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1
P R E FA C E

1.1 motivation

Quantiles of a random variable are parameters of different ways of in-
terpretation. They are location and scale parameters at the same time.
For a given τ ∈ (0, 1) the τ-quantile is the value of a random variable,
where τ · 100% of its values lie below. Thus quantiles for τ close to 0.5
give the location of the random variable and quantiles for τ close to
zero or one give an idea of the spread in the random variable. Further-
more parameters like the 0.5-quantile or median are robust while the
mean is not. Therefore the median outperforms the mean in this re-
gard. A set of a few quantiles can already give a good overview of the
distribution of data. A boxplot, for example, needs the median, the
lower and the upper quartiles (the 0.25- and the 0.75-quantiles). By
adding the lowest and highest observations a clear picture is drawn.
In this thesis I am going to prove the consistency of the quantile es-
timator in linear mixed models. The idea of quantile estimation in
linear models was firstly introduced by Koenker and Bassett [1978].
Based on this idea several further properties and extensions were de-
veloped. So is the equivalence to an asymmetric Laplacian linear model
one main property of the quantile linear model. It was on the me-
dian model introduced by Jung [1996], where he used a Laplacian lin-
ear model. Koenker and Machado [1999] extended this idea to other
quantiles using the asymmetric Laplace distribution. The idea shifts the
quantile regression as a minimising problem with a least absolute de-
viation approach to a maximum likelihood estimation. This field is well
developed and it can be shown that the estimator is asymptotically nor-
mal distributed, which implies the consistency. Latter is a wishful fea-
ture of estimators, because it means the convergence to the real value
of interest with increasing sample size. At the same time the variance
of the estimator, which is again a random variable, decreases. As a
result the estimation is asymptotically unbiased and the mean squared
error (MSE) converges to zero.
The quantile regression was extended to regression of count data
using a method called jittering by Machado and Santos Silva [2005].
Not only that the quantiles of integers are integers, they are also less
prone to overdispersion. The misspecification of the variance of the
data is one of the main problem of the classical Poisson model ap-
proach. The median as a robust location parameter may be a solution
to this. On top it gives a good approach on the estimation of other
quantiles of counts, which is proven to be consistent in Machado and
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2 preface

Santos Silva [2005].
In longitudinal data or in the field of Small Area Estimation (SAE) the
linear model is extended to a linear mixed model by adding a random
effect. The random effect is added such that we avoid problems with
the independence of the data points which is assumed on the error
terms. For example in longitudinal data the data points of one object
or person over time would easily violate the assumption of indepen-
dent observations in a linear model. The same violation appears in
SAE with observations from the same area. In linear mixed models
the random effect is the same for the same area or object in longitudi-
nal data. Thus the error terms will still be independent. Nevertheless
in these models mean estimators are well investigated. The idea of
quantile estimation in linear mixed models, however, was introduced
by Geraci and Bottai [2007] and Geraci and Bottai [2014]. They used
the equivalence of the linear quantile mixed model to an asymmetric
Laplacian linear mixed model and employed numerical approaches for
the maximum likelihood estimation. This is necessary because a closed
form solution of the maximisation of the log-likelihood density is not
existent, due to a rather complicated appearance of the density. In
Geraci and Bottai [2007] the authors use an EM algorithm (cf. McLach-
lan and Krishnan [2008]), while they employ a Gaussian quadrature (cf.
Pinheiro and Chao [2006]) in Geraci and Bottai [2014]. The latter was
implemented in the open source software R in a package called lqmm

(cf. Geraci [2016]). As the mean estimator the approach is a two-stage
method. There the unknown parameters from the density of the ob-
servations are estimated by a maximum likelihood estimation in a first
step. A predictor for the random effect is derived from the maximum
likelihood estimator in a second step.
So far an asymptotic theory on the quantile estimation in linear mixed
models has not been developed. For the mean estimation in linear
mixed models Miller [1977] and Pinheiro [1994] showed the asymptotic
normality (cf. Chapter 9.3 of van der Vaart [2007]) of the maximum likeli-
hood estimator in the first step. For this reason they applied a theorem
proved by Weiss [1971] and Weiss [1973]. This theorem, the so called
Weiss’ Theorem, is a specialisation of the Glivenko-Cantelli Theorem (cf.
Glivenko [1933] and Cantelli [1933]) in the case of non-independent
observations. In the mean case the individual error terms were as-
sumed to be normal and so is the random effect. The consequential
normality for the observation yields the maximum likelihood estimator
in the the first step. The assumptions of the Weiss’ Theorem are conver-
gences of the second derivatives of the log-likelihood density, which
represent a Fisher Information kind matrix. Searle et al. [1992] deduced
the derivatives leading into a straightforward application in the mean
case.
For the quantile estimation in linear mixed models the Weiss’ Theorem
is also applicable. In order to do so, its assumptions must be proven,
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which turns out to be elaborate. This is the main achievement of this
thesis while there are some further assumptions added. In the linear
quantile mixed model the assumption of asymmetric Laplacian individ-
ual error terms has no direct implication on the distribution of the ob-
servation. Thus the log-likelihood density is displayed as an integral
and the derivatives cannot be calculated directly. This impacts the ap-
plication of the Weiss’ Theorem and, hence, the proof of the asymptotic
normality of the maximum likelihood estimator in the first step.
In the second step of both the quantile and the mean estimation the
random effect is predicted. The consistency of the predictor in the
quantile estimation is shown in this thesis. The asymptotic normality
of the maximum likelihood estimator of the first step implies its consis-
tency. Eventually the consistency of the quantile estimator in linear
mixed models under the assumptions made is established.
The property of an estimator or predictor to be consistent is of im-
portant role in statistics. In words it means the convergence of the
quantile estimator to the true quantile in linear mixed models, when-
ever the sample size increases. It implies the decline of both the vari-
ance and the bias of the quantile estimator. Since the sample size in
linear mixed models is dependent on the number of groups and the
within group sample size, both numbers must increase in order to ac-
complish consistency. Pinheiro [1994] assumed this property for his
demonstration of the consistency in the mean estimation and so will I
undertake this in the quantile estimation. Furthermore, compared to
Pinheiro [1994], I added an additional assumption which is rather of
constructional character. However they are only additional assump-
tions next to classical regularity conditions in Glivenko-Cantelli kind
statements.

1.2 outline

In this thesis I begin with an introduction to quantile estimation in
general. Chapter 2 starts with quantiles and their estimation in Sec-
tion 2.1. There I give a convention on the definition of a quantile. For
a given τ ∈ (0, 1) a τ-quantile is the value of a random variable, where
τ · 100% of its values lie below. It happens that this is not one-to-one
and onto, which requires the convention which is also employed in
Koenker [2005]. Furthermore I discuss the loss function of the estima-
tion and compare it with the classical squared loss in mean estima-
tion.
In the following Section 2.2 I shortly illustrate the mean estimation
in linear models, which leads to the introduction of the linear quan-
tile model in Section 2.3. Within this Section I show the parameter
estimation in the model leading to a quantile estimator in linear mod-
els. This is followed, in Section 2.4, by the proof of the equivalence
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of the linear quantile model to a linear model with asymmetric Lapla-
cian error terms. In Section 2.4.1 the asymmetric Laplace distribution is
discussed. The equivalence of the two models implies the possibility
of two different approaches in estimation: a minimising problem and
a maximum likelihood estimation. These two methods carry the same
properties and in Section 2.5 I discuss the consistency of the quantile
estimation, which follows from both of them. In Section 2.6 I then
give a short overview on further research questions and their solu-
tions for the linear quantile model.
The Chapter is ended by two applications and extensions of the model
in Section 2.7. There, in Section 2.7.1, I discuss the employment of
link functions in quantile regression and the perpetuation of the con-
sistency for the generalised linear quantile models. In the last Sec-
tion 2.7.2 the quantile estimation is applied on count data. There an
overview of the different steps of the estimation is given and the con-
sistency of the quantile estimator for count data is shown.
Chapter 3 builds the main part of this thesis. The linear quantile
mixed model is discussed in terms of estimation and its consistency.
Before I delve into the quantile estimation in linear mixed models, I
discuss the mean estimation in Section 3.1. The mean model always
operates as a starting point for quantile estimation.
In Section 3.2 I then introduce the linear quantile mixed model and
its equivalence to a linear mixed model with asymmetric Laplacian er-
ror terms. The approach is similar to the approach in linear models
with no random effect. However in the mixed models the maximum
likelihood estimation is better performable than the minimisation of a
loss function approach. The linear quantile mixed model is then fur-
ther discussed in Section 3.2.2. In this part I argue the dependency of
the random effect on the choice of τ. In order to found this statement
I show a simulation study with different error distribution scenarios.
The two steps of estimation of a quantile in a linear mixed model are
shown in Section 3.3. There the maximum likelihood approach is fol-
lowed. The consistency of this method is proven in Section 3.4. The-
orem 3.1 states this main achievement of the thesis. Since the estima-
tion is fulfilled in two steps, I also execute the proof of the consistency
of it in two steps. The first step is the parameter estimation with a max-
imum likelihood approach. Since the observations are not independent
of each other in a mixed model, the consistency does not just follow
by the assumption of classical regularity assumptions. Thus the proof
is rather extensive and is executed in detail in a separate Chapter 4.
In the second step the random effect is predicted. Its consistency can
be shown to follow from the consistency of the parameter estimator
in the first step. A simulation study in Section 3.4.2 certifies the con-
sistency of the quantile estimation in linear mixed models.
In the following I discuss the influence of the consistency of the quan-
tile estimation on the mean squared error (MSE) in Section 3.5. There
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it follows the convergence of the MSE to zero with increasing sample
size.
At the end of the Chapter two applications and extensions of the lin-
ear quantile mixed model are presented. In Section 3.6.1 I show that
the model can be adapted to count data, while the consistency of the
estimation remains in this case. Furthermore I developed a method
called Microsimulation via Quantiles (MvQ), which I describe in Sec-
tion 3.6.2. It can be applied for the estimation of group parameters,
which are beyond means. For this approach I use the natural con-
nection between quantiles and the distribution function of a random
variable. By estimating quantiles for a grid of τ I get an empirical dis-
tribution, from which each parameter of interest can be derived. This
is executed via a Monte Carlo simulation or microsimulation.
The last Chapter 4 is the outsourced part of the consistency proof in
Theorem 3.1. For the maximum likelihood approach in the parameter
estimation I use the so-called Weiss’ Theorem for the dependent ob-
servations. It is stated and observed in Section 4.1.1. There I discuss
its assumptions made on the second derivatives of the log-likelihood
density and their meaning. Furthermore I display applications of the
theorem, especially for the mean estimation in linear mixed models.
In preparation of the application of the theorem I then deduce the
second derivatives of the log-likelihood density in Section 4.1.3. This
part is rather complex, which is why it is divided into several subsec-
tions and the results are stated in lemmata.
After the preliminaries I prove the two assumptions of the Weiss’ The-
orem in Section 4.2. By application of the theorem this then yields the
asymptotic normality of the parameter estimators. The implication of
this property to consistency and the asymptotic covariance matrix is
shown and discussed in Sections 4.3.1 and 4.3.2, respectively. A sim-
ulation study in Section 4.4 completes the Chapter. There the asymp-
totic normality is shown for the parameter estimation for two different
quantiles and the covariance matrices are discussed in comparison
with the analytic results.





2
Q U A N T I L E R E G R E S S I O N I N L I N E A R M O D E L S

In this Chapter I give an introduction to quantile regression in linear
models. This idea is mainly based in the article Koenker and Bassett
[1978] and the book Koenker [2005]. Before I start with the regression
problem I will give an overview on quantiles in general in Section 2.1.
There I define quantiles and give an instruction on their estimation.
Before I describe the quantile estimation in regression models, I dis-
cuss the linear model and the mean estimation in Section 2.2 based
on Searle [1997] and Searle et al. [1992]. The linear model provides a
starting point for linear quantile models. The latter are introduced in
Section 2.3 orientated on Koenker [2005]. In the following I will show
again the equivalence of the linear quantile model to a linear model
with asymmetric Laplacian distributed error terms in Section 2.4 which
is a classical approach in quantile regression. Within this Section I
will also give a detailed discussion on the asymmetric Laplace distribu-
tion mainly based on Yu and Zhang [2005]. In the end we have two
ways of quantile estimation in linear models due to the two equiva-
lent models. One is a classical minimising problem and the other one
is a maximum likelihood approach. Section 2.5 considers the asymp-
totic behaviour of the estimation. It can be shown in several ways
that the estimation is consistent (cf. Koenker [2005] or Pollard [1991]).
In Section 2.6 I draw an overview on further research fields based on
the ideas of quantile estimation. Eventually I give two possible appli-
cations of the quantile regression in linear models. In Section 2.7.1 I
show that the quantile regression may also work on generalised linear
models with continuous link functions without loss of the consistency
in the estimation. A further application is the quantile estimation of
count data in Section 2.7.2. This work is based on Machado and San-
tos Silva [2005] where they introduced a way of estimating integers
for count quantiles and showed the consistency of this approach.

2.1 quantiles and their estimation

Occasionally in regression models we are interested in estimators
other than the mean. So we might be keen to estimate a quantile
of the dependent variable Y. Quantiles are parameters which may de-
scribe the location and the dispersion of a random variable. On top
the median estimator is a robust location parameter. In mean estima-
tion there are several approaches on robustification of the estimation
based on Huber [1964] (see Section 2.3.1 for further details on robust
estimation). A median is another approach of robust estimation.

7



8 quantile regression in linear models

Let us assume that the random variable Y follows a distribution PY ,
which is described by its distribution function

FY(y) := PY(Y 6 y).

The quantile function of a random variable is the inverse of the dis-
tribution function. Since a distribution function must not be strictly
monotonic and thus bijective, this inverse is often not unique. This is
why I introduce a convention at this point which follows the defini-
tion in Koenker [2005]. In the case of non-bijectivity, the quantile is
defined as the smallest value of the set of values, where the distribu-
tion function maps to an output. We define it as follows

QY(τ) = F
−1
Y (τ) := inf {y|FY(y) > τ} (2.1)

for 0 6 τ 6 1. In words, a τ-quantile QY(τ) is the smallest value of
the domain of Y, such that at least τ · 100% of the values lie below this
value. In conclusion it is the value such that at most (1− τ) · 100% of
the values lie above. This leads to the before mentioned two functions
of quantiles as parameters of location and of scale. The median is
defined as the 50%-quantile and is a well known location parameter

median(Y) := QY(0.5).

On the other hand quantiles for small and large values of τ give an
impression of the scale. The interquartile range, as an example, is the
difference between the lower quartileQY(0.25) and the upper quartile
QY(0.75)

IQR(Y) := QY(0.75) −QY(0.25).

Whenever we are interested in estimating a parameter θ of the distri-
bution of a random variable a risk R(θ) is needed. It is defined as the
expectation of a given loss function L under the measure PY

R(θ) := EY [L(θ, Y)] .

Generally the risk depends on a loss function L(θ, Y) and the estima-
tor θ̂ is given as the minimiser of it:

θ̂ := arg min
θ

EY [L(θ, Y)] .

For example (cf. Searle [1971]) in mean estimation we find the esti-
mator θ = EY [Y] by minimising the expectation of the squared differ-
ences

min
θ
EY
[
(Y − θ)2

]
= min

θ

∫
(y− θ)2dPY(y)

leading to
EY [Y] = arg min

θ

EY
[
(Y − θ)2

]
.
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The loss function is the squared difference and the risk is the squared
2-norm with respect to the measure PY

‖a‖22,PY :=

∫
a2dPY(a).

In application for a sample Y1, Y2, . . . , Yn
iid
∼ PY the mean estimator

is given by

Ȳ = arg min
θ

n∑
i=1

(Yi − θ)
2.

Thus the mean estimation is based on the Euclidean distance

‖a‖2 :=

√√√√ n∑
i=1

a2i

as the empirical risk measure.
In quantile estimation with the parameter of interest θ = QY(τ) for a
given τ ∈ (0, 1) Fox and Rubin [1964] showed that the loss function is
based on the distance measure

ρτ(a) := a
(
τ− 1{a<0}

)
(2.2)

where 1{·} stands for the indicator function which is one if the con-
dition in the footnote is fulfilled and zero otherwise. The distance
function may be rewritten as follows

ρτ(a) := a
(
τ− 1{a<0}

)
= |a|

(
τ1{a>0} + (1− τ)

)
.

This leads together with (2.2) to the risk function as the expected loss

R(θ) = EY [L(θ, Y)]

= EY [ρτ(Y − θ)]

=

∫
ρτ(y− θ)dPY(y)

=

∫
(y− θ) · (τ− 1{y−θ<0})dPY(y)

=

∫
(y− θ) · (τ− 1{y<θ})dPY(y)

= τ

∫θ
−∞ |y− θ|dPY(y) + (1− τ) ·

∫∞
θ

|y− θ|dPY(y).
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Differentiating the risk function with respect to θ leads to

0
!
=
∂

∂θ

(
τ

∫θ
−∞ |y− θ|dPY(y) + (1− τ) ·

∫∞
θ

|y− θ|dPY(y)

)

= −τ

∫θ
−∞ dPY(y) + (1− τ) ·

∫∞
θ

dPY(y)

=

∫∞
θ

dPY(y) − τ

∫∞
θ

dPY(y)

= FY(θ) − τ.

Note that the latter derivation was only executed such that the reader
has a better understanding of the link between the distance measure
ρτ defined in (2.2) and quantile estimation. In a different manner
this link has already been derived in e.g. Koenker [2005]. Since by
definition any distribution function FY is monotone any element of
{y|FY(y) = τ} minimises the risk. Especially the quantile as defined in
(2.1) is a solution with the convention that FY is left-continuous.

Applied to a sample Y1, Y2, . . . , Yn
iid
∼ PY the quantile estimator Q̂Y(τ)

for a given τ ∈ (0, 1) is given by

Q̂Y(τ) := arg min
θ

n∑
i=1

ρτ(Yi − θ).

In detail we get

Q̂Y(τ) = arg min
θ

n∑
i=1

ρτ(Yi − θ)

= arg min
θ

(1− τ)
∑

{i=1,2,...,n|Yi<θ}

|Yi − θ|

+τ
∑

{i=1,2,...,n|Yi>θ}

|Yi − θ|

 .

Thus the quantile estimator Q̂Y(τ) is the point where the absolute
distance of all observations below are weighted with 1 − τ and the
ones above are weighted with τ.
Before I discuss the quantile regression in linear models I give a small
introduction of linear models and mean estimation in the following
Section. This always acts as a starting point for the quantile approach.

2.2 the linear model

The introduction of the linear model is based on Searle et al. [1992]
and Searle [1997]. Its purpose is the preparation for the linear quan-
tile model in the following Section 2.3.
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Suppose we have n observations Yi, i = 1, 2, . . . ,n which are each
linearly dependent on a regressor xi which is a p-dimensional vec-
tor xi = (xi,1, . . . , xi,p)T . In general we consider a regression model
with an intercept leading to xi,1 = 1 ∀i = 1, 2, . . . ,n. In the fol-
lowing we assume an intercept and thus the regressor is given as
xi = (1, xi,2, . . . , xi,p)T . The linear regression model is stated as fol-
lowed

Yi = x
T
i β+ εi, i = 1, 2, . . . ,n (2.3)

where β = (β1,β2, . . . ,βp)T is an unknown p-dimensional parameter
vector and εi, i = 1, 2, . . . ,n is the error term following a centred
distribution

εi
iid
∼ Pε, i = 1, 2, . . . ,n with E [εi] = 0

and finite variance (see Searle [1971] for details). So far this model
is flexible in terms of concrete assumptions on the distribution of ε.
As a generalisation of this model we can write it in matrix form as
follows

Y = Xβ+ ε

where Y = (Y1, Y2, . . . , Yn)T and ε = (ε1, ε2, . . . , εn)T are n-dimension-
al random vectors and X is the design matrix with the auxiliary vec-
tors xi as the ith row

X :=


xT1

xT2
...

xTn

 =


x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
...

xn,1 xn,2 . . . xn,p

 .

For the conditional mean estimation β is estimated by solving

min
β∈Rp

‖Y − Xβ‖22 = min
β∈Rp

n∑
i=1

(Yi − x
T
i β)

2

leading to

β̂(Y|X) = arg min
β∈Rp

n∑
i=1

(Yi − x
T
i β)

2 (2.4)

and the conditional mean estimator of Y given X

Ŷ = Xβ̂. (2.5)
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2.3 the linear quantile model

As illustrated in Koenker [2005] and analogously as in the presented
mean estimation, the quantile estimation for a fixed τ ∈ (0, 1) is ful-
filled by employing ρτ as defined in (2.2) leading to

min
β∈Rp

n∑
i=1

ρτ(Yi − x
T
i β). (2.6)

Now the minimiser

β̂τ(Y|X) = arg min
β∈Rp

n∑
i=1

ρτ(Yi − x
T
i β) (2.7)

is dependent on τ and represents a conditional quantile estimator

Q̂Yi|xi(τ) = x
T
i β̂τ, i = 1, 2, . . . ,n. (2.8)

Let us go back to the linear model as introduced in (2.3) with inde-
pendently identical distributed errors. If we knew the distribution of
the error term ε, characterised by its distribution function Fε, we are
able to state the conditional quantile of Y given x for a given τ ∈ (0, 1)
as follows

QYi|xi(τ) = x
T
i β+ F−1ε (τ), i = 1, 2, . . . ,n.

In this case the quantile estimator β̂τ is just a vertical displacement
of the mean estimator β̂ as defined in (2.4)

β̂τ = (β̂1 + F
−1
ε (τ), β̂2, . . . , β̂p)T .

There is no need for quantile regression under these models, because
the conditional mean and some associated measure of dispersion
have already better properties. In real data analysis this case is rare.
We observe rather errors, which are long tailed or the model is het-
eroscedastic or a mixture of both. Then either a robust alternative to
the least squares approach or a heteroscedastic extension of the model
(2.3) is needed. For the first case the conditional median is a good and
already well known alternative to the conditional mean which lacks
the robustness in case of heavy tailed or even only skewed error dis-
tributions

m̂edian(Y|x) = xT β̂0.5.

In the case of heteroscedastic error terms an extension to the linear
model in (2.3) is the linear location scale-model

Yi = x
T
i β+ (xTi γ)εi, i = 1, 2, . . . ,n (2.9)
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with γ = (γ1,γ2, . . . ,γp)T being another unknown p-dimensional
parameter vector. In this model the conditional quantile is given as

QYi|xi(τ) = x
T
i β+ xTi γ · F−1ε (τ), i = 1, 2, . . . ,n,

leading to representation of β̂τ depending on the mean estimator β̂
in (2.4)

β̂τ = (β̂1 + γ̂1 · F−1ε (τ), β̂2 + γ̂2 · F−1ε (τ), . . . , β̂p + γ̂p · F−1ε (τ))T .

This implies that all parameters xi,p have the same monotone be-
haviour in τ governed by F−1ε (τ). Clearly this is too restrictive. On
top the distribution of εi, i = 1, 2, . . . ,n, is often unknown. In order
to be more flexible in terms of the distribution of the error terms and
dependencies of them with the several parameters in x Koenker and
Bassett [1978] introduced the linear quantile model

QYi|xi(τ) = x
T
i βτ, i = 1, 2, . . . ,n. (2.10)

Hence the conditional quantile is expressed as a linear combination
of the auxiliary variable x. In this model there is no implied intercon-
nection between β from the linear model (2.3) and βτ.

2.3.1 Expectiles and M-quantiles

As mentioned before the median is a robust alternative to the mean.
There are other robust estimators which can be described by the em-
ployed loss function. Similar to quantiles the estimation of expectiles
uses a quadratic loss function. Newey and Powell [1987] introduced
this idea. There the 0.5-expectile is the mean. For other τ the estima-
tor is not easily interpreted. Breckling and Chambers [1988] intro-
duced M-quantiles which represent estimators between expectiles and
quantiles. There the loss function is a variable Huber function (Hu-
ber proposal II) with a parameter c which can be chosen. Thus based
on this choice expectiles and quantiles are special cases of M-quantiles.
Therefore the 0.5-M-quantile is another robust alternative to the mean.
Chambers and Tzavidis [2006] firstly used M-quantiles in Small Area
Estimation.

2.4 the equivalence to asymmetric laplacian model

In the following I am going to show that the minimising problem as
introduced in (2.6) is equivalent to a maximum likelihood estimation.
The likelihood function of this model comes from an asymmetric La-
place distribution, which I will discuss before in the following Section.
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Figure 2.1: Densities of the asymmetric Laplace distribution with µ = 0, σ = 1,
and τ = 0.3, 0.5, 0.8.

2.4.1 The Asymmetric Laplace Distribution

If a random variable Y is distributed according to the asymmetric La-
place distribution, Y ∼ ALD(µ,σ, τ), its density function is given by

f(y|µ,σ, τ) =
τ(1− τ)

σ
exp

(
−ρτ

(
y− µ

σ

))
(2.11)

with ρτ(·) as introduced in (2.2). One of the earliest appearances in
literature on the asymmetric Laplace distribution can be found in McGill
[1962]. It is characterised by three parameters µ, σ, and τ. µ ∈ R is the
location parameter. If µ was increased by a number a the density is
shifted on the x-axis by this value. σ ∈ R+ is the scale parameter. For
higher σ the density is wider and the data is more spread. τ ∈ (0, 1) is
the skewness parameter. For τ = 0.5 the density is symmetric around
µ and it is the double Laplace distribution which is a Laplace distribution
with location parameter µ and scale parameter 2σ (cf. Laplace [1774]).
For τ < 0.5 the distribution is positively skewed and for τ > 0.5 it
is negatively skewed. Figure 2.1 shows the density for µ = 0, σ = 1,
and different values of τ. There it can be seen that the point of non-
differentiability is at µ = 0 and the distribution is positively skewed
for τ = 0.3 and negatively skewed for τ = 0.8.
Yu and Zhang [2005] discussed the distribution and its properties in

detail. A basic property of it is that

P(Y 6 µ) = τ
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and thus that the position parameter µ is the τ-quantile of the distri-
bution

QY(τ) = µ.

As a result for a given τ ∈ (0, 1) any estimator for µ is a τ-quantile
estimator

µ̂ = Q̂Y(τ).

Furthermore Yu and Zhang [2005] showed the following property

Lemma 2.1. The kth central moment of an asymmetric Laplacian distributed
Y ∼ ALD(µ,σ, τ) is given by

E
[
(Y − µ)k

]
= k!σkτ(1− τ)

(
1

τk+1
+

(−1)k

(1− τ)k+1

)
. (2.12)

From these moments I can derive other expectations and variances
of an asymmetric Laplacian distributed random variable Y. Therefore let
me state the following corollary

Corollary 2.2. For a random variable Y ∼ ALD(µ,σ, τ) there holds the
following.

(a) The expected value is given as

E [Y] = µ+
σ(1− 2τ)

τ(1− τ)
.

(b) The variance is given as

Var(Y) =
σ2(1− 2τ+ 2τ2)

τ2(1− τ)2
.

(c) The expected value of Y1{Y6µ} is given as

E
[
Y1{Y6µ}

]
= τµ−

τσ

1− τ
.

(d) The expected value of Y21{Y6µ} is given as

E
[
Y21{Y6µ}

]
= τµ2 − 2

τσµ

1− τ
+

2τσ2

(1− τ)2
.

(e) The expected value of 1{Y6µ} is given as

E
[
1{Y6µ}

]
= τ.

Before I am going to prove the properties let me remark that the
expectation and variance of the asymmetric Laplace distribution in (a)
and (b) are already well known. Nevertheless I am calculating them
from the lemma stated before as an exercise. The other rather odd
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looking statements are later needed in the main proof of this thesis.
Since I employ properties of the asymmetric Laplace distribution I show
them at this point of the thesis.

Proof. (a) By using (2.12) for k = 1 the expected value can be calcu-
lated as follows

E [Y] = E
[
(Y − µ)1

]
+ µ

= στ(1− τ)

(
1

τ2
+

−1

(1− τ)2

)
+ µ

= µ+ στ(1− τ)
(1− τ)2 − τ2

τ2(1− τ)2

= µ+ σ
(1− 2τ+ τ2) − τ2

τ(1− τ)

= µ+
σ(1− 2τ)

τ(1− τ)
.

(b) By using (2.12) for k = 2 the variance can be calculated as follows

Var(Y) = Var(Y − µ)

= E
[
(Y − µ)2

]
− E2 [Y − µ]

= 2σ2τ(1− τ)

(
1

τ3
+

1

(1− τ)3

)
−

(
στ(1− τ)

(
1

τ2
+

−1

(1− τ)2

))2
= 2σ2

(1− τ)3 + τ3

τ2(1− τ)2

−

(
σ
(1− τ)2 − τ2

τ(1− τ)

)2
=
2σ2(1− 3τ+ 3τ2) − σ2(1− 2τ)2

τ2(1− τ)2

=
σ2(2− 6τ+ 6τ2) − σ2(1− 4τ+ 4τ2)

τ2(1− τ)2

=
σ2(1− 2τ+ 2τ2)

(1− τ)2τ2
.

(c) With applications of integration by parts (?) the expression can be
calculated as follows

E
[
Y1{Y6µ}

]
=

∫µ
−∞ yf(y)dy

=

∫µ
−∞ y

τ(1− τ)

σ
exp

(
−ρτ

(
y− µ

σ

))
dy

=

∫µ
−∞ y

τ(1− τ)

σ
exp

(
(1− τ)

y− µ

σ

)
dy
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(?)
= τy exp

(
(1− τ)

y− µ

σ

) ∣∣∣∣µ
−∞

−

∫µ
−∞ τ exp

(
(1− τ)

y− µ

σ

)
dy

= τµ exp(0) − τ lim
y→−∞y exp

(
(1− τ)

y− µ

σ

)
−

τσ

1− τ
exp

(
(1− τ)

y− µ

σ

) ∣∣∣∣µ
−∞

(??)
= τµ− 0

−
τσ

1− τ

(
exp (0) − lim

y→−∞ exp
(
(1− τ)

y− µ

σ

))
= τµ−

τσ

1− τ
,

where (??) is an application of L’Hôpital’s rule.

(d) With twice the application of integration by parts (?) the expression
can be calculated a s follows

E
[
Y21{Y60}

]
=

∫µ
−∞ y2f(y)dy

=

∫µ
−∞ y2

τ(1− τ)

σ
exp

(
(1− τ)

y− µ

σ

)
dy

(?)
= τy2 exp

(
(1− τ)

y− µ

σ

) ∣∣∣∣µ
−∞

−

∫µ
−∞ 2τy exp

(
(1− τ)

y− µ

σ

)
dy

(??)
= τµ2 − 2

∫µ
−∞ τy exp

(
(1− τ)

y− µ

σ

)
dy

(?)
= τµ2 − 2

τσ

1− τ
y exp

(
(1− τ)

y− µ

σ

) ∣∣∣∣µ
−∞

+ 2

∫µ
−∞

τσ

1− τ
exp

(
(1− τ)

y− µ

σ

)
dy

(??)
= τµ2 − 2

τσµ

1− τ

+
2τσ2

(1− τ)2

(
exp (0) − lim

y→−∞ exp
(
(1− τ)

y− µ

σ

))
= τµ2 − 2

τσµ

1− τ
+

2τσ2

(1− τ)2
,

where (??) is an application of L’Hôpital’s rule which was applied
twice in the first time.
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(e) The expected value of 1{Y6µ} can be rewritten as a probability
which is calculated as follows

E
[
1{Y6µ}

]
= P(Y 6 µ)

=

∫µ
−∞ f(y)dy

=

∫µ
−∞

τ(1− τ)

σ
exp

(
(1− τ)

y− µ

σ

)
dy

= τ exp
(
(1− τ)

y− µ

σ

) ∣∣∣∣µ
−∞

= τ

(
1− lim

y→−∞ exp
(
(1− τ)

y− µ

σ

))
= τ.

As mentioned before some of the expressions in Corollary 2.2 are
derived because they are needed later in the consistency proof in
Chapter 4. Now let us examine the standard asymmetric Laplace distri-
bution. A random variable X is said to be standard asymmetric Laplacian
distributed if

X ∼ ALD(0, 1, τ).

Any asymmetric Laplacian distributed random variable Y can be derived
from the standard asymmetric Laplacian distributed random variable X
through the transformation

Y = µ+ σX ∼ ALD(µ,σ, τ). (2.13)

For a vector of independently asymmetric Laplacian distributed random

variables Y = (Y1, Y2, . . . , Yn)T with Yi
i
∼ ALD(µi,σ, τ) the density is

given by

f(y) =
τn(1− τ)n

σn
exp

(
n∑
i=1

(
−ρτ

(
yi − µi
σ

)))
. (2.14)

There the scale parameter σ and the skewness parameter τ are as-
sumed to be the same for all Yi, i = 1, 2, . . . ,n. The location parame-
ters µi may be different though. We write for Y

Y ∼ ALDn(µ,σ, τ)

with µ = (µ1,µ2, . . . ,µn)T .
In linear modelling the asymmetric Laplace distribution can be used as
the error distribution leading to the asymmetric Laplacian linear model
given by

Yi = x
T
i βτ + εi, i = 1, 2, . . . ,n (2.15)
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with
εi
iid
∼ ALD(0,σ, τ).

This model leads by (2.13) to the conditional distribution of Yi given
xi

Yi|xi
iid
∼ ALD(xTi βτ,σ, τ).

The asymmetric Laplacian linear model (2.15) is mainly applied in quan-
tile estimation (cf. e.g. Koenker [2005] or Machado and Santos Silva
[2005]), because it is equivalent to the linear quantile model (2.10)
which is shown in the following Section.

2.4.2 The Equivalence of the Models

In the following I am going to show the equivalence of the linear
quantile model (2.10) to the linear model with asymmetric Laplacian
error terms (2.15). This is important for the estimation process on the
one hand and for the asymptotic performance of the estimator on the
other hand. The minimising problem from (2.6) is shifted to a max-
imum likelihood estimation in the asymmetric Laplacian model. Either
way the estimation of βτ can be fulfilled and its consistency shown,
which will be discussed in Section 2.5. The field of maximum likeli-
hood estimation is well investigated. For this reason the equivalence
of the two models is proven in Theorem 2.3. The equivalence has
already been employed in many quantile regression applications (cf.
e.g. Machado and Santos Silva [2005]). However in order to give the
reader a deeper understanding of the theory behind I will conduct
this proof here.

For random variables Yi|xi
iid
∼ ALD(µi,σ, τ) with µi = xTi βτ the like-

lihood density function is given for µ = (µ1,µ2 . . . ,µn)T as a density
of an n-dimensional asymmetric Laplace distribution

L(µ,σ, τ, Y) =
n∏
i=1

fALD(µi,σ,τ)

(?)
=

n∏
i=1

τ(1− τ)

σ
exp

(
−ρτ

(
Yi − µi
σ

))

=
τn(1− τ)n

σn
exp

(
−

n∑
i=1

ρτ

(
Yi − µi
σ

))

where (?) follows from (2.14). For a fixed τ ∈ (0, 1) it is proportional
to

L(µ,σ, τ, Y) ∝ σ−n exp

(
−

n∑
i=1

ρτ

(
Yi − µi
σ

))
.
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The maximum likelihood estimator for µi = xTi βτ is given by

µ̂MLEi = xTi β̂
MLE
τ

with

β̂MLEτ (Y|X) := arg max
βτ∈Rp

{
σ−n exp

(
−

n∑
i=1

ρτ

(
Yi − x

T
i βτ

σ

))}
.

(2.16)
In the research field Jung [1996] introduced already a quasi-maximum
likelihood approach in median regression using a Laplace distribution.
Then Koenker and Machado [1999] mentioned the asymmetric Laplace
distribution for quantile regression in a frequantistic approach. Yu and
Moyeed [2001] mentioned the use of the of the asymmetric Laplace
distribution in a Bayesian approach. In the following theorem I will
prove the equivalence of the quantile model as introduced in (2.10) to
the asymmetric Laplacian model in (2.15) by showing the equality of
their estimators for the parameter vector βτ.

Theorem 2.3. For a fixed τ ∈ (0, 1) the estimators β̂τ(Y|X) from (2.7) and
β̂MLEτ (Y|X) from (2.16) coincide

β̂τ(Y|X) = β̂MLEτ (Y|X).

Proof. By (2.7) and (2.16) it holds that

β̂τ(Y|X) = arg min
β∈Rp

n∑
i=1

ρτ(Yi − x
T
i βτ)

= arg max
β∈Rp

{
−

N∑
i=1

ρτ(Yi − x
T
i βτ)

}

= arg max
β∈Rp

{
σ−n exp

(
−

n∑
i=1

ρτ

(
Yi − x

T
i βτ

σ

))}
= β̂MLEτ (Y|X).

This proven equivalence of the quantile linear model (2.10) to the
asymmetric Laplacian linear model (2.15) transfers the minimising prob-
lem from (2.6) to the problem field of maximum likelihood estimation.
The equivalent model to (2.10) is now model (2.15)

QYi|xi(τ) = x
T
i βτ ⇔ Yi = x

T
i βτ + εi, i = 1, 2, . . . ,n (2.17)

with
εi
iid
∼ ALD(0,σ, τ), i = 1, 2, . . . ,n.

Hence the estimation of βτ can be derived by both methods as de-
scribed in (2.7) and (2.16). Besides asymptotic theory can be studied
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on both approaches as I will discuss in Section 2.5. Note that this
equivalence is only numerical. The asymmetric Laplace distribution for
the error term is an approach in order to transfer the estimation by
minimising the risk function into a maximum likelihood problem. Lat-
ter is quite well explored. Actually the asymmetric Laplace distribution
was only constructed for quantile estimation. Let me go into detail of
the linear quantile model with asymmetric Laplacian distributed error
terms by discussing the meaning of the unknown scale parameter σ
before.

2.4.3 The Meaning of σ

The scale parameter σ of the asymmetric Laplace distribution has to
be positive (σ > 0). If we set it to a fixed number, the equivalence
of the models in Theorem 2.3 would still hold. Instead of setting it
fixed though, I keep σ, the scale parameter of the error term ε, as
an unknown parameter. This gives more flexibility in the estimation
whenever the model does not fit the reality. In other publications, for
example in Koenker and Machado [1999], σ is fix and set equal to one.
So by extending the asymmetric Laplacian model with this change the
equivalence in (2.17) still holds and we have more flexibility in terms
of variation in the data. The new model can then be written as

Yi = x
T
i βτ + εi, i = 1, 2, . . . ,n, (2.18)

where
εi
iid
∼ ALD(0,σ, τ) with σ > 0 unknown.

Since we assume that σ is unknown, it can be estimated simultane-
ously to βτ leading to the estimators

(β̂Tτ (Y|X), σ̂(Y|X))
T

:= arg max
(βT ,σ)T∈Rp×R+

{
σ−n exp

(
−

n∑
i=1

ρτ

(
Yi − x

T
i βτ

σ

))}
. (2.19)

The estimation of σ may be useful in testing problems related to the
regression because it determines the distribution of the test statistic.

2.5 the consistency of quantile regression in linear

models

For the terminology consistency let me state the following definition
according to the definition from Georgii [2009].
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Definition 2.4. Let Y be an n-dimensional vector of observations. An esti-
mator Ŝ(Y) is consistent for the true value S0 if and only if for all ε > 0

lim
n→∞P

(∣∣Ŝ(Y) − S0∣∣ > ε) = 0.
The consistency of quantile regression in the linear model has been
proven in several different ways. Many of them not only show the
consistency but the asymptotic normality (cf. Chapter 9.3 of van der
Vaart [2007]) of the parameter estimator β̂τ. For independently dis-
tributed observations Y1, Y2, . . . , Yn the classical maximum likelihood
theory is applicable. There the Fisher Information matrix plays an im-
portant role.

Definition 2.5. For independently distributed observations Y1, Y2, . . . , Yn
each with density f(y|θ) the Fisher Information matrix at θ0 is defined as

I(θ0) := E

[
∂

∂θ
log (f(yi|θ))

∂

∂θ
log (f(yi|θ))

T

∣∣∣∣
θ0

]
. (2.20)

Let me state the following theorem for maximum likelihood estimators
of Glivenko-Cantelli kind (cf. Glivenko [1933] and Cantelli [1933]).

Theorem 2.6. Let Y1, Y2, . . . , Yn be iid, each with density f(y|θ) where
θ ∈ Θ and suppose that the following regularity assumptions hold.

(a) The parameter space Θ is compact and the real value θ0 is in the interior
of Θ.

(b) For the distributions holds Pθ 6= Pθ0 for all θ 6= θ0.

(c) For every y the density f(y|θ) is twice differentiable with respect to θ
and the second derivative is continuous in an environment of θ0.

(d) There are dominating random variable M0,M1,M2 such that
supθ log(f(y|θ)) 6 M0(y), supθ

∂
∂θ log(f(y|θ)) 6 M1(y), and

supθ
∂2

∂θ2
log(f(y|θ)) 6M2(y).

(e) The Fisher Information I(θ) defined by Definition 2.5 is positive definite.

Then the maximum likelihood estimator θ̂n is under Pn
θ0

asymptotically nor-
mal √

n
(
θ̂n − θ0

) D→ N
(
0, I−1(θ0)

)
.

Proof. A proof can be found in Lehmann and Casella [1998] Theorem
3.10.

Huber [1967] studied the maximum likelihood estimation in non-
standard conditions. There he examined the performance whenever
the regularity assumptions are violated. The latter theorem can be
directly applied on quantile estimation. Let Y1, Y2, . . . , Yn be iid ob-
servations with continuous density f and distribution function F and
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τ ∈ (0, 1) is fixed. As discussed before the τ-quantile of Y can be es-
timated by finding a maximum likelihood estimator for µ. It follows by
application of Theorem 2.6 that

√
n(Q̂Y(τ) −QY(τ))

D→ N

(
0,
(
τ(1− τ)

f2(F−1(τ))

)2)
.

For details see Koenker [2005] Chapters 3.2 and 4.1. Thus the rate of
convergence is the classical

√
n-rate. Note that τ(1− τ) has its mini-

mum for τ = 0.5, which leads to the lowest variance for the median
estimation. Hence the estimation of the median outperforms the esti-
mation of other quantiles in the sense that its asymptotic variance is
the smallest. This is intuitive because quantiles in the lower or higher
regions are more prone to the few observations in the edges.
For quantile regression in the linear model the approach is similar
and Koenker [2005] states the following theorem.

Theorem 2.7. Let τ ∈ (0, 1) be fixed and let us assume the linear quantile
model 2.10 with conditional distribution functions FYi|xi and the estimator
β̂τ from (2.7). Suppose that the following conditions hold.

(a) The distribution functions FYi|xi are absolutely continuous with contin-
uous densities fYi|xi uniformly bounded away from zero and infinity at
the points QY1|x1(τ),QY2|x2(τ), . . . ,QYn|xn(τ).

(b) There exists a positive definite matrix D0 such that
1
n limn→∞∑ni=1 xixTi = D0.

(c) There exists a positive definite matrix D1 such that
limn→∞ 1

n

∑n
i=1 fYi|xi(QYi|xi(τ))xix

T
i = D1.

(d) maxi=1,2,...,n
‖xi‖√
n
→ 0.

Then as n→∞
√
n(β̂τ −βτ)

D→ N
(
0, τ(1− τ)D−1

1 D0D
−1
1

)
.

Proof. See Theorem 4.1. in Koenker [2005].

In the proof of the latter theorem the equivalence to a maximum likeli-
hood estimation was not used. It was directly proved for β̂τ from (2.7).
However by applying Theorem 1 from Pollard [1991] on the linear
quantile model 2.10 I get the same result. There the proof is based
on the maximum likelihood approach. Nevertheless, asymptotic normal-
ity implies consistency which can be shown by the following small
proof:
Let the estimator θ̂ be asymptotically normal with rate

√
n and asymp-

totic covariance matrix A. θ0 is the real value. Thus it holds

√
n(θ̂− θ0)

D→ N (0,A) .
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It holds for an arbitray ε > 0

P
(∣∣θ̂− θ0∣∣ > ε) = P (√nA− 1

2

∣∣θ̂− θ0∣∣ > √nA− 1
2ε
)

.

Due to the asymptotic normality the asymptotic distribution of

√
nA− 1

2

∣∣θ̂− θ0∣∣ is a standard normal whilst the term on the right
hand side

√
nA− 1

2ε diverges to infinity as n→∞. Thus the probabil-
ity converges to zero which implies the consistency.
This implication leads to the following corollary.

Corollary 2.8. The estimator β̂τ – see (2.7) or (2.16) – in the linear quantile
model (2.10) is consistent.

Proof. Set A := τ(1− τ)D−1
1 D0D

−1
1 . Let ε > 0 be arbitrary and fixed

P
(∣∣β̂τ −βτ∣∣ > ε)
= P

(√
nA− 1

2

∣∣β̂τ −βτ∣∣ > √nA− 1
2ε
)

(?)→ 2
(
1−φ

(√
nA− 1

2ε
))

(??)→ 0 as n→∞,

where (?) follows because
√
nA− 1

2 (β̂τ−βτ) is by Theorem 2.7 asymp-
totically standard normal distributed and φ is its probability density
function. Due to the definition of

√
n → ∞ (??) follows because

φ(
√
n ·C) → 1 as n → ∞ for any constant C. As a remark, the con-

vergence (?) is just a between step of the whole convergence proven.
This is why at this stage the limit still depends on n.

The consistency of β̂τ implies the consistency of the whole quantile
estimator Q̂Yi|xi(τ) in (2.8).
In further research Bassett and Koenker [1986] proved a strong con-
sistency of quantile regression in linear models and Buchinsky [1995]
showed a method of computing the covariance matrix via a Monte
Carlo approach. Powell [1983] showed the asymptotic normality for two-
stage least absolute deviation estimators such as the median.

2.6 further research on quantile regression in linear

models

After Koenker and Bassett [1978] introduced the quantile regression
in linear models, further research based on this theory was made. For
example can be observed that quantile regression lines for different
τ ∈ (0, 1) may cross. This happens especially in the edges of the sup-
port of the auxiliary variables x because of fewer observations in this
part. Of course this is theoretically impossible under the assumption
of the model. However He [1997] introduced a method to solve the
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crossing quantiles problem.
Rogers [2001] discussed least absolute deviation estimators in non-
standard conditions. There he focusses mainly on applications in time
series. Koenker [2004] already introduced quantile regression for lon-
gitudinal data using a fixed effects model.
Jones [1994] showed that there is a link between expectiles and quan-
tiles. Expectiles are estimators with the Euclidean distance as loss func-
tion with a skewness parameter τ ∈ (0, 1). The 0.5-expectile is the
mean. Thus he instructs a way of computing medians from means
and vice versa.

2.7 applications and extensions of the linear quantile

model

Naturally the linear quantile model can be applied, whenever we are
interested in quantiles of dependent variables Yi, Y2, . . . , Yn, which
follow the linear model (2.3) with unknown error distribution. In prac-
tice this model is often only a starting point and can be improved. In
mean estimation this is already well investigated. There the gener-
alised linear models were introduced employing a link function on
the data in order to get back to a linear modelling problem. In Sec-
tion 2.7.1 I will show that this also works with quantiles leading to
a generalised linear quantile model. A short guidance to the estima-
tion is given and the property of consistency can even be stated for
the quantile estimators in these cases. Another extension of the quan-
tile regression in linear models was discussed by Machado and San-
tos Silva [2005]. They introduced a method for estimating quantiles
of counts and showed the consistency of their introduced estimator.
This I will present in Section 2.7.2.

2.7.1 Generalised Linear Quantile Models

For data Yi, Y2, . . . , Yn following a linear model (2.3) with unknown
error distribution the linear quantile modelling is directly applicable.
The parameter βτ can be estimated either by minimising the lost func-
tion (2.6) or as a maximum likelihood estimator in the linear quantile
model (2.18) with asymmetric Laplacian error terms. The results are
the same as shown in Theorem 2.3 leading to conditional quantile
estimators for a given τ ∈ (0, 1)

QYi|xi(τ) = x
T
i β̂τ i = 1, 2, . . . ,n.

In cases of a generalised linear model a step in the estimating process
has to be added. Let us assume that the mean model is given as

T (E [Yi]) = x
T
i β, i = 1, 2, . . . ,n,
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or equivalently

E [Yi] = T
−1
(
xTi β

)
, i = 1, 2, . . . ,n. (2.21)

Here the link function T(·) is a continuous function. An example may
be the log-linear model

log (E [Yi]) = x
T
i β, i = 1, 2, . . . ,n,

or equivalently

E [Yi] = exp
(
xTi β

)
, i = 1, 2, . . . ,n.

With the same argumentation as in the linear model in Section 2.3 the
model (2.21) may be used for quantile estimation. For a fixed τ ∈ (0, 1)
this leads to the generalised linear quantile model

QYi|xi(τ) = T
−1
(
xTi βτ

)
, i = 1, 2, . . . ,n, (2.22)

or equivalently

T
(
QYi|xi(τ)

)
= xTi βτ, i = 1, 2, . . . ,n.

For a continuous transformation function T it holds that the transfor-
mation of the quantile is the quantile of the transformation

T
(
QYi|xi(τ)

)
= QT(Yi)|xi(τ), i = 1, 2, . . . ,n. (2.23)

In application for observations Y1, Y2, . . . , Yn following the generalised
linear model (2.21) we need to transform the data in a first step.

Yi → T(Yi), i = 1, 2, . . . ,n.

On the transformed observations T(Y1), T(Y2), . . . , T(Yn) the linear
quantile model (2.10) holds. In the second step we can estimate β̂τ
leading to conditional quantile estimators of them

Q̂T(Yi)|xi(τ) = x
T
i β̂τ, i = 1, 2, . . . ,n.

This estimation is by Corollary 2.8 consistent. In the third step the
transformed conditional quantile estimators of the observations
Y1, Y2, . . . , Yn are by (2.23) given as

T
(
Q̂Yi|xi(τ)

)
= Q̂T(Yi)|xi(τ) = x

T
i β̂τ, i = 1, 2, . . . ,n,

which is eventually equivalent to their quantile estimator

Q̂Yi|xi(τ) = T
−1
(
xTi β̂τ

)
, i = 1, 2, . . . ,n.

Since T is continuous, the estimation is still consistent.
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2.7.2 Linear Quantile Models for Count Data

In mean estimation a Poisson model is often used with count data.
However, this model is prone to data which suffers an overdispersion.
Efron [1992] solved the problem by using an asymmetric maximum
likelihood approach. Another way could be the estimation of parame-
ter which are less prone to sparse data, such as the median estimator.
Other quantiles may also be of interest. The estimation of quantiles
for count data can not be straightforwardly derived by applying the
linear quantile model. Quantiles of count data must be integers due to
the fact that counts themselves are integers. Since the linear quantile
model (2.10) is a model for continuous data, it is not directly applica-
ble on counts. The count mean model or Poisson model for a discrete
random variable is Yi given xi can be stated as

exp(xTi β), i = 1, 2, . . . ,n. (2.24)

This mean model needs to be improved in order to estimate quantiles
of Yi given xi for a fixed τ ∈ (0, 1), QYi|xi(τ). The main idea in esti-
mating quantiles for counts was developed by Machado and Santos
Silva [2005]. They applied a method called jittering on the observed
random variables Y1, Y2, . . . , Yn, which will be discussed in the fol-
lowing Section 2.7.2.1. Later I state the main theorem of their article
in Section 2.7.2.5. There I state the consistency of the count quantiles
derived through the jittering approach.

2.7.2.1 Jittering the Count Data

The count observations Yi (i = 1, 2, . . . ,n) are discrete. Machado and
Santos Silva [2005] introduced the idea of jittering in order to get con-
tinuous data. This method means adding a standard uniform random
variable Ui independent from Yi and xi, we get a continuous obser-
vation Zi:

Zi := Yi +Ui. (2.25)

On this continuous random variable Zi we can apply the linear quan-
tile model (2.10). Its quantile can be stated in the following theorem.

Theorem 2.9. For a fixed τ ∈ (0, 1) the quantile of Zi as defined in (2.25)
is said to be

QZi|xi(τ) = exp(xTi β) + τ.
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Proof. Let τ ∈ (0, 1) be fixed. For a continuous random variable Yi +
U(−τ, 1− τ), where the mean model (2.24) holds for Yi the τ-quantile
is

QYi+U(−τ,1−τ)|xi(τ) = exp(xTi β)

⇐⇒ QYi+U(−τ,1−τ)+τ|xi(τ) = exp(xTi β) + τ

⇐⇒ QYi+U(0,1)|xij(τ) = exp(xTi β) + τ.

2.7.2.2 Transformation of the Jittered Data

In order to be able to apply the quantile estimation approach of linear
quantile models (2.10), there is need to transform the jittered data Zi.
This is for a fixed τ ∈ (0, 1) fulfilled as follows

T(Zi, τ) :=

log(ζ),Zi 6 τ

log(Zi − τ),Zi > τ

with a small value ζ. This transformation is almost a continuous func-
tion and log(ζ) is just the function value for negative values for Zi− τ
since the logarithm is not defined for negative values. Therefore it fol-
lows for the transformed jittered data

T−1(Zi, τ) ≈ exp(Zi) + τ

and hence I can state the following corollary.

Corollary 2.10. The quantile of the transformed jittered data is given as

QT(Zi,τ)|xi(τ) = x
T
i βτ.

Proof. The transformation T is almost continuous and thus it holds
that

QT(Zi,τ)|xi(τ) = T
(
QZi|xi(τ)

)
.

In Theorem 2.9 it was shown that

QZi|xi(τ) = exp(xTi β) + τ,

which implies that

QT(Zi,τ)|xi(τ) = T
(
exp(xTi β) + τ, τ

)
= exp(xTi β).
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2.7.2.3 Applying Quantile Estimation in the Linear Model on the Trans-
formed Jittered Data

The transformed jittered data

Y?i := T(Zi, τ)

is now continuous and we can apply the quantile estimation in linear
models as introduced in Section 2.3. There we estimate βτ either di-
rectly as the minimiser of the loss function (2.7) or as the maximum
likelihood estimator (2.16). In order to average out the error, which is
based on the jittering, we apply an averaged jittering. That means we
jitter our data M times and repeat the estimation of βτ in each step.
In the end we take the averaged estimator

β̂τ =
1

M

M∑
m=1

β̂τ,m.

This leads to the quantile estimator of Y?i

Q̂Y?
i |xi

(τ) = xTi β̂τ, i = 1, 2, . . . ,n. (2.26)

2.7.2.4 Back-Transformation and Count Quantile

From the τ-quantile of Y?i we can calculate the τ-quantile of the ob-
served counts Yi by the following theorem.

Theorem 2.11. For a fixed τ ∈ (0, 1) the estimator for the τ-quantile of the
observed counts Yij given xij is given by

Q̂Yi|xi(τ) = dT
−1(Q̂Zi|xi(τ)) − 1e

= dexp(xTi β̂τ) + τ− 1e

for i = 1, 2, . . . ,n.

Proof. The proof can be found in Machado and Santos Silva [2005]
Theorem 2.

2.7.2.5 Consistency of the Quantile Estimation of Counts in Linear Mixed
Models

Theorem 2.12. For a fixed τ ∈ (0, 1) the estimator for the τ-quantile of the
observed counts Yi given xi,

Q̂Yi|xi(τ) i = 1, 2, . . . ,n

as defined in Theorem 2.11, is consistent.
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Proof. The proof can be found in Machado and Santos Silva [2005]
Theorem 1 and the Corollary. There the proof of the theorem is based
on Pollard [1991] Theorem 1.

2.7.2.6 Conclusion of Quantiles of Counts

In this part I introduced the idea by Machado and Santos Silva [2005]
of jittering count data in order to apply the linear quantile model.
Thus one is able to estimate quantiles of count data by applying
the quantile estimation in linear models described in Section 2.3. The
quantile estimation works on continuous data, which is why the count
data needed to be made continuous by the jittering and the transfor-
mation. Then we could apply the linear quantile model as in (2.10).
After the estimation a back-transformation of the quantile estimators
of the transformed jittered data gives the quantiles of the counts.
Furthermore Machado and Santos Silva [2005] showed that the quan-
tile estimation in count data is consistent. This is implied by the con-
sistency of the quantile estimation in linear models, which was stated
in Corollary 2.8 of this Chapter.



3
Q U A N T I L E R E G R E S S I O N I N L I N E A R M I X E D
M O D E L S

Similarly as in Chapter 2, starting with a linear model, we are now
interested in quantiles in a linear mixed model. For example these
models find applications in Small Area Estimation (SAE) or on longi-
tudinal data. Therefore I am giving an introduction on linear mixed
models in Section 3.1. These models were extended by Geraci and
Bottai [2007] for the use in quantile estimation, which is discussed
in Sections 3.2 and 3.3. In the following Section 3.4 I show the consis-
tency of the quantile estimator under stated assumptions which is the
main contribution of this thesis. Because the main part of this proof
is extensive, it has its own Chapter 4. In Section 3.6.1 I discuss the ap-
plication of quantile estimation in the linear mixed models on count
data using a method called jittering, which was firstly introduced by
Machado and Santos Silva [2005] and already discussed in Section
2.7.2 for linear models. The Chapter ends with Section 3.6.2, where I
introduce a method called Microsimulation via Quantiles (MvQ), which
can be applied to parameter estimation, which goes beyond mean es-
timation in linear mixed models.

3.1 the linear mixed model

Linear mixed models are in common use in statistics. One main ap-
plication is longitudinal data, where D objects are each observed at
different times. Another one is the Small Area Estimation (SAE), where
D areas each have a within sample size of ni, i = 1, 2, . . . ,D of in-
dividuals or units. Both have in common that dependencies within
observations, may they come from the same object or the same area,
are caught in a random effect Vi. Applying a linear model without a
random effect would violate the independence assumption on the er-
ror term. At this point we are interested in the estimation of the mean
of the data. This leads to a mean model, the linear mixed model,

Yij = x
T
ijβ+ Vi + εij, i = 1, 2, . . . ,D; j = 1, 2, . . . ni, (3.1)

where Yij is the observation, xij is a p-dimensional vector of inde-
pendent variables of the time or individual j in object or area i, β =

(β1,β2, . . . ,βp)T is the unknown p-dimensional parameter vector, Vi
is the random effect, and εij is the individual error. Since I work
mainly in the field of SAE, I will name all properties in area and in-
dividual terms, keeping in mind that they are exchangeable for other
applications of mixed models.

31
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So far there are no distribution assumptions on the error terms Vi
and εij except that they are centred, thus

E[Vi] = 0 and E[εij] = 0, i = 1, 2, . . . ,D; j = 1, 2, . . . ni,

and each have a finite variance

Var(Vi) = σ
2
V <∞ and Var(εij) = σ

2
ε <∞,

i = 1, 2, . . . ,D; j = 1, 2, . . . ni.

Additionally they are distributed independently of each other. Thus
Vi1 is distributed independently of Vi2for all i1 6= i2, εi1j1 is dis-
tributed independently of εi2j2 for all (i1, j1) 6= (i2, j2), and Vi1 is
distributed independently of εi2j for all i1, i2 = 1, 2, . . . ,D and j =
1, 2, . . . ni1 . The sample size in area i is ni leading to an overall sam-
ple size of

n =

D∑
i=1

ni. (3.2)

Of common use is a normal assumption on the random effect

Vi
iid
∼ N(0,σ2V), i = 1, 2, . . . ,D.

Other distributions are possible but have not been used as widely.
For example a heavy tailed distribution as e.g. the Log-normal distribu-
tion or the t-distribution should be applied whenever we have extreme
value data like income or insurance claims. Also a distribution with
a positive support is possible if we are interested in the fastest time
a man can run 100 meters for example. A normal assumption on the
individual error terms is also in common use, especially in SAE ap-
proaches:

εij
iid
∼ N(0,σ2ε), i = 1, 2, . . . ,D; j = 1, 2, . . . ni.

We can rewrite model (3.1) in matrix form as follows

Y = Xβ+ ZV + ε, (3.3)
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where Y = (Y1,1, Y1,2, . . . , Y1,n1 , Y2,1, . . . , YD,nD)
T is the vector of the

observations, the matrix

X :=



xT1,1

xT1,2
...

xT1,n1

xT2,1
...

xTD,nD


(3.4)

is the design matrix, β = (β1,β2, . . . ,βp)T is the unknown
p-dimensional parameter vector, the matrix

Z :=


1n1

1n2
. . .

1nD

 , (3.5)

where 1ni is an ni-dimensional vector of ones, is the design matrix for
the random vector V = (V1,V2, . . . ,VD)T , and
ε = (ε1,1, ε1,2, . . . , ε1,n1 , ε2,1, . . . , εD,nD)

T is the vector of the individ-
ual errors. The assumption of normal distributions of the random effect
and the individual errors can now be rewritten as

V ∼ N
(
0D,σ2VID

)
and ε ∼ N

(
0n,σ2εID

)
.

This together with the independence of V and ε leads to a normal
distribution for the observation vector

Y ∼ N (Xβ,Σ) (3.6)

with Σ := σ2εIn + σ2VZZT . With the assumption of known variances
σ2V and σ2ε. This leads directly to the best linear unbiased estima-
tor (BLUE) by the Gauß-Markov Theorem (cf. Markov [1912], Searle
[1971], Henderson [1950])

β̂(Y) =
(
XTΣ−1X

)−1
XTΣ−1Y (3.7)

and the best linear unbiased predictor (BLUP) for the random effect

V̂(Y) = σ2VZTΣ−1
(
Y − Xβ̂(Y)

)
. (3.8)
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Robinson [1991] gives a good overview on the BLUP (3.8) as the pre-
dictor for the random effect. It follows the best linear unbiased esti-
mator for Yij given xij as

Ŷij = x
T
ijβ̂+ V̂i, (3.9)

where β̂ = β̂(Y) from Equation 3.7 and V̂i is the ith entry of V̂ from
Equation 3.8.
In general the variance parameters are unknown and need to be esti-
mated first. This leads to the empirical best linear unbiased estimator
and predictor (EBLUE & EBLUP), where the variance parameters in
Equations 3.7 and 3.8 are replaced by their estimators σ̂2V and σ̂2ε (Rao
[2003], Chapter 6.2.3). This approach is a two-stage method, where
the variance parameters are estimated first and then set into the BLUE
and BLUP equations.
Another way of dealing with unknown variance parameters is a max-
imum likelihood approach. From (3.6) follows directly the density and
thus the log-likelihood density of the observation Y. The unknown pa-
rameters are θ = (σV ,σε,βT )T . By differentiation of the log-likelihood
density and setting this derivative to zero the maximum likelihood esti-
mator θ̂ = (σ̂V , σ̂ε, β̂T )T can be derived. In a last step the BLUP for V
is obtained as in Equation 3.8 by replacing the variance components
σV and σε by their estimates σ̂V and σ̂ε. In the end the best linear
unbiased estimator for Yij given xij is given as in (3.9). In Searle et al.
[1992] can be found a detailed calculation of the variance parameters
of this estimator.
This maximum likelihood approach is also a two-stage method and is
similar to the one we are going to employ for the quantile estimator
in mixed models.

3.2 the linear quantile mixed model

In Chapter 2 quantile regression in linear models was discussed. How-
ever the linear model (2.3) often needs to be improved though. There
are scenarios, in which one has to extend this model. Nevertheless
linear models serve as a starting point. Koenker [2004] introduced
an approach of quantile regression in fixed effects models for the
application in longitudinal data. Another example for the necessity
of development the linear model (2.3) are dependencies between ob-
servations. Linear mixed models with random effects are the right
choice in this setting. Furthermore one may even be interested in es-
timators beyond the mean, which is well developed in mixed models
and was introduced in Section 3.1. For quantile estimation in linear
mixed models the idea of quantile regression in linear models must
be adapted appropriately.
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3.2.1 The Model

Similarly to the linear quantile model (2.10) without random effect for
a fixed τ ∈ (0, 1), Geraci and Bottai [2007] defined the linear quantile
mixed model as follows

QYij|xij(τ) = x
T
ijβτ + Vτ,i, i = 1, 2, . . . ,D; j = 1, 2, . . . ni, (3.10)

where QYij|xij(τ) stands for the conditional τ-quantile of Yij given xij.
Thus the linear quantile model was extended by adding the random
effect Vτ,i. The linear quantile mixed model (3.10) only needs to be
employed whenever the distribution of the error term in the linear
mixed model (3.1) is unknown. For a known error distribution func-
tion Fε, the τ-quantile of Yij given xij is then

QYij|xij(τ) = x
T
ijβ+ Vi + F

−1
ε (τ), i = 1, 2, . . . ,D; j = 1, 2, . . . ni,

where β is the same parameter vector as in the linear mixed model
(3.1). In practice assuming an unknown distribution of ε leads to more
flexibility to the model. Therefore I will proceed under this assump-
tion.
In contrast to the linear mixed model (3.1) the random effect Vτ,i now
carries τ in a footnote implying that for different τ the random effect
may be different. A further discussion about this approach can be
found in Section 3.2.2. In the following I will drop the τ in the sub-
script for the purpose of simplicity. However the reader should keep
in mind the dependency on τ. In matrix form (3.10) can be rewritten
as

QY|X(τ) = Xβτ + ZV , (3.11)

where X and Z are the same matrices as defined in (3.4) and (3.5), re-
spectively. Equivalently to Theorem 2.3 and similar to the approaches
by Jung [1996] for median estimation, Koenker and Machado [1999],
and Yu and Moyeed [2001], we can state the equivalence of model
(3.10) to

Yij = x
T
ijβτ + Vi + ετ,ij, i = 1, 2, . . . ,D; j = 1, 2, . . . ni (3.12)

with

ετ,ij
iid
∼ ALD(0,σ, τ), i = 1, 2, . . . ,D; j = 1, 2, . . . ni.

In matrix form this model can be rewritten as

Y = Xβτ + ZV + ετ, (3.13)

where X and Z are the same matrices as defined in (3.4) and (3.5),
respectively. The error term ετ is the vector of the individual error
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terms ετ,ij in (3.12). Its distribution is an n-dimensional asymmetric
Laplace distribution as discussed in (2.14)

ετ
iid
∼ ALDn(0n,σ, τ).

Hence the asymmetric Laplace distribution, which was discussed in Sec-
tion 2.4.1, also serves as the distribution of the individual error term
ετ,ij here. Again for reasons of simplification I will drop the τ in the
subscript of the error term in the following keeping in mind that its
distribution is dependent on τ. As in the linear quantile model (2.18)
we assume that the scale parameter σ is unknown. Thus it gives a
measure of the variance of the individual error term in the linear
mixed model (3.1), whose distribution is assumed to be unknown.
Whenever I mention the linear quantile mixed model in the further
investigation I refer to the latter model (3.12). Due to the equivalence
of the two models, this choice is a matter of taste. I prefer model
(3.12) because it has a regular appearance in linear modelling with
error terms on the right hand side and the observations on the left
hand side. On the other hand model (3.10) carries the error distribu-
tion within the quantile expression on the left hand side and there is
no direct exposure of the observation Yij in this model.

3.2.2 The Dependence of the Random Effect on τ

At this point I would like to examine whether the random effect V
depends on τ. Before I dropped the τ in the subscript for the purpose
of simplification in the display. Now let us investigate the dependence
here.
In theory the random effect only adds to the linear model. Thus one
could interpret the linear quantile mixed model as a combination
of the linear quantile model (2.18) and a random effect. Then the
quantile may also be rewritten as the quantile of the linear model (cf.
(2.10)) added with a random effect

QYij|xij(τ) = x
T
ijβτ + Vi, i = 1, 2, . . . ,D; j = 1, 2, . . . ni.

Hence all quantiles for an area i have the same distance from the
average, Vi, for all τ, and the random effect is independent of τ.

In a simulation study I produced 500 pseudo samples from the linear
mixed model with D = 500 areas and area sample sizes of ni = 10

individuals in each (i = 1, 2, . . . , 500) with three error scenarios. The
model is

Yij = 2+ 0.8xij + Vi + εij,
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Figure 3.1: Boxplots of predictors of the random effect in the first area of 500
simulation runs for different τ in scenario 1 (symmetric error)

where the independent variables xij come from a uniform distribution
on (0, 1)

xij ∼ U(0, 1), i = 1, 2, . . . , 500; j = 1, 2, . . . , 10.

The random effect was drawn from a normal distribution with zero
mean and variance σ2V = 0.32

Vi ∼ N(0, 0.32), i = 1, 2, . . . , 500,

and the error term was drawn from a normal or a transformed F distri-
bution with parameters d1 = 20 and d2 = 20

Scenaro 1: εij ∼ N
(
0, 0.52

)
i = 1, 2, . . . , 500; j = 1, 2, . . . , 10

Scenaro 2: εij ∼

√
0.5
20 · 182 · 16
2 · 202 · 38

(
F(20, 20) −

20

18

)
i = 1, 2, . . . , 500; j = 1, 2, . . . , 10

Scenaro 3: εij ∼ −

√
0.5
20 · 182 · 16
2 · 202 · 38

(
F(20, 20) −

20

18

)
i = 1, 2, . . . , 500; j = 1, 2, . . . , 10

such that
E
[
εij
]
= 0 and Var(εij) = 0.52.

I chose these three scenarios such that we have a symmetric and two
skewed data from which the estimation of quantiles is more chal-
lenging. The first scenario has a symmetric error term. In scenario 2

the error term is positively skewed and in scenario 3 it is negatively
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Figure 3.2: Boxplots of predictors of the random effect in the first area of 500
simulation runs for different τ in scenario 2 (positively skewed
error)

skewed. I estimated for each sample the parameter β̂τ and the pre-
dictor vector V̂τ with the package lqmm by Geraci [2016] in R.
Figures 3.1, 3.2, and 3.3 show boxplots of the predictions of the ran-
dom effect dependent on τ in the first area of 500 simulation runs for
scenario 1, 2, and 3, respectively. In scenario 1, the symmetric setting,
the predictors are around zero and have only a small dependence on
τ. Around the lower quartile the predictor for the random effect is
the lowest while it is the highest for quantiles around the upper quar-
tile. In the skewed scenarios we can see that the prediction for V1
is further from zero for the quantiles in the tails of the distributions,
which in scenario 2 is the upper quantiles. In scenario 3 it is the lower
quantiles. This is due to the spread out observations in the tail parts.
The quantile estimators become less reliable and this can be seen in
the prediction of the random effect.
These were only simulation examples with real quantiles given as

QYij|xij(τ) = x
T
ijβ+ Vi + F

−1
ε (τ), i = 1, 2, . . . , 500; j = 1, 2, . . . 10

with Fε being the corresponding distribution function in the three sce-
narios. Thus in theory there should be no dependence of the random
effect on τ. However the values for V̂ seem to depend on τ because
the prediction corrects for less reliability on the data. The estimation
of the random effect depends on the distribution of the error term ε

which is depending on the fixed τ.
In practise there could be another reason for the dependence of the
random effect on τ. In small area estimation it can be interpreted as
different random effects of areas for different quantiles. For example
the income estimation in the first area may be in the median by V0.5,1
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Figure 3.3: Boxplots of predictors of the random effect in the first area of 500
simulation runs for different τ in scenario 3 (negatively skewed
error)

higher than the average but in the 95%-quantile is higher by V0.95,1

than the average. If V0.5,1 < V0.95,1 this means that the 95%-quantile
is even more distant from the average than the median is. In this area
the higher incomes are even larger than the average 95%-quantile by
reasons we cannot explain by the independent data X1. The income
is more spread in the upper tail than in other areas. If V0.5,1 > V0.95,1

this means that the 95%-quantile is less distant from the average than
the median is. In this area the higher incomes are lower by reasons
we cannot explain by the independent data X1. The income is less
spread in the upper tail than in other areas.
Altogether we can state that the random effect should depend on τ.
This makes the model more flexible in terms of the distribution of Y
within the areas, which cannot be explained by the independent data
X. Nevertheless the footnote on Vτ will be dropped in future appear-
ances for clarity, keeping in mind the dependence on the choice of
τ.

3.3 the quantile estimation in linear mixed models

For the quantile estimator in the linear mixed model we need an
estimator for the parameter βτ and a predictor for the random vector
V leading to the conditional quantile estimator for a fixed τ ∈ (0, 1)

Q̂Yij|xij(τ) = x
T
ijβ̂τ + V̂i, i = 1, 2, . . . ,D; j = 1, 2, . . . ni. (3.14)

This estimation is fulfilled in two steps, which will be described in the
following Sections 3.3.1 and 3.3.2 which is also described in Geraci
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and Bottai [2007] and Geraci and Bottai [2014] and implemented in
the R package lqmm (cf. Geraci [2016]).

3.3.1 Step 1: Maximum Likelihood Estimation

From the linear quantile mixed model (3.13) the conditional distribu-
tion of Y given V is an asymmetric Laplace distribution with location
parameter Xβτ + ZV , scale σ, and skewness τ

Y|V ∼ ALDn (Xβτ + ZV ,σ, τ) .

Thus the joint distribution of the observation vector Y and the random
effect vector V is given as the convolution

(Y,V) ∼ ALDn (Xβτ + ZV ,σ, τ)×ND
(
0D,σ2VID

)
.

It follows that the density of the joint distribution is given as

f(Y,V)(y, v) = fALDn(Xβτ+ZV ,σ,τ)(y|v) · fND(0D,σ2VID)
(v).

This can be simplified as in (2.14) to the joint distribution density

f(Y,V)(y, v) =
D∏
i=1

 ni∏
j=1

fALD(xTijβτ+vi,σ,τ)(yij|vi)

 fN(0,σ2V)
(vi).

(3.15)

The density and thus the distribution of the observation vector Y is
then given as the marginal density of the joint density in (3.15)

fY(y) =

∫
RD

D∏
i=1

 ni∏
j=1

fALD(xTijβτ+vi,σ,τ)(yij|vi)

 fN(0,σ2V)
(vi)dv

(?)
=

D∏
i=1

∫
R

 ni∏
j=1

fALD(xTijβτ+vi,σ,τ)(yij|vi)

 fN(0,σ2V)
(vi)dvi,

(3.16)

where (?) follows by application of the Theorem of Fubini (cf. Klenke
[2013], Satz 14.16). A closed form solution of this integral is not cal-
culable. Thus (3.16) is the simplified expression of the density of the
observation Y. The unknown parameters are σV , σ, and βτ. From 3.16

we can derive the log-likelihood density `(θ|y) = log fY(y) and find
the maximum likelihood estimator

θ̂ := arg max
θ∈Θ

`(θ|y).
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for θ = (σV ,σ,βTτ )T ∈ Θ := R+ ×R+ ×Rp as the roots of the equa-
tions

∂

∂θ
`(θ|y)

!
= 0p+2. (3.17)

Since there is no analytical solution to (3.17), numerical approaches
are needed. Geraci and Bottai [2007] first introduced an EM algorithm
(cf. McLachlan and Krishnan [2008]). Later Geraci and Bottai [2014]
made use of a Gaussian quadrature (cf. Pinheiro and Chao [2006]). The
latter procedure, which is also implemented in their R package lqmm

(cf. Geraci [2016]), is faster and more stable than the EM algorithm.
The user is able to assume different distributions on the random effect
and the number of knots in the Gaussian quadrature. As a result the
maximum likelihood estimator θ̂ = (σ̂V , σ̂, β̂Tτ )T can be calculated.
The existence and consistency of this maximum likelihood estimation is
proven in Chapter 4.

3.3.2 Step 2: Prediction of Random Effect

In a second step a prediction for the random effect is calculated using
the maximum likelihood estimator θ̂ = (σ̂V , σ̂, β̂Tτ )T from Step 1 intro-
duced in Section 3.3.1. As in linear mixed models (3.1) Geraci and
Bottai [2014] stated that the predictor for the random effect can be
written in the linear quantile mixed model (3.12) as

V̂(Y) = σ̂2VZT Σ̂−1
(
Y − Xβ̂τ − Ê [ε]

)
(3.18)

with the estimated covariance matrix of Y

Σ̂ = σ̂2VZZT + V̂ar(ε)

and the estimated expected value and variance of ε are

Ê [ε] =
σ̂(1− 2τ)

τ(1− τ)
1n and

V̂ar(ε) =
σ̂2(1− 2τ+ 2τ2)

τ2(1− τ)2
In.

These are the expected value and the variance of an n-dimensional
asymmetric Laplace distribution with parameters µ = 0, σ̂, and τ (cf.
Corollary 2.2). Note that the estimated covariance matrix can also be
rewritten as Σ̂ = σ̂2VZZT + V̂ar(ε1,1)In with V̂ar(ε1,1) =

σ̂2(1−2τ+2τ2)
τ2(1−τ)2

.
The approach is based on the best linear prediction (cf. Ruppert et al.
[2003], Chapter 4.3.1).
As a result the quantile estimator given in (3.14) can be calculated by
inserting β̂τ from the maximum likelihood estimation in Step 1 and V̂i
given in Equation 3.18.
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3.4 the consistency of quantile estimation in the lin-
ear mixed model

In this Section I am going to show the consistency of the quantile
estimator in linear mixed models as introduced in (3.14).

3.4.1 The Consistency of the Quantile Estimator

For the term consistency I am going to use the Definition 2.4 which
was stated in Chapter 2, when I discussed the consistency of the quan-
tile estimation in linear models. Similar to the two-step approach in
the estimation, the consistency is separately shown for both steps.
Since the maximum likelihood estimation in the first step is quite com-
plicated and the proof is going to be of analytical kind, this part is
sourced out in a whole Chapter 4. Nevertheless I am giving a short
version of this part in the proof of the following theorem. Before I
state the consistency let me assume the following properties:

(b1) Let the sample size n → ∞ with D → ∞ and ni → ∞ for all
i = 1, 2, . . . ,D.

(b2) The true value θ0 is in the interior of Θ = R+ ×R+ ×Rp.

(b3) 1
n

∑D
i=1

∑ni
j=1 xij → c0 for n→∞, where c0 is a p-dimensional

vector.

(b4) 1
n

∑D
i=1

∑ni
j=1 xijx

T
ij → C1 for n → ∞, where C1 is a positive

definite p× p-matrix.

(b5) 1
n

∑D
i=1

∑ni
j=1 fYij(xijβτ + vi)xijx

T
ij → C2, where C2 is a posi-

tive definite p× p-matrix.

(b6) The conditional expectations E[εi,j|Y] and E[Vi|Y] are indepen-
dent for all i = 1, . . . ,D; j = 1, . . . ,ni.

3.4.1.1 The Meaning of the Assumptions

Before I state the main theorem of this thesis let me discuss the as-
sumptions needed there. The first two assumptions (B1) and (B2) can
also be found in the consistency proof in the mean estimation in lin-
ear mixed models in Pinheiro [1994]. Especially (B1) is necessary in
mixed models in order to obtain the consistency of the variance es-
timator of the random effect σ̂2V . So the overall sample size n must
increase while, in small area terms, the number of areas D and the
number of observations in all areas ni grow.
On the other hand (B3) and (B4) are of technical character and compa-
rable to Assumption A3.1.7 in Pinheiro [1994]. They are later needed
to show the positive definiteness of the inverse covariance matrix B
(see Lemma 4.15) and within the proof of the Weiss’ Assumptions
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(A1) and (A2) stated before Theorem 4.1. As we assume a random
design on the covariates xij the vector c0 in (B3) has the character of
a mean E[X1,1]. Here X1,1 must be understood as the represent of a
covariate vector.
The assumption (B5) on the design is needed in order to apply the
Law of Large Numbers at various points within the consistency proof.
Pinheiro [1994] does not apply this law and therefore he has no com-
parable assumption. However a similar assumption can be found in
the consistency proof of quantiles in linear models (e.g. as assump-
tion A2(ii) in Koenker [2005]). Therefore it is a standard assumption
in quantile regression. This assumption is comparable to the regular-
ity condition∑

i,j

xijx
T
ij → D where D is a positive definite matrix

in mean regression.
The application of the Law of Large Numbers 1n

∑
i,j(Yij − E

[
Yij
]
)→ 0

needs the expectation E
[
Yij
]

to be independent from i and j which
is in general not the case in linear regression. However by assuming
(B5) on the design matrix X the Law of Large Numbers is also applica-
ble here.
The last assumption (B6) is also of technical character. As assumed in
the linear quantile mixed model (3.12) the random effect Vi and the
error term εij are already independent. Within the consistency proof
there will be the conditional expectations with respect to the obser-
vation Y, E[ε1,1|Y] and E[V1|Y]. As in the discussion of (B3) ε1,1 and
V1 must be understood as the represents of the error terms and the
random effect, respectively. The conditional expectation E[ε1,1|Y] and
E[V1|Y] are again random variables and their independence does not
naturally follow from the independence of ε1,1 and V1. Therefore I
must state this assumption at this point.
Pinheiro [1994] stated further assumptions A3.1.1 to A3.1.4. in his
consistency proof. These are assumptions Miller [1977] stated in his
application of the Weiss’ Theorem (see Theorem 4.1). In my case there
is no need for these assumptions since I only assume one level of ran-
dom effect and the number of observations n large enough while the
length of the covariates xij, p, is fixed.
In comparison to the quantile estimation in linear models as dis-
cussed in Chapter 2 there are more conditions in the mixed model.
Theorem 2.7 states the asymptotic normality of the estimator β̂τ. The
assumption (a) there is formulated within Theorem 3.1 and not as a
condition here. (B4) and (B5) are similar to (b) and (c) in the theorem.
Condition (d) from Theorem 2.7 is comparable to (B3). (B1) is only
needed in the mixed model because it addresses the sample size D
while (B2) is hidden within Theorem 2.7 but can be found in the more
general Theorem 2.6 (cf. condition (a) there). (B6) is, as mentioned, of
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technical character and can not be found in the linear quantile model
case.

Theorem 3.1. Let (B1) to (B6) hold. For a fixed τ ∈ (0, 1) the quantile
estimator

Q̂Yij|xij(τ) = x
T
ijβ̂τ + V̂i, i = 1, 2, . . . ,D; j = 1, 2, . . . ni.

is consistent.

Proof. As mentioned before this proof is divided into two parts. First
I am proving the consistency of the maximum likelihood estimator from
Step 1 as described in Section 3.3.1. In a second step I am showing
the consistency of the prediction of the random effect as described in
Section 3.3.2.
Step 1: The consistency of the parameter estimation of θ = (σV ,σ,βTτ )T

is shown in detail in Chapter 4. There the log-likelihood density is
calculated and twice differentiated in order to apply a theorem for
this non-standard maximum likelihood estimation. It is not standard,
because all observations from the same area i Yi,j1 and Yi,j2 , j1 6= j2,
are dependent due to the joint random effect in the linear quantile
mixed model (3.12). Thus the standard maximum likelihood approach,
as stated in Theorem 2.6, is not applicable. The theorem applied in
this case is the Weiss’ Theorem –Theorem 4.1 (cf. Weiss [1971] and
Weiss [1973]). There it is stated that under two assumptions the pa-
rameter estimators exist and are asymptotically normal with a rate K(n)
and a covariance matrix B−1(θ0).
As a preparation for the proof of the two assumptions, I have to cal-
culate the second derivatives of the log-likelihood density

∂2

∂θι1∂θι2
`(θ|y), ι1, ι2 = 1, 2, . . . ,p+ 2.

This has to be executed for all p+ 2 unknown parameters. Remember
βτ is a p-dimensional vector. By treating βτ as one parameter and
the ability to interchange directions of differentiation – see Section
4.1.3.4.1 –, I am able to decrease the number of second derivatives
from (p+ 2)2 to six. Thus the second derivatives in these six cases are
given in Lemmata 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14.
The first assumption of the Weiss’ Theorem is the convergence in prob-
ability of the second derivatives divided by the convergence rate
Kι1(n)Kι2(n) at the true value θ0 to a continuous function Bι1,ι2(θ

0),
which builds a positive definite matrix

−
1

Kι1(n)Kι2(n)

∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ0

P→ Bι1,ι2(θ
0).

I show this convergence in the proof of Lemma 4.15. In this Lemma
the matrix B(θ0) is given and it turns out to be the inverse of the
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asymptotic covariance matrix of the estimator θ̂. In Section 4.2.1.3 I
show the continuity of Bι1,ι2(θ) in θ0 and in Section 4.2.1.4 I prove
the positive definiteness of the matrix B(θ0).
The second assumption of the Weiss’ Theorem states the speed of the
convergence in the first assumption. The proof of it is a matter of con-
struction. It is shown in detail for all six cases in Section 4.2.2.
After showing both assumptions the application of the Weiss’ Theo-
rem leads to the asymptotic normality (cf. Chapter 9.3 of van der Vaart
[2007]) of the parameter estimator

√
D(σ̂V(n) − σ

0
V)√

n(σ̂(n) − σ0)
√
n(β̂τ(n) −β

0
τ)

 D→ N(0,B−1(θ0))

with the rates
√
D for σ̂V(n) and

√
n for the other parameters.

In Section 4.3.1 I show that this asymptotic normality implies the con-
sistency of the parameter estimator θ̂ = (σ̂V , σ̂, β̂Tτ )T .
Step 2: In order to show the consistency of Q̂Yij|xij(τ) I need to show
the consistency of β̂τ and V̂i. The former was shown in the first step
of this proof or in detail in Chapter 4. Hence the proof of consistency
of the predictor V̂ is remaining.
Let me observe the distance from V̂ as stated in (3.18) to the true
random vector V .∣∣V̂ − V

∣∣ = ∣∣σ̂2VZT Σ̂−1
(
Y − Xβ̂τ − Ê [ε]

)
− V

∣∣ .
With the linear quantile mixed model (3.13) it follows∣∣V̂ − V

∣∣ = ∣∣σ̂2VZT Σ̂−1
(
Xβτ + ZV + ε− Xβ̂τ − Ê [ε]

)
− V

∣∣
=
∣∣σ̂2VZT Σ̂−1

(
X(βτ − β̂τ) + ε− Ê [ε]

)
+
(
σ̂2VZT Σ̂−1Z − ID

)
V
∣∣

(?)

6
∣∣σ̂2VZT Σ̂−1X(βτ − β̂τ)

∣∣+ ∣∣σ̂2VZT Σ̂−1
(
ε− Ê [ε]

)∣∣
+
∣∣(σ̂2VZT Σ̂−1Z − ID

)
V
∣∣ , (3.19)

where (?) follows from the triangle inequality. The convergences
σ̂V

n→∞→ σV and σ̂
n→∞→ σ (as shown in Step 1) imply for the co-

variance matrix estimator

Σ̂
n→∞→ Σ. (3.20)

Let ε > 0 be arbitrary and fixed. From Step 1 I know that β̂τ is
consistent, σ̂V

n→∞→ σV , and (3.20) holds. Thus for the first summand
of (3.19) it holds

P
(∣∣σ̂2VZT Σ̂−1X(βτ − β̂τ)

∣∣ > ε

3

)
n→∞→ 0. (3.21)
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By the triangle inequality the second summand of (3.19) can be further
calculated to ∣∣σ̂2VZT Σ̂−1

(
ε− Ê [ε]

)∣∣
6

∣∣∣∣σ̂2VZT Σ̂−1

(
ε−

σ(1− 2τ)

τ(1− τ)
1n

)∣∣∣∣
+

∣∣∣∣σ̂2VZT Σ̂−1

(
σ(1− 2τ)

τ(1− τ)
1n − Ê [ε]

)∣∣∣∣ .
The convergences σ̂V

n→∞→ σV , (3.20), and the Law of Large Numbers
imply for the first summand

P

(∣∣∣∣σ̂2VZT Σ̂−1

(
ε−

σ(1− 2τ)

τ(1− τ)
1n

)∣∣∣∣ > ε

6

)
n→∞→ 0.

The estimated expectation of ε is given as

Ê [ε] =
σ̂(1− 2τ)

τ(1− τ)
1n

and thus for the second summand it holds by σ̂V
n→∞→ σV , (3.20), and

the consistency of σ̂ shown in Step 1

P

(∣∣∣∣σ̂2VZT Σ̂−1

(
σ(1− 2τ)

τ(1− τ)
1n −

σ̂(1− 2τ)

τ(1− τ)
1n

)∣∣∣∣ > ε

6

)
= P

(∣∣∣∣σ̂2VZT Σ̂−1 1− 2τ

τ(1− τ)
(σ− σ̂) 1n

∣∣∣∣ > ε

6

)
n→∞→ 0.

Altogether this leads to

P
(∣∣σ̂2VZT Σ̂−1

(
ε− Ê [ε]

)∣∣ > ε

3

)
n→∞→ 0. (3.22)

The matrix Σ̂ = σ̂2VZZT + V̂ar(ε1,1)In is a block diagonal matrix with
D blocks Σ̂i of size ni ×ni, i = 1, 2, . . . ,D. The blocks can be written
as

Σ̂i = V̂ar(ε1,1)Ini + σ̂
2
V1ni×ni , i = 1, 2, . . . ,D.
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The inverse matrix of a block diagonal matrix is given as the block
diagonal matrix with the inverse block matrices:

Σ̂−1 =


Σ̂1

Σ̂2
. . .

Σ̂D


−1

=


Σ̂−1
1

Σ̂−1
2

. . .

Σ̂−1
D

 .

By multiplying Σ̂−1 with ZT from the left hand side and with Z from
the right hand side it leads to a D×D-dimensional matrix with the
sums of the entries of Σ̂−1

i on the diagonal

ZT Σ̂−1Z

=


∑n1
k,l=1

(
Σ̂−1
1

)
kl ∑n2

k,l=1

(
Σ̂−1
2

)
kl

. . . ∑nD
k,l=1

(
Σ̂−1
D

)
kl

 .

By applying Lemmata A.1 and A.2 on each Σ̂i, i = 1, 2, . . . ,D, with
a = V̂ar(ε1,1), b = σ̂2V , and n = ni I get

ni∑
k,l=1

(
Σ̂−1
i

)
kl

=
ni

V̂ar(ε1,1) +niσ̂
2
V

ni→∞→ 1

σ̂2V
, i = 1, 2, . . . ,D.

This implies for all ni → ∞, i = 1, 2, . . . ,D, which holds under (B1),
that

ZT Σ̂−1Z→ 1

σ̂2V
ID.

Thus the third summand in (3.19) converges to zero as all ni → ∞,
i = 1, 2, . . . ,D,

∣∣(σ̂2VZT Σ̂−1Z − ID
)
V
∣∣→ ∣∣∣∣(σ̂2V 1

σ̂2V
ID − ID

)
V

∣∣∣∣ = 0,
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which implies

P
(∣∣(σ̂2VZT Σ̂−1Z − ID

)
V
∣∣ < ε

3

)
n→∞→ 0. (3.23)

Combining (3.19), (3.21), (3.22), and (3.23) leads to

P
(∣∣V̂(Y) − V∣∣ > ε)
6 P

(∣∣σ̂2VZT Σ̂−1X(βτ − β̂τ)
∣∣ > ε

3

)
+ P

(∣∣σ̂2VZT Σ̂−1
(
ε− Ê [ε]

)∣∣ > ε

3

)
+ P

(∣∣(σ̂2VZT Σ̂−1Z − ID
)
V
∣∣ > ε

3

)
n→∞→ 0

and thus the consistency of the random effect predictor V̂(Y), as de-
fined in (3.18), is shown.
Conclusion: In Step 1 and in Step 2 of this proof I have shown that the
maximum likelihood estimator β̂τ and the predictor V̂ are both consis-
tent. For the quantile estimator in the linear mixed model it follows
for an arbitrary but fixed ε > 0

P
(∣∣∣Q̂Yij|xij(τ) −QYij|xij(τ)∣∣∣ > ε) (3.24)

= P
(∣∣xTijβ̂τ + V̂i − xTijβτ − Vi∣∣ > ε)

= P
(∣∣xTij (β̂τ −βτ)+ V̂i − Vi∣∣ > ε)

(?)

6 P
(∣∣xTij (β̂τ −βτ)∣∣ > ε

2

)
+ P

(∣∣V̂i − Vi∣∣ > ε

2

)
,

where (?) holds by the triangle inequality and both probabilities con-
verge to zero as n → ∞, because of the before shown consistency of
β̂τ and V̂ .

As seen in the second step of the previous proof the consistency of the
parameter estimation in the maximum likelihood step implies the con-
sistency of the whole quantile estimation in the linear mixed model.
The prediction of the random effect is of same form as in Equation
3.18 in the linear mixed model (3.1) with normal error terms. There it
holds that Ê [ε] = 0 – see (3.8). The consistency of V̂ can be shown in
this model with the same argumentation as in the previous proof in
Step 2 under the assumption of consistent estimators for σV , σε, and
β. The consistency in the maximum likelihood step was shown by Pin-
heiro [1994] leading to a consistent mean estimator (3.9) in the linear
mixed model.

3.4.2 Simulation Study of the Quantile Estimation in Linear Mixed Mod-
els

In order to display the stated consistency in Theorem 3.1 let us simu-
late data from the linear quantile mixed model (3.12) and observe the
quantile estimation with increasing sample sizes.
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In a simulation study I produced each 500 pseudo populations with
500 areas with Ni = 200 individuals each (i = 1, 2, . . . , 500) and thus
N =

∑D
i=1Ni = 100000. The model used for τ = 0.6 and τ = 0.8 is

Yij = 2+ 0.8xij + Vi + εij,

where the independent variables xij come from a uniform distribution
on (0, 1)

xij ∼ U(0, 1), i = 1, 2, . . . , 500; j = 1, 2, . . . , 200.

The random effect was drawn from a normal distribution with zero
mean and variance σ2V = 0.32

Vi ∼ N(0, 0.32), i = 1, 2, . . . , 500,

and the error term was drawn from an asymmetric Laplace distribution
with scale parameter σ = 0.5 and τ = 0.6 or τ = 0.8

εij ∼ ALD(0, 0.5, τ), i = 1, 2, . . . , 500; j = 1, 2, . . . , 200.

In different scenarios I sampled the d first areas from the D = 500

with d = 10, 50, 100, 200, 350, 500 and sampled from each sampled
area n observations with ni = 10, 20, 30, 50, 100, 200. In each popu-
lation Pop (Pop = 1, 2, . . . , 500) I estimated for each sample the pa-
rameter vector β̂Pop,d,ni

τ and the predictor vector V̂Pop,d,ni
τ with the

package lqmm by Geraci [2016] in R leading to quantile estimators

Q̂
Pop,d,ni
Yij|xij

(τ) = β̂Pop,d,ni
τ,1 + β̂Pop,d,ni

τ,2 xij + V̂
Pop,d,n
i ,

i = 1, 2, . . . , 500; j = 1, 2, . . . 200;

d = 10, 50, 100, 200, 350, 500;

ni = 10, 20, 30, 50, 100, 200.

Note that V̂Pop,d,n
i is set to zero for non-sampled areas. Since I used

the same βτ for the two quantiles it holds β0.6 = β0.9 = (2, 0.8)T .
Thus the real quantiles are given as

Q
Pop
Yij|xij

(τ) = 2+ 0.8xij + v
Pop
i , i = 1, 2, . . . , 500; j = 1, 2, . . . 200,

where vPopi was simulated and fixed. In each scenario and population
I calculated the mean absolute deviation (MAD) for every population
and the different sample sizes

MADPop,d,ni =
1

N

500∑
i=1

200∑
j=1

∣∣∣Q̂Pop,d,ni
Yij|xij

(τ) −QPop
Yij|xij

(τ)
∣∣∣ . (3.25)

This measure shall represent the absolute distance of Q̂Yij|xij(τ) and
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τ = 0.6 d = 10 d = 50 d = 100 d = 200 d = 350 d = 500

n = 10 0.2888 0.2449 0.2366 0.2271 0.2148 0.2035

0.0496 0.01180 0.0092 0.0079 0.0075 0.0072

n = 20 0.2743 0.2393 0.2301 0.2164 0.1976 0.1790

0.0426 0.0100 0.0083 0.0076 0.0068 0.0060

n = 30 0.2647 0.2367 0.2263 0.2093 0.1855 0.1619

0.0342 0.0096 0.0084 0.0074 0.0064 0.0055

n = 50 0.2629 0.2337 0.2212 0.1998 0.1688 0.1386

0.0374 0.0095 0.0082 0.0072 0.0057 0.0045

n = 100 0.2631 0.2317 0.2154 0.1877 0.1472 0.1072

0.0438 0.0113 0.0086 0.0069 0.0052 0.0036

n = 200 0.2636 0.2320 0.2110 0.1772 0.1284 0.0803

0.0423 0.0159 0.0092 0.0068 0.0049 0.0025

τ = 0.8 d = 10 d = 50 d = 100 d = 200 d = 350 d = 500

n = 10 0.3051 0.2508 0.2433 0.2369 0.2310 0.2259

0.0610 0.0154 0.0095 0.0087 0.0082 0.0079

n = 20 0.2755 0.2449 0.2386 0.2328 0.2270 0.2221

0.0369 0.0119 0.0093 0.0093 0.0118 0.0156

n = 30 0.2693 0.2420 0.2355 0.2280 0.2177 0.2083

0.0312 0.0106 0.0087 0.0093 0.0128 0.0161

n = 50 0.2709 0.2385 0.2313 0.2187 0.2018 0.1850

0.1294 0.0098 0.0085 0.0083 0.0084 0.0074

n = 100 0.2942 0.2350 0.2248 0.2064 0.1809 0.1560

0.2321 0.0091 0.0081 0.0071 0.0061 0.0051

n = 200 0.4830 0.2326 0.2190 0.1560 0.1592 0.1247

0.5058 0.0102 0.0083 0.0079 0.0054 0.0063

Table 3.1: Empirical means and standard deviations of MADPop,d,ni in 500

estimations dependent on d = 10, 50, 100, 200, 350, 500 and n =
10, 20, 30, 50, 100, 200 for τ = 0.6 and τ = 0.8

QYij|xij(τ) in (3.24), which is shown to converge in probability to zero.
Table 3.1 shows the empirical means and standard deviations of the
500 values of MADPop,d,ni for each population dependent on d and
ni. There the convergence of the mean and the standard deviation to
zero for increasing d and ni is visible for both quantile estimators.
The estimation for τ = 0.6 outperforms the estimation for τ = 0.8,
due to the better location of the 0.6-quantile in the middle of the data.
An interesting observation is the column of d = 10 for τ = 0.8. There
the estimation seems to become worse with increasing n. In the same
column for τ = 0.6 the estimations also seems to stagnate. This can
be explained by the higher weight of the observed areas with increas-
ing ni. This may lead to a worse estimation of the intercept βτ,1 if
the sampled areas have similar random effects (mainly negative or
positive). Thus the whole quantile estimator changes for the worse in
these populations. This is also explained by the increasing standard
deviation, especially for τ = 0.8. However the consistency was shown
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for increasing d and ni. It can be seen on the diagonals of the Tabular
3.1. Hence this worsen in estimation for a small d is no contradiction
to the theory.

3.5 the mean squared error of quantile estimation in

linear mixed models

In this Section I am going to examine the mean squared error of the
quantile estimator in linear mixed models. First let me define the
mean squared error or MSE of an estimator.

Definition 3.2. For an observation vector Y the mean squared error of an
estimator Ŝ(Y) is defined as

MSE(Ŝ(Y)) := E
[(
Ŝ(Y) − S0

)2]
,

where S0 is the true but unknown value of interest.

The mean squared error may be decomposed into the bias and the vari-
ance of the estimator as stated and proven in the following theorem.

Theorem 3.3. The mean squared error of an estimator Ŝ(Y) can be decom-
posed as follows

MSE(Ŝ(Y)) = Bias2(Ŝ(Y)) + Var(Ŝ(Y)),

where the bias is defined as

Bias(S(Y)) := E
[
Ŝ(Y) − S0

]
= E

[
Ŝ(Y)

]
− S0

and the variance is given as

Var(Ŝ(Y)) = E
[(
Ŝ(Y) − E

[
Ŝ(Y)

])2] .

Proof.

MSE(Ŝ(Y)) := E
[(
Ŝ(Y) − S0

)2]
= E

[
Ŝ(Y)2

]
− 2E

[
Ŝ(Y)

]
S0 + S0

2

= E
[
Ŝ(Y)2

]
− E2

[
Ŝ(Y)

]
+ E2

[
Ŝ(Y)

]
− 2E

[
Ŝ(Y)

]
S0 + S0

2

= Var
(
Ŝ(Y)

)
+
(
E
[
Ŝ(Y)

]
− S0

)2
= Var

(
Ŝ(Y)

)
+Bias2(Ŝ(Y))

The expression in Theorem 3.3 works only for one-dimensional esti-
mators Ŝ(Y). Sometimes estimators are of greater dimension and then
the following generalisation holds.
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Remark 3.4. If Ŝ(Y) is a vector estimator the decomposition of its mean
squared error is given as

MSE(Ŝ(Y)) =
∥∥Bias(Ŝ(Y))∥∥2 + trace(Var(Ŝ(Y))),

where the bias is defined as

Bias(S(Y)) := E
[
Ŝ(Y) − S0

]
= E

[
Ŝ(Y)

]
− S0

and the covariance matrix is given as

Var(Ŝ(Y)) = E
[(
Ŝ(Y) − E

[
Ŝ(Y)

]) (
Ŝ(Y) − E

[
Ŝ(Y)

])T] .

Proof. The proof of the decomposition is an exercise I would like to
execute at this point.

MSE(Ŝ(Y)) := E
[∥∥Ŝ(Y) − S0∥∥2]

= trace
(
E
[(
Ŝ(Y) − S0

) (
Ŝ(Y) − S0

)T])
= trace

(
E
[
Ŝ(Y)Ŝ(Y)T

]
− 2E

[
Ŝ(Y)

]
S0
T
+ S0S0

T
)

= trace
(
E
[
Ŝ(Y)Ŝ(Y)T

]
− E

[
Ŝ(Y)

]
ET
[
Ŝ(Y)

]
+E
[
Ŝ(Y)

]
ET
[
Ŝ(Y)

]
− 2E

[
Ŝ(Y)

]
S0
T
+ S0S0

T
)

= trace
(
Var

(
Ŝ(Y)

))
+ trace

(
Bias(Ŝ(Y))BiasT (Ŝ(Y))

)
= trace

(
Var

(
Ŝ(Y)

))
+
∥∥Bias(Ŝ(Y))∥∥2

The bias variance decomposition gives an explanation for the so called
bias variance dilemma in estimation. Both are quantities one would like
to keep as low as possible. Whenever the bias declines the variance
grows and vice versa under the assumption of a fixed MSE.
Since the quantile estimator for linear mixed models is already proven
to be consistent – see Theorem 3.1 –, I would like to discuss the impli-
cation of that property on the MSE first. Consistency is a term, which
is important in asymptotics. Thus there will be only an implication
on the MSE, whenever the sample size n goes to infinity. For the re-
lationship between consistency and MSE see the following theorems.
First it can be shown that convergence of the MSE to zero implies the
consistency.

Theorem 3.5. The convergence of the MSE of an estimator to zero implies
the consistency.

Proof. The proof is an exercise and can be fulfilled as follows.
Let us assume for an estimator Ŝn(Y) and the true value S0 that

MSE(Ŝn(Y))
n→∞→ 0,
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which implies by Theorem 3.3 that

Var(Ŝn(Y))
n→∞→ 0. (3.26)

Now let ε > 0 be arbitrary and fixed. Then

P
(∣∣Ŝn(Y) − S0∣∣ > ε)
= P

(∣∣Ŝn(Y) − E [Ŝn(Y)]+ E [Ŝn(Y)]− S0∣∣ > ε)
(?)

6 P
(∣∣Ŝn(Y) − E [Ŝn(Y)]∣∣ > ε)P (∣∣E [Ŝn(Y)]− S0∣∣ > ε)

= P
(∣∣Ŝn(Y) − E [Ŝn(Y)]∣∣ > ε)

(??)

6
Var(Ŝn(Y))

ε2
, (3.27)

where (?) follows from the Cauchy-Schwarz Inequality and (??) follows
from Chebychev’s Inequality . By (3.26) the right hand side of (3.27)
converges to zero as n→∞, which implies the consistency of Ŝn(Y).

The other direction between consistency and MSE does not hold in
general. Only by assuming a dominating random variable M I can
state the following theorem.

Theorem 3.6. For a consistent estimator Ŝn(Y) with
∣∣Ŝn(Y)∣∣ 6 M ∈ L2

it holds

MSE(Ŝn(Y))
n→∞→ 0.

Proof. The proof follows from the Lebesgue Theorem (cf. Theorem 3.12

in Aman and Escher [2008]).

By application of Theorem 3.6 I can state the following corollary for
the quantile estimator in linear mixed models.

Corollary 3.7. For the quantile estimator as defined in 3.14 it holds

MSE(Q̂Y|x(τ))
n→∞→ 0.

Thus the consistency of the quantile estimator in linear mixed models
implies the convergence of the mean squared error – and thus the bias
and variance – to zero as D → ∞ and ni → ∞. The MSE of the
quantile estimator for finite D and ni cannot be calculated easily due
to the non-analytic calculation of θ̂ in the first step of the quantile
estimation. Note that the maximum likelihood estimator θ̂ and thus the
predictor for the random effect V̂ are biased. So the quantile estimator
(2.8) is not unbiased. They are only asymptotically unbiased because
of their consistency – see Theorem 3.6.
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3.6 applications and extensions of the linear quantile

mixed model

There are further applications of quantile regression in linear mixed
models than the estimation of the conditional quantile. The first I am
going to discuss in the quantile estimation for count data. There the
data must be transformed in order to fit the model. As in the linear
model this is similar fulfilled by jittering and a log-transformation
of the data. In the result the quantile estimator for count data will
keep the property of being consistent, which I show in the following
Section.
After that I introduce a method called Microsimulation via Quantiles,
a new approach for the estimation of properties, which are beyond
the mean. So it is possible to estimate not only individual conditional
quantiles (on xij) but also area quantiles. For example estimators of
lower and upper quartiles of income in areas can be obtained.

3.6.1 Linear Quantile Mixed Models for Count Data

As already discussed in Section 2.7.2 the quantiles of count data must
be integers due to the fact that counts themselves are integers. Since
the linear quantile mixed model (3.12) is a model for continuous data,
it is not directly applicable on counts. The count mean mixed model
or Poisson mixed model for a discrete random variable is Yij given xij
is given as

exp(xTijβ+ Vi), i = 1, 2, . . . ,D; j = 1, 2, . . . ,ni (3.28)

with
Vi
iid
∼ N(0,σ2V).

This mean model needs to be improved in order to estimate quantiles
of Yij given xij for a fixed τ ∈ (0, 1), QYij|xij(τ). This will be ful-
filled by jittering the data as discussed in the following Section 3.6.1.1.
The main idea is the same as for count data in linear models, where
Machado and Santos Silva [2005] already showed the consistency of
the quantiles of counts – see Section 2.7.2 for details. Here, the con-
sistency of quantile estimators in linear mixed models, as proved in
Theorem 3.1, implies the consistency of the quantiles of counts. This
is stated and demonstrated in Theorem 3.11.

3.6.1.1 Jittering the Count Data

The observations Yij (i = 1, 2, . . . ,D; j = 1, 2, . . . ,n) are discrete and
in linear models Machado and Santos Silva [2005] had the idea of jit-
tering in order to get continuous data as described in Section 2.7.2.1.
This method also works in the linear mixed model. By adding a stan-
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dard uniform random variable Uij independent from Yij, xij, and Vi
we get a continuous observation Zij:

Zij := Yij +Uij. (3.29)

On this continuous random variable Zij we can apply the linear quan-
tile mixed model (3.12). The quantile of the jittered data Zij is stated
in the following theorem.

Theorem 3.8. For a fixed τ ∈ (0, 1) the quantile of Zij as defined in (3.29)
is said to be

QZij|xij(τ) = exp(xTijβ+ Vi) + τ.

Proof. Let τ ∈ (0, 1) be fixed. For a continuous random variable Yij +
U(−τ, 1− τ), where the mean model (3.28) holds for Yij the τ-quantile
is

QYij+U(−τ,1−τ)|xij(τ) = exp(xTijβ+ Vi)

⇐⇒ QYij+U(−τ,1−τ)+τ|xij(τ) = exp(xTijβ+ Vi) + τ

⇐⇒ QYij+U(0,1)|xij(τ) = exp(xTijβ+ Vi) + τ.

3.6.1.2 Transformation of the Jittered Data

In order to be able to apply the quantile estimation approach of linear
quantile mixed models 3.12 there is need to transform the jittered data
Zij. This is similar to the approach in the linear model in Section
2.7.2.2 and is for a fixed τ ∈ (0, 1) fulfilled as follows

T(Zij, τ) :=

log(ζ),Zij 6 τ

log(Zij − τ),Zij > τ

with a small value ζ. This transformation is almost a continuous
function and log(ζ) is just the function value for negative values for
Zij − τ, since the logarithm is not defined for negative values. There-
fore it follows for the transformed jittered data

T−1(Zij, τ) ≈ exp(Zij) + τ

and hence I can state the following corollary.

Corollary 3.9. The quantile of the transformed jittered data is given as

QT(Zij,τ)|xij(τ) = x
T
ijβτ + Vi.

Proof. The transformation T is almost continuous and thus it holds
that

QT(Zij,τ)|xij(τ) = T
(
QZij|xij(τ)

)
.
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In Theorem 3.8 it was shown that

QZij|xij(τ) = exp(xTijβ+ Vi) + τ,

which implies that

QT(Zij,τ)|xij(τ) = T
(
exp(xTijβ+ Vi) + τ, τ

)
= exp(xTijβ+ Vi).

3.6.1.3 Applying Quantile Estimation in the Linear Mixed Model on the
Transformed Jittered Data

The transformed jittered data

Y?ij := T(Zij, τ)

is now continuous and we can apply the quantile estimation in lin-
ear mixed models as introduced in Section 3.3. There we estimate βτ
and predict V . In order to average out the error, which is based on
the jittering, we apply an averaged jittering. That means we jitter our
data M times and repeat the estimation of βτ and V in each step. For
M I would recommend M > 10. On the one hand a greater number
of repeats M improves the estimation but it also extends the compu-
tational calculation time on the other hand. In the end we take the
averaged estimators

β̂τ =
1

M

M∑
m=1

β̂τ,m and V̂ =
1

M

M∑
m=1

V̂m.

This leads to the quantile estimator of Y?ij given xij

Q̂Y?
ij|xij

(τ) = xTijβ̂τ + V̂i, i = 1, 2, . . . ,D; j = 1, 2, . . . ,ni. (3.30)

3.6.1.4 Back-Transformation and Count Quantile

From the τ-quantile of Y?ij we can calculate the τ-quantile of the ob-
served counts Yij by the following theorem.

Theorem 3.10. For a fixed τ ∈ (0, 1) the estimator for the τ-quantile of the
observed counts Yij given xij is given by

Q̂Yij|xij(τ) = dT
−1(Q̂Zij|xij(τ) − 1e

= dexp(xTijβ̂τ + V̂i) + τ− 1e

for i = 1, 2, . . . ,D and j = 1, 2, . . . ,ni.
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Proof. The transformation T is almost continuous and bijective and
thus it holds that

Q̂Zij|xij(τ) = T
−1
(
Q̂Y?

ij|xij
(τ)
)

.

Because of Yij = Zij +Uij with Uij ∼ U(0, 1) it also holds that

Yij − 1 6 Zij − 1 6 Yij.

Since the quantile function is non-decreasing, this implies for the con-
ditional quantiles

Q̂Yij|xij(τ) − 1 6 Q̂Zij|xij(τ) − 1 6 Q̂Yij|xij(τ).

The result now follows, because Q̂Yij|xij(τ) is an integer.

3.6.1.5 Consistency of the Quantile Estimation of Counts in Linear Mixed
Models

As in the linear model I can now state the following theorem about
the consistency of the quantile estimator for counts.

Theorem 3.11. For a fixed τ ∈ (0, 1) the estimator for the τ-quantile of the
observed counts Yij given xij,

Q̂Yij|xij(τ) i = 1, 2, . . . ,D; j = 1, 2, . . . ,ni,

as defined in Theorem 3.10, is consistent.

Proof. In Theorem 3.1 I already proved that a quantile estimator for
continuous random variables as Y?ij, Q̂Y?

ij|xij
(τ) as in (3.30), is consis-

tent. Thus for a fixed ε > 0 it holds that

P
(∣∣∣Q̂Y?

ij|xij
(τ) −QY?

ij|xij
(τ)
∣∣∣ > ε) n→∞→ 0.

Now the back-transformation T−1 and the ceiling function are contin-
uous functions and it follows with Theorem 3.10 the consistency of
Q̂Yij|xij(τ).

3.6.1.6 The Conclusion of Quantiles for Counts

In this part I showed that the idea of jittering count data also works in
linear mixed models. Thus one is able to estimate quantiles of count
data by applying the quantile estimation in linear mixed models de-
scribed in Section 3.3. This method works on continuous data. That
is why the count data needed to be made continuous by the jittering
and a transformation in order to have a linear quantile mixed model
as in (3.12). After the estimation a back-transformation of the quantile
estimators of the transformed jittered data gives the quantiles of the
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counts.
Furthermore in Theorem 3.11 I showed that the quantile estimation
in count data is consistent. This is implied by the consistency of the
quantile estimation in linear mixed models, which was proven in the
main theorem of this Chapter – Theorem 3.1. However this property
of the quantile estimator in counts is a new improvement.

3.6.2 Microsimulation via Quantiles

The idea of Microsimulation via Quantiles is new. There has been no
other literature but this thesis on the topic besides in Weidenhammer
et al. [2016].
In practice there are parameters of interest in one area or overall ob-
servations, which are beyond mean estimation. In the linear mixed
model (3.1) the predictor of Y given x as given in (3.9) is a mean pre-
dictor for the jth unit in area i. The area mean ˆ̄Yi can then be given
as the averaged means

ˆ̄Yi =
1

Ni

Ni∑
j=1

Ŷij

or for the samples units (j ∈ Si) and the non-sampled units (j ∈ Ri)
in area i

ˆ̄Yi =
1

Ni

∑
j∈Si

Yij +
∑
j∈Ri

Ŷij

 .

Thus the mean of an area is the mean of all mean predictors. Similar
the overall mean can be given as

ˆ̄Y =
1

N

D∑
i=1

Ni∑
j=1

Ŷij.

This is totally different in quantile estimation. Equation 3.14 gives the
conditional τ-quantile for the jth unit in area i, from which one can-
not derive the τ-quantile of the whole area Q̂Yi|xi(τ) nor the overall
τ-quantile Q̂Y|x(τ). The mean of quantiles is not the area quantile

Q̂Yi|xi(τ) 6=
1

Ni

Ni∑
j=1

Q̂Yij|xij(τ).

Nevertheless there is a way of estimating area quantiles and more
parameters of interest, which is called Microsimulation via Quantiles
(MvQ).
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3.6.2.1 The Idea of Microsimulation via Quantiles

Between quantiles and the distribution of a random variable Y exists
a natural relationship. The distribution function FY can be rewritten
as

FY(y) = min {τ|QY(τ) > y} .

Thus the empirical distribution function can be rewritten as

F̂Y(y) = min
{
τ|Q̂Y(τ) > y

}
,

where Q̂Y(τ) are the empirical quantiles.
In linear mixed models the quantiles can be estimated as given in
(3.14). This estimation is fulfilled on a fixed τ. Let me now estimate
quantile estimators on a increasing grid of τ’s TK := (τ1, τ2, . . . , τK)T

with τk < τk+1 for all k = 1, 2, . . . K. This leads to an empirical dis-
tribution function of Yij, the outcome for the jth unit in area i, as
follows

F̂Yij|xij(y) = min
{
τk|Q̂Yij|xij(τk) > y,k = 1, 2, . . . ,K

}
∧ 1, (3.31)

which is also dependent on the choice of the grid TK. Thus I am able
to estimate the whole distribution of the jth unit in area i by (3.31).
This even gives me the distribution of Y within one area or the over
all distribution, from which I am able to estimate every parameter of
interest by a Monte Carlo simulation.
Note that in the described procedure the event of quantile crossing
may occur. This may happen whenever we estimate the quantile in
a regression for every τk separately. Thus the improvement of the
method with regard to quantile crossing is an open topic for research.

3.6.2.2 The Implementation of Microsimulation via Quantiles

For a given grid of τ TK = (τ1, τ2, . . . , τK), e.g. T99 = (.01, .02, . . . , .99),
I estimate the quantiles as described in Section 3.3. This gives us an
N×K-dimensional matrix

Q̂Y11|x11(τ1) Q̂Y11|x11(τ2) . . . Q̂Y11|x11(τK)

Q̂Y12|x12(τ1) Q̂Y12|x12(τ2) . . . Q̂Y12|x12(τK)
...

...
...

Q̂YDND |xDND
(τ1) Q̂YDND |xDND

(τ2) . . . Q̂YDND |xDND
(τK)

 .

Each row of this matrix gives me an estimation of the distribution
function of Yij given xij as given in (3.31). From each F̂Yij I draw a
Monte Carlo sample of size MC

ỹij = (ỹ
(1)
ij , ỹ(2)ij , . . . , ỹ(MC)

ij )T . (3.32)
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This represents a microsimulation of the outcome Yij of the jth unit
in area i. For the whole area i the Monte Carlo sample

ỹi = (ỹ
(1)
i1 , ỹ(2)i1 , . . . , ỹ(MC)

i1 , . . . , ỹ(1)iNi , ỹ
(2)
iNi

, . . . , ỹ(MC)
iNi

)T .

is a microsimulation of size Ni ·MC. This sample is just the combi-
nation of all microsimulations given in (3.32) and gives an estimated
distribution of the outcome of Y in area i. Similar to this approach I
could draw a microsimulation of all units ỹ and areas by glueing the
samples given in (3.32) for all j and i together.
From ỹi or ỹ I can estimate now every parameter of interest. This can
be fulfilled by taking the empirical version of this parameter from ỹi
or ỹ. Say I want to know the area mean the estimator would be

m̂eani = mean(ỹi)

and the τ-quantile estimator in area i is

Q̂Yi|xi(τ) = qτ(ỹi),

where qτ(ỹi) is defined as the empirical τ-quantile of the vector ỹi.
In the same matter other parameters can be estimated from the mi-
crosimulated data ỹ. This approach can also performed for linear
models by setting the quantile estimators from (2.8) in the empirical
distribution function F̂Yi|xi .

3.6.2.3 Simulation Study of Microsimulation via Quantiles

In a simulation study I produced from the linear mixed model 50

pseudo samples with D = 500 areas with sample sizes ni = 10 indi-
viduals in each (i = 1, 2, . . . , 500). The model is

Yij = 2+ 0.8xij + Vi + εij,

where the independent variables xij come from a uniform distribution
on (0, 1)

xij ∼ U(0, 1), i = 1, 2, . . . , 500; j = 1, 2, . . . , 10.

The random effect was drawn from a normal distribution with zero
mean and variance σ2V = 0.32

Vi ∼ N(0, 0.32), i = 1, 2, . . . , 500,
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Figure 3.4: Boxplots of relative MSE and relative bias in median estimation
by MvQ method of 50 simulation runs compared to the direct
estimator

and the error term was drawn from a transformed F distribution with
parameters d1 = 20 and d1 = 20

εij ∼

√
0.5
20 · 182 · 16
2 · 202 · 38

(
F(20, 20) −

20

18

)
i = 1, 2, . . . , 500; j = 1, 2, . . . , 10

such that
E
[
εij
]
= 0 and Var(εij) = 0.52.

I chose the transformed F distribution in this simulation because it is
heavy tailed. Therefore the estimation of upper quantiles is very frag-
ile whenever the sample size is quite small.
The grid of τ I chose was T99 = (0.01, 0.02, . . . , 0.99). I estimated all
quantiles for this grid with the package lqmm by Geraci [2016] in R.
In the Microsimulation via Quantiles step I then estimated the area me-
dian and, as an upper quantile, the 95%-quantile in the area.
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Figure 3.5: Boxplots of relative MSE and relative bias in 95%-quantile estima-
tion by MvQ method of 50 simulation runs compared to the di-
rect estimator

As measures of performance I calculated the relative mean squared error
for each area i = 1, 2, . . . , 500

MSE(m̂i) =
1

50

50∑
Pop=1

(
m̂
Pop
i −mPopi

)2
m
Pop
i

and the relative bias

Bias(m̂i) =
1

50

50∑
Pop=1

m̂
Pop
i −mPopi

m
Pop
i

,

where m̂Popi is the estimated value and mPopi the true value (median
or 95%-quantile) in the ith area in Population Pop = 1, 2, . . . , 50. As
a reference estimator I chose the direct estimators of the median and
the 95%-quantile, respectively. In Figures 3.4 and 3.5 boxplots of the
relative MSE and the relative bias are drawn for the both estimates, re-
spectively. In the median estimation the direct estimator is unbiased
while the MvQ method has a small positive relative bias around 0.07.
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This means the MvQ median estimator is about 7% higher than the
real value. This behaviour may be healed by introducing a bias cor-
rection and is further discussed in Section 3.5. Nevertheless taking
a look on the MSE the MvQ method outperforms the direct estima-
tor. It has less than half the relative MSE. This means by applying
the bias-variance decomposition that the MvQ method is more stable.
This result is even better at the estimation of the 95%-quantile. As
Figure 3.5 shows the relative MSE of the MvQ method is almost the
same as for the median estimation while the direct estimator comes
off worse. The direct estimator is not unbiased anymore. It is in av-
erage underestimated by about 8.5% while the MvQ estimator still
has a positive bias of around 2%. This can be explained by the rather
small sample size of n = 10 and the heavy tailed distribution of Y
resulting from the transformed F distribution of the error term.
Altogether I can conclude that besides to the bias the MvQ method
seems to be a stable estimation of quantiles. Especially the method
performs better than the direct estimator whenever we want to es-
timate quantiles which are further on the edges. Due to the model
assumption in the MvQ model we are even able to estimate quantiles
for areas in which there is no observation which is not possible for
the direct estimation.

3.6.2.4 The Conclusion of Microsimulation via Quantiles

In conclusion I can say that the method of Microsimulation via Quan-
tiles provides first ideas for estimating parameter, which are beyond
the mean. Thus it is possible to estimate area quantiles as I have simu-
lated in the latter Section. Other parameters are possible. Since there
the empirical distribution function is estimated, I get the distribution
of the observation Y and may obtain any parameter of interest from
that. This can be fulfilled by a Monte Carlo simulation. Then even the
estimation of parameters like the Gini coefficient or poverty rates is
possible.
Furthermore the MvQ method can be combined with the jittering in-
troduced in Section 3.6.1. Hence parameters of interest of count data
may also be estimated. Therefore the quantile estimators of the count
data, which can be estimated as described before serve as the inverse
of the empirical distribution function. From there everything else can
be obtained by a Monte Carlo simulation.
On linear models with no random effect the method may also work
by estimating the quantiles as described in Chapter 2. Then also other
parameters than the mean can be estimated. Thus one is able to get
quantile estimates unconditional on xi. Remember the mean of a
quantile is not a quantile. However Microsimulation via Quantiles is
a way of estimating whatever one is interested in.
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3.7 conclusion

In this Chapter I introduced the idea of quantile estimation in linear
mixed models. This approach is similar to the quantile regression in
linear models, which was discussed in Chapter 2.
However there are differences in the estimation due to the existence
of the random effect. As in the linear model the estimation of the
regression parameter βτ can be translated into a maximum likelihood
estimation problem by assuming an asymmetric Laplacian distributed
unit error model. There I was able to show the consistency of the es-
timation by using a theorem for maximum likelihood estimators with
non-standard dependencies. The application of this Weiss’ Theorem –
see Theorem 4.1 – is such extensive that it is fulfilled in detail in the
next Chapter 4.
The random effect in the linear mixed model also needs to be pre-
dicted, which is why the maximum likelihood estimation was just the
first step in the quantile estimation. Hence the quantile estimator is
a combination of the maximum likelihood estimator βτ and the predic-
tor of the random effect V . The latter prediction needs the maximum
likelihood estimation in the first step. Eventually the consistency of
that implies the consistency of the predictor, which in turn implies
the consistency of the whole quantile estimation. This is proved and
stated in the main theorem of this Chapter, Theorem 3.1.
In a simulation study in Section 3.4.2 the consistency became visible.
There the mean absolute deviation between the quantile estimator and
the true quantile decreased with growing within area sample sizes ni
and a growing number of areas.
Furthermore the consistency implied the asymptotic behaviour of the
mean squared error of the quantile estimator. It converges to zero as
the sample sizes and number of areas grow. However the quantile
estimator is biased and only asymptotically unbiased.
This Chapter is ended with two applications of the quantile estima-
tion in linear mixed model. In Section 3.6.1 I show that the consistency
devolves to the quantile estimator for count data. In practice counts
are quite common and thus there is need for their estimation. This
can be implemented by the idea of jittering, which is described in de-
tail.
The last extension of quantile estimation is the method Microsim-
ulation via Quantiles, which I introduced in Section 3.6.2. This ap-
proach uses the interdependence between quantiles and the distri-
bution function of a random variable. By the estimation of quantiles
for a grid of τ ∈ (0, 1) the whole distribution can be estimated. From
there any parameter of interest can be derived with an Monte Carlo
approach. This is a microsimulation of the whole population, which
explains the name of this method. First simulation results of this idea
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are very promising, which is why the Microsimulation via Quantiles
should be further examined in the future.





4
T H E C O N S I S T E N C Y P R O O F O F T H E PA R A M E T E R
E S T I M AT I O N

In this Chapter I am going to demonstrate the proof of the consistency
of the parameter estimator, which is indispensable for the consistency
of the quantile estimation. As a reminder, for a fixed τ given X the
quantile estimator is given as

Q̂Y|X(τ) = Xβ̂τ + ZV̂ ,

which follows from the linear quantile mixed model

QY|X(τ) = Xβτ + ZV .

This estimation of the quantile is conducted in two steps: First the pa-
rameters of the density of the n-dimensional observation vector Y are
estimated by a maximum likelihood approach. As derived in Chapter
3 one may assume for the conditional distribution of Y given V an
n-dimensional asymmetric Laplace distribution, which was discussed in
Section 2.4.1

Y|V ∼ ALDn(Xβτ + ZV ,σ, τ)

whilst in my case the distribution of the random effect vector is a
D-dimensional normal distribution

V ∼ ND(0,σVID).

This leads to a density function of Y as a function of the unknown
parameter vector θ = (σV ,σ,βTτ )T , which will be estimated in the
first step as a maximum likelihood estimator of the log-likelihood of the
vector Y.
In the second step a predictor for V is estimated using θ̂ from the
maximum likelihood step, leading to an estimator of the quantile given
by

Q̂Y|X(τ) = Xβ̂τ + ZV̂ .

Thus also the consistency is shown in two steps. For the first step I
need to show it for the maximum likelihood estimator θ̂. Since the n ob-
servations Y1,1, Y1,2, . . . , YD,nD are not mutually independent of each
other, I apply a theorem for this non-standard case. It is called Weiss’
Theorem and will be introduced in Section 4.1.1 (cf. Weiss [1971] and
Weiss [1973]). The application of this theorem is not straightforward.
Hence its application – and thus the prove of the consistency of θ̂ –
is divided into several steps. First I calculate the log-likelihood den-
sity of Y and its second derivatives, which is fulfilled in Section 4.1.3.

67
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In the following Sections 4.2.1 and 4.2.2 the two assumptions of the
Weiss’ Theorem are shown for the linear quantile mixed model (3.12).
This allows me to apply the theorem leading to the consistency of
θ̂ under the assumptions (B1) to (B6) stated before Theorem 3.1. In
the second step I need to show the consistency of the estimation of V̂
from the consistent θ̂, which was already fulfilled in the proof of The-
orem 3.1 leading to the consistency of the quantile estimator Q̂Y|X(τ)
for any given τ.

4.1 preliminaries

In the following I introduce the theorem, which I will apply in order
to show the consistency in Section 4.1.1. Within this part I will also
discuss the meaning of the assumptions made in the theorem in Sec-
tion 4.1.1.2 and give examples how it was already applied in linear
models with correlated error terms and in the linear mixed model
with normal error terms in Section 4.1.1.3. Preliminaries for the appli-
cation of the theorem follow in Section 4.1.3. In this part I am deriving
the log-likelihood, which is needed for the theorem and their deriva-
tives. After all tools have been provided the two main assumptions of
the theorem are proven in Sections 4.2.1 and 4.2.2.

4.1.1 The Weiss’ Theorem

The theorem by Lionel Weiss (1923-2000) is in common use, whenever
the consistency of maximum likelihood estimators under non-standard
cases are shown. It is a specialisation of the Glivenko-Cantelli Theorem
(cf. Glivenko [1933] and Cantelli [1933]). The non-standard term ap-
plies here for the non-independence of the observations. Miller [1977]
made first use of the theorem for maximum likelihood estimators in
mixed models. Based on his work Pinheiro [1994] applied this the-
orem on the linear mixed model with normal errors in his doctoral
thesis. In my case it will turn out to be more complicated than in
the normal case but it follows mainly the same approach. The theo-
rem was first introduced with three assumptions (see Weiss [1971]),
which were later shortened to two assumptions (see Weiss [1973]).
However Weiss [1973] is an addition to Weiss [1971], which is why
both articles should be mentioned together.

4.1.1.1 The Theorem

Let me have a sample of random variables of size n Y1, Y2, . . . , Yn,
which follow a distribution PY|θ dependent on an unknown
k-dimensional parameter vector θ ∈ Θ ⊂ Rk. The sample vector is
denoted by Y = (Y1, Y2, . . . , Yn)T whose Lebesgue density fY(y|θ) ex-
ists. Then the log-likelihood is defined by `(θ|y) = log fY(y|θ). Let
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θ0 ∈ int(Θ) , where int(Θ) is the interior of the k-dimensional set of
unknown parameters Θ, be the true value for θ and there exist 2k se-
quences K1(n),K2(n), . . . ,Kk(n), M1(n),M2(n), . . . ,Mk(n) such that
Kι(n)

n→∞→ ∞, Mι(n)
n→∞→ ∞, and Mι(n)

Kι(n)

n→∞→ 0 for all ι = 1, 2, . . . ,k.
The first assumption I state is

(A1)

−
1

Kι1(n)Kι2(n)

∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ0

P→ Bι1,ι2(θ
0), (4.1)

where P→ means convergence in probability, whenever n → ∞,
ι1, ι2 ∈ {1, . . . ,k}, where Bι1,ι2(θ

0) is continuous and the k× k-
dimensional matrix B(θ0) is positive definite.

Before I state Assumption 2 I need to define some quantities. Let

ει1,ι2(θ, θ0,n, Y) := −
1

Kι1(n)Kι2(n)

∂2

∂θι1∂θι2
`(θ|Y) −Bι1,ι2(θ

0), (4.2)

define the distance of − 1
Kι1(n)Kι2(n)

∂2

∂θι1∂θι2
`(θ|Y) to the limit stated

in (A1) dependent on the sample vector Y, the sample size n, the
parameter vector θ, and the true value θ0. The set

Nn(θ
0) :=

{
(θ1, θ2, . . . , θk)T

∣∣∣∣ ∣∣θι − θ0ι ∣∣ 6 Mι(n)

Kι(n)
, ι ∈ {1, 2, . . . ,k}

}
(4.3)

consists of all parameters in Θ, which are within a range of M(n)
K(n)

around θ0, and

Rn(θ
0,γ) :=

{
Y ∈ Rn

∣∣∣∣
k∑
ι1=1

k∑
ι2=1

Mι1(n)Mι2(n) sup
θ∈Nn(θ0)

∣∣ει1,ι2(θ, θ0,n, Y)
∣∣ 6 γ


(4.4)

is the set of values Y ∈ Rn, for which the summed and by M(n)

weighted biggest distance defined in (4.2) for all θ ∈ Nn(θ0) is less
than a given value γ. The second assumption can now be stated as
follows:

(A2) Let there exist two positive non-random sequences
{
γ(n, θ0)

}
and

{
δ(n, θ0)

}
with γ(n, θ0) n→∞→ 0 and δ(n, θ0) n→∞→ 0 such

that

Pθ
(
Rn(θ

0,γ(n, θ0))
)
> 1− δ(n, θ0) ∀θ ∈ Nn(θ0). (4.5)

Theorem 4.1 (The Weiss’ Theorem (1971, 1973)). For a sample
Y1, Y2, . . . , Yn as introduced before, where (A1) and (A2) holds it follows
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that there exists a sequence of maximum likelihood estimates θ̂(n), which
are roots of the equations ∂`(θ|y)∂θ = 0 such that

diag(K(n))(θ̂(n) − θ0)
D→ N(0,B−1(θ0)), (4.6)

where D→ means the convergence in distribution as n → ∞ and K(n) =

(K1(n), . . . ,Kk(n))T is the k-dimensional vector of the sequences Kι(n)
which were defined earlier.

The asymptotic normality with rate K(n), which is stated in this theo-
rem implies the consistency of the maximum estimator θ̂, which will
be shown in the end of this Chapter in Section 4.3. Furthermore it
states the existence of the estimators themselves. However the exis-
tence gives no predication on their calculation.

4.1.1.2 The Meaning of the Assumptions

The sequence Kι(n) is the convergence rate of the asymptotic normality
(cf. Chapter 9.3 of van der Vaart [2007]). In the standard case with
independently distributed observations it is

√
n (cf. Aldrich [1997]).

Thus in a non-standard case Kι(n) cannot be any better, namely it
can only be slower or of the same speed. There has to be a price for
the dependencies. The left hand side of Assumption 1 as stated in
(4.1)

−
1

Kι1(n)Kι2(n)

∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ0

(4.7)

turns out to be related to the negative mean value of the second
derivative of the log-likelihood density, whenever Kι1(n)Kι2(n)→∞,
which is fulfilled. In the independent case I could rewrite the log-
likelihood as follows

`(θ|y) =

n∑
i=1

log (fYi(yi)) .

Thus (4.7) is with Kι(n) =
√
n the negative mean value of the second

derivative of the log-likelihood density log (fYi(yi)). This is not possi-
ble in the case with dependent observations but the idea is the same.
In the standard case I can apply the Law of Large Numbers and (4.7)
converges in probability to the expected value

− E

[
∂2

∂θι1∂θι2
log (fYi(yi))

∣∣∣∣
θ0

]
, (4.8)

which can be shown to be equal to the Fisher Information – see Lemma
4.2 – which is defined in Definition 2.5. In the standard case the in-
verse of the Fisher Information is the asymptotic covariance matrix of√
n(θ̂(n) − θ0) and it holds the equality to (4.8).
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Lemma 4.2. The Fisher Information matrix may be rewritten as

I(θ0) = −E

[
∂2

∂θ2
log (fYi(yi))

∣∣∣∣
θ0

]
.

The proof of this statement is an exercise from higher statistics classes.
Nevertheless I am going to fulfil this calculation in the following in
order to give the reader a deeper understanding.

Proof. The expected value of the matrix on the right hand side of the
lemma can be further calculated as follows

E

[
∂2

∂θ2
log (fYi(Yi))

∣∣∣∣
θ0

]
=

∫
∂2

∂θ2
log (fYi(yi)) fYi(yi)

∣∣∣∣
θ0
dyi

=

∫
∂

∂θ

(
∂
∂θfYi(yi)

fYi(yi)

)
fYi(yi)

∣∣∣∣
θ0
dyi

=

∫  ∂2

∂θ2
fYi(yi)

fYi(yi)
−

(
∂
∂θfYi(yi)

fYi(yi)

)2 fYi(yi)∣∣∣∣
θ0
dyi

=

∫
∂2

∂θ2
fYi(yi)

∣∣∣∣
θ0
dyi −

∫ (
∂

∂θ
log (fYi(yi))

)2
fYi(yi)

∣∣∣∣
θ0
dyi

(?)
=

∂2

∂θ2

∫
Rni

fYi(yi)

∣∣∣∣
θ0
dyi

−

∫ (
∂

∂θ
log (fYi(yi))

)2
fYi(yi)

∣∣∣∣
θ0
dyi

(??)
=

∂2

∂θ2
1− E

[(
∂

∂θ
log (fYi(Yi))

)2 ∣∣∣∣
θ0

]

= E

[(
∂

∂θ
log (fYi(Yi))

)2 ∣∣∣∣
θ0

]
=: −I(θ0),

where (?) holds by application of the Lebesgue Theorem (cf. Theorem
3.12 in Aman and Escher [2008]) and (??) holds because fYi is a prob-
ability density.

In the non-standard case Assumption 2 (4.5) describes the speed of
convergence in Assumption 1 (4.1). Within the proof of the Weiss’
Theorem Assumption 2 is required for an intermediate step, where it
is shown that

1

Kι(n)

∂

∂θι
`(θ|Y)

D→ N(0,B(θ0)). (4.9)

Assumption 1 is also needed within this step to show the conver-
gence of the second derivatives to the covariance matrix B(θ0), which
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serves as a version of the Fisher Information matrix in this case. By in-
troducing the environment around θ0 Nn(θ0) in (4.3) Weiss is able to
develop a Taylor expansion around θ0 of the density of the observation
Y fY(Y|θ). The set Rn(θ0,γ) defined in (4.4) and the sequences Mι(n)

are needed for the convergence of the tail of the Taylor expansion. This
step proves the existence of a relative maximum of `(θ, Y) in Nn(θ0)
named θ̂(n). In the next step Weiss defines a sequence θ?(n) by

diag(K(n))(θ?(n) − θ0) =
1

Kι(n)

∂

∂θι
`(θ|Y)(B(θ0))−1,

which converges by (4.9) to N
(
0, (B(θ0))−1

)
in distribution. Finally

he shows the equality of θ?(n) to the maximum θ̂(n) by arguments
of Cramér [1946]. Thus θ̂(n) adopts the properties of θ?(n), especially

diag(K(n))(θ̂(n) − θ0)
D→ N

(
0, (B(θ0))−1

)
.

The sequence Mι(n) converges slower to ∞ than the convergence
rate Kι(n). Thus it holds that Mι(n) ∈ o(Kι(n)). It is only defined for
constructive reasons.
Hence the two assumptions are needed for showing (4.9) and the
existence of a maximum in a Taylor expansion. Alternatively one could
also assume these two properties in order to show the statement of
the Weiss’ Theorem – see Theorem 4.1.

4.1.1.3 Examples of Applications of the Weiss’ Theorem

The Weiss’ Theorem was applied on a general linear model with depen-
dencies within the error structure by Magnus [1978]. He showed the
asymptotic normality of the regression coefficients and the variance pa-
rameters. In linear mixed models it was applied by Miller [1977] and
Pinheiro [1994]. Their model has the assumption of normal random ef-
fects and normal individual error terms. They showed the asymptotic
normality of the regression coefficient and the variance parameters in
the random effect and the error term. Due to the normal assumptions,
the log-likelihood in all mentioned cases can be calculated and there-
fore the two assumptions of the Weiss’ Theorem were shown instantly
with it. Since Miller [1977] and Pinheiro [1994] started with a linear
mixed model, I will use the same structure of the proof in the follow-
ing.

4.1.2 Application of the Weiss’ Theorem for Linear Quantile Mixed Models

For a fixed i = 1, 2, . . . ,D the observations Yi,1, Yi,2, . . . , Yi,ni are not
mutually independent from each other due to the common random
effect Vi. Another approach of consistency proofing is called for than
in the general maximum likelihood approach (see Theorem 2.6). This
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can be handled by applying the Weiss’ Theorem – Theorem 4.1 – which
is adapted on this non-standard case. As discussed in Section 4.1.1.2
the price for this case of non-independence can be found in the con-
vergence rates of the consistency.
The application of the Weiss’ Theorem in the linear quantile mixed
model will be of the same structure as in Miller [1977] and Pinheiro
[1994]. Compared to their approach the proof here is more compli-
cated due to the asymmetric Laplace distribution for the individual error
term. In the normal case one is able to use the fact that the convolution
of two normal distributions will lead into a normal distribution. Thus the
density of Y as a sum of two normals in this case is a normal. In contrast
the density of Y in the linear quantile mixed model is a convolution
of a normal and an asymmetric Laplace distribution , which is not ana-
lytically solvable. Thus it stays in the convolution form as an integral
the whole time. Since the log-likelihood density is derived from this
density and its second derivatives are needed, the Lebesgue Theorem
is crucial to be able to interchange derivations and integration. This
deviation is more complicated to compute. Moreover the results are
not easily interpretable. Pinheiro [1994] could use results by Searle
et al. [1992] for the second derivatives. Therefore he was able to skip
this step.
However once the second derivatives are computed, I will stay with
the structure of Miller [1977] and Pinheiro [1994], especially in the
proof of Assumption 2 in Section 4.2.2. It will even turn out that the
convergence rates are the same for the parameters σV and βτ, which
is a promising result for quantile regression in mixed models.
In principle the theorem can be applied as stated. An addition in
the regression model is that the density fY is not only dependent
on θ but also on the covariates in the design matrix X and therefore
it should be named fY|θ,X. For notational simplicity I keep that in
mind but drop X in the footnote. The unknown parameter vector is
θ = (σV ,σ,βTτ )T . Note that βτ ∈ Rp and thus k = p+ 2. Neverthe-
less I will treat the parameter vector βτ =: θ3 as the third parameter
I have to estimate. Hence the sequences Kι(n) and Mι(n) have only
three instead of k = p+ 2 different appearances each, where K3(n)
will turn out to be the convergence rate of β̂τ(n). In the following the
log-likelihood density and its derivatives are derived, such that I can
proof the two assumptions.

4.1.3 The Log-Likelihood Density and its Second Derivatives

In the assumptions of the Weiss’ Theorem I need the second derivatives
of the log-likelihood density `(θ|Y) of Y. For that reason I am going
to develop `(θ|Y) in Section 4.1.3.1. Next I calculate the first partial
derivatives with respect to the parameters σV , σ, and βτ in Section
4.1.3.2. The second partial derivatives have to be calculated with re-
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spect to all possible pairs from θ = (σV ,σ,βTτ )T . This will lead to
six different cases, which will be derived in Section 4.1.3.4. To main-
tain a coherent structure all results are stated in lemmata with the
calculations in their proofs.

4.1.3.1 The Log-Likelihood Density of Y

The joint Lebesgue density of (Y,V) is the product of the conditional
density function fY|V and the density function of V

fY,V(y) = fY|V(y|v) · fV(v).

Thus the marginal density of Y can be obtained as the convolution by
taking the integral with respect to theD-dimensional vector v leading
to the D-dimensional integral

fY(y) =

∫
RD
fY,V(y, v)dv

=

∫
RD

D∏
i=1

(fYi,Vi(yi, vi))dv

(?)
=

∫
RD

D∏
i=1

 ni∏
j=1

(fYij|Vi(yij|vi))fVi(vi)

dv
(??)
=

D∏
i=1

∫
R

ni∏
j=1

(fYij|Vi(yij|vi))fVi(vi)dvi, (4.10)

where (?) holds because for a fixed i Yij1 given Vi is mutually inde-
pendent from Yij2 given Vi for j1 6= j2 and (??) holds by applying the
Theorem of Fubini (cf. Klenke [2013], Satz 14.16).
The log-likelihood density for θ = (σV ,σ,βTτ )T is then given by the
logarithm of (4.10), hence

`(θ|Y) = log(fY(Y))

= log

 D∏
i=1

∫
R

ni∏
j=1

(fYij|Vi(Yij|vi))fVi(vi)dvi


=

D∑
i=1

log

∫
R

ni∏
j=1

(fYij|Vi(Yij|vi))fVi(vi)dvi

 . (4.11)

Equation (4.11) is the general form of the log-likelihood density in a
linear mixed model. In the case of the linear mixed model with normal
random effects and normal individual error terms, it will turn out to
be a log-likelihood density of a normal distribution. In this case deriva-
tives are relatively easy to calculate. In my case with normal random
effects and individual error terms, which are asymmetric Laplacian dis-
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tributed , it is more complicated because an analytical solution of the
integral appears to be infeasible This is why the derivatives with re-
spect to the unknown parameters are calculated directly from (4.11)
in the following.

4.1.3.2 The First Derivatives of the Log-Likelihood Density

The derivatives of the log-likelihood density are calculated for each
θι from Θ with ι = 1, 2, 3. Note that θ3 = βτ is a p-dimensional
vector and thus each derivative with respect to βτ is a p-dimensional
vector. Before obtaining all derivatives in these cases, I am giving a
general form of it. This holds also for all linear mixed models because
it is the derivative with respect to an unknown parameter θι of the
general log-likelihood density given in (4.11) is

∂

∂θι
`(θ|Y) =

∂

∂θι

D∑
i=1

log

∫
R

ni∏
j=1

(fYij|Vi(Yij|vi))fVi(vi)dvi


=

D∑
i=1

∂
∂θι

∫
R

∏ni
j=1(fYij|Vi(Yij|vi))fVi(vi)dvi∫

R

∏ni
j=1(fYij|Vi(Yij|vi))fVi(vi)dvi

(?)
=

D∑
i=1

∫
R
∂
∂θι

(∏ni
j=1(fYij|Vi(Yij|vi))fVi(vi)

)
dvi∫

R

∏ni
j=1(fYij|Vi(Yij|vi))fVi(vi)dvi

(??)
=

D∑
i=1

∫R
∂
∂θι

(∏ni
j=1(fYij|Vi(Yij|vi))

)
fVi(vi)dvi∫

R

∏ni
j=1(fYij|Vi(Yij|vi))fVi(vi)dvi

+

∫
R

∏ni
j=1(fYij|Vi(Yij|vi))

∂
∂θι
fVi(vi)dvi∫

R

∏ni
j=1(fYij|Vi(Yij|vi))fVi(vi)dvi

)
, (4.12)

where (?) is an application of the Lebesgue Theorem and (??) holds by
the product rule. Note that the denominator is the marginal density of
Yi: ∫

R

ni∏
j=1

(fYij|Vi(Yij|vi))fVi(vi)dvi = fYi(Yi).

The set of unknown model parameters,Θ, can be split intoΘV := {σV }

and ΘY := {σ,βτ} which define the density of V fV and the density Y
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given V fY|V , respectively. Due to these impacts on the densities some
derivatives are equal to zero and (4.12) can be simplified to

∂

∂θι
`(θ|Y) =

D∑
i=1

∫
R
∂
∂θι

(∏ni
j=1(fYij|Vi(Yij|vi))

)
fVi(vi)dvi

fYi(Yi)
∀θι ∈ ΘY

(4.13)

and

∂

∂θι
`(θ|Y) =

D∑
i=1

∫
R

∏ni
j=1(fYij|Vi(Yij|vi))

∂
∂θι
fVi(vi)dvi

fYi(Yi)
∀θι ∈ ΘV

(4.14)

in the two cases. In the following the forms of each partial first deriva-
tive are derived.

4.1.3.2.1 Derivative with Respect to σV

Lemma 4.3. The partial first derivative of (4.11) with respect to σV is given
by

∂

∂σV
`(θ|Y) =

D∑
i=1

E

[
V2i − σ

2
V

σ3V

∣∣∣∣Yi] . (4.15)

Proof. The parameter σV determines only the density fV of the ran-
dom effect and therefore has the form of (4.14). fVi is a density of a
normal distribution with zero mean and variance equal to σ2V . Thus the
first derivative of fVi(vi) with respect to σV is given by

∂

∂σV
fVi(vi)

=
∂

∂σV

(
1√
2πσV

exp
(
−
v2i
2σ2V

))
=

∂

∂σV

(
1√
2πσV

)
exp

(
−
v2i
2σ2V

)
+

1√
2πσV

∂

∂σV
exp

(
−
v2i
2σ2V

)
= −

1√
2πσ2V

exp
(
−
v2i
2σ2V

)
+

1√
2πσV

exp
(
−
v2i
2σ2V

)
v2i
σ3V

=

(
v2i
σ3V

−
1

σV

)
1√
2πσV

exp
(
−
v2i
2σ2V

)
=
v2i − σ

2
V

σ3V
fV(vi).
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Using (4.14) the derivative of the likelihood is given by

∂

∂σV
`(θ|Y) =

D∑
i=1

∫
R

∏ni
j=1(fYij|Vi(Yij|vi))

v2i−σ
2
V

σ3V
fVi(vi)dvi

fYi(Yi)

=

D∑
i=1

∫
R

v2i − σ
2
V

σ3V

∏ni
j=1(fYij|Vi(Yij|vi))fVi(vi)

fYi(Yi)
dvi

with the second fraction of densities simplified to∏ni
j=1(fYij|Vi(Yij|vi))fVi(vi)

fYi(Yi)
=
fYi,Vi(Yi, vi)
fYi(Yi)

= fVi|Yi(vi) (4.16)

which is the density of the measure of Vi given Yi. Hence I can write

∂

∂σV
`(θ|Y) =

D∑
i=1

∫
R

v2i − σ
2
V

σ3V
fVi|Yi(vi)dvi

=

D∑
i=1

E

[
V2i − σ

2
V

σ3V

∣∣∣∣Yi] .

Note that (4.15) is also the form of the first derivative with respect to
σ2V in other distribution models of Y|V , whenever the distribution of
the random effect is a normal. For example in a linear mixed model
with normal individual error terms it has the same form.

Remark 4.4. Since V is a vector and

VTV =

D∑
i=1

V2i ,

I can also rewrite ∂
∂σV

`(θ|Y) in vector form as follows

∂

∂σV
`(θ|Y) =

1

σ3V
E
[
VTV |Y

]
−
D

σV
.

The vector expression is just another way of expressing the deriva-
tive and simplifies calculations below. Nevertheless, for the further
differentiation I keep the form with the sum as in Lemma 4.3. The
interpretation of the conditional expectation with respect to Y will be
given in Section 4.1.3.3.

4.1.3.2.2 Derivatives with Respect to σ and βτ

For the derivatives with respect to σ and βτ I start from equation
(4.13). The derivative of the joint density fYi|Vi – which is described



78 the consistency proof of the parameter estimation

as a product of densities of asymmetric Laplace distributions – is given
by

fYi|Vi(Yi|vi)

=

ni∏
j=1

fYij|Vi(Yij|vi)

=

ni∏
j=1

(
τ(1− τ)

σ
exp

(
−ρτ

(
Yij − (xTijβτ + vi)

σ

)))

=
τni(1− τ)ni

σni
exp

−

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
=
τni(1− τ)ni

σni
exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))

 .

(4.17)

Derivative with Respect to σ

Lemma 4.5. The partial first derivative of (4.11) with respect to σ is given
by

∂

∂σ
`(θ|Y) =

D∑
i=1

E

−ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)∣∣∣∣Yi
 .

(4.18)

Proof. For the proof I start from the derivative of (4.17) with respect
to σ which is calculated as follows

∂

∂σ
fYi|Vi(Yi|vi)

=
∂

∂σ

(
τni(1− τ)ni

σni

exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


=
∂

∂σ

(
τni(1− τ)ni

σni

)

exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


+
τni(1− τ)ni

σni

∂

∂σ
exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


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=
−niτ

ni(1− τ)ni

σni+1

exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


+
τni(1− τ)ni

σni

exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


−

1

σ2

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


=

−
ni
σ

−
1

σ2

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


fYi|Vi(Yi|vi)

=

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fYi|Vi(Yi|vi).
Inserting this result in (4.13) proves the lemma:

∂

∂σ
`(θ|Y)

=

D∑
i=1

1

fYi(Yi)

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
· fYi|Vi(Yi|vi)fVi(vi)dvi

(?)
=

D∑
i=1

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
· fVi|Yi(vi)dvi

=

D∑
i=1

E

−ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)∣∣∣∣Yi
 ,

where (?) follows from equation (4.16).

Remark 4.6. I can also rewrite ∂
∂σ`(θ|Y) in vector form as follows

∂

∂σ
`(θ|Y) = −

n

σ
+
1

σ2
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]

.

The indicator function of a vector is defined as the vector of the indi-
cator functions and 1n is an n-dimensional vector containing ones.
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Derivative with Respect to βτ

Lemma 4.7. The partial first derivative of (4.11) with respect to βτ is given
by

∂

∂βτ
`(θ|Y) =

D∑
i=1

E

− 1
σ

ni∑
j=1

(1{Yij6xTijβτ+Vi} − τ)xij

∣∣∣∣Yi
 (4.19)

Proof. For applying (4.13) I need the derivative of the conditional den-
sity fYi|Vi , which is given in (4.17). First, the derivative with respect to
the whole p-dimensional vector βτ receiving a p-dimensional deriva-
tive vector is derived by

∂

∂βτ
fYi|Vi(Yi|vi)

=
∂

∂βτ

(
τni(1− τ)ni

σni

exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


=
τni(1− τ)ni

σni

∂

∂βτ

exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


=
τni(1− τ)ni

σni
exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


·

(
1

σ

ni∑
j=1

(
∂

∂βτ
(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))

+(1{Yij6xTijβτ+vi} − τ)
∂

∂βτ
(Yij − (xTijβτ + vi))

))

=
τni(1− τ)ni

σni
exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


·

 1
σ

ni∑
j=1

(
0 · (Yij − (xTijβτ + vi)) + (1{Yij6xTijβτ+vi} − τ)(−xij)

)
=
τni(1− τ)ni

σni
exp

 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)(Yij − (xTijβτ + vi))


·

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij





4.1 preliminaries 81

= −
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xijfYi|Vi(Yi|vi).

By inserting this result in (4.13) I get

∂

∂βτ
`(θ|Y) =

D∑
i=1

1

fYi(Yi)

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


· fYi|Vi(Yi|vi)fVi(vi)dvi

(?)
=

D∑
i=1

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


· fVi|Yi(vi)dvi

=

D∑
i=1

E

− 1
σ

ni∑
j=1

(1{Yij6xTijβτ+Vi} − τ)xij|Yi

 ,

where (?) follows from equation (4.16).

Remark 4.8. I can also rewrite ∂
∂βτ

`(θ|Y) in vector form as follows

∂

∂βτ,h
`(θ|Y) = −

1

σ
E
[
XT
(
1{Y6Xβτ+ZV} − τ1n

)
|Y
]

.

4.1.3.3 The Conditional Expectation with Respect to Y

All derivatives have in common that they can be depicted as condi-
tional expectations with respect to the observation Y. These condi-
tional expectation may be rewritten as integrals with respect to the
measure PV |Y . This is a somehow odd measure, in which I am nor-
mally not interested due to the non-observable vector of random ef-
fects, V . In my case of asymmetric Laplacian distributed error terms its
density is not computable since the density of Y is not computable.
In contrast to linear mixed models with normal error terms it is neces-
sarily calculable. There it turns out to be a normal distribution with
mean equal to σ2VZTΣ−1 (Y − Xβ) and covariance matrix equal to
σ2VID − σ4VZTΣ−1Z, where Σ = σ2εIn + σ2VZTZ is the covariance ma-
trix of Y. Only the first derivative ∂

∂σV
`(θ|Y) has no asymmetric Laplace
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distribution within its expression in (4.15). It has the same form as in
the normal case and can be calculated there as follows

∂

∂σV
`(θ|Y) =

1

σ3V

D∑
i=1

E[V2i |Yi] −
D

σV

=
1

σ3V

D∑
i=1

(
Var(Vi|Y) + E

2[Vi|Yi]
)
−
D

σV

(?)
=

1

σ3V
trace(σ2VID − σ4VZTΣ−1Z)

+
(
σ2VZTΣ−1 (Y − Xβ)

)T
σ2VZTΣ−1 (Y − Xβ) −

D

σV

= −σVtrace(ZTΣ−1Z)

+ σV
(
Σ−1(Y − Xβ)

)T
ZZTΣ−1(Y − Xβ),

where (?) follows from PV |Y = N(σ2VZTΣ−1 (Y − Xβ) ,
σ2VID−σ4VZTΣ−1Z). Compared to Searle et al. [1992] this is the same
result for the first derivative. The other two derivatives have the form
of the asymmetric Laplace case and therefore it is not possible to apply
the conditional distribution of the normal case here.
All three derivatives have in common that they are conditional ex-
pectations. As a reminder these are random variables themselves and
therefore must be treated accordingly. In application their realisations
are set to zero in order to find the estimator θ̂:

∂

∂θι
`(θ|Y)

!
= 0, ι = 1, 2, 3.

Due to their appearance these equations have no analytical solution
and are solved numerically, for example in the lqmm package for R

by Geraci [2016].

4.1.3.4 The Second Derivatives of the Log-Likelihood Density

In this Section I am going to calculate the second derivatives of the
log-likelihood density with respect to the unknown parameters θι,
ι = 1, 2, 3. In the latter Section I calculated the three different first
derivatives, where ∂

∂βτ
`(θ|Y) represents a p-dimensional vector of

derivatives. Each of them must now be deviated with respect to all
three different parameters σV , σ, and βτ. This leads to nine different
cases.
In the following part I show that the direction of deviation may be
interchanged resulting in six different cases, which will be calculated
below.
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4.1.3.4.1 Interchange of Directions of Differentiation

By the Schwarz’ Theorem (cf. Korollar 5.5 in Aman and Escher [2006])
I can interchange the directions of differentiation, whenever I deviate
on an open set Θ with continuous second order derivatives. This can
be satisfied, whenever I restrict Θ to

Θ = (0,M)2 × (−M,M)p

with M > 0 sufficiently large. This is not a strong assumption, be-
cause θ0 ∈ int(Θ) by (B2). Thus I can assume for the unknown pa-
rameter to fulfil θ0 ∈ Θ. In the end of this Section I see that the second
order derivatives are P-almost surely continuous. Thus the Schwarz’
Theorem is applicable and it holds that

∂2

∂θι1∂θι2
`(θ|Y) =

∂2

∂θι2∂θι1
`(θ|Y) ∀(ι1, ι2) ∈ {1, 2, 3}2 . (4.20)

Now I calculate all six cases with case numbers, which remain the
same in later Sections. There I prove the validity of the two assump-
tions in the Weiss’ Theorem. In each case I start with the general form
of the derivative of the first derivative and give the expressions of the
second derivatives for all six cases in lemmata.

4.1.3.4.2 The Derivatives of ∂
∂σV

`(θ|Y)

Generally the second derivative with respect to any parameter θι of
∂
∂σV

`(θ|Y) given in (4.15) is given by

∂

∂θι

∂

∂σV
`(θ|Y)

=
∂

∂θι

 D∑
i=1

∫
R

v2i−σ
2
V

σ3V
fYi|Vi(Yi|vi)fVi(vi)dvi

fYi(Yi)


(?)
=

D∑
i=1


∫

R
∂
∂θι

(
v2i−σ

2
V

σ3V
fYi|Vi(Yi|vi)fVi(vi)

)
dvi

fYi(Yi)

−

∫
R

v2i−σ
2
V

σ3V
fYi|Vi(Yi|vi)fVi(vi)dvi

∂
∂θι
fYi(Yi)

f2Yi(Yi)

 , (4.21)
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where (?) is an application of the Lebesgue Theorem. The nominator in
the first quotient of (4.21) can be rewritten as∫

R

∂

∂θι

(
v2i − σ

2
V

σ3V
fYi|Vi(Yi|vi)fVi(vi)

)
dvi

=

∫
R

(
∂

∂θι

(
fYi|Vi(Yi|vi)

) v2i − σ2V
σ3V

fVi(vi)

+fYi|Vi(Yi|vi)
∂

∂θι

(
v2i − σ

2
V

σ3V
fVi(vi)

))
dvi.

In this latter expression the first summand is zero, whenever θι ∈ ΘV
and the second one is zero, whenever θι ∈ ΘY . The derivatives of
fYi(Yi) with respect to θ in the second quotient are indirectly given
as the nominators in (4.15), (4.18), and (4.19) due to the equation

∂

∂θι
`(θ|Y) =

D∑
i=1

∂
∂θι
fYi(Yi)

fYi(Yi)
.

Thus I have for the derivatives ∂
∂θι
fYi(Yi) for θι ∈ {σV ,σ,βτ}

∂

∂σV
fYi(Yi) =

∫
R

v2i − σ
2
V

σ3V
fYi|Vi(Yi|vi)fVi(vi)dvi, (4.22)

∂

∂σ
fYi(Yi) =

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fYi|Vi(Yi|vi)fVi(vi)dvi, (4.23)

and

∂

∂βτ
fYi(Yi) =

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


fYi|Vi(Yi|vi)fVi(vi)dvi, (4.24)

respectively. These expressions are employed in all calculations of the
second derivatives and will be referred to in the according cases.

Case 1: The Second Derivative of `(θ|Y) with respect to (θι1 , θι2) =
(σV ,σV)

The first case is the second derivative of `(θ|Y) twice with respect to
σV . Thus, I start with the first derivative ∂

∂σV
`(θ|Y) given in Lemma

4.3 and differentiate it with respect to σV leading to the following
lemma.
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Lemma 4.9. The second derivative of `(θ|Y) with respect to (θι1 , θι2) =

(σV ,σV) is given by

∂2

∂σ2V
`(θ|Y) =

D

σ2V
−
3

σ4V
E
[
VTV |Y

]
+
1

σ6V
Var

(
VTV |Y

)
.

Proof. For θι = σV the second derivative ∂
∂θι

(
∂
∂σV

`(θ|Y)
)

in (4.21)
simplifies with the preliminary thoughts to

∂2

∂σ2V
`(θ|Y) =

D∑
i=1


∫

R

(
fYi|Vi(Yi|vi)

∂
∂σV

(
v2i−σ

2
V

σ3V
fVi(vi)

))
dvi

fYi(Yi)

−

∫
R

(
fYi|Vi(Yi|vi)

v2i−σ
2
V

σ3V
fVi(vi)

)
dvi

∂
∂σV

fYi(Yi)

f2Yi(Yi)

 .

The derivative ∂
∂σV

fYi(Yi) in the minuend was already stated in (4.22).
So there is only need for the derivative in the subtrahend

∂

∂σV

(
v2i − σ

2
V

σ3V
fVi(vi)

)
=

∂

∂σV

(
v2i − σ

2
V

σ3V

)
fVi(vi) +

v2i − σ
2
V

σ3V

∂

∂σV
fVi(vi)

=
∂

∂σV

(
v2i
σ3V

−
1

σV

)
fVi(vi) +

v2i − σ
2
V

σ3V

v2i − σ
2
V

σ3V
fVi(vi)

=

(
−
3v2i
σ4V

+
1

σ2V

)
fVi(vi) +

(
v2i − σ

2
V

σ3V

)2
fVi(vi)

=

(
σ2V − 3v2i
σ4V

+

(
v2i − σ

2
V

σ3V

)2)
fVi(vi).

Using these results it follows that

∂2

∂σ2V
`(θ|Y) =

D∑
i=1


∫

R
fYi|Vi(Yi|vi)

(
σ2V−3v

2
i

σ4V
+
(
v2i−σ

2
V

σ3V

)2)
fV(vi)dvi

fYi(Yi)

−

(∫
R
fYi|Vi(Yi|vi)

v2i−σ
2
V

σ3V
fVi(vi)dvi

)2
f2Yi(Yi)


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=

D∑
i=1

(∫
R

σ2V − 3v2i
σ4V

fVi|Yi(vi)dvi

+

∫
R

(
v2i − σ

2
V

σ3V

)2
fVi|Yi(vi)dvi

−

(∫
R

v2i − σ
2
V

σ3V
fVi|Yi(vi)dvi

)2)

=

D∑
i=1

(
E

[
σ2V − 3V2i
σ4V

∣∣∣∣Yi]+ E
[(
V2i − σ

2
V

σ3V

)2 ∣∣∣∣Yi
]

−E2
[
V2i − σ

2
V

σ3V

∣∣∣∣Yi]) .

In this expression each term of the sum can be further reduced in the
following manner

E

[
σ2V − 3V2i
σ4V

|Yi

]
+ E

[(
V2i − σ

2
V

σ3V

)2
|Yi

]
− E2

[
V2i − σ

2
V

σ3V
|Yi

]
=

1

σ2V
−
3

σ4V
E
[
V2i |Yi

]
+
1

σ6V

(
E
[
V4i |Yi

]
− 2σ2VE

[
V2i |Yi

]
+ σ4V

)
−
1

σ6V

(
E2
[
V2i |Yi

]
− 2σ2VE

[
V2i |Yi

]
+ σ4V

)
=

1

σ2V
−
3

σ4V
E
[
V2i |Yi

]
+
1

σ6V
E
[
V4i |Yi

]
−
1

σ6V
E2
[
V2i |Yi

]
.

The latter two summands can be rewritten as

D∑
i=1

[
1

σ6V
E
[
V4i |Yi

]
−
1

σ6V
E2
[
V2i |Yi

]]

=
1

σ6V

D∑
i=1

[
E
[
V4i |Yi

]
− E2

[
V2i |Yi

]]
,

where each summand is equal to the conditional variance of V2i with
respect to the measure PVi|Yi , Var

(
V2i |Yi

)
. Since the random effects

Vi, i = 1, 2, . . . ,D, are pairwise independent, so are their squared
transformations, leading to the covariances, Cov(V2i1 ,V

2
i2
), being equal
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to zero for all i1 6= i2. Thus the sum of this variance is the variance of
the sum

1

σ6V

D∑
i=1

Var
(
V2i |Yi

)
=

1

σ6V
Var

(
D∑
i=1

V2i

∣∣∣∣Y
)

=
1

σ6V

E
( D∑

i=1

V2i

)2 ∣∣∣∣Y
− E2

[
D∑
i=1

V2i

∣∣∣∣Y
] .

Using the equation

VTV =

D∑
i=1

V2i

I get as the result for a vector version of ∂2

∂σ2V
`(θ|Y)

D∑
i=1

[
1

σ2V
−
3

σ4V
E
[
V2i |Yi

]
+
1

σ6V
E
[
V4i |Yi

]
−
1

σ6V
E2
[
V2i |Yi

]]
(?)
=

D

σ2V
−
3

σ4V
E

[
D∑
i=1

V2i |Y

]
+
1

σ6V
E

( D∑
i=1

Vi

)2
|Yi


−
1

σ6V
E2

[
D∑
i=1

V2i |Y

]

=
D

σ2V
−
3

σ4V
E
[
VTV |Y

]
+
1

σ6V
E
[(
VTV

)2
|Y
]
−
1

σ6V
E2
[
VTV |Y

]
,

where (?) holds because of the pairwise independence of the random
effects Vi, as discussed earlier. The latter terms may be rewritten as
conditional expectation and variance, which leads to

∂2

∂σ2V
`(θ|Y) =

D

σ2V
−
3

σ4V
E
[
VTV |Y

]
+
1

σ6V
Var

(
VTV |Y

)
.

Thus the second derivative in case 1 is an expression of conditional
expectations and variances with respect to the observation vector Y.
Note that these expressions are random variables themselves. Further
calculations of them will be executed in the proofing part in Section
4.2.

Case 2: The Second Derivative of `(θ|Y) with respect to (θι1 , θι2) =
(σV ,σ) or (θι1 , θι2) = (σ,σV)

The second case is now the derivative of ∂
∂σV

`(θ|Y) with respect to
the second unknown parameter θ2 = σ. As shown in Section 4.1.3.4.1
this is the same expression as if one would differentiate ∂

∂σ`(θ|Y) from
Lemma 4.5 with respect to σV .
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Lemma 4.10. The second derivative of `(θ|Y) with respect to (θι1 , θι2) =

(σ,σV) or (θι1 , θι2) = (σ,σV) is given by

∂2

∂σ∂σV
`(θ|Y) =

∂2

∂σV∂σ
`(θ|Y)

=
1

σ2σ3V
Cov

((
1{ε60} − τ1n

)T
ε,VTV |Y

)
.

Proof. The derivative of ∂
∂σV

`(θ|Y) with respect to σ simplifies with
(4.21) to

∂

∂σ

∂

∂σV
`(θ|Y) =

D∑
i=1


∫

R

(
∂
∂σ

(
fYi|Vi(Yi|vi)

) v2i−σ2V
σ3V

fVi(vi)
)
dvi

fYi(Yi)

−

∫
R

(
fYi|Vi(Yi|vi)

v2i−σ
2
V

σ3V
fVi(vi)

)
dvi

∂
∂σfYi(Yi)

f2Yi(Yi)

 .

The proof of the derivative ∂
∂σ`(θ|Y) of Lemma 4.5 and the derivative

of fY with respect to σ given in (4.23) imply that

∂

∂σ

∂

∂σV
`(θ|Y)

=

D∑
i=1

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
·
v2i − σ

2
V

σ3V
fVi|Yi(vi)dvi

−

∫
R

v2i − σ
2
V

σ3V
fVi|Yi(vi)dvi

·
∫

R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fVi|Yi(vi)dvi


=

D∑
i=1

E
−

ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

) · V2i − σ2V
σ3V

∣∣∣∣Yi


−E

[
V2i − σ

2
V

σ3V

∣∣∣∣Yi]

·E

−ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)∣∣∣∣Yi
 .
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With the same argumentation as in the proof of Lemma 4.9 the deriva-
tive may be rewritten in vector form as

−
n

σσ3V
E
[
VTV |Y

]
+
Dn

σσV

+
1

σ2σ3V
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV))VTV |Y
]

−
1

σ2σV
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]

+
n

σσ3V
E
[
VTV |Y

]
−
Dn

σσV

−
1

σ2σ3V
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]
E
[
VTV |Y

]
+

1

σ2σV
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]

,

which is by deduction equal to

1

σ2σ3V
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV))VTV |Y
]

−
1

σ2σ3V
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]
E
[
VTV |Y

]
,

where 1{Y6Xβτ+ZV} is an n-dimensional indicator vector conditional
on the n-dimensional logical vector {Y 6 Xβτ + ZV} and 1n is an n-
dimensional vector of ones. With the transformation of the linear
quantile mixed model (3.12) to the inverse model which is the model
equation solved for V

V = Z−1(Y − Xβτ − ε) (4.25)

the latter expression develops to

1

σ2σ3V
E

[(
1{Y6Xβτ+ZZ−1(Y−Xβτ−ε)} − τ1n

)T
(
Y − (Xβτ + ZZ−1(Y − Xβτ − ε))

)
VTV |Y

]
−

1

σ2σ3V
E

[(
1{Y6Xβτ+ZZ−1(Y−Xβτ−ε)} − τ1n

)T
(
Y − (Xβτ + ZZ−1(Y − Xβτ − ε))

)
|Y
]

E
[
VTV |Y

]
=

1

σ2σ3V
E
[(

1{ε60} − τ1n
)T
εVTV |Y

]
−

1

σ2σ3V
E
[(

1{ε60} − τ1n
)T
ε|Y
]
E
[
VTV |Y

]
.
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This expression of the difference of the conditional expectation of
the product and the product of the conditional expectation can be
rewritten as the conditional covariance

1

σ2σ3V
Cov

((
1{ε60} − τ1n

)T
ε,VTV |Y

)
,

where Cov
((

1{ε60} − τ1n
)T
ε,VTV |Y

)
is the conditional covariance

between the random variables
(
1{ε60} − τ1n

)T
ε and VTV .

Thus the second derivative in case 2 is again a conditional expression
– the conditional covariance – with respect to the observation vector
Y. In Section 4.2 I will further investigate this term.

Case 3: The Second Derivative of `(θ|Y) with respect to (θι1 , θι2) =
(σV ,βτ) or (θι1 , θι2) = (βτ,σV)

Consequently, the third case is the derivative of ∂
∂σV

`(θ|Y) with re-
spect to the unknown p-dimensional parameter vector θ3 = βτ. As a
result this expression is again p-dimensional. With the argumentation
of Section 4.1.3.4.1 the result is the same expression as if one would
differentiate ∂

∂βτ
`(θ|Y) from Lemma 4.7 with respect to σV .

Lemma 4.11. The second derivative of `(θ|Y) with respect to (θι1 , θι2) =

(σV ,βτ) or (θι1 , θι2) = (βτ,σV) is given by

∂2

∂βτ∂σV
`(θ|Y) =

∂2

∂σV∂βτ
`(θ|Y)

= −
1

σσ3V
Cov

(
VTV , 1T{ε60}|Y

)
X.

Proof. The derivative of ∂
∂σV

`(θ|Y) with respect to the parameter βτ
simplifies with (4.21) to

∂

∂βτ

∂

∂σV
`(θ|Y)

=

D∑
i=1


∫

R

(
∂
∂βτ

(
fYi|Vi(Yi|vi)

) v2i−σ2V
σ3V

fVi(vi)
)
dvi

fYi(Yi)

−

∫
R

(
fYi|Vi(Yi|vi)

v2i−σ
2
V

σ3V
fVi(vi)

)
dvi

∂
∂βτ

fYi(Yi)

f2Yi(Yi)

 .
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With the proof of the derivative ∂
∂βτ

`(θ|Y) of Lemma 4.7 and the
derivative of fY with respect to βτ given in (4.24) it follows that

∂

∂βτ

∂

∂σV
`(θ|Y)

=

D∑
i=1

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 v2i − σ
2
V

σ3V
fVi|Yi(vi)dvi

−

∫
R

v2i − σ
2
V

σ3V
fVi|Yi(vi)dvi∫

R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fVi|Yi(vi)dvi


=

D∑
i=1

E
−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+Vi} − τ)xij

 · V2i − σ2V
σ3V

∣∣∣∣Yi


−E

[
V2i − σ

2
V

σ3V

∣∣∣∣Yi]E
− 1

σ

ni∑
j=1

(1{Yij6xTijβτ+Vi} − τ)xij

∣∣∣∣Yi
 .

Bringing this expression in vector form I get

−
1

σσ3V
E
[
(1{Y6Xβτ+ZV} − τ1n)TXVTV |Y

]
+

1

σσV
E
[
(1{Y6Xβτ+ZV} − τ1n)TX|Y

]
+

1

σσ3V
E
[
(1{Y6Xβτ+ZV} − τ1n)TX|Y

]
E
[
VTV |Y

]
−

1

σσV
E
[
(1{Y6Xβτ+ZV} − τ1n)TX|Y

]
,

which is equal to

−
1

σσ3V
E
[
(1{Y6Xβτ+ZV} − τ1n)TXVTV |Y

]
+

1

σσ3V
E
[
(1{Y6Xβτ+ZV} − τ1n)TX|Y

]
E
[
VTV |Y

]
.

By using the model (4.25) it follows that

−
1

σσ3V

(
E
[
(1{ε60} − τ1n)TXVTV |Y

]
−E
[
(1{ε60} − τ1n)TX|Y

]
E
[
VTV |Y

])
= −

1

σσ3V

(
E
[
VTV(1{ε60} − τ1n)T |Y

]
−E
[
VTV |Y

]
E
[
(1{ε60} − τ1n)T |Y

])
X,
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which can be expressed as a conditional covariance

−
1

σσ3V
Cov

(
VTV , (1{ε60} − τ1n)T |Y

)
X

= −
1

σσ3V
Cov

(
VTV , 1T{ε60}|Y

)
X,

where Cov
(
VTV , 1T

{ε60}|Y
)

is a 1×n conditional covariance vector of

the variable VTV and the vector 1T
{ε60}.

4.1.3.5 The Derivatives of ∂
∂σ`(θ|Y)

Generally, a derivative of ∂
∂σ`(θ|Y) given in (4.18) with respect to a

parameter θι is given by

∂

∂θι

∂

∂σ
`(θ|Y)

=
∂

∂θι

 D∑
i=1

∫
R

1

fYi(Yi)

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fYi|Vi(Yi|vi)fVi(vi)dvi

)
(?)
=

D∑
i=1

 1

fYi(Yi)

∫
R

∂

∂θι

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fYi|Vi(Yi|vi)fVi(vi)

)
dvi

−
1

f2Yi(Yi)

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fYi|Vi(Yi|vi)fVi(vi)dvi

∂

∂θι
fYi(Yi)

)
,

(4.26)

where (?) holds by applying the Lebesgue Theorem. The first integral
of (4.26) can be rewritten as

∫
R

∂

∂θι

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
·fYi|Vi(Yi|vi)fVi(vi)

)
dvi
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=

∫
R

 ∂

∂θι

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fYi|Vi(Yi|vi)


·fVi(vi)

+

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fYi|Vi(Yi|vi)
· ∂
∂θι

fVi(vi)

)
dvi.

In this expression the first summand is zero, whenever θι ∈ ΘV and
the second one is zero, whenever θι ∈ ΘY . The derivatives of fYi(Yi)
in the second quotient are given in (4.22), (4.23), and (4.24). By appli-
cation of the Schwarz’ Theorem – see (4.20) – I have

∂

∂σV

∂

∂σ
`(θ|Y) =

∂

∂σ

∂

∂σV
`(θ|Y) (4.27)

which is the second derivative from case 2 and given in Lemma 4.10.
Hence I only need to calculate with the derivative of ∂

∂σ`(θ|Y) with
respect to σV and βτ, which will be cases 4 and 5.

Case 4: The Second Derivative of `(θ|Y) with respect to (θι1 , θι2) =
(σ,σ)

The fourth case is the second derivative of `(θ|Y) twice with respect
to σ. I start with the first derivative ∂

∂σ`(θ|Y) given in Lemma 4.5 and
differentiate it with respect to σ leading to the following lemma.

Lemma 4.12. The second derivative of `(θ|Y) with respect to (θι1 , θι2) =

(σ,σ) is given by

∂2

∂σ2
`(θ|Y)

=
n

σ2
−
2

σ3

(
E
[
1T{ε60}ε|Y

]
− τ1TnE [ε|Y]

)
+
1

σ4
Var

(
1T{ε60}ε|Y

)
.
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Proof. For the parameter σ the derivative of ∂
∂σ`(θ|Y) simplifies with

(4.26) and previous argumentation to

∂2

∂σ2
`(θ|Y)

=

D∑
i=1

 1

fYi(Yi)

∫
R

∂

∂σ

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fYi|Vi(Yi|vi)

)
fVi(vi)dvi

−
1

f2Yi(Yi)

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fYi|Vi(Yi|vi)fVi(vi)

)
dvi

∂

∂σ
fYi(Yi)

)
.

The derivative in the first integral can be calculated using ∂
∂σ`(θ|Y)

given in (4.18)

∂

∂σ

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fYi|Vi(Yi|vi)


=
∂

∂σ

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fYi|Vi(Yi|vi)
+

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) ∂

∂σ
fYi|Vi(Yi|vi)

=

ni
σ2

−
2

σ2

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fYi|Vi(Yi|vi)
+

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)2 fYi|Vi(Yi|vi)
=

ni
σ2

−
2

σ2

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)

+

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)2
 fYi|Vi(Yi|vi).
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Inserting this result and using Equation (4.23) leads to

∂2

∂σ2
`(θ|Y)

=

D∑
i=1

∫
R

ni
σ2

−
2

σ2

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fVi|Yi(vi)dvi
+

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)2 fVi|Yi(vi)dvi
−

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fVi|Yi(vi)dvi

)2)
=

D∑
i=1

E
ni
σ2

−
2

σ2

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)∣∣∣∣Yi


+ E


−

ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)2 ∣∣∣∣Yi


−E2

−ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)∣∣∣∣Yi
 .

In vector notation the derivative ∂2

∂σ2
`(θ|Y) is given by

n

σ2
−
2

σ3
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]

+
1

σ4
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV))(
1{Y6Xβτ+ZV} − τ1n

)T
(Y − (Xβτ + ZV)) |Y

]
−
1

σ4
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]

E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]

When I make use of model (4.25) the derivative develops to

n

σ2
−
2

σ3
E
[(

1{ε60} − τ1n
)T
ε|Y
]

+
1

σ4

(
E
[(

1{ε60} − τ1n
)T
ε
(
1{ε60} − τ1n

)T
ε|Y
]

−E
[(

1{ε60} − τ1n
)T
ε|Y
]
E
[(

1{ε60} − τ1n
)T
ε|Y
])
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=
n

σ2
−
2

σ3

(
E
[
1T{ε60}ε|Y

]
− τ1TnE [ε|Y]

)
+
1

σ4

(
E
[
1T{ε60}ε1

T
{ε60}ε|Y

]
− 2τ1TnεE

[
1T{ε60}ε|Y

]
+ τ21Tnε1

T
nε

−E
[
1T{ε60}ε|Y

]
E
[
1T{ε60}ε|Y

]
+ 2τ1TnεE

[
1T{ε60}ε|Y

]
−τ21Tnε1

T
nε
)

=
n

σ2
−
2

σ3

(
E
[
1T{ε60}ε|Y

]
− τ1TnE [ε|Y]

)
+
1

σ4

(
E
[
1T{ε60}ε1

T
{ε60}ε|Y

]
− E

[
1T{ε60}ε|Y

]
E
[
1T{ε60}ε|Y

])
=
n

σ2
−
2

σ3

(
E
[
1T{ε60}ε|Y

]
− τ1TnE [ε|Y]

)
+
1

σ4
Var

(
1T{ε60}ε|Y

)
,

where Var
(

1T
{ε60}ε|Y

)
is the conditional variance of the variable

1T
{ε60}ε, which is the sum of all positive error variables εij.

Case 5: The Second Derivative of `(θ|Y) with respect to (θι1 , θι2) =
(σ,βτ) or (θι1 , θι2) = (βτ,σ)

In the second differentiation of ∂
∂σ`(θ|Y) I now calculate the deriva-

tive with respect to the parameter vector βτ. As for case 3, this fifth
case will have a p-dimensional vector as a result and is given in the
following lemma.

Lemma 4.13. The second derivative of `(θ|Y) with respect to (θι1 , θι2) =

(σ,βτ) or (θι1 , θι2) = (βτ,σ) is given by

∂2

∂βτ∂σ
`(θ|Y) =

∂2

∂σ∂βτ
`(θ|Y)

= −
1

σ2

(
E
[
1T{ε60}|Y

]
− τ1Tn

)
X

−
1

σ3
Cov

((
1{ε60} − τ1n

)T
ε, 1T{ε60}|Y

)
X.

Proof. For the parameter βτ the derivative of ∂
∂σ`(θ|Y) simplifies with

(4.26) and previous argumentation to

∂

∂βτ

∂

∂σ
`(θ|Y)

=

D∑
i=1

 1

fYi(Yi)

∫
R

∂

∂βτ

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fYi|Vi(Yi|vi)

)
fVi(vi)dvi

−
1

f2Yi(Yi)

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
fYi|Vi(Yi|vi)fVi(vi)dvi

∂

∂βτ
fYi(Yi)

)
.
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Further I can calculate the derivative in the first integral by using
Lemma 4.7

∂

∂βτ

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fYi|Vi(Yi|vi)


=
∂

∂βτ

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) fYi|Vi(Yi|vi)
+

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

) ∂

∂βτ
fYi|Vi(Yi|vi)

=

−
1

σ2

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi)
+

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi)
=

−
1

σ2

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

+

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)
−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi).
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Inserting this result in the first equation of this proof it follows that

∂

∂βτ

∂

∂σ
`(θ|Y)

=

D∑
i=1

∫
R

−
1

σ2

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fVi|Yi(vi)dvi
+

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + vi)

σ

)
−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fVi|Yi(vi)dvi
−

∫
R

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

) fVi|Yi(vi)dvi
∫

R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fVi|Yi(vi)dvi


=

D∑
i=1

E
− 1

σ2

ni∑
j=1

(1{Yij6xTijβτ+Vi} − τ)xij

∣∣∣∣Yi


+ E

−
ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)
−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+Vi} − τ)xij

∣∣∣∣Yi


− E

−ni
σ

+
1

σ

ni∑
j=1

ρτ

(
Yij − (xTijβτ + Vi)

σ

)∣∣∣∣Yi


E

− 1
σ

ni∑
j=1

(1{Yij6xTijβτ+Vi} − τ)xij

∣∣∣∣Yi
 .

Rewriting this result in vector notation I get

−
1

σ2
E
[(

1{Y6Xβτ+ZV} − τ1n
)T X|Y

]
−
1

σ3

(
E
[(

1{Y6Xβτ+ZV} − τ1n
)T X(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
]

−E
[(

1{Y6Xβτ+ZV} − τ1n
)T X|Y

]
E
[(

1{Y6Xβτ+ZV} − τ1n
)T

(Y − (Xβτ + ZV)) |Y
])

.
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Using the model (4.25) the derivative develops to

−
1

σ2
E
[(

1{ε60} − τ1n
)T X|Y

]
−
1

σ3

(
E
[(

1{ε60} − τ1n
)T X

(
1{ε60} − τ1n

)T
ε|Y
]

−E
[(

1{ε60} − τ1n
)T X|Y

]
E
[(

1{ε60} − τ1n
)T
ε|Y
])

= −
1

σ2

(
E
[
1T{ε60}|Y

]
− τ1Tn

)
X

−
1

σ3

(
E
[(

1{ε60} − τ1n
)T
ε
(
1{ε60} − τ1n

)T
|Y
]

X

−E
[(

1{ε60} − τ1n
)T
ε|Y
]
E
[(

1{ε60} − τ1n
)T

|Y
]

X
)

= −
1

σ2

(
E
[
1T{ε60}|Y

]
− τ1Tn

)
X

−
1

σ3
Cov

((
1{ε60} − τ1n

)T
ε, 1T{ε60}|Y

)
X,

where Cov
((

1{ε60} − τ1n
)T
ε, 1T

{ε60}|Y
)

is the n-dimensional condi-

tional covariance between the variable
(
1{ε60} − τ1n

)T
ε and the vec-

tor 1T
{ε60}.

4.1.3.5.1 The Derivatives of ∂
∂βτ

`(θ|Y)

Generally, the derivative of ∂
∂βτ

`(θ|Y) with respect to θι is given by

∂

∂θι

∂

∂βτ
`(θ|Y)

=
∂

∂θι

 D∑
i=1

1

fYi(Yi)

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


fYi|Vi(Yi|vi)fVi(vi)dvi

)
(?)
=

D∑
i=1

 1

fYi(Yi)

∫
R

∂

∂θ

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


fYi|Vi(Yi|vi)fVi(vi)

)
dvi

−
1

f2Yi(Yi)

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi)
fVi(vi)dvi

∂

∂θι
fYi(Yi)

)
,

(4.28)
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where (?) holds by applying the Lebesgue Theorem. The nominator in
the first quotient can be simplified to

∫
R

∂

∂θι

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi)fVi(vi)
dvi

=

∫
R

 ∂

∂θι

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi)

fVi(vi)

+

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi)
∂

∂θι
fVi(vi)

)
dvi.

In this expression the first summand is zero, whenever θι ∈ ΘV and
the second one is zero, whenever θι ∈ ΘY . The derivatives of fYi(Yi)
in the second quotient are given in (4.22), (4.23), and (4.24).
By application of the Schwarz’ Theorem – see (4.20) – I have

∂

∂σV

∂

∂βτ
`(θ|Y) =

∂

∂βτ

∂

∂σV
`(θ|Y), (4.29)

which is given in case 3 – see Lemma 4.11 – and

∂

∂σ

∂

∂βτ
`(θ|Y) =

∂

∂βτ

∂

∂σ
`(θ|Y), (4.30)

which is given in case 5 – see Lemma 4.13. Thus the only derivative
of ∂

∂βτ
`(θ|Y) I have to calculate is with respect to βτ itself, which is

the last case.

Case 6: The Second Derivative of `(θ|Y) with respect to (θι1 , θι2) =
(βτ,βτ)

The sixth case is the second derivative of `(θ|Y) twice with respect
to βτ. I start with the first derivative ∂

∂βτ
`(θ|Y) given in Lemma 4.7,

which is a p-dimensional vector and differentiate it with respect to the
p-dimensional parameter vector βτ leading to a p × p-dimensional
matrix, which is given in the following lemma.

Lemma 4.14. The second derivative of `(θ|Y) with respect to (θι1 , θι2) =

(βτ,βτ) is given by

∂2

∂β2τ
`(θ|Y) = −

1

σ2
XTCov

(
1{ε60}, 1{ε60}|Y

)
X.
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Proof. For the parameter βτ the derivative of ∂
∂βτ

`(θ|Y) simplifies
with (4.28) and previous argumentation to

∂2

∂β2τ
`(θ|Y)

=

D∑
i=1

 1

fYi(Yi)

∫
R

∂

∂βτ

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


fYi|Vi(Yi|vi)

)
fVi(vi)dvi

−
1

f2Yi(Yi)

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


fYi|Vi(Yi|vi)fVi(vi)dvi

∂

∂βτ
fYi(Yi)

)
.

The derivative in the first integral can be calculated using (4.19) by

∂

∂βτ

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi)


=
∂

∂βτ

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fYi|Vi(Yi|vi)
+

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 ∂

∂βτ
fYi|Vi(Yi|vi)

= 0 · fYi|Vi(Yi|vi)

+

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

T fYi|Vi(Yi|vi)
=

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

T fYi|Vi(Yi|vi).
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Inserting this in the first equation of the proof leads to

∂2

∂β2τ
`(θ|Y)

=

D∑
i=1

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

T fVi|Yi(vi)dvi
−

∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fVi|Yi(vi)dvi


∫
R

−
1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

 fVi|Yi(vi)dvi
T


=

D∑
i=1

E
−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij


−

1

σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

T ∣∣∣∣Yi


−E

− 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

∣∣∣∣Yi


ET

− 1
σ

ni∑
j=1

(1{Yij6xTijβτ+vi} − τ)xij

∣∣∣∣Yi
 .

I can rewrite the second derivative in vector notation as follows

−
1

σ2

(
E
[(

XT
(
1{Y6Xβτ+ZV} − τ1n

)) (
XT
(
1{Y6Xβτ+ZV} − τ1n

))T
|Y
]

−E
[
XT
(
1{Y6Xβτ+ZV} − τ1n

)
|Y
]

ET
[
XT
(
1{Y6Xβτ+ZV} − τ1n

)
|Y
])

= −
1

σ2

(
E
[
XT
(
1{Y6Xβτ+ZV} − τ1n

) (
1{Y6Xβτ+ZV} − τ1n

)T X|Y
]

−E
[
XT
(
1{Y6Xβτ+ZV} − τ1n

)
|Y
]

E
[(

1{Y6Xβτ+ZV} − τ1n
)T X|Y

])
.

By applying model (4.25) it holds

−
1

σ2

(
E
[
XT
(
1{ε60} − τ1n

) (
1{ε60} − τ1n

)T X|Y
]

−E
[
XT
(
1{ε60} − τ1n

)
|Y
]
E
[(

1{ε60} − τ1n
)T X|Y

])
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= −
1

σ2

(
E
[
XT1{ε60}1

T
{ε60}X|Y

]
−E
[
XT1{ε60}|Y

]
E
[
1T{ε60}X|Y

])
= −

1

σ2
XT
(
E
[
1{ε60}1

T
{ε60}|Y

]
−E
[
1{ε60}|Y

]
E
[
1T{ε60}|Y

])
X

= −
1

σ2
XTCov

(
1{ε60}, 1{ε60}|Y

)
X,

where Cov
(
1{ε60}, 1{ε60}|Y

)
is the conditional n× n-dimensional co-

variance matrix of the p-dimensional random vector variable 1{ε60}.

4.2 the proof of the assumptions in the weiss’ theorem

After I have calculated all second derivatives of the log-likelihood
density, I am prepared for the proof of the two assumptions in the
Weiss’ Theorem – see Theorem 4.1. Since this procedure is quite com-
plex, I will first show Assumption 1 in Section 4.2.1 followed by the
proof of Assumption 2 in Section 4.2.2.

4.2.1 Proof of Assumption 1

For Assumption 1 as stated in (4.1) I need the limit in probability,
when n→∞ of

−
1

Kι1(n)Kι2(n)

∂2

∂θι1∂θι2
`(θ|Y)

at the point θ0, which represents the true but unknown parameter
vector. The sequences Kι(n) must be derived for each unknown pa-
rameter θι ∈ {σV ,σ,βτ}.
All second derivatives have the form of expectations, variances, and
covariances conditional on Y. These expressions are random variables
and can be seen as sums. By the Law of Large Numbers which can be
applied with assumption (B5) and an appropriate choice for Kι(n)
they converge to their expected value. Thus for an expression ξ(V , ε)

1

Kι1(n)Kι2(n)
E [ξ(V , ε)|Y]→ E[E [ξ(V , ε)|Y]] (4.31)

1

Kι1(n)Kι2(n)
Var (ξ(V , ε)|Y)→ E[Var (ξ(V , ε)|Y)] (4.32)

and
1

Kι1(n)Kι2(n)
Cov (ξ1(V , ε), ξ2(V , ε)|Y)→ E[Cov (ξ1(V , ε), ξ2(V , ε)|Y)].

(4.33)
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The expected value of a conditional expectation of an expression
ξ(V , ε) is its unconditional expectation

E[E [ξ(V , ε)|Y]] = E [ξ(V , ε)] ,

which can be seen in Satz 8.14 (iv) in Klenke [2013]. From Steyer
[2003] p. 189 I also know that the expectations of conditional vari-
ances and covariances of expressions ξ(V , ε) are the unconditional
variances and covariances of ξ(V , ε), where the variance and covari-
ance of the conditional expectations is subtracted, respectively,

E[Var (ξ(V , ε)|Y)] = Var (ξ(V , ε)) − Var(E [ξ(V , ε)|Y])

and

E[Cov (ξ1(V , ε), ξ2(V , ε)|Y)] = Cov (ξ1(V , ε), ξ2(V , ε))

−Cov (E [ξ1(V , ε)|Y] ,E [ξ2(V , ε)|Y]) .

The appropriate choice of the convergence rates Kι(n) will be dis-
cussed in the following Section 4.2.1.1. With the application of the
Law of Large Numbers I get the limit of all second derivatives given as
expected values, variances, and covariances, which will be calculated
in Section 4.2.1.2.

4.2.1.1 The Convergence Rates K(n)

The convergence rates will be defined for each parameter θι sepa-
rately. They determine the speed of convergence of the corresponding
parameter estimation. Their choice will detect the part of the sample
size, D or n, which improves the estimation of the particular param-
eter. Thus the number of areas D will determine the accuracy of esti-
mation of σV

K1(n) = KσV =
√
D.

As an additional assumption, D must grow of same order as n such
that the Law of Large Numbers is applicable:

KσV =
√
D = O(n) (4.34)

as n → ∞ which is already assumed in (B1). This means that the
number of samples within the areas does not increase faster than the
number of areas D. For example, an increase of the sample size by
keeping the number of areas stable is not covered by this asymptotics.
Nevertheless the overall sample size n determines the convergence
rates of σ and βτ

Kι(n) =
√
n ∀ι = 2, 3.

By increase of D the overall sample size n as defines in (3.2) already
rises, whenever the within area sample sizes ni remain the same and
are not zero in the new areas. By terms of accuracy of the estimation
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of σ and βτ, n increases even faster, whenever the within area sam-
ple sizes ni increase, while respecting the assumption stated in (4.34)
before.
Pinheiro [1994] showed the same convergence rates in the mean esti-
mation in the linear mixed model.

4.2.1.2 The Limit and Inverse Asymptotic Covariance Matrix B(θ0)

The limit in Assumption 1 (4.1) will determine the entries of the in-
verse of the asymptotic covariance matrix. It is compounded by all
limits of the second derivatives I have calculated in cases 1 to 6.

Lemma 4.15. The inverse of the asymptotic covariance matrix is given by

B(θ0) :=

B1,1(θ
0) B1,2(θ

0) B1,3(θ
0)

B2,1(θ
0) B2,2(θ

0) B2,3(θ
0)

B3,1(θ
0) B3,2(θ

0) B3,3(θ
0)

 ,

where

B1,1(θ
0) = BσV ,σV (θ

0)

:= −
1

σ0V
2
+

1

σ0V
6
E
[
E2
[
V21 |Y

]] ∣∣∣∣
θ0

B1,2(θ
0) = B2,1(θ

0) = BσV ,σ(θ
0) = Bσ,σV (θ

0) := 0

BT1,3(θ
0) = B3,1(θ

0) = BTσV ,βτ(θ
0) = Bβτ,σV (θ

0) := 0p

B2,2(θ
0) = Bσ,σ(θ

0)

:= −
3

σ0
2
−

2τ

σ0
2
(1− τ)2

+
1

σ0
2
E
[
E2
[
1{ε1,160}ε1,1|Y

]] ∣∣∣∣
θ0

BT2,3(θ
0) = B3,2(θ

0) = BTσ,βτ(θ
0) = Bβτ,σ(θ

0)

:=
1

σ0
3

(
−τσ− E

[
E
[
(1{ε1,160} − τ)ε1,1|Y

]
E
[
1{ε1,160}|Y

]] ∣∣∣∣
θ0

)
c0

B3,3(θ
0) = Bβτ,βτ(θ

0)

:= −
1

σ0
2

(
τ− E

[
E2
[
1{ε1,160}|Y

]] ∣∣∣∣
θ0

)
C1

where c0 is a p-dimensional vector and C1 is a p× p dimensional matrix
(cf. Assumptions (B3) and (B4)).

Proof. In this proof I show the convergence in Assumption 1 with
the application of the Law of Large Numbers which can be applied
with assumption (B5) in each of the six cases. There I will use the
preliminaries stated in the beginning of this Section 4.2.1.



106 the consistency proof of the parameter estimation

Case 1: By application of the Law of Large Numbers for D → ∞ I get
for KσV (n) =

√
D = O(n)

1

D
E
[
VTV |Y

]
=
1

D

D∑
i=1

E
[
V2i |Y

]
→ E

[
E
[
V21 |Y

]]
= E

[
V21
] (?)
= σ2V

where V1 stands for a representative of the random effect Vi and
follows its distribution and

1

D
Var

(
VTV |Y

)
=
1

D

D∑
i=1

Var
(
V2i |Y

)
→ E

[
Var

(
V21 |Y

)]
= Var

(
V21
)
− Var

(
E
[
V21 |Y

])
= E

[
V41
]
− E2

[
V21
]
− E

[
E2
[
V21 |Y

]]
+ E2

[
E
[
V21 |Y

]]
= E

[
V41
]
− E2

[
V21
]
− E

[
E2
[
V21 |Y

]]
+ E2

[
V21
]

(?)
= 3σ4V − E

[
E2
[
V21 |Y

]]
,

where (?) follows from V1 ∼ N(0,σ2V). By Lemma 4.9 this leads to

BσV ,σV (θ) = −P- lim
D→∞ 1

D

(
D

σ2V
−
3

σ4V
E
[
VTV |Y

]
+
1

σ6V
Var

(
VTV |Y

))
= −

1

σ2V
+
3

σ4V
σ2V −

1

σ6V

(
3σ4V − E

[
E2
[
V21 |Y

]])
=

−1+ 3− 3

σ2V
+
1

σ6V
E
[
E2
[
V21 |Y

]]
= −

1

σ2V
+
1

σ6V
E
[
E2
[
V21 |Y

]]
.

Case 2: By application of the Law of Large Numbers for D → ∞ and
n→∞ I get for KσV (n) =

√
D and Kσ(n) =

√
n

1√
D
√
n
Cov

((
1{ε60} − τ1n

)T
ε,VTV |Y

)
=

1√
D
√
n

D∑
i=1

ni∑
j=1

Cov
((

1{εij60} − τ
)
εij,V2i |Y

)
→ E

[
Cov

((
1{ε1,160} − τ

)
ε1,1,V21 |Y

)]
= Cov

((
1{ε1,160} − τ

)
ε1,1,V21

)
−Cov

(
E
[(

1{ε1,160} − τ
)
ε1,1|Y

]
,E
[
V21 |Y

])
(?)
= 0,
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where (?) holds because of the independence of E[ε1,1|Y] and E[V1|Y]
assumed in (B6). By Lemma 4.10 this leads to

BσV ,σ(θ) = Bσ,σV (θ)

= − P- lim
n,D→∞ 1√

D
√
n

(
1

σ2σ3V
Cov

((
1{ε60} − τ1n

)T
ε,VTV |Y

))
= 0.

Case 3: By application of the Law of Large Numbers for D → ∞ and
n→∞ and (B3) I get for KσV (n) =

√
D and Kβτ(n) =

√
n

1√
D
√
n
Cov

(
VTV , 1T{ε60}|Y

)
X

=
1√
D
√
n

D∑
i=1

ni∑
j=1

Cov
(
V2i , 1{εij60} − τ|Y

)
xij

→
(
Cov

(
V21 , 1{ε1,160}

)
−Cov

(
E
[
V21 |Y

]
,E
[
1{ε1,160}|Y

]))
c0

(?)
= 0p,

where c0 is a p-dimensional vector which is of form E [X1,1] in which
X1,1 is a representative of the covariate x (cf. assumption (B3)). 0p is a
p-dimensional vector of zeros and (?) holds because of the indepen-
dence of E[ε1,1|Y] and E[V1|Y] stated in (B6). By Lemma 4.11 this leads
to

BTσV ,βτ(θ) = Bβτ,σV (θ)

= −P- lim
n→∞ 1√

D
√
n

(
−

1

σσ3V
Cov

(
VTV , 1T{ε60}|Y

)
X
)

= 0p.

Case 4: By application of the Law of Large Numbers for n → ∞ I get
for Kσ(n) =

√
n

1

n
E
[
1T{ε60}ε|Y

]
=
1

n

D∑
i=1

ni∑
j=1

E
[
1{εij60}εij|Y

]
→ E

[
E
[
1{ε1,160}ε1,1|Y

]]
= E

[
1{ε1,160}ε1,1

]
(?)
= −

τσ

1− τ
,

1

n
1TnE [ε|Y] =

1

n

D∑
i=1

ni∑
j=1

E
[
εij|Y

]
→ E [E [ε1,1|Y]] = E [ε1,1]

(?)
=
σ(1− 2τ)

τ(1− τ)
,

and

1

n
Var

(
1T{ε60}ε|Y

)
=
1

n

D∑
i=1

ni∑
j=1

Var
(

1{εij60}εij|Y
)
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→ E
[
Var

(
1{ε1,160}ε1,1|Y

)]
= Var

(
1{ε1,160}ε1,1

)
− Var

(
E
[
1{ε1,160}ε1,1|Y

])
= E

[
1{ε1,160}ε

2
1,1

]
− E2

[
1{ε1,160}ε1,1

]
− E

[
E2
[
1{ε1,160}ε1,1|Y

]]
− E2

[
E
[
1{ε1,160}ε1,1|Y

]]
= E

[
1{ε1,160}ε

2
1,1

]
− E2

[
1{ε1,160}ε1,1

]
− E

[
E2
[
1{ε1,160}ε1,1|Y

]]
− E2

[
1{ε1,160}ε1,1

]
(?)
=

2τσ2

(1− τ)2
− E

[
E2
[
1{ε1,160}ε1,1|Y

]]
,

where (?) follows from ε1,1 ∼ ALD(0,σ, τ) – see Corollary 2.2 in Sec-
tion 2.4.1 for details. By Lemma 4.12 this leads to

Bσ,σ(θ) = −P- lim
n→∞ 1

n

(
n

σ2
−
2

σ3

(
E
[
1T{ε60}ε|Y

]
− τ1TnE [ε|Y]

)
+
1

σ4
Var

(
1{ε60}ε|Y

))
= −

1

σ2
+
2

σ3

(
−
τσ

1− τ
− τ

σ(1− 2τ)

τ(1− τ)

)
−
1

σ4

(
2τσ2

(1− τ)2
− E

[
E2
[
1{ε1,160}ε1,1|Y

]])
= −

1

σ2
−
2

σ2
1− 2τ+ τ

1− τ

−
2τ

σ2(1− τ)2
+
1

σ4
E
[
E2
[
1{ε1,160}ε1,1|Y

]]
= −

3

σ2
−

2τ

σ2(1− τ)2
+
1

σ4
E
[
E2
[
1{ε1,160}ε1,1|Y

]]
.

Case 5: By application of the Law of Large Numbers for n → ∞ and
(B3) I get for Kσ(n) = Kβτ(n) =

√
n

1

n
E
[
1T{ε60}|Y

]
X =

1

n

D∑
i=1

ni∑
j=1

E
[
1{εij60}|Y

]
xij

→ E
[
E
[
1{ε1,160}|Y

]]
E [X1,1] = E

[
1{ε1,160}

]
c0

= P (ε1,1 6 0) c0
(?)
= τc0

and
1

n
Cov

((
1{ε60} − τ1n

)T
ε, 1T{ε60}|Y

)
X

=
1

n

D∑
i=1

ni∑
j=1

Cov
((

1{εij60} − τ
)
εij, 1{εij60}|Y

)
xij

→ E
[
Cov

((
1{ε1,160} − τ

)
ε1,1, 1{ε1,160}|Y

)]
c0
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=
(
Cov

((
1{ε1,160} − τ

)
ε1,1, 1{ε1,160}

)
−Cov

(
E
[(

1{ε1,160} − τ
)
ε1,1|Y

]
,E
[
1{ε1,160}|Y

]))
c0

=
(
E
[(

1{ε1,160} − τ
)
ε1,11{ε1,160}

]
−E
[(

1{ε1,160} − τ
)
ε1,1

]
E
[
1{ε1,160}

]
−E
[
E
[(

1{ε1,160} − τ
)
ε1,1|Y

]
E
[
1{ε1,160}|Y

]]
+E
[
E
[(

1{ε1,160} − τ
)
ε1,1|Y

]]
E
[
E
[
1{ε1,160}|Y

]])
c0

=
(
(1− τ)E

[
1{ε1,160}ε1,1

]
−E
[
E
[(

1{ε1,160} − τ
)
ε1,1|Y

]
E
[
1{ε1,160}|Y

]])
c0

(?)
=
(
−τσ− E

[
E
[(

1{ε1,160} − τ
)
ε1,1|Y

]
E
[
1{ε1,160}|Y

]])
c0,

where c0 is defined as above in case 3 and (?) follows from ε1,1 ∼

ALD(0,σ, τ) – see Corollary 2.2 in Section 2.4.1 for details. By Lemma
4.13 this leads to

BTσ,βτ(θ) = Bβτ,σ(θ)

= −P- lim
n→∞ 1

n

(
−
1

σ2

(
E
[
1T{ε60}|Y

]
− τ1Tn

)
X

−
1

σ3
Cov

((
1{ε60} − τ1n

)T
ε, 1T{ε60}|Y

)
X
)

=
1

σ2
(τc0 − τc0)

+
1

σ3

(
−τσ− E

[
E
[
(1{ε1,160} − τ)ε1,1|Y

]
E
[
1{ε1,160}|Y

]])
c0

=
1

σ3

(
−τσ− E

[
E
[
(1{ε1,160} − τ)ε1,1|Y

]
E
[
1{ε1,160}|Y

]])
c0.

Case 6: By application of the Law of Large Numbers for n → ∞ and
(B4) I get for Kβτ(n) =

√
n

1

n
XTCov

(
1{ε60}, 1{ε60}|Y

)
X

=
1

n

D∑
i=1

ni∑
j=1

xijCov
(

1{εij60}, 1{εij60}|Y
)
xTij

→ E
[
Cov

(
1{ε1,160}, 1{ε1,160}|Y

)]
C1

= E
[
Var

(
1{ε1,160}|Y

)]
C1

=
(
Var

(
1{ε1,160}

)
− Var

(
E
[
1{ε1,160}|Y

]))
C1

=
(
E
[
12{ε1,160}

]
− E2

[
1{ε1,160}

]
− E

[
E2
[
1{ε1,160}|Y

]]
+E2

[
E
[
1{ε1,160}|Y

]])
C1
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=
(
E
[
1{ε1,160}

]
− E

[
E2
[
1{ε1,160}|Y

]])
C1

(?)
=
(
τ− E

[
E2
[
1{ε1,160}|Y

]])
C1,

where C1 is a p×p-dimensional matrix which is of form E
[
X1,1X

T
1,1

]
in which X1,1 is a representative of the covariate x (cf. assumption
(B4)) and (?) follows from ε1,1 ∼ ALD(0,σ, τ) – see Corollary 2.2 in
Section 2.4.1 for details. By Lemma 4.14 this leads to

Bβτ,βτ(θ)

= −P- lim
n→∞ 1

n

(
1

σ2
XTCov

(
1{ε60}, 1{ε60}|Y

)
XT
)

= −
1

σ2

(
τ− E

[
E2
[
1{ε1,160}|Y

]])
C1.

4.2.1.3 The Continuity of B(θ) in θ0

All entries of Bι1,ι2 as they are derived in Lemma 4.15 are combina-
tions of continuous functions and integrals. The latter come from the
expected values of the squared conditional expectations, which are
not continuous only at

{(σV ,σ,βτ)|ε1,1 = 0} .

Since this is a null set with respect to any continuous measure P, the
expected values are P-almost surely (P-a.s.) continuous transforma-
tions. Altogether Bι1,ι2(θ

0) is continuous for all (ι1, ι2) ∈ {1, 2, 3}×
{1, 2, 3} and thus the whole matrix, as a linear function of P-almost
surely continuous functions, is continuous.

4.2.1.4 The Positive Definiteness of B(θ0)

For the positive definiteness I will first state the definition (cf. Strang
[2016]) and later prove this property for B(θ0) as derived in Lemma
4.15.

Definition 4.16. A symmetric matrix C ∈ Rk×k is positive definite if and
only if

aTCa > 0 ∀a ∈ Rk,a 6= 0k. (4.35)

The matrix B(θ0) is symmetric and has similar properties to a covari-
ance matrix. Therefore I can state the following lemma.

Lemma 4.17. B(θ0) as defined in Lemma 4.15 is positive definite.
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Proof. All entries of B(θ0) have the form

Bι1,ι2(θ
0) = −E

[
ξθι1 (V , ε)ξθι2 (V , ε) + ξθι1 ,θι2

(V , ε)
]

+ E
[
E
[
ξθι1 (V , ε)|Y

]
E
[
ξθι2 (V , ε)|Y

]]
for all ι1, ι2 = 1, 2, 3, where ξθι1 , ξθι2 , and ξθι1 ,θι2

are P-a.s. continu-
ous functions. Note that ξθι1 ,θι2

is zero, whenever θι1 and θι2 are not
in the same subset ΘY or ΘV . Thus

B(θ0) = −E
[
ξθ(V , ε)ξTθ(V , ε) + ξθ,θ(V , ε)

] ∣∣∣∣
θ0

+ E
[
E [ξθ(V , ε)|Y]ET [ξθ(V , ε)|Y]

] ∣∣∣∣
θ0

,

where ξθ := (ξσV , ξσ, ξTβτ)
T and ξθ,θ is the diagonal matrix with the

entries ξθι1 ,θι2
. The expectation of a matrix is here defined component-

wise. By maximum likelihood theory the entry of the first expectation
comes from the second derivative of the density of Y and is therefore
in expectation equal to zero, which leads for an arbitrary and fixed
a ∈ Rk to

aTB(θ0)a = aTE
[
E [ξθ(V , ε)|Y]ET [ξθ(V , ε)|Y]

] ∣∣∣∣
θ0
a

= E
[
aTE [ξθ(V , ε)|Y]ET [ξθ(V , ε)|Y]a

] ∣∣∣∣
θ0

.

Note that

aTE [ξθ(V , ε)|Y] = ET [ξθ(V , ε)|Y]a,

which is a one-dimensional random variable and thus

aTEV1|Y1 [ξθ]E
T
V1|Y1

[ξθ]a > 0

as a squared real valued random variable. Then the expected value of
this positive random variable is positive.

aTB(θ0)a = E
[
aTE [ξθ(V , ε)|Y]ET [ξθ(V , ε)|Y]a

] ∣∣∣∣
θ0

> 0,

which proves the positive semi-definiteness. Furthermore the matrix
E [ξθ(V , ε)|Y] has linearly independent rows (see Lemma 4.15). There-
fore it holds for all a 6= 0k

aTEV1|Y1 [ξθ]E
T
V1|Y1

[ξθ]a 6= 0.
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Altogether it follows

aTB(θ0)a = E
[
aTE [ξθ(V , ε)|Y]ET [ξθ(V , ε)|Y]a

] ∣∣∣∣
θ0
| > 0,

which proves the positive definiteness.

4.2.2 Proof of Assumption 2

In Section 4.2.1 I have shown that the second derivatives converge
in all six cases to continuous functions. Their limits build a positive
definite matrix B(θ), whose inverse turns out to be the asymptotic
covariance matrix of diag(K(n))(θ̂(n) − θ0). Assumption 2 also deals
with this convergence but in terms of convergence speed. Thus it
turns out that for the environment Nn(θ0) around the true param-
eter θ0 – as defined in (4.3) – the convergence will be faster than a
given rate M(n). The proof depends on the choice of M(n) and is
for that reason a matter of construction. In order to keep this part
clearly arranged it will be executed for each of the six different sec-
ond derivatives separately keeping their case numbers as they have
been introduced before.

4.2.2.1 The Sequence M(n)

As mentioned before, the choice of the sequence M(n) is a matter of
construction. There are two main features of the sequence stated as
assumptions in Theorem 4.1

Mι(n)→∞ and
Mι(n)

Kι(n)
→ 0 as n→∞. (4.36)

Now let me define, similar to the approach in Pinheiro [1994],

κ(n) := max
ι1,ι2

∣∣∣∣− 1

Kι1(n)Kι2(n)
EY|θ0

[
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ0

]
−Bι1,ι2(θ

0)

∣∣∣∣ .
(4.37)

Then for all ι = 1, 2, 3 define

Mι(n) := min
{
K
1
4
σV (n),K

1
4
σ(n),K

1
4

βτ
(n), κ−

1
4 (n)

}
. (4.38)
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Thus the ι may be dropped. For reasons of convenience I will also
drop the n in Kι, Mι, and κ. Both assumptions on M as restated in
(4.36) are fulfilled by this definition: M is positive and it holds

M > K
1
4
σV = D

1
8 →∞ and

M

Kι
6
K
1
4
ι

Kι
= K

− 3
4

ι → 0, ι = 1, 2, 3

by assumption (4.34) as n→∞.

4.2.2.2 Approach of Proofing the Convergence

Already Miller [1977] and Pinheiro [1994] used the fact that in order
to show Assumption 2 it is sufficient to show

M2 sup
θ1∈Nn(θ0)

∣∣∣∣− 1

Kι1Kι2

∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ1

−Bι1,ι2(θ
0)

∣∣∣∣ PY|θ2→ 0

∀θ2 ∈ Nn(θ0), ι1, ι2 ∈ {1, 2, . . . ,k} .

Following a similar approach as in Pinheiro [1994] (cf. (3.1.4)) the
difference may be extended by adding zeros as follows

sup
θ1∈Nn(θ0)

(
−

1

Kι1Kι2

∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ1

−Bι1,ι2(θ
0)

)
= sup
θ1∈Nn(θ0)

(
−

1

Kι1Kι2

(
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ1

−
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ2

))
︸ ︷︷ ︸

=:φ1

−
1

Kι1Kι2

(
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ2

− Eθ2

[
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ2

])
︸ ︷︷ ︸

=:φ2

−
1

Kι1Kι2

(
Eθ2

[
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ2

]
− Eθ2

[
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ0

])
︸ ︷︷ ︸

=:φ3

−
1

Kι1Kι2

(
Eθ2

[
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ0

]
− Eθ0

[
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ0

])
︸ ︷︷ ︸

=:φ4

−
1

Kι1Kι2
Eθ0

[
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ0

]
−Bι1,ι2(θ

0)︸ ︷︷ ︸
=:φ5

,

where θ1, θ2 ∈ Nn(θ0). At the same time the preserved sums are
split into smaller parts labelled by φ1, φ2, . . . , φ5. Eθ denotes the
expectation under the measure PY|θ conditional on the parameter θ.
In the following I am going to show the convergence in probability
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of the defined φ’s to zero for each of the six cases. Most of them have
expressions like

1

Kι1Kι2
Eθ

[
∂2

∂θι1∂θι2
`(θ|Y)

∣∣∣∣
θ?

]
, (4.39)

where θ, θ? ∈ Nn(θ0). The expectation in (4.39) is for each case de-
rived in the beginning of the corresponding Section. As a remark I
have to state that θ0 = (σ0V ,σ0,β0τ

T
)T . Furthermore θ1 and θ2 are

defined in a similar fashion. This may create confusion, especially,
when I write σ2V for example. In the rest of this Section all parameter
always have an index. Thus σ2V is the second parameter from θ2. The
squared of σ2V is denoted by σ2V

2.
In the following the convergence is often shown in two steps. In the
first step θ1 and θ2 are fixed while the expectations (4.39) converge
with n → ∞. In the second step it is used that the set Nn(θ0) is
shrinking (at the same time).
The Law of Large Numbers is always applied employing assumption
(B5). As discussed before this is a commonly used regularity condi-
tion in quantile regression.

4.2.2.3 Case 1

The expectation (4.39) can be expressed by

1

D
Eθ

[
∂2

∂σ2V
`(θ|Y)

∣∣∣∣
θ?

]
=
1

D
Eθ

[
D

σ?V
2
−

3

σ?V
4
Eθ?

[
VTV |Y

]
+

1

σ?V
6
Varθ?

(
VTV |Y

)]
.

The variance may be split as follows

1

D
Eθ
[
Varθ?

(
VTV |Y

)]
=
1

D

(
Eθ
[
Eθ?

[
VTVVTV |Y

]]
− Eθ

[
E2θ?

[
VTV |Y

]])
,

which leads to

1

D
Eθ

[
∂2

∂σ2V
`(θ|Y)

∣∣∣∣
θ?

]
=

1

σ?V
2
−

3

Dσ?V
4
Eθ
[
Eθ?

[
VTV |Y

]]
+

1

Dσ?V
6

(
Eθ
[
Eθ?

[
VTVVTV |Y

]]
− Eθ

[
E2θ?

[
VTV |Y

]])
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=
1

σ?V
2
−

3

Dσ?V
4

D∑
i=1

Eθ
[
Eθ?

[
V2i |Y

]]
+

1

Dσ?V
6

(
D∑
i=1

Eθ
[
Eθ?

[
V4i |Y

]]
−

D∑
i=1

Eθ
[
E2θ?

[
V2i |Y

]])
. (4.40)

Whenever θ = θ? this expression simplifies with Vi
iid
∼ N(0,σ?V

2) and
Eθ? [Eθ? [·|Y]] = Eθ? [·] to

1

D
Eθ?

[
∂2

∂σ2V
`(θ|Y)

∣∣∣∣
θ?

]

=
1

σ?V
2
−

3

Dσ?V
4

D∑
i=1

Eθ?
[
V2i
]

+
1

Dσ?V
6

D∑
i=1

Eθ?
[
V4i
]
−

1

Dσ?V
6

D∑
i=1

Eθ?
[
E2θ?

[
V2i |Y

]]
=

1

σ?V
2
−

3

σ?V
4
σ?V
2 +

3

σ?V
6
σ?V
4 −

1

Dσ?V
6

D∑
i=1

Eθ?
[
E2θ?

[
V2i |Y

]]
=

1

σ?V
2
−

1

Dσ?V
6

D∑
i=1

Eθ?
[
E2θ?

[
V2i |Y

]]
. (4.41)

4.2.2.3.1 Case 1: Convergence of φ1

For φ1 in case 1 I have by application of Lemma 4.9 the expression

M2φ1 =M
2 sup
θ1∈Nn(θ0)

(
−
1

D

(
D

σ1V
2
−

3

σ1V
4
Eθ1

[
VTV |Y

]
+

1

σ1V
6
Varθ1

(
VTV |Y

)
−

D

σ2V
2

+
3

σ2V
4
Eθ2

[
VTV |Y

]
−

1

σ2V
6
Varθ2

(
VTV |Y

)))

=M2 sup
θ1∈Nn(θ0)

(
−

(
1

σ1V
2
−

1

σ2V
2

)

−
1

D

D∑
i=1

(
3Eθ1

[
V2i |Y

]
σ1V
4

−
3Eθ2

[
V2i |Y

]
σ2V
4

)

+
1

D

D∑
i=1

(
Eθ1

[
V4i |Y

]
σ1V
6

−
Eθ2

[
V4i |Y

]
σ2V
6

)

−
1

D

D∑
i=1

(
E2
θ1

[
V2i |Y

]
σ1V
6

−
E2
θ2

[
V2i |Y

]
σ2V
6

))
,
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where each summand converges to zero as n → ∞ as shown in the
following: By applying the binomial formula I have for the first sum-
mand the inequality

1

σ1V
2
−

1

σ2V
2
=
σ2V
2
− σ1V

2

σ1V
2
σ2V
2

=

(
σ2V − σ1V

) (
σ2V + σ1V

)
σ1V
2
σ2V
2

.

I know that σ1V ,σ2V ∈ N1,n(θ
0), where N1,n is the projection on first

dimension of the (p+ 2)-dimensional set Nn and in this set holds

∣∣σ1V − σ0V
∣∣ 6 M

K1
and

∣∣σ2V − σ0V
∣∣ 6 M

K1
.

Especially the first statement holds for all σ1V ∈ N1,n(θ
0) and there-

fore also for the supremum

sup
σ1V∈N1,n(θ0)

∣∣σ1V − σ0V
∣∣ 6 M

K1
.

It follows by the triangle inequality that

sup
σ1V∈N1,n(θ0)

∣∣σ2V − σ1V
∣∣ 6 ∣∣σ2V − σ0V

∣∣+ sup
σ1V∈N1,n(θ0)

∣∣σ1V − σ0V
∣∣ 6 2M1

K1
.

(4.42)
By the Law of Large Numbers 1

D

∑D
i=1 Eθ1

[
V2i |Y

]
and

1
D

∑D
i=1 Eθ2

[
V2i |Y

]
converge as n→∞ and thusD→∞ to Eθ2

[
V21
]
=

σ2V
2 and Eθ1

[
V21
]
= σ1V

2, respectively. Hence the second summand
converges to

1

D

(
3Eθ1

[
VTV |Y

]
σ1V
4

−
3Eθ2

[
VTV |Y

]
σ2V
4

)

→
3σ1V

2

σ1V
4

−
3σ2V

2

σ2V
4

= 3

(
1

σ1V
2
−

1

σ2V
2

)
.

As mentioned before, note that for the convergence σ1V and σ2V are
fixed. Since σ1V ,σ2V ∈ Nn(θ0) it holds for the limit that it is by (4.42)
bounded from above by M

K1
times a constant. In the third summand I

can apply the Law of Large Numbers, again. It holds that
1
D

∑D
i=1 Eθ1

[
V4i |Y

]
and 1

D

∑D
i=1 Eθ2

[
V4i |Y

]
) converge as n → ∞ to

Eθ1
[
V4i
]
= 3σ1V

4 and Eθ2
[
V4i
]
= 3σ2V

4, respectively. Thus

1

D

(
Eθ1

[
V4i |Y

]
σ1V
6

−
Eθ2

[
V4i |Y

]
σ2V
6

)
→
3σ1V

4

σ1V
6

−
3σ2V

4

σ2V
6

= 3

(
1

σ1V
2
−

1

σ2V
2

)
,

which is by (4.42) bounded from above by M
K1

times a constant. By the
definition of Nn(θ0) the random variables E2

θ1

[
V2i |Y

]
and E2

θ2

[
V2i |Y

]
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converge as n→∞ to E2
θ0

[
V2i |Y

]
. At the same time by the Law of Large

Numbers I know that the averaged sum of each independently and
identically distributed random variables converges to its expectation
and thus for the random variables E2

θ1

[
V2i |Y

]
and E2

θ2

[
V2i |Y

]
I get

1

D

D∑
i=1

E2θ1
[
V2i |Y

]
→ Eθ0

[
E2θ0

[
V21 |Y

]]
and

1

D

D∑
i=1

E2θ2
[
V2i |Y

]
→ Eθ0

[
E2θ0

[
V21 |Y

]]
.

Hence I have for the fourth summand

1

D

D∑
i=1

(
E2
θ1

[
V2i |Y

]
σ1V
6

−
E2
θ2

[
V2i |Y

]
σ2V
6

)

→

(
1

σ1V
6
−

1

σ2V
6

)
Eθ0

[
E2θ0

[
V21 |Y

]]
,

which is by applying the generalised binomial formula and (4.42)
bounded from above by M

K1
times a constant. Altogether I have

M2 |φ1| 6
M3

K1
C,

where C is a constant. By definition of M in (4.38) it holds that

M3 6 K
3
4

1 ,

which implies

M2 |φ1| 6
M3

K1
C 6

K
3
4

1

K1
C = K

− 1
4

1 C.

By assumption on K1 it holds that K− 1
4

1 → 0 as n→∞ and hence

M2φ1 → 0 as n→∞.
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4.2.2.3.2 Case 1: Convergence of φ2

For φ2 in case 1 I get by (4.41) and application of Lemma 4.9 the
expression

M2φ2 =
M2

D

(
D

σ2V
2
−

3

σ2V
4
Eθ2

[
VTV |Y

]
+

1

σ2V
6
Varθ2

(
VTV |Y

)
−Eθ2

[
D

σ2V
2
−

3

σ2V
4
Eθ2

[
VTV |Y

]
+

1

σ2V
6
Varθ2

(
VTV |Y

)])

=
M2

σ2V
2
−
3M2

Dσ2V
4

D∑
i=1

Eθ2
[
V2i |Y

]
+

M2

Dσ2V
6

D∑
i=1

E2θ2
[
V41 |Y

]
−

M2

Dσ2V
6

D∑
i=1

E2θ2
[
V2i |Y

]
−
M2

σ2V
2
+

M2

Dσ2V
6

D∑
i=1

Eθ2
[
E2θ2

[
V2i |Y

]]
= −

M2

Dσ2V
6

D∑
i=1

(
3σ2V

2
Eθ2

[
V2i |Y

]
− Eθ2

[
V4i |Y

])
−

M2

Dσ2V
6

D∑
i=1

(
E2θ2

[
V2i |Y

]
− Eθ2

[
E2θ2

[
V2i |Y

]])
.

By the Law of Large Numbers 1
D

∑D
i=1 Eθ2

[
V2i |Y

]
and

1
D

∑D
i=1 Eθ2

[
V4i |Y

]
converge with rateD as n→∞ to Eθ2

[
V21
]
= σ2V

2

and Eθ2
[
V41
]
= 3σ2V

4, respectively. Thus it holds for the first sum-
mand of M2φ2 that

M2

σ2V
6

D∑
i=1

(
3σ2V

2
Eθ2

[
V2i |Y

]
− Eθ2

[
V4i |Y

])
∈M2o (D) ,

where M2 6 K
1
2

1 = D
1
2 by definition of M – see (4.38). Hence

M2

σ2V
6

D∑
i=1

(
3σ2V

2
Eθ2

[
V2i |Y

]
− Eθ2

[
V4i |Y

])
∈ o

(
D
1
2

)
.

For this reason the first summand is 1
Do
(
D
1
2

)
= o(D− 1

2 ) and thus
converges to zero. Since all Vi are independently and identically dis-
tributed, so is the projection of their transformations on the measure
space of Y, which for their expectations leads to

1

D

D∑
i=1

Eθ2
[
E2θ2

[
V2i |Y

]]
= Eθ2

[
E2θ2

[
V21 |Y

]]
.
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By the Law of Large Numbers I know that the averaged sum of each
independently and identically distributed random variable converges
to its expectation and thus for the random variables E2

θ2

[
V2i |Y

]
I get

1

D

D∑
i=1

E2θ2
[
V2i |Y

]
→ Eθ2

[
E2θ2

[
V21 |Y

]]
with rate D, which is why I have for the second summand

M2

σ2V
6

(
D∑
i=1

E2θ2
[
V2i |Y

]
− Eθ2

[
E2θ2

[
V21 |Y

]])
∈M2o (D) = o

(
D
1
2

)
.

Thus the second summand is 1
Do
(
D
1
2

)
= o(D− 1

2 ) and thus also con-
verges to zero as n → ∞ (and thus D → ∞), which leads altogether
to

M2φ2 → 0 as n→∞.

4.2.2.3.3 Case 1: Convergence of φ3

For φ3 in case 1 I get by (4.40) and (4.41) the expression

M2φ3 =
M2

D

(
Eθ2

[
D

σ2V
2
−

3

σ2V
4
Eθ2

[
VTV |Y

]
+

1

σ2V
6
Varθ2

(
VTV |Y

)]

−Eθ2

[
D

σ0V
2
−

3

σ0V
4
Eθ0

[
VTV |Y

]
+

1

σ0V
6
Varθ0

(
VTV |Y

)])

=
M2

σ2V
2
−

M2

Dσ2V
6

D∑
i=1

Eθ2
[
E2θ2

[
Vi1

2|Y
]]

−
M2

σ0V
2

+
3M2

Dσ0V
4

D∑
i=1

Eθ2
[
Eθ0

[
V2i |Y

]]
−

M2

Dσ0V
6

D∑
i=1

Eθ2
[
Eθ0

[
V4i |Y

]]
+

M2

Dσ0V
6

D∑
i=1

Eθ2
[
E2θ0

[
V2i |Y

]]
=M2

(
1

σ2V
2
−

1

σ0V
2

)

−
M2

D

D∑
i=1

(
1

σ2V
6
Eθ2

[
E2θ2

[
V2i |Y

]]
−

1

σ0V
6
Eθ2

[
E2θ0

[
V2i |Y

]])

+
M2

Dσ0V
6

D∑
i=1

(
3σ0V

2
Eθ2

[
Eθ0

[
V2i |Y

]]
− Eθ2

[
Eθ0

[
V4i |Y

]])
.

As shown in Section 4.2.2.3.1 the first summand converges to zero as
n → ∞. By the definition of Nn(θ0) the random variable E2

θ2

[
V2i |Y

]
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converges as n → ∞ to E2
θ0

[
V2i |Y

]
. For this reason and Vi being iid

the second summand of φ3 converges by the Law of Large Numbers to

1

D

D∑
i=1

(
1

σ2V
6
Eθ2

[
E2θ2

[
V2i |Y

]]
−

1

σ0V
6
Eθ2

[
E2θ0

[
V2i |Y

]])

→

(
1

σ2V
6
−

1

σ0V
6

)
Eθ2

[
E2θ0

[
V21 |Y

]]
,

which is by applying the generalised binomial formula and (4.42)
bounded from above by M

K1
times a constant. Therefore

M2

D

D∑
i=1

(
1

σ2V
6
Eθ2

[
E2θ2

[
V2i |Y

]]
−

1

σ0V
6
Eθ2

[
E2θ0

[
V2i |Y

]])

is bounded from above by M3

K1
C 6 K− 1

4C, where C is a constant and
which converges to zero as n → ∞. By the Law of Large Numbers
1
D

∑D
i=1 Eθ0

[
V2i |Y

]
and 1

n

∑D
i=1 Eθ0

[
V4i |Y

]
converge with rate D as

n → ∞ to Eθ0
[
V21
]
= σ0V

2 and Eθ0
[
V41
]
= 3σ0V

4, respectively. This
leads for the expectations in the third summand to

Eθ2
[
Eθ0

[
V2i |Y

]]
→ Eθ2

[
σ0V
2
]
= σ0V

2

and

Eθ2
[
Eθ0

[
V4i |Y

]]
→ Eθ2

[
3σ0V

4
]
= 3σ0V

4
.

Hence for the third summand I have by

M2

σ0V
6

D∑
i=1

(
3σ0V

2
Eθ2

[
Eθ0

[
V2i |Y

]]
− Eθ2

[
Eθ0

[
V4i |Y

]])
∈M2o(D) = o

(
D
1
2

)
,

Thus this summand is 1
Do
(
D
1
2

)
= o(D− 1

2 ) and thus it converges to
zero as n→∞. As a result I have

M2φ3 → 0 as n→∞.

4.2.2.3.4 Case 1: Convergence of φ4

For φ4 I can use the same argumentations as for φ3 because θ2 and
θ0 are both in the set Nn(θ0) and I can finally conclude

M2φ4 → 0 as n→∞.
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4.2.2.3.5 Case 1: Convergence of φ5

For φ5 I have in all cases

|φ5| 6 κ

with κ as defined in (4.37) and hence with the definition of M – see
(4.38) –

M2 |φ5| 6M
2κ 6 κ−

1
2κ = κ

1
2 → 0

by Assumption 1, which I proved in Section 4.2.1.

4.2.2.4 Case 2

Employing Lemma 4.10 the expectation (4.39) in this case can be ex-
pressed by

1√
D
√
n
Eθ

[
∂2

∂σV∂σ
`(θ|Y)

∣∣∣∣
θ?

]
=

1√
D
√
nσ?2σ?V

3
Eθ

[
Covθ?

((
1{ε60} − τ1n

)T
ε,VTV |Y

)]
. (4.43)

Whenever θ = θ? this expression simplifies with condition (B6) and
thus E [Vi|Y] and E

[
εij|Y

]
pairwise independent from each other. I

have

1√
D
√
n
Eθ?

[
∂2

∂σV∂σ
`(θ|Y)

∣∣∣∣
θ?

]

=
1√

D
√
nσ?2σ?V

3

D∑
i=1

ni∑
j=1

(
Eθ?

[(
1{εij60} − τ

)
εijV

2
i

]
−Eθ?

[
Eθ?

[(
1{εij60} − τ

)
εij|Y

]
Eθ?

[
V2i |Y

]])
= 0. (4.44)

4.2.2.4.1 Case 2: Convergence of φ1

For φ1 in case 2 I have the expression

M2φ1

=
M2

√
D
√
n

sup
θ1∈Nn(θ0)

(
1

σ1
2
σ1V
3
Covθ1

((
1{ε60} − τ1n

)T
ε,VTV |Y

)
−

1

σ2
2
σ2V
3
Covθ2

((
1{ε60} − τ1n

)T
ε,VTV |Y

))
,
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where, as n→∞, both covariances converge to zero with rate
√
D
√
n

with the same argumentation as in the proof of Lemma 4.15 of Case
2. Altogether I have

M2φ1 ∈
M2

√
D
√
n
o
(√
D
√
n
)

,

where M2 6 D− 1
4n− 1

4 by (4.38) and thus

M2φ1 ∈ o
(
D− 1

4n− 1
4

)
.

4.2.2.4.2 Case 2: Convergence of φ2

For φ2 in case 2 I get by (4.44) the expression

M2φ2 =
M2

√
D
√
nσ2

2
σ2V
3

(
Covθ2

((
1{ε60} − τ1n

)T
ε,VTV |Y

)
− 0
)

,

where, as n → ∞, the covariance converges to zero with rate
√
D
√
n

with the same argumentation as in the proof of Lemma 4.15 Case 2.
Thus

M2φ2 ∈
M2

√
D
√
n
o
(√
D
√
n
)
= o

(
D− 1

4n− 1
4

)
.

4.2.2.4.3 Case 2: Convergence of φ3

For φ3 in case 2 I get by (4.43) and (4.44) the expression

M2φ3 = −
M2

√
D
√
nσ0

2
σ0V
3
Eθ2

[
Covθ0

((
1{ε60} − τ1n

)T
ε,VTV |Y

)]
,

where 1√
D
√
n
Covθ0

((
1{ε60} − τ1n

)T
ε,VTV |Y

)
converges with rate

√
D
√
n to zero as n → ∞. The application of the Lebesgue Theorem

allows me to interchange expectation and limes. I get

M2 |φ3| ∈
M2

√
D
√
n
o
(√
D
√
n
)
= o

(
D− 1

4n− 1
4

)
.

4.2.2.4.4 Case 2: Convergence of φ4

For φ4 I can use the same argumentations as for φ3 because θ2 and
θ0 are both in the set Nn(θ0) and can finally conclude

M2φ4 → 0 as n→∞.

4.2.2.4.5 Case 2: Convergence of φ5

For φ5 see Section 4.2.2.3.5.
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4.2.2.5 Case 3

Employing Lemma 4.11 the expectation (4.39) in this case can be ex-
pressed by

1√
D
√
n
Eθ

[
∂2

∂σV∂βτ
`(θ|Y)

∣∣∣∣
θ?

]
= −

1√
D
√
nσ?σ?V

3
Eθ

[
Covθ?

(
VTV , 1T{ε60}|Y

)
X
]

. (4.45)

Whenever θ = θ? this expression simplifies with condition (B6). Thus
the conditional expectations of transformations of Vi|Y and εij|Y pair-
wise independent from each other and I have

1√
D
√
n
Eθ?

[
∂2

∂σV∂βτ,h
`(θ|Y)

∣∣∣∣
θ?

]

=
1√

D
√
nσ?σ?V

3

D∑
i=1

ni∑
j=1

(
Eθ?

[
V2i 1{εij60}

]
xij

−Eθ?
[
Eθ?

[
V2i |Y

]]
Eθ?

[
1{εij60}|Y

]
xij

)
= 0p. (4.46)

4.2.2.5.1 Case 3: Convergence of φ1

For φ1 in case 3 I have the expression

M2φ1

=
M2

√
D
√
n

sup
θ1∈Nn(θ0)

(
1

σ1
2
σ1V
3
Covθ1

(
VTV , 1T{ε60}|Y

)
X

−
1

σ2
2
σ2V
3
Covθ2

(
VTV , 1T{ε60}|Y

)
X

)
,

where, as n→∞, both covariances converge to zero with rate
√
D
√
n

with the same argumentation as in the proof of Lemma 4.15 Case 3.
Altogether I have

M2φ1 ∈
M2

√
D
√
n
o
(√
D
√
n
)

,

where M2 6 D− 1
4n− 1

4 by (4.38) and thus

M2φ1 ∈ o
(
D− 1

4n− 1
4

)
.
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4.2.2.5.2 Case 3: Convergence of φ2

For φ2 in case 3 I get by (4.46) the expression

M2φ2 =
M2

√
D
√
nσ2

2
σ2V
3

(
Covθ2

(
VTV , 1T{ε60}|Y

)
X − 0

)
,

where, as n → ∞, the covariance converges to zero with rate
√
D
√
n

with the same argumentation as in the proof of Lemma 4.15 Case 3.
Thus

M2φ2 ∈
M2

√
D
√
n
o
(√
D
√
n
)
= o

(
D− 1

4n− 1
4

)
.

4.2.2.5.3 Case 3: Convergence of φ3

For φ3 in case 3 I get by (4.45) and (4.46) the expression

M2φ3 = −
M2

√
D
√
nσ0

2
σ0V
3
Eθ2

[
Covθ0

(
VTV , 1T{ε60}|Y

)
X
]

,

where 1√
D
√
n
Covθ0

(
VTV , 1T

{ε60}|Y
)

X converges with rate
√
D
√
n to

zero as n → ∞. Applying the Lebesgue Theorem allows me to inter-
change expectation and limes I get

M2 |φ3| ∈
M2

√
D
√
n
o
(√
D
√
n
)
= o

(
D− 1

4n− 1
4

)
.

4.2.2.5.4 Case 3: Convergence of φ4

For φ4 I can use the same argumentations as for φ3 because θ2 and
θ0 are both in the set Nn(θ0) and can finally conclude

M2φ4 → 0 as n→∞.

4.2.2.5.5 Case 3: Convergence of φ5

For φ5 see Section 4.2.2.3.5.

4.2.2.6 Case 4

The expectation (4.39) in this case can be expressed by

1

n
Eθ

[
∂2

∂σ2
`(θ|Y)

∣∣∣∣
θ?

]
=
1

n
Eθ

[
n

σ?2
−

2

σ?3

(
Eθ?

[
1T{ε60}ε|Y

]
− τ1TnEθ? [ε|Y]

)
+
1

σ?4
Varθ?

(
1T{ε60}ε|Y

)]
.
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The variance may be split as follows

1

n
Eθ

[
Varθ?

(
1T{ε60}ε|Y

)]
=
1

n

(
Eθ

[
Eθ?

[
1T{ε60}ε1

T
{ε60}ε|Y

]]
− Eθ

[
E2θ?

[
1T{ε60}ε|Y

]])
,

which leads to

1

n
Eθ

[
∂2

∂σ2
`(θ|Y)

∣∣∣∣
θ?

]
=

1

σ?2
−

2

nσ?3

(
Eθ

[
Eθ?

[
1T{ε60}ε|Y

]]
− τ1TnEθ [Eθ? [ε|Y]]

)
+

1

nσ?4

(
Eθ

[
Eθ?

[
1T{ε60}ε1

T
{ε60}ε|Y

]]
− Eθ

[
E2θ?

[
1T{ε60}ε|Y

]])
=

1

σ?2
−

2

nσ?3

D∑
i=1

ni∑
j=1

Eθ

[
Eθ?

[(
1{εij60} − τ

)
εij|Y

]]

+
1

nσ?4

D∑
i=1

ni∑
j=1

Eθ

[
Eθ?

[
1{εij60}ε

2
ij|Y
]]

−
1

nσ?4

D∑
i=1

ni∑
j=1

Eθ

[
E2θ?

[
1{εij60}εij|Y

]]
. (4.47)

Whenever θ = θ? this expression simplifies with εij
iid
∼ ALD(0,σ?, τ),

Eθ? [Eθ? [·|Y]] = Eθ? [·], and Corollary 2.2 to

1

n
Eθ?

[
∂2

∂σ2
`(θ|Y)

∣∣∣∣
θ?

]
=

1

σ?2
−

2

nσ?3

D∑
i=1

ni∑
j=1

Eθ?
[(

1{εij60} − τ
)
εij

]

+
1

nσ?4

D∑
i=1

ni∑
j=1

Eθ?
[
1{εij60}ε

2
ij

]

−
1

nσ?4

D∑
i=1

ni∑
j=1

Eθ?
[
E2θ?

[
1{εij60}εij|Y

]]
=

1

σ?2
−

2

σ?2
+

2τ

σ?2(1− τ)2

−
1

nσ?4

D∑
i=1

ni∑
j=1

Eθ?
[
E2θ?

[
1{εij60}εij|Y

]]

= −
1

σ?2
+

2τ

σ?2(1− τ)2
−

1

nσ?4

D∑
i=1

ni∑
j=1

Eθ?
[
E2θ?

[
1{εij60}εij|Y

]]
.

(4.48)
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4.2.2.6.1 Case 4: Convergence of φ1

For φ1 in case 4 I have the expression

M2φ1 =M
2 sup
θ1∈Nn(θ0)

(
−
1

σ1
2

+
2

nσ1
3

(
Eθ1

[
1T{ε60}ε|Y

]
− τ1TnEθ1 [ε|Y]

)
+

1

nσ1
4
Varθ1

(
1T{ε60}ε|Y

)
+

1

σ2
2

−
2

nσ2
3

(
Eθ2

[
1T{ε60}ε|Y

]
− τ1TnEθ2 [ε|Y]

)
−

1

nσ2
4
Varθ2

(
1T{ε60}ε|Y

))
=M2 sup

θ1∈Nn(θ0)

(
1

σ2
2
−

1

σ1
2

+
2

n

D∑
i=1

ni∑
j=1

(
1

σ1
3
Eθ1

[(
1{εij60} − τ

)
εij|Y

]
−
1

σ2
3
Eθ2

[(
1{εij60} − τ

)
εij|Y

])
+
1

n

D∑
i=1

ni∑
j=1

(
1

σ1
4
Eθ1

[
1{εij60}ε

2
ij|Y
]

−
1

σ2
4
Eθ2

[
1{εij60}ε

2
ij|Y
])

−
1

n

D∑
i=1

ni∑
j=1

(
1

σ1
4
E2θ1

[
1{εij60}εij|Y

]
−
1

σ2
4
E2θ2

[
1{εij60}εij|Y

]))
,

where each summand converges to zero as n → ∞ as shown in the
following: Following the argumentation in Section 4.2.2.3.1 I have for
the first summand the inequality

sup
σ1V∈N2,n(θ0)

∣∣σ1 − σ2∣∣ 6 2M
K2

, (4.49)

where N2,n is the projection on the second dimension of the (p+ 2)-
dimensional set Nn. Thus I get by (4.49) the boundedness

sup
σ1V∈N2,n(θ0)

∣∣∣∣ 1
σ2
2
−

1

σ1
2

∣∣∣∣ 6 2M

K2σ1
2
σ2
2

.
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By the Law of Large Numbers 1
n

∑D
i=1

∑ni
j=1 Eθ1

[(
1{εij60} − τ

)
εij|Y

]
and 1

n

∑D
i=1

∑ni
j=1 Eθ2

[(
1{εij60} − τ

)
εij|Y

]
converge as n → ∞ to

Eθ1
[(

1{ε1,160} − τ
)
ε1,1

]
= σ1 and Eθ2

[(
1{ε1,160} − τ

)
ε1,1

]
= σ2, re-

spectively. Hence the second summand converges to

1

n

2Eθ1
[(

1{ε60} − τ1n
)T
ε|Y
]

σ1
3

−
2Eθ2

[(
1{ε60} − τ1n

)T
ε|Y
]

σ2
3


→ 2σ1

σ1
3
−
2σ2

σ2
3
= 2

(
1

σ1
2
−

1

σ2
2

)
,

which is by (4.49) bounded from above by M
K2

times a constant. In the
third summand I can apply the Law of Large Numbers, again. It holds
that 1

n

∑D
i=1

∑ni
j=1 Eθ1

[
1{εij60}ε

2
ij|Y
]

and
1
n

∑D
i=1

∑ni
j=1 Eθ2

[
1{εij60}ε

2
ij|Y
]

converge as n → ∞ to

Eθ1
[
1{ε1,160}ε

2
1,1

]
= 2τσ1

2

(1−τ)2
and Eθ2

[
1{ε1,160}ε

2
1,1

]
= 2τσ2

2

(1−τ)2
, respec-

tively. Thus

1

n

Eθ1
[
1T
{ε60}ε1{ε60} −

T ε|Y
]

σ1
4

. −
Eθ2

[
1T
{ε60}ε1

T
{ε60}ε|Y

]
σ2
4


→ 2τ

σ1
2
(1− τ)2

−
2τ

σ2
2
(1− τ)2

=
2τ

(1− τ)2

(
1

σ1
2
−

1

σ2
2

)
,

which is by (4.49) bounded from above by M
K2

times a constant. By

the definition of Nn(θ0) the random variables E2
θ1

[
1{εij60}εij|Y

]
and

E2
θ2

[
1{εij60}εij|Y

]
converge as n → ∞ to E2

θ0

[
1{εij60}εij|Y

]
. At the

same time by the Law of Large Numbers I know that the averaged
sum of each independently and identically distributed random vari-
ables converges to its expectation and thus for the random variables
E2
θ1

[
1{εij60}εij|Y

]
and E2

θ2

[
1{εij60}εij|Y

]
I get as n→∞

1

n

D∑
i=1

ni∑
j=1

E2θ1

[
1{εij60}εij|Y

]
→ Eθ0

[
E2θ0

[
1{ε1,160}ε1,1|Y

]]
and

1

n

D∑
i=1

ni∑
j=1

E2θ2

[
1{εij60}εij|Y

]
→ Eθ0

[
E2θ0

[
1{ε1,160}ε1,1|Y

]]
,
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where ε1,1 is a representative of the p-dimensional error term ε. Hence
as n→∞ I have for the fourth summand

1

n

D∑
i=1

ni∑
j=1

E2θ1
[
1{εij60}εij|Y

]
σ1
4

−
E2
θ2

[
1{εij60}εij|Y

]
σ2
4


→
(
1

σ1
4
−

1

σ2
4

)
Eθ0

[
E2θ0

[
1{εij60}ε1,1|Y

]]
,

which is by applying the generalised binomial formula and (4.49)
bounded from above by M

K2
times a constant. Altogether, I have

M2 |φ1| 6
M3

K2
C,

where C is a constant. By definition of M in (4.38) it holds that

M3 6 K
3
4

2 ,

which implies

M2 |φ1| 6
M3

K2
C 6

K
3
4

2

K1
C = K

− 1
4

2 C.

By assumption on K2 it holds that K− 1
4

2 → 0 as n→∞ and hence

M2φ1 → 0 as n→∞.

4.2.2.6.2 Case 4: Convergence of φ2

For φ2 in case 4 I get by (4.48) and application of Lemma 4.12 the
expression

M2φ2 =M
2

(
1

σ2
2
+

2

nσ2
3
Eθ2

[(
1{ε60} − τ1n

)T
ε|Y
]

+
1

nσ2
4

(
Eθ2

[
1T{ε60}ε1

T
{ε60}ε|Y

]
− E2θ2

[
1T{ε60}ε|Y

])
−
1

σ2
2
−

2τ

σ2
2
(1− τ)2

+
1

nσ2
4
Eθ2

[
E2θ2

[
1T{ε60}ε|Y

]])
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=M2

 2

nσ2
3

 D∑
i=1

ni∑
j=1

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
− σ2


+

1

nσ2
4

 D∑
i=1

ni∑
j=1

Eθ2
[
1{εij60}ε

2
ij|Y
]
−
2τσ2

2

(1− τ)2


−

1

nσ2
4

 D∑
i=1

ni∑
j=1

E2θ2

[
1{εij60}εij|Y

]

−

D∑
i=1

ni∑
j=1

Eθ2
[
E2θ2

[
1{εij60}εij|Y

]] .

By the Law of Large Numbers 1
n

∑D
i=1

∑ni
j=1 Eθ2

[(
1{εij60} − τ

)
εij|Y

]
and 1

n

∑D
i=1

∑ni
j=1 Eθ2

[(
1{εij60} − τ

)
ε2ij|Y

]
converge with rate n as

n → ∞ to Eθ2
[(

1{ε1,160} − τ
)
ε1,1

]
= σ2 and

Eθ2
[(

1{ε1,160} − τ
)
ε21,1

]
= 2τσ2

2

(1−τ)2
, respectively. Thus it holds for the

first and the second summand of M2φ2 that

2M2

σ2
3

 D∑
i=1

ni∑
j=1

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
− σ2

 ∈M2o (n)

and

M2

σ2
4

 D∑
i=1

ni∑
j=1

Eθ2
[
1{εij60}ε

2
ij|Y
]
−
2τσ2

2

(1− τ)2

 ∈M2o (n) ,

where M2 6 K
1
2

2 = n
1
2 by definition of M – see (4.38). Hence

2M2

nσ2
3

 D∑
i=1

ni∑
j=1

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
− σ2

 ∈ o(n− 1
2

)
and

M2

nσ2
4

 D∑
i=1

ni∑
j=1

Eθ2
[
1{εij60}ε

2
ij|Y
]
−
2τσ2

2

(1− τ)2

 ∈ o(n− 1
2

)
.

For this reason the first and the second summand converge to zero.
Since all εij are independently and identically distributed, so is the
projection of their transformations on the measure space of Y, which
for their expectations leads to

1

n

D∑
i=1

ni∑
j=1

Eθ2
[
E2θ2

[
1{εij60}εij|Y

]]
= Eθ2

[
E2θ2

[
1{ε1,160}ε1,1|Y

]]
.
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By the Law of Large Numbers I know that the averaged sum of each
independently and identically distributed random variable converges
to its expectation. Thus for the random variables E2

θ2

[
1{εij60}εij|Y

]
I

get

1

n

D∑
i=1

ni∑
j=1

E2θ2

[
1{εij60}εij|Y

]
→ Eθ2

[
E2θ2

[
1{ε1,160}ε1,1|Y

]]
with rate n, which is why I have for the third summand

M2

nσ2
4

 D∑
i=1

ni∑
j=1

E2θ2

[
1{εij60}εij|Y

]
−

D∑
i=1

ni∑
j=1

Eθ2
[
E2θ2

[
1{εij60}εij|Y

]]
∈ M

2

n
o (n) = o

(
n− 1

2

)
.

Thus this summand also converges to zero as n → ∞, which
leads altogether to

M2φ2 → 0 as n→∞.

4.2.2.6.3 Case 4: Convergence of φ3

For φ3 in case 4 I get by (4.47) and (4.48)

M2φ3

=M2

(
−
1

σ2
2
+

2τ

σ2
2
(1− τ)2

−
1

nσ2
4
Eθ2

[
E2θ2

[
1T{ε60}ε|Y

]]
−
1

σ0
2
−

2

nσ0
3
Eθ2

[
Eθ0

[(
1{ε60} − τ1n

)T
ε|Y
]]

−
1

nσ0
4
Eθ2

[
Eθ0

[
1T{ε60}ε1

T
{ε60}ε|Y

]]
+

1

nσ0
4
Eθ2

[
E2θ0

[
1T{ε60}ε|Y

]])
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=M2

(
1

σ2
2
−

1

σ0
2

+

 2

σ2
2
−

2

nσ0
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[(
1{εij60} − τ

)
εij|Y

]]
+

 2τ

σ2
2
(1− τ)2

−
1

nσ0
4

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[
1{εij60}ε

2
ij|Y
]]

−

 1

nσ2
4

D∑
i=1

ni∑
j=1

Eθ2
[
E2θ2

[
1{εij60}εij|Y

]]

−
1

nσ0
4

D∑
i=1

ni∑
j=1

Eθ2
[
E2θ0

[
1{εij60}εij|Y

]] .

As shown in Section 4.2.2.6.1 – cf. (4.49) – the first summand is
bounded from above by M

K1
times a constant. By the Law of Large Num-

bers 1
n

∑D
i=1

∑ni
j=1 Eθ0

[(
1{εij60} − τ

)
εij|Y

]
and

1
n

∑D
i=1

∑ni
j=1 Eθ0

[
1{εij60}ε

2
ij|Y
]

converge as n → ∞ to

Eθ0
[(

1{ε1,160} − τ
)
ε1,1

]
= σ0 and Eθ0

[
1{ε1,160}ε

2
1,1

]
= 2τσ0

2

(1−τ)2
, re-

spectively. For the second and the third summand of φ3 this leads
to

2

σ2
2
−

2

nσ0
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[(
1{εij60} − τ1n

)
εij|Y

]]

→ 2

σ2
2
−

2

nσ0
3

D∑
i=1

ni∑
j=1

Eθ2
[
σ0
]
=

2

σ2
2
−

2

σ0
2

and

2τ

σ2
2
(1− τ)2

−
1

nσ0
4

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[
1{εij60}ε

2
ij|Y
]]

→ 2τ

σ2
2
(1− τ)2

−
1

nσ0
4

D∑
i=1

ni∑
j=1

Eθ2

[
2τσ0

2

(1− τ)2

]

=
2τ

σ2
2
(1− τ)2

−
2τ

σ0
2
(1− τ)2

=
2τ

(1− τ)2

(
1

σ2
2
−

1

σ0
2

)
,

which are both by (4.49) bounded from above by M
K2

times a constant.

By construction of Nn(θ0) the random variable E2
θ2

[
1{εij60}εij|Y

]



132 the consistency proof of the parameter estimation

converges as n → ∞ to E2
θ0

[
1{εij60}εij|Y

]
. For this reason and εij

being iid the last summand of φ3 converges to

1

nσ2
4

D∑
i=1

ni∑
j=1

Eθ2
[
E2θ2

[
1{εij60}εij|Y

]]

−
1

nσ0
4

D∑
i=1

ni∑
j=1

Eθ2
[
E2θ0

[
1{εij60}εij|Y

]]
→
(
1

σ2
4
−

1

σ0
4

)
Eθ2

[
E2θ0

[
1{ε1,160}ε1,1|Y

]]
,

which is by applying the generalised binomial formula and (4.49)
bounded from above by M

K2
times a constant C. Altogether I have

M2 |φ3| 6
M3

K2
C 6

K
3
4

2

K2
C = K

− 1
4

2 C.

By assumption on K2 it holds that K− 1
4

2 → 0 as n→∞ and hence

M2φ3 → 0 as n→∞.

4.2.2.6.4 Case 4: Convergence of φ4

For φ4 I can use the same argumentations as for φ3 because θ2 and
θ0 are both in the set Nn(θ0) and can finally conclude

M2φ4 → 0 as n→∞.

4.2.2.6.5 Case 4: Convergence of φ5

For φ5 see Section 4.2.2.3.5.

4.2.2.7 Case 5

Employing Lemma 4.13 the expectation (4.39) in this case can be ex-
pressed by

1

n
Eθ

[
∂2

∂σ∂βτ
`(θ|Y)

∣∣∣∣
θ?

]
=
1

n
Eθ

[
−
1

σ?2

(
Eθ?

[
1T{ε60}|Y

]
− τ1Tn

)
X

−
1

σ?3
Covθ?

((
1{ε60} − τ1n

)T
ε, 1T{ε60}|Y

)
X
]

.
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The covariance may be split as follows

1

n
Eθ

[
Covθ?

((
1{ε60} − τ1n

)T
ε, 1T{ε60}|Y

)]
=
1

n

(
Eθ

[
Eθ?

[(
1{ε60} − τ1n

)T
ε1T{ε60}|Y

]]
−Eθ

[
Eθ?

[(
1{ε60} − τ1n

)T
ε|Y
]
Eθ?

[
1T{ε60}|Y

]])
,

which leads to

1

n
Eθ

[
∂2

∂σ∂βτ,h
`(θ|Y)

∣∣∣∣
θ?

]
= −

1

nσ?2

(
Eθ

[
Eθ?

[
1T{ε60}|Y

]]
− τ1Tn

)
X

−
1

nσ?3

(
Eθ

[
Eθ?

[(
1{ε60} − τ1n

)T
ε1T{ε60}|Y

]]
−Eθ

[
Eθ?

[(
1{ε60} − τ1n

)T
ε|Y
]
Eθ?

[
1T{ε60}|Y

]])
X

= −
1

nσ?2

D∑
i=1

ni∑
j=1

(
Eθ

[
Eθ?

[
1{εij60}|Y

]]
− τ
)
xij

−
1

nσ?3

D∑
i=1

ni∑
j=1

Eθ

[
Eθ?

[
(1− τ) 1{εij60}εij|Y

]]
xij

+
1

nσ?3

D∑
i=1

ni∑
j=1

Eθ

[
Eθ?

[(
1{εij60} − τ

)
εij|Y

]
Eθ?

[
1{εij60}|Y

]]
xij.

(4.50)

Whenever θ = θ? this expression simplifies with εij
iid
∼ ALD(0,σ?, τ),

Eθ? [Eθ? [·|Y]] = Eθ? [·], and Corollary 2.2 to

1

n
Eθ

[
∂2

∂σ∂βτ,h
`(θ|Y)

∣∣∣∣
θ?

]
= −

1

nσ?2

D∑
i=1

ni∑
j=1

(
Eθ?

[
1{εij60}

]
− τ
)
xij

−
1

nσ?3

D∑
i=1

ni∑
j=1

Eθ?
[
(1− τ) 1{εij60}εij

]
xij

+
1

nσ?3

D∑
i=1

ni∑
j=1

Eθ?
[
Eθ?

[(
1{εij60} − τ

)
εij|Y

]
Eθ?

[
1{εij60}|Y

]]
xij
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=
τ

nσ?2

D∑
i=1

ni∑
j=1

xij

+
1

nσ?3

D∑
i=1

ni∑
j=1

Eθ?
[
Eθ?

[
1{εij60}εij|Y

]
Eθ?

[(
1{εij60} − τ

)
|Y
]]
xij.

(4.51)

4.2.2.7.1 Case 5: Convergence of φ1

For φ1 in case 5 I have the expression

M2φ1

=
M2

n
sup

θ1∈Nn(θ0)

(
−
1

σ1
2

(
Eθ1

[
1T{ε60}|Y

]
− τ1Tn

)
X

−
1

σ1
3
Covθ1

((
1{ε60} − τ1n

)T
ε, 1T{ε60}|Y

)
X

+
1

σ2
2

(
Eθ2

[
1T{ε60}|Y

]
− τ1Tn

)
X

+
1

σ2
3
Covθ2

((
1{ε60} − τ1n

)T
ε, 1T{ε60}|Y

)
X
)

=M2 sup
θ1∈Nn(θ0)

−
1

n

D∑
i=1

ni∑
j=1

(
1

σ1
2

(
Eθ1

[
1{εij60}|Y

]
− τ
)
xij

−
1

σ2
2

(
Eθ2

[
1{εij60}|Y

]
− τ
)
xij

)
−
1

n

D∑
i=1

ni∑
j=1

(
1

σ1
3
Eθ1

[
(1− τ) 1{εij60}εij|Y

]
xij

−
1

σ2
3
Eθ2

[
(1− τ) 1{εij60}εij|Y

]
xij

)
+
1

n

D∑
i=1

ni∑
j=1

(
1

σ1
3
Eθ1

[(
1{εij60} − τ

)
εij|Y

]
Eθ1

[
1{εij60}|Y

]
xij

−
1

σ2
3
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
xij

))
,

where each summand converges to zero as n → ∞ as shown in the
following: By the Law of Large Numbers 1n

∑D
i=1

∑ni
j=1 Eθ1

[
1{εij60}|Y

]
and 1

n

∑D
i=1

∑ni
j=1 Eθ2

[
1{εij60}|Y

]
converge as n → ∞ to

Eθ1
[
1{εij60}

]
= τ and Eθ1

[
1{εij60}

]
= τ, respectively. Hence the
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first summand converges to zero. Also by the Law of Large Numbers
1
n

∑D
i=1

∑ni
j=1 Eθ1

[
1{εij60}εij|Y

]
and

1
n

∑D
i=1

∑ni
j=1 Eθ2

[
1{εij60}εij|Y

]
converge as n → ∞ to

Eθ1
[
1{εij60}εij

]
= − τσ

1

1−τ and Eθ1
[
1{εij60}εij

]
= − τσ

2

1−τ , respectively.
Hence I have for the second summand of φ1

1− τ

n

Eθ1
[
1T
{ε60}ε|Y

]
σ1
3

−
Eθ2

[
1T
{ε60}ε|Y

]
σ2
3


→ −τσ1

σ1
3

−
−τσ2

σ2
3

= −τ

(
1

σ1
2
−

1

σ2
2

)
,

which is by (4.49) bounded from above by M
K2

times a constant. By the
definition of Nn(θ

0) the random variables
Eθ1

[(
1{εij60} − τ

)
εij|Y

]
Eθ1

[
1{εij60}|Y

]
and

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
converge as n → ∞ to

Eθ0
[(

1{εij60} − τ
)
εij|Y

]
Eθ0

[
1{εij60}|Y

]
. At the same time by the Law

of Large Numbers I know that the averaged sum of each independently
and identically distributed random variables converges to its expecta-
tion and thus I get

1

n

D∑
i=1

ni∑
j=1

Eθ1
[(

1{εij60} − τ
)
εij|Y

]
Eθ1

[
1{εij60}|Y

]
→ Eθ0

[
Eθ0

[(
1{εij60} − τ

)
εij|Y

]
Eθ0

[
1{εij60}|Y

]]
and

1

n

D∑
i=1

ni∑
j=1

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
→ Eθ0

[
Eθ0

[(
1{εij60} − τ

)
εij|Y

]
Eθ0

[
1{εij60}|Y

]]
.

Hence I have for the third summand of φ1 that

1

n

D∑
i=1

ni∑
j=1

Eθ1
[(

1{εij60} − τ
)
εij|Y

]
Eθ1

[
1{εij60}|Y

]
σ1
3

−
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
σ2
3


→
(
1

σ1
3
−

1

σ2
3

)
Eθ0

[
Eθ0

[(
1{εij60} − τ

)
εij|Y

]
Eθ0

[
1{εij60}|Y

]]
,
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which is by applying the generalised binomial formula and (4.49)
bounded from above by M

K2
times a constant C. Altogether I have

M2 |φ1| 6
M3

K2
C 6

K
3
4

2

K1
C = K

− 1
4

2 C.

By assumption on K2 it holds that K− 1
4

2 → 0 as n→∞ and hence

M2φ1 → 0 as n→∞.

4.2.2.7.2 Case 5: Convergence of φ2

For φ2 in case 5 I get by (4.51) the expression

M2φ2

=M2

−
1

nσ2
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
1{εij60}|Y

]
− τ
)
xij

−
1

nσ2
3

D∑
i=1

ni∑
j=1

Eθ2
[
(1− τ) 1{εij60}εij|Y

]
xij

+
1

nσ2
3

D∑
i=1

ni∑
j=1

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
xij

−
τ

nσ2
2

D∑
i=1

ni∑
j=1

xij

−
1

nσ2
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]]
xij

)
=M2

−
1

nσ2
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
1{εij60}|Y

]
− τ
)
xij

−
1

nσ2
3

 D∑
i=1

ni∑
j=1

Eθ2
[
(1− τ) 1{εij60}εij|Y

]
xij + τσ

2xij


+

1

nσ2
3

 D∑
i=1

ni∑
j=1

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
xij

−

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]]
xij

))
.



4.2 the proof of the assumptions in the weiss’ theorem 137

By the Law of Large Numbers 1n
∑D
i=1

∑ni
j=1 Eθ2

[
1{εij60}|Y

]
converges

with rate n as n → ∞ to Eθ2
[
1{εij60}

]
= τ. Thus it holds with (B3)

for the first summand of M2φ2 that

M2

nσ2
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
1{εij60}|Y

]
− τ
)
xij ∈

M2

n
o (n)

(?)
= o

(
n− 1

2

)
,

where (?) holds because M2 6 K
1
2

2 = n
1
2 by definition of M – see

(4.38). By the Law of Large Numbers
1
n

∑D
i=1

∑ni
j=1 Eθ2

[
(1− τ) 1{εij60}εij|Y

]
converges with rate n as n→

∞ to Eθ2
[
(1− τ) 1{εij60}εij

]
= −τσ2. Thus it holds for the second

summand of M2φ2 with (B3) that

M2

nσ2
2

D∑
i=1

 ni∑
j=1

Eθ2
[
(1− τ) 1{εij60}εij|Y

]
xij + τσ

2xij


∈ M

2

n
o (n) = o

(
n− 1

2

)
.

For this reason the second summand converges to zero. Since all εij
are independently and identically distributed, so is the projection of
their transformations on the measure space of Y, which for their ex-
pectations leads to

1

n

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]]
= Eθ2

[
Eθ2

[(
1{ε1,160} − τ

)
ε1,1|Y

]
Eθ2

[
1{ε1,160}|Y

]]
.

By the Law of Large Numbers I know that the averaged sum of each
independently and identically distributed random variable converges
to its expectation and thus for the random variables
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
I get

1

n

D∑
i=1

ni∑
j=1

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
→ Eθ2

[
Eθ2

[(
1{ε1,160} − τ

)
ε1,1|Y

]
Eθ2

[
1{ε1,160}|Y

]]
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with rate n, which is why I have for the third summand

M2

nσ2
3

 D∑
i=1

ni∑
j=1

Eθ2
[(

1{εij60} − τ
)
εij|Y

]
Eθ2

[
1{εij60}|Y

]

−

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]]
∈ M

2

n
o (n) = o

(
n− 1

2

)
.

Thus this summand also converges to zero as n → ∞, which
leads altogether to

M2φ2 → 0 as n→∞.

4.2.2.7.3 Case 5: Convergence of φ3

For φ3 in case 5 I get by (4.50) and (4.51) the expression

M2φ3 =M
2

 τ

nσ2
2

D∑
i=1

ni∑
j=1

xij

+
1

nσ2
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]]
xij

+
1

nσ0
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
Eθ0

[
1{εij60}|Y

]]
− τ
)
xij

+
1

nσ0
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[
(1− τ) 1{εij60}εij|Y

]]
xij

−
1

nσ0
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[(
1{εij60} − τ

)
εij|Y

]
Eθ0

[
1{εij60}|Y

]]
xij

)
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=M2

 τ
n

D∑
i=1

ni∑
j=1

(
1

σ2
2
xij

−
1

σ0
3
Eθ2

[
Eθ0

[
(1− τ) 1{εij60}εij|Y

]]
xij

)
+

1

nσ0
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
Eθ0

[
1{εij60}|Y

]]
− τ
)
xij

+
1

n

D∑
i=1

ni∑
j=1

(
1

σ2
3
Eθ2

[
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]]
xij

−
1

σ0
3
Eθ2

[
Eθ0

[(
1{εij60} − τ

)
εij|Y

]
Eθ0

[
1{εij60}|Y

]]
xij

))
.

By the Law of Large Numbers 1
n

∑D
i=1

∑ni
j=1 Eθ0

[
(1− τ) 1{εij60}εij|Y

]
converges as n → ∞ to Eθ0

[
(1− τ) 1{ε1,160}ε1,1

]
= −τσ0. For the

first summand of φ3 this leads with (B3) to

τ

nσ2
2

D∑
i=1

ni∑
j=1

xij +
1

nσ0
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[
(1− τ) 1{εij60}εij|Y

]]
xij

→ τ

σ2
2
c0 +

1

σ0
3
Eθ2

[
−τσ0

]
c0 = −τ

(
1

σ2
2
−

1

σ0
2

)
c0,

where c0 is a p-dimensional vector which is of form E [X1,1] in which
X1,1 is a representative of the covariate x (as defined in assump-
tion (B3)) and which is by applying the binomial formula and (4.49)
bounded from above by M

K2
times a constant. Also by the Law of

Large Numbers 1n
∑D
i=1

∑ni
j=1 Eθ0

[
1{εij60}|Y

]
converges with rate n as

n → ∞ to Eθ0
[
1{εij60}

]
= τ. Thus it holds with (B3) for the second

summand of M2φ2 that

M2

nσ0
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
Eθ0

[
1{εij60}|Y

]]
− τ
)
xij ∈

M2

n
o (n) = o

(
n− 1

2

)
.

This term converges to zero for n→∞. By construction ofNn(θ0) the
random variable Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]
converges

as n→∞ to Eθ0
[(

1{εij60} − τ
)
εij|Y

]
Eθ0

[
1{εij60}|Y

]
. For this reason
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and εij being iid the third summand of φ3 converges with (B3) as
n→∞ to

1

nσ2
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[(
1{εij60} − τ

)
εij|Y

]
Eθ2

[
1{εij60}|Y

]]
xij

−
1

nσ0
3

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[(
1{εij60} − τ

)
εij|Y

]
Eθ0

[
1{εij60}|Y

]]
xij

→
(
1

σ2
3
−

1

σ0
3

)
Eθ2

[
Eθ0

[(
1{ε1,160} − τ

)
ε1,1|Y

]
Eθ0

[
1{ε1,160}|Y

]]
c0,

which is by applying the generalised binomial formula and (4.49)
bounded from above by M

K2
times a constant C, where it holds that

M2M

K2
C =

M3

K2
C 6

K
3
4

2

K2
C = K

− 1
4

2 C.

By assumption on K2 it holds that K− 1
4

2 → 0 as n→∞ and hence

M2φ3 → 0 as n→∞.

4.2.2.7.4 Case 5: Convergence of φ4

For φ4 I can use the same argumentations as for φ3 because θ2 and
θ0 are both in the set Nn(θ0) and can finally conclude

M2φ4 → 0 as n→∞.

4.2.2.7.5 Case 5: Convergence of φ5

For φ5 see Section 4.2.2.3.5.

4.2.2.8 Case 6

By application of Lemma 4.14 the expectation (4.39) in this case can
be expressed by

1

n
Eθ

[
∂2

∂β2τ
`(θ|Y)

∣∣∣∣
θ?

]
=
1

n
Eθ

[
−
1

σ?2
XTCovθ?

(
1{ε60}, 1{ε60}|Y

)
X
]

= −
1

nσ?2
XT
(
Eθ

[
Eθ?

[
1{ε60}1

T
{ε60}|Y

]]
−Eθ

[
Eθ?

[
1{ε60}|Y

]
Eθ?

[
1T{ε60}|Y

]])
X
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= −
1

nσ?2

D∑
i=1

ni∑
j=1

xijEθ

[
Eθ?

[
1{εij60}|Y

]]
xTij

+
1

nσ?2

D∑
i=1

ni∑
j=1

xijEθ

[
Eθ?

[
1{εij60}|Y

]
Eθ?

[
1{εij60}|Y

]]
xTij.

(4.52)

Whenever θ = θ? this expression simplifies with εij
iid
∼ ALD(0,σ?, τ),

Eθ? [Eθ? [·|Y]] = Eθ? [·], and Corollary 2.2 to

1

n
Eθ?

[
∂2

∂β2τ
`(θ|Y)

∣∣∣∣
θ?

]
= −

1

nσ?2

D∑
i=1

ni∑
j=1

xijEθ?
[
1{εij60}

]
xTij

+
1

nσ?2

D∑
i=1

ni∑
j=1

xijEθ?
[
Eθ?

[
1{εij60}|Y

]
Eθ?

[
1{εij60}|Y

]]
xTij

= −
τ

nσ?2

D∑
i=1

ni∑
j=1

xijx
T
ij

+
1

nσ?2

D∑
i=1

ni∑
j=1

xijEθ?
[
Eθ?

[
1{εij60}|Y

]
Eθ?

[
1{εij60}|Y

]]
xTij.

(4.53)

4.2.2.8.1 Case 6: Convergence of φ1

For φ1 in case 6 I have the expression

M2φ1

=
M2

n
sup

θ1∈Nn(θ0)

(
−
1

σ1
2

XTCovθ1
(
1{ε60}, 1{ε60}|Y

)
X

+
1

σ2
2

XTCovθ2
(
1{ε60}, 1{ε60}|Y

)
X
)

=
M2

n
sup

θ1∈Nn(θ0)

(
−
1

σ1
2

XT
(
Eθ1

[
1{ε60}1

T
{ε60}|Y

]
−Eθ1

[
1{ε60}|Y

]
Eθ1

[
1T{ε60}|Y

])
X

+
1

σ2
2

XT
(
Eθ2

[
1{ε60}1

T
{ε60}|Y

]
−Eθ2

[
1{ε60}|Y

]
Eθ1

[
1T{ε60}|Y

])
X
)



142 the consistency proof of the parameter estimation

=
M2

n
sup

θ1∈Nn(θ0)

−
1

n

D∑
i=1

ni∑
j=1

(
1

σ1
2
xijEθ1

[
1{εij60}|Y

]
xTij

−
1

σ2
2
xijEθ2

[
1{εij60}|Y

]
xTij

)
+
1

n

D∑
i=1

ni∑
j=1

(
1

σ1
2
xijEθ1

[
1{εij60}|Y

]
Eθ1

[
1{εij60}|Y

]
xTij

−
1

σ2
2
xijEθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
xTij

))
,

where each summand converges to zero as n→∞ as shown in the fol-
lowing: By (B4) and the Law of Large Numbers
1
n

∑D
i=1

∑ni
j=1 xijEθ1

[
1{εij60}|Y

]
xTij and

1
n

∑D
i=1

∑ni
j=1 xijEθ2

[
1{εij60}|Y

]
xTij converge as n → ∞ to

Eθ1
[
1{εij60}

]
C1 = τC1 and Eθ1

[
1{εij60}

]
C1 = τC1, respectively. C1

is a p× p-dimensional matrix which is of form E
[
X1,1X

T
1,1

]
in which

X1,1 is a representative of the covariate x (as defined in assumption
(B4)). Hence as n→∞ I have for the first summand of φ1

1

n
XT

Eθ1
[
1{ε60}1T{ε60}ε|Y

]
σ1
2

−
Eθ2

[
1{ε60}1T{ε60}ε|Y

]
σ2
2

X

→ τC1

σ1
2
−
τC1

σ2
2
= τC1

(
1

σ1
2
−

1

σ2
2

)
,

which is by (4.49) bounded from above by M
K2

times a constant. By the
definition of Nn(θ

0) the random variables
Eθ1

[
1{εij60}|Y

]
Eθ1

[
1{εij60}|Y

]
and Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
converge as n → ∞ to Eθ0

[
1{εij60}|Y

]
Eθ0

[
1{εij60}|Y

]
. At the same

time by the Law of Large Numbers I know that the averaged sum of
each independently and identically distributed random variables con-
verges to its expectation and thus I get with (B4)

1

n

D∑
i=1

ni∑
j=1

xijEθ1
[
1{εij60}|Y

]
Eθ1

[
1{εij60}|Y

]
xTij

→ Eθ0
[
Eθ0

[
1{εij60}|Y

]
Eθ0

[
1{εij60}|Y

]]
C1
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and

1

n

D∑
i=1

ni∑
j=1

xijEθ2
[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
xTij

→ Eθ0
[
Eθ0

[
1{εij60}|Y

]
Eθ0

[
1{εij60}|Y

]]
C1.

Hence I have for the second summand of φ1 that

1

n

D∑
i=1

ni∑
j=1

xijEθ1
[
1{εij60}|Y

]
Eθ1

[
1{εij60}|Y

]
xTij

σ1
3

−
xijEθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
xTij

σ2
3


→
(
1

σ1
2
−

1

σ2
2

)
Eθ0

[
Eθ0

[
1{εij60}|Y

]
Eθ0

[
1{εij60}|Y

]]
C1,

which is by (4.49) bounded from above by M
K2

times a constant C.
Altogether I have

M2 |φ1| 6
M3

K2
C 6

K
3
4

2

K1
C = K

− 1
4

2 C.

By assumption on K2 it holds that K− 1
4

2 → 0 as n→∞ and hence

M2φ1 → 0 as n→∞.

4.2.2.8.2 Case 6: Convergence of φ2

For φ2 in case 6 I get by (4.53) the expression

M2φ2 =M
2

−
1

nσ2
2

D∑
i=1

ni∑
j=1

xijEθ2
[
1{εij60}|Y

]
xTij

+
1

nσ2
2

D∑
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ni∑
j=1

xijEθ2
[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
xTij

+
τ

nσ2
2

D∑
i=1

ni∑
j=1

xijx
T
ij

−
1

nσ2
2

D∑
i=1

ni∑
j=1

xijEθ2
[
Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]]
xTij

)
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=M2

−
1

nσ2
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
1{εij60}|Y

]
− τ
)
xijx

T
ij

+
1

nσ2
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
−Eθ2

[
Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]])
xijx

T
ij

)
.

By the Law of Large Numbers 1n
∑D
i=1

∑ni
j=1 Eθ2

[
1{εij60}|Y

]
converges

with rate n as n → ∞ to Eθ2
[
1{ε1,160}

]
= τ. Thus it holds with (B4)

for the first summand of M2φ2 that

M2

nσ2
2

D∑
i=1

ni∑
j=1

(
Eθ2

[
1{εij60}|Y

]
− τ
)
xijx

T
ij ∈

M2

n
o (n)

(?)
= o

(
n− 1

2

)
,

where (?) holds because M2 6 K
1
2

2 = n
1
2 by definition of M – see

(4.38). Also by the Law of Large Numbers
1
n

∑D
i=1

∑ni
j=1 Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
converges with rate n

as n→∞ to Eθ2
[
Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]]
. Thus it holds with

(B4) for the second summand of M2φ2 that

M2

nσ2
2

 D∑
i=1

ni∑
j=1

Eθ2
[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
xijx

T
ij

−

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]]
xijx

T
ij


∈ M

2

n
o (n) = o

(
n− 1

2

)
.

Thus this summand also converges to zero as n → ∞, which
leads altogether to

M2φ2 → 0 as n→∞.
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4.2.2.8.3 Case 6: Convergence of φ3

For φ3 in case 6 I get by (4.52) and (4.53) the expression

M2φ3

=M2

−
τ

nσ2
2

D∑
i=1

ni∑
j=1

xijx
T
ij

+
1

nσ2
2

D∑
i=1

ni∑
j=1

xijEθ2
[
Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]]
xTij

+
1

nσ0
2

D∑
i=1

ni∑
j=1

xijEθ2
[
Eθ0

[
1{εij60}|Y

]]
xTij

−
1

nσ0
2

D∑
i=1

ni∑
j=1

xijEθ2
[
Eθ0

[
1{εij60}|Y

]
Eθ0

[
1{εij60}|Y

]]
xTij


=M2

−
1

n

D∑
i=1

ni∑
j=1

 τ

σ2
2
−
Eθ2

[
Eθ0

[
1{εij60}|Y

]]
σ0
2

 xijxTij
+
1

n

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]]
σ2
2

−
Eθ2

[
Eθ0

[
1{εij60}|Y

]
Eθ0

[
1{εij60}|Y

]]
σ0
2

 xijxTij
 .

By the Law of Large Numbers 1n
∑D
i=1

∑ni
j=1 Eθ0

[
1{εij60}|Y

]
converges

as n → ∞ to Eθ0
[
1{ε1,160}

]
= τ. For the first summand of φ3 this

leads with (B4) to

1

n

D∑
i=1

ni∑
j=1

 τ

σ2
2
−
Eθ2

[
Eθ0

[
1{εij60}|Y

]]
σ0
2

 xijxTij
→ τ

(
1

σ2
2
−

1

σ0
2

)
C1,

which is by applying the binomial formula and (4.49)
bounded from above by M

K2
times a constant. By construction ofNn(θ0)

the random variable Eθ2
[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]
converges as



146 the consistency proof of the parameter estimation

n → ∞ to Eθ0
[
1{εij60}|Y

]
Eθ0

[
1{εij60}|Y

]
. For this reason and εij

being iid the second summand of φ3 converges with (B4) to

1

nσ2
2

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ2

[
1{εij60}|Y

]
Eθ2

[
1{εij60}|Y

]]
xijx

T
ij

−
1

nσ0
2

D∑
i=1

ni∑
j=1

Eθ2
[
Eθ0

[
1{εij60}|Y

]
Eθ0

[
1{εij60}|Y

]]
xijx

T
ij

→
(
1

σ2
2
−

1

σ0
2

)
Eθ2

[
Eθ0

[
1{ε1,160}|Y

]
Eθ0

[
1{ε1,160}|Y

]]
C1,

which is by applying the binomial formula and (4.49) bounded from
above by M

K2
times a constant C, where it holds that

M2M

K2
C =

M3

K2
C 6

K
3
4

2

K2
C = K

− 1
4

2 C.

By assumption on K2 it holds that K− 1
4

2 → 0 as n→∞ and hence

M2φ3 → 0 as n→∞.

4.2.2.8.4 Case 6: Convergence of φ4

For φ4 I can use the same argumentations as for φ3 because θ2 and
θ0 are both in the set Nn(θ0) and can finally conclude

M2φ4 → 0 as n→∞.

4.2.2.8.5 Case 6: Convergence of φ5

For φ5 see Section 4.2.2.3.5.

4.3 the consistency of the parameter estimator θ̂

By validating the two assumptions of the Weiss’ Theorem – see The-
orem 4.1 – in Sections 4.2.1 and 4.2.2 I am able to apply the the-
orem and it follows the existence and the asymptotic normality of
the parameter estimator θ̂(n) = (σ̂V (n) , σ̂(n) , β̂Tτ (n))T with rate
K(n) = (

√
D ,
√
n ,
√
n1Tp )T

√
D(σ̂V (n) − σ

0
V )√

n(σ̂(n) − σ0)
√
n(β̂τ(n) − β

0
τ)

 D→ N(0 , B−1(θ0)) (4.54)

with the asymptotic covariance matrix B−1(θ0). Its inverse is given
in Lemma 4.15, where I can see that the entries are not trivial to
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calculate and as a consequence so is the inverse. Nevertheless the
asymptotic covariance matrix is discussed in Section 4.3.2.

4.3.1 From Asymptotic Normality to Consistency

The asymptotic normality in (4.54) implies the consistency of the pa-
rameter estimator vector θ̂(n): For all ε > 0 it holds

P
(∣∣θ̂(n) − θ0∣∣ > ε1p+2

)
= P

(
B
1
2 (θ0)diag(K(n))

∣∣θ̂(n) − θ0∣∣
> B

1
2 (θ0)diag(K(n))ε

)
(?)→ 2

(
1p+2 −φp+2

(
B
1
2 (θ0)diag(K(n))ε

))
(??)→ 0 as n→∞,

where (?) follows because B
1
2 (θ0)diag(K(n))

∣∣θ̂(n) − θ0∣∣ is by (4.54)
asymptotically (p + 1)-dimensional standard normal
distributed and φp+2 is its probability density function. Due to the
definition of K(n) tending to ∞ as n → ∞ (??) follows because
φp+2(K(n) · C) → 1p+2 as n → ∞ for any constant C. As a remark
the convergence (?) is just a between step of the whole convergence
proven. This is why at this stage the limit still depends on n.

4.3.2 The Asymptotic Covariance Matrix

The asymptotic covariance matrix is given as the inverse of B(θ0) in
Lemma 4.15. Most of the entries are not analytically calculable but
there are a few zeros. Thus all entries but the diagonal in the first
column and row are zero. The inverse of a block diagonal matrix can
be calculated by taking the inverses of the blocks. Hence the asymp-
totic covariance matrix B−1(θ0) must have zeros at the same entries
in first column and row implying the independence of σ̂V to the other
estimators. The asymptotic variance of

√
D(σ̂V(n) − σ

0
V) is given by

(
−

1

σ0V
2
+

1

σ0V
6
E
[
E2
[
V21 |Y

]] ∣∣∣∣
θ0

)−1

=

−σ0V
4
+ E

[
E2
[
V21 |Y

]] ∣∣∣∣
θ0

σ0V
6


−1

=
σ0V
6

E
[
E2
[
V21 |Y

]] ∣∣∣∣
θ0

− σ0V
4

.

The other part of the covariance matrix is dependent on expectations
of products of conditional expectations. In these conditional expec-
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tations I have expressions, which are dependent on the error term
ε1,1. Its distribution is the asymmetric Laplace distribution ALD(0,σ, τ),
which has in its density the scale τ(1− τ). In linear quantile models
this scale is part of the asymptotic covariance matrix as discussed
in Section 2.5. Thus it will be natural that its inverse 1

τ(1−τ) is part
in B−1(θ0) in the variance part of β̂τ. As a result the estimation for
τ = 0.5 must have the smallest asymptotic variance for β̂τ. This will
be discussed in the following Section 4.4. The part C1 can be inter-
preted of form E

[
X1,1X

T
1,1

]
which is the second moment of the inde-

pendent variable X1,1 and therefore a representative of the variance
in X1,1. Hence for an intercept estimation it is 1 and has no impact
on the asymptotic variance. For all others the variance in the indepen-
dent variable impacts the asymptotic variance of β̂τ.

4.4 simulation study of the asymptotic normality

In this simulation study I am going to investigate the asymptotic be-
haviour of the distribution of the estimators σ̂V , σ̂, and β̂τ as well
as the asymptotic variances and covariances of and between them, re-
spectively. Thus we are able to see the proven asymptotic normality
and the convergence rates. Furthermore we will get an idea of the
dependence of the asymptotic variances and covariances on τ.

4.4.1 The Setup

In a simulation study I produced each 500 pseudo populations with
500 areas with Ni = 200 individuals each (i = 1, 2, . . . , 500). The
model used for τ = 0.6 and τ = 0.9 is

Yij = 2+ 0.8xij + Vi + εij,

where the independent variables xij come from a uniform distribution
on (0, 1)

xij ∼ U(0, 1), i = 1, 2, . . . , 500; j = 1, 2, . . . , 200.

Note that in this setting βτ is the same for both τ. Thus β0.6 = β0.9 =

(2, 0.8)T . The random effect was drawn from a normal distribution with
zero mean and variance σ2V = 0.32 for each τ

Vi ∼ N(0, 0.32), i = 1, 2, . . . , 500,

and the error term was drawn from an asymmetric Laplace distribution
with scale parameter σ = 0.5 and τ = 0, 6 or τ = 0.9

εij ∼ ALD(0, 0.5, τ), i = 1, 2, . . . , 500; j = 1, 2, . . . , 200.



4.4 simulation study of the asymptotic normality 149

D=10

D=100

D=500

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

−4 −2 0

sigmaV
D=10

D=100

D=500

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

−2 −1 0 1 2

sigma
D=10

D=100

D=500

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

−5 0 5

beta1
D=10

D=100

D=500

0.000

0.025

0.050

0.075

0.000

0.025

0.050

0.075

0.100

0.000

0.025

0.050

0.075

0.100

−10−5 0 5 10

beta2

Figure 4.1: Densities of Kι(n)(θ̂ι(n) − θ0) in 500 estimations of σ̂V , σ̂, β̂1,
and β̂τ,2, D = 10, 100, 500, and τ = 0.6

4.4.2 The Convergence to Normality

In each area ni = 10 observations were drawn and the number of
areas D in the three cases varied from 10 over 100 to 500. The esti-
mation was fulfilled with the software R and the package lqmm by
Geraci [2016]. The details of the methods used in this package are
topics of Geraci and Bottai [2014]. In Figures 4.1 and 4.2 the densities
of the 500 transformed estimators in the manner

Kι(n)(θ̂ι(n) − θ
0)

are drawn for the four estimators σ̂V , σ̂, β̂1, and β̂2 in the three
cases of D = 10, 100, 500. As a reminder the convergence rates for
the estimators were K1(n) =

√
D and Kι(n) =

√
n =

√
10
√
D for

ι = 2, 3, 4 such that they are K1(n) =
√
10, 10,

√
5 · 10 and Kι(n) =√

n = 10,
√
10 · 10,

√
50 · 10 for ι = 2, 3, 4 for the three cases. One can

see that in both different cases for τ the densities of the distribution
of all parameter estimators converge to the shape of a normal distribu-
tion. This happens faster for the three last parameters σ̂, β̂1, and β̂τ,2
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Figure 4.2: Densities of Kι(n)(θ̂ι(n) − θ0) in 500 estimations of σ̂V , σ̂, β̂1,
and β̂τ,2, D = 10, 100, 500, and τ = 0.9

due to the faster convergence (by
√
ni =

√
10 here). However for all

parameter estimators the distribution has the same support over all
different area numbers D. This validates the convergence rates after-
wards. Another observation is that the support for σ̂V and σ̂ is about
the same for τ = 0.6 and τ = 0.9. This implies that τ has no impact on
the asymptotic variance, which can not be quantified due to the un-
known measure PV |Y . In contrast the support for β̂τ,1 and β̂τ,2 almost
doubles for τ = 0.9. Thus τ must have an impact on the asymptotic
variance. This is an intuitive observation because quantile estimators
for τ distant to 0.5 must have a worse power due to the leverage of
observations Yij on the edges. Nevertheless it is positive that τ seems
to have no impact on the variance estimation in σ̂V and σ̂.

4.4.3 The Asymptotic Variances and Covariances

Since the asymptotic covariance matrix cannot be given analytically,
I observe the empirical variances and covariances now. In Table 4.1
all empirical variances and covariances between the estimators σV , σ,
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τ = 0.6 σ̂V σ̂ β̂τ,1 β̂τ,2

D=10 0.13183383

σ̂V D=100 0.05115810

D=500 0.02706904

D=10 -0.0122787603 0.013020581

σ̂ D=100 -0.0028792905 0.001507195

D=500 -0.0009334091 0.000310581

D=10 -0.014148793 0.000234930 0.41593651

β̂τ,1 D=100 0.001343279 0.000089589 0.02817245

D=500 -0.001034811 0.000059185 0.00562185

D=10 0.001384736 -0.0018889107 -0.630198698 1.33194847

β̂τ,2 D=100 -0.006078426 0.0000636330 -0.043792012 0.09063374

D=500 0.001243569 -0.0001072401 -0.008387372 0.01700046

τ = 0.9 σ̂V σ̂ β̂τ,1 β̂τ,2

D=10 0.08059054

σ̂V D=100 0.07390737

D=500 0.02888356

D=10 -0.004020231 0.0115743598

σ̂ D=100 -0.002250779 0.0011812333

D=500 -0.000889200 0.0002748655

D=10 -0.023446911 -0.0047595936 1.56164470

β̂τ,1 D=100 -0.017782719 0.0010442254 0.10024339

D=500 -0.004507479 0.0002003062 0.01653899

D=10 -0.0195119402 0.019300360 -2.56110461 5.27421811

β̂τ,2 D=100 0.0046714403 -0.000157490 -0.14932187 0.30439060

D=500 -0.0000417081 0.000092882 -0.02379976 0.04907912

Table 4.1: Empirical variances and covariances between estimators in 500 es-
timations of σ̂V , σ̂, β̂τ,1, and β̂τ,2, D = 10, 100, 500 for τ = 0.6 and
τ = 0.9

βτ,1, and βτ,2 are displayed for τ = 0.6 and τ = 0.9 and the different
sample sizes D = 10, 100, 500 or n = 100, 1000, 5000.

4.4.3.1 The Asymptotic Variances

We can see that all variances and covariances decrease with larger
D or n. As already seen in the densities the convergence rates can
be observed. Thus the variance for σ̂V in τ = 0.6 is decreasing from
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τ = 0.6 σ̂V σ̂ β̂τ,1 β̂τ,2

D=10 1.318338

σ̂V D=100 5.115810

D=500 13.534518

D=10 -0.3882885 1.302058

σ̂ D=100 -0.9105116 1.507195

D=500 -1.4758494 1.552905

D=10 -0.4474241 0.23493043 41.59365

β̂τ,1 D=100 0.4247820 0.08958872 28.17245

D=500 -1.6361799 0.29592235 28.10925

D=10 0.04378921 -0.18889069 -63.01987 133.19485

β̂τ,2 D=100 -1.92216714 0.06363633 -43.79201 90.63374

D=500 1.96625548 -0.53620052 -41.93686 85.00230

τ = 0.9 σ̂V σ̂ β̂τ,1 β̂τ,2

D=10 0.8059054

σ̂V D=100 7.3907368

D=500 14.4417822

D=10 -0.3882885 1.157436

σ̂ D=100 -0.9105116 1.181233

D=500 -1.4758494 1.374328

D=10 -0.7414564 -0.4759594 156.16447

β̂τ,1 D=100 -5.6233894 1.0442254 100.24339

D=500 -7.1269499 1.0015311 82.69494

D=10 -0.61702173 1.9300356 -256.1105 527.4218

β̂τ,2 D=100 1.47723913 -0.1574949 -149.3219 304.3906

D=500 -0.06594629 0.000092882 -118.9988 245.3956

Table 4.2: By convergence rate corrected empirical variances and covariances
between estimators in 500 estimations of σ̂V , σ̂, β̂τ,1, and β̂τ,2,
D = 10, 100, 500 for τ = 0.6 and τ = 0.9

0.13183383 over 0.05115810 to 0.02706904, where it holds for the by
the convergence rate corrected variances in Table 4.2

10 · 0.13183383 = 1.318338
100 · 0.05115810 = 5.115810
500 · 0.02706904 = 13.534518.

In theory these numbers must be approximately equal. One reason
why this is not observable here may be that D is too small. As seen
in the densities in Figures 4.1 and 4.2 the convergence to normality
is slow and seems not to be reached yet. For τ = 0.9 I get a similar
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picture with by the convergence rate corrected variances of 0.8059054,
7.3907368, and 14.4417822 (see Table 4.2). Nevertheless the numbers
are about the same for the same D but different τ, which implies that
τ has no impact on the estimation of σV .
Different to that is the behaviour of the by the convergence rate cor-
rected variances of the three other parameter estimators σ̂, β̂τ,1, and
β̂τ,2. For σ̂ in the case τ = 0.6 I have in Table 4.2 corrected variances
of

100 · 0.013020581 = 1.302058
1000 · 0.001507195 = 1.507195
5000 · 0.000310581 = 1.552905.

For τ = 0.9 I have 1.157436, 1.181233, and 1.374328 (see Table 4.2).
These results are approximately equal over all D and τ, which proves
the convergence rate of

√
n and the independence of τ in the estima-

tion of σ. For β̂1 in the case τ = 0.6 I have for n = 100, 1000, 5000
the corrected covariances 41.59365, 28.17245, and 28.10925 and for
τ = 0.9 I have 156.16447, 100.24339, and 82.69494 (see Table 4.2). For
each τ the results are about the same, which verifies the convergence
rate of

√
n. Nevertheless the values for different τ differ. Thus the

variance increases for τ distant to 0.5. As mentioned in Section 4.3.2
the variances may have the scale of 1

τ(1−τ) , which can be seen here.
By correcting the variances of β̂τ,1 with respect to the inverse scale
τ · (1− τ) I have

D = 10 : 0.6 · 0.4 · 0.41593651 = 0.099824763
0.9 · 0.1 · 1.56164470 = 0.140548023

D = 100 : 0.6 · 0.4 · 0.02817245 = 0.006761389
0.9 · 0.1 · 0.10024339 = 0.009021905

D = 500 : 0.6 · 0.4 · 0.00562185 = 0.001349244
0.9 · 0.1 · 0.01653899 = 0.001488509.

I can see the convergence to the scale of 1
τ(1−τ) in the estimation of

βτ,1 because the values for the same D are about equal for both τ.
For β̂τ,2 in the cases τ = 0.6 and τ = 0.9 the corrected variances I
have in Table 4.2 are approximately equal over all n = 100, 1000, 5000,
which proves the convergence rate of

√
n. By multiplying the vari-

ances with the inverse scale of τ(1− τ) I get

D = 10 : 0.6 · 0.4 · 1.33194847 = 0.31966763
0.9 · 0.1 · 5.27421811 = 0.474679630

D = 100 : 0.6 · 0.4 · 0.09063374 = 0.02175210
0.9 · 0.1 · 0.30439060 = 0.027395154
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D = 500 : 0.6 · 0.4 · 0.01700046 = 0.00408011
0.9 · 0.1 · 0.04907912 = 0.004417121.

The convergence to the scale of 1
τ(1−τ) in the estimation of βτ,2 is

also visible here because the values for the same D are about equal
for both τ with increasing D. In all cases of D and τ the variance is
bigger than the one of β̂τ,1. This can be explained with the variance
of X, which is added here.

4.4.3.2 The Asymptotic Covariances

Let me now observe the covariances. As an analytical result the co-
variances between σ̂V and all other estimators must converge to zero.
By correcting the results in Table 4.1 with respect to the convergence
rates I get for the corrected covariances between σ̂V and σ̂ (see Table
4.2)

τ = 0.6 :
√
10 ·
√
100 ·−0.0122787603 = −0.3882885

√
100 ·

√
1000 ·−0.0028792905 = −0.9105116

√
500 ·

√
5000 ·−0.0009334091 = −1.4758494

τ = 0.9 :
√
10 ·
√
100 ·−0.004020231 = −0.1271309

√
100 ·

√
1000 ·−0.002250779 = −0.7117587

√
500 ·

√
5000 ·−0.000889200 = −1.4059487.

These results do not only contradict the analytics but also imply a
negative covariance between the variance parameter estimators. This
may be explained by the not yet convergence of the estimator σ̂V on
the one hand. The correlations for τ = 0.6 are −0.2963643,−0.3279016,
−0.3219202 and for τ = 0.9 they are −0.1316317,−0.2408913,
−0.3155833. The correlation corrects the covariance by the standard
deviations and the convergence rates are cancelled. As a result the
correlations are of same order for every D and τ. Nevertheless it is
negative, which may be explained by the estimation process on the
other hand. Since the roots of the first derivatives cannot be calcu-
lated analytically, there is a Gaussian quadrature formula used in the
lqmm package. The negative sign implies that σ̂V and σ̂ are negatively
correlated. The two variance estimators divide the overall variance.
Whenever σ̂V increases σ̂ decreases and vice versa.
The correlations between σ̂V and β̂τ,1 for D = 10, 100, 500 are

τ = 0.6 : −0.06042163, 0.03538315,−0.08388514

τ = 0.9 : −0.06609255,−0.20659815,−0.20623095.
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τ = 0.6 β̂τ,1 β̂τ,2

D=10 0.03192350 -0.014343385

D=100 0.01374853 0.005444718

D=500 0.04478996 -0.046670177

τ = 0.9 β̂τ,1 β̂τ,2

D=10 -0.03540220 0.07811560

D=100 0.09596184 -0.00830583

D=500 0.09394634 0.02528847

Table 4.3: Correlations between estimators in 500 estimations of σ̂ with β̂τ,1
and β̂τ,2, D = 10, 100, 500 for τ = 0.6 and τ = 0.9

The correlations between σ̂V and β̂τ,2 for D = 10, 100, 500 are

τ = 0.6 : 0.003304532,−0.089266599, 0.057969989

τ = 0.9 : −0.029928117, 0.031145214,−0.001107762.

These correlations are close to zero and therefore verify the results in
Lemma 4.15 and the further thoughts in Section 4.3.2.
The corrected covariances between σ̂ and β̂τ,1 in Table 4.2 with re-
spect to the convergence rates are

τ = 0.6 : 100 · 0.002349304 = 0.23493043
1000 · 0.00008958872 = 0.08958872
5000 · 0.00005918447 = 0.29592235

τ = 0.9 : 100 ·−0.0047595936 = −0.4759594

1000 · 0.0010442254 = 1.0442254
5000 · 0.0002003062 = 1.0015311.

For the corrected covariances between σ̂ and β̂τ,2 I have for τ = 0.6
and τ = 0.9 similar values. The correlations between σ̂ and β̂τ,1 or
β̂τ,2 are given in Table 4.3. They are all close to zero, which implies
no correlations between the parameter estimates. This was not analyt-
ically seen before and therefore it is an interesting result.
The corrected covariances between β̂τ,1 and β̂τ,2 in Table 4.2 already

have the same sign and are of same order. For the empirical correla-
tions I get for n = 100, 1000, 5000

τ = 0.6 : −0.8466819,−0.8666378,−0.8579380

τ = 0.9 : −0.8923951,−0.8548304,−0.8353524.

Hence they are highly negatively correlated with an average correla-
tion around −0.85 for all D and τ. This was not observable before
since B−1(θ0) is not analytically calculable.
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4.4.4 The Conclusion of the Simulation Study

As a result of the simulation study I can state that the asymptotic nor-
mality with the given rates can be observed. The convergence for the
estimators of σ, βτ,1, and βτ,2 is faster than the one for σV , which is
justified by the faster rate of

√
n compared to

√
D.

Furthermore I was able to discuss the covariance structure. The vari-
ances of the variance estimators σ̂V and σ̂ are quite small and do not
depend on τ. The variance of the estimator β̂τ is quite big and de-
pends on τ with rate 1

τ(1−τ) . Thus for τ close to 0.5 the variances are
minimal. As a surprise the correlation between σ̂V and σ̂ seems to be
negative, although it must converge to zero in theory. This can be due
to the numerical estimation process. On the other hand the observed
correlation between σ̂ and β̂τ,1 or β̂τ,2 is around zero for all τ, which
implies the asymptotic independence between those estimators. Sim-
ilar as in any regression the parameter estimators βτ,1 and βτ,2 are
highly correlated.

4.5 conclusion

This Chapter contains the major part the main result of this thesis. I
was able to show the asymptotic normality of the parameters estimated
in the linear quantile mixed model (4.25) under the stated assump-
tions (B1) to (B6).
This undertaking was oriented on the approach by Miller [1977] and
Pinheiro [1994], which were an article and a thesis proofing the asymp-
totic normality of the parameter estimators in the linear mixed model
(3.1) with normal error terms. Similar to their approach I was able to
apply the Weiss’ Theorem – see Theorem 4.1 – for non-standard cases.
In order to show the assumptions of this theorem I had to develop the
second derivatives of the log-likelihood density `(θ|Y) and prove two
main assumptions on them. Since the density of the observations Y
was only given as a marginal density in integral form, the calculation
of the second derivatives was quite complicated. After all I was able
to express the results in forms of conditional expectations. This field
of conditional expectation helped with the further handling. Indeed
the further calculations did not become less complicated but I was
able to apply results for conditional covariances and variances.
In the end of Section 4.2.1 the inverse of the asymptotic covariance
matrix of the parameter estimators was stated in Lemma 4.15. I was
able to show the continuity and positive definiteness of this matrix,
which proved Assumption 1 of the Weiss’ Theorem. The asymptotic co-
variance matrix was unfortunately not analytically calculable. How-
ever I was able to discuss it in a small simulation study in Section 4.4.
The second assumption of the theorem was more or less a matter
of construction. In Section 4.2.2 I mainly oriented on the outline in
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Pinheiro [1994]. In the quantile approach it was however less clear at
some points.
After all the Weiss’ Theorem was applicable and the asymptotic nor-
mality and the convergence rates were the results for the parameter
estimation. In Section 4.3 I showed that the asymptotic normality im-
plies the consistency of the estimators. This on the other hand is a
main part in the proof of the consistency of the quantile estimation in
linear mixed models as shown in Section 3.4.





5
S U M M A RY

5.1 conclusion

In summary of this work I can state, that I was able to show the
consistency of quantile estimation in linear mixed models under the
mentioned assumptions. This undertaking turned out to be rather ex-
tensive due to the complex appearance of the log-likelihood density
(cf. Chapters 3 and 4). Nevertheless I was able to apply the Weiss’
Theorem for the asymptotic normality of the maximum likelihood param-
eter estimator in the first step of the quantile estimation. The same
theorem was already employed in the proof of the consistency of the
mean estimation in linear mixed models (cf. Miller [1977] and Pin-
heiro [1994]). In the linear quantile mixed model I firstly utilised this
statement in order to show the first part of the consistency proof of
the estimator. Since this proof is extensive, I outsourced it into the last
chapter – Chapter 4 – of this thesis. By doing so I want to emphasise
this main achievement. A model-based simulation study completes
and verifies the analytical approach of this Chapter 4.
In comparison to the first part of the consistency proof in the linear
quantile model, the second part was relatively compact. Therefore it
is directly shown in the main theorem of this dissertation – Theo-
rem 3.1. There I needed some statements about matrices of algebraic
manner, which can be found in the Appendix A. However the con-
sistency of the quantile estimator in linear mixed models is proven
and is further supported by simulation studies in Section 3.4.2. This
result contributes an asymptotic theory to the quantile regression in
the field of linear mixed models. It also includes a discussion about
the mean squared error (MSE) of the estimator in Section 3.5.
Furthermore I showed that the linear quantile mixed model can also
be applied to count data (cf. Section 3.6.1). This approach is based
on the count quantile method in linear quantile models by Machado
and Santos Silva [2005]. Moreover I showed that the consistency also
holds in the count case.
In Section 3.6.2 I also introduced a method, called Microsimulation via
Quantiles, predicated on the quantile estimation in linear mixed mod-
els. This methodology gives the ability to estimate any parameter of
interest of a population. It is founded on the natural interconnection
between quantiles and the distribution function. From the estimation
of quantiles for a given grid of τ an empirical distribution function
can be derived. Using a Monte Carlo simulation or microsimulation
of the population the estimate of the parameter of interest can be
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calculated. Microsimulation via Quantiles is a tool for area or group es-
timates, which are beyond the mean. In mean estimation one can take
advantage of the linearity of means. E.g. when we are interested in an
area mean, we take the mean of all unit means. For other parameter,
for example area quantiles, this linearity does not hold. In a simula-
tion study I showed first results of this approach for the estimation
of area quantiles. Still the method can be improved by further correc-
tions on e.g. quantile crossing or the bias. Meanwhile the asymptotic
discussion in this thesis could be used as a starting point for the bias
correction.

5.2 outlook

Further research can be continued at two results of this dissertation.
The first is the main result, the consistency of the quantile estimator
in linear mixed models, and the second one is the idea of estimating
area parameters beyond the mean using Microsimulation via Quantiles.
The consistency of the quantile estimator is an important and wishful
property. It implies the asymptotic unbiasedness and the convergence
of the mean squared error to zero. However there are further research
questions on the mean squared error of the estimator. When, in practice,
the sample size is finite, one may be interested in analytical and nu-
merical approaches on the estimation of the mean squared error. This
may also lead in a bias-corrected version of the proposed quantile es-
timator.
Furthermore the quantile estimation in linear mixed models can be
discussed in focus of problems, which already appeared in the quan-
tile regression in linear models. The application to count data is just
one extension. One may also consider the application in the context
of time series data. In addition the problem of quantile crossing can
also be observed in linear mixed models. A solution for this question
is outstanding. On these extensions an asymptotical theory can be
built. The methodology in this thesis can be used as a starting point
addressing these issues.
The idea of Microsimulation via Quantiles can also be extended. Fur-
ther discussion and simulations can be found in the working paper
by Weidenhammer et al. [2016]. It is just intuitive to bring the idea
of count quantiles and Microsimulation via Quantiles together. Then
also area parameters of interest can be estimated for discrete data.
The method allows the estimation of area medians of continuous and
discrete distributions and presents a robust alternative to area mean
estimators. Further parameters like poverty indicators or proportions
can be examined.
In context of the Microsimulation via Quantiles one can also discuss
the effect of quantile crossing on the estimate and the method can
be adapted accordingly in these cases. Also a bias-correction in the
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quantile estimation may improve the method.
Last but not least the method Microsimulation via Quantiles itself needs
an asymptotic theory. In this regard this dissertation may also be a
starting point. As a reminder the quantile estimation here was proven
for a single and fixed τ. Thus it requires an extension to a grid of τ.
Once a set of quantile estimators leads to a consistently estimated dis-
tribution function, the consistency of the parameter estimate can be
derived with Monte Carlo approaches for asymptotic behaviour.





A
A P P E N D I X

The following three lemmata have a linear algebra character. Since
the form of the following matrix X is not common and has rather a
special form the proofs of the results are exercises I would like to
execute.

Lemma A.1. For a symmetric matrix X ∈ Rn×n of form

X = aIn + b1n×n =


a+ b b b . . . b

b a+ b b . . . b

b b . . . b a+ b


with a ∈ R \ {0} and b ∈ R \

{
−an
}

the inverse matrix X−1 exists and it
holds

X−1 = cIn + d1n×n =


c+ d d d . . . d

d c+ d d . . . d

d d . . . d c+ d


with

c =
1

a
and

d = −
b

a(a+nb)
.

Proof. The matrix product of X and X−1 given in the Lemma can be
calculated as

XX−1 = (aIn + b1n×n) (cIn + d1n×n)

= acIn + (bc+ ad) 1n×n + bd1n×n1n×n.

For the matrix product of two n× n-dimensional matrices of ones it
holds

1n×n1n×n = n1n×n

and thus

XX−1 = acIn + (bc+ ad+nbd) 1n×n.
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By setting c and d as stated in the Lemma I get

XX−1 = a
1

a
In +

(
b
1

a
+ a

(
−

b

a(a+nb)

)
+nb

(
−

b

a(a+nb)

))
1n×n

= In +
b(a+nb) − ab−nb2

a(a+nb)
1n×n

= In.

Hence X−1 is the inverse matrix of X. Its existence is given for all
a ∈ R \ {0} and b ∈ R \

{
−an
}

.

Lemma A.2. The sum of all entries of the inverse matrix X−1 is given as

n∑
i,j=1

x−1ij =
n

a+nb
.

For b 6= 0 and n→∞ the sum converges to 1b

lim
n→∞

n∑
i,j=1

x−1ij =
1

b
.

Proof. The sum of all entries of X−1 can be calculated as follows

n∑
i,j=1

x−1ij = nc+n2d.

With c = 1
a and d = − b

a(a+nb) it develops to

n∑
i,j=1

x−1ij = n
1

a
+n2

(
−

b

a(a+nb)

)

=
n(a+nb) −n2b

a(a+nb)

=
na

a(a+nb)

=
n

a+nb
.

For b 6= 0 and n→∞ I can apply the rule of L’hôpital (?) and get for
the limit

lim
n→∞

n∑
i,j=1

x−1ij = lim
n→∞ n

a+nb

(?)
= lim
n→∞ 1b

=
1

b
.
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Lemma A.3. The column sum for each column j = 1, 2, . . . ,n of the inverse
matrix X−1 is given as

n∑
i=1

x−1ij =
1

a+nb
.

For n→∞ the column sums converge to zero

lim
n→∞

n∑
i=1

x−1ij = 0.

Proof. All column sums of X−1 can be calculated as follows

n∑
i=1

x−1ij = c+nd.

With c = 1
a and d = − b

a(a+nb) it develops to

n∑
i=1

x−1ij =
1

a
+n

(
−

b

a(a+nb)

)
=

(a+nb) −nb

a(a+nb)

=
1

a+nb
.

For n→∞ I get for the limit

lim
n→∞

n∑
i=1

x−1ij = lim
n→∞ 1

a+nb
= 0.





A B S T R A C T

Quantiles are parameters of a distribution, which are of location and
of scale character at the same time. The median, as a location param-
eter, is even robust and outperforms the mean, whenever there are
outliers or extreme values in the data. In linear models quantile re-
gression was firstly introduced by Koenker and Bassett [1978]. The
method is well investigated and the asymptotic behaviour, like the
consistency, was already proven. Doing so one is able to use the equiv-
alence of the linear quantile model to a linear model with asymmet-
ric Laplacian error terms. The asymmetric Laplace distribution has
established a direct link to quantile estimation and is investigated in
Yu and Zhang [2005].
In linear mixed models the quantile estimation was recently devel-
oped by Geraci and Bottai [2007] as well as Geraci and Bottai [2014].
There also the equivalence to an asymmetric Laplacian mixed model
is employed. The estimation of the quantile is possible due to the
shift to a maximum likelihood approach. An estimating algorithm of
numerical kind is implemented in the open software R (see the pack-
age lqmm by Geraci [2016]). Due to the complex appearance of the
log-likelihood density analytical solutions are pending. However the
asymptotic theory was outstanding, up to this thesis, which shows
the consistency of the conditional quantile estimator under some ad-
ditional conditions. In proofing this property the Weiss’ Theorem (cf.
Weiss [1971] and Weiss [1973]) for the dependent observations in the
maximum likelihood estimation is applied. In the linear mixed model
Miller [1977] and Pinheiro [1994] also employed this theorem, when
they proved the asymptotic normality of the parameter estimators for
the mean estimation. In the quantile estimation the necessity for its
application is the calculation of the second derivatives from the log-
likelihood density with respect to the unknown parameters. These
constitute a form of the Fisher information matrix. Therefore they de-
termine the asymptotic variance of the parameter estimators and are
needed for the proof of the assumption in the Weiss’ Theorem. The re-
sulting asymptotic normality of the parameter estimators imply the
consistency of a conditional τ-quantile estimator for a given value
τ ∈ (0, 1). Both proven properties, the asymptotic normality of the pa-
rameter estimators and the consistency of the quantile estimator, are
supported by model-based simulation studies.
The application of quantile regression in linear mixed models is
shown to be applicable for count data. In this special case the consis-
tency is also proven here. Furthermore a method called Microsimula-
tion via Quantiles for the estimation of parameters, which are beyond
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the mean of a population, is proposed. There the natural connection
between quantiles and the distribution function is deployed leading
into an estimation of the whole distribution. From there any param-
eter of interest – e.g. be a quantile, a proportion, or others – can be
generated by a Monte Carlo simulation or microsimulation.



Z U S A M M E N FA S S U N G

Quantile sind Kennzahlen einer Verteilung, welche sowohl die Lage
als auch die Streuung dieser darstellen. Der Median, als Lageparame-
ter, ist dabei robust und übertrifft das arithmetische Mittel, wenn Aus-
reißer oder Extremwerte in den Beobachtungen vorliegen. Im linearen
Modell wurde die Quantilsregression zuerst von Koenker and Bassett
[1978] entwickelt. Die Methodik ist gut erforscht und das asymptoti-
sche Verhalten, wie die Konsistenz, wurde bereits bewiesen. Dabei
kann die Äquivalenz des linearen quantilen Modells zu einem linea-
ren Modell mit asymptotisch Laplace-verteilten Fehlertermen genutzt
werden. Die asymmetrische Laplace-Verteilung hat dabei einen direk-
ten Link zur Quantilsschätzung und wird genauer untersucht in Yu
and Zhang [2005].
In linearen gemischten Modellen wurde die Quantilsschätzung
unlängst von Geraci and Bottai [2007] und Geraci and Bottai [2014]
entwickelt. Auch sie benutzen die Äquivalenz zu einem gemischten
Modell mit asymmetrisch Laplace-verteilten Fehlern. Der Schätzung
kommt die Verschiebung in einen Maximum Likelihood-Ansatz zu
Gute. Ein numerischer Schätzalgorithmus ist in der Open Source-
Software R implementiert (siehe das Paket lqmm von Geraci [2016]).
Wegen der komplexen Darstellung der Log-Likelihood-Dichte sind
analytische Lösungsansätze noch offen. Auch eine asymptotische
Theorie wurde bis zu dieser Arbeit, welche die Konsistenz des beding-
ten Quantilsschätzers unter zusätzlichen Bedingungen zeigt, noch
nicht entwickelt. Beim Beweis dieser Eigenschaft wird der Weiss’sche
Satz (vgl. Weiss [1971] und Weiss [1973]) für abhängige Beobachtun-
gen in der Maximum Likelihood-Schätzung angewandt. Im linearen
gemischten Modell haben bereits Miller [1977] und Pinheiro [1994]
diesen Satz benutzt, als sie die asymptotische Normalität der Para-
meterschätzung im Erwartungswertmodell bewiesen haben. In der
Quantilsschätzung besteht eine Notwendigkeit für seine Anwendung
darin, die zweiten Ableitungen der Log-Likelihood-Dichte bezüglich
der unbekannten Parameter zu berechnen. Diese bilden eine Art der
Fisher- Informations-Matrix. Deswegen bestimmen sie die asympto-
tische Varianz der Parameterschätzer und werden beim Beweis der
Voraussetzungen des Weiss’schen Satzes benötigt. Die resultierende
asymptotische Normalität der Parameterschätzer impliziert die Kon-
sistenz eines bedingten τ-Quantils für ein gegebenen Wert τ ∈ (0, 1).
Beide bewiesenen Eigenschaften, sowohl die asymptotische Norma-
lität der Parameterschätzer als auch die Konsistenz des
Quantilsschätzers, werden in modell-basierten Simulationsstudien
bestätigt.
Die Anwendung der Quantilsregression im linearen gemischten Mo-
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dell wird auf Zähldaten erweitert. Auch dafür wird die Konsistenz-
Eigenschaft in dieser Arbeit bewiesen. Des Weiteren wird eine Me-
thode, genannt Microsimulation via Quantiles, erarbeitet, mit welcher
andere Populationsparameter als das arithmetische Mittel geschätzt
werden können. Dabei wird der natürliche Zusammenhang zwischen
Quantilen und der Verteilungsfunktion genutzt, welches in einer
Schätzung der gesamten Verteilung mündet. Daraus kann nun jeder
interessierende Parameter – z.B. ein Quantil, ein Anteil oder etwas an-
deres – über eine Monte Carlo- oder auch Mikrosimulation errechnet
werden.
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