIP in modulating the integrity of cellular junctions and their 

associated components and examines whether EMT is involved in such modulation.  
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3. Material and Methods 

3.1 Materials 

3.1.1 Equipment and software 

 

Table 1a : General equipment 

 

Equipment Description  Supplier 

Beckmann Coulter Centrifuge Large scale centrifuge Beckmann Coulter GmbH 
(Krefeld, DE) 

Centrifuge 5415 D Benchtop centrifuge Eppendorf (Hamburg, DE) 

Centrifuge Universal 320 R Centrifuge Hettich (Tuttlingen, DE) 

Duomax 1030 Rocking shaker 
Heidolph Instruments 

(Schwabach, DE) 

Enspire® 2300 Microplate reader PerkinElmer (Rodgau, DE) 

GFL 3017 Orbital shaker Gesellschaft für Labortechnik 

mbH (Burgwedel, DE 

IKA® MS 3 basic Small shaker IKA (Wilmington, US) 

IKA® RCT Standard Heating plate IKA (Wilmington, US) 

Keyence BZ-8100E Digital microscope Keyence (Osaka, Japan) 

MicroCentrifuge 2 Micro-scale centrifuge NeoLab (Heidelberg, DE) 

Mini Star Galaxy Mini-scale centrifuge VWR (Randor, US) 

MiniProtean® Polyacrylamide gel 

electrophoresis cell 

Bio-Rad Laboratories GmbH 

(München, DE) 

NanoDrop ND-1000 Spectrophotometer 
PeqLab Biotechnologie GmbH 

(Erlangen, DE) 

Odyssey Imager Western blot detection system LI-COR Biosciences (Bad 

Homburg, DE) 

PipetBoy acu IBS Pipettor 
Integra Biosciences/ Ibs 

(Fernwald, DE) 

Pipettes 2,5/ 10/ 20/ 200/ 1000/ 

5000 μL 

Pipetting Eppendorf (Hamburg, DE) 
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Table 1b : Cell culture equipment 

 

 

 

 

Equipment Description  Supplier 

Power Pac 1000/ 3000 

 

Power supply 
Bio-Rad Laboratories GmbH 

(München, DE) 

Sonopuls HD 207 Ultrasond homogenizer 
Bandelin electronic GmbH and                                                  

Co (Berlin, DE) 

Thermomixer Compact Shaking heater Eppendorf (Hamburg, DE) 

Titramax 100 Plate shaking device 
Heidolph Instruments 

(Schwabach, DE) 

Trans-Blot Western blot Transfer System 
Bio-Rad Laboratories GmbH 

(München, DE) 

Zeiss Axioskop HBO 50 Fluorescence microscope 
Carl Zeiss MicroImaging 

GmbH (Jena, DE) 

Zeiss LSM 780 Confocal microscope 
Carl Zeiss MicroImaging 

GmbH (Jena, DE) 

Equipment Description  Supplier 

Cryo-container 5100-0001 Freezing container 
Thermo Fisher 

Scientific/NALGENE (Bonn, D) 

GFL 1072 Waterbath 
Gesellschaft für Labortechnik 

mbH (Burgwedel, DE) 

Incubator CB210 Cell culture incubator Binder (Tuttlingen, DE) 

Safe 2020 Biological safety cabinet 
Thermo Electron LED GmbH 

(Langenselbold, DE) 

ScepterTM 2.0 Cell counter 
Merck Millipore (Schwalbach, 

DE) 

Tempcontrol 37-2 digital Temperature regulator plate PeCon GmbH (Erbach, DE) 

Zeiss Axiovert 25  Inverted microscope 
Carl Zeiss MicroImaging GmbH 

(Jena, DE) 
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Table 1c : Disposable equipment 

 

Material Description/Purpose Supplier 

4–20% Mini-PROTEAN® 

TGX™ Precast Protein Gels  

Commercial gradient gels for 

SDS-PAGE 

Bio-Rad Laboratories GmbH 

(München, DE) 

6- and 96-Well Plates Cell culture plates TPP (Trasadingen, CH) 

96-Well Microplate 96-Well clear microplate 
Greiner Bio-One GmbH 

(Frickenhausen, DE) 

Cell Culture Dish (60 and 100 

mm) 

Cell culture dish TPP (Trasadingen, CH) 

Cell Scraper Scraping of cells TPP (Trasadingen, CH) 

Centrifuge Tubes (15 and 50 

mLs) 

Polypropylene centrifuge tubes Greiner Bio-One GmbH 

(Frickenhausen, DE) 

Cryo-vials  Cryoconservation of cells 
Carl Roth GmbH & Co KG 

(Karlsruhe, DE) 

FAST READ 102® Disposable cell counting slides Biosigma (Venezia, Italy) 

Filter Tips Sterile pipette tips for cell 

culture 
StarLab (Hamburg, DE) 

Hypodermic Needles Sterile hypodermic needles B. Braun Melsungen AG 

(Hessen, DE) 

Pipette Tips Laboratory essential StarLab (Hamburg, DE) 

PVDF Membranes Western blotting membranes Carl Roth GmbH & Co KG 

(Karlsruhe, DE) 

Reaction Tubes Tubes tailored for scientific 

research 

Sarstedt (Nümbrecht, DE) 

ScepterTM Sensors 60 μM  Cell counting Merck Millipore (Schwalbach, 

DE) 

Syringes Sterile 1 mL syringes B. Braun Melsungen AG 

(Hessen, DE) 

T75 Cell Culture Flask Cell culture flask TPP (Trasadingen, CH) 
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Table 2 : Software 

 

Software Description and Purpose Supplier/URL 

Adobe Illustrator CS4 Graphics editor Adobe Systems, Inc. (San 

Jose, US) 

Adobe Photoshop CS4 Image processing Adobe Systems, Inc. (San 

Jose, US) 

EndNote X7 Reference management Thomson Reuters (Toronto, 
CA) 

Image J 1.48v Image Processing https://imagej.nih.gov/ij/ 

Image Studio Lite Western blot analysis LI-COR Biosciences (Bad 

Homburg, DE) 

Microsoft Excel 2008 Spreadsheet Microsoft (Redmond, US) 

Micorsoft Power Point 2008 Presentation Microsoft (Redmond, US) 

Microsoft Word 2008 Word processing Microsoft (Redmond, US) 

Prism 5.0c Biostatistics and graphing GraphPad Software (CA, US) 

ZEN 2011 
Confocal microscopy, image 

processing 

Carl Zeiss MicroImaging GmbH 

(Jena, DE) 

 

 

3.1.2 Antibodies 

 

Table 3a : Primary antibodies used for Western blot (WB) or Immunofluorescence (IF) 

 

Primary Antibody Origin Supplier/Catalogue number 
Actin Mouse Calbiochem (Nottingham, UK) #CP01 

Cofilin Rabbit Cell Signalling Technology (Danvers, US); #5175 

E-Cadherin Rabbit Cell Signalling Technology (Danvers, US); #3195 

N-Cadherin Rabbit Cell Signalling Technology (Danvers, US); #13116 

β-Catenin Rabbit Cell Signalling Technology (Danvers, US); #9582 

β-Catenin Rabbit Santa Cruz Biotechnology (Dallas, US); sc-7199 

Chronophin/PDXP Rabbit Cell Signalling Technology (Danvers, US); #4686 

Desmoplakin I/II Rabbit Santa Cruz Biotechnology (Dallas, US); sc-33555 

Drp1 Rabbit Cell Signalling Technology (Danvers, US); #8570 

GAPDH Mouse Genetex (Irvine, US); GT239 

GAPDH Rabbit Cell Signalling Technology (Danvers, US); #2118 
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Primary Antibody Origin Supplier/Catalogue number 
GSK3β Rabbit Cell Signalling Technology (Danvers, US); #9315 

GSKIP Rabbit 
Custom-made as described in (Hundsrucker et al. 

2010) by Biogenes. 
HSP90 Mouse Stressgen (Victoria, CAN); SPA-830 

Lamin A/C Goat Santa Cruz Biotechnology (Dallas, US); sc-6215 

LIMK-1 Mouse Santa Cruz Biotechnology (Dallas, US); sc-135973 

LIMK-1 Mouse Santa Cruz Biotechnology (Dallas, US); sc-515585 

LIMK-1 Rabbit Santa Cruz Biotechnology (Dallas, US); sc-5576 

p38 MAPK α Rabbit Cell Signalling Technology (Danvers, US); #2371 

OPA-1 Mouse Abcam (Cambridge, UK); #ab55772 

Phospho-cofilin (S3) Rabbit Cell Signalling Technology (Danvers, US); #3313 

Phospho-Drp1 (S637) Rabbit Cell Signalling Technology (Danvers, US); #6319 

Phospho-GSK3β (S9) Rabbit Cell Signalling Technology (Danvers, US); #9323 

Phospho-LIMK-1/2 (Thr 
508/505)-R 

Rabbit Santa Cruz Biotechnology (Dallas, US); sc-28409-R 

Phospho-p38 MAPK Rabbit Cell Signalling Technology (Danvers, US); #4511 

Phospho-PKA substrate 
(RRXS*/T*) 

Rabbit Cell Signalling Technology (Danvers, US); #9624 

PP1 Mouse Santa Cruz Biotechnology (Dallas, US); sc-7482 

Phospho-RhoA (S188) Rabbit Abcam (Cambridge, UK); #ab41435 

Protein Kinase Cα (PKCα) Mouse BD Biosciences (Heidelberg, DE); #610107 

Rac-1 Mouse BD Biosciences (Heidelberg, DE); #610650 

RhoA Mouse Santa Cruz Biotechnology (Dallas, US); sc-418 

Rock-1 Rabbit Santa Cruz Biotechnology (Dallas, US); sc-5560 

SNAIL Rabbit Cell Signalling Technology (Danvers, US); #9582 

α-Tubulin Mouse Calbiochem (Nottingham, UK) #CP06 

ZEB1/TCF8 Rabbit Cell Signalling Technology (Danvers, US); #3879 

 

                                   Table 3b : Secondary antibodies used for WB or IF 

 

Secondary Antibody Origin Supplier/Catalogue number 

Cy3-anti-Rabbit IgG Mouse 
Jackson ImmunoResearch Laboratories; #211-

165-109 

Cy5-anti-Rabbit IgG 

 

Donkey Jackson ImmunoResearch Laboratories; #711-
175-152 

Peroxidase (POD)-anti-Mouse 
IgG 

Donkey Jackson ImmunoResearch Laboratories; #705-
035-151 

Peroxidase (POD)-anti-Rabbit 
IgG 

Donkey Jackson ImmunoResearch Laboratories; #711-
036-152 

Peroxidase (POD)-anti-Goat 
IgG 

Donkey Jackson ImmunoResearch Laboratories; ##705-
035-147 

 Protein A-HRP Conjugate - 
Bio-Rad Laboratories GmbH (München, DE); 

#170-6522 
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3.1.3 Chemicals and buffers 

 

Table 4a : Chemicals and dyes 

 

Substance Supplier/Catalog # 

30% Acrylamide / Bis Solution 
Bio-Rad Laboratories GmbH (München, DE); 

#1610156 

4’, 6-Diamidine-2’-phenylindole dihydrochloride 

(DAPI) 

Roche Diagnostics GmbH (Mannheim, DE); 

#10236276001 

Alexa Fluor 647 Phalloidin Invitrogen (Darmstadt, DE); #A22287 

Bovine Serum Albumin (BSA) 
SERVA Electrophoresis GmbH (Heidelberg, DE); 

#11926.04 

Coomassie PlusTM Protein Assay Reagent Thermo Fisher Scientific (Bonn, DE); #1856210 

Complete mini EDTA-free 
Roche Diagnostics (Mannheim, DE); 

#REF0693159001 

DMEM, GlutaMAXTM 
Life Technologies GmbH (Darmstadt, DE); 

#21885108 

DMEM/F-12, GlutaMAXTM 
Life Technologies GmbH (Darmstadt, DE); 

#31331028 

DPBS (1x) 
Life Technologies GmbH (Darmstadt, DE); 

#A1285601 

DPBS (10x) 
Life Technologies GmbH (Darmstadt, DE); 

#14200067 

Fetal calf serum (FCS) Superior 
Biochrom/ Merck Millipore (Schwalbach, DE);  

#S0615 

Forskolin (FSK) 
Biaffin GmbH & Co KG Life Sciences Institute 

(Kassel, DE); #PKE-FORS-050 

Glutathione Sepharose® 4 Fast Flow GST-

tagged protein purification resin kit 

GE Healthcare Europe GmbH (Freiburg, DE); 

#17-5132-01 

ImmobilonTM Western Chemiluminescent HRP 

substrate 
Merck Millipore (Schwalbach, DE); #WBKLS0500 
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Table 4b : Buffers and solutions 

 

Substance Supplier/Catalog # 

Lumi-Light Western Blotting Substrate 
Roche Diagnostics (Mannheim, DE); 

#12015200001 

Immu-MountTM Thermo Fisher Scientific (Bonn, DE); #99-904-12 

Penicillin/Streptomycin 
Biochrom/ Merck Millipore (Schwalbach, DE);  

#A2213 

PhosSTOP EASY pack 
Roche Diagnostics (Mannheim, DE); 

#REF04906837001 

Precision Plus Protein Standard Dual Color 
Bio-Rad Laboratories GmbH (München, DE); 

#1610374 

Skim milk powder Fluka Analytical/ Sigma (Taufkirchen, DE); #70166 

Streptavidin agarose beads Invitrogen (Darmstadt, DE); #15942-050 

Trypsin-EDTA (0.25%) 
Life Technologies GmbH (Darmstadt, DE); 

#25200056 

Trypsin-EDTA (0.5%) 
Biochrom/ Merck Millipore (Schwalbach, DE);  

#L2153 

Trans blot transfer buffer (5X) 
Bio-Rad Laboratories GmbH (München, DE); 

#1610156 

Buffer Composition 

Actin stabilization buffer  

0.1 M PIPES; pH 6.9, 30% glycerol; 5% DMSO; 1 

mM MgSO4; 1 mM EGTA; 1% TX-100; 1 mM 

ATP; protease and phosphatase inhibitors 

Actin solubilization buffer 1.5% SDS, 25mM Tris HCL pH 6.8 

Blocking buffer A (Immunofluorescence; IF) 0.27% fish skin gelatin in 1x DPBS 

Blocking buffer B (IF) 5% BSA in 1x DPBS 

Blocking buffer A (Western blot) 1% bovine serum albumin (BSA) in 1x TBS-T 
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Buffer Composition 

Blocking buffer B (Western blot) 5% non-fat milk in 1x TBS-T  

Mild lysis buffer (MLB; Immunoprecipitation) 
0.2% Triton X-100; 2 mM EDTA; 2 mM EGTA in 

1x DPBS; supplemented with protease and 

phosphatase inhibitors 

Phosphate-buffered saline (PBS) 
137 mM NaCl 2.7 mM KCl; 1.5 mM KH2PO4; 8.1 

mM Na2HPO4; pH 7.4 

Ponceau Red 0.25% Ponceau-S in 3% (v/v) acetic acid 

Rhotekin lysis buffer 

50 mM Tris; pH 7.2; 1% (w/v) Triton X-100 ; 0.5% 

sodium deoxycholate; 500 mM NaCl; 10 mm 

MgCl2 ; PhosSTOP EASY (1 tablet for 10 mL), 

Complete mini EDTA-free (1 tablet for 10 mL) 

RIPA lysis buffer 1 x 

50 mM Tris HCl pH 7.4; 150 mM NaCl; 1 mM 

EDTA; 0.5% Na- Desoxycholate; PhosSTOP 

EASY (1 tablet for 10 mL), Complete mini EDTA- 

free (1 tablet for 10 mL) 

Sample buffer 4 x 
40% glycerine; 8% SDS; 0.4% bromophenol blue; 

312.5 mM Tris-HCl; 200 mM DTT; pH 6.8 

SDS-polyacrylamide gel electrophoresis 

(PAGE) running buffer 

25 mM Tris; 192 mM glycine; 0.1% SDS 

Semi-dry transfer buffer (Western blot) 
48 mM Tris; 39 mM glycine; 1.3 mM SDS; 20% 

(v/v) methanol 

Separating gel buffer (SDS-PAGE) 0.625 M Tris-HCl; pH 6.8 

Stacking gel buffer (SDS-PAGE) 0.75 M Tris-HCl; pH 8.8 

Standard lysis buffer (SLB) 

10 mM K2HPO4; 150 mM NaCl; 5 mM EDTA; 5 

mM EGTA; 0.5% Triton X- 100; pH 7.4; 

PhosSTOP EASY (1 tablet for 10 mL), Complete 

mini EDTA- free (1 tablet for 10 mL) 

Tank-blot transfer buffer 
20 mM Tris; 150 mM glycine; 0.052 mM SDS; 20% 

(v/v) methanol 

Tris-buffered saline (TBS) 10 mM Tris-HCl; 150 mM NaCl; pH 7.4 
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3.1.4 Cells 

 

Table 5 : Mammalian cells used, their growth conditions and supplier. 

 

Cell line Description Culture medium Supplier 

 
 
 

A549 

 
 
 

Human lung 
adenocarcinoma 

DMEM, low glucose, 
GlutaMAXTM 

Supplement, pyruvate, 
10% fetal bovine 
serum (FBS); 1% 

penicillin/streptomycin 
(100 U/ml) 

American Type 

Culture Collection 

(ATCC) (Virginia, US) 

ATCC® CCL-185 

 
 
 

HeLa-S3 

 
 
 

Human cervical 
adenocarcinoma 

DDMEM, low glucose, 
GlutaMAXTM 

Supplement, pyruvate, 
10% fetal bovine 
serum (FBS); 1% 

penicillin/streptomycin 
(100 U/ml) 

 

DSMZ (Braunschweig 

DE) 

 
 
 

MCF7 

 
 
 

Human breast 
adenocarcinoma 

DMEM, low glucose, 
GlutaMAXTM 

Supplement, pyruvate, 
10% fetal bovine 
serum (FBS); 1% 

penicillin/streptomycin 
(100 U/ml) 

 

DSMZ (Braunschweig 

DE) 

 

 

 

SHSY5Y 

 

 

 

Human bone marrow 
neuroblastoma 

DMEM/F-12, 
GlutaMAXTM 

supplement,10% fetal 
bovine serum (FBS); 

1% 
penicillin/streptomycin 

(100 U/ml) 

 

 

DSMZ (Braunschweig 

DE) 

                                               

Buffer Composition 

Tris-buffered saline + Tween (TBS-T) 0.05% Tween-20 in 1x TBS 

Trans blot transfer buffer (1x)  20% (v/v) Trans blot transfer buffer (5x); 20% 

(v/v) 100% ethanol 
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Cell line Description Culture medium Supplier 

 
 
 

SW480 

 
 
 

Human colon 
adenocarcinoma 

DMEM, low glucose, 
GlutaMAXTM 

Supplement, pyruvate, 
10% fetal bovine 
serum (FBS); 1% 

penicillin/streptomycin 
(100 U/ml) 

 

DSMZ (Braunschweig 

DE) 

 
 
 

U2-OS 

 
 
 

Human bone 
osteosarcoma cells 

DMEM, low glucose, 
GlutaMAXTM 

Supplement, pyruvate, 
10% fetal bovine 
serum (FBS); 1% 

penicillin/streptomycin 
(100 U/ml) 

DSMZ (Braunschweig 

DE) 

 

 

3.1.5 siRNAs and recombinant plasmids 

 

Table 6a : siRNAs employed in this thesis 

 

 

 

Name Target/sequence (5’-3’) 
Supplier/Catalog # 

 

GSKIP (siGENOME-SMART 

pool) 

 

CCAGGUAGAUGAUCAUUUA, 

CAACAUGUUUGUCUCGAAA, 

CGGAUGAUGUGGCCUAUAU, 

GCUCAAGGUGGUAGGCUAU 

Thermo Fisher Scientific 

(Darmstadt, DE) 

and 

GE Healthcare, Chalfont St 

(Giles, UK) 

 

NT#2 (siGENOME Non-

targeting siRNA Pool #2) 

(Firefly luciferase) : 

UAAGGCUAUGAAGAGAUAC, 

AUGUAUUGGCCUGUAUUAG, 

AUGAACGUGAAUUGCUCAA, 

UGGUUUACAUGUCGACUAA 

Thermo Fisher Scientific 

(Darmstadt, DE) 
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The recombinant plasmids used in this work were generated by Alessandro Dema (Dema 

et al. 2016) and Maike Schulz (AG Klußmann). The GSKIP manipulated sequences were 

cloned into FLAG tag containing pCMV vector and transformed into TOP10 chemically 

competent E.Coli cells (Fig. 12) . 

  

 

                  

 

Figure 12. GSKIP-binding deficient mutants, where the interaction between GSKIP and the RII subunits of PKA 

was abolished by replacing asparagine (Asn) 42 with isoleucine (Ile), while leucine (Leu) 130 was substituted with 

proline (Pro) to generate the GSK3β binding deficient mutant (Dema et al. 2016). 

 

 

Table 6b : Recombinant plasmids employed in this thesis 

 

 

 

Plasmid Name Target Region/Region 
Description 

pEGFP_RIIα_WT 
WT PKA-RIIα Full length wild-type PKA-RII 

pCMV6_Gskip_Hs_WT_Flag 

_Non resistant 
WT GSKIP Full length wild-type GSKIP 

pCMV6_Gskip_Hs_L130P_F 

lag_Non resistant 

GSK3β-interacting domain         

(GID) of GSKIP 
GSK3β-binding deficient 

mutant 

pCMV6_Gskip_Hs_N42I_Fla 

g_Non resistant 

RII subunits-binding domain       

(RII BD) of GSKIP 
PKA-binding deficient mutant 
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3.2 Methods 
 
3.2.1.Cell culture techniques 

 
3.2.1.1 Culturing of cancer cells 
 

A549, HeLa-S3, SW480, MCF7, and U2-OS cancer cells were grown in DMEM low 

glucose, GlutaMAXTM and pyruvate supplemented media. SHSY5Y cells were cultured in 

DMEM/F-12 media containing GlutaMAXTM supplement. 10% fetal bovine serum (FBS) and 

1% penicillin/streptomycin (P/S) (100 U/ml) were added to all cell culture media. Confluent 

cells were washed with ice-cold 1x PBS and treated with 0.25% trypsin-EDTA for 3-5 minutes 

(mins) at 37°C. The trypsin was inactivated and the cells were resuspended in 5 times the 

trypsin volume of FBS containing media. A volume of the cell suspension was then transferred 

into a T75 cell culture flask containing fresh medium and the flask was placed at 37°C and 5% 

CO2. The cells were sub-cultured two times per week.   

 

3.2.1.2 Cryopreservation of cells 
 

At around 90% confluency, adherent cells were trypsinized and centrifuged (150 g for 5 

mins at 4°C) following the conduction of a cell count. The cell pellet was then resuspended in 

antibiotics free medium containing 10% FBS and 10% dimethyl sulfoxide (DMSO), and around 

1 mL of cell suspension (2x106 cells) was transferred to each 2 mL cryovial. The cryovials were 

then transferred to an isopropanol filled freezing container and placed at -80°C overnight, to 

cool the cells down by 1°C/min. The following day, the cryovials were moved to a liquid nitrogen 

tank for long-term storage.  

 

3.2.1.3 Thawing frozen cells 

 
To subculture frozen cells, 10 mL of the cell culture medium were added to a T75 cell 

culture flask, as well as to a 15 mL conical tube. The cryovial containing ≈ 1 mL of frozen cell 

suspension was then removed from liquid nitrogen and quickly thawed in a 37°C water bath. 

The thawed cells mixture was transferred to the conical tube and centrifuged at 1250 rpm for 

5 mins. The toxic DMSO containing supernatant was discarded and the cells pellet was 

resuspended in 5 mL of fresh medium and transferred to the culture medium containing T75 

flask for overnight incubation. Upon reaching confluency, the cells were sub-cultured for at 

least two passages before being employed for experimental procedures.  
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3.2.1.4 Cell counting 

 
Following trypsinization and trypsin quenching, 100 μL of cell suspension were diluted with 

1x PBS for a 1:10 final dilution and the cells of 9-21 μM size were counted using either the 

ScepterTM 2.0 handheld automated cell counter or the Fast-Read 102 disposable slides from 

Biosigma.  

 

3.2.1.5 Reverse siRNA transfection 

 
Lyophilized human GSKIP siRNA SMARTpool and Non-targeting siRNA #2 (NT#2 ) were 

reconstituted using RNAse free water and the concentration of the prepared aliquots was 

measured using NanoDrop ND-1000 (20μM). All transfections were conducted in a 6-well plate 

format employing siRNA, Opti-MEM® and Lipofectamine® 2000 mixture. For each well of the 

6-well plate, two mixtures were prepared, each comprising 250 μL of Opti-MEM and either 5 

μL of siRNA (20μM) or 2.5 μL of Lipofectamine 2000. Both were left to stand at room 

temperature for 5 mins, following which the two mixtures were added together and gently 

mixed, then incubated for further 15 minutes at room temperature. During the incubation, the 

confluent cells to be transfected were trypsinized and 350,000 cells in 1.5 mL of antibiotic free 

culture media were seeded per well. Finally, the siRNA mixture was added to the cells for a 

final volume of 2 mL per well and the plate was manually and gently shaken to ensure even 

distribution of the cells, as well as proper mixing of the cells and the transfection mixture. The 

plate was then placed at 37°C for 24 hours (hrs), after which the culture media was replaced 

with a fresh one containing antibiotics and the cells were harvested 48 hrs post the introduction 

of the transfection media.  

 

3.2.1.6 Rescue experiments: forward DNA transfection 

 
The rescue of GSKIP KD following reverse siRNA transfection was attained by using 

plasmid DNA comprising a coding sequence denoting the unmutated wild-type protein, or its 

kinase-binding deficient mutants. The basis of the rescue experiments was the lipid-mediated 

(ViaFect™) delivery of the FLAG-tagged vectors to the siRNA-transfected cancer cells. 

Transfection of the cells with siRNA to knock down GSKIP or with a non-targeting sequence 

was conducted per protocol (3.2.1.5) and 24 hrs following the introduction of the siRNA 

transfection mixture, the media was changed to a fresh antibiotics free one, and forward DNA 

transfection was conducted in a 6-well plate format. Two 6-well plates were employed per each 

forward transfection experiment, one initially transfected to KD GSKIP and the other 

transfected with a non-targeting siRNA to serve as a control. For each well 1 μg of DNA was 

dissolved in 99 μL Opti-MEM® and gently mixed by flicking the tube, then 3 μL of ViaFect were 
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added and the mixture was incubated for 10 mins at room temperature. 103 μL of forward 

transfection mixture were added to 2 mL of fresh media in each well and the cells were 

incubated at 37°C. The media was then replaced with a fresh one after 24 hrs and finally the 

cells were harvested 48 hrs after the introduction of the forward transfection media.  

 

3.2.1.7 Transwell migration assay 

 
The cells were transfected using siRNA to KD GSKIP according to the protocol previously 

described, such that the cells were around 30%-40% confluent on the subsequent day. P/S 

free media was changed to media containing 1%P/S and on the following day, cultures were 

ensured to be below 80% confluency, so that the cells are properly starved without becoming 

confluent during the 24 hrs starvation period. Serum-containing medium was removed and the 

cells were gently rinsed with 1x PBS. Culture medium containing 0.1% FBS was added to the 

cells and they were returned to the incubator for 18-24 hrs at 37°C. On the following day, the 

cells were harvested using Trypsin/EDTA solution and 0.1% FBS containing media was used 

to quench the Trypsin. The cells were spun down to remove trypsin/media mixture and the 

pellet was resuspended in serum-free medium. The cell count was determined and the cell 

suspension was diluted with serum free media to the necessary seeding concentration.  

The trans-wells were set up, such that that 0.1-0.2 mL of the cells in serum free media 

were seeded to the upper compartment, whereas 0.65 mL of 10% FBS containing media were 

added to the lower compartment/reservoir and the cultures were incubated for 18 hrs at 37°C. 

Some receiver wells with serum-free medium (no chemo-attractant) in the lower 

compartment/reservoir were set up as a control. The day after, the media from inside the upper 

compartment of the trans-well inserts was aspirated and they were rinsed very well twice in 1x 

PBS. In 6-well plates, 0.2 ml trypsin/EDTA were added to clean wells and the inserts were 

transferred to the wells, such that the microporous membrane was fully immersed. The wells 

were shaken gently and the plate was incubated at 37°C, to ensure complete detachment of 

the migrated cells from the microporous membrane.  

Following incubation, some of the trypsin from each well was transferred to the lower part 

of the microporous membrane to dislodge any residual cells. The trypsin/EDTA solution was 

quenched with 10% FBS containing media. The cells were spun down to remove trypsin/media 

mixture and around 0.1 mL of each mixture was left behind. 0.1 mL of 10% FBS containing 

media was added to each remaining cells mixture and each mixture was transferred to a 96-

well plate, then incubated for around 3 hrs at 37°C. The media was removed, the cells were 

fixed with 100% ice-cold methanol, and then stained with 0.5% crystal violet for 10 mins at 

room temperature. The cells were washed twice in a gentle stream of tap water and the plate 

was left to air dry. 1% SDS was added to each well containing stained cells and the plate was 
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placed on a bench rocker with a frequency of 120 oscillations per min for around 30 mins. The 

absorbance was measured at 570 nm and the cellular migration was analysed.   

                                   

3.2.2.Biochemical methods 
 
3.2.2.1 Lysis of cells 

 
The confluent cells were washed with ice cold 1x PBS thrice and scraped into ice cold lysis 

buffer, where SLB was used for western blot analysis (a), whereas MLB was used for 

immunoprecipitation experiments (b).  

(a) The scraped cells were then passed through a syringe fitted with a 20 G x 1.5" 

hypodermic needle for 5 times, centrifuged at 14000 RPM for 15 mins at 4°C, and the protein 

concentration of the collected supernatant was determined using Bradford assay.  

(b) The scraped cells were mixed with the lysis buffer by rotation (25 RPMs) for 15 mins 

at 4°C, then centrifuged at 14000 RPM for another 15 mins and the supernatant was collected 

and the protein concentration was determined.  

 

3.2.2.2 Bradford assay 

 
The protein concentration of the lysates was determined using Coomassie PlusTM Protein 

assay (Thermo Scientific). The aforementioned assay is based on the acidic environment-

mediated binding of proteins to the Coomassie dye, where this binding elicits a spectral shift 

of the reddish/brown form of the dye (absorbance maximum at 465 nm) to the blue form 

(absorbance maximum at 610 nm), with the highest difference between the two dye forms 

being recorded at 595 nm. A standard curve was blotted after measuring the absorbance 

(Enspire® 2300 microplate reader; 595 nm) of various known concentrations of BSA (0.125-2 

mg/ml BSA in deionized water) upon mixing with Coomassie Plus reagent and was used to 

determine the unknown protein concentrations of the freshly prepared lysates. Following cell 

lysis, a 1:5 dilution of both the lysate and lysis buffer (control) was prepared and mixed with 

250 μL of Commasie Plus reagent per well of the 96-well plate in a triplicate format and the 

absorbance was measured at 595 nm. Using the linearly fitted standard curve slope as a 

reference, the concentrations of the lysates were determined and lysis buffer was added to 

adjust the concentration when required. 
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3.2.2.3 SDS-polyacrylamide gel electrophoresis (PAGE) 

 
SDS-PAGE is an electrophoretic technique employed to separate proteins according to 

their molecular weights. The rate by which the proteins move through the gel matrix is 

dependent on their size, with the smaller proteins exhibiting less resistance during migration 

and hence moving at a faster rate. Total proteins (8-50 μgs) were separated at 25 mA per gel, 

with 12% SDS-PAGE gels generally used for separation, whereas 15% gels were used for 

separation of low molecular weight proteins and 8% gels were used for separating their high 

molecular weight counterparts. 4–20% Mini-PROTEAN® TGX™ precast protein gels were 

employed for the separation of pulled down complexes comprising proteins of sizes spanning 

≃15 kDa  through 300 kDa. All gels were run in SDS-PAGE running buffer (Table 4b), using 

MiniProtean® electrophoresis chambers, and Precision Plus Protein Standard Dual Color 

(Biorad) marker to indicate the molecular weight of the proteins during separation.  

 

3.2.2.4 Western blotting 

 
Proteins separated by electrophoresis were transferred to polyvinylidene fluoride (PVDF) 

membranes  for quantitative analysis. For the transfer of low molecular weight proteins either 

the Trans-Blot® SD Semi-Dry Electrophoretic Transfer Cell system from Biorad (20 v for 1.5 

hrs at RT), or the Trans-Blot® Turbo™ Transfer System from Biorad (1.3 A per gel for 10 

minutes at RT) were employed and the corresponding transfer buffer was used for each 

system. The transfer of the high molecular weight proteins was attained with a wet transfer 

system/tank-blot (110 V for 150 mins at 4°C ), and tank-blot transfer buffer. Following the 

transfer, the PVDF membranes were washed with deionized water and blocked in 1% BSA in 

TBS-T for 1 hr at room temperature, then incubated with the blocking buffer diluted primary 

antibodies for 24-48 hrs at 4°C. The membranes were washed three times, 10 mins each in 

TBS-T to wash off the non-specific binding and then incubated with the blocking buffer diluted 

horseradish peroxidase-conjugated secondary antibodies for 1 hr at room temperature, 

followed by another three washing steps in TBS-T. A peroxidase substrate containing ECL 

substrate (Millipore/Roche) was added to the membrane and the protein bands were detected 

using an Odyssey Imaging System. The quantification of the protein bands was conducted 

using ImageJ 1.48V, where a housekeeping gene was always employed as a loading control.  
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3.2.2.5 Immunoprecipitation 

 
Cells were lysed as priorly described in (3.2.2.1) and the protein concentration of the 

lysates was determined by Bradford assay. A sample of the total protein (input) was collected 

and boiled with Laemmli buffer at 95°C for 10 mins. The beads to be employed for 

immunoprecipitation were then equilibrated with the lysis buffer in three rotation cycles (25 

RPMs) for 2 mins each at room temperature. Aliquots of samples, each containing 500 μg of 

protein content in around 500 μL were prepared and 25 μL of the equilibrated beads were 

added to each sample. 5 μg of the antibody against the protein to be immunoprecipitated were 

added to the beads-lysate mixture and 5 μg of the corresponding IgG were added to another 

mixture as a control, then the samples were incubated for 90 mins on a rotator (25 RPMs) at 

4°C. Following incubation, the samples were spun down at 700g for 2 mins at 4°C, and the 

supernatant was collected and boiled with Laemmli buffer at 95°C for 10 mins. The beads were 

then exposed to 4-5 lysis buffer wash cycles, where after each cycle, the samples were spun 

down to remove the buffer, fresh lysis buffer was added and the samples were placed on 

rotation for 2 mins to ensure efficient washing of the beads. Finally the immunoprecipitated 

protein and its potential interaction partners were eluted from the beads by boiling with 

Laemmli buffer, in conjunction with vigorous vortexing and analysed by western blotting.  

 

3.2.2.6 Rhotekin-pulldown assay 

 
 

After the siRNA-mediated KD of GSKIP, the cells were incubated for 10 mins with Rhotekin 

lysis buffer at 4°C, then the cells were scraped and placed on rotation for 15 mins at 4°C with 

the lysis buffer. Cell debris was removed by centrifugation for 5 mins at 15,000g and 4°C and 

the supernatant was collected, and its protein content was determined by Bradford assay. 

Lysates containing 400 μg of protein each were incubated with 100 μL of Rho binding domain 

(RBD) beads (prepared by Dr. K. Zuehlke), on a rotator (25 RPM) for 90 mins at 4°C. A 

negative (purified RhoA with GDP; inactive) and a positive control (purified RhoA with GTP; 

active) were also employed to reaffirm the specificity and efficiency of the used beads. 

Following incubation, the beads were gently washed three times with Rhotekin lysis buffer, 

then the bound RhoA was eluted from the beads by boiling with Laemmli buffer and the activity 

of RhoA was determined through relating the bound fraction to the loading control normalised 

total protein.  
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3.2.2.7 Immunofluorescence  

 
A549 and HeLa-S3 cells were grown/transfected on 12 mm round coverslips. The media 

was aspirated and the cells were washed twice with 1x PBS, then fixed with either 10% 

trichloroacetic acid for 10 mins at room temperature, or ice cold 100% methanol for 15 mins at 

-20°C. The cells were washed three times with 1x PBS and permeabilised with 0.1% Triton-X 

for 5 mins at room temperature. The cell coverslips were incubated with blocking buffer (fish 

skin gelatin (0.27%), or 5% BSA in 1x PBS) for 45 mins at 37°C. The cells were then treated 

with the blocking buffer diluted primary antibody for 1 hr at room temperature or 45 mins at 

37°C, depending on the antibody employed and washed for three times, 10 mins each, with 

1x PBS following the incubation. The cells were later incubated with the secondary antibody 

mixture (fluorophore-attached antibody, the nuclear stain DAPI, and Phalloidin-TRITC or Alexa 

Fluor 647-Phalloidin) for 45 mins at 37°C and washed thrice with 1x PBS for 10 mins each. 

Finally the cell coverslips were mounted on microscopic slides employing Immu-MountTM and 

stored overnight at 4°C. In the case of transfected cells, those cells grown around the glass 

coverslips were lysed and analysed by western blotting to confirm the success of the siRNA 

mediated GSKIP KD.  

 

3.2.2.8 Confocal microscopy (Laser scanning microscope; LSM 780) 

  
The mounted cover slips were visualized using Zeiss LSM780 confocal microscope at 10x, 

40x, and 63x magnifications. Three channels were used for capturing images, DAPI, using a 

405 nm laser/415-195 nm filter, CY3, using a 561 nm laser/566-631 nm filter, and CY5, using 

a 633 nm laser/638-740 nm filter. Digital gain was fixed at 1 and master gain for all channels 

was set at around 650, while the pinholes were adjusted to 40-70 μm. 

 

3.2.2.9 Actin fractionation assay 

 
Following reverse siRNA transfection in a 6-well plate format, confluent A549 cells were 

washed with ice-cold 1x PBS. 100 μL actin stabilization buffer (Table 4b) were added per well 

and the plate was placed on a shaker for 10 mins at 115 rpm/min and 4°C. Cells were then 

dislodged by scraping and the whole lysate was centrifuged at 4°C for 10 mins at 14000 rpm. 

The globular monomeric G-actin containing supernatant was collected and the filamentous 

polymerized F-actin containing pellet was solubilised with boiling actin depolymerization buffer 

(Table 4b). Complete solubilisation of the pellet was ensured through multiple vortexing and 

heating at 95°C cycles. G- and F- actin samples were separated on 12% SDS-PAGE gels, and 

then western blotted with actin, CFL, and phospho-CFL antibodies, following blocking in 1% 

BSA in TBS-T. (Protocol adapted from Rasmussen et al. 2010).  
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4. Results 

 
Previous work in our lab suggested GSKIP acts as a potential regulator of the actin 

cytoskeletal dynamics in non-small lung cancer A549 cells. In addition, GSKIP was found to 

interact with SMYD2, an important oncoprotein in various cancers (PhD thesis of Ekaterina 

Perets). Hence, several cancer cell lines were studied to elaborate on GSKIP’s potential role 

in tumorigenesis.  

 
4.1 GSKIP is expressed in cancer cells of various origins 
 

Different cancer cell lines of varying origins were studied for their endogenous GSKIP 

abundance (Fig. 13). The cells tested were adenocarcinoma, osteosarcoma, and 

neuroblastoma cells. Adenocarcinomas are malignant epithelial tumours. They originate from 

glandular or secretory epithelium, most commonly from lungs, colon, breast, and to a lesser 

extent from the cervix (Gazdar and Maitra, 2001). Osteosarcoma, the most prevalent bone 

tumour in children and adolescents, exhibit the formation of malignant spindle cells of 

mesenchymal origin, which are implicated in osteoid matrix anomalies (Durfee et al. 2016). 

Neuroblastoma is a malignancy that originates in the sympathetic nervous system in infants 

and young children, with the adrenal medulla and paraspinal ganglia being the major sites of 

tumour development (Cole and Maris, 2012). GSKIP is ubiquitously expressed in cancer cells, 

while adenocarcinoma cells express variable levels of GSKIP.  
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Figure 13. The endogenous GSKIP abundance in cancer cells of varying origins and types. Fig 14a : Western 

blot signals of GSKIP and of the loading control, GAPDH. Fig 14b : Semi-quantitative analysis of GSKIP protein 

abundance was conducted by densitometry and normalized to the loading control. A549 : a human non-small lung 

adenocarcinoma cell line. HeLa-S3, a subclone of the HeLa cell line : a human cervical adenocarcinoma cell line. 

SW480 : human colorectal adenocarcinoma cell line. U2-OS : human osteosarcoma cell line. SHSY5Y : a human 

bone marrow neuroblastoma cell line. MCF7 : a human breast adenocarcinoma cell line.  

 
 

4.2    GSKIP modulates the actin cytoskeleton in A549 cells 
 
4.2.1 GSKIP regulates the activity of CFL, a cytoskeleton modulator  
          
    

In order to study the potential role of GSKIP in cytoskeletal dynamics, transient KD of 

GSKIP expression was accomplished by using SMARTpool siGENOME siRNA, where two 

SMARTpools were employed throughout the practical work to confirm the findings. The KD 

was found to be stable for 72 hrs post transfection and resulted in around 70% downregulation 

of the GSKIP protein compared to the non-targeting (siRNA NT) control (Fig. 14).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. GSKIP KD in A549 cells. A549 cells were treated with two different siRNAs to knock down the 

expression of GSKIP or with siRNA NT. GSKIP, HSP90, and α-tubulin were detected by Western blotting. Signals 
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were semi-quantitatively analysed by densitometry and the ratio of GSKIP to loading control was calculated; n = 3, 

mean ± standard error of the mean (SEM), Paired T-test, *p < 0.05 

 
CFL modulates the actin cytoskeleton through its action on actin filaments, with its activity 

being tightly regulated by its inhibitory phosphorylation at S3 (section 2.4). Hence the total 

protein expression levels and the phosphorylation of CFL were studied upon the KD of GSKIP 

in A549 cells. GSKIP KD significantly reduced the phosphorylation of CFL at S3, relative to the 

total protein abundance (Fig. 15), which in turn translates to increased activity.  

 

 

  
 
 

Figure 15. GSKIP KD in A549 cells decreases CFL S3 phosphorylation. A549 cells were treated with siRNA to 

knock down the expression of GSKIP or with siRNA NT. CFL and phospho-CFL (S3) were detected by Western 

blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of phosphorylated CFL to 

normalised CFL (total CFL to GAPDH) was calculated; n = 4, mean ± SEM, Paired T-test, *p < 0.05 

 

 
4.2.2 Actin fractionation reveals altered CFL abundance and distribution    
         upon GSKIP KD 
 

Actin exists in two states within the cell, the monomeric globular (G) and the polymerized 

filamentous (F)-actin forms. Each actin monomer maintains strong interactions with two other 

monomers through its tight binding sites, eventually forming polymerized actin filaments 

(Cooper, 2000). Actin fractionation was employed to separate the two actin fractions and study 

the CFL levels in each fraction. Whereas the majority of the CFL pool appears to be associated 

with G-actin (Fig. 16), a marked decrease in the abundance of CFL under the F-actin fraction 

was observed when GSKIP was knocked down (Fig. 16), indicating changes in the actin 

dynamics. The KD-mediated decrease in the CFL pool under both actin fractions is on par with 

the decrease in its total abundance (Fig. 17). Despite the pronounced decrease in CFL levels 

under the polymerized F-actin fraction, most of CFL is associated with the monomeric G 
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fraction, which explains why the decrease concerning the total CFL pool and the G actin 

associated one mimic each other.  

 
 
 

 

 

 

Figure 16. GSKIP KD in A549 cells decreases CFL abundance in the F-actin fraction. A549 cells were treated 

with siRNA GSKIP to knock down the expression of GSKIP or with siRNA NT. The G-actin and the  F-actin fractions 

were separated and the fraction relating to each siRNA treatment was studied for CFL and phospho-CFL (S3) by 

Western blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of CFL to GAPDH and 

phosphorylated CFL to GAPDH calculated; n = 2, mean ± SEM. 
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Figure 17. GSKIP KD in A549 cells decreases the total CFL abundance. A549 cells were treated with siRNA to 

knock down the expression of GSKIP or with siRNA NT. CFL was detected by Western blotting. Signals were semi-

quantitatively analysed by densitometry and the ratio of total CFL to GAPDH was calculated; n = 6, mean ± SEM, 

Paired T-test, *p < 0.05 

 

4.2.3 Junctional actin anomalies upon GSKIP KD in A549 cells 
 

The KD-induced decrease in the phosphorylation of CFL relative to its total abundance 

and its decreased distribution under the polymerized actin fraction indicates modified CFL 

activity. Therefore fluorescence microscopy experiments were conducted in order to study the 

F-actin cytoskeleton in A549 cells. The KD of GSKIP resulted in increased depolymerization 

at the cellular junctions, reaffirming the increase in CFL activity (Fig. 18). 
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Figure 18. GSKIP KD in A549 cells causes increased actin depolymerization at cellular junctions. 

Representative fluorescence microscopic analysis of A549 cells transfected with siRNA to knock down the 

expression of GSKIP or with siRNA NT. Cyan: DAPI (nuclear staining), Red: Phalloidin (F-actin staining). Shown is 

a representative result of three independent experiments 

 

 

4.3.   GSKIP influences actin dynamics in various cancer cells 
 
4.3.1 GSKIP modulates CFL phosphorylation at S3 in various cancer cell  
          models 
 

Actin cytoskeleton dynamics are essential for various processes in cancer cells. In order 

to better understand the extent of GSKIP’s CFL modulatory effect on CFL, various cancer cell 

models were evaluated for CFL protein expression levels and phosphorylation at S3 upon the 

KD of GSKIP. The reduction in the inhibitory phosphorylation of CFL was consistent throughout 

all adenocarcinoma cell lines tested, whereas an elevation was recorded in the osteosarcoma 

cell line. No marked change was observed in the neuroblastoma cells (Fig. 19).  
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Figure 19. GSKIP KD in U2-OS, MCF7, HeLa-S3, SW480, and A549 cells alters CFL phosphorylation at S3. 

Cells were treated with siRNA to knock down the expression of GSKIP or with siRNA NT. CFL and phospho-CFL 

(S3) were detected by Western blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of 

phosphorylated CFL to GAPDH calculated; n = 4, n = 3, n = 3, n = 3, n = 5, n = 9, mean ± SEM, Paired T-test, *p < 

0.05. A549 : a human non-small lung adenocarcinoma cell line. HeLa-S3, a subclone of the HeLa cell line : a human 

cervical adenocarcinoma cell line. SW480 : human colorectal adenocarcinoma cell line. U2-OS : human 

osteosarcoma cell line. SHSY5Y : a human bone marrow neuroblastoma cell line. MCF7 : a human breast 

adenocarcinoma cell line.  
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4.3.2 GSKIP abundance is unrelated to the changes in CFL phosphorylation   
         status 

 
The KD of GSKIP in various cancer cells yielded varying outcomes, and hence the 

endogenous GSKIP protein levels were evaluated against the average change in the 

phosphorylation of CFL at S3 (Fig. 20). The highest endogenous levels were recorded for 

SHSY5Y and MCF7 cells, both of which exhibited the least change in the KD-induced alteration 

in CFL phosphorylation. On the contrary, the lowest endogenous GSKIP abundance was 

detected in HeLa-S3 cells, which demonstrated the highest CFL phosphorylation change. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 20. Average change in CFL phosphorylation upon GSKIP KD compared to the endogenous GSKIP 

abundance in U2-OS, SHSY5Y, MCF7, HeLa-S3, SW480, and A549 cells. The change in the phosphorylation of 

CFL at S3 (elevation in U2-OS and reduction in other cell models) is unrelated to the endogenous protein levels of 

GSKIP.  
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4.3.3 GSKIP KD causes cytoskeletal and junctional anomalies in HeLa-S3 cells           
 

The highest reduction in CFL phosphorylation upon GSKIP KD was encountered in HeLa-

S3 cells. To evaluate the potential changes of the cellular cytoskeleton, F-actin was stained 

with phalloidin. GSKIP KD resulted in decreased F-actin at the junctions, and increased stress 

fibers in the cells (Fig. 21). Moreover, a phenotypic change that resembled the one seen during 

EMT was also apparent upon the KD. 

 

 

 

 

 

 

 

 

 

  
 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 21. GSKIP KD in HeLa-S3 cells alters the cytoskeleton. Representative fluorescence microscopic 

analysis of HeLa-S3 cells transfected with siRNA to knock down the expression of GSKIP or with siRNA NT. Images 

were taken at 40x magnification. Red: Phalloidin (F-actin cytoskeleton staining), Cyan : DAPI (nuclear staining). 

Shown is a representative result of three independent experiments. 
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4.4    GSKIP alters CFL phosphorylation independently of Rho GTPases and  
         MAP Kinases 
 

4.4.1 GSKIP KD upregulates Rho GTPases in A549 and HeLa-S3 cells 
 

The activity of CFL is dependent on its negative regulatory phosphorylation by LIMK-1 on 

S3. Therefore, the expression levels of the LIMK-1 upstream regulators the Rho GTPases, 

RhoA and Rac-1 were examined. RhoA and Rac-1 control the activity of the kinases ROCK 

and PAK1 respectively, both of which are modulators of the phosphorylation and activity of 

LIMK-1. The KD of GSKIP significantly upregulated both Rho GTPases (Fig. 22), indicating a 

potential role in the decreased CFL phosphorylation. 
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Figure 22. GSKIP KD in A549 and  HeLa-S3 cells upregulates Rho GTPases. Cells were treated with siRNA to 

knock down the expression of GSKIP or siRNA NT. RhoA and Rac-1 were detected by Western blotting. Signals 

were semi-quantitatively analysed by densitometry and the ratio of Rho GTPases to GAPDH calculated; n = 6, n = 

6, n = 5, mean ± SEM, Paired T-test, *p < 0.05. 

 

4.4.2 GSKIP KD has no impact on the activity of RhoA in HeLa-S3 cells 

 
The change in the abundance of the Rho GTPases upon GSKIP KD suggested a potential 

change in their activity. Thus, employing E-coli competent cells, the Rho binding domain (RBD) 

of the Rhotekin protein was expressed as a tagged GST fusion protein and purified using 

affinity chromatography resin. The domain only binds to the GTP-bound active fraction of RhoA 

and hence was used to precipitate active RhoA from the lysates.  GSKIP KD had no significant 

impact on the activity of RhoA in HeLa-S3 cells (Fig . 23), This, in turn, necessitated studying 

the Rho GTPases-controlled phosphorylation sites on LIMK-1 to uncover the underlying 

mechanism behind altered CFL phosphorylation.  

 
 

 

 

Figure 23. GSKIP KD does not affect RhoA activity in HeLa-S3 cells. Cells were left untreated or treated with 

siRNA to knock down the expression of GSKIP or with siRNA NT. Active GTP-bound RhoA was precipitated with 
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(RBD) affinity chromatography resin. RhoA, GAPDH, and GSKIP were detected in the input fraction, and RhoA was 

detected in the pulldown (PD) one by Western blotting, with GAPDH being employed as a loading control for the 

input . Signals were semi-quantitatively analysed by densitometry and the ratio of active RhoA to normalized total 

RhoA (total RhoA to GAPDH) was calculated; n = 3, , mean ± SEM, Paired T-test, *p < 0.05. ns: non-significant. 

 

4.4.3 GSKIP KD does not affect the PKA phosphorylated GDP-bound fraction of  
         RhoA in A549 cells 
 

The PKA-mediated phosphorylation of RhoA at serine 188 (S188), enhances its binding 

to RhoGDI and hence suppresses its activity. While the GTP-bound fraction of RhoA was 

unchanged upon GSKIP KD in HeLa-S3 cells and since GSKIP is a direct interaction partner 

of PKA, the PKA phosphorylated GDP-bound inactive fraction was studied in A549 cells, as 

the employed antibody did not work with HeLa cell lysates. The KD of GSKIP had no effect on 

the S188 phosphorylation of RhoA (Fig. 24). 

 

 

 

Figure 24. GSKIP KD in A549 does not alter the S188  phosphorylated GDP-RhoA fraction . Cells were treated 

with siRNA to knock down GSKIP or with siRNA NT. P RhoA (S188) was detected by Western blotting. Signals 

were semi-quantitatively analysed by densitometry and the ratio of p RhoA (S188) to GAPDH calculated; n = 4, 

mean ± SEM, Paired T-test, *p < 0.05. 

 

 

4.4.4 GSKIP does not form a complex with RhoA in A549 and HeLa-S3 cells 
 

Both PKA and GSK3β have been implicated in the regulation of RhoA activity (Lang et al. 

1996, Jiang et al. 2008). Thus, to exclude RhoA from the cytoskeletal reorganizational changes 

evident upon the KD of GSKIP, the possibility of complex formation between GSKIP and RhoA 

was examined. In addition, the interactions mediating the potential complex formation between 

GSKIP and RhoA, whether GSKIP-PKA RIIα-mediated or GSKIP-GSK3β-mediated were also 
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a 

b 

studied. However, complex formation between GSKIP and PKA RIIα wasn’t detectable, neither 

upon the immunoprecipitation of endogenous GSKIP, nor when overexpressed FLAG-tagged 

GSKIP was immunoprecipitated. This necessitated the overexpression of both GSKIP and 

PKA RIIα. The human protein atlas shows that the endogenous RNA levels of GSKIP and PKA 

RIIα are much lower than those of RhoA in A549 and HeLa cells (at least 12 times lower), 

pointing towards higher protein levels of RhoA. Therefore, either wild type full-length GSKIP 

(FLAG-tagged) was expressed or both wild type GSKIP (FLAG-tagged) and wild type PKA RII 

alpha (GFP-tagged) were co-expressed in A549 and HeLa-S3 cells. Anti-FLAG 

immunoprecipitation was conducted to isolate the FLAG-tagged GSKIP and the corresponding 

co-immunoprecipitation (co-IP) with either PKA RIIα or GSK3β was validated. The presence 

of RhoA was then analysed under each co-IP. The overexpression of PKA RIIα is possibly 

associated with increased constraint on the catalytic (C) subunits of PKA, since RIIα inhibits 

the C subunit of PKA and hence forskolin (FSK) stimulation was conducted to elevate cAMP 

levels, activate PKA, and circumvent the issue in question.  
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Figure 25. GSKIP is not incorporated into a complex comprising RhoA. A549 and HeLa-S3 cells were 

transfected with the indicated plasmids and treatments, lysed and anti-FLAG immunoprecipitation was carried out 

to study the presence of  PKA RIIα-mediated complex formation between GSKIP and RhoA (a). A549 and HeLa-

S3 cells were transfected with FLAG-GSKIP-WT, lysed, and exposed to an anti-FLAG immunoprecipitation to 

evaluate the presence of GSK3β-mediated complex formation between GSKIP and RhoA (b). GSKIP, 

GSK3β,  PKA-RII alpha, and GAPDH were detected by Western blotting. n = 2. 

 

4.4.5 GSKIP KD does not influence the Rho GTPase-mediated phosphorylation   
         of LIMK-1 in HeLa-S3 cells 
 

The activity of LIMK-1 is regulated by its phosphorylation at various sites, Thr508, which 

is mediated by ROCK and PAK1, S323, which is controlled by MK2, a downstream kinase of 

p38 MAPK, and S596 by PKA. For the phosphorylation of CFL to be altered, the upstream 

phosphorylation of LIMK-1 would have to be modified. In order to elucidate the GSKIP KD-

mediated change in CFL activity, the Rho GTPases-dependent phosphorylation of LIMK-1 was 

studied in HeLa-S3 cells.  The KD of GSKIP had no effect on the phosphorylation of Thr508 

(Fig. 26), which in turn implicates either PKA or MK2 as the kinases behind the observed 

change in CFL phosphorylation at S3.  

 
 

 

Figure 26. GSKIP KD in HeLa-S3 cells has no effect on active LIMK-1. HeLa-S3 cells were treated with siRNA 

to knock down the expression of GSKIP or with siRNA NT. pLIMK (Thr 508/505) was detected by Western blotting. 

Signals were semi-quantitatively analysed by densitometry and the ratio of pLIMK to GAPDH was calculated; n = 

5, mean ± SEM, Paired T-test, *p < 0.05 
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4.4.6 GSKIP does not form a complex with various cytoskeletal regulators in    
         A549 cells 
 

To better understand the underlying mechanisms behind the change in CFL activity upon 

the KD of GSKIP, the possibility of GSKIP forming a complex with some of the major regulators 

of actin dynamics was evaluated in co-IP studies in A549 cells.. LIMK-1 appears to form 

complexes with ROCK1 and p38 MAPKα, but not GSKIP (Fig. 27). However, since the complex 

comprising both endogenous GSKIP and PKA RIIα has proven to be problematic to 

immunoprecipitate, as the co-IP between GSKIP and the RIIα  subunits was only evident upon 

the overexpression of both proteins (Fig. 25), there is the possibility that LIMK-1 and GSKIP 

are involved in a PKA mediated transient complex.  

 

 
 
 
Figure 27. GSKIP is not in a complex with LIMK-1, ROCK1, and p38 MAPKα in A549 cells. Cells were lysed 

and the lysates were subjected to immunoprecipitation of endogenous GSKIP and LIMK-1, anti-rabbit 

immunoglobulin (IgG R) was used a negative control. GSKIP, LIMK-1, ROCK1, and p38 MAPKα were detected by 

Western blotting. n =2. PD: Pull-down. 

 

4.4.7 GSKIP KD does not modulate p38 MAPK phosphorylation in A549 cells 
 

p38 MAPK kinase has been implicated in the regulation of LIMK-1 phosphorylation both, 

through the direct phosphorylation of LIMK-1 at serine 310 (S310) and indirectly, by 

phosphorylating and activating MK2, which consequently phosphorylates LIMK-1 at S323. 

While the direct phosphorylation at S310 does not activate LIMK-1, the MK2-mediated 

phosphorylation activates LIMK-1 (Kobayashi et al. 2006) and hence contributes to the 

phosphorylation of CFL. The activity of p38 MAPK is regulated by its activating phosphorylation 
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at threonine 180 (Thr180) and tyrosine 182 (Tyr182). GSKIP KD did not alter the activating 

phosphorylation of p38 MAPK (Fig. 28).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. GSKIP KD in A549 cells does not modulate p38 MAPK phosphorylation. Cells were treated with 

siRNA to knock down the expression of GSKIP or with siRNA NT. p38 MAPKα and p-p38 MAPK (Thr180/Tyr182) 

were detected by Western blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of p-

p38 MAPK to normalized p38 MAPK α (p38 MAPK α/GAPDH) calculated; n =2, mean ± SEM. 

 

4.4.8  GSKIP does not control the levels of the CFL phosphatase chronophin in  
          A549 and HeLa-S3 cells 
 

The GSKIP KD did not significantly change the active fraction of LIMK-1, which depends 

on the Rho GTPases and p38 MAPK. This points towards a potential implication of PKA in 

modulating LIMK-1 activity. However in order to confirm this possibility, insight into the 

abundance of downstream phosphatases that can dephosphorylate and activate CFL had to 

be gained.  The phosphatases known to dephosphorylate CFL at S3,  are the SSH family of 

phosphatases and chronophin. Chronophin was found to be more essential than SSH 
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phosphatases for processes associated with CFL-mediated actin turnover. Hence, owing to 

the ubiquitous expression of both CFL and GSKIP, coupled with the broad expression of 

chronophin against the more limited expression pattern of the SSH phosphatase proteins 

(Gohla et al. 2005), chronophin was chosen to be studied. In both A549 and HeLa-S3 cells, 

the KD of GSKIP elicited no changes in chronophin abundance, reaffirming the GSKIP-

mediated potential involvement of PKA in modulating CFL phosphorylation (Fig. 29).  

 

 

 
Figure 29. GSKIP KD in A549 and HeLa-S3 cells does not alter total chronophin abundance. A549 cells were 

treated with siRNA to knock down the expression of GSKIP or with siRNA NT. Chronophin was detected by Western 

blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of chronophin to GAPDH was 

calculated; n = 5 and n = 3 respectively, mean ± SEM, Paired T-test., *p < 0.05. 

 

4.5       GSKIP plays a potential role in EMT mirrored by cell junctional aberrations 

 

4.5.1    GSKIP modulates crucial EMT proteins in A549 and HeLa-S3 cells 
 
 

The phenotype observed upon the knock down of GSKIP in HeLa-S3 cells was reminiscent 

of the EMT one, exhibiting increased stress fiber formation and altered actin distribution at the 

cellular junctions. PKA plays a role in MET, characterised by unchanged abundance of the 

master regulators SNAIL and twist, despite the other markers of MET demonstrating significant 

changes in their expression levels (Nadella et al. 2008). The protein expression levels of 
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several EMT markers and master regulators were studied in A549 and HeLa-S3. Upon the KD 

of GSKIP, changes in the abundance of EMT markers such as E-cadherin and β-catenin were 

encountered, despite the master regulator SNAIL showing no significant difference at a protein 

level in both cell lines (Figs. 30 and 31). The EMT master regulator and transcription factor, 

ZEB1 was significantly upregulated in both cell lines. This was surprising, however, Takeyama  

et al. demonstrated that among all EMT master regulators, only ZEB1 expression was 

significantly correlated with EMT markers expression in non-small lung cancer cell lines such 

as A549 cells, hence implicating ZEB1 as an integral factor in lung cancer pathogenesis 

(Takeyama  et al. 2010). Larsen et al. further confirmed the relevance of ZEB1 as a major EMT 

inducer and driver, thus highlighting the importance of its targeted inhibition, as well as the 

characterization of its modulators (Larsen et al. 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. GSKIP controls the abundance of the master regulator ZEB1 in A549 cells and its KD is 

associated with decreased abundance of the epithelial marker E-cadherin. A549 cells were treated with siRNA 

to knock down the expression of GSKIP or with siRNA NT. ZEB1, E-cadherin, and SNAIL were detected by Western 
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blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of each protein to the loading 

control was calculated; n = 6 , n =  3, and n = 4, mean ± SEM, Paired T-test, *p < 0.05 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. GSKIP upregulates the master regulator ZEB1 in HeLa-S3 cells, and its KD is associated with 

decreased abundance of the epithelial marker β-catenin. HeLa-S3 cells were treated with siRNA to knock down 

the expression of GSKIP or with siRNA NT. β-catenin, SNAIL, and ZEB1 were detected by Western blotting. Signals 

were semi-quantitatively analysed by densitometry and the ratio of each protein to the loading control was 

calculated; n = 5 , n =  5, and n = 7, mean ± SEM, Paired T-test, *p < 0.05.  
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4.5.2    GSKIP modulates adherens junction integrity 
 

The shift of the cells from the epithelial to the mesenchymal phenotype is associated with 

the loss of cell-cell contacts and the disassembly of the cellular junctions, such as AJs and the 

desmosomal junctions. The KD of GSKIP in HeLa-S3 cells was associated with increased 

stress fiber formation, a hallmark of mesenchymal cells, as well as altered F-actin at the 

junctions. Actin is an integral component of the AJ, as is E-cadherin, and both have exhibited 

marked alterations upon GSKIP KD. Another AJ protein, β-catenin was studied in order to shed 

light on the junctional integrity following the KD. Decreased localization of β-catenin at the 

junction was evident after the KD (Fig. 32), hence implicating GSKIP as a modulator of the 

stability of the AJ.  

  
 
Figure 32. GSKIP modulates junctional β-catenin in HeLa-S3 cells. Representative fluorescence microscopic 

analysis of HeLa-S3 cells transfected with siRNA to knock down the expression of GSKIP or with siRNA NT. Cyan: 

DAPI nuclear staining, Red: Beta-catenin. Shown is a representative result of two independent experiments. 
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4.5.3    GSKIP regulates GSK3β activity in HeLa-S3 cells 
  

GSK3β modulates the stability of AJs and β-catenin levels through its ability to regulate 

the activity of atypical protein kinase C (Colosimo et al. 2010). The activity of GSK3β is 

inhibited by its PKA mediated phosphorylation at S9. GSKIP facilitates this inhibitory 

phosphorylation in HEK293 cells (Hundsrucker et al. 2010). As expected, GSKIP KD 

experiments conducted in HeLa-S3 cells also showed decreased phosphorylation of GSK3β 

at S9 and hence this may explain the potential decrease in the β-catenin-mediated AJ stability 

(Fig. 33). 

 
 
 

 
Figure 33. GSKIP modulates GSK3β activity in HeLa-S3 cells. HeLa-S3 cells were treated with siRNA to knock 

down the expression of GSKIP or with siRNA NT. GSK3β and  p-GSK3β (S9) were detected by Western blotting. 

Signals were semi-quantitatively analysed by densitometry and the ratio of phosphorylated GSK3β to normalised 

GSK3β (GSK3β/GAPDH) calculated; n = 5, mean ± SEM, Paired T-test, *p < 0.05.  

 

 

4.5.4    GSKIP modulates the desmosomal intermediate filament binding  
            proteins DSP I and II in A549, HeLa-S3, and SW480 cells 
 

Proteomics revealed the muscle-specific intermediate filament Desmin to be at least 50% 

downregulated in GSKIP-depleted lungs at E18.5. The downregulation was validated by 

Western blotting (PhD thesis Veronika Deak). Since the phenotype concerning the cell 

junctions was suspected in different cell lines, it was more likely that the GSKIP KD-mediated 

disruption involved an integral member of the desmosomes, as opposed to the intermediate 

filaments, whose composition differs from one cancer cell type to another. Following GSKIP 
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KD the abundance of the desmosomal cadherins binding protein, plakoglobin was unchanged, 

while that of the intermediate filament (IF) binding proteins DSP I/II was significantly 

downregulated in all tested adenocarcinoma cell lines, indicating a potential disruption in the 

interaction between the intermediate filaments and the desmosomal cadherins. (Fig. 34).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 34. GSKIP KD in A549, HeLa-S3, and SW480 cells decreases the abundance of IF binding proteins 

DSP I/II. Cells were treated with siRNA to knock down the expression of GSKIP or with siRNA NT. DSP I and II 

were detected by Western blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of DSP 

I/II to the loading control calculated; n = 3, n = 5, n = 3, mean ± SEM, Paired T-test, *p < 0.05. 
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4.5.5    GSKIP KD elicits a prominent downregulation of DSP I/II abundance in       

            HeLa-S3 cells 
 

The consistent reduction at the protein level of the intermediate filament binding proteins 

DSP I/II suggested a potential destabilization of the desmosomal junctions. To validate the 

GSKIP mediated desmosomal aberrations, the siRNA-induced GSKIP KD was rescued by 

expressing FLAG-tagged full length GSKIP (FLAG-GSKIP WT) and the levels of DSP I/II were 

examined. Moreover, given GSKIP’s intrinsic ability to directly interact with PKA and GSK3β, 

the interactions with both kinases were studied to evaluate their necessity for the desmosomal 

junctions integrity. The overexpression of WT GSKIP following the KD did not appear to rescue 

the KD-induced reduction in DSP I/II abundance (Fig. 35) and unsurprisingly the GSK3β and 

PKA binding deficient mutants (L130P and N42I respectively) exhibited the same changes, an 

indication that the KD of GSKIP might be irreversibly altering DSP I/II abundance.  

 

 

 

Figure 35. Rescue of GSKIP KD in HeLa-S3 cells does not rescue the altered DSP I/II abundance. HeLa-S3 

cells were treated with either siRNA GSKIP or siRNA NT and transfected 24 hrs later with the indicated plasmids, 

lysed and Western blot analysis was conducted to detect GSKIP, DSP I/II, and HSP90. Signals were semi-

quantitatively analysed by densitometry and the ratio of DSP I/II to the loading control calculated; n =7 for siRNA 

treatment (KD + control), mean ± SEM, Paired T-test, *p < 0.05. n = 2 for plasmid treatment (overexpression + 

control), mean ± SEM. 
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The phosphorylation of DSP at a site neighbouring its keratin binding domain, by PKCα 

has been implicated in the disruption of desmosomal junctions and their consequent 

reorganization. The signalling events preceding the activation of PKCα, however, are not fully 

understood (Kröger et al. 2013) and the mechanisms concerning the consequent 

phosphorylation of DSP are still unknown (Hobbs and Green. 2012) . The phosphorylation of 

DSP was found to be influenced by keratins and was found to regulate the desmosomal 

stability, where the increased DSP phosphorylation was associated with desmosomal 

compromises. The decrease in the phosphorylation was marked by increased desmosomal 

stability. Hence the protein levels of PKCα were studied upon the KD of GSKIP in HeLa-S3 

cells to evaluate the possibility of GSKIP modulating the junctional integrity through PKCα and 

keratins. The KD of GSKIP in HeLa-S3 cells was found to cause an elevation in the protein 

levels of PKCα (Fig. 36) which could point towards increased DSP phosphorylation and 

consequently a demise in the desmosomal integrity. However, this hypothesis would require 

further validation. 

 
 
 

Figure 36. GSKIP KD non-significantly upregulates PKC-α in HeLa-S3 cells. HeLa-S3 cells were treated with 

siRNA to knock down the expression of GSKIP or with siRNA NT. PKCα, GSKIP, and α-tubulin were detected by 

Western blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of each protein to the 

loading control was calculated n = 3, mean ± SEM, Paired T-test, *p < 0.05. 

 

4.5.6    Mitochondrial fission/fusion appear unaltered upon GSKIP KD  
 

Loh et al. suggested that GSKIP can act as an anchoring protein in the 

cAMP/PKA/dynamin related protein 1 (Drp1) signalling axis and that it plays a role in the 

phosphorylation of the mitochondrial fission regulator Drp1 (Loh et al. 2015). Moreover, Kim et 

al. revealed that changes in the levels of Drp1 are associated with human lung and colon 
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cancers (Kim et al. 2018). Furthermore, actin polymerization was previously found to 

encourage Drp1 mediated mitochondrial fission, while EMT in A549 cells was demonstrated 

to be associated with elevation of the overall mitochondrial content (WK et al. 2015, Xu et al. 

2015, Gugnoni et al. 2016). Hence, the inhibitory PKA-mediated phosphorylation of Drp1 at 

S637 was studied following the KD of GSKIP in A549 cells. The KD was found to elicit a minor 

but significant decline in the phosphorylation of Drp1 at S637, whereas the phosphorylation 

relative to the total abundance appears unchanged (Fig. 37).  

 

 
Figure 37. GSKIP KD in A549 cells decreases Drp1 phosphorylation at S637. A549 cells were treated with 

siRNA to knock down the expression of GSKIP or with siRNA NT. Drp1 and phospho-Drp1 (S637) were detected 

by Western blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of phosphorylated 

Drp1 to normalised Drp1 (total Drp1 to α-Tubulin) was calculated; n = 4, mean ± SEM, Paired T-test, *p < 0.05 

 

Studies in our lab conducted on E18.5 mouse lungs, and A549 cells suggested a GSKIP 

related potential modulation of another mitochondrial fission protein, dynamin-like 120 kDa 

protein (OPA-1). Similar to Drp1, OPA-1 is a regulator of mammalian mitochondrial fission and 

fusion (Lee et al. 2004) exhibiting high expression in lung, cervical, and colorectal cancers. 

Thus, A549, HeLa-S3, and SW480 cells were studied for OPA-1 abundance upon the KD of 
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GSKIP. Data obtained showed little to no change in OPA-1 protein levels when GSKIP is 

knocked down (Fig. 38). Taken together with the Drp1 data, this indicates that the GSKIP KD 

induced phenotype does not suffer from mitochondrial fission or fusion aberrations. 

 

 
Figure 38. GSKIP KD in A549, HeLa-S3, and SW480 cells does not impact OPA-1 abundance. Cells were 

treated with siRNA to knock down the expression of GSKIP or with siRNA NT. OPA-1 was detected by Western 

blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of OPA-1 to the loading control 

calculated; n = 2, mean ± SEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 83 
 

5.   Discussion 
 
5.1 GSKIP modulates actin dynamics in various cell lines 
 

GSKIP, a ubiquitously expressed AKAP, directly binds both PKA and GSK3β, both of 

which are crucial components of various signalling pathways. The decrease of the inhibitory 

phosphorylation of the actin severing protein CFL, is a characteristic of GSKIP KD in 

adenocarcinoma cells originating from epithelia, whereas the cancer cells of mesenchymal 

origin exhibited the opposite change (Fig. 21). This suggests a role in the maintenance and 

regulation of the epithelial phenotype. The actin fractionation studies conducted in A549 cells 

revealed down-regulation of CFL in the F-actin fraction upon GSKIP KD, whereas the 

abundance of actin appears unchanged (Fig. 17). A decrease in CFL abundance under the F-

actin fraction points towards increased actin depolymerization. However, CFL, as an actin 

severing protein has been implicated as the “steering-wheel” of the cell. Recently it was 

discovered that CFL possesses the ability to induce both depolymerization of actin filaments 

through their severing, as well as their assembly and polymerization through the recycling and 

generation of globular actin monomers, effectively “steering” the actin cytoskeleton of the cell 

(Andrianantoandro and Pollard, 2006). The change in CFL abundance independent of its actin 

counterpart in the F-actin fraction, suggests a localized depolymerization of the actin filaments. 

It may be counteracted by recycling and incorporation of the resulting globular monomers to 

form actin filaments. This was evident in HeLa-S3 cells, where the KD of GSKIP was 

associated with increased formation of the F-actin stress fibers (Fig. 22). This serves as an 

indication that the characteristic epithelial cortical actin filaments are being depolymerized in 

favor of the mesenchymal F-actin stress fibers. 

 

5.2 GSKIP modulation of CFL phosphorylation is most likely PKA  dependent 
 

The activity of CFL is dependent on its phosphorylation by LIMK-1, which is mediated 

through the LIMK upstream regulators, the Rho GTPases, RhoA, and Rac-1. The KD of GSKIP 

significantly upregulated both Rho GTPases (Fig. 23), which suggested a potential role in the 

GSKIP dependent CFL phosphorylation. RhoA and Rac-1 can influence the active LIMK-1 pool 

by activating their downstream effectors ROCK and PAK1 respectively, whereas the activity of 

the Rho GTPases is determined according to the proportion of their active GTP bound to the 

inactive GDP bound forms. In addition, the PKA mediated phosphorylation of RhoA at S188, 

inhibits RhoA (Van Aelst and D’Souza-Schorey, 1997, Qiao J et al. 2003). In HeLa-S3 cells 

there was no difference in the GTP-bound fraction of the GTPase upon the KD of GSKIP (Fig. 

24), and hence no change in its activity. The KD of GSKIP in A549 cells also had no effect on 

the PKA phosphorylation of GDP-bound fraction of RhoA (Fig. 25), while GSKIP, PKA, and 
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RhoA did not form a complex in either cell line (Fig. 26). On the other hand, Rac-1 activity 

assays failed to detect any GTP bound Rac-1. Hence the phosphorylation of LIMK-1 at Thr508, 

a culmination of the activity of the three Rho GTPases, RhoA, Rac-1, and Cdc42, was studied. 

The phosphorylation did not increase upon GSKIP KD in HeLa-S3 cells (Fig. 27), effectively 

eliminating the possibility of Rho GTPases being the modulators controlling the decreased 

CFL phosphorylation.   

Nadella et al. proposed a model for the activation of LIMK-1, which necessitates its 

phosphorylation at different sites by various kinases to achieve full activity (Nadella et al. 

2009). ROCK and PAK are essential for the activation. Following this phosphorylation, LIMK-

1 must be phosphorylated at Thr508 (by ROCK or PAK), at S596 (by PKA), and at S323 (by 

p38 MAPK downstream effector, MK2) to be fully activated. This activation mode confers a 

dynamic control over the activity of LIMK-1, thus in addition to Rac/Cdc42 and Rho signalling, 

Erk/MK and PKA pathways can also influence the CFL-mediated actin reorganization. PKA 

signalling has been implicated in the reorganization of the actin cytoskeleton, characterized by 

elevated CFL phosphorylation and increased polymerized actin aggregation. These 

organizational changes, coupled with the ubiquitous expression patterns of both PKA and 

LIMK-1 suggest that changes of PKA signalling can be manifested as cytoskeletal alterations. 

The activity of p38 MAPK, remained unchanged upon GSKIP KD in A549 cells, suggesting the 

absence of any consequent MK2 mediated phosphorylation changes at S323 and pointing 

towards PKA signalling as the modulator of the observed cytoskeletal changes. There was 

also the possibility of increased downstream phosphatases acting on phosphorylated CFL at 

S3. Given that the Slingshot protein phosphatases are unessential for processes that are 

associated with CFL-mediated actin reorganization, the abundance of the phosphatase 

chronophin, a crucial modulator of CFL mediated actin dynamics was studied in A549 and 

HeLa-S3 cells. The KD of GSKIP did not alter the abundance of chronophin in either of the cell 

lines tested, hence underlining PKA signalling as the potential mediator of the GSKIP-

dependent changes in actin dynamics.  

 

5.3 GSKIP modulates EMT master regulator ZEB1 
 

Both A549 and HeLa-S3 cells following GSKIP KD, showed junctional actin anomalies. 

Therefore, the integrity of the various cell junctions associated with the epithelial phenotype 

was investigated. The KD of GSKIP was found to upregulate the EMT inducer ZEB1 in both 

cell lines, with no changes at the protein level of SNAIL, another EMT master regulator (Fig.31, 

Fig. 32). This raised the question whether the transition of the cells from the epithelial to the 

mesenchymal phenotype can be attributed solely to ZEB1. 

 Takeyama et al. studied the four master epithelial-to-mesenchymal transition (EMT) 

inducing genes ZEB1, SIP1, SNAIL, and Slug, and correlated their expression with the 
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mesenchymal phenotype in non-small lung cancer cells such as A549 cells (Takeyama et al. 

2010). ZEB1 expression positively correlated with the degree of the mesenchymal phenotype. 

On the contrary, the expression levels of the other EMT master regulators showed no 

correlation with the phenotype degree, thereby implicating ZEB1 as an inducer of EMT in lung 

cancer.  

Nadella et al. demonstrated that PKA signalling favours the epithelial phenotype, by 

promoting MET upon its constitutive activation in primary mouse embryonic fibroblasts (MEFs) 

(Nadella et al. 2008). The MEFs, in which PKA signalling has been constitutively activated, 

exhibited properties of MET. The epithelial marker E-cadherin was upregulated compared to 

the control MEFs, whereas the mesenchymal markers Vimentin and N-cadherin were 

downregulated. Interestingly, upon activation of PKA signalling, the protein levels of the EMT 

master regulator and transcription factor SNAIL remained unchanged. The universality of the 

MET phenomenon upon the activation of PKA signalling was later studied by employing 

heterologous systems, where HeLa and HEK293T cells were transfected to overexpress PKA 

catalytic subunits and the resulting decline in the  abundance of the mesenchymal marker 

Vimentin was validated. Thus, despite validating the PKA-mediated MET phenotype, changes 

in the expression of the master regulator SNAIL at the protein level were not detected, even 

though the associated characteristic markers of MET demonstrated significant changes in their 

expression levels. Pattabiraman et al. later confirmed these findings by employing 

mesenchymal human mammary epithelial cells, and demonstrating that the elevation in cAMP 

levels and the consequent activation of PKA signalling is associated with MET (Pattabiraman 

et al. 2016).  

 

5.4  GSKIP is involved in maintaining epithelial cell-cell adhesion 
 
5.4.1 GSKIP is involved in maintaining adherens junction 
 

The increased formation of F-actin stress fibers, a characteristic of mesenchymal cells, 

coupled with the junctional actin aberrations necessitated the evaluation of the epithelial 

phenotype upon GSKIP KD. EMT markers were evaluated in both A549 and HeLa-S3 cells 

following the KD. Complementing ZEB1 upregulation, downregulation of epithelial markers 

was recorded, namely the exclusively epithelial, E-cadherin and the integral AJ protein, β-

catenin (Fig. 31, Fig. 32). β-catenin binding to the cadherins has been revealed to be crucial 

for the integrity and full adhesive potential of the AJ. Its involvement with various signalling 

molecules implicates it as a mediator of signalling-induced changes at the AJ (Aberle et al. 

1996 and Niessen, 2007). Thus the junctional distribution of β-catenin was studied upon the 

KD of GSKIP in HeLa-S3 cells. Immunofluorescence experiments revealed that GSKIP KD 
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was associated with decreased β-catenin localization at the junctions, hence pointing towards 

compromised junctional integrity (Fig. 33).  

Colosimo et al. uncovered a role for GSK3β in the modulation of the stability of the AJ 

proteins through its ability to regulate the activity of atypical protein kinase C (aPKC) (Colosimo 

et al. 2009). The loss of GSK3β was found to enhance the activity of aPKC. GSK3β was found 

to phosphorylate the purified human aPKC protein, consequently marking it for proteasomal 

degradation. The increase in the levels and activity of aPKC was recorded to stabilize the 

adheres junction proteins such as β-catenin, by increasing its levels as well.  Interestingly, it 

was noted that the GSK3β-mediated elevation in the levels of β-catenin appears to be 

restricted to the membrane pool. Taken together this data suggest that GSK3β through its 

indirect ability to modulate the junctional β-catenin pool can be implicated in regulating the 

stabilisation of the epithelial cell-cell adhesion and AJ. GSKIP facilitates the PKA-mediated 

inhibitory phosphorylation of GSK3β at S9 (Hundsrucker et al. 2010, Deak et al. 2016). Hence 

the phosphorylation dependent activity of GSK3β was studied. GSKIP KD in HeLa-S3 cells 

was found to decrease the S9 phosphorylated GSK3β relative to the total abundance (Fig. 34), 

pointing towards an overall increase in the activity of GSK3β, which in turn would translate to 

increased destabilization of the AJ.  

 

 5.4.2 GSKIP is involved in maintaining desmosomal integrity 
 

The AJs and the desmosomes, another characteristic epithelial junction, have been found 

to complement the assembly and stability of each other. The loss of desmosomal elements 

has been associated with AJ actin based anomalies. The presence of an intact actin 

cytoskeleton was found to be a necessity for the proper assembly and organization of the 

desmosomes. The formation of a functional desmosomal unit is dictated by the ability of the 

intermediate filament binding proteins DSP I/II to tightly bind the desmosomal plaque to the 

intermediate filaments, while the dynamics of DSP during junctional assembly were revealed 

to depend on actin filaments, as well as the interactions with the intermediate filaments 

cytoskeleton. (Pasdar and Li, 1993, Vasioukhin et al. 2000, Godsel et al. 2005, Godsel et al. 

2010, Kowalczyk and Green, 2013). Various elements of the desmosomal junction were 

evaluated upon the KD of GSKIP. The intermediate filament binding proteins DSP I and II 

exhibited downregulation in A549, HeLa-S3 and SW480 cells as a response to the KD (Fig. 

35). Rescuing the GSKIP KD by expressing full length WT GSKIP in HeLa-S3 cells did not 

appear to rescue the KD induced downregulation of DSP I/II (Fig. 36).  

Simpson et al. demonstrated that the association between the keratin intermediate 

filaments and the desmosomal components exerts a protective effect on epithelia, serving to 

resist mechanical stress and hence protecting against the associated injuries, as well as 

preventing water loss and resisting infections (Simpson et al. 2011). Moreover, DSP 
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aberrations in epidermal tissues during development were associated with compromised 

keratin cytoskeleton, desmosomal assembly, stabilization, and adhesion anomalies (Gallicano 

et al. 1998). Building on these findings, Kröger et al. analysed the DSP/intermediate filaments 

based maintenance of desmosomes. Mutant keratinocytes lacking type II keratin genes (KtyII-

/-) were generated and employed against WT control keratinocyte lines expressing the normal 

keratin set. Keratinocytes are specialized epithelial cells making up the epidermis, a structure 

which functions as protective barrier to the surrounding environment. Interestingly, the 

knockout of the intermediate filament Keratin II was associated with a prominent and marked 

decrease in the endogenous protein levels of DSP I/II compared to the WT control, whereas 

the PKC-α-mediated phosphorylation of DSP was found to be enhanced upon the manipulation 

of Keratin expression (Kröger et al. 2013). The findings uncovered by this study hint towards 

the implication of DSP and the intermediate filaments in resisting EMT by favouring and 

sustaining intercellular adhesion. In addition to mediating DSP phosphorylation and the 

consequent desmosomal reorganization, PKC-α has also been implicated in the inhibitory 

phosphorylation of GSK3β at S9 (Moore et al. 2013). The possibility that the irreversible down-

regulation of DSP upon the KD of GSKIP is due to intermediate filaments aberrations and 

consequent changes to PKC-α levels was explored. The data obtained, favour this possibility, 

since the KD of GSKIP in HeLa-S3 revealed a tendency towards the upregulation of PKC-α 

(Fig. 37). Nevertheless, further repetitions are required to determine whether this elevation is 

significant or not.  
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Figure 39. GSKIP is essential for epithelial junctional integrity. Left side : epithelial cells with normal GSKIP 

expression show intact AJs and desmosomal junctions. Right side : GSKIP KD elicits a disruption in the AJ, 

manifested as decreased junctional β-catenin, E-cadherin downregulation, and increased CFL mediated actin-

depolymerization; GSKIP KD downregulates the intermediate filament binding proteins DSP I/II, attenuating the 

connection between the desmosomal plaque and the intermediate filaments.  

 

5.5  GSKIP KD does not appear to alter the PKA mediated mitochondrial fission 
 

Drp1, a mitochondrial fission GTPase, was implicated in various signalling events that 

modulate the morphology, localization, and maintenance of the mammalian mitochondria. The 

activity of Drp1 is controlled by its phosphorylation at various sites, among which is S637. This 

diminishes the GTPase activity and suppresses mitochondrial fission (Knott et al. 2008). The 

CFL regulated actin dynamics were also found to modulate the Drp1 mitochondrial fission, 

whereas the promising natural anti-cancer compound erucin was found to promote 

mitochondrial fission in human breast cancer cells through inducing the co-translocation and 

interaction of CFL and Drp1 (Li et al. 2015, Rehklau et al. 2017). Moreover, Loh et al. found 

GSKIP to be a component of a signalling axis comprising cAMP/PKA/Drp1/GSK3β, serving to 

modulate the PKA mediated mitochondrial fission inhibitory phosphorylation of Drp1 at S637 
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(Loh et al. 2015). The siRNA-mediated KD of GSKIP in A549 cells was found to elicit a small 

but statistically significant decline in Drp1 phosphorylation at S637. However, when this 

phosphorylation was related to the total Drp1 abundance, no changes were recorded (Fig. 38). 

The decline in the aforementioned phosphorylation upon the KD of GSKIP was smaller than 

the one encountered by Loh et al. However, this could be attributed to the difference in the cell 

models employed. Loh et al. used the embryonic mammalian kidney cells, HEK293 cells, and 

since cancer cells like A549 usually exhibit altered mitochondrial bioenergetic and biosynthetic 

properties, the extent of the changes dictated by specific signalling events at a molecular level 

may differ (Loh et al. 2015, Wallace, 2012).  
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6.   Outlook 
 
6.1 The mechanisms behind the GSKIP mediated regulation of CFL activity 
 

PKA directly phosphorylates LIMK-1 and regulates the phosphorylation of CFL at S3, 

hence it is very plausible that GSKIP could be modulating the activity of CFL through the PKA-

mediated phosphorylation of LIMK-1. To confirm this, a system has to be established where 

the enhanced PKA activity is correlated with increased CFL phosphorylation at S3. Attempts 

to replicate the data demonstrated in literature using HeLa-S3 and A549 cells proved 

unsuccessful (Supplementary figures. 2 and 3), despite confirming the forskolin stimulation-

mediated elevation of cAMP levels and the consequent increase in PKA activity. It is likely that 

more substantial activation of PKA signalling has to be attained and hence another approach 

that could be adopted is transfecting the cells with the active catalytic subunit of PKA and 

monitoring the phosphorylation of CFL at S3, then coupling the transfection with GSKIP KD 

and studying the impact on the phosphorylation. 

 
6.2 The impact of GSKIP’s depletion on the cytoskeletal dependent processes 
 

The transient, siRNA-mediated KD of GSKIP had no distinct effect on the migration 

capabilities of A549 cells (Supplementary figure. 1), despite the depletion of GSKIP clearly 

compromising the stability of various epithelial junctions, as well as upregulating the EMT 

master regulator, ZEB1. Moreover, GSKIP was found to regulate the activity of CFL, which 

drives the actin cytoskeletal reorganization and consequently the migration of the cells. 

Altogether, these GSKIP-dependent organizational changes, characterized by a shift from the 

stationary epithelial to the highly motile and invasive mesenchymal counterpart, favour 

increased cellular motility. Hence, to allow for prolonged monitoring of the cytoskeletal 

dynamics and confirm the underlying signalling changes, a stable KD of GSKIP in the tested 

cell lines can be conducted. Stable KD of GSKIP can be established by employing lentiviral-

based short hairpin RNA (shRNA) depletion of the GSKIP gene in A549 cells, to allow for better 

characterization of the migratory traits associated with the observed established cytoskeletal 

changes.  

Another possibility worth considering is that the depletion of GSKIP induces a partial 

transition of the cells from the epithelial to the mesenchymal state, a phenomenon 

characterized by a hybrid epithelial/mesenchymal (E/M) phenotype. Cells exhibiting this 

phenotype share properties between the two states, where they show weak cell-cell adhesion, 

an epithelial attribute, as well as collective cellular migration, a mesenchymal trait. The three 

phenotypic states, are coordinated through the ratio between EMT inducers such as ZEB1 and 

EMT inhibitors such as microRNA (miR)-200, where the epithelial phenotype is associated with 

high levels of miR-200 and low levels of ZEB1, while the mesenchymal state is characterized 
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by high levels of ZEB1 and low levels of miR-200 and the E/M phenotype exhibits moderate 

levels of both EMT regulators (Jolly et al. 2015). 

  

6.3 The mechanisms underlying the GSKIP KD mediated EMT 
 

PKA and GSK3β have both been implicated in EMT. GSK3β, an inhibitor of tumour cell 

migration and invasion, is inactivated in epithelial cancers, while the activation of PKA 

signalling enforces the epithelial state of the cells. GSKIP facilitates the PKA-mediated 

inhibitory phosphorylation of GSK3β and its KD has been found to decrease this 

phosphorylation. The depletion of GSKIP is associated with increased activity of GSK3β, which 

should translate to maintenance of the epithelial phenotype of the cells. The upregulation of 

ZEB-1 and the disruption of the epithelial junctions upon the KD of GSKIP however, point 

towards EMT, suggesting a GSK3β-independent, PKA-mediated role. To confirm this and 

exclude GSK3β inclusion, simultaneous KD of GSKIP and GSK3β could be conducted and the 

resulting phenotype characterized. In addition, studying the levels of the EMT master 

regulators upon the overexpression of wild type GSKIP and GSKIP mutants devoid of the PKA 

or the GSK3β binding sites, can shed some light on the underlying molecular mechanisms 

associated with the GSKIP KD mediated phenotype. 

 

6.4  Insight into GSKIP’s physiological role during development 
 

EMT and MET are essential during vertebrate embryonic development. Both processes 

alternate and contribute to the formation of the three embryonic germ layers, the ectoderm, 

the mesoderm, and the endoderm, as well as the delamination of the neural crest. The neural 

crest delamination is associated with the neural tube closure (NTC), a complex and 

meticulously coordinated event which represents the earliest stage in the formation of the 

central nervous system. The neural ectoderm (NE) and the non-neural ectoderm (NNE) have 

both been implicated in the modulation of NTC. Neural crest cells (NCC) are situated at the 

border between NE and NNE and undergo delamination mediated migration to various sites 

to form diverse structures. While the delamination of NCC is coordinated through EMT, both 

NE and NNE retain their epithelial nature. Very strict coordination between the three 

participating tissues must be attained for proper NTC to be accomplished (Ray and Niswader, 

2016, Kim et al. 2017).  

The maintenance of the epithelial nature of NE and NNE during NTC has been proven to 

be essential for the success of the process, as dysregulation in ZEB1 levels was associated 

with EMT in NNE and consequently resulting in neural tube defects (Cieply et al. 2012, Ray 

and Niswader, 2016). Recent work in our group has identified the failure of NTC as one of the 

reasons behind the perinatal lethality exhibited by the GSKIP KO mouse embryos. Coupled 
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with the data obtained from the in vitro studies conducted in this project, the coordination of 

EMT, specifically the ZEB1 mediated regulation of the process, could constitute the molecular 

mechanisms behind the developmental abnormalities evident in the KO embryos.  
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7. Summary 
 

 Glycogen synthase kinase 3β interaction protein (GSKIP), a ubiquitously expressed 

protein, was identified as a direct interaction partner of glycogen synthase kinase 3β (GSK3β) 

and protein kinase A (PKA). It was found to facilitate the PKA-mediated inhibitory 

phosphorylation of GSK3β, as well as modulate the phosphorylation of GSK3β and PKA 

substrates. Through this modulation, GSKIP has been implicated in the fine tuning of canonical 

Wnt signalling and was found to play a role in both mitochondrial fission and cancer cells 

dynamics. Building upon these findings, this thesis uncovers novel roles for GSKIP in actin 

cytoskeleton reorganization and maintenance of the epithelial phenotype.  

The reorganization of the cellular actin cytoskeleton is essential for various processes, 

among which are cell signalling, and the development and maintenance of cellular junctions 

and polarity. The biphasic modulation of actin dynamics is attained by the actin severing 

protein cofilin (CFL), which can induce either the disassembly or the assembly of the actin 

filaments through its ability to depolymerize and sever the filaments. The activity of CFL is 

negatively regulated by the Rho GTPases, p38 mitogen-activated protein kinase (p38 MAPK), 

and PKA mediated phosphorylation at S3. The knockdown (KD) of GSKIP in various cancer 

cells was found to modulate this phosphorylation, with the human non-small lung 

adenocarcinoma cells, A549 and the human cervical adenocarcinoma cells, HeLa-S3 

exhibiting the most marked decrease in phosphorylation. The KD of GSKIP in A549 cells was 

characterized by increased actin depolymerization at the cellular junctions and decreased CFL 

abundance in the filamentous polymerized actin fraction. Similarly, the KD of GSKIP in HeLa-

S3 cells was associated with phenotypic changes and an altered actin cytoskeleton, which was 

marked by increased actin stress fiber formation. The molecular mechanisms underlying these 

cytoskeletal changes were found to be most likely PKA-dependent, since the KD of GSKIP in 

the studied cells did not alter either the Rho GTPases or the p38 MAPK-mediated 

phosphorylation of CFL. Taken together, these findings implicate GSKIP as a modulator of the 

PKA-mediated CFL-regulated actin dynamics. 

Investigating the GSKIP KD-induced phenotypic changes revealed a shift of the cells from 

the epithelial to the mesenchymal phenotype. Studying the associated molecular mechanisms 

showed downregulation of prominent epithelial markers, such as E-cadherin and β-catenin, as 

well as upregulation of the epithelial to mesenchymal transition (EMT) inducer ZEB1 in A549 

and HeLa-S3 cells. The GSKIP KD-mediated loss of the epithelial phenotype was confirmed 

by investigating the integrity of crucial epithelial junctions, namely the adherens junction and 

the desmosomes. Both junctions displayed marked anomalies upon the KD of GSKIP, 

suggesting a decrease in the integrity of both and uncovering the essentiality of GSKIP for the 

maintenance of epithelial junctions.  
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8. Zusammenfassung 

Das ubiquitär exprimierte Glykogen-Synthase-Kinase-3β-Interaktionsprotein (GSKIP) 

wurde als direkter Interaktionspartner der Glykogen-Synthase-Kinase-3β (GSK3β) und der 

Protein-kinase A (PKA) identifiziert. Es erleichtert die PKA-vermittelte inhibitorische 

Phosphorylierung von GSK3β und moduliert die Phosphorylierung von GSK3β- und PKA-

Substraten. Durch diese Modulation ist GSKIP an der Feinregulation des kanonischen Wnt-

Signalweges beteiligt und spielt eine Rolle in der mitochondrialen Teilung sowie der 

Krebszellendynamik. Basierend auf diesen Erkenntnissen deckt diese Thesis neue Rollen von 

GSKIP in der Reorganisation des Aktinzytoskeletts sowie der Aufrechterhaltung des 

epithelialen Phänotyps auf. 

Die Reorganisation des zellulären Aktinzytoskeletts ist essentiell für eine Vielfalt von 

Prozessen, darunter die zelluläre Signalvermittlung sowie die Entwicklung und 

Aufrechterhaltung von Zellverbindungen und der Zellpolarität. Die biphasische Modulation der 

Aktindynamik wird durch das Aktin-durchtrennende Protein Cofilin gewährleistet. Dieses 

verfügt über die Fähigkeit, Aktinfilamente zu depolymerisieren und zu durchtrennen und so 

entweder deren Abbau oder Aufbau zu induzieren. Die Aktivität von Cofilin wird negativ durch 

eine Phosphorylierung an S3 reguliert, welche durch Rho-GTPasen, die  p38 Mitogen-

aktivierte Proteinkinase (p38 MAPK) sowie die PKA vermittelt wird. Es konnte gezeigt werden, 

dass der Knockdown von GSKIP in verschiedenen Krebszelllinien diese Phosphorylierung 

moduliert. Hierbei konnte in  humanen nicht-kleinzelligen Lungenadenokarzinomzellen (A549) 

und humanen Zervixadenokarzinomzellen (HeLa-S3) die größte Abnahme der 

Phosphorylierung nachgewiesen werden. Der Knockdown von GSKIP in A549-Zellen wurde 

durch einen Anstieg der Aktindepolymerisation an den Zellverbindungen und eine Abnahme 

des Cofilinvorkommens in der filamentösen polymerisierten Aktinfraktion charakterisiert. In 

ähnlicher Weise war der Knockdown von GSKIP in HeLa-S3-Zellen mit phänotypischen 

Veränderungen und einem veränderten Aktinzytoskelett assoziiert, gekennzeichnet durch 

einen Anstieg in der Aktinstressfaserbildung. Die molekularen Mechanismen, welche diesen 

Änderungen des Zytoskeletts zugrunde liegen, sind höchstwahrscheinlich PKA-abhängig, da 

der Knockdown von GSKIP in den untersuchten Zellen weder die Rho-GTPasen- noch die p38 

MAPK-vermittelte Phosphorylierung von Cofilin verändert. Zusammenfassend implizieren 

diese Beobachtungen, dass es sich bei GSKIP um einen Modulator der PKA-vermittelten 

Cofilin-regulierten Aktindynamik handelt. 

Die Untersuchung von GSKIP-Knockdown-induzierten phänotypischen Veränderungen 

deckte einen Übergang der Zellen vom epithelialen hin zum mesenchymalen Phänotyp auf. 

Die Untersuchung assoziierter molekularer Mechanismen zeigte eine Herabregulation 

bekannter epithelialer Marker wie E-Cadherin und β-Catenin sowie eine Hochregulation von 

ZEB1, dem Vermittler der epithelial-mesenchymalen Transition (EMT), in A549 und HeLa-S3-



 95 
 

Zellen. Der GSKIP-Knockdown-vermittelte Verlust des epithelialen Phänotyps wurde durch die 

Untersuchung der Integrität wichtiger epithelialer Verbindungen, den Adhärenzverbindungen 

sowie den Desmosomen, bestätigt. Beide Verbindungen zeigten ausgeprägte Anomalien im 

Zuge eines Knockdowns von GSKIP. Dies suggeriert eine Abnahme ihrer Integrität und deckt 

die essentielle Rolle von GSKIP in der Aufrechterhaltung epithelialer Verbindungen auf. 
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11. Supplementary Figures 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary figure 1 (S1).  GSKIP KD does not alter the cellular migration in A549 cells. A549 cells were 

treated with siRNA to knock down the expression of GSKIP or with siRNA NT. The cellular migration was determined 

using the Transwell Migration Assay (section 3.2.1.7). Migration of the cells was determined relative to the NT 

control. n = 2, mean ± SEM. 
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Supplementary figure 2 (S2).  Forskolin stimulation does not alter CFL phosphorylation (S3) in HeLa-S3 

cells. HeLa-S3 cells were treated with either 20 µM or 40 µM forskolin for 3 or 24 hrs. Phospho-CFL (S3) and 

HSP90 were detected by Western blotting. Signals were semi-quantitatively analysed by densitometry and the ratio 

of phospho-CFL to HSP90 calculated. n=1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
Supplementary figure 3 (S3).  Forskolin stimulation does not alter CFL phosphorylation (S3) in A549 cells. 

S3 (a): A549 cells were treated with 20 µM for 3 hrs. Phospho-CFL (S3) and HSP90 were detected by Western 

blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of phospho-CFL to HSP90 

calculated. S3 (b): A549 cells were treated with siRNA to knock down the expression of GSKIP or with siRNA NT. 

48 hrs post transfection, the cells were stimulated with 20 µM for 3 hrs. Phospho-CFL (S3) and HSP90 were 

detected by Western blotting. Signals were semi-quantitatively analysed by densitometry and the ratio of phospho-

CFL to HSP90 calculated. n=1. 
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Supplementary figure 4 (S4).  GSKIP KD does not modulate the  mono-phosphorylation of MLC at serine 19 

in A549 cells. A549 cells were treated with siRNA to knock down the expression of GSKIP or with siRNA NT. MLC, 

phospho-MLC (S19), and GAPDH were detected by Western blotting. Signals were semi-quantitatively analysed 

by densitometry and the ratio of phospho-MLC to normalised MLC calculated. n = 4, mean ± SEM, Paired T-test, 

*p < 0.05 

 

 


