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Background: Gait variability is an established marker of gait function that can be
assessed using sensor-based approaches. In clinical settings, spatial constraints and
patient condition impede the execution of longer distance walks for the recording of
gait parameters. Turning paradigms are often used to overcome these constraints
and commercial gait analysis systems algorithmically exclude turns for gait parameters
calculations. We investigated the effect of turns in sensor-based assessment of gait
variability.

Methods: Continuous recordings from 31 patients with movement disorders (ataxia,
essential tremor and Parkinson’s disease) and 162 healthy elderly (HE) performing level
walks including 180◦ turns were obtained using an inertial sensor system. Accuracy
of the manufacturer’s algorithm of turn-detection was verified by plotting stride time
series. Strides before and after turn events were extracted and compared to respective
average of all strides. Coefficient of variation (CoV) of stride length and stride time was
calculated for entire set of strides, segments between turns and as cumulative values.
Their variance and congruency was used to estimate the number of strides required to
reliably assess the magnitude of stride variability.

Results: Non-detection of turns in 5.8% of HE lead to falsely increased CoV for these
individuals. Even after exclusion of these, strides before/after turns tended to be spatially
shorter and temporally longer in all groups, contributing to an increase of CoV at group
level and widening of confidence margins with increasing numbers of strides. This could
be attenuated by a more generous turn excision as an alternative approach. Correlation
analyses revealed excellent consistency for CoVs after at most 20 strides in all groups.
Respective stride counts were even lower in patients using a more generous turn
excision.
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Conclusion: Including turns to increase continuous walking distance in spatially
confined settings does not necessarily improve the validity and reliability of gait variability
measures. Specifically with gait pathology, perturbations of stride characteristics
before/after algorithmically excised turns were observed that may increase gait variability
with this paradigm. We conclude that shorter distance walks of around 15 strides suffice
for reliable and valid recordings of gait variability in the groups studied here.

Keywords: gait variability, gait analysis, turn detection, healthy elderly, movement disorders

INTRODUCTION

Impairment of gait function is frequent in neurological disorders
and in the aging population (Snijders et al., 2007; Jahn et al., 2015;
Masdeu, 2016; Schlenstedt and Maetzler, 2016). It is associated
with impairment of everyday mobility, increased risk of falling
and thus impacting individuals’ quality of life. Gait disorders pose
a challenge for clinical evaluation. Instrumented gait analysis
offers the opportunity to quantify an abundance of parameters
to describe and differentiate gait disorders (Pradhan et al., 2015).
The use of wearable inertial measurement units may improve the
clinical applicability of gait analysis and enable the collection of
a large number of strides during continuous walking outside of
a gait lab. A potential drawback of such systems is that their
clinical application has to rely on inherent algorithms of gait
segmentation that are usually not disclosed to the user. We
therefore explored the potential to reliably measure an important
gait feature – magnitude of step-to-step variability – using a
commercially available sensor-based gait analysis system in the
clinical setting. Previous data suggest validity of the gait analysis
system we used in the populations of our study (Mancini et al.,
2011; Horak and Mancini, 2013; Schmitz-Hubsch et al., 2016).

Gait variability is increasingly recognized as a diagnostically
useful and clinically meaningful parameter. Irregular gait
patterns have long been described as clinical features of specific
disorders, such as cerebellar ataxia (Dichgans, 1984), but only
quantitative assessment has objectively shown irregularity of
stepping in a variety of conditions (Moon et al., 2016). The
physiological variability observed in forward stepping, i.e., stride-
to-stride fluctuations of scaling and timing during steady-state
walking here throughout referred to as gait variability, has
been interpreted as an indirect expression of dynamic motor
control within the specific biomechanical constrains of human
walking (Collins and Kuo, 2013; Wuehr et al., 2014a). Besides
this adaptive component, which can be more directly expressed
by stability measures (Hamacher et al., 2011), gait variability
is considered to also contain portions of neuromuscular noise
known to increase, e.g., with ageing (Bruijn et al., 2013; Roos and
Dingwell, 2013). An increased magnitude of such variability may
be due to disturbance on different levels, e.g., disturbed “internal
clock” in basal ganglia disorders (Rao et al., 2014; Avanzino
et al., 2016), as a consequence of disturbed coordination of
limb muscle activity as e.g., with spasticity (Kao et al., 2014)
or secondary to impaired balance in cerebellar disease (Morton
and Bastian, 2003). Moreover, lower boundaries of gait variability
have been delineated for normal walking (Gouelle et al., 2013;

Konig et al., 2016b) but the interpretation of such findings is
less clear (Beauchet et al., 2009) and we are aware of only very
few reports (Brach et al., 2005; Rennie et al., 2017) that describe
reduced gait variability as a possibly useful risk marker. In this
paper we therefore focus on practical issues when screening for
increased gait variability, considering different disease entities.

Different metrics have been used to describe fluctuations of
forward stepping movements (Hamacher et al., 2011; Bruijn
et al., 2013; Riva et al., 2014). Recent reviews defined stride
time variability, which expresses the magnitude of variability
as the coefficient of variation (CoV), as the most prevalent
measure of gait variability among clinical studies (Konig et al.,
2016a,b; Moon et al., 2016). Meta-analyses including more than
1000 (healthy and diseased) subjects showed consistent findings
among studies and a value of 2.6% [2.3–3.1] has been proposed
as a reliable upper limit for CoV stride time in physiological gait
(Konig et al., 2016b).

Increased CoV of stride time, often accompanied by slowed
walking speed, has been associated with decreased mobility,
increased risk of falling, fear of falling, feeling of unsteadiness in
different conditions (Schaafsma et al., 2003; Konig et al., 2014b;
Wuehr et al., 2014b; Moon et al., 2015; Kalron, 2016; Lord
et al., 2016) and with freezing of gait in Parkinson’s disease (PD)
(Hausdorff et al., 2003). Recent studies established relations of
this measure with CNS structural changes (Rosso et al., 2014;
Tian et al., 2017; Corporaal et al., 2018). Increased gait variability
has been described in pre-manifesting/early stages of different
neurological conditions such as hereditary ataxias (Rochester
et al., 2014; Ilg et al., 2016), familial Parkinsonism (Mirelman
et al., 2013) and multiple sclerosis (Sosnoff et al., 2012). This
motor feature occurred even in the absence of reduced gait speed
or other clinical findings. This supports using the magnitude of
gait variability as a screening measure for incipient neurological
conditions in their prodromal stages. The clinical relevance
is further supported by use of gait variability as the primary
outcome in recent interventional trials (Beauchet et al., 2014;
Henderson et al., 2016). In contrast, data on its biometric
properties are scarce (Lord et al., 2011b).

Its repeatability was mostly reported for within-session retest
(Brach et al., 2008; Paterson et al., 2009; Faude et al., 2012;
Galna et al., 2013; Wittwer et al., 2013; Konig et al., 2014a;
Schmitz-Hubsch et al., 2016) with only few reports on inter-
session reliability (Faude et al., 2012; Galna et al., 2013; Wittwer
et al., 2013; Konig et al., 2014a). It is obvious that single stride
perturbations have larger effects on stride CoVs than on averages
of spatiotemporal parameters themselves. In line with this, the
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reliability of gait variability measures was found much lower
than the notably excellent repeatability of spatiotemporal gait
parameters such as walking speed and this holds true for different
re-test intervals and for healthy as well as diseased populations.
Thus, recording more than 50 gait cycles considering only steady-
state walking is commonly recommended (Konig et al., 2014a) for
a reliable description of gait variability.

However, two aspects limit the collection of gait data over
the proposed distance in realistic clinical settings: First, time
constraints within the clinical setting prohibit transfer to a gait lab
and spatial constraints on the ward most often allow only serial
short-distance walks back and forth potentially increasing gait
variability due to difference between successive walking bouts.
Second, subjects with neurological conditions might get fatigued
or feel unable to complete longer walking distances, which may
confound the performance of the task, especially if test repetitions
are required.

We therefore sought to explore how the magnitude of gait
variability can be reliably captured in the clinical setting using
a commercially available sensor-based gait analysis system. We
specifically explored effects of the common practice to collect
strides over several walking segments separated by 180◦ turns
using an automated turn detection. To account for possible
differences in the applicability and limitations of this testing
paradigm with gait pathology, we included data from a large
cohort of elderly healthy (HE) subjects and data from subjects
with different movement disorders (MD) known to be associated
with increased gait variability, namely cerebellar ataxia (ATX),
essential tremor (ET) and Parkinson’s disease (PD).

METHODS, SUBJECTS AND CLINICAL
ASSESSMENTS

Study Populations
Analyses were performed on two datasets of subjects with
expected differences in gait variability.

The first dataset (MD dataset) comprised 31 subjects with
movement disorders associated with increased gait variability
[12 Parkinson’s disease (PD, age 60 ± 9), 7 cerebellar ataxia
(ATX, age 58 ± 7), 12 essential tremor (ET, age 67 ± 10)]
These subjects underwent gait analysis at the movement disorders
clinic of Charité - Universitätsmedizin Berlin. Clinical details are
provided in Table 1. Patients requiring walking aids or suffering
from concurrent conditions with potential affection of gait (i.e.,
neuropathy, musculoskeletal impairments, vestibular disorders)
were excluded. The study protocols were approved by the IRB of
Charité - Universitätsmedizin Berlin (EA1/267/12, EA2/016/16,
EA2/015/16, EA2/186/16).

The second dataset (HE dataset) consisted of 172 healthy
elderly individuals (78 females, average age 70.1 years ± 6.2)
assessed during the third visit (2013/14) of the TREND study
(Salkovic et al., 2017). Only subjects without functionally relevant
disturbance of balance or locomotor function were included.
The TREND study was approved by the ethics committee of the
Medical Faculty of the University of Tübingen (Nr. 90/2009BO2).
All subjects of both cohorts provided informed consent.

Assessments
Clinical Assessment
The motor part of the Unified Parkinson’s Disease Rating Scale
(UPDRS-III) (Jankovic and Tolosa, 2007) was used for the
assessment of disease severity in PD, the Fahn-Tolosa-Marin
Tremor Rating Scale items 1-14 (TRS) (Fahn et al., 1988; Stacy
et al., 2007) for ET, and the scale for the assessment and rating
of ataxia (SARA) (Schmitz-Hubsch et al., 2006) for cerebellar
ataxia.

Gait Assessments
Gait was recorded in both studies (MD and HE) with a
commercially available gait analysis system (Mobility Lab R©,
APDM, Portland, OR, United States) consisting of six body-
worn inertial sensors, symmetrically attached to wrists, shanks
and medially placed over sternum and lower back. In all patient
groups, participants walked a 10-m distance ( = segment) five
times back and forth at their preferred speed without specific
instructions for turning. Two lines of colored tape orthogonal
to the walking direction indicated the boundaries of the segment
and provided a visual clue for turning. The dataset thus includes
50 m of walking and four turns of 180◦. In the HE study,
participants walked a 20-m distance (=segment) back and
forth for 1 min, also at preferred speed and without specific
instructions for turning but with respective segment ends marked
with pylons.

Data Processing and Statistical Analysis
At least 40 gait cycles were obtained per participant and included
for analyses to ensure comparability across the groups and
datasets.

In the first approach, we used the algorithms for turn
excision provided by the manufacturer (Mobility Lab software
V1.0.0.201503302135) to export raw data. Software output
settings were preset to exclude turns from analysis. This yields
export of stridewise timecoded values of all gait parameters
from all segments of walking in between turns as defined by
manufacturer’s turn excision. Of these, stride length and stride
time (=gait cycle time) and their CoVs [(SD/mean)∗100] were
used for further analysis.

For each individual trial, lengths and times of the strides were
plotted against their respective time stamps (Figures 1A–C). This
allowed us (1) to detect turns as “gaps” in the time-series, (2) to
identify strides that occurred directly before and after such a turn
and (3) to exclude trials with non-detection of turns that would
show as irregular patterns of gaps or absence of such gaps in time
series with corresponding implausible aberrations of stride length
and time values.

To further evaluate the effect of algorithmic turn excision,
we extracted gait parameters for strides directly before and
after turns as defined by manufacturer’s algorithm. These
strides were normalized to individual mean, expressed as
percentage of mean of all 40 strides. In HE datasets, only
the first two turns were used as this was the minimum
performed by every participant. Histograms for strides before
and after turns were produced for relative stride values and
normalized for their probability distribution to account for
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TABLE 1 | Clinical characteristics of patients with movement disorders.

Disease

Age Duration Rating Clinical Weight Height Condition specific medication

Patient Sex Diagnosis [years] [years] instrument score [kg] [m] (daily dose)

ET01 M ET 57 44 TRS 7/116 80 1.78 600 mg gabapentine 25 mg amitryptiline

ET02 F ET 72 57 TRS 15/116 75 1.65 47.5 mg metoprolol

ET03 M ET 63 50 TRS 26/116 84 1.78 100 mg propranolol 250 mg primidone

ET04 F ET 71 30 TRS 10/116 68 1.72 None 100 mg pregabaline

ET05 M ET 73 10 TRS 7/116 64 1.63 None

ET06 M ET 53 39 TRS 30/116 72 1.73 None

ET07 F ET 70 30 TRS 13/116 69 1.67 None

ET08 F ET 77 8 TRS 12/116 63 1.52 None

ET09 F ET 72 38 TRS 14/116 65 1.67 160 mg propanolol

ET10 M ET 82 16 TRS 20/116 76 1.76 None

ET11 M ET 48 18 TRS 38/116 75 1.87 250 mg primidone 50 mg propanolol

ET12 F ET 70 12 TRS 32/116 63 1.63 120 mg propanolol

PD01 M PD 64 5 UPDRS-III 16/108 90 1.84 n.a.

PD02 M PD 73 21 UPDRS-III 12/108 86 1.85 2.1 mg pramipexol 150 mg levodopa +
benserazide 100 mg amantadine

PD03 M PD 58 21 UPDRS-III 20/108 91 1.88 600 mg levodopa + benserazide 300 mg
amantadine

PD04 M PD 56 11 UPDRS-III 18/108 85 1.8 None

PD05 M PD 68 16 UPDRS-III 19/108 87 1.84 400 mg levodopa + benserazide 16 mg
rotigotine

PD06 M PD 57 20 UPDRS-III 12/108 69 1.73 800 mg levodopa + benserazide 50 mg
safinamide

PD07 F PD 62 n.a. UPDRS-III n.a. n.a. 1.78 n.a.

PD08 M PD 46 11 UPDRS-III 18/108 65 1.52 1.3 mg pramipexole 600 mg levodopa +
benserazide 200 mg amantadine

PD09 F PD 44 2 UPDRS-III 10/108 58 1.63 1 mg rasagiline 2 mg ropinirole

PD10 M PD 67 8 UPDRS-III 19/108 67 1.68 850 mg levodopa + carbidopa 1000 mg
entacapone 50 mg safinamid

PD11 F PD 51 4 UPDRS-III 11/108 69 1.67 200 mg levodopa + benserazide 4 mg
rotigotine 1 mg rasagiline

PD12 M PD 69 4 UPDRS-III 17/108 70 1.72 600 mg levodopa + benserazide 6 mg
rotigotine

ATX01 M SCA14 64 21 SARA 8.5/40 86 1.78 None

ATX02 M SCA14 60 13 SARA 12/40 93 1.75 None

ATX03 F Cerebellar Ataxia 57 3 SARA 3.5/40 64 1.66 None

ATX04 F Cerebellar Ataxia 66 6 SARA 6/40 56 1.53 None

ATX05 M Cerebellar Ataxia 47 18 SARA 15/40 68 1.76 None

ATX06 F Cerebellar Ataxia 61 5 SARA 8/40 65 1.58 None

ATX07 F Cerebellar Ataxia 52 2.5 SARA 16/40 67 1.68 None

ET – essential tremor; PD – Parkinson’s disease; MD – patients with movement disorders; SARA – Scale for Assessment and Rating of Ataxia; SCA14 – spinocerebellar
ataxia genotype 14; TRS – Fahn-Tolosa-Marin Tremor Rating Scale (items 1–14); UPDRSIII – Unified Parkinson’s Disease Rating Scale part III (motor part).

different sample sizes. This renders frequency of occurrence
as proportion of total counts per group. From group means
and standard deviations, the probability density function
for normal distribution was produced for each parameter
and superimposed on the histogram to visualize skews.
MD were treated as one group for this visualization while
parameter values for stride length and time before and after
turn were additionally calculated by disorder (Supplementary
Table S4).

Comparisons between characteristics of stride before and after
turns and averages from total distance were conducted with

paired t-tests. Results were not compared between groups due to
the large differences in sample size.

As a second approach – as results suggested a relevant
difference in stride characteristics before/after turns versus
average of all strides in a substantial proportion of subjects
(Supplementary Table S3) –we used a more generous turn
segmentation that excluded one additional stride before and
after each automatically segmented turn. All further analysis was
replicated using this alternative approach to explore if a more
“generous” turn segmentation would attenuate any confounding
effect of turns on stride length/time CoVs. This approach resulted
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FIGURE 1 | Exemplary plots of stride length values over the time course of the trial. Turns can be identified as gaps (dark gray overlay) in the timeseries as they are
segmented and excluded by the implemented algorithm. Additional strides that were removed around turns in the alternative turn segmentation approach are
marked with a lighter gray overlay. (A) Healthy subject with a turn that was not segmented by the software algorithm. Note the drastically shorter steps while turning,
resulting in CoV beyond physiological range when calculated from all strides. (B) Patient with cerebellar ataxia and proper detection of all four performed turns. Note
the pronounced fluctuation of stride length values from stride to stride, resulting in a CoV beyond physiological range. (C) Patient with idiopathic Parkinson’s disease
and proper detection of all four performed turns. Note the decreased average stride length and the shorter strides right after the turns which may correspond to
impaired step initiation.

in a lesser total number of strides and thus analyses were
referenced to a maximum number of 32 strides in MD and HE.

In order to explore the dependency of CoVs from the number
of strides recorded, we calculated individual CoVs for (a) each
of the five/three (MD/HE) segments of straight 10/20 m walking
between turns and (b) cumulative for each of 3–40 strides when
using manufacturer’s turn excision and 3–32 when applying the
alternative turn segmentation.

Results of (a) were used to determine the intra-individual
consistency of spatial and temporal gait parameters and their
CoV. A two-way random single measure model was applied to
compute intraclass coefficient (ICC) with segments regarded as
“repeated measurements.” Thus ICCs reflect to which degree

individuals maintain their results stable over the 3–5 segments of
continuous walking segmented by turns. ICCs less than 0.4 were
interpreted as poor, 0.4–0.8 as fair to good and more than 0.8 as
excellent.

Results of (b) were used to depict fluctuations of gait
parameters and evolution of CoVs during the trial by plotting
cumulative values of 3 up to 40 (32) strides. Pearson’s
correlation coefficients were calculated for individual cumulative
means/CoVs over gait cycles 3–40 (32) with the individual
mean/CoV at stride 40 (32). Respective R was plotted per
stride.

Matlab 9.1 (Mathworks, Natick, MA, United States) with
custom scripts was used for all further analyses.
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RESULTS

Clinical Features of Study Population
Parkinson’s disease patients were on average 60± 9 years old, had
an average BMI of 25 ± 2 kg/m2, and scored 16 ± 4 (of 108) in
the UPDRS-III. ET patients were 67 ± 10 years old, had a BMI
of 25 ± 2 kg/m2 and scored 19 ± 10 (of 116) in the TRS score.
Ataxia patients were 58± 7 years old, had a BMI of 25± 3 kg/m2
and scored 10 ± 5 (of 40) on SARA score. Detailed information
about demographics and clinical parameters of respective cohorts
are provided in Table 1.

Detection of Turns
When considering all walks from disease groups, all 124 (=31× 4;
100%) turns were detected, segmented and excluded from further
analysis by the manufacturer’s algorithm (El-Gohary et al., 2013).

In HE, visual inspection revealed non-detection of turns in 10
of 172 individuals (5.8%, for an example see Figure 1A). Subjects
in which non-detection of turns had occurred, as a group differed
from the remaining 162 in shorter SL at 80.4 ± 6.3%stature
(p = 0.0006) and longer ST at 1.088 s ± 0.1 (p = 0.01). More
importantly, their CoVs were significantly higher compared to
datasets with properly detected turns [CoV-SL of 6.5% ± 3.0
(p < 0.0001) and CoV-ST of 6.4% ± 5.0 (p < 0.0001)] which
is likely due to confounding influence of steps in turn being
integrated to calculation of results. Datasets including non-
detected turns were excluded from further analysis.

Gait Parameters Excluding Turns
In the remaining dataset (Table 2), stride length was expectedly
shorter and stride variability higher in patients compared to HE.
CoV-SL and CoV-ST were highest in the subgroup of ataxic
subjects. Subgroup differences were not statistically evaluated as
this was not the focus of this study.

Characteristics of Strides Before and
After Turns
Lengths and times of strides before and after algorithmically
excised turns were extracted and evaluated for systematic skew
using a histogram/binning process (Figure 2). All patients were
grouped into one MD group for clarity of depiction. This seems
justified as we did not aim to explore differences between entities
at this point but a technical issue in a group of subjects with
suspected increase of CoV. In MD, 248 strides around turns were
extracted (124 before and 124 after turns) and 648 strides were

extracted from the HE dataset (324 before/after turns). Strides
after turns were on average spatially shorter and temporally
longer than means of 40 strides in MD patients (2.8 and 3.2%
difference, p < 0.01) while in HE this applied to a lesser degree to
strides before and after turns (1.2 and 1.4% difference, p< 0.0001,
see Supplementary Figure S1). When described per group,
alterations of stride characteristics were specifically prevalent
in PD and ET groups for strides after turns (Supplementary
Table S4).

Gait Parameter Consistency Over
Different Segments of 10/20 m of
Straight Walking Between Turns
While stride length and stride time were highly consistent across
the 3–5 segments (ICC > 0.90) in all groups (Supplementary
Tables S1, S2), their CoVs showed only fair to poor consistency
according to ICC (Figure 3). However, the range of absolute
difference in CoVs across segments was smallest (less than 0.5%,
see Supplementary Table S1 and Figure 3) in the HE and ET
groups that also featured the lowest ICCs (Figure 3).

When this was recalculated after omission of one more
stride before and after the manufacturer’s turn excision, this
generally decreased CoV group means while respective ICCs only
partially improved and range of CoV over segments only partially
decreased (Figure 3 and Supplementary Table S2).

Fluctuations of Gait Parameters Over the
Gait Course
The evolution of cumulative group means of CoVs along
with respective confidence intervals over 40 gait cycles are
depicted in Figure 4. While cumulative means of stride length
and stride time were stable with constant confidence margins
(Supplementary Figure S4) there were remarkable changes in
CoV observed in single individuals of all patient groups. CoV
analysis using manufacturer’s turn excision (Figures 4A,C,E,G)
revealed sudden increases of individual cumulative means that
were likely related to turning events. This resulted in a slight
increase of CoVs over the course of gait cycles at group level
and a widening of the confidence interval through to stride 40.
However, absolute differences in CoVs after the 10th stride are
rather of negligible magnitude at group level (up to 0.5% in
patient groups, <0.2% in HE).

Using the explorative alternative turn segmentation
(Figures 4B,D,F,G) and according total of 32 gait cycles
seemed to attenuate but not totally eliminate this phenomenon.

TABLE 2 | Stride length and time: mean, standard deviation, and coefficient of variation (CoV) in included cohorts.

Parameter HE (n = 162) MDALL (n = 31) ATX subgroup (n = 7) ET subgroup (n = 12) PD subgroup (n = 12)

Stride length [% stature] 86.13 ± 4.83 76.99 ± 7.04 76.06 ± 7.55 78.50 ± 6.66 76.02 ± 7.45

CoV Stride length [%] 1.99 ± 0.90 3.41% ± 2.17 5.61% ± 3.30 2.74% ± 0.87 2.81% ± 1.47

Stride time [second] 1.02 ± 0.06 1.04 ± 0.11 1.12 ± 0.20 1.02 ± 0.07 0.99 ± 0.05

CoV Stride time [%] 2.10 ± 0.68 3.54% ± 2.22 5.65% ± 3.64 3.14% ± 1.13 2.70% ± 1.07

CoV – Coefficient of variation; HE – healthy elderly; MD – neurological disorders with motor impairment, comprised of: ATX – patients with cerebellar ataxia; ET – essential
tremor; PD – Parkinson’s disease.

Frontiers in Aging Neuroscience | www.frontiersin.org 6 January 2019 | Volume 10 | Article 435

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00435 January 18, 2019 Time: 13:6 # 7

Kroneberg et al. Assessment of Gait Variability in Confined Settings

FIGURE 2 | Distribution of gait parameter values right before and after turns relative to individual overall average. To account for different cohort sizes and number of
turns, histograms were normalized for probability density. Parabolas depict the probability density function derived from means and standard deviations of the
respective subset of strides. (A) Distribution of stride length values before turns for patients (red) and healthy subjects (blue). (B) Distribution of stride length values
after turns. Note the wider spread of stride length values in the cohort of patients and the trend toward a shorter stride length compared to healthy subjects.
(C) Distribution of stride time values before turns. (D) Distribution of stride time values after turns. Note the wider spread of stride time values in the cohort of patients
and the trend toward a longer stride time compared to healthy subjects.

Specifically, confidence margins for CoV stride time still showed
a sharp increase that could be narrowed down to performance of
one ataxic subject at the individual level.

Pearson’s correlation coefficients of cumulative means/CoVs
from stride 3 through to stride 40 versus the individual
mean/CoV at stride 40 were plotted against strides. We used
R > 0.8 as criterion to estimate the gait cycle N, at which
each parameter can be reliably assessed (Table 3, Supplementary
Figures S2, S3, and Supplementary Table S5). For stride length
and stride time, very strong correlations (R > 0.9) were reached
after only 3 gait cycles in all groups. For CoV stride length,
R > 0.8 was reached at the 10th stride in ATX and PD
group, but only after 20th stride in ET and 16th stride in HE.
For CoV stride time criterion was reached at 8th stride for
ATX, 18th and 19th stride for ET and PD and 20th stride

in HE. These estimates were generally smaller for all patient
groups when the alternative turn segmentation was applied
(Supplementary Table S4, Supplementary Figures S2C,D,
S3D–F). The correlation criterion indicated a number of < 10
strides as sufficient in the disease groups studied except for 16
strides for CoV stride length in ET. Estimates increased for HE
(25 strides for CoV stride length and 17 for CoV stride time)
possibly due to smaller total number of strides considered.

DISCUSSION

Increased gait variability is a clinically relevant sign with
potentially relevant implications for patient counseling in various
neurological conditions and aging. As gait variability is not
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FIGURE 3 | Characteristics of Intraclass Coefficients (ICC) for stride length and stride time CoVs calculated for each segment. Square markers depict averages of
CoVs on group level for each segment, Whiskers indicate standard deviation (SD) of each segment. Diamond markers show averages of CoVs on group level after
alternative turn segmentation of ±1 stride around turns. Respective ICC values for both approaches are stated underneath HE und patient subgroup graphs.

easily quantifiable from clinical observation, the instrumental
assessment of gait is a valuable adjunct to clinical examination.
However, the clinical use of such assessment is hampered by
different constraints. Walking with 180◦ turns is a common
paradigm to increase the number of recorded strides at the same
time avoiding stops and establish a more steady-state-walking
pattern. While widely applied wearable sensors in principle allow
continuous gait monitoring, there remains uncertainty about
the influence of assessment paradigms and environment on
parameter output. For clinical use, the algorithms implemented
for turn excision claim to separate straight, steady state walking
from turning. We investigated a possible effect of using such
turning paradigm with continuous kinematic recording on the
assessment of gait variability from “regular” straight walking
segments in groups of subjects who are known to have increased
gait variability.

Our main findings can be summarized as follows:
(1) algorithmic excision of turns can fail and result in
misleadingly high values for gait variability and this seems
to occur independent of gait dysfunction, (2) we observed
indeed an effect of turns on spatiotemporal stride characteristics
calculated of straight walking segments inbetween turns, which
resulted in increased CoV and wider confidence margins
with increasing number of steps, (3) despite low repeatability
according to ICC, only marginal absolute changes in parameters
of gait variability occur at group level between the 10th and 40th
stride, indicating that the assessment of gait variability can be
reliably performed using short distance walks that include less
than 15 strides.

Our results help to determine the clinimetric properties
of gait variability and may have relevant implications for the
clinical use of instrumental gait analysis. When using systems

with automated turn segmentation, the signal features used by
manufacturers may differ and are usually not disclosed to the
user. For the system used here, our data suggest that non-
detection of turns was related to turning around a pylon whereas
it did not occur in any of the “sharp” turns performed in the
three patient groups. In other words, there may be a limitation
of such algorithms to detect turns with broader diameter and
subsequently lower horizontal accelerations. As non-detection
can relevantly shift individual CoV into even pathological ranges
(Figure 1C), it is important to exclude its occurrence before the
interpretation of test results. The simple plotting of step time
series used here seems an easily applicable quality check. As a pro
argument for instrumental gait analysis with automated cutting
of turns, non-detection of turns seemed unrelated to disease-
specific changes in turning performance in elderly subjects with
PD, ATX and ET.

As expected, we found lower stride length and higher CoV
stride time and CoV stride length at group level in patients
compared to HE. These differences, especially the increase of gait
variability measures, were most pronounced in ataxic subjects
which is in line with previous findings (Moon et al., 2016).
Further, gait variability seen in HE was expectedly low at group
level, but means + 1 SD of 2.89 and 2.78% are somewhat higher
than previously reported (Konig et al., 2014a, 2016a), which
may be related to the age of our healthy cohort. According to
published cut-off of 2.6%, CoV stride time for 40 gait cycles was
above cut-off in more than half in ATX, about half of ET patients
and lowest rates in PD (Table 3) which is in line with previous
findings (Moon et al., 2016). However, upto 19% (30/162) of
HE featured increase of CoV in pathological range even when
cases with non-detection of turns were excluded. One may
speculate that this elderly cohort is likely to contain proportions
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FIGURE 4 | Cumulative CoVs for every gait cycle over the gait course. The occurrence of turns during the gait course is indicated by blue dots. Black – cumulative
CoV of HE; brown – cumulative CoV of ATX; blue – cumulative CoV of ET; orange – cumulative CoV of PD. (A) Cumulative CoV stride length of patients with ataxia,
essential tremor and Parkinson’s disease. (B) Cumulative CoV stride length of patients with ataxia, essential tremor and Parkinson’s disease after alternative turn
segmentation. (C) Cumulative CoV stride length of healthy elderly. (D) Cumulative CoV stride length of healthy elderly after alternative turn segmentation.
(E) Cumulative CoV stride time of patients with ataxia, essential tremor and Parkinson’s disease. (F) Cumulative CoV stride time of patients with ataxia, essential
tremor and Parkinson’s disease after alternative turn segmentation. (G) Cumulative CoV stride time of healthy elderly. (H) Cumulative CoV stride time of healthy
elderly after alternative turn segmentation.

of incipient neurodegenerative disorders or comorbidities or
medications to explain this.

Using the manufacturers turn excision we found changes in
spatiotemporal parameters in strides before and after turns that
obviously affect CoV results of straight walking inbetween turns.
The higher prevalence of such strides in a combined patient
group of MD compared to HE group point to a disease-related
phenomenon, specifically in PD and ET, though to be interpreted
with caution due to small group sizes. It is conceivable that
hesitation in step initiation in PD or postural adjustment after
turn in ATX may result in spatially shorter and temporally
longer strides after turns. If so, steps before or after turn contain
disease-relevant information and optimizing turn segmentation
algorithms might lead to loss of information. However, it is
not precluded that the algorithmic turn detection gets imprecise
due to disease-specific features like decreased turning velocity
or trunk accelerations toward end of turn. Clarification of

this point would warrant comparison against start and end of
turn defined by a clinical observer which was not part of our
protocol. In line with this, the exploratory approach of a more
generous turn excision applied here, also remains arbitrary and
excluding two steps rather than one before/after turns detected
by manufacturer’s algorithm might also be discussed in the
same right (see Figure 1C). Even if reliability could possibly be
improved by a more generous turn excision, such adaptation will
not usually be feasible in the context of clinical application.

Although absolute changes in CoV induced by the issue
of turn segmentation are minor, this additional variance has
implications for the definition of the repeatability of these
parameters. The recommended > 50 steps for analysis of gait
variability is based on the statistical assumption that increased
numbers of observations (here: strides) will lower the variability
(here: CoV stride length/time) of test results. However, our
observation contrasts this assumption and unexpectedly showed
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TABLE 3 | Number of gait cycles needed reach correlation coefficient of R > 0.8 compared to 40 gait cycles in healthy elderly (HE) and subjects with movement
disorders (MD).

N to reach
R > 0.8

Average at Nth
GC (±SD)

Number (%) of subjects
with increased CoV

(>2.6%) at n

Average parameter
after 40 GC (±SD)

Number (%) of subjects
with increased CoV
(>2.6%) at 40 GC

HE Stride length [%stature] 3 86.54 ± 5.01 n.a. 86.13 ± 4.83 n.a.

HE CoV Stride length 16 1.85% ± 0.86 21/162 (13%) 1.99 % ± 0.90 23/162 (14%)

HE Stride time [seconds] 3 1.029 ± 0.07 n.a. 1.021 ± 0.062 n.a.

HE CoV Stride time 20 1.90% ± 0.69 20/162 (12%) 2.10 % ± 0.68 30/162 (19%)

MD Stride length [%stature] 3 77.15 ± 6.94 n.a. 76.99 ± 7.04 n.a.

MD CoV Stride length 11 3.03% ± 1.69 17/31 (55%) 3.41 % ± 2.17 16/31 (52%)

MD Stride time [seconds] 3 1.02 ± 0.10 n.a. 1.032 ± 0.10 n.a.

MD CoV Stride time 10 3.02% ± 1.63 17/31 (55%) 3.54 % ± 2.22 19/31 (61%)

ATX Stride length[%stature] 3 76.18 ± 7.46 n.a. 76.06 ± 7.00 n.a.

ATX CoV Stride length 10 4.47% ± 2.79 5/7 (71%) 5.61 % ± 3.30 7/7 (100%)

ATX Stride time [seconds] 3 1.09 ± 0.14 n.a. 1.12 ± 0.20 n.a.

ATX CoV Stride time 8 4.28% ± 2.58 4/7 (57%) 5.65 % ± 3.64 6/7 (85%)

ET Stride length [%stature] 3 78.11 ± 6.73 n.a. 78.50 ± 6.66 n.a.

ET CoV Stride length 20 2.63% ± 0.72 5/12 (42%) 2.74 % ± 0.87 6/12 (50%)

ET Stride time [seconds] 3 1.021 ± 0.076 n.a. 1.02 ± 0.07 n.a.

ET CoV Stride time 18 3.20% ± 1.08 7/12 (58%) 3.14 % ± 1.13 7/12 (58%)

PD Stride length [%stature] 3 76.74 ± 6.41 n.a. 76.02 ± 7.45 n.a.

PD CoV Stride length 10 2.44% ± 0.97 4/12 (33%) 2.81 % ± 1.47 3/12 (25%)

PD Stride time [seconds] 3 0.979 ± 0.05 n.a. 0.99 ± 0.05 n.a.

PD CoV Stride time 19 2.24% ± 0.81 4/12 (33%) 2.70 % ± 1.07 6/12 (50%)

ATX – patients with ataxia; CoV – coefficient of variation; ET – patients with essential tremor; GC – gait cycle; HE – healthy elderly; MD – neurological disorders with motor
impairment; PD – patients with Parkinson’s disease; SD – standard deviation.

increases of CoV group means and higher confidence limits with
more strides. As suggested from plots of cumulative means, this
phenomenon very likely reflects changes in stride characteristics
before and after excised turns and questions the validity of our
40-stride results as appropriate reference for consistency analysis.
In this sense, if CoV for short distances do not correlate with
values for 40 strides (acquired in turning paradigm), this does not
necessarily imply that 40 strides would be the better choice. In
fact, the proportions of subjects with CoV in pathological range
are quite comparable to using cumulative means of 10-20 strides
(Table 3). Another common problem with ICC is its deflation
with low to very low within-group variability (Weir, 2005). This
has also been observed with other parameters of physiologically
low variability like sway measures in static posturography of
healthy subjects (Mancini et al., 2012). In line with this, despite
only poor to fair repeatability according to ICC in our HE
group, for example, absolute differences of CoVs were minimal
(<0.5%). Data in previous reports seem to support this notion
(Rebula et al., 2013; Konig et al., 2014a; Schmitz-Hubsch et al.,
2016). Still, such error should be considered in interpretation
of “borderline” CoV results. Importantly, as reported by others
(Lord et al., 2011a; Rennie et al., 2018), presence of gait pathology
does not seem to influence the reliability of stride variability
measures: even lower numbers of only 10 strides (compared
to 16/20 in HE) seem sufficient to achieve reliable estimates of
gait variability in a population with high gait variability (ATX).
With respect to continuous gait recording over longer walking
distance, it has to be acknowledged that other factors apart from

turns may affect reliability in clinical populations, e.g., decrease
in attentional effort or fatigue, which could argue for preferring a
shorter distance for most standardized recordings.

CONCLUSION

Algorithmic detection of turns can fail and this seems
due to turning instructions, rather than gait pathology.
Moreover, the precision of algorithmic segmentation of straight
walking segments interrupted by turns remains debatable, as
spatiotemporal stride characteristics immediately before and
after turns were found to differ from the averages generated
from the full walking distances. Possible explanations include
imprecise algorithmic segmentation, anticipatory slowing before
turns, and disease-related hesitation after turns. As a general
comment, collecting larger numbers of strides (including turns
and automated turn segmentation) does not necessarily provide
more robust estimates of gait variability compared to shorter
distance level walks without turns. Our findings have relevant
implications for the execution and interpretation of gait analysis
in clinical settings.
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FIGURE S1 | Characteristics of turn-related parameter values per group. (A)
Stride length, (B) Stride time. Asterisks refer to significance in respective paired
(within group) or unpaired t-test (between groups). ∗p < 0.05; ∗∗p < 0.001;
∗∗∗p < 0.0001.

FIGURE S2 | Pearson’s correlations of individual cumulative parameter averages
at gait cycle (GC) n with the overall average after 40 GC in (A) patients with
movement disorders and (B) healthy elderly. After alternative turn segmentation,
correlations were calculated over 32 GC. (C) Patients with movement disorders
after alternative turn segmentation (D) healthy elderly after alternative turn
segmentation. While stride length and stride time averages after just a few steps
show already excellent and persistent correlation with average after 40 GC, CoVs
exhibit more fluctuations. We used the threshold of R > 0.8 to estimate the
minimum number of strides to reliably measure CoVs for each parameter in each
cohort (see also Table 3 and Supplementary Table S5).

FIGURE S3 | Pearson’s correlations of individual cumulative parameter averages
at gait cycle (GC) n with the overall average after 40 GC in patient subgroups (A)
patients with ataxia (B) patients with essential tremor (C) patients with Parkinson’s
disease. After alternative turn segmentation, correlations were calculated over 32
GC. (D) Patients with ataxia (E) patients with essential tremor (F) patients with
Parkinson’s disease. We used a threshold of R > 0.8 to estimate the minimum
number of strides to reliably measure CoVs for each parameter in each cohort
(see also Table 3 and Supplementary Table S3).

FIGURE S4 | Cumulative gait parameter value for every gait cycle over the gait
course. The occurrence of turns during the gait course is indicated by blue dots.
Black – cumulative parameter of HE; brown – cumulative parameter of ATX; blue –
cumulative parameter of ET; orange – cumulative parameter of PD. (A) Stride
length over trial of patients with ataxia, essential tremor and Parkinson’s disease.
(B) Stride length over trial of patients with ataxia, essential tremor and Parkinson’s
disease after alternative turn segmentation. (C) Stride length over trial of healthy
elderly. (D) Stride length over trial of healthy elderly after alternative turn
segmentation. (E) Stride time over trial of patients with ataxia, essential tremor and
Parkinson’s disease. (F) Stride time over trial of patients with ataxia, essential
tremor and Parkinson’s disease after alternative turn segmentation. (G) Stride time
over trial of healthy elderly. (H) Stride time over trial of healthy elderly after
alternative turn segmentation.

TABLE S1 | Consistency of gait parameters and their coefficients of variation
(CoV) across straight walking segments.

TABLE S2 | Consistency of gait parameters and their coefficients of variation
(CoV) across straight walking segments per disease subgroups AFTER omission
of one additional stride before and after turns.

TABLE S3 | Characteristics of strides before and after turns. Average refers to the
means of all 40 gait cycles.

TABLE S4 | Characteristics of strides before and after turns per disease groups.
Average refers to the means of all 40 gait cycles.

TABLE S5 | Number of gait cycles needed to reach a correlation coefficient of
R > 0.8 compared to 32 gait cycles in subjects with movement disorders (MD)
and healthy elderly (HE) per disease subgroups AFTER omission of one additional
stride before and after turns.
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