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Efficient simulation method for nano-patterned
charged surfaces in an electrolyte solution

Amin Bakhshandeh, a Alexandre P. dos Santosab and Yan Levin *a

We present a method to efficiently simulate nano-patterned charged surfaces inside an electrolyte

solution. Simulations are performed in the grand canonical ensemble and are used to calculate the force

between surfaces with various charge patterns. The electric field produced by the surfaces is calculated

analytically and is used as an external potential. To treat the long range Coulomb interaction between

the ions we use a modified 3d Ewald summation method. The force between the surfaces is found to

depend strongly on the specific charge pattern, on the surface alignment and separation.

I. Introduction

Electrostatic interactions between ions and macromolecules
are responsible for many important phenomena in physics,
chemistry, and biology.1 In aqueous suspensions, ions screen
repulsive interactions between colloidal particles leading to
precipitation at sufficiently large concentrations of electrolyte.
Presence of multivalent counterions can also result in charge
reversal and attraction between like-charged macromole-
cules.2–5 Multivalent counterions at sufficiently large concen-
trations can lead to condensation of DNA into toroidal bundles,
which are of fundamental importance for packing DNA in
bacteriophages.6,7 For weakly charged surfaces and electrolyte
solutions containing exclusively monovalent ions, mean-field
theories have proven to be very successful in elucidating the
underlying physics. The Derjaguin–Landau–Verwey–Overbeek
(DLVO) theory,8,9 for example, provides a qualitative picture of
stability of colloidal suspensions with 1 : 1 electrolyte, but is not
sufficient to explain the specific ion (Hofmeister effect) or to
elucidate the mechanism responsible for the stability of colloidal
suspensions with multivalent electrolytes.10–12 For these reasons,
computer simulation is still the most reliable way to obtain
quantitative understanding of systems in which Coulomb inter-
action plays the dominant role.

Many important physicochemical systems contain surfaces
with charged domains. Recent nano-fabrication techniques
allow creation of periodically charged patterned surfaces for
application in nanotechnology.13,14 In biology, proteins can

adsorb to the outer layer of cell membranes resulting in
charged domains.15 Much attention has been devoted to the
study of heterogeneously charged surfaces16–21 in electrolyte
solutions for which long ranged attraction was observed.22–27

Interaction between DNA and nano-patterned surfaces28 has
also attracted a lot of attention due to possible technological
applications. One of the important parameters for periodically
modulated surfaces is the effective Debye–Hückel decay length,
which plays an important role in the interactions between
periodically patterned helices, and also of symmetric distribu-
tion of charges on spheres.29,30 Simulations of electrostatic
systems is very difficult because the long-range Coulomb force
precludes use of simple periodic boundary condition. Instead
the whole system must be periodically replicated with a suitable
symmetry. Summation over the replicas can be performed
using Ewald techniques. If the electrolyte is confined between
the nano-paterned charged surfaces one can include the sur-
face charges in the Ewald summation.20 This, however, will
significantly slow down simulations, since to obtain an accu-
rate description of a continuous surface charge distribution will
require a huge number of surface point charges, which will
have to be included in the Ewald sum. Clearly a more efficient
approach would be to separate the electrostatic potential pro-
duced by the periodic surface charge distribution, which can be
calculated analytically, from the potential produced by the ions.
The difficulty is to combine this with the Ewald treatment of
the whole system. In the present paper, we will introduce a
method which allows us to efficiently simulate interactions
between nano-patterned surfaces. To this end we will consider
surfaces with periodic sinusoidal charge density. Analytical
solution of the Poisson equation allows us to explicitly calcu-
late the electrostatic potential produced by such surfaces. This
potential can then be used as a external field in the Grand
Canonical Monte Carlo (GCMC) simulations. The long range
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Coulomb interactions between the ions can be treated using
recently developed modified 3d Ewald summation method.31

The balance of the paper is as follows. In Section II, we
explain the model and analytical calculations. The simulations
details are considered in Section III. Results are shown in
Section IV and conclusions are presented in Section V.

II. Electrostatic potential between the
nano-patterned surfaces

Consider an infinite surface located at z = 0, carrying a periodic
charge density

s(x,y) = s0 sin(kxx + jx)sin(kyy + jy), (1)

where s0 is the amplitude, jx,y phases, kx = 2pnx/Lx, ky = 2pny/Ly,
with Lx and Ly periods of charge density oscillations in x and
y directions, respectively, and nx,y are integers. Using the
sinusoidal charge distribution we can create different charge
patterns on the surfaces by varrying kx and ky. In the present
work we will consider 4 possibilities depicted in Fig. 1. The
electrostatic potential produced by the surface charge density
of eqn (1) can be obtained from the solution of Laplace
equation,

r2F(r) = 0. (2)

The potential must vanish in the limit z - �N, yielding a
general solution

F(r) = A1 sin(kxx + jx)sin(kyy + jy)e�a|z|, (3)

where

a kx; ky
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx2 þ ky2

q
: (4)

The amplitude of the electrostatic potential, A1, can be
obtained using the boundary condition at z = 0,

Ez4 � Ezoð Þ � n ¼ 4psðx; yÞ
ew

; (5)

where Ez4 and Ezo are the electric fields in the regions z 4 0
and z o 0, respectively, and n is the normal vector pointing in
z 4 0 direction. Using eqn (3) we obtain

A1 ¼
2ps0

ewa kx; ky
� �: (6)

If there are two charge patterned surfaces located at z = �d/2
and z = d/2, the electrostatic potential can be found using
superposition:

FðrÞ ¼ 2ps0
ew

sin kaxxþ ja
x

� �
sin kayyþ ja

y

� �
e�a kax;k

a
yð Þjzþd=2j

a kax; k
a
y

� �
2
4

þ
sin kbxxþ jb

x

� �
sin kbyyþ jb

y

� �
e�a kbx ;k

b
yð Þjz�d=2j

a kbx; k
b
y

� �
3
5;

(7)

where superscripts a and b refer to the first and second
surfaces, respectively. In the current study we will use ja

x = 0,
jb

x = 0, and ja
y = jb

y = p/2 for symmetric surfaces—when like
charged domains are opposite of each other—and jb

x = p for
antisymmetric case, when the oppositely charged domains are
opposite of each other.

To perform computer simulations of systems with Coulomb
interactions requires a particular care. The long range nature of
the Coulomb force precludes one from using simple periodic
boundary conditions. Instead, the simulation box must be
periodically replicated, so that the ions in the main simulation
cell interact both with real ions and with their periodic replicas.
In the absence of interfaces the sum over the replicas can be
efficiently performed using Ewald summation methods. For sys-
tems with slab geometry, such as electrolyte confined between two
surfaces, there are additional complications related with the
reduced symmetry. These can be overcome using a modified 3d
Ewald summation method which accounts for the conditional
convergence of the lattice sum, and by introducing a sufficiently
large vacuum region devoid of any charge.31 Nevertheless,
presence of transverse replicas can lead to some undesired arti-
facts. Therefore, we first test that our analytical expression agrees
with the electrostatic potential produced by point charges distrib-
uted according to eqn (1) with nx = 1 and ny = 0 and replicated
using modified Ewald summation method.31 The charge of each
point particle is adjusted so that the net charge within a given
domain is the same as for the continuous distribution. In Fig. 2 we
compare the potential difference Df(z) = f(z)� f(0) at x = Lx/4 and
y = Ly/4 calculated using the exact electrostatic potential with the
one obtained using Ewald summation method. As the number of

Fig. 1 Different charge patterns explored in the present study with
Lx = Ly = 400 Å. (AI) nx = 4, ny = 0, (AII) nx = 4, ny = 4, (AIII) nx = 8, ny = 0,
and (AIV) nx = 8, ny = 8. Dark and light regions represent opposite charges.
The phases are set to jx = 0 and jy = p/2. The plots are limited from
�50 Å to 50 Å.
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point charges on each surface increases, the electrostatic potential
difference converges to the exact analytical result.

III. Simulation method

We are now in a position to study interaction between two parallel
nano-patterned charged surfaces inside an electrolyte solution. The
two surfaces have dimensions Lx and Ly and are separated by a
distance d. We set Lx = Ly = 400 Å and s0 = 0.05 C m�2 for all results,
except Fig. 2 and 3. The confined electrolyte is considered within
the primitive model, cations and anions are represented by spheres
of radius 2 Å with the charge �q at their centers, where q is the
proton charge. The number of ions in between the surfaces is
determined by the reservoir salt concentration which we set at
rs = 50 mM. The solvent is assumed to be structureless, with a
uniform dielectric of permittivity ew. The Bjerrum length, defined as
lB = q2/ewkBT, is 7.2 Å, value for water at room temperature. The
whole system is replicated infinitely in the x and y directions.

To perform the simulations we use a GCMC algorithm.32–34

In order to keep the charge neutrality, if a cation of valence a is
added or removed from a system, a anions must also be added
or removed.34 The total electrostatic energy is given by:31,35–37

U ¼
X1
ka0

2p
ewV jkj2

exp �jkj
2

4ke2

� �
AðkÞ2 þ BðkÞ2
	 


þ 2p
ewV

Mz
2 �QtGz

	 

þ 1

2

XN
iaj

qiqj
erfc kejri � rj j

� �
ewjri � rj j

þ
XN
i¼1

qiF rið Þ;

(8)

Fig. 2 (a) Electrostatic potential difference between the symmetric sur-
faces with nx = 1, ny = 0 and Lx = Ly = 200 Å, as a function of z, along the
line located at x = Lx/4, y = Ly/4 and parallel to the z axis. The separation
between the surfaces is d = 50 Å and amplitude of the surface charge is
s0 = 0.1 C m�2. Solid line is the analytical expression, eqn (7), and symbols
are the result of numerical calculation using a modified Ewald summation
with different number of point charges N: circles N = 1000 and squares
N = 40 000. (b) Surface charge distribution for different number of point
charges compared to the analytical expression, eqn (1).

Fig. 3 Density of positive and negative ions in a bin Dz = 3 Å at contact for
(nx = 1 and ny = 0), (nx = 1 and ny = 1) and (nx = 2 and ny = 0), from top to
bottom, respectively. The charge density is s = 0.1 C m�2 while simulation
box length is Lx = Ly = 200 Å and d = 15 Å. x and y axis are in units Å and
density (r) in M. Darker and lighter colors represent positive and negative
ions, respectively.
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where

AðkÞ ¼
XN
i¼1

qi cos k � rið Þ;

BðkÞ ¼ �
XN
i¼1

qi sin k � rið Þ;

Mz ¼
XN
i¼1

qizi;

Gz ¼
XN
i¼1

qizi
2 and Qt ¼

XN
i¼1

qi:

(9)

The volume V = LxLyLz includes the vacuum region of the
modified Ewald method where Lz = 2Lx. The damping parameter
is ke = 5/Lx while the k-vectors are k = (2pwx/Lx, 2pwy/Ly, 2pwz/Lz)
where w’s are integers. The electrostatic potential produced by
the nano-patterned surfaces is introduced as an external field
acting on the ions, see eqn (7). The equilibration is achieved with
105 MC steps, after which 105 uncorrelated particles configura-
tions are saved for further analysis each 103 MC steps.

The pressure on the surfaces is calculated by taking into
account the direct electrostatic interactions between surfaces and
ions, as well as the entropic force arising from the momentum
transfer during the collisions of the ions with the surfaces.38,39 The
entropic contribution is obtained using the method of Wu et al.40

The total pressure can be written as:

P = Pss + Psi + Pent � Pres, (10)

where Pss is the electrostatic contribution from the surface–surface
interaction, Psi is due to electrostatic surface–ion interaction, Pent is
the entropic pressure and Pres is the pressure from the external
reservoir which is obtained using separate NPT MC simulations.20

The repulsive (positive) entropic pressure is given by:

bPent ¼
Noh i

DzLxLy
; (11)

where No is the number of overlaps of the wall with the free ions
(which are held fixed) after a surface displacement Dz. The force
is extrapolated to the value in which Dz - 0. More details about
the entropic and reservoir contributions can be found in ref. 20.

Here we simplify our system by setting ka
x = kb

x = kx and ka
y = kb

y = ky,
which means that surfaces carry identical, but not necessarily
aligned charge distributions. We also consider, without loss of
generality, Lx = Ly = L. Below we give the expressions for Pss and Psi,

Pss ¼
ps02e�a kx ;kyð Þd

2ew
cos ja

x � jb
x

� �
cos ja

y � jb
y

� �
(12)

and

Psi ¼
XN
i¼1

qi
2ps0e�a kx ;kyð Þ d=2þzið Þ

L2ew

*

� sin ja
x þ kxxi

� �
sin ja

y þ kyyi

� �E
:

(13)

The average is performed over the saved MC states.

IV. Results

We begin by calculating the ionic density profiles for systems
with box sizes L = 200 Å and d = 15 Å with charge patterns (nx = 1,
ny = 0), (nx = 1, ny = 1) and (nx = 2, ny = 0), in a bin of length 3 Å
at the surface contact, see Fig. 3. The different colors indicate
the positive and negative ions. The pressures, as a function of
surface separation, for different charge patterns are shown in
Fig. 4. The circles and triangles represent the symmetric and
antisymmetric cases, respectively. The surface charge patterns
are characterized by ja

x = 0, ja
y = jb

y = p/2 and jb
x = 0 for the

symmetric cases and jb
x = p for antisymmetric ones. In the

symmetric case, surfaces are identical with the like-charged
domains opposite of each other. We expect that in this case the
pressure will be positive, and the surfaces will repel. In the anti-
symmetric case, where oppositely charged domains are aligned,
we expect that the pressure will be negative, and the surfaces
will attract. This is indeed what is found in simulations. As
the number of charged domains increases, we observe that the
absolute pressure decreases. This is in agreement with the
previous simulations for heterogeneously charged surfaces.20

If we compare the symmetric and antisymmetric arrangements,
the modulus of pressure P is not the same for these configura-
tions. In the symmetric case, for small (nx, ny), there is a strong
entropic contribution to the repulsive pressure, since counter-
ions are driven into the region between the charged domains in
order to neutralize the surface charge. The resulting collisions
between the ions and the surfaces lead to a positive contribu-
tion to the osmotic pressure. On the other hand, for antisym-
metric surfaces the local charge neutrality between oppositely

Fig. 4 Osmotic pressures for symmetric (full symbols and solid lines) and
antisymmetric (empty symbols and dashed lines) surface arrangements
carrying charge patterns (AI, AII, AIII and AIV): diamonds, triangles, circles
and squares symbols, respectively. Symbols represent simulation data
while lines are guides to the eye. In symmetric arrangement like charged
regions of both surfaces are in front of each other (pressure is positive); in
antisymmetric arrangement oppositely charged domains face each other
(pressure is negative). The inset shows the sum of symmetric and anti-
symmetric cases. Note the change of behavior for (AIV) configuration, the
modulus of pressure for antisymmetric alignment becomes larger than for
the symmetric alignment.
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charged domains is automatically satisfied even without any
ions, diminishing ionic concentration in the gap and the
amount of momentum transfer between ions and the surfaces.
This observation explains why the net repulsion between sym-
metric surfaces with large patches is larger than the net attraction
between the antisymmetric surfaces. For small charged domains
(large nx, ny values), the entropic contribution of trapped ions
diminishes and we find that the modulus of the attractive
interaction between the antisymmetric surfaces becomes larger
than the repulsive force for the symmetric surfaces, see inset of
Fig. 4 which shows the sum of pressures for symmetric and
antisymmetric arrangement with the same charge pattern. We
also observe that for sufficiently large distances pressure decays
exponentially with the separation between the surfaces, Fig. 5.
For a : 1 electrolyte at bulk concentration rs, we expect the
decay to depend on the effective Debye length which can be
calculated from the linearized Poisson–Boltzmann equation,

keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx2 þ ky2 þ k2

p
, where the inverse Debye length is

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8plBI
p

, with the ionic strength I = (a2rs + ars)/2. We see,
however, that for surface separations considered in the present
study the linear Debye–Hückel equation is only qualitative, with
the agreement much better for the antisymmetric alignment
between the surfaces than for symmetric alignment. The agree-
ment between theory and simulations is found to improve for
larger values of (nx, ny). Finally, we consider nano-patterned
surfaces in a 2 : 1 electrolyte at 50 mM concentration, Fig. 6.
Once again we see that pressure decays exponentially with
separation between the surfaces. The decay rate is consistent
with the linear theory, with antisymmetric alignment showing a
much better agreement between the linear theory and simula-
tions than symmetric alignment. The ionic charge asymmetry
decreases the modulus of pressure and we see that similar to
1 : 1 electrolyte repulsion between symmetrically aligned sur-
faces with small (nx, ny) is larger than the attraction between
antisymmetrically aligned surfaces. For larger values of (nx, ny)
this behavior is reversed.

V. Conclusions

In this paper we have presented a simple and robust method for
studying interactions between charged nano-patterned surfaces.
We have focused on sinusoidal density distributions, however,
the method can be easily extended to any arbitrary periodic
charge distributions using Fourier series representation. The
simulations were performed in the grand canonical ensemble.
The osmotic pressure inside the reservoir was obtained using
NPT simulations. However, for monovalent ions in aqueous
electrolyte solutions one can use very accurate analytical expres-
sion for the pressure based on the mean spherical approxi-
mation (MSA). For the case of multivalent ions there are strong

Fig. 5 Osmotic pressures for symmetric (a) and antisymmetric (b) surface
arrangements carrying charge patterns (AI, AII, AIII, and AIV): diamonds,
triangles, circles and squares symbols, respectively. Symbols represent
simulation data while lines are exponential fitting. In symmetric arrangement
like charged regions of both surfaces are in front of each other (pressure is
positive); in antisymmetric arrangement oppositely charged domains face
each other (pressure is negative). The fitting exponents are indicated in figure
in units of Å�1. The theoretical values of keff are: 0.096, 0.115, 0.145 and
0.192 Å�1 for (AI, AII, AIII and AIV), respectively.

Fig. 6 Osmotic pressures in the presence of 2 : 1 salt for symmetric and
antisymmetric configurations. Symbols represent simulation data while
lines are exponential fitting. The diamonds and circles symbols represent
(AII) charged pattern while triangles and squares represent (AIV). The fitting
exponents are indicated in figure in units of Å�1. The theoretical values keff

are: 0.146 and 0.212 Å�1 for (AII and AIV), respectively.
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electrostatic correlations and mean-field theories in general can
not be used. The force between the surfaces was found to be
very sensitive to the relative alignment between the charged
domains and to the domain size. In all cases, for sufficiently
large separations between the surfaces, the pressure was found
to decay exponentially with distance. For antisymmetric align-
ment and large nx or ny (small charged domains) the decay
length was found to be in a reasonably good agreement with keff.

For now we have restricted our study to the overall charge
neutral surfaces, however, the method introduced in this paper
can also be extended to non-neutral surfaces with periodic
charged domain. This will be the subject of future work.
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