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CHAPTER 1

Introduction

Since the discovery of AIDS (Acquired immune deficiency syndrome) in 1981, approximately 35
million people have died from AIDS, and 36.7 million people currently live with an HIV infection,
as of 2016 [1, 2]. Evidently, the HIV epidemic still poses a global risk. Despite these depressing
numbers, impressive advances in drug development have been made, which have resulted in more
than 25 antiretrovirals being approved for HIV treatment. These antiretrovirals belong to four
major drug classes, namely entry inhibitors, reverse transcriptase inhibitors, integrase inhibitors
and protease inhibitors [3]. Antiretroviral therapy has significantly reduced the mortality and mor-
bidity of HIV infection. A proper utilization of these antiretrovirals can render HIV a chronic
manageable disease, with the expected lifespan of an infected person approaching that of the gen-
eral population [4]. However, the accessibility of antivirals even in resource-rich countries is not
universal [5] and the financial burden of the life-long treatment is immense. In fact, the situation
is even more dire, since 95% of people with HIV live in resource-constrained countries with very
limited access to HIV treatment [6]. Moreover, for every infected person starting an antiretroviral
treatment, there are two new infections [7], a situation which is clearly not sustainable. Ideally, a
scalable effective vaccine or a complete cure could bring an end to the epidemic. Unfortunately,
despite arduous efforts, the development of an effective vaccination has largely remained elusive
due to the genetic variability of HIV and its capacity to evade the immune system. Though a mod-
est success has been achieved by the RV144 clinical trial with a vaccine efficacy of 31% [8, 9],
further research and improvements are required to deliver a viable effective vaccine [6].

In 2009, a remarkable case study reported an HIV infected person, who was treated for
leukaemia and was completely cured of HIV [10]. The patient was dubbed ‘Berliner patient’.
However, subsequent attempts to cure infected individuals have failed [11]. These attempts high-
light that a number of factors contributed to the successful cure of Berliner patient [12], and that
in their entirety, these factors are not well understood. Evidently, more research is warranted to
achieve a scalable functional cure.

While the search for a cure and a vaccine continues, preventing new infections is of paramount
importance. In addition to raising awareness, the increased use of condoms, voluntary male cir-
cumcisions, and other methods, two antiretroviral-based prophylactic strategies have been recog-
nized as important cornerstones for controlling the epidemic. The first antiretroviral-based strategy
is known as ‘treatment-as-prevention’ and it focuses on infected individuals. It involves initiating
treatment in an infected person shortly after infection [13]. As a consequence, the viral load of
the treated individual decreases, which also decreases the contagiousness of the infected individ-
ual [14, 15]. The strategy was selected as the breakthrough of the year 2011 [16]. However, the
preventive benefits of treatment-as-prevention may be difficult to achieve in practice, as individu-
als are unaware of their serostatus shortly after an infection and at the same time, they have high
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2 CHAPTER 1. INTRODUCTION

viral loads and consequently are very contagious [2]. Secondly, inadequate viral suppression in
the infected treated individuals, due to lack of adherence and development of viral resistance, also
dampens its epidemiologic impact [2].

Some of these drawbacks mentioned above can be overcome by another antiretroviral-based
prophylactic strategy known as pre-exposure prophylaxis (PrEP). This strategy involves antiviral
drug administration to uninfected individuals at high risk of acquiring an HIV infection [17].
Recently, UNAIDS has recognized PrEP as one of its five pillars for reducing new infections to less
than 500,000 by 2020 [2]. Truvada (emtricitabine-tenofovir disoproxil fumarate) is currently the
only medication approved for PrEP. Despite its several advantages, truvada is not ideal. To improve
PrEP, many next-generation regimens, including long-acting formulations, are being investigated
as suitable candidates for PrEP [18]. However, most of them are patent-protected compounds and
thus are expensive. The question arises whether there are patent-expired antivirals that can be
repurposed as cost-effective alternatives for PrEP use and how to design roll-out schemes for these
antivirals.

Necessity/Aim/Challenge of the study: Assessment of the prophylactic utility of antivirals
concerns viral dynamics shortly after a viral exposure. Experimental investigation of the viral
dynamics shortly after an exposure poses difficulties: These derive from the fact that most of the
recently infected persons are unaware of their infections. In addition, not every exposure leads
to an infection owing to the fact that HIV transmission is an inefficient stochastic process [19].
Hence, detailed studies require observing a large number of people and examining them shortly
after an exposure, which is very difficult, notwithstanding ethical issues. Additionally, there is no
appropriate biomarker for an exposure. Initially, although viral replication might be occurring, the
assays are unable to detect the viral activity. By the time, viruses can be detected, the infection
has established itself. Hence, biomarkers and assays are not available to study exposures that fail
to lead to an infection.

Animal models used to study HIV transmission are insightful, but they are of limited use due
to several issues [20], including physiological differences between the animal and the human, the
respective viruses [21], differences between experiment set-ups and real-life scenarios. Besides
being difficult to obtain, ex vivo human explant models also do not fully recapitulate the in vivo

systemic infection [22]. These pre-clinical testings may not guide candidate selection, since they
often fail to translate into the clinical efficacy. Undoubtedly, human clinical trials for PrEP can
provide answers. However, quantifying the prophylactic efficacy in a clinical trial is ethically
problematic and necessitates conducting long and large trials that require monitoring thousands of
individuals over several years. This makes the systematic evaluation of candidates and deployment
strategies prohibitively costly. In light of the fact that there are currently more than 25 antivirals
approved for HIV treatment, several novel formulations and numerous ways to deploy them, tools
are urgently needed that can reliably and rapidly determine the prophylactic utility of antivirals to
prioritize candidates and to design roll-out strategies.

Despite HIV being among the most well-studied pathogens and a long history of mathemati-
cal modelling and simulation of HIV dynamics, there is a dearth of mathematical frameworks to
investigate the prophylactic utility of antivirals. To this end, we intend to build a mathematical
framework (pipeline) to serve as a tool to predict the prophylactic utility of antivirals. Building
such a framework for PrEP is a challenging task, which requires solving modelling and simulation
problems owing to the various complex processes occurring at different scales (multiscale). Since
PrEP involves antiretroviral administration to an uninfected person at high risk, the framework
requires modelling the time evolution of drug concentration, especially at its target-site (pharma-
cokinetics), viral dynamics (pharmacodynamics) shortly after a viral challenge and, if possible,
molecular interactions between the pharmacologically active drug moiety and viral components.
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Furthermore, it requires modelling the HIV transmission from an infected donor to an uninfected
recipient. Besides these modelling questions, appropriate mathematical algorithms for simulation
are required since purely deterministic approaches cannot account for the stochasticity of viral
replications shortly after a challenge.

Outline of the work: We begin by providing a brief biological background on HIV in Chap-
ter 2. In Chapter 3 and Chapter 4, we provide a concise mathematical background that introduces
the state-of-art methods on simulation of coupled chemical systems and model building respec-
tively. These chapters are intended to introduce the reader to the topic, but are far from being
exhaustive and comprehensive. From Chapter 5 to Chapter 8, we provide the reasoning and de-
velopment of various modules of the modelling and simulation framework in detail. In Chapter 9,
we provide insights and predictions for various antiretrovirals regarding their prophylactic utility
obtained from the developed framework. Finally, in Chapter 10 we discuss the results, summa-
rize main conclusions and provide some future perspectives on this work. The various modules
of the framework and related chapters are schematically depicted in the Graphical abstract below
(Figure 1.1).

Uninfected person

with high risk of 

HIV-1

Viruses

Framework

Recipient

HIV-1 infected 

person

Donor

Pharmacokinetics 
Chap. 5

Chap. 5Pharmacodynamics

(Viral replication cycle)
Chap. 2, 7

Viral exposure module
Chap. 8

Methods/Algorithms to quantity infection probabilities

1) Branching process theory

3) Hybrid stochastic-deterministic 

approach  (EXTRANDE)

2) Reduced-state chemical master 

equation

Chap. 7

For NRTIs

Direct response

module (IC
50

, m)

1) Top-down approach 

(PK-PD)
2) Bottom-up approach 

(MMoA)

Ex vivo experiment

(Fraction unbound 

correction)

For NNRTIs, CRA, InI, PIChap. 5, 6

Figure 1.1: Scheme of the multiscale systems pharmacology framework to predict the prophylactic

utility of antivirals: Various modules of the framework and related chapters.

This manuscript is based on the following publications: In the article [23], we employed
‘top-down’ (classical pharmacokinetic-pharmacodynamic modelling) and ‘bottom-up’ (molecular
mechanism of action) approaches to predict in vivo drug potencies for nucleoside reverse tran-
scriptase inhibitors (NRTIs), namely lamivudine (3TC), emtricitabine (FTC) and tenofovir (TFV).
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We compared drug potency predictions from the top-down approach with predictions from the
bottom-up approach for its validation, which was previously developed by von Kleist et al. [24].

In the article [25], we presented the multiscale systems pharmacology framework that inte-
grates processes occurring at various scales including; 1) microscale interactions of active moiety
of NRTIs with viral DNA polymerization; 2) meso- and macroscale processes, such as the drug
pharmacokinetics, viral replication dynamics; and 3) population scale processes, such as viral ex-
posure and long-term infection probabilities after repeated virus exposures, similar to a clinical
trial. We used the framework to benchmark various NRTIs with a special focus on 3TC, FTC and
TFV. Furthermore, we developed reduced-state viral dynamics model to circumvent the curse of
dimensionality encountered in the chemical master equation (CME) approach.

We further extended the framework in articles [26, 27]. In the article [27], we employed the
theory of branching processes to derive drug-class specific concentration-prophylaxis curves and
to benchmark all treatment approved antivirals except NRTIs. In the article [26], we utilized the
recently developed, numerically exact EXTRANDE (extra reaction algorithm for networks in a dy-
namic environment) algorithm [28] for simulations. The EXTRANDE algorithm is a Monte Carlo
algorithm based on thinning techniques, which can also circumvent the dimensionality problem in
the CME approach. Moreover, we tailored the algorithm to improve its run-time and accuracy. We
used the framework to assess various deployment scenarios for dolutegravir, an integrase inhibitor
which has not been hitherto tested for PrEP.

The content of the article [15] is not included in this manuscript. The article addresses the
important issue of drug resistance encountered in treatment-as-prevention. Development of drug
resistance in treated infected individuals can undermine the impact of treatment-as-prevention,
hence treatments should be designed to avoid or delay the drug resistance development. To this
end, we employed the optimal control theory to optimize and compare two distinct approaches
for the treatment of HIV-1: (i) a diagnostic-guided treatment strategy, based on infrequent and
patient-specific diagnostic schedules and (ii) a pro-active strategy that allows treatment adaptation
prior to diagnostic ascertainment.



CHAPTER 2

HIV in a nutshell

In this chapter, we briefly present the biological background on HIV, the time course of an HIV-1
infection in a host, various antiretroviral classes and the development of mathematical models of
HIV-1 dynamics.

2.1 Origin of the HIV epidemic

In 1981, a new disease was discovered that was characterized by the severe impairment of the
immune system. It was termed acquired immune deficiency syndrome (AIDS). The causative
agent of the disease was first discovered by Francoise Barre-Sinousse and Luc Montagnier in
1983 and subsequently by Robert Gallo’s team [29, 30]. Initially, Gallo named the virus HTLV-
III, whereas Montagnier’s group coined the name LAV (lymphadenopathy-associated virus) for
the virus. The nomenclature HIV (human immunodeficiency virus) was later agreed. Francoise
Barre-Sinousse and Luc Montagnier received Nobel prize for the discovery of the virus [30].

HIV is closely related to HTLV-I and HTLV-II viruses previously discovered by Gallo’s team
[30]. HIV is a retrovirus, which means that its genome is in form of RNA instead of DNA. During
its life cycle, the information in its genomic RNA is transcribed to DNA. The process is known
as reverse transcription and at the time of its discovery, it was in direct challenge to the central
dogma in the molecular biology that the information flows from DNA to RNA and from RNA to
proteinI .

Though HIV was first recognized in 1983, HIV first emerged in human in the early decades
of the 1900s in countries in Congo River basin [31, 32]. HIV originated from cross-species trans-
mission of simian immunodeficiency virus (SIV) from non-human primates into humans in West
and Central Africa [31]. More than 40 different non-human primate species including Gorilla and
Chimpanzee have been identified harbouring SIV infections in those regions [33]. SIV is largely
nonpathogenic in their natural host [34]. Cross-species transmission in human is mostly likely the
result of contacts with infected blood or tissues of non-human primates in the process of hunting,
butchering and keeping them as pets.

Evidences strongly suggest the occurrence of multiple independent cross-species transmis-
sions. HIV-1 group M and N originated directly, but independently, from SIV found in chim-
panzee. SIV itself emerged in Chimpanzee through recombination between SIV from red-capped
mangabeys and greater spot-nosed monkeys [31]. Moreover, SIV has been recently found to be
pathogenic in chimpanzee indicating that they recently acquired SIV [35]. This is further sup-
ported by the absence of SIV in two of four subspecies in chimpanzee [34]. The origin of HIV-1
group O is not completely resolved and can have either gorilla or chimpanzee origin, whereas

IHoward Temin and David Baltimore won the nobel prize for the discovery of reverse transcription [30].
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HIV-1 group P has gorilla origin [34] II. HIV-2 is distantly related to HIV-1 and has originated
from SIV found in sooty mangabeys monkey.

HIV-1 group M is the oldest lineage and is responsible for the global pandemic, whereas HIV-
1 groups N, O and P and HIV-2 are mostly localized in West-Central Africa and non-pandemic.
Analysis by Faria et al. [32] suggested that the spatial origin of HIV-1 group M is mostly likely in
Kinshasa in Democratic Republic of Congo. Initially, HIV-1 group M remained large localized.
Extensive use of the river system for transport and development of railway networks combined
with population growth facilitated the spread of HIV-1 group M throughout the region [32]. Fur-
thermore, a mutation in vpu gene of HIV-1 group M conferred a decisive advantage in comparison
to other groups to become a global pandemic [37].

Currently, HIV-1 group M is classified into nine subtypes (A-D,F-H,J,K) and several circulat-
ing recombinant forms [34]. HIV-1 subtype C spread to South Africa and from there onward to
India and other Asian countries, whereas HIV-1 group M subtype B spread to Haiti and onwards to
US and other western countries [38] III. HIV-1 subtype B is most widely distributed [38], whereas
HIV-1 subtype C is most prevalent accounting for 56 % of all the infections [36].

2.2 HIV biology

Figure 2.1: Schematic depiction of a HIV particle and its capsid: The leftmost panel illustrates the
structure of HIV-1 particle. The outerlayer envelope of HIV-1 is of host-cell origin which is interspersed by
the viral glycoprotein gp-120 and gp-41 necessary for binding with CD4 receptor and co-receptors (CCR5
and CX4). The inner layer of the envelope is made of viral matrix protein. The asymmetrical conical core
of the virus particle is known as capsid. The capsid encloses the viral RNA genome, tRNAs, nucleocapsids
and other enzymes. Extracted from Wikimedia [40]. The rightmost panel depicts the capsid which is made
of hexamers and pentamers of p24 capsid proteins. Extracted from Wikimedia [41].

A HIV-1 particle consists of two copies of the positive sense genomic viral RNA, cellular
tRNALys3, viral envelope proteins, the GAG polyprotein and the three viral enzymes, namely pro-
tease, reverse transcriptase and integrase [42]. The leftmost panel in Figure 2.1 illustrates the
structure of virus particle. Like all retroviruses, the two RNA copies of HIV-1 particle are 5’

IIM in group M stands for the ‘major’ form. O stands for ‘outlier’, whereas N stands for ‘neither M nor O’ [36].
IIIAround the time of discovery of AIDS, a French-Canadian flight attendant Gaeten Dugas (dubbed ‘patient zero’)

was thought to be the primary source of HIV/AIDS outbreak in US. This claim has been refuted [39]. Gilbert et al. [38]
showed that Haiti had the the oldest HIV-1 epidemic outside Africa and HIV-1 first arrived there around 1966. From
there onwards, spread across US for 12 years before its discovery.
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capped and 3’ polyadenylated full-length RNA genome [43]. The two RNA strands are noncova-
lently dimerized, which is essential for RNA packaging [44]. The cellular tRNALys3 is required
for the reverse transcription initiation [45].

The innermost region is a conical capsid, which encloses viral genomic RNA. The capsid is
made of roughly 1300 protein units. All capsid proteins are identical and arrange themselves
into an asymetric structure made of hexamers and pentamers [46] (see the rightmost panel in
Figure 2.1). The viral genomic RNA is tightly bound to p7 nucleocapsid proteins, late assembly
protein p6 and enzymes essential to the development of the virion such as reverse transcriptase
and integrase. The capsid is surrounded by an envelope of host-cell origin, which also includes
viral glycoproteins gp120 and gp41 necessary for the host cell entry [42].

2.2.1 Genome organisation

Figure 2.2: HIV-1 genome: The HIV-1 genome is roughly 10 kilobases in size. It consists of 9 genes,
which encodes 15 viral proteins [47]. Both ends of genome have repeated non-coding sequences known
as long terminal repeats. The gag codes for structural proteins namely p17, p24, p7 and p6. Pol region
encodes enzymatic proteins (protease, reverse transcriptase, RNase H, integrase). The env region codes of
glycoproteins (gp120 and gp41) and signal protein. Besides these genes, there are genes coding for essential
regulatory proteins (tat and rev) and auxiliary proteins (vif, vpr, vpu, nef). Extracted from Wikimedia [41].

HIV-1 genome is roughly around 10,000 bases in length consisting of 9 genes (see Figure 2.2)
that encodes for 15 viral proteins [47]. A repeated sequence flanks both ends of the virus genome
known as long terminal repeats (LTRs), which has regulatory functions. The encoded viral proteins
can be divided into three types as shown below [48]:

• Structural and enzymatic proteins: Gag codes for the precursor polyprotein called gag
polyprotein. During the maturation process, the viral protease cleaves the polyprotein into
matrix protein (p17), capsid protein (p24), nucleocapsid protein and spacer peptides (p1
and p2). Pol codes for viral enzymes namely reverse transcriptase, RNase H, integrase and
protease. Env codes for viral envelope glycoprotein gp160 and 30 amino acid long signal
protein. Gp160 is cleaved into gp120 and gp41 by the host cell protease.

• Regulatory proteins: Tat and rev are essential regulatory proteins. Tat plays an important
role in regulating the reverse transcription of viral genome RNA, ensuring efficient synthesis
of viral mRNAs and regulating the release of virus particles from infected cells. Rev binds
to the viral genome via an arginine-rich RNA-binding motif that acts nuclear localization
signals. The virus lacking rev activity are transcriptionally active but fail to express viral
late genes and correspondingly fail to produce viruses.

• Accessory or auxiliary proteins: Although these proteins are not needed for the viral prop-
agation in tissue cultures, their role in vivo is very important. Vpr is a viral protein respon-
sible for the nuclear import of the pre-integration complex from cytoplasm. Vif is a highly
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conserved phosphoprotein important for the infectivity of HIV-1 virions. Nef has multiple
roles during the replication cycle of the virus. Vpu is important for a successful release of a
newly formed virus. Tev is present in only few HIV-1 isolates and is believed to have similar
function as tat protein.

Besides these viral proteins, there are also non-coding regions: Though these regions do not code
for proteins, there is increasing evidences that they have regulatory functions [49], for e.g. 5’
UTR [50]. Their role in HIV replication is a field of ongoing investigation.

As previously mentioned, HIV targets immune cells. The prime target-cells of HIV are the
CD4+ T helper cell. The list of cell types that are targeted by HIV besides T-cells are listed
below [48, 51]:

1 CD4+ macrophage cells

2 Dendric cells for example Langerhans

3 Natural killer cells/natural killer T-cells

4 Microglia and macrophages in the central nervous system.

2.2.2 Life cycle

The life cycle of HIV-1 begins with the binding of its viral envelope glycoproteins to receptors
on the target-cell (CD4 and co-receptor CCR5 or CXCR4) [53]. This is followed by the fusion
of viral and cellular membrane and subsequent release of the viral core into the cytoplasm of the
target-cell. The cellular tRNA binds to viral RNA, which is necessary for the initiation of re-
verse transcription [48]. Reverse transcription is performed by reverse transcriptase. The template
RNA is degraded by the RNase function of reverse transcriptase resulting in a negative-sense sin-
gle stranded DNA. The negative DNA serves as a template for DNA dependent polymerization
producing a double-strand viral DNA.

The viral DNA along with viral integrase and capsid proteins forms a pre-integration complex
(PIC). The PIC enters the nucleus, which is an active process and involves a passage through the
nuclear pore complex in non-dividing cells [54]. The capsid protein plays an important role for
nuclear entry. In the nucleus, the viral DNA is integrated into the target-cell genome catalysed
by integrase. The integration is carried out preferentially in the regions with a high transcription-
activity.

After the integration, the viral genome is transcribed to viral mRNA. These mRNAs exit the
nucleus to cytoplasm. A large number of viral mRNAs undergo multiple splicing in the nucleus
before the exit. Their exit is via normal mRNA export route [42]. In the cytoplasm, they are
translated to produce env and accessory proteins. Some of viral RNA are unspliced or partially
spliced and exit the nucleus via a rev-dependent export pathway [42]. These partially-spliced and
unspliced RNAs serve as mRNA for gag and gag-pro-pol poly proteins. Their translations produce
either a 55 kDa gag precursor-protein or a 160 kDa gag-pro-pol polyprotein precursor [53]. The
unspliced viral RNA can also be packed in the new virus particle functioning as the genomic
material for the new virus.

Gag is the major structural protein of HIV-1 comprising roughly 50% of the mass of viral
particle [42]. Gag polyprotein mediates all essential events in the virus assembly. They interact
with the plasma membrane of the host cell, accumulate viral Env proteins and package viral RNA
genome. Gag polyprotein guides the formation of a spherical immature particle, in which gag
polyprotein molecules are projected radially inward of the virus. The virus particle is released
from the host cell membrane surface in a process known as budding [42].
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Figure 2.3: Schematic depiction of HIV-1 life cycle: HIV-1 fuses with the host cell by binding with
the host-cell CD4 receptor and co-receptors (CCR5 and CX4) using its gp-120 and gp-41. After the fu-
sion, the viral unpacks its core inside the host-cell. The core consists of viral RNA genome and enzymes.
The genomic RNA is reverse transcribed by viral reverse transcriptase to form double stranded DNA. The
DNA with other enzymes forms a pre-integration complex (PIC). The PIC is imported inside the host cell
nucleus and the viral integrase mediates the integration of viral DNA in the host cell genome. The host cell
machinery is hijacked and starts producing viral proteins. These assemble to form viral particles. The viral
particles are released from the infected cell by the process known as budding. Extracted from NIAID [52]

During or shortly after budding off from the cell surface, the viral protease cleaves the gag
polyprotein precursor into mature gag proteins (p17 matrix, p24 capsid, p7 nucleocapsid and p6)
[48]. Gag cleavage triggers major changes, which include stable packaging of the dimeric RNA
genome (condensation) and formation of conical capsid which is collectively referred to as viral
maturation (see Figure 2.4) [42]. The maturation process prepares the recently formed immature
virus particle after the budding from the host cell to form a particle able to enter and replicate
inside in another host cell. The life cycle is depicted illustratively in Figure 2.3.

Ocassionally, the integrated viral genome undergoes transcriptional silencing in resting CD4+

T-cells forming latently infected cells [54]. These cells are very long-living and can transition to
an active transcription mode producing virus. These cells form the latent viral reservoir which is
considered a major obstacle hindering the complete cure of HIV-1 infection [55, 56].
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Figure 2.4: HIV Maturation: The left-uppermost panel schematically shows the viral assembly process.
The gag polyproteins are radically projected inward, where the viral RNA is not condensely packed. The
capsid is not properly formed. For comparison, the left-bottommost panel shows the immature virus particle
from a cryo-EM tomographic reconstruction. The right-uppermost shows the mature virus particle, where
gag polyprotein has been cleaved by viral protease and has reorganised itself to form capsid and viral RNA
is densely packed. For comparison, the right-bottommost panel shows the mature virus particle. Extracted
from Sundquist et al. [42].

2.3 Time course of HIV-1 infection

The time course of a HIV-1 infection in a host can be broadly divided into three sequential phases,
namely acute, chronic and AIDS [57](see Figure 2.5). The acute phase occurs shortly after the
infection. During the acute phase, the viremia grows exponentially reaching its peak and then
starts to slowly decline. This is followed by the chronic infection phase where the plasma viremia
reaches an equilibrium known as the viral set point [48]. Measurements of viremia taken in the
chronic infection phase fluctuates around this constant set point. The chronic phase of infection
can last for years and the infected person remains without clinical symptoms despite the high level
of viremia. This is followed by AIDS when the number of CD4+ has decreased significantly and
the associated symptoms such as opportunistic infections and complications manifest.

The acute and early chronic infection stage can be classified into various Fiebig stages, which
is guided by a sequential gain in positivity for the detection of HIV-1 antigens and HIV-1 specific
antibodies assays [58, 59]. The time duration between a viral challenge and the first detection of
viral RNA in the plasma is known as the eclipse phase, which is in average 10 days. The end of
the eclipse phase, or Fiebig stage I marks that the viremia in the infected person has reached or
crossed the lower limit of detection for plasma viral RNA. Similarly, Fiebig stages II-VI are based
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Figure 2.5: The time course of HIV-1 infection: The time course of HIV-1 infection can be divided
into three successive phases: Acute infection phase, chronic infection phase and the manifestation of AIDS
disease. The figure shows illustratively the time profile of viremia denoted by the blue line and CD4+ T-cell
population by the red line. With the passage of the infection, the viral diversity also increases. Extracted
from Simon et al. [57].

on HIV-1 clinical diagnostic assays such as p24 and p31 viral antigens measured by enzyme-linked
immunosorbent assays (ELISA), HIV-1 specific antibodies detected by ELISA and by western
blotting. The viremia in the infected person peaks at 21-28 days after the viral challenge, usually
in Fiebig stage III. This is followed by a slower decrease in plasma viral RNA levels.

Fiebig stage VI is marked by the positive detection of HIV-1 specific antibody by a west-
ern blotting and positive detection of p31 antigen by ELISA indicating the initiation of the early
chronic infection phase. Eclipse phase and Fiebig stage I-V collectively form the acute infection
phase. Figure 2.6 depicts the time course of HIV-1 with various clinical stages (eclipse and Fiebig
stages) shortly after the infection respectively.

2.4 HIV-1 treatment

Within 4 years after the identification of the virus causing AIDS, Zidovudine was approved to
be the first antiretroviral drug for clinical use against HIV-1 [60]. Zidovudine belongs to the
nucleoside reverse transcriptase inhibitor class. The following decades saw the surge of novel
antiretrovirals and currently there are more than 25 different antiretrovirals belonging to 4 major
classes [3].

Initially, the treatment consisted of a single antiretroviral (monotherapy). However, the virus
rapidly developed resistance against the antiretrovirals used in the monotherapy. The prospects of
treatment until 1995 was to extend the life of infected individuals by months, possibly a few years
[48]. With advent of protease inhibitors and non-nucleotide reverse transcriptase, the standard of
care evolved from monotherapy to the administration of a cocktail or combination of antiretroviral
drugs. The advent of combination therapy was known as HAART (highly active antiretroviral
treatment), which reduced the mortality and morbidity associated with HIV. The first integrase
inhibitor was introduced in 2007 [3]. Similarly, fusion inhibitors and a CCR5-antagonist were
introduced in 2003 and 2007 respectively [60, 61]. With an increasing number of antiretrovirals,
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Figure 2.6: Various clinical stages after a HIV-1 infection: The time duration between the viral ex-
posure and the first detection of viremia with a PCR. Following the eclipse phase, the course of HIV-1
infection can be classified in six Fiebig stages where the transition to the next Fiebig stage is marked by a
step-wise gain in positivity for the detection of HIV-1 antigens and HIV-1 specific antibodies in the detection
assays [58, 59]. Extracted from McMichael et al. [58].

Figure 2.7: Timeline showing antiretroviral approvals for HIV treatment: Extracted from Palmisano
[3].

HAART also improved.

HAART proved to be seminal in decreasing the morbidity and mortality of infected per-
sons [61]. Though a complete cure cannot be achieved by antiretrovirals, they have transformed
HIV-1 infection to a chronically manageable disease. In parts of the world where the access to an-
tiretrovirals is easy, the life expectancy of HIV-1 infected person with a proper treatment is close
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to that of the general population [5]. The timeline of introduction of various antivirals is depicted
in Figure 2.7. Next, we provide a brief description of various antiviral classes against HIV-1.

2.4.1 Entry inhibitors

A number of viral and host cell proteins need to interact in order for a virus to enter a cell. Entry
inhibitors block the viral entry by interfering with the machinery. Currently, there are two sub-
classes of entry inhibitors, namely CCR5-antagonists and fusion inhibitors.

CCR5 antagonists: Researchers observed that a small subgroup of high-risk individuals is
either resistant or showed delayed development of HIV-1 infection. Further investigation showed
that these individuals have a homozygous mutation (a 32 base deletion) in the CCR5 co-receptor
coding region resulting in the absence of CCR5 co-receptor in the cell surface [62–64]. Since
CCR5 co-receptor is exploited by virus to infect a cell, its absence confers a partial immunity to
the person against HIV-1. Moreover, individuals appear to be healthy without any abnormalities.
This observation led to research on CCR5 antagonists (CRAs) resulting in the discovery of first
CCR5-antagonist Maraviroc [65, 66]. The mechanism of action for maraviroc is that it binds to
transmembrane domain of the CCR5 co-receptor [67,68]. This induces a conformational change in
the co-receptor such that the HIV-binding domain is less accessible. Though the majority of HIV-1
strains exploit CCR5-receptor (CCR5-tropic virus), some are known to exploit CXCR4-receptor
or both CCR5 and CXCR4 receptors. Hence, HIV-1 tropism needs to be determined before the
use of maraviroc [69].

Fusion inhibitor: Unlike CCR5-antagonist which targets the host-cell receptor protein, the
only known member of the fusion inhibitor subclass targets viral glycoprotein. During the fusion
of virus with the host-cell surface, the viral gp-41 forms a homo-trimer helix bringing the viral and
cellular membrane in close proximity [70]. Each gp-41 consists of HR1 and HR2 sub-domains.
Enfuvirtide, a fusion inhibitor, is a synthetic peptide made up of 36 amino acids. It resembles an
HR2 fragment of gp41 and binds to HR1 region of gp41, hence blocking helix formation critical
for the fusion process. Enfurvirtide is not orally bioavailable requiring subcutaneous administra-
tion, due to which its long-term use is difficult [60]. Today, it is rarely used in the clinic.

2.4.2 Reverse transcriptase inhibitors

The two sub-classes of reverse transcriptase inhibitors (RTIs) are nucleoside reverse transcriptase
inhibitor and non-nucleoside reverse transcriptase inhibitors.

Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs): Besides being the first
antiviral drug class to be approved against HIV-1, nucleoside/nucleotide reverse transcriptase in-
hibitors (NRTIs) still are the backbone of HAART. NRTIs are administered as prodrugs [51].
Upon intracellular uptake, they need to undergo sequential phosphorylation by cellular kinases.
The tri-phosphorylated NRTI resembles the natural occurring 5’-nucleoside triphosphates and
competes with them for integration in the nascent viral DNA during reverse transcription. Unlike
their endogenous counterparts, the tri-phosphorylated NRTI lacks the 3’-hydroxyl group necessary
for forming 3’-5’ phosphodiester bond with the next incoming 5’-nucleoside triphosphates [60].
Hence, upon integration in the nascent viral DNA, the reverse transcription process is halted. This
is also known as chain termination. Chain termination can occur during RNA-dependent DNA
polymerization as well as during DNA-dependent DNA polymerization. Currently, there are eight
NRTIs approved for HIV-1 treatment: zidovudine (AZT), didanosine (ddI); zalcitabine (ddC);
stavudine (d4T), lamivudine (3TC), abacavir (ABC), emtricitabine (FTC) and tenofovir disoproxil
fumarate. The distribution and sale of zalcitabine has been discontinued since 2006 and ddI is
rarely used today [71].
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Non-nucleoside reverse transcriptase inhibitors (NNRTIs): Another sub-class of reverse
transcriptase inhibitor class is known as non-nucleoside reverse transcriptase inhibitors (NNRTIs).
NNRTIs bind to viral reverse transcriptase and alter the conformation of the substrate-binding site
leading to reduction in its polymerase activity [72,73]. They bind to a site in reverse transcriptase,
which is close to the active catalytic site. This hinders the reverse transcriptase from normal
functioning [60]. Nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR) and
rilpivirine (RPV) are NNRTIs currently available for HIV treatment.

2.4.3 Integrase inhibitors

Viral integrase is essential for the integration of the viral DNA in the host cell genome, namely
3’ processing of viral DNA and strand transfer. All integrase inhibitors (InIs) inhibit the strand
transfer process [61]. Integrase inhibitors are comprised of two essential components: (i) a metal-
binding pharmacophore, which interacts with the two essential magnesium ion cofactors in the
integrase and (ii) a hydrophobic group that interacts with viral DNA and enzyme in the complex
[74]. They specifically bind with the integrase, when the enzyme forms a complex with viral DNA.
The three approved integrase inhibitors are raltegravir, elvitegravir and dolutegravir.

2.4.4 Protease inhibitors

Viral protease plays an important role for the viral maturation. The viral protease cleaves gag
poly-protein in the newly formed virus during and shortly after budding. Infected cells without
functional protease can produce virus particles, however, the particles are non-infectious [53].
Protease inhibitors (PIs) inhibit the proteolytic cleavage activity of protease, hence, reduces the
number of mature viruses. The site of action of protease inhibitors is intracellular and in part in
the newly formed viruses. All PIs are based on ‘peptidomimetic’ principles, except for tipranavir.
This means that they contain a hydroxyethylene scaffold, which resembles the normal peptide
linkage but which itself cannot be cleaved [60]. Hence, upon binding to the viral protease they
arrest the viral protease in a specific conformation. There are currently ten PIs available for HIV-
1 treatment: saquinavir (SQV), ritonavir (RTV), indinavir (IDV), nelfinavir (NFV), amprenavir
(APV), lopinavir (LPV), atazanvir (ATV), fosamprenavir (FPV), tipranavir (TPV) and darunavir
(DRV) [61]. Ritonavir (RPV) is currently only used as a pharmacokinetic booster and older drugs
SQV, APV and NFV are rarely used today due to pharmacokinetic properties which usually require
multiple doses per day [75].

2.5 Mathematical modelling of HIV dynamics

The time profile of viremia in an infected person arises through complex interactions between
viruses and different host cells. A viral dynamics model aims at capturing these interactions.
Building a model of viral dynamics and inferring its parameters requires data from various stages
of HIV-1 infection. For example, the acute infection phase captures the initial growth and decay
of viremia in the recently infected person. In order to accurately determine parameters, a dense
sampling of viral load at the rapid growth phase is required. However, the data in the acute
infection phase is difficult to obtain, as most of the infected persons may be unaware of their
infection.

Because the chronic infection phase lasts very long (years) in comparison to the acute infec-
tion phase (around 100 days), data of infected persons in the chronic infection phase is relatively
easy to obtain. The hallmark of this phase is that the viral load has reached an equilibrium also
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known as the set point of viremia. This equilibrium is due to the fact the production of virus in the
body is balanced by the viral clearance, in another words, the system is in a steady state. How-
ever, measuring viral loads at the early chronic infection phase, where the viral load remain fairly
constant, does not allow for the estimation of viral dynamics parameters.

2.5.1 Viral decay after antiretroviral treatment

In order to measure various parameters of viral dynamics, the system in steady state must be
perturbed, for instance by administering antivirals that block the viral production. Perelson et
al. [76, 77] performed such experiments where HIV-1 infected persons were administered potent
antiretrovirals. Subsequently, the viral loads were sampled, and a model was fitted to estimate the
unknown parameters.

The basic HIV-model comprised free viruses (V), uninfected and infected target T-cells (TU,T∗)
given by the following set of differential equations:

d

dt
TU = λT − δT · TU − βT · V · TU

d

dt
T∗ = βT · V · TU − δT∗ · T∗

d

dt
V = NT∗ · T∗ − V · CL

where λT and δT are the production and death rate of the uninfected target-cells TU. The virus
infects uninfected target-cells TU with an infection rate βT. The term δT∗ is the death rate of the
infected target-cells T∗ and NT∗ is the virus production rate. The viruses are cleared at rate CL.

When the production of virus is completely blocked (NT∗ = 0) for instance with a use of 100
% effective protease inhibitor as performed by Perelson et al., the virus decays exponentially [77].
This allows to measure the viral clearance rate. The average rate of viral clearance was determined
to be 23 per day, which is in line with another experiment to measure the viral clearance known as
‘apheresis’ [78]. Perelson et al. estimated that at least 1010 virions per day are produced in order
to maintain the viral set point.

Figure 2.8: Mono- and biphasic decays of viremia after the initiation of antiretroviral therapy: The
viremia or viral load in the infected person decay exponentially. The first and faster decay phase lasts for
roughly a week (see the leftmost panel), whereas if the viral load decay is observed for a longer time period,
the second slow decay is also observed (the rightmost panel). Extracted from Perelson et al. [77].

In clinical studies, when two or more antivirals are given to HIV-infected person and the viral
load is observed for a longer period of time, the viral load displays a biphasic decay with an initial
rapid exponential decline followed by a slower decline (see Figure 2.8). The initial decline lasts
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for a week after the treatment, whereas in order to observe the second decline, viral loads need
to be observed for a month or longer. The basic model with only one type of target-cells was not
sufficient to explain the second exponential decline. The model required an extension with a type
of longer-lived cells than T-cells. The likely candidate responsible for the second phase of decline
are macrophages MU. Accordingly, Perelson et al. [79] extended the basic model and the ODEs
of the system are shown below:

d

dt
TU = λT − δT · TU − βT · V · TU

d

dt
MU = λM − δM ·MU − βM · V ·MU

d

dt
T∗ = βT · V · TU − δT∗ · T∗

d

dt
M∗ = βM · V ·MU − δM∗ ·M∗
d

dt
V = NT∗ · T∗ + NM∗ ·M∗,−V · CL

where λM, δM and βM are the production-, death- and infection rates of uninfected macrophages
MU. The terms NM∗ and δM∗ are the virus production- and death rates of infected macrophages
M∗.

Similarly, observing the viral load for even longer time horizon (years) would show a third
phase of decline with an extremely small rate. The candidate cells responsible for the third decay
phase are latently infected cells and the model needs to be extended in a similar fashion to explain
the third decay phase. Here, we forgo the details of the extension and present the details in the
final model in Section 2.5.2. Next, we will briefly discuss the necessity of another extension of the
viral dynamics model, where the cell infection process by the virus is broken down into smaller
sub-processes.

Early non-productively and late productively infected host cells

Initially, and misleadingly, the faster decline in viral load was taken as a measure of the effec-
tiveness of antiretroviral drugs. When raltegravir, an integrase inhibitor, was introduced, it was
observed that the viral load decay was faster than the viral load decay observed for efavirenz, a re-
verse transcriptase inhibitor [80,81]. Hence, raltegravir was considered to be better than efavirenz.

Sedaghat et al. [82] extended the viral dynamics model and showed that the faster viral decline
observed with an integrase inhibitor in comparison to a reverse transcriptase inhibitor is largely
attributed to the fact that an integrase inhibitor acts later on the viral life cycle than a reverse
transcriptase inhibitor. Their model distinguished early non-productively infected- (T1, M1) and
the late productively infected cells (T2, M2). The ODEs for the extended model are presented
below:

d

dt
TU = λT − δT · TU − βT · V · TU

d

dt
MU = λM − δM ·MU − βM ·V ·MU
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d

dt
T1 = βT · V · TU −

(
δT1 + kT

)·T1

d

dt
M1 = βM ·V ·MU −

(
δM1 + kM

)·M1

d

dt
T2 = kT · T1 − δT2 · T2

d

dt
M2 = kM ·M1 − δM2 ·M2

d

dt
V = NM ·M2 + NT · T2 − V · CL.

The terms kT and kM are the rates of transformation of T1 to T2 and M1 to M2 respectively. The
terms δM1 , δM2 are death rates of M1 and M2 cells.

In the previously discussed model without a distinction between early and late infected cells,
both reverse transcriptase inhibitor and integrase inhibitor affected the parameter βT/βM. In the
extended model presented by Sedaghat et al. [82], the reverse transcriptase inhibitor acted on pa-
rameters βT/βM, whereas the integrase inhibitor acted on parameters kT, kM. Hence, the extended
model can distinguish between reverse transcriptase inhibitors and integrase inhibitors mechanis-
tically.

2.5.2 A detailed viral dynamics model

Until now, we saw that various host cells with varying half-lives are required to account for distinct
viral decay phases. Also, we saw that the extension of the model by distinguishing between early
and late infected cells is required to describe the viral dynamics behaviour for reverse transcriptase
and integrase inhibitors. With time, more knowledge regarding the virus life cycle was gained and
novel antivirals belonging to different classes for example fusion inhibitors, CCR5 antagonists etc.
were also introduced. Though the mechanism of action of fusion inhibitors, CCR5 antagonists and
reverse transcriptase inhibitor differed, the previous models did not differentiate between them.
This emphasized that the model must be refined by integrating additional knowledge and in such
a manner that the mechanism of action of different antiviral classes are properly captured. To that
end, von Kleist et al. [83] extended the viral dynamics model.

Figure 2.9 illustrates the schematics of the viral replication cycle in a host as presented in
von Kleist et al. [83, 85]. T-cells and macrophages are the major target-cells of HIV. The unin-
fected T-cell and macrophage are represented by TU and MU respectively. A successful infection
of a target-cell can be subsumed into two stages. The first stage involves irreversible binding to
a target-cell, unpacking of viral content (genomic RNA and proteins) in the cell and completion
of reverse transcription of RNA to stable DNA forming a pre-integration complex. The infected
T-cell and macrophage reaching this stage are denoted by T1 and M1. Up to this stage, the in-
fection is reversible. The second stage involves irreversible integration of viral DNA into target-
cell genome, which hijacks the host cell machinery. After the integration, the infected host cell
forms and releases virus particles. T2 and M2 represent the late productively infected T-cells and
macrophages respectively. A portion of released virus particles are not infectious due to defective
assembly such as lack of viral enzymes etc. The free infectious and non-infectious viruses are
denoted by V and VN respectively. Instead of becoming a productively infected T2, T1 can also
form a latently infected T-cell (TL) which does not express viral genes. The latently infected TL

can become activated transforming to productively infected T-cell and can produce virus particles.
The average rates of change of the different species can be described by the system of ODEs as
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Figure 2.9: Detailed three stage viral dynamics model: T-cell and macrophage target-cells (TU, MU) are
successfully infected by infectious virus V with lumped infection rate constants βT and βM, respectively,
producing early infected cells T1 and M1. Infection can also be unsuccessful after the irreversible step
of fusion (rate constant CLT and CLM, thick dashed lines), eliminating the virus and rendering the cell
uninfected. In the early infected cells T1 and M1 essential viral proteins or DNA can be destroyed prior to
integration with rate constants δPIC,T and δPIC,M (dashed lines) reverting the cell to an uninfected stage. The
viral DNA can become integrated with rate constants kT in T-cell to produce either late productively infected
T2 or latently infected cell TL. The latently infected cell can convert to T2 at rate ς. Similarly, M1 can be
advance to M2 at kM rate. The late infected cells T2 and M2 release new infectious- and non-infectious virus
VI and VNI with rate constants NT,

(
N̂T − NT

)
and NM,

(
N̂M − NM

)
, respectively. All cellular compartments

x can get destroyed by the immune system with respective rate constants δx and the free virus gets cleared
with rate constant CL (thin dashed lines). Details of viral dynamics model can be found in von Kleist et
al. [83]. Adapted from Duwal et al. [84].

shown below:
d

dt
TU = λT + δPIC,T · T1 − δT · TU − βT · V · TU

d

dt
MU = λM + δPIC,M ·M1 − δM ·MU − βM · V ·MU

d

dt
T1 = βT · V · TU −

(
δT1 + δPIC,T + kT

)·T1

d

dt
M1 = βM · V ·MU −

(
δM1 + δPIC,M + kM

)·M1

d

dt
T2 = (1 − ℓ) · kT · T1 + ς · TL − δT2 · T2

d

dt
M2 = kM ·M1 − δM2 ·M2

(2.1)
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d

dt
TL = ℓ · kT · T1 − (δTL + ς) · TL

d

dt
V = NM ·M2 + NT · T2 − V·

[
CL+

(
CLT + βT

) · TU+
(
CLM + βM

) ·MU

]

d

dt
VN =

[(
N̂T − NT

) · T2+
(
N̂M − NM

) ·M2

]
− CL · VNI,

where λT and λM are the birth rates of uninfected T-cells and macrophages and δT and δM are their
respective death rate constants. Viruses are cleared at the rate CL by the host immune system.
Unsuccessful infection of T-cell and macrophage also leads to clearance of viruses at rate CLT

and CLM respectively. The term β(t) and βM(t) denote the rate constants of successful infection of
T-cell and macrophage by a virus to form early infected T1 and M1 respectively. In T1-cell, the
essential components of the pre-integration complex is degraded intracellularly with rate constant
δPIC,T, whereas integration of viral genome occurs with rate constant kT. The integration event
transforms T1 to productively infected T-cell (T2), however, a small portion ℓ is transformed to
latently infected T-cell TL. TL activates at rate ς to form T2. The term δPIC,M and kM are corre-
sponding rate constants in macrophage. N̂T and N̂M denote the total number of released infectious
and non-infectious virus from late infected T-cells and macrophages, whereas NT and NM are cor-
responding total number of released infectious viruses. The terms δT1 , δT2 , δTL , δM1 and δM2 are
death rate constants of T1, T2, TL, M1 and M2. The viral dynamics parameters can be found in
Table A.1 in Appendix A.

The presented viral dynamics model encompasses the total body viremia and not only plasma
viremia. The virus distributes into the plasma with total volume of 3.1 liters, where 2 % of the
target-cell resides and into the interstitial space with total volume of 9.6 liters, where 98 % target-
cell resides [83]. The model assumes that the interstitial space is in rapid exchange with the
plasma.

2.5.3 Drug-class specific antiviral effects

The detailed viral replication cycle model allows us to mechanistically incorporate the effect of
drugs belonging to different antiviral classes (derivation can be found in von Kleist et al. [83]). Let
us introduce a term DK which denotes a particular drug concentration at the target-site belonging
to the drug class K ∈ {CRA,RTI, InI, PI}. The instantaneous effect of drugs DK on their target-
process is modelled using the Emax-model [86]

ηK (t) =
DK (t)m

ICm
50 + DK (t)m (2.2)

where DK (t) is the target-site concentration of the drug and the term IC50 and m denote the drug
concentration at which the target-process is inhibited by 50% and a hill coefficient [87] respec-
tively. We refer this IC50 to as target-process drug potency.

In the presence of reverse transcriptase inhibitors, following parameters belonging to T-cells
are affected as shown below [83]:

βT(t) = (1 − ηRTI(t)) · βT,∅ (2.3)

CLT(t) =

(
1

ρrev,∅
− (1 − ηRTI(t))

)
· βT,∅. (2.4)

The parameter ρrev,∅ is the probability that a virus succeeds in infecting a T-cell up to the stage
where an unintegrated proviral DNA is produced. In contrast, the effect of CRA is captured as
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presented below

βT(t) = (1 − ηCRA(t)) · βT,∅ (2.5)

CLT(t) = (1 − ηCRA(t)) ·
(

1

ρrev,∅
− 1

)
· βT,∅. (2.6)

Similarly, InI affects the parameter kT as presented below

kT(t) = (1 − ηInI(t)) · kT, (2.7)

whereas the protease inhibitor effect is given by

NT(t) = (1 − ηPI(t)) · NT. (2.8)

respectively. The corresponding parameters for macrophages are affected in similar manner. The
equations can be obtained by replacing the subscripts T by M.

2.6 Summary

HIV emerged several times in humans from independent zoonotic transmissions of simian immun-
odeficiency virus from non-human primates in Africa. Only HIV-1 group M managed to cause the
global epidemics. HIV-1 is an obligate intracellular parasite with a compact genome, which tar-
gets mainly immune cells. The viral life cycle involves various steps where a virus hijacks the
host-cell machinery to produce offspring. Currently there are four major antiviral drug classes that
act on different steps in the viral life cycle. In this chapter, we provided a brief historical overview
of development of HIV-1 dynamics model and description of a detailed viral dynamics model,
which allows for the integration of all approved antiviral drug classes based on their mechanism
of action [83, 88].



CHAPTER 3

Methods for simulating coupled

chemical systems

In this chapter, we provide a brief mathematical background on chemical systems, since biological
reaction networks can be viewed as chemical systems. At the microscopic level, the chemical sys-
tem can be interpreted as a stochastic process, specifically a Markov jump process. Thus, we first
review a Markov jump process. We also present stochastic and deterministic approaches for chem-
ical systems. Furthermore, we discuss hybrid stochastic-deterministic approaches for a coupled
system, where a part of the system behaves stochastically and another part deterministically.

3.1 Markov jump processes

Mathematical models of random phenomena require that one first specify a probability space.
A probability space is a triplet (Ω,A, P), where Ω is a sample space, A is a σ-algebra on Ω,
and P : A → [0, 1] is a probability measure I. If a random phenomenon is known a priori to
have outcomes restricted to some set S and if S can be equipped with a σ-algebra S, then this
phenomenon can be described by a random variable, i.e. a function X : Ω → S such that X

is (A, S)-measurable. For our purposes, we consider random variables with finite or countably
infinite state spaces, i.e. S = {0, . . . ,N} for some N ∈ N or S = N0. In both cases, we shall take
S to be the power set of S. In this work, we shall consider continuous-time stochastic processes
on these state spaces. A continuous-time stochastic process is a family {X(t), t ∈ R+} of random
variables X(t) : Ω → S. Given x ∈ S, {X(t) = x} refers to the event that the random variable X(t)
assumes the value x. We will use this notation when considering conditional probabilities later.

Given a random variable X on (Ω,A, P), the law P ◦ X−1 of X completely characterizes the
statistics of the random variable. In particular, the law of a stochastic process completely charac-
terizes its statistics. Given n time observation points 0 ≤ t0 < t1 < · · · < tn, the corresponding
realization of the stochastic process of finite length n is denoted by

(
X(t0), X(t1), · · · , X(tn)

)
, (3.1)

IThe section on Markov jump processes is partly based on the manuscript by Schütte and Metzner [89].

21
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and it obeys the following joint probability

P
(
X(t0), · · · , X(tn)

)
= P

(
X(t0)

)

× P
(
X(t1)|X(t0)

)

× P
(
X(t2)|X(t0), X(t1)

)

× · · ·
× P

(
X(tn)|X(t0), · · · , X(tn−1)

)
. (3.2)

We are particularly interested in a special class of continuous-time stochastic process called
Markov jump processes. Formally, for a Markov jump process X(t), the following should hold
true for 0 ≤ t0 < t1 < · · · < tn:

P
(
X(tn)|X(t0), · · · , X(tn−1)

)
= P

(
X(tn)|X(tn−1)

)
.

The above equation means that the transition from X(tn−1) to X(tn) depends only on the previous
state X(tn−1) and does not depend on the history of the process. This memoryless property of the
process is referred to as Markov property. This allows the joint probability as in Eqn (3.2) for a
Markov process to be rewritten as shown below :

P
(
X(t0), · · · , X(tn)

)
= P

(
X(t0)

)

× P
(
X(t1)|X(t0)

)

× P
(
X(t2)|X(t1)

)

× · · ·
× P

(
X(tn)|X(tn−1)

)
. (3.3)

A Markov jump process is called homogeneous, if the following holds

P (X(t) = y|X(s) = x) = P (X(t − s) = y|X(0) = x) , t > s

which means that the transition probability does not depend explicitly on time t and s but on the
length of the interval (t− s). Otherwise, the process is called inhomogeneous. For a homogeneous
Markov process X, a function p : R+ × S × S 7→ [0, 1] can be defined by

p(t, x, y) := P (X(t) = y|X(0) = x)

which is called the stochastic transition function of X. The stochastic transition function has the
following properties :

(i) The transition probabilities are non-negative i.e. p(t, x, y) ≥ 0.

(ii) Due to the conservation of probability, the transition probabilities from a state sum up to 1.
∑

y∈S
p(t, x, y) = 1, for all x ∈ S.

An initial probability of a homogeneous Markov jump process to be in a particular state is defined
as

p(0, x) := P(X(0) = x0). (3.4)

If there is a single state x0 such that p(0, x) = 1, then x0 is the initial state. The vector p(0) =
[p(0, x)]x∈S is called the initial probability distribution and the vector p(t) denotes the probability
distribution of a Markov jump process at time t given the initial distribution p(0).



3.1. MARKOV JUMP PROCESSES 23

Furthermore, using the Markov property it can be shown that the stochastic transition function
of a homogeneous Markov process fulfills the Chapman Kolmogorov Equation

p(t + s, x, y) =
∑

∀z∈S
p(s, x, z) · p(t, z, y) =

∑

∀z∈S
p(t, x, z) · p(s, z, y).

In words, the Chapman-Kolmogorov equation states that the probability of transition from state x

to y results from the sum of all possible transitions from x to immediate states and then from the
intermediate states to the end state y. Let x, y ∈ S be an arbitrary pair of states.

(i) The state x has access to the state y, if

P(X(t) = y|X(0) = x) > 0 (3.5)

for some t > 0.

(ii) The states x and y communicate, if x has access to y and y has access to x.

(iii) The Markov jump process is irreducible, if all pairs of states communicate.

3.1.1 Transition matrices and infinitesimal generators

For a Markov jump process, we introduce a matrix such that

P(t) = [p(t, x, y)]x,y∈S,

which is known as a transition matrix for all t ≥ 0. The entries of the transition matrix are non-
negative and the row-wise sum of entries sum up to one. For t = 0, it is required that P(0) is an
identity matrix. The set {P(t) : t ≥ 0} is a semigroup known as transition semigroup. In terms of
the transition semigroup, the Chapman-Kolmogorov equation can be expressed as:

P(t + s) = P(s) · P(t) = P(t) · P(s). (3.6)

Given a Markov jump process with a transition semigroup P(t) : t ≥ 0 and assuming its limit

Q = lim
t→0+

P(t) − Id

t
(3.7)

exists, this limit is known as the infinitesimal generator with Q = [q(x, y)]x,y∈S with −∞ ≤
q(x, x) ≤ 0 and 0 ≤ q(x, y) ≤ ∞. The entries of the generator matrix can also be defined as limits
as shown below:

q(x, x) = lim
t→0+

p(t, x, x) − 1

t

and

q(x, y) = lim
t→0+

p(t, x, y)

t
.

The infinitesimal generator matrix has the following property for the diagonal entries :

q(x, x) = −
∑

y∈S, y,x

q(x, y)

from which it follows that the row-wise summation of entries is 0 for the infinitesimal generator
matrix i.e., ∑

y∈S
q(x, y) = 0.

Interestingly, for a Markov jump process, while the row-wise summation of the transition matrix is
1, the row-wise summation of its infinitesimal generator matrix is 0. Construction of generator- or
transition matrices for an infinite Markov jump process requires appropriate boundary conditions,
for instance introduction of so called ‘exit states’ as done by Munsky et al. [90].
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3.1.2 Kolmogorov equations and master equation

Given a Markov jump process with transition semi group P(t) and infinitesimal generator Q =

[q(x, y)], satisfying −q(x, x) < ∞ for all x ∈ S, then, P(t) is differentiable for all t ≤ 0 and satisfies
so called the Kolmogorov backward equation

d

dt
P(t) = Q · P(t). (3.8)

The solution to the above Eqn (3.8) is given by

P(t) = exp(t ·Q) (3.9)

where the matrix exponential function is defined as

exp(t ·Q) =
∞∑

k=0

(t ·Q)k

k!
(3.10)

which is known to converge.
If, in addition to conditions for the Kolmogorov backward equation, the following condition

−
∑

y∈S
p(t, x, y) · q(y, y) < ∞ (3.11)

is satisfied for all t ≤ 0 and x ∈ S, then the so called Kolmogorov forward equation

d

dt
P(t) = P(t) ·Q (3.12)

is also valid. The Kolmogorov forward equation is particularly important as it allows us to deduce
the evolution equation for an initial probability distribution p(0) of the Markov jump process. The
derivation is shown below, which involves left-side multiplication of the forward Eqn (3.12) by
the initial probability distribution :

p0 ·
d

dt
P(t) = p0 · P(t) ·Q

d

dt
p0 · P(t) = p0 · P(t) ·Q

d

dt
p(t) = p(t) ·Q. (3.13)

Eqn (3.13) is known as the master equation or chemical master equation for a chemical system.
The first reference to the master equation was in a paper by Nordsieck, Lamb and Uhlenbeck in
1940 [91]. We will revisit the master equation in the next section.

3.2 The chemical system

A chemical system at the microscopic level can be viewed as a Markov jump process. Consider
a homogeneous well-stirred chemical system of constant volume v in a thermal equilibrium at a
constant temperature II. The system consists of molecules of Ns chemical species S i, i = 1 · · ·Ns

IIThe mathematical background on the chemical system is in part adapted from the Menz’s dissertation [92]
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interacting through Nr elementary reactions. The term R j, j = 1 · · ·Nr represents the jth elementary
reaction. Given its stoichiometry, we can write R j as shown below:

R j : br
j,1 · S 1 + · · · + br

j,Ns
· S Ns

→ b
p

j,1 · S 1 + · · · + b
p

j,Ns
· S Ns

where br
j,i, b

p

j,i
∈ N0 are known as stoichiometric coefficients and specify how many molecules or

units of S i are consumed and how many of S i are produced with a single firing of R j respectively.
Obviously, if species S i is not involved in reaction R j, its corresponding stoichiometric coefficients
are zero. Each reaction R j can be associated with a reaction specific vector υ j ∈ ZNs , where its ith

component is defined as
υ j,i := b

p

j,i
− br

j,i

which denotes the net change in the number of molecules or unit of species S i due to a single firing
of R j. Let vector x = [x1, · · · , xNs

]⊤ ∈ NNs

0 denote a possible state of the system, where xi repre-
sents the possible numbers of molecules of a species S i, i = 1, · · ·Ns. The system’s dynamics are
described as a continuous-time process X(t) = [X1(t), · · · , XNs

(t)]⊤ ∈ NNs

0 where the ith component
is defined as

Xi(t) := number of molecules or unit of species S i at time t.

The expression X(t) = x denotes that the system is in state x at time t. Firing of a reaction R j

(given that the system is in state x) changes the state to x + υ j.
Besides the state change vector υ j, the other quantity characterizing R j is its propensity func-

tion a j, which is defined such that

a j(x) δt := the probability that one reaction R j will fire somewhere

inside the volume v in the next infinitesimal time interval

[t + δt), given that the system is in state x at time t. (3.14)

The above Definition (3.14) is regarded as the fundamental stochastic premise of chemical ki-
netics because everything else in the theory follows from it via the law of probability [93].

3.3 Stochastic approach

Assume a system starts in state x0 at time t = 0, i.e., X(0) = x0
III. We denote by K j(t) ∈ N0 the

counts of firings of a reaction R j up to the time t ≥ 0. Utilizing the state change vector υ j, the state
of the system at time t ≥ 0 can be achieved by updating the initial state as shown below:

X(t) = X(0) +
Nr∑

j=1

υ j · K j(t) (3.15)

with X(0) = x0. In the stochastic approach, the reaction counts K j(t), j = 1, · · · ,Nr are mod-
elled as inhomogeneous Poisson processes IV, with their intensities corresponding to the reaction
propensity a j, i.e.,

K j(t) = P j

(∫ t

0
a j(X(s)) ds

)
( j = 1, · · · ,Nr) , (3.16)

IIINote that x0 is reserved for an initial state vector, whereas xi : i ∈ N denotes the ith component of state vector x.
IVA poisson process is a special kind of Markov jump process where the state space S is N0. For a comprehensive

review see the book by Kingman [94].
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see [92] for further details. Utilizing this, we can rewrite Eqn (3.15) as shown below

X(t) = X(0) +
Nr∑

j=1

υ j ·P j

(∫ t

0
a j(X(s)) ds

)
(3.17)

which reveals the relation between the state change and reaction propensities.

3.3.1 Chemical master equation

From the fundamental premise stated in definition (3.14), the time evolution of probability P(X(t) =
x|X(0) = x0) can be derived as shown below :

∂

∂t
P(X(t) = x|X(0) = x0) =

Nr∑

j=1

a j(x − υ j) · P(X(t) = x − υ j|X(0) = x0)

−
Nr∑

j=1

a j(x) · P(X(t) = x|X(0) = x0), (3.18)

which is known as the chemical master equation (CME). As mentioned in the previous sub-
section 3.1.2, the chemical master equation is, in fact, the Kolmogorov forward equation. The
chemical master equation completely characterizes the statistics of X(t). Note, in the previous
subsection 3.1.2, the master equation was presented in a vector form and here Eqn (3.18) denotes,
in fact, the evolution of a specific entry of the vector from Eqn (3.13). Furthermore, the reaction
propensities are entries of the infinitesimal generator matrix Q of the Markov jump process, such
that

a j(x) = q(x, x + υ j), j = 1, · · · ,Nr (3.19)

and

q(x, x) = −
Nr∑

j=1

a j(x). (3.20)

The CME is a set of coupled ODEs, with one equation for every possible state. This implies
that the CME suffers from the curse of dimensionality. For instance, consider a system with
10 species where the number of each species can take any value from 0 to 99. This system has
10010 possible states. Hence, even for a moderately big system the curse of dimensionality can be
prohibitive for the derivation of closed-form solution or even for numerical solutions.

3.3.2 Stochastic simulation algorithm

Instead of working with the chemical master equation, which is generally intractable, one can
generate an ensemble of numerical realizations of the stochastic process using Monte Carlo tech-

niques to approximate the statistics of the process. Gillespie [95] first presented an exact stochastic
simulation algorithm. Even though a number of modifications have been introduced afterwards,
the original algorithm, also known as the direct method, will be briefly presented here due to its
intuitiveness and importance.

The cornerstone to generate the numerical realization of X(t) is the probability function p(τ, j|x; t),
defined as follows :

p(τ, j|x; t) δt := the probability that the next reaction fires in the infinitesimal

time interval [t + τ, t + τ + δt) and the next reaction is R j

conditioned on the system being in state x at time t. (3.21)
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This function p(τ, j|x; t) is, in fact, the joint probability density the time to the next reaction (τ)
and the index of the next reaction ( j) to fire conditioned on the system being in state x at time t.
Applying the law of total probability to the fundamental premise permits the derivation of an exact
expression for p(τ, j|x; t) :

p(τ, j|x; t) = a j(x) · exp(−a0(x) · τ) (3.22)

where a0(x) is defined as the sum of all reaction propensities:

a0(x) :=
Nr∑

j=1

a j(x).

Let p(τ|x; t) denote the probability that the time to the next reaction is τ, given that the system is in
state x, and p( j|τ, x; t) denote the conditional probability that this reaction is R j. From Eqn (3.22),
it follows that

p(τ|x; t) =
Nr∑

i=1

p(τ, j|x; t) = a0(x) · exp(−a0(x) · τ), (3.23)

which means that time to the next reaction is an exponential random variable with intensity a0(x).
In other words, the time to the next reaction is the waiting time between two successive events of
a Poisson process. The following relation can also be derived from Eqn (3.22)

p( j|τ, x; t) =
a j(x)

a0(x)
, (3.24)

which implies that the index of the next reaction to fire is an integer random variable with point
probability a j(x)/a0(x). The direct method proposed by Gillespie [95] employed the standard
inversion generating method of Monte Carlo theory. The procedure is as follows: Draw two
random numbers u1 and u2 from the standard uniform distribution U(0, 1) and take

τ =
1

a0(x)
· log

(
1

u1

)
(3.25)

which gives the time to the next reaction and

j = the smallest integer such that
j∑

j′=1

a j′ (x) ≥ a0(x) · u2. (3.26)

which is the index of the next reaction to be fired. The pseudo code of stochastic simulation
algorithm (direct method) as proposed by Gillespie et al [95] is given below:

(i) Set initial time t = 0 and initial state X(0) = x0.

(ii) Evaluate the reaction propensities a j(X(t)) and the sum of reaction propensities a0(X(t)).

(iii) Generate a random variable u1 ∼ U(0, 1).

(iv) Compute the time to next reaction τ using the following equation

τ =
1

a0(x)
· log

(
1

u1

)
. (3.27)

(v) Update time t = t + τ.
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(vi) Generate a random variable u2 ∼ U(0, 1).

(vii) The smallest positive integer j such that

j∑

j′=1

a j′(X(t)) ≥ a0(X(t)) · u2 (3.28)

gives the index for the next reaction.

(viii) Update the state X(t) = X(t) + υ j.

(ix) Stop the simulation if some stopping criteria are met. If not, go to step (ii).

3.4 Deterministic approach

In the deterministic approach, the state of the system is represented by a continuous variable which
evolves deterministically in time X̄ = [X̄1(t), · · · , X̄Ns

(t)]⊤ ∈ RNs
+ where

X̄i(t) :=
Xi(t)

Ω
(∀ i = 1, · · · ,Ns) and Ω ∈ R+ is a scaling factor.

Instead of representing the number of species, the variable X̄(t) describes some species level at time
t and is given in units ofΩ−1. Generally, Ω = v·NA where NA ≈ 6.023×1023mol−1 is the Avogadro
constant and v is the volume of the system. In that case X̄(t) describes the molar concentration
of the species at time t. Note that the description of the system by concentrations (continuous
variable) deviates from the original description of the system by the number of species (discrete
variable). The concentration description relies on the continuum assumption, which states that the
rounding errors due to such a representation is negligible given that Xi(t) ≫ 1 for all species [96].
In other words, the deterministic approach requires a system to be of large size in terms of the
volume Ω ≫ 1 and the number of species Xi(t) ≫ 1, such that the random fluctuation in the
species levels due to reactions become negligible.

In fact, the representation of the chemical system by the reaction rate equation can be derived
from the fundamental premise (see Eqn (3.14)), when the system is in the thermodynamic limit

[97–99]. The limit is defined as the limit in which all species’ populations Xi(t) and the scaling
factor related to volume Ω approach infinity, while the species level Xi(t)/Ω is a constant [93] V.

3.4.1 Reaction rate and law of mass action

In the deterministic approach, the rate r j(x̄) is defined as the average number of firings of a reaction
R j per Ω and per unit time given that the system is in state x̄ (where x̄ denotes the species level).
The general form of the reaction rates of elementary reactions is given by the law of mass action.
The law, first proposed by Waage and Gulberg [100], states that the rate of an elementary reaction
R j is proportional to the product of molar concentration of all involved reactants raised to the
power of their stoichiometric coefficients with the factor of proportionality known as reaction

VUnder certain conditions, the chemical system can be approximated by a continuous stochastic equation known
as Chemical Langevin Equation (CLE) and Chemical Fokker-Planck Equation (CFPE). For the chemical system
approaching the thermodynamic limit, these continuous stochastic equations lead to continuous deterministic equations
also known as the reaction rate equation. For details, see the review by Gillespie [93].
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rate constant. Let c j denote the rate constant of an elementary reaction R j; then according to the
law of mass action the rate equation is given by

r j(x̄) = c j ·


Ns∏

i=1

(x̄i)
br

j,i

 . (3.29)

Hence, the reaction rate r j is a polynomial function of the species level. Based on the stoi-
chiometric coefficients br

j,i the reaction rate or reaction can be associated with a degree or reaction

order. Precisely, it is defined as follows :

Order of the reaction R j(|br
j |) :=

Ns∑

i=1

br
j,i. (3.30)

The reaction order captures how many molecules of reactants are involved in the reaction. The
unit of the reaction rate constant c j depends on the reaction order of R j. For a zero-order reaction,
the unit of c j is equal to the inverse of the product of units of Ω and time. For a unimolecular
reaction, its unit is equal to the inverse of the unit of time, whereas for bimolecular reaction the
unit of reaction rate constant is equal to the unit of Ω times the inverse unit of time.

3.4.2 Reaction rate equations

Let us denote Γ j(t) as the average number of firing of a reaction R j per Ω over time interval [0, t],
with Γ j(0) = 0 for all j = 1, · · · ,Nr. According to the definition of a reaction rate r j, in integral
form Γ j can defined as

Γ j(t) =

∫ t

0
r j(X̄(s)) ds (3.31)

and equivalently as the solution of the ODE

d

dt
Γ j(t) = r j(X̄(t)), with Γ j(0) = 0.

The species level X̄(t) are given via

X̄(t) = X̄(0) +
Nr∑

j=1

υ j · Γ j(t) = X̄(0) +
Nr∑

j=1

υ j ·
∫ t

0
r j(X̄(s)) ds, (3.32)

for some initial X̄(0) = x̄0 at time t = 0. By differentiating Eqn (3.32) with respect to time, X̄(t)
can be shown to be the solution of the initial value problem :

d

dt
X̄(t) =

Nr∑

j=1

υ j · r j(X̄(t)), with X̄(0) = x̄0. (3.33)

Eqn (3.33) denotes an ODE model of a system consisting of Nr coupled autonomous ODEs. The
representation of a chemical system as a set of ODEs is also known as the reaction rate equation

[93]. Given that all reactions are at most of first order, then all rates r j are constant or linear
functions of x. In that case, Eqn (3.33) forms a system of linear ODEs and an analytical solution
might be available. Even for nonlinear ODEs, where the analytical solution is not available, there
are a number of ODE solvers, which can generally handle large and more complex systems.
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3.4.3 Relation between reaction rates and reaction propensities

The propensity a j of an elementary reaction R j is of the general form

a j(x) = α j · h j(x) (3.34)

where α j denotes the specific probability rate constant of R j and h j(x) gives the number of distinct
combinations of R j reactant species available in state x, which is given by the product of binomial
coefficients as shown below

h j(x) :=
Ns∏

i=1

(
xi

br
j,i

)
. (3.35)

The specific probability rate constant α j of an elementary reaction R j is related to the reaction rate
constant c j as follows

α j = c j ·
∏Ns

i=1 br
j,i!

Ω
|br

j
|−1

. (3.36)

The reaction rate c j is independent of Ω. The relation above show the Ω-dependence of α j. Ta-
ble 3.1 shows the reaction rates and reaction propensities.

Reaction order Propensity Rate
0th a0(x) = c0 · Ω r0(x̄) = c0

1th a1(x) = c1 · xi r1(x̄) = c1 · x̄i

2th a2(x) =
c2a

Ω
· xi · x j, with i , j r2a(x̄) = c2a · x̄i · x̄ j

2th a2(x) =
c2b

Ω
· xi · (xi − 1), if xi ≥ 1 r2b(x̄) = c2b · x̄i · x̄ j

Table 3.1: Reaction rates and reaction propensities for different reaction orders. Adapted
from Menz’s dissertation [92].

3.5 Hybrid stochastic-deterministic approach

In the previous sections, we discussed the stochastic and the deterministic approaches for a chem-
ical system. However, certain chemical systems can have a subset of reactions behaving determin-
istically and another subset behaving stochastically. An example is a biological reaction network
with metabolic and regulatory parts, where the metabolic part can be described as a continuous-
state deterministic process and the regulatory part behaving as a discrete-state stochastic process.
Another example is the pharmacokinetics and pharmacodynamics during PrEP (pre-exposure pro-
phylaxis), where antiviral pharmacokinetics (a continuous-state deterministic process) influences
a discrete-state stochastic viral dynamics process. Modelling the pharmacokinetics as a continu-
ous deterministic process is common practice in the pharmacometrics/systems pharmacology field
and is supported by the fact that typically large quantities of drug molecules reach the target-site.
On the other hand, the viral dynamics during the initial phase after a viral exposure is known to
be discrete and stochastic in nature [19]. Obviously, dealing with such systems purely using the
stochastic approach (for instance SSA) will be computationally impractical, while using purely
deterministic approaches will lead to incorrect results. Hence, a hybrid stochastic-deterministic
approach is required to properly deal with such systems.
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3.5.1 Partitioning of the system

Typically, a hybrid stochastic-deterministic approach partitions the reactions rather than the species
of the chemical systems into two subsets, namely the deterministic and stochastic subsets. Such
partitioning can be performed in a static or dynamic manner. The static partitioning might be mo-
tivated by biological insights. For instance, the gene regulatory reactions behave stochastically,
whereas the metabolic reactions behave deterministically [101]. The static partitioning is per-
formed before the simulation and the partition remains intact during the whole simulation period.

On the other hand, the dynamic partitioning classifies the reactions into deterministic or stochas-
tic subsets during the simulation according to some predefined criteria, which are based on levels
of the species involved in a reaction and the values of reaction propensities [92]. Though the
dynamic partitioning is clearly more general than the static partitioning, it involves additional
computational efforts and parameter choices.

For our purpose i.e. to assess the PrEP efficacy of various antivirals, we classify the species
of the system into deterministic and stochastic subsets along with reactions in a static manner
VI. Assume that for a given network, a partition of reactions into two disjoint subsets, namely a
deterministic reaction subset RD , {} and a stochastic reaction subset RS , {} such that RD∪RS =

{1, · · · ,Nr}. Similarly, consider a partition of the species into a deterministic subset SD , {} and a
stochastic subset SS , {}, which are disjoint and such that SD ∪ SS = {S 1, · · · , S Ns

}.
In order for a species S i to belong to the deterministic subset SD, the following should be

valid:

(i) It should be consumed or produced during the firing of at least one deterministic reaction.
In other words, there is at least one reaction with index j ∈ RD, such that the net change of
S i after firing of R j is non-zero i.e. υ j,i , 0.

(ii) It should not be affected by any stochastic reaction. For any reaction with index k ∈ RS , the
net change of S i after firing of Rk is zero i.e. υk,i = 0.

Similarly, the inverse set of rules should apply to species belonging to the stochastic species subset
SS . Hence, we can rearrange species of X(t) and write

X(t) =

[
Y(t)
Z(t)

]
(3.37)

where Y(t) and Z(t) track all the stochastic and deterministic species respectively. For our system
of interest, Y(t) denotes the discrete stochastic viral dynamics and Z(t) denotes the continuous
deterministic antiviral pharmacokinetics.

3.5.2 Stochastic chemical system with time-variant reaction propensities

Here, we are interested in the simulation of X(t), where the realization of stochastic Y(t) is influ-
enced by deterministic Z(t), whereas Z(t) is not affected by the realization of Y(t). This is moti-
vated by the insight that the antiviral pharmacokinetics Z(t) affect the viral dynamics, whereas the
viral dynamics does not affect antiviral pharmacokinetics.

The simulation of antiviral pharmacokinetics Z(t) is straightforward and can be performed
under the deterministic approach using ODE solvers (see 3.4). However, the realization of the
stochastic viral dynamics under the influence of antiviral pharmacokinetics cannot be performed

VINote, it is not always straightforward to clearly classify a species as deterministic or stochastic. For instance, a
species involved in two reactions, where one reaction behaves determinisitically and one stochastically.
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using the stochastic approach discussed in Section 3.3. In the Subsection 3.3, we presented
the algorithms assuming time-invariant reaction propensities. Here, time-invariant VIIreaction

propensities mean that they change only when the state changes implying that the reaction propen-

sities are constant in between two firings of reactions belonging to RS . In other words, they are a
function of the stochastic state only i.e, a j(Y(t)).

In contrast, the reaction propensities of the viral dynamics under the influence of PK is a time
dependent function or influenced by some function of time other than the state of the stochas-
tic subsystem. They are referred to as time-variant, which means that they are not constant be-
tween two firings of reactions belonging to RS . The reaction propensities are explicitly denoted
as a j(Y(t), Z(t)) in order to show the dependence on Z(t). Next, we proceed to algorithms for a
stochastic system, which can account for time-variant reaction propensities.

3.5.2.1 Chemical master equation

The chemical master equation can completely describe the statistics of stochastic processes for
time-variant reaction propensities as shown below :

∂

∂t
P(Y(t) = y|Y(0) = y0; Z(t)) =

∑

j∈RS

a j(y − υ j, Z(t)) · P(Y(t) = y − υ j|Y(0) = y0)

−
∑

j∈RS

a j(y, Z(t)) · P(Y(t) = y|Y(0) = y0). (3.38)

However, the system above (Eqn (3.38)) still suffers from the curse of dimensionality. Solving
CME still requires circumventing the aforementioned problem.

3.5.2.2 Integral-based stochastic simulation algorithm

As previously mentioned, instead of solving the CME, Monte Carlo based approaches can be
utilized to approximate the statistics. However, Gillespie’s original SSA requires that the reaction
propensity functions are time-invariant or constant between two firing events. In case of time-
variant reaction propensities finding the time to the next reaction τ requires solving the following
equation [102]:

∑

j∈RS

∫ t+τ

t

a j(Y(s), Z(s)) ds = log

(
1

u

)
(3.39)

where u ∼ U(0, 1). Usually the closed-form solution of the multidimensional integral in the
above equation is not known and numerical integration methods can be employed. Accordingly,
Gillespie’s SSA can be adapted to account for time-variant reaction propensities using numerical
integration methods. The key to generating a realization is a function

A0(t + τ|t) =
∑

j∈RS

∫ t+τ

t

a j(Y(s), Z(s)). (3.40)

The function is non-decreasing for τ > 0, since the propensities are non-negative by definition.
Hence, using a random variable u ∼ U(0, 1) the time to next reaction τ is selected such that

A0(t + τ|t) + log(u) = 0 with A0(t|t) = 0 (3.41)

is satisfied. The pseudo-code for the direct method for time-variant reaction propensities is given
as below ( [101]) :

VIIThey are also called as time-homogeneous propensities.
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(i) Set initial time t = 0 and initial state Z(0) = z0 and Y(0) = y0.

(ii) Generate a random variable u1 ∼ U(0, 1).

(iii) Set A0(t|t) = 0 and solve the system of ODEs starting at time s = t

d

ds
Z(s) =

∑

j∈RD

υ j · r j(Z(s)) (3.42)

d

ds
A0(s|t) =

∑

j∈Rs

a j(Y(s), Z(s)) (3.43)

until time s = t + τ such that A0(t + τ|t) + log(u1) = 0.

(iv) Update the deterministic subsystem Z(t + τ).

(v) Randomly select a reaction j ∈ RS such that the probability of selecting reaction R j is

a j(Y(t + τ), Z(t + τ))

a0(Y(t + τ), Z(t + τ))
. (3.44)

(vi) Update the stochastic subsystem Y(t + τ) = Y(t + τ) + υ j.

(vii) Update time t = t + τ.

(viii) Stop the simulation if the stopping criteria are met. If not, go to step (ii).

Integral-based SSA solves Eqn (3.39) by numerically integrating and summing the number of
reaction propensities. These algorithms are exact, provided that there is a negligible numerical
integration error. Secondly, their computational cost increases with the number of stochastic reac-
tions, rendering them impractical and cumbersome for moderately big systems.

3.5.2.3 Rejection-based stochastic simulation algorithm (EXTRANDE)

Another class of algorithms has been recently proposed which employs point process thinning

techniques or so called rejection steps [103, 104] for the simulation of the biochemical reaction
networks in dynamic environments [28, 102, 105, 106]. These algorithms do not utilize analytical
solutions or numerical integrations to solve Eqn (3.39). They rely on redundant samplings leading
to a small trade off in the computational efficiency in order to gain exactness. Next, we briefly
discuss an exact algorithm known as EXTRANDE (extra reaction algorithm for networks in a
dynamic environment [28]).

Here, we are primarily concerned with the stochastic subsystem, henceforth we use Nr for the
total number of stochastic reactions instead of the total number of stochastic and deterministic
reactions of the system for the sake of simplicity. Similarly, Ns denotes the number of stochastic
species instead of the total number of species. The stochastic time evolution of the system’s state
for time-variant reaction propensities is given below

Y(t) = Y(0) +
Nr∑

j=1

υ j ·P j

(∫ t

0
a j (Y(s), Z(s)) ds

)
. (3.45)

Next, we review the central idea of the EXTRANDE algorithm presented by Voliotis et al. [28].
The idea is to augment the stochastic system of interest with an extra reaction, in order to make
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simulation feasible while at the same time keeping the statistics of the original unaugmented sys-
tem intact. The firing of the extra reaction does not change the number of species of the original
system. Let the extra reaction be indexed with integer Nr + 1.

Let W(t) ∈ NNs+1
0 be the vector that tracks the state of augmented system such that

Wi(t) =


Yi(t) if i = 1, · · · ,Ns

the number of firings of extra reactions till t if i = Ns + 1.
(3.46)

This requires that the augmentation of the system should be designed in such a way that the
statistics of the original or unaugmented system remain unchanged.

To that end, let us define υ′
j

as the new state change vectors. For j = 1, · · · ,Nr, the elements
of the new state change vector υ′

j
are

υ′j,i =


υ j,i if i = 1, · · · ,Ns

0 if i = Ns + 1.
(3.47)

For j = Nr + 1 i.e, the state change vector for the extra reaction is as given below:

υ′j,i =


0 if i = 1, · · · ,Ns

1 if i = Ns + 1.
(3.48)

The new state change vectors are defined such that the firing of a reaction of the unaugmented
system i.e, with index j = 1, · · · ,Nr does not change WNs+1(t). At the same time, the firing of the
extra reaction only changes WNs+1(t), but has no influence on other states.

The time evolution of the augmented system can be described as

W(t) = W(0) +
Nr+1∑

j=1

υ′j ·P j

(∫ t

0
a j (Y(s), Z(s)) ds

)
. (3.49)

For the reaction indexed j = 1, · · · ,Nr of the augmented system, the reaction propensities are
the same as in the unaugmented or original system. Now, the question is how does one design
the reaction propensity of the extra reaction (aNr+1(Y(s), Z(s)))? Let B(t) be the stochastic upper
bound of the sum of reaction propensities of the unaugmented system such that

a0(t) =
Nr∑

j=1

a j (Y(t), Z(t)) ≤ B(t) , t ≥ 0 (3.50)

and assign the reaction propensity of the extra reaction according to

aNr+1(t) = B(t) − a0(t). (3.51)

By construction it follows that the sum of reaction propensities of the augmented system is B(t)
i.e,

B(t) =
Nr+1∑

j=1

a j (Y(t), Z(t)) . (3.52)

The EXTRANDE algorithm requires selecting B(t) such that it is constant in between firings.
Generally, a user selects a look-ahead time horizon L and the upper bound is computed such that

B(t) = B(t + τ) ≥ a0(t + τ) where 0 < τ ≤ L, (3.53)
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Figure 3.1: Schematic depiction of steps in EXTRANDE for time-variant reaction propensities: A :
Selection of time to the next reaction for an augmented system at time t. Different colored areas depict the
time evolution of reaction propensities a j(Y(t + s), Z(t + s)),where j = 1 · · ·Nr and 0 < s ≤ L assuming
no reaction fires in time interval [t, t + L]. The white region below the thin dashed horizontal line (marking
the upper bound B(t)) represents the difference B(t) − a0(t + s) where 0 < s ≤ L. The thick black dashed
horizontal line marks the sum of propensities of the unaugmented system at time t i.e, a0(t). For a look-
ahead time horizon L, an upper bound is computed such that B(t) = B(t + s) ≥ a0(t + s), where 0 < s ≤ L.
The time to next reaction (τ) is sampled from an exponential distribution with intensity B(t). The vertical
solid line marks a randomly generated putative time for the next reaction (t + τ) and the purple dot denotes
the corresponding sum of reaction propensities (a0(t + τ)) at that time. B: Selection of the next reaction
to fire. The stacked bar illustrates the sum of reaction propensities (a0(t + τ)) and individual reaction
propensities (a j(t + τ)). The white area on the top is proportional to the probability of firing the extra
reaction, whereas the colored area below is proportional to the probability of firing some reaction other
than the extra reaction. Each colored area belongs to the particular reaction propensity (a j(t + τ)) and is
proportional to the probability that the particular reaction fires next.

holds. This means that the computed sum of propensities for the augmented system is greater
than the sum of propensities of unaugmented system from time t to t + L assuming no stochastic
reaction fires during this interval. Secondly, it is guaranteed that the augmented system has a
constant sum of propensities between two firings. Hence, the time to the next reaction firing given
that the augmented system is in state w at time t is an exponential random variable with intensity
B(t):

p(τ|w; t) = B(t) · exp(−B(t) · τ) (3.54)

and can be sampled as shown below

τ =
1

B(t)
· log

(
1

u

)
where u ∼ U(0, 1). (3.55)

Similarly, from the counting process theory [107], the probability that the next reaction is R j
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is given by:

p( j|τ,w; t) =
a j(Y(t + τ), Z(t + τ))

B(t)
. (3.56)

From this, it follows that the probability of the extra reaction to fire is :

p(Nr + 1|τ,w; t) =
aNr+1(Y(t + τ), Z(t + τ))

B(t)
=

B(t) − a0(t)

B(t)
. (3.57)

When an extra reaction is fired, the time of the system is updated from t to t + τ without changing
the number of species i.e, Y(t) = Y(t + τ), whereas all other reactions change the number of
species. If a randomly generated τ is bigger than look-ahead time horizon L, the time is updated
t = t + L without changing the state of unaugmented system. Thus, an ensemble of trajectories of
the original system can be generated, by taking in account the time-variant reaction propensities.
Figure 3.1 schematically depicts the two steps of EXTRANDE algorithm.

3.6 Summary

Biochemical reaction networks can be interpreted as chemical systems. In a microscopic level,
the changes in chemical system is discrete and stochastic. This is captured by the definition of the
reaction propensity function, which is regarded as the fundamental premise. The chemical master
system follows directly from the fundamental premise. It describes the time-evolution of probabil-
ity of being at a particular state and completely characterizes the statistic of the chemical system.
Though theoretically elegant the chemical master equation can rarely be solved, as it suffers from
the curse of dimensionality. This can be circumvented by using Monte Carlo techniques such as
stochastic simulation algorithm to generate an ensemble of numerical realizations of the chem-
ical system in exact accordance with the chemical master equation. When the thermodynamic
limit is reached, the chemical system can be approximated as a continuous deterministic process
represented by ODEs.

In addition to the chemical systems behaving stochastically and deterministically, there are
coupled chemical systems. Such systems have a subset of their reactions behaving stochasti-
cally and another subset behaving deterministically. They can be dealt with a hybrid stochastic-
deterministic approach. The hybrid approach encounters issues such as partitioning of a system
and time-variant reaction propensities. Though the chemical master equation can account for the
time-variant propensities, approximations need to be pursued to tackle the curse of dimensional-
ity. Also, the time-variant reaction propensities necessitate modifications in stochastic simulation
algorithms, regarding the generation of the time to next reaction. The integral-based stochastic
simulation algorithm uses numerical integration methods, whereas rejection-based stochastic sim-
ulation algorithm employing thinning or rejection techniques to generate the time to next reaction.
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Methods for model building

A clinical trial seeks to understand dose-response relationships and can be conceptually divided
into two parts. The first part aims to understand pharmacokinetics (PK) which study ‘what does
the body do to the drug?’ [108]. The main goal of pharmacokinetics is to describe drug concen-
tration time profiles in blood and relevant tissues under a particular dosage regimen. The second
part, pharmacodynamics (PD), studies ‘what does the drug do to the body or disease?’ [108].
Pharmacodynamics relates the drug response(effects) to the concentration of the drug.

Dosage 

regimen

Exposure

to drug

within

body

Desired 

and 

adverse

response

Pharmacokinetics Pharmacodynamics

Figure 4.1: Schematic view of pharmacokinetics and pharmacodynamics: Pharmacokinetics relate
the dosage to the drug exposure (for example drug concentration in plasma), whereas pharmacodynamics
characterize the relationship between the drug exposure and response. Adapted from the book by Rowland
et al. [108].

Modelling and simulation are vital steps in a PK-PD study. Previously, we dealt with simu-
lation methods for chemical systems. Here, we proceed by providing a brief general introduction
on inverse problems (model building) and subsequently discuss modelling approaches used in
pharmacokinetics and pharmacodynamics.

4.1 Inverse problem/model building

Modelling characterizes data by analysing its systematic and error components [109]. Mathe-
matically, modelling is an inverse or a backward problem, as it seeks to infer a model and its
parameterization from the observed data. Once a model has been developed, it can be used to an-
swer ‘what if’ questions [109]. This process is known as simulation. Mathematically, simulation
is a forward problem and it involves generating ‘data’(prediction) from a model.

Broadly speaking, a model can be classified into two categories: empirical models and mech-
anistic models [109]. Empirical models require few assumptions and are useful when little is
known about the system under investigation from which the observed data are obtained. Though

37
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empirical models can be used to characterize the data, caution should be taken for extrapolation
using empirical models. In contrast, mechanistic models are built based on known principles of the
underlying system, which demands more assumptions. This confers a benefit to the mechanistic
models, such that they are suited for prediction and extrapolation purposes. For the PK-PD analy-
sis of our system of interest, we will focus on mechanistic models. Roughly speaking, modelling
requires solving the following two problems:

• Given a data set and assuming that a model is known, a modeller needs to identify the
parameters of the model that best describes the data (parameter identification).

• Given a set of competing models and their parameterization, select the best model that
describes the data (model selection).

4.1.1 Parameter identification

Assume that we have a dataset {(y1, x1), · · · (yN , xN)}, where xi and yi are the ith predictor variables

and the ith response variable respectively. Let f be the function representing a model and the term
θ be its parameters or ‘set of parameters’. A simple way to describe a response variable is to break
it down as a sum of parts described by the model f (θ, xi) and the residual error εi as shown below:

yi = f (θ, xi) + εi. (4.1)

A modeller seeks to infer the value of the unknown parameters (θ), which best describe the data.
Next, we will give a brief overview of methods for parameter identification, namely ℓp minimiza-
tion and maximum likelihood methods.

4.1.1.1 ℓp-norm minimization and least square method

Under the ℓp-norm minimization criterion method, the best-fit estimate of the unknown parameters
θ is described as the estimate that minimizes the ℓp-norm distance between vectors of response
variables and the model prediction [110]. Mathematically, we can write the best estimate of a
weighted ℓp-norm as

θ∗ = argmin
θ∈Θ


N∑

i=1

(
|yi − f (θ, xi)|

wi

)p


1/p

(4.2)

where 1 ≤ p ≤ ∞ and wi is a positive constant known as the weight associated with the ith

observation.
In biological applications, the ℓ2 norm minimization is widely used, where the best estimate is

the estimate that minimizes the square root of sum of squares of residual errors as shown below:

θ∗ = argmin
θ∈Θ


N∑

i=1

(
yi − f (θ, xi)

wi

)2


1/2

. (4.3)

The best estimate from a ℓ2 minimization is equivalent to the estimate obtained by the minimiza-
tion of sum of squares of weighted errors i.e,

θ∗ = argmin
θ∈Θ


N∑

i=1

(
yi − f (θ, xi)

wi

)2


1/2

= argmin
θ∈Θ

N∑

i=1

(
yi − f (θ, xi)

wi

)2

. (4.4)

This method of minimization is known as the least square method, first proposed by Gauss [111].
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Intuitively, reducing some ℓp-norm distance between the vectors of response variables and the
model prediction makes sense. However, the ℓp-norm minimization method is agnostic to the
information regarding the residual errors i.e. does not explicitly state assumptions on the distri-
bution of response variables or residual errors [112]. The question arises whether the selection
of ℓp-norm can be better guided by the information on the distribution of response variables or
residual errors. For instance, when the residual errors are from a long-tailed distribution such as a
symmetric exponential function (exp(−|ε|)), the ℓ1 minimization has been shown to be more diser-
able. Similarly, when errors are due to rounding off the last digit, the parameter identification can
be interpreted as an ℓ∞ minimization problem [110].

Following this line of thought, next we will present the maximum likelihood method for the pa-
rameter identification problem which explicitly makes use of the information regarding the statis-
tics of residual errors or distributions of observed response variables. In particular, we will focus
on normal distributed residual errors due to their wide applications and importance in biology.

4.1.1.2 Maximum likelihood method

The central idea behind the maximum likelihood method popularized by Fischer [113] is to choose
the model parameter that makes the observed data most likely. The first step in the maximum like-
lihood method is to define the likelihood function as a function of the model parameters given the
observed data. For the discrete random variable, the likelihood can be interpreted as the proba-
bility of the observed data given the model parameters. For the continuous random variable, the
likelihood is described using its probability density function [114] I. The likelihood function is
defined as

L(θ|y) := p(y|θ) (4.5)

where p(y|θ) is the probability density function of the multidimensional vector of response vari-
ables y given model parameters (θ). Under the independence assumption, the likelihood of param-
eter θ given all the response variables y = (y1, · · · yN) is given by the product

L(θ|y) =
N∏

i=1

L(θ|yi). (4.6)

This highlights the fact that the likelihood of all observed response variables is the joint probability
density function. Let us assume that the residual errors are independent and normally distributed
as shown below:

εi ∼ N(0, σ2
i ) (4.7)

where σi represents the standard deviation for the ith residual error. This is equivalent to the
following statement:

yi ∼ N( f (θ, xi), σ
2
i ). (4.8)

i.e. the response variable yi is normally distributed with a mean equal to the model prediction
f (θ, xi) and with a standard deviation of σi. Thus, the likelihood for the response variable yi can
be written as follows:

L(θ|yi) := p(yi|θ) =
1

σi ·
√

2 · π
· exp

−
1

2
·
(
yi − f (θ, xi)

σi

)2
 (4.9)

which uses the equation for the probability density function of a normal distribution.

IUnless otherwise stated, we assume the data to be continuous random variables.
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Instead of the maximization of the likelihood, the maximization of the logarithm of likelihood
(log-likelihood) is performed since it is more convenient to handle. The log-likelihood function is

logL(θ|y) = log


N∏

i=1

L(θ|yi)

 ,

=

N∑

i=1

log (L(θ|yi)) ,

Substituting Eqn (4.9) above and further simplification results in the following equation:

logL(θ|y) = −
N∑

i=1

log
(
σi ·
√

2 · π
)
− 1

2
·

N∑

i=1

(
yi − f (θ, xi)

σi

)2

. (4.10)

The best-fit estimate or maximum likelihood estimate is achieved by maximizing above Eqn 4.10.
Simplication steps are shown below

θ∗ = argmax
θ∈Θ

logL(θ|y),

= argmin
θ∈Θ

− logL(θ|y),

= argmin
θ∈Θ


N∑

i=1

log
(
σi ·
√

2 · π
)
+

1

2
·

N∑

i=1

(
yi − f (θ, xi)

σi

)2
 ,

= argmin
θ∈Θ

2 ·
N∑

i=1

log
(
σi ·
√

2 · π
)
+

N∑

i=1

(
yi − f (θ, xi)

σi

)2
 . (4.11)

Under the assumption that σi is independent of the model prediction f (θ, xi), which is usually the
case [115], the first summand is constant and can be removed. This gives the following:

θ∗ = argmax
θ∈Θ

logL(θ|y) = argmin
θ∈Θ


N∑

i=1

(
yi − f (θ, xi)

σi

)2
 . (4.12)

Hence, under the assumption that residual errors are independent and are from a normal distribu-
tion, the estimate of the maximimum likelihood method is equivalent to that of the least square
method or ℓ2 norm minization [109]. Mathematically,

θ∗ = argmax
θ∈Θ

logL(θ|y) = argmin
θ∈Θ

N∑

i=1

(
yi − f (θ, xi)

σi

)2

. (4.13)

Often rather than directly maximizing the likelihood function, equivalent weighted least squares
can be constructed. For some frequent error types, equivalent weighted least squares are listed be-
low ( [116] ):

(i) When all residual errors are independent and from the same distribution ( i.e. ∀i, σi = σ)
also known as constant additive error, the maximum likelihood estimate is identical to the
best estimate from minimization of the sum of unweighted squared errors i.e,

θ∗ = argmax
θ∈Θ

logL(θ|y) = argmin
θ∈Θ

N∑

i=1

(yi − f (θ, xi))
2 . (4.14)



4.1. INVERSE PROBLEM/MODEL BUILDING 41

(ii) Similarly, when residual errors are independent and are proportional to the prediction i.e.
∀i, σi = f (θ, xi) · σ also known as proportional error, the maximum likelihood estimate is
obtained by using the following least square minimization [116]:

θ∗ = argmax
θ∈Θ

logL(θ|y) = argmin
θ∈Θ

N∑

i=1

(
yi − f (θ, xi)

f (θ, xi)/ fgm

)2

, (4.15)

where

fgm =


N∏

i=1

| f (θ, xi)|


1/N

.

(iii) When residual errors are exponential; this means

yi = f (θ, xi) · exp(ε), ε ∼ N(0, σ2), (4.16)

the maximum likelihood estimate can be achieved by the following weighted least squares
minimization

θ∗ = argmax
θ∈Θ

logL(θ|y) = argmin
θ∈Θ

N∑

i=1

(
log(yi) − log( f (θ, xi))

)2
. (4.17)

To reiterate, the maximum likelihood method is statistically more refined than the ℓp-norm
minimization method, which does not explicitly state its statistical assumptions. However, often a
maximum likelihood problem can be simplified to an equivalent ℓp-norm minimization problem.

4.1.2 Model selection

A modeller faces the problem of selecting a model from a set of candidate models that best approx-
imates the reality given the data at hand. The candidate models vary in their complexity, which is
reflected in the number of parameters required by a model [117, 118]. Generally, a more complex
model tends to better fit the data than a simpler one [109]. Here, it should be emphasized that the

task of the modeller is to better approximate the reality rather than to better fit the data. It has
been observed that increasing the model complexity improves the goodness of fit of the model,
however, beyond a certain threshold its generalizability decreases [109] (see Figure 4.2). Hence,
unnecessary complexity should be avoided. This is also advocated by Occam’s razor or principle
of parsimony [117].

To rephrase, models with few parameters do not sufficiently capture the reality, which leads
to underfitting, whereas models with many parameters capture spurious trends. Thus, a model
selection problem calls for a proper trade-off between underfitting and overfitting [117]. Next, we
will introduce a selection criterion known as Akaike Information Criteria (AIC), which takes these
considerations into account.

4.1.2.1 Akaike information criteria

Given m candidate models describing the observed data at hand, let f1, · · · , fm be functions and
n1, · · · , nm be the number of parameters of those models. The Akaike Information criteria (AIC)
for the ith model is

AICi = −2 · logLi + 2 · ni (4.18)
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Figure 4.2: Relationship between goodness of fit and generalizability vs. model complexity: The
figure illustrates schematically that increasing the model complexity improves the goodness of fit. On the
otherhand, the generalizability of the model increases with increasing model complexity upto a certain
threshold, after which it decreases. The three figures at the bottom exemplify scenarios of underfitting,
good fitting and overfitting. In panel A, the model complexity is less than required to explain the observed
data. In panel C, the model complexity is more than justified by the data. In panel B, there is good balance
between complexity and goodness of fit. Adapted from the book by Bonate et al. [109].

which consists of the maximum likelihood for the ith model (Li) and the number of parameters
ni. Roughly speaking, AIC quantifies the quality of data-fitting by a model and at the same time
penalize its complexity. AIC is based on Kullback-Leiber information and represents a distance
between the reality and the approximation by the model.

For each candidate model, AIC values are computed and the candidate model with the mini-
mum AIC is selected as the best model. Conceptually, this selection means that a candidate model
is selected with the least distance to the reality given the data at hand [119].

The individual AIC values are not interpretable and should be seen in comparison to AIC
values of other candidate models. AIC values can be used to compute metrics with more intuitive
interpretation. The metric is known as Akaike weight of model, which is defined as [109, 119]:

w(AICi) =
exp

(
− 1

2 · (AICi − AICmin)
)

∑m
k=1 exp

(
− 1

2 · (AICk − AICmin)
) (4.19)

where AICmin is the minimum of all the AIC values i.e.

AICmin = min {AIC1, · · · ,AICm} . (4.20)

The Akaike weight of a model can be interpreted as the probability that the model is correct given
the set of candidate models and the observed data [119]. The weight provides the strength of
evidence in favour of- or against a particular model. Note that the best model among the candidate
models still might fail to adequately describe the data [120].
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When the data size N is relatively small in comparison to the number of parameters n, the
use of AIC may favour complex models [117]. To circumvent this, generally when N/n < 40
corrected AIC should be used. The corrected AIC is computed as follows:

cAIC = −2 · logL f + 2 · n + 2 · n · (n + 1)

N − n − 1
. (4.21)

In addition to AIC, Bayesian Information Criterion (BIC) is widely used. The analytical ex-
pression for BIC is similar to that of AIC, however, the two criteria differ in their underlying
assumptions. BIC assumes the true model is in the set of candidate models, whereas AIC does
not make such assumption [119]II. Besides information criteria, visual predictive checks and cross
validation techniques should be applied whenever possible.

4.2 Model building in pharmacokinetics and pharmacodynamics

A PK-PD study is performed with a cohort of individuals sampled from a population of interest and
for each individual quantities of interest are measured regularly. The response variables vary from
one another, which necessitates quantification of their variability and understanding of sources of
variation. This is commonly known as the ‘population approach’. Next, we will describe prevalent
methods for population approaches in pharmacokinetics and pharmacodynamics III.

Let us assume that there are NI individuals in the cohort of the study. For each individual in the
cohort, quantities of interest are sampled regularly. Let Ni,J represent the number of observations
for ith individual. Let yi, j represents the jth response variable of the ith individual. Usually, the
response variables are continuous variables which are observed at discrete time points. Examples
of response variables in pharmacokinetics study are drug concentrations in blood plasma or in
relevant tissues or cells. In pharmacodynamics studies, examples are viral load in plasma of HIV-
1 infected persons or some other clinical endpoints.

Let yi be the vector of response variables belonging to the ith individual. IV Mathematically,

yi =



yi,1

· · ·
yi, j

· · ·
yi,Ni,J


∈ RNi,J (4.22)

Similarly, let xi, j denote the jth predictor variable of the ith individual. For instance, the time
point associated with the jth measurement denoted by ti, j is a predictor variable. Other examples
include details of the dosing regimen, such as the dosing amount of a drug and time points of
dosing. Let Dosei and Ti be vectors representing the sequence of dosing amounts administered
and the corresponding time points for the ith individual respectively:

Dosei =



Dosei,1

· · ·
· · ·

Dosei,Ni,D


and Ti =



Ti,1

· · ·
· · ·
Ti,Ni,D



IIBesides AIC and BIC, other information criteria exist such as Takeuchi’s Information Criterion (TIC) and Widely
Applicable Information Criterion (WAIC) and might be more suitable for certain cases [120].

IIIThe modelling approaches in pharmacokinetics and pharmacodynamics are in part adapted from Ette et al. [121].
IVObviously, there can be more than one response variable, such that yi, j is a vector instead of a scalar variable and

correspondingly y is a matrix instead of a vector. In such a case, one can introduce yi, j,k where k denotes the index of the
response variable. For simplicity, we assume that there is only one response variable, which implies that yi, j is a scalar.
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where Ni,D is the number of doses administered to the ith individual. Besides these variables,
measurements characteristic to the individual such as age, total body weight and height can also
influence the response variables. These variables are called covariates. In general, covariates
are assumed to be constant for the time horizon of the experiment. Let Ci be the vector of Ni,C

covariates belonging to the ith individual:

Ci =



Ci,1

· · ·
· · ·

Ci,Ni,C



Let xi, j be represented as a vector, which contains all the measured predictor variables that might
influence the response variable yi, j. Mathematically,

xi, j =
(
ti, j,Dose⊤i ,T

⊤
i ,C

⊤
i

)
.

and correspondingly xi is a matrix of predictor variables belonging to the ith individual:

xi =



xi,1

· · ·
xi, j

· · ·
xi,NI


. (4.23)

Next, we present various population approaches used in PK-PD studies.

4.2.1 Naive averaging approach

Usually in preclinical and clinical pharmacokinetics studies, the dosing regimen as well as sam-
pling schedules are identical for all individuals. It means that for each sampling time, there are a
number of response variables available from different individuals. Analysis of such data can be
performed by naive averaging, which consists of the following steps:

(i) Compute the average value for each sampling time.

ȳ•, j =
1

NI

·
NI∑

i=1

yi, j (4.24)

where ȳ•, j is the average jth response variable across all individuals.

(ii) Perform the modelling exercise on the profile of the average response variable.

Implicitly, this approach assumes that the average- or typical response profile belongs to a
typical (hypothetical) individual. As convention, the average response variable can be separated
as shown below

ȳ•, j = f (x•, j, θ) + ε•, j (4.25)

where f (x•, j, θ) is the jth prediction and ε•, j is the corresponding error term. The model parameter θ
is interpreted as a typical- or mean parameter. Interestingly, assuming a typical individual imposes
that the predictor variable x•, j is also typical. This has no effect on dosing regimens and sampling
time points, since they are identical for all individuals. However, the covariates are implicitly
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assumed to be typical. If ordinary least squares is applied, the following objective function is
minimized:

OFNA(θ) :=

Ni,J∑

j=1

(
y•, j − f (x•, j, θ)

)2
(4.26)

The advantage of this approach is its simplicity. However, there are several drawbacks of
this approach. The smoothing effect of averaging can lead to loss of individual peculiarities. For
example, the averaging can render secondary peaks in the plasma concentration time profile in-
conspicuous, if the secondary peaks occur at different time points. Thus, the approach may lead to
a misinformed model. For instance, averaging the monoexponential profiles from two individuals
with significantly different half-lives may produce a curve exhibiting an apparent biexponential
decay. Thus, a correct model with monoexponetial decay may be discarded in favour of an in-
correct model with biexponential decay. Furthermore, the approach is sensitive to outliers, since
averaging is strongly affected by outliers.

Secondly, the approach attributes an average response profile to a typical individual, which
might not be true due to nonlinearity of model functions. Furthermore, the approach does not
provide the study of variability of the parameters and also does not allow discerning the influence
of variability of covariates on responses.

4.2.2 Naive pooled data approach

The naive pooled data approach is more general than the naive averaging approach. It assumes
that all data arises from one unique individual [122] and the response variable can be written as

yi, j = f (xi, j, θ) + εi, j (4.27)

where θ is the model parameter belonging to the unique individual. If an ordinary least square
method is applied to infer the parameters, then the following objective function is minimized

OFNP(θ) :=
NI∑

i=1


Ni,J∑

j=1

(
yi, j − f (xi, j, θ)

)2

 (4.28)

where NI represents the total number of individuals and Ni,J denotes the total number of obser-
vations for the ith individual. f (xi, j, θ) is the model prediction with θ for the jth time point and ith

individual. Unlike the naive averaging approach, the naive pooling approach does not require an
identical sampling schedule for all individuals. The drawbacks of the naive pooling approach are
similar to the naive averaging approach.

4.2.3 Two-stage approach

Both naive averaging- and naive pooling approaches focus on the average behaviour of the cohort
neglecting the measurement of deviation from the mean (dispersion). The standard two-stage
approach delivers both. The first step is to perform a model and parameter inference for each
individual profile. The response variable can be written as

yi, j = f (xi, j, θi) + εi, j (4.29)

where θi is the model parameter specific to the ith individual. The modelling exercise requires
performing NI separate model fittings, one for each individual. The objective function for the ith
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individual, if the ordinary least square method is applied, is given by

OFTS(θi) :=

Ni,J∑

j=1

(
yi, j − f (xi, j, θi)

)2
(4.30)

The second step involves obtaining statistical measures from the parameter of individuals. The
mean and dispersion of parameters are computed as shown below

θ̄ =
1

NI

·
NI∑

i=1

θi and Ψ =
1

NI

·
NI∑

i=1

(
θi − θ̄

)
·
(
θi − θ̄

)⊤
, (4.31)

where θi is the parameter estimated for the ith individual.
Though simple and straightforward, the method has several drawbacks. For each individual, a

model fitting is performed on its data neglecting what has been learned from the model fitting from
other individuals. This becomes unsatisfactory in case of imbalanced data [123]. For instance,
if there is a mix of dense and sparse data for individuals. The parameter estimation performs
satisfactorily for individuals with a dense data situation and fails for individuals with a sparse
data situation rendering the estimation of statistical measures difficult [122, 124]. Moreover, the
approach is known to be biased and usually overestimates the variance [125]. These problems can
be overcome by a statistically more rigorous method known as nonlinear mixed-effects approach
[126].

4.2.4 Nonlinear mixed-effects approach

Nonlinear mixed-effect approaches or hierarchical modelling approaches are currently the state of
art in the population study of PK and PD [127]. In comparison to the two-stage approach, the non-
linear mixed-effect approach is parsimonious in terms of parameters and statistically more rigor-
ous. Unlike the two-stage approach, the model fitting is performed on the data of all individuals si-
multaneously instead of one at a time. This confers benefit to the nonlinear mixed-effect approach,
when sampling is sparse for some individuals in the data-sets (imbalanced data) [109, 123, 126].
The knowledge gained from individuals with denser sampling helps to overcome the problem of
sparsity in other individuals [127].

The term ‘nonlinear’ in the nomenclature of the approach refers to the characteristic of the
model function, which denotes that the response variable is nonlinearly dependent on its model
parameters [109]. The term ‘mixed-effects’ comes from statistical modelling and it refers to in-
corporation of ‘fixed effects’ and ‘random effects’. Fixed effects are parameters associated with
an entire population of interest or with certain repeatable levels of experimental factors. Random
effects are associated with an individual sampled randomly from the population of interest.

The nonlinear mixed-effects approach can be separated into three components, namely struc-
tural, covariate and stochastic submodels [128]. The structural submodel consists of a function
governing the temporal relationship between the response variables and predictor variables. The
covariate submodel describes the influence of covariates on the model parameter of the structural
submodel. The stochastic submodel describes the statistics of model parameters and errors. This
includes intra- and inter-individual variations of model parameters.

In general, the nonlinear mixed-effects in PK-PD studies is modelled in a two-level hierarchy
with individual and population levels [129]. At the individual level, we have

yi, j = f (xi, j, θi) + εi, j, j = 1, · · ·Ni,J

yi = f (xi, θi) + εi. in vector form (4.32)
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The function f is also known as a structural submodel. The residual error or intra-individual error
is assumed to come from a multivariate normal distribution

εi ∼ N(0,Σ). (4.33)

where Σ is covariance matrix. For simplicity, here we assume that the intra-individual errors are
homoscedastic, independent and identically distributed for all individuals i.e,

εi, j ∼ N(0, σ2) and in vector form εi ∼ N(0, Id · σ2). (4.34)

The intra-individual error is part of the stochastic submodel.
At the population level, we assume that model parameters come from a particular distribution.

A simple formulation of individual model parameters is shown as below:

θi = θpop + ∆i (4.35)

where θpop is the mean population parameter. Usually ∆i is assumed to come from a multivariate
normal distribution such that

∆i ∼ N(0,Ψ) (4.36)

where Ψ is the covariance matrix. Equivalently, we can write

θi ∼ N(θpop,Ψ) (4.37)

The covariate submodel considers the influence of individual’s covariates on response vari-
ables. This is performed such that the individuals’ model parameters are influenced by their co-
variates as below:

θi = fc(θpop,Ci, φ) + ∆i (4.38)

where fc is the covariate function which takes the population parameter θpop, the vector of covari-
ates Ci and a parameter vector φ. Correspondingly, the model parameters of the individual can be
written as:

θi ∼ N( fc(θpop,Ci, φ),Ψ). (4.39)

The statistical submodel describing the inter-individual variation (distribution of the individual
model parameter θi) is also the part of the stochastic submodel.

For the given data set, the nonlinear mixed-effect modelling aims at finding the unknown
parameters, which is the set

{
θpop,Ψ,Σ

}
or

{
θpop, φ,Ψ,Σ

}
when a covariate submodel is consid-

ered. To determine the maximum likelihood estimate, let us look at the likelihood function for the
nonlinear mixed-effect modelling for all observed response variables, also known as population
likelihood function: V

L(θpop,Ψ,Σ|y) = p(y|θpop,Ψ,Σ),

=

NI∏

i=1

p(yi|θpop,Ψ,Σ),

=

NI∏

i=1

L(θpop,Ψ,Σ|yi) (4.40)

V For simplicity, hitherto we ignore the covariate submodel.
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which is the joint probability density function and, as shown above, it can be written as the product
of individual likelihood functions. The individual likelihood function can be further separated as
shown belowVI

L(θpop,Ψ,Σ|yi) = p(yi|θpop,Ψ,Σ) =

∫
p(yi, θi|θpop,Ψ,Σ) dθi,

=

∫
p(yi |θi, θpop,Ψ,Σ) · p(θi|θpop,Ψ,Σ) dθi,

=

∫
p(yi |θi,Σ) · p(θi|θpop,Ψ) dθi,

=

∫
L(θi,Σ|yi)︸      ︷︷      ︸

individual level

· p(θi|θpop,Ψ)︸         ︷︷         ︸
population level

dθi, (4.41)

where the likelihood L(θi,Σ|yi) denotes the individual nonlinear regression likelihood. As pre-
viously described in Subsection 4.1.1.2, the maximum likelihood estimate is obtained by max-
imizing the log likelihood function. The maximization problem for the nonlinear mixed-effect
modelling is

(θ∗pop,Ψ
∗,Σ∗) = argmax

(θpop,Ψ,Σ)
logL(θpop,Ψ,Σ|y) (4.42)

where (θ∗pop,Ψ
∗,Σ∗) is the maximum likelihood estimate and the log likelihood function is

logL(θpop,Ψ,Σ|y) =
NI∑

i=1

log

∫
L(θi,Σ|yi) · p(θi|θpop,Ψ) dθi. (4.43)

However, the above maximization problem cannot be solved analytically since the integral in
the log likelihood function cannot be solved analytically. Hence, various methods have been
developed to circumvent this problem. Methods to solve the nonlinear mixed-effect modelling can
be broadly classified into two categories, namely based on the exact likelihood and based on the
approximate likelihood [131].

The exact likelihood methods, such as the expectation-maximization (EM), uses numerical
integral algorithms, however, it is in general infeasible except for simple cases [131]. In contrast
stochastic approximation expectation-maximization (SAEM) utilizes Monte Carlo techniques to
approximate the integral in the individual likelihood function (see Eqn (4.41))VII. The software
MONOLIX uses SAEM for NLME [112].

On the other hand, the approximate likelihood methods maximize an approximation of the
original likelihood function instead of maximizing the exact likelihood function. One way to
approximate the exact likelihood function is by Laplace approximation [132]. Laplace approx-
imation entails approximating the integral using Taylor expansion. The popular software NON-
MEM uses the Laplacian Method, first order conditional expectation (FOCE) and first order (FO)
methods to solve nonlinear mixed-effect modelling problems, which are based on approximate
likelihood [132] obtained from Laplace approximation. Similarly, the linear mixed-effects ap-
proximation method suggested by Lindstrom and Bates [133] approximates the exact likelihood
by using Taylor expansion of the model function around the conditional modes instead of the con-
ditional expected value of the random effects [134, 135]. This method is default in the ‘nlmefit’
function in Matlab [136].

VIThe derivation are from A5 module lecture note of PharMetrX Graduate Program [130].
VIINote that Monte Carlo techniques are inherently not exact. The term ‘exact’ refers to the use to the original

likelihood function without approximation.
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Usually, a modeller needs to perform parameter identifications for a number of candidate non-
linear mixed-effects models, which vary from each other regarding the structural-, the covariate-
and the stochastic submodel. The model selection should be performed on the set of candidate
nonlinear mixed-effect models based on information criteria such as AIC as discussed earlier in
Subsection 4.1.2.

4.3 Summary

In this chapter, we briefly presented a general introduction to model building which is also known
as inverse problems in mathematics literature. Broadly speaking, the inverse problem requires
solving a parameter identification and a model selection problem. We discussed the ℓp minimiza-
tion and maximum likelihood methods for parameter identification. The introduction is far from
being exhaustive and various important methodologies like ‘maximum a posteriori’ and ‘bayesian
inference’ have not been discussed. The readers are suggested to consult relevant literature.

It is noteworthy to reiterate that model building should be performed to better approximate the
reality rather than to better fit the data. This requires a balance between the model complexity and
its generality. To this end, a modeller should use information criteria, visual predictive checks and
cross validation techniques.

Subsequently, we discussed various population approaches used in the model building process
in pharmacokinetics and pharmacodynamics. Though naive averaging and naive pooling are sim-
ple to use, they have several disadvantages. They describe the central tendency of data, however,
they ignore the variability in parameters and suffer from the smoothening effect. The two-stage
approach and nonlinear mixed-effect modelling overcome drawbacks faced by naive approaches,
with nonlinear mixed-effect modelling being parsimonious and superior to the two-stage approach.
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CHAPTER 5

Pharmacokinetic and

pharmacodynamic models

In the following, we will deal with the pharmacokinetic and pharmacodynamic (PK-PD) model
development of four antiretroviral drugs;(i) tenofovir disoproxil fumarate (TDF), (ii) emtricitabine
(FTC), (iii)lamivudine (3TC) belonging to the class of nucleoside reverse transcriptase inhibitors
(NRTI) and (iv) dolutegravir (DTG) belonging to integrase inhibitor class (InI). All of them are
administered orally. For each drug, we employed methods for model building (see Chapter 4)
suitable for the available data I.

Box. 5.1: Pharmacokinetic subprocesses

The pharmacokinetics of a drug can be broken down into sub-processes, which are absorption,
distribution, metabolism and excretion of the drug, also known as ADME in a short form [137]. A
brief description of the sub-processes drugs is given as below:

• Absorption: Generally, a drug needs to be absorbed in the bloodstream in order to reach
its target-site. This process of movement of drug from its site of administration into the
bloodstream is known as absorption. This is influenced by the route of administration of the
drug [138]. Broadly speaking, the administration of drug can be classified into two cate-
gories, namely extravascular (oral, intramuscular, subcutaneous etc. [139]) and intravascular
administration (intravenous and intraarterial). For all extravascularly administered drugs,
absorption process plays a very important role and the systemically available fraction [139],
also termed bioavailability is crucial.

• Distribution: Distribution is the movement of the drug through the body. This is determined
by the blood flow in and out of tissues and properties of the drug such as hydrophilicity,
lipophilicity, molecular size, protein binding etc [138].

• Metabolism: It is the process of biotransformation of the drug. The primary metabolising
organs are in order of relevance are liver, kidney, lung, small intestine, skin and blood-brain
barrier [139].

• Excretion: It is the process of removal of the drug from the body. The major route of excre-
tion are renal, bile, intestinal and pulmonary excretion.

Often, the metabolism and excretion are collectively referred as elimination. Similarly, the distribu-
tion, metabolism and excretion of a drug are collectively called disposition [139].

IThis section is based on articles [23, 26, 84].

51
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5.1 Tenofovir (TFV), Emtricitabine (FTC), Lamivudine(3TC)

For orally administered drugs, the formulation that is administered might be different from the
active form of the drug, which exerts the pharmacodynamic effects. Drugs that are inactive in
their administrated form are called ‘prodrugs’. Prodrug formulations are optimized to maximize
the bioavailability (see Box 5.1). Upon absorption from the alimentary canal, the drug circulates
in the blood and can be measured in the blood plasma.

Lamividine and emtricitabine are structurally related and both are deoxycytosine (dC) analogs
[140]. Their prodrugs are identical to their major circulating forms. After uptake in target-cells,
the drug becomes tri-phosphorylated by intracellular kinases to form 3TC-TP and FTC-TP respec-
tively, which exert the antiviral effect [140].

Tenofovir disoproxil fumarate is a prodrug analog of a monophosphorylated deoxyadenosine
(dAMP) [141] that carries a chemical mask to improve absorption through the alimentary canal
[142]. After absorption, the chemical mask is removed in the liver to form tenofovir (TFV), which
is the major circulating form. Upon uptake by cells, TFV is consecutively phosphorylated twice
to form TFV-DP, which competes with endogenous deoxyadenosine triphosphate (dATP) for an
incorporation into a nascent viral DNA during the reverse transcription [142]. Table 5.1 shows
the prodrug, major circulating form, steps of intracellular modifications and active moieties of
lamivudine, emtricitabine and tenofovir disoproxil fumarate respectively.

Prodrug Circulating Agent Intracellular Modification Active Moiety
3TC 3TC 3TC→ 3TC-MP→ 3TC-DP→ 3TC-TP 3TC-TP
FTC FTC FTC→ FTC-MP→ FTC-DP→ FTC-TP FTC-TP
TDF TFV TFV→ TFV-MP→ TFV-DP TFV-DP

Table 5.1: Modification to active moiety: Prodrug, major circulating form, steps of intracellular modif-
cations and active agents of lamivudine, emtricitabine and tenofovir disoproxil fumarate.

5.1.1 Clinical data

Tenofovir disoproxil fumarate

Plasma pharmacokinetic data for TFV were extracted from Droste et al. [143], Chittick et al.
[144] and Barditch-Crovo et al. [145], whereas the intracellular TFV-DP concentration data were
available from Hawkins et al. [146]. Viral load data for dosage regimen 75mg QDII, 150mg QD,
300mg QD and 600mg QD TDF monotherapy over 28 days are from Barditch-Crovo et al. [145].

Emtricitabine

Plasma pharmacokinetic data were extracted from clinical studies FTC-106 [147], FTC-101 [147,
148] and FTC-303 [147], Blum et al. [149], Zong et al. [150] and Kearney et al. [151]. All studies
reported average FTC plasma profiles over a 24 hour time course at plateau phase for 200mg QD
FTC. All studies were conducted in uninfected volunteers except for FTC-101 and FTC-303. FTC-
101 also reports plasma FTC concentrations for 25mg BIDIII, 100mg QD, 100mg BID, 200mg
QD and 200mg BID over a time period of 24 hours, which were utilized for cross-validation of
the plasma PK model. Jackson et al. [152] reported the intracellular decay of FTC-TP in PBMCs

IIQD means ‘once daily’ dosing and is abbreviated from ‘quaque die’ (Latin).
IIIBID means ‘twice daily’ dosing and is abbreviated from ‘bis in die’ (Latin).
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after cessation of Atripla (FTC + TDF + efavirenz single tablet formulation) over a period of
228 hours, and FTC-106 [147] reported the intracellular decay after cessation of 200mg FTC
QD monotherapy over a period of 120 hours. FTC-101 [148] reported FTC-TP concentrations
in PBMCs (peripheral blood mononuclear cells) after 1 and 4 hours on day 12 for 25mg BID,
100mg QD, 100mg BID, 200mg QD and 200mg BID monotherapy and viral load kinetics for the
same regimens over a time period of 14 days. Furthermore, FTC-102 [153] also reported viral
dynamics over 12 days, when FTC monotherapy with either 25mg QD, 100mg QD or 200mg
QD was administered over a total period of 10 days. We cross-validated the pharmacodynamic
predictions using the data set (FTC-102).

Lamivudine

Moore et al. [154] reported plasma- and intracellular pharmacokinetics time profiles in PBMC
after oral administration of 150mg and 300mg BID for 10 HIV-1 infected individuals. In the study,
the respective regimen is administered for 14 days and pharmacokinetic measurements are taken
over a total period of 36 hours after the last dose. The viral load kinetics following 3TC 150mg
BID monotherapy were measured over a total duration of 12 days after 10 days of monotherapy in
the FTC-102 study [153].

5.1.2 Outline of the model

Plasma

pharmacokinetics

Intracellular

pharmacokinetics

Viral

dynamics

X

X

X

Figure 5.1: Schematic depiction of step-wise PK-PD model building process: The plasma pharmacoki-
netic model provides an input to the intracellular pharmacokinetic model. The intracellular pharmacoki-
netics affect the pharmacodynamics (viral dynamics). The intracellular pharmacokinetics do not affect the
plasma pharmacokinetics. This assumption is justified by the negligible amount of NRTIs in target-cells in
comparison to the plasma. The viral dynamics influence neither plasma nor intracellular pharmacokinetics.

The pharmacokinetic and pharmacodynamic (PK-PD) models for all three NRTIs were built
in a step-wise fashion, which is also depicted in Figure 5.1. The asynchronous and nonlinear rela-
tionship between the plasma pharmacokinetics and target-site pharmacokinetics i.e. intracellular
pharmacokinetics for NRTI [155, 156] necessitates building models for both plasma and intracel-
lular pharmacokinetics to accurately capture drug’s effect on viral dynamics. For each NRTI, we
firstly develop a plasma pharmacokinetics model of the pre-dominant circulating agent indepen-
dent of its intracellular pharmacokinetics. This step neglects any mass-influx from the target-cell
to the blood plasma compartment. However, this is justified because the total volume of PBMCs,
which is the target-cell surrogate marker, is very small ( 1 ·10−6 L [157,158]) in comparison to the
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plasma volume (≈ 3.5 L) and consequently the amount of NRTIs in the target cellular compartment
is negligible compared to the amount in plasma compartment.

The next step involves building a model for intracellular pharmacokinetics that takes the
plasma PK as input. Upon a cellular uptake, NRTIs undergo subsequent phosphorylations to
form their tri-phosphates - NRTI-TP (see Table 5.1). The detailed concentration time profiles of
intermediate phorphorylated forms are usually not available. Hence, as often practiced in pharma-
cometrics, we lumped a number of intermediate steps involved in the conversion of the dominant
circulating form to active intracellular moiety into a single step. Finally, the composite phar-
macokinetics model is coupled to the previously described HIV-1 dynamics model [83, 85] (see
Subsection 2.5.2). The unknown coupling parameter in the effect model is inferred by fitting to
clinically observed viral load profiles. We assume that viral dynamics neither affect plasma nor in-
tracellular pharmacokinetics. We used various methods of model building (see Chapter 4) suitable
to the available data. Whenever possible model predictions were cross-validated on data sets not
used for parameter estimation. Visual predictive checks, goodness-of-fit and Akaike information
criteria guided the model selection.

Pharmacokinetic Model

The plasma concentration time profiles of the dominant circulating agents (TFV, FTC, 3TC) were
all best described by a two compartment model:

d

dt
Z0(t) = −ka · Z0(t) (5.1)

d

dt
Z1(t) =

Fbio · ka · Z0(t)

Vc

− Z1(t) · ke − k12 · Z1(t) + k21 · Z2(t) (5.2)

d

dt
Z2(t) = k12 · Z1(t) − k21 · Z2(t) (5.3)

where Z0, Z1 and Z2 represent the amount of prodrug in the dosing compartment, the concentration
of the dominant circulating agent in the central compartment (= blood plasma) and the apparent
concentrations in the peripheral compartment respectively. Fbio denotes the oral bioavailability
and Vc represents the volume of the central compartment. The terms ka and ke denote the ab-
sorption and elimination rate constant for the central compartment. Similarly, k12 and k21 are the
influx and the apparent outflux rate constants to/from the peripheral compartment respectively.
The amount of drug in the dosing compartment is updated in an impulse manner as shown below

Z0(t) = Z0(t) + Dose(k) (5.4)

when the time t coincides with the kth dosing time. The elimination of the active intracellular
moiety (3TC-TP, FTC-TP or TFV-DP) was assumed to be of the first order in all cases. The
cellular uptake of the major circulating agents and its intracellular phosphorylation into the active
moiety are best described by Michaelis-Menten kinetics in all cases:

d

dt
D(t) =

d

dt
Z3(t) =

Vmax · Z1(t)

km + Z1(t)
− kout · Z3(t) (5.5)

where Vmax is the maximum velocity and km the Michaelis-Menten constant for the uptake and
intracellular anabolism. Z3 denotes the intracellular concentration of active drug moieties, which
we also denote by D(t) for ease of notationIV . Figure 5.2A depicts the schematic of pharmcokinetic
models for NRTIs.

IVHenceforth, we denote the concentration of active moiety at the target-site by D(t)
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PK-PD Linker model

The HIV-1 dynamics model [83, 85] presented in Chapter 2 can take mechanistic effects of all
currently available antivirals on HIV dynamics into account. The model can be used to estimate
the effect of NRTIs on viral dynamics and provide an IC50 estimate that relates to the inhibition of a
target-process. Previously, the authors [83] have shown that the antiviral effect of NRTIs translates
into a reduction of the rate of successful cell infection βT/M and a proportional increment in the
clearance of virus due to an unsuccessful infection event CLT/M:

βT/M(t) = βT/M(∅) · (1 − ηRTI(t)
)

(5.6)

and

CLT/M(t) =

(
1

ρrev,∅
− (

1 − ηRTI(t)
)) · βT/M(∅) (5.7)

where
(
1−ηRTI(t)

)
denotes the residual infection modelled in terms of the standard Emax function

with slope parameter 1 [87], which is

(
1 − ηRTI(t)

)
=

IC50

IC50 + DRTI(t)
. (5.8)

In the equation above, DRTI(t) denotes the intracellular NRTI-TP concentration within target-cells.
The IC50 was then estimated by minimizing the squared residual error between model-predicted
and observed viral decay data from the respective studies, while all other parameters were fixed,
as detailed in Duwal et al. [23]. Figure 5.2B illustrates the viral dynamics model and the influence
of NRTI-TPs on the viral dynamics model.
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Figure 5.2: Plasma and intracellular pharmacokinetics models for TDF, FTC and 3TC and model

of viral dynamics. A: The plasma pharmacokinetics of the dominant circulating agent is best described
by a two compartment model. The intracellular pharmacokinetics of the active moiety is linked with the
plasma pharmacokinetics, where the intracellular uptake and modification are described by the Michaelis-
Menten equation and the elimination is of the first order. B: The viral dynamics model comprises T-cells,
macrophages at various stages of infection and free viruses (non-infectious and infectious). The antiviral
effects of NRTI-TP can be modelled as an inhibition of the rate of successful cell infection and a proportional
increase in unsuccessful infection events. For details see Subsection 2.5.2. Adapted from Duwal et al. [84]
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Figure 5.3: Model prediction vs. available clinical data for TDF pharmacokinetics. A: Predicted
pharmacokinetics of TFV after once daily 75-, 150-, 300- and 600mg oral TDF (lines) together with data
from various studies [143–145] (markers). B: Goodness-of-fit plot for the plasma pharmacokinetics of TFV
with data from 3 clinical studies and 4 different dosing schemes [143–145]. The dashed red line indicates
the line of unity, whereas the green squares, -diamonds, triangles and filled dots represent the observed TFV
concentrations in Barditch-Crovo et al. [145] following 75-, 150-, 300- or 600mg once daily administration
of TDF. The blue left-pointing triangles and the magenta right-pointing triangles represent observed TFV
concentrations after 300mg once daily oral administration from Chittick et al. [144] and Droste et al. [143]
respectively. C: Predicted pharmacokinetics of intracellular TFV-DP after stopping of 300mg once daily
oral TDF dosing (lines) together with data from Hawkins et al. [146] (markers). D: Goodness-of-fit plot
for intracellular TFV-DP. The up- and downward pointing filled and open triangles, open- and filled circles,
filled squares and filled diamonds indicate intracellular TFV-DP pharmacokinetics after stopping 300mg
once daily oral TDF dosing in 8 different individuals from Hawkins et al. [146]. Reproduced from Duwal
et al. [84].

5.1.3 Tenofovir pharmacokinetic-pharmacodynamic model

For TDF, the plasma pharmacokinetics model is fitted to a pooled data set with average plasma
pharmacokinetics from different studies with 300 mg QD dosage regimen (see Subsection 4.2.2).
The model was cross-validated using data of dosage regimen 75 mg, 150 mg and 600 mg QD. The
intracellular concentration profiles of eight patients from a drug-cessation study are available from
Hawkins et al [146]. The data is appropriate to estimate the intracellular elimination constant. The
two-stage approach (see Subsection 4.2.3) is applied, where the elimination constant of TFV-DP



5.1. TENOFOVIR (TFV), EMTRICITABINE (FTC), LAMIVUDINE(3TC) 57

A B

C D

  L
o

g
1

0
 v

ir
a

l l
o

a
d

 d
e

ca
y

10 20 30 40 50
−1.5

−1

−0.5

0

0.5

Days after first TDF dose
10 20 30 40 50

−1.5

−1

−0.5

0

0.5

Days after first TDF dose

10 20 30 40 50
−1.5

−1

−0.5

0

0.5

10 20 30 40 50
−1.5

−1

−0.5

0

0.5 75mg oral TDF

  L
o

g
1

0
 v

ir
a

l l
o

a
d

 d
e

ca
y

150mg oral TDF

300mg oral TDF 600mg oral TDF

  L
o

g
1

0
 v

ir
a

l l
o

a
d

 d
e

ca
y

  L
o

g
1

0
 v

ir
a

l l
o

a
d

 d
e

ca
y

Days after first TDF dose Days after first TDF dose

Figure 5.4: Model prediction vs. clinical data for TDF pharmacodynamics. The viral load log10

data are from a TDF mono-therapy study [145], where once daily regimen is administered for 28 days
and discontinued afterward. Black dashed vertical lines indicate the cessation of TDF dosing. Solid lines
represent predicted median viral dynamics using the coupled PK-PD model, whereas dashed lines represent
the observed log10 change in viral load [145] with respect to the baseline. A: Once daily 75mg TDF dosing.
B: Once daily 150mg TDF dosing. C: Once daily 300mg TDF dosing. D: Once daily 600mg TDF dosing.
Reproduced from Duwal et al. [84].

in PBMCs are estimated for each individual and then the statistics of these parameters were com-
puted. Figure 5.3 compares the model prediction and observation for the plasma and intracellular
pharmacokinetics.

The intracellular pharmacokinetics of TFV-DP lag behind the plasma pharmacokinetics of
TFV with tmax = 13 hours for TFV-DP and tmax = 1.57 for TFV at steady state. The terminal half-
life is prolonged for TFV-DP (terminal half-life 125 hours) in contrast to TFV (terminal half-life
19 hours). The IC50 was estimated to be 0.17 µM (5%− 95% percentile range 0.15 – 0.18), which
corresponds to 29.78 fmol/106 cells, assuming an average cell volume of 180 fL [157]. Figure 5.4
compares the observed and model-predicted change in viral load with respect to the baseline.

The estimated plasma pharmacokinetic parameters are similar to the parameters reported by
Baheti et al. [159]. Madrasi et al. [160] employed and validated the plasma pharmacokinetics
model with clinical observations from MTN-001 study [161]. Moreover, the authors [160] pre-
sented an extensive mechanistic intracellular pharmacokinetics model based on the nonlinear re-
lation reported in our work.
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5.1.4 Emtricitabine pharmacokinetic-pharmacodynamic model
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Figure 5.5: Model prediction vs. clinical data for FTC pharmacokinetics and -dynamics. A: Average
FTC concentrations time profiles in the blood plasma over a time course of 24 hours after administration of
200mg QD in the plateau phase. Differently coloured markers report data from different studies [147, 149–
151] and the solid black line depicts the model predictions. B: Model predictions for 25mg BID, 100mg
QD, 100mg BID, and 200mg BID were cross-validated against average concentrations from [148] for the
same dosing regimens. C-G: Median viral dynamics (log10 change in HIV RNA/mL) after administration of
25mg BID, 100mg QD, 100mg BID, 200mg QD and 200mg BID FTC monotherapy for 14 days. Differently
coloured markers connected by thin red dashed lines indicate data from [148], while the solid black lines
represent model predictions for the respective dosing regimen. H: Cross-validation of model predicted viral
dynamics with data from FTC-102 (25, 100 and 200mg FTC QD monotherapy given for 10 days) [153].
Reproduced from Duwal et al. [23].

Due to the absence of individual pharmacokinetic profiles for FTC in the blood plasma, a non-
linear mixed-effects approach was not applied. We conducted a naive pooled data approach (see
Subsection 4.2.2), where a model was fitted to the pooled data set with average plasma pharma-
cokinetic profiles from different studies. Briefly, the best model describing plasma pharmacokinet-
ics was a two compartment model and it is fitted to data from various independent studies testing
200mg QD [147–151], as illustrated in Figure 5.5A.

As can be seen in Figure 5.5A, FTC is rapidly taken up (tmax = 1.9 hours) and eliminated
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moderately fast (terminal half-life = 11.2 hours). The average FTC concentration time profiles
in distinct studies are very similar and are unaffected by whether FTC is given in combination, or
alone and whether individuals were infected or not. We cross-validated the fitted model against the
data from [148] with various dosing regimen, which we had not used for the model development.
One can see in Figure 5.5B that model predictions are in line with the independent data set.

The intracellular FTC-TP data is sparse, and we employed a two step approach. Details can
be found in the supplementary text of Duwal et al. [23]. In brief, we first estimated the elimination
constant of FTC-TP from PBMCs. The derived elimination constant was then fixed, and we
assessed different cellular uptake and phosphorylation dynamics (linear vs. nonlinear), arriving
at a nonlinear model for the uptake and phosphorylation of FTC to FTC-TP. We observed that the
intracellular FTC-TP concentrations are not synchronized with the plasma pharmacokinetics. The
intracellular decay of FTC-TP is much slower (terminal half-life of 39 hours) than the decay of
FTC in the blood plasma. Moreover, the uptake is delayed (tmax ≈ 10 hours for QD and 7 hours
for BID) in comparison to the circulating drug in the blood plasma. This indicates that both the
uptake and phosphorylation process, as well as the elimination from the cells are rate limiting.

We used the developed PK model and estimated the IC50 from the viral dynamics following
14 days monotherapy with various dosing regimens, see Figure 5.5C-G. The IC50 is estimated to
be 1.02 µM (5% − 95% percentile range: 0.74 – 1.35), which corresponds to 182.89 fmol/106

cells assuming an average volume of 180 fL [157]. Finally, we cross-validated model predictions
with an independent data set [153], which assessed viral dynamics after 10 days monotherapy for
various dosing regimens (see Figure 5.5H).

A two compartment model has been previously used by others [162, 163] to describe the
plasma pharmacokinetics of FTC. The estimated absorption rate constant ka is 0.54 close to
the value reported by [162] (0.53hours−1). The estimated apparent clearance CL/Fbio (19.28
vs. 15.1 L/hour in [162]) and terminal plasma elimination half-life (11.2 hours vs. 10 hours
in [142, 164, 165]) are also very similar. The plasma AUC0−24 (area under the curve) for 200mg
FTC QD is also in line with previous reports (10371 vs. 8000-11300 µg· hour/L in [147, 152]).
To our knowledge, no FTC-TP intracellular pharmacokinetics model had been published to date,
however it had been speculated that the kinetics may be similar to 3TC-TP [140, 164]. The intra-
cellular derivatives of FTC are FTC-MP, FTC-DP, FTC-TP and FTC-DP choline [166, 167]. Due
to the lack of data, we only focused on FTC-TP, which exerts the antiviral effect. Wang et al. [147]
have reported a nonlinear increase of intracellular FTC-TP intracellular when the dose of FTC was
linearly increased, suggesting saturation of intracellular FTC uptake and anabolism in agreement
with the Michaelis-Menten uptake for the intracellular active moiety in the presented model. The
estimates of intracellular half-life of FTC-TP are generally in line with the literature, which report
30–39 hours hours in PBMCs [142, 156].

5.1.5 Lamivudine pharmacokinetic-pharmacodynamic model

The availability of individual pharmacokinetic profiles for 3TC in the blood plasma and 3TC-TP
in peripheral blood mononuclear cells (PBMCs) allowed us to use the nonlinear mixed-effects ap-
proach (see Subsection 4.2.4) to infer pharmacokinetic parameters. The final model for plasma
pharmacokinetics has a random effect on parameters ke and k21 and a proportional error submodel,
while the intracellular submodel has a random effect on parameter Vmax and an exponential error
submodel. Figure 5.6 A-D and Figure 5.4 show that both plasma- and intracellular pharmacokinet-
ics for 150mg BID and 300mg BID are well captured by the model. The plasma pharmacokinetics
are characterized by a rapid uptake (tmax = 1.56 hours) and a moderately fast elimination (termi-
nal half-life = 14.15 hours). The overall inter-patient variation in the pharmacokinetic profiles is
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relatively small. In contrast, intracellular pharmacokinetics of 3TC-TP are characterized by large
inter-individual variation. Moreover, intracellular pharmacokinetics are not synchronised with the
plasma pharmacokinetics, evident by differences in their half-life (intracellular half-life 22 hours
vs. plasma half-life 14.15) and tmax (intracellular tmax ≈ 8 hours for QD and 6 hours for BID vs.
plasma tmax 1.56 hours). This indicates that both the uptake and phosphorylation process, as well
as the elimination from the cells are rate limiting.

The 3TC pharmacokinetics model is coupled with the viral dynamics. A single parameter IC50

is estimated from the viral load decay data [153]. As can be seen in Figure 5.6E, the predicted
profiles (solid black lines) match the data (blue dots) satisfactorily. The IC50 is estimated to be
0.74 µM (5% − 95% percentile range: 0.47 – 1.07), which corresponds to 132.28 fmol/106 cells,
assuming an average cell volume of 180 fL [157].

The model developed for 3TC plasma pharmacokinetics agrees with previous studies [168–
170], which all report that a two compartment model best describes the data. However, the pa-
rameters of the model cannot be directly compared with previous studies: Studies [154, 169] fail
to report the kinetic micro-parameters for their models and [170] use an unphysiologic absorption
model (zero order), which likely affects remaining parameter estimates. However, a comparison
can be made in terms of macro-parameters: The terminal plasma half-life was 14.2 hours in our
study, which is slightly longer than previously reported (6-12 hours [142, 154, 171, 172]). The
mean apparent volume of distribution (Vdss/Fbio) of 143L is close to the previously reported value
of 151L [173] and the mean apparent clearance Vc/Fbio · ke = CL/Fbio was 23L, in range with
the range of reported values (20-25 L) [174]. The plasma AUC0−24 values for 150mg 3TC QD
and 300mg 3TC QD were 6103 and 12206 µg · h/L respectively, which is slightly higher than
corresponding values reported in [175] (4473 and 8354 µg · h/L).

Zhou et al. [170] developed a detailed intracellular pharmacokinetics model including 3TC-
MP, 3TC-DP, 3TC-DP choline and 3TC-TP. They showed that the conversion from the intracel-
lular 3TC to 3TC-MP was rate limiting and that the intracellular activation cascade is saturable.
Although the presented model for intracellular pharmacokinetics is much less detailed, it reflects
the same findings: the intracellular 3TC-TP concentrations are nonlinearly related to extracellular
3TC and their kinetics are asynchronous. In terms of macro-parameters, we estimate an intracellu-
lar 3TC-TP half-life of 22 hours, in line with the literature (10.5-22hours [142,156]). However, as
previously described, the utilized data seems to report lower levels of 3TC-TP than observed else-
where [176, 177]. Consequently, our model may underestimate the 3TC-TP exposure (AUC0−24

= 16319 and 24291 vs. 44000 and 59500 fmol · h/106 cells [177] for 150mg and 300mg QD
respectively), which also may result in a slight over-prediction of the potency of 3TC-TP (see
Figure 5.6). Pharmacokinetic parameters of the final models are presented in Table 5.2.
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Figure 5.6: Model prediction vs. clinical data for 3TC and 3TC-TP pharmacokinetics and -dynamics.

A-B: Concentrations time profiles of 3TC in the blood plasma of 10 HIV-1 infected individuals (differently
coloured markers, connected by thin red dashed lines) for 150mg BID (panel A) and 300mg BID (panel B)
respectively. The solid black lines represent the predicted median plasma pharmacokinetics profile for the
respective regimens and the light- and dark grey regions encompass the 5% and 95% percentiles and the
quartile ranges of predictions from the developed nonlinear mixed-effects model. The percentiles represent
the model-predicted concentration ranges for 1000 virtual patients using the final model. Each parameter
vector (virtual individual) was drawn from a log-normal distribution with a variance corresponding to the
inter-individual variability. C-D: Concentrations time profiles of 3TC-TP in peripheral mononuclear cells
(PBMCs) for the same 10 individuals after administration of 150mg BID (panel C) and 300mg BID (panel
D). The solid black lines represent the predicted median intracellular 3TC-TP pharmacokinetics for the
respective regimens and the light- and dark grey regions encompass the 5% and 95% percentiles and the
quartile ranges of predictions from the nonlinear mixed-effects model. E: Predicted (solid black line) vs.
observed average (blue markers connected by the red dashed line) viral load decay from baseline after
administration of 150mg BID monotherapy for 10 days. Reproduced from Duwal et al. [23].
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Param. 3TC FTC TDF Unit
Fbio 0.86† 0.93# 0.32∗ -
ka 0.945§ 0.542 1‡ 1/h
Vc 61.252 43.823 110.31 1/h
k12 0.0605 0.113 0.2926 1/h
k21 0.0594 0.082 0.1537 1/h

Vmax 0.5819 0.6191 0.0032 µM· 1/h
km 3.3977 0.9464 0.1020 µM
kout 0.0315 0.0176 0.006 1/h
IC50 0.74 1.02 0.17 µM

Table 5.2: Estimated pharmacokinetic and pharmacodynamic parameters. †fixed value taken from
Yuen et al. [173]. #fixed value taken from Modrzejewski et al. [165]. ∗fixed value from Barditch-Crovo
et al. [145]. §fixed value taken from Linnankoski et al. [178]. ‡fixed value from Gagnieu et al. [179].
Reproduced from Duwal et al. [23].

5.2 Dolutegravir (DTG)

Dolutegravir (DTG) is a second generation integrase inhibitor developed by ViiV healthcare and
approved by FDA (Food and drug agency) on 2013 [180]. DTG has an excellent tolerability and
minimal toxicity. Furthermore, it has a high barrier to resistance and has limited cross-resistance
to other integrase inhibitors (raltegravir and elvitegravir) [181]V.

5.2.1 Clinical data

We used dolutegravir plasma pharmacokinetics data from two clinical studies. The first study
assessed 50mg QD dolutegravir administered to 17 healthy volunteers for 10 days and serial blood
sampling performed up to 216 hours after the final dose [182]. The second study was performed
in 39 HIV-infected patients on 50 mg QD dolutegravir, who were previously on efavirenz-based
therapy with a stable viral load of less than 40 copies/mL. Random, single blood samples were
drawn over the 24 hour dosing interval 1, 2, 3 and 4 weeks after the switch to DTG [183]. Median
(range) age, weight and BMI of all individuals were 47 years (26-68), 76 kg (51-105) and 26 kg/m2

[183]. In summary, a total of 354 plasma concentration measurements from 56 individuals were
available to build the population pharmacokinetic model for DTG. Healthy volunteers contributed
rich PK profiles with a total of 270 samples taken between 0 hours (pre-dose) and 216 hours after
a final DTG dose. In addition, eighty-four measurements, randomly drawn between 1-25.75 hours
post-dose were available from HIV patients week 1, 2, 3 and 4 weeks post-efavirenz switch.

5.2.2 Outline of the model

We use nonlinear mixed-effects modelling techniques to derive a pharmacokinetic model that ac-
curately captures the observed pharmacokinetic variability within- and across different patients.
All data are fitted simultaneously and the first-order estimation (FOCE-I) method of NONMEM
(v.7.3, ICON plc, Dublin, Ireland), interfaced with Pirana (v.2.9.0 [184]) is used for the parameter
inference. Different structural submodels and inclusion of various covariates are tested according
to the criteria stated in the book by Bonate [109].

VThis section is based on Duwal et al. [26].
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Unlike for NRTIs, the major circulating agent and the intracellular active moiety of DTG
are identical [185]. Linking DTG plasma pharmacokinetics directly with the pharmacodynamics
requires that the plasma pharmacokinetics is linearly and synchronously related to intracellular
active moiety. The requirement is fulfilled for DTG. In the next Chapter, we will provide more
details.

Due to the lack of the viral dynamics data for DTG monotherapy the IC50 cannot estimated
using classical PK-PD approach. However, ex vivo data (single round infectivity cell assay) can
be used to infer the IC50 [87], which we will present in the next chapter. The plasma pharmacoki-
netics can be directly linked with viral dynamics model using the EMAX model as presented in
Chapter 2. The drug inhibits the integrase activity, which is modelled by:

kT/M(t) = (1 − ηInI(t)) · kT/M(∅) (5.9)

where

(1 − ηInI(t)) =
ICm

50

ICm
50 + (DInI(t))m

. (5.10)

where IC50 is the total (unbound plus bound) plasma concentration inhibiting the integrase activity
by 50 %, DInI(t) is the total plasma concentration of DTG and m is the hill coefficient of DTG.

5.2.3 Dolutegravir pharmacokinetic model

The final pharmacokinetic model of DTG is a two-compartment model with an oral absorption:

d

dt
Z0 = −ka · Z0 (5.11)

d

dt
D =

d

dt
Z1 =

ka · Z0

Vc/Fbio
− CL/Fbio

Vc/Fbio
· Z1 −

Q/Fbio

Vc/Fbio
· Z1 +

Q/Fbio

Vp/Fbio
· Z2 (5.12)

d

dt
Z2 =

Q/Fbio

Vc/Fbio
· Z1 −

Q/Fbio

Vp/Fbio
· Z2, (5.13)

where Z0, Z1 and Z2 denote the amount of drug in the dosing compartment and the concentration
of dolutegravir in the central compartment and peripheral compartment respectively. The variable
of interest is the concentration in the blood plasma (central compartment), i.e. D = Z1. Dosing
events are updated in an impulse manner as shown below

Z0(t) = Z0(t) + Dose(k), (5.14)

whenever the simulation time t coincided with the dosing event time Tk. In the equations above, ka

and CL/Fbio denote the uptake and bioavailability-adjusted drug clearance respectively. The term
Vc/Fbio and Vp/Fbio are the bioavailability-adjusted volume of the central and peripheral com-
partment. The term Q/Fbio is the intercompartmental clearance rate adjusted for bioavailability.
Notice that the ODEs for the two compartment model are identical to the two compartment model
presented for NRTIs previously. The difference is that here they are expressed in terms of macro
parameters instead of micro parameters.

Following multivariate analysis, allometric scaling (centered around 70kg) of weight was con-
sidered as a fixed effect in the model. Different values of apparent oral clearance (CL/Fbio) were
estimated for DTG alone in healthy volunteers and in patients following 1, 2, 3 and 4 weeks af-
ter the treatment switch. A combined proportional-additive error submodel described the residual
variability in healthy volunteers, whereas a proportional error submodel was sufficient for HIV-
infected patients. All parameter estimates for healthy volunteers are displayed in Table 5.3. The
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Figure 5.7: Population pharmacokinetics of dolutegravir (DTG). A: Pharmacokinetic model. Concen-
trations within the central compartment with bioavailability-adjusted volume Vc/F correspond to measured
plasma concentrations of DTG (indicated by the blue pin). Parameters ka, Q/Fbio and CL/Fbio denote the
uptake and bioavailability-adjusted inter-compartmental and drug clearance rate respectively and Vp/Fbio

denotes the bioavailability adjusted volume of the peripheral compartment. B: Predicted plasma concen-
tration time profiles of dolutegravir (DTG) for the first four days after initiation of a once daily 50mg oral
regimen (N = 300 virtual patients). The red line depicts the median predicted concentrations, whereas
the dark- and light grey areas present the quartile range and the 5–95% range respectively. Predicted (red
line, grey areas) and measured plasma concentrations during 24h after drug intake in steady state (panel
C) and after cessation of drug intake (panel D). Black circles and thin dashed lines represent DTG plasma
concentration profiles in healthy volunteers (n = 17 concentration time profiles, 270 data points in total),
whereas yellow circles, purple squares, grey diamonds and cyan triangles are DTG plasma concentration
measurements in HIV patients (n = 39) observed 1, 2, 3 and 4 weeks after switching from efavirenz-based
therapy to dolutegravir. Altogether, 354 plasma concentration measurements from 56 individuals are de-
picted. Reproduced from Duwal et al. [26].

model was used to generate PK parameters of virtual patients’in populations, whose PK-profiles
are summarized in Figure 5.7B–D alongside observed DTG concentrations, Figure 5.7C–D. As
one can see in Figure 5.7B, DTG is quickly taken up after oral administration and maximal concen-
trations are achieved after tmax = 1.58 hours (population 5-95% range: 1.53–1.63). Pharmacoki-
netics reach a plateau phase after about 4 doses. During the plateau phase, pre-dose minimum and
maximum concentrations were Cmin = 2918nM (1916–4336) and Cmax = 8471nM (6353–11331)
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parameter value unit CV [%]
Vp/Fbio 0.73 L -
Q/Fbio 0.0082 L/h -
CL/Fbio 0.85 L/h 16.9
Vc/Fbio 17.7 L 16.4

Table 5.3: Pharmacokinetic parameter estimates. The table displays the estimated pharmacokinetic pa-
rameter estimates for healthy individuals. Interindividual variability (random effects) was included on drug
clearance CL/Fbio and the volume of distribution Vc/Fbio. These parameters were log-normal distributed
with coefficient of variation [%] CV = 100 ·

√
exp(σ2) − 1, where σ2 is the variance of the associated

normal distribution. A covariance of 11.3% = 100 ·
√

exp(σ2
x,y) − 1 between x = CL/Fbio and y = Vc/Fbio

was estimated. The absorption rate constant was fixed [186] to 2.24h−1. Residual variability was described
by a combined proportional-additive model for healthy volunteers [σ =0.213 (37.2%) and σ̃ =0.0019 mg/L
(40.9%), respectively] and a proportional error model for HIV-infected patients [σ =0.402 (24.2 %) ].
Reproduced from Duwal et al. [26].

for 50mg oral DTG. The plasma half-life of the DTG was 14.5h (5-95% range: 13.5–15.9).

5.3 Summary

In this chapter, we used various methods for model building discussed in Chapter 4 for the pharma-
cokinetics and pharmacodynamics. For TDF, FTC and 3TC, we built a plasma pharmacokinetic
model of the major dominant circulating agent, which is dynamically linked with the model of
intracellular pharmacokinetics. The plasma pharmacokinetics are best described by two compart-
ment models respectively, whereas the intracellular pharmacokinetics is characterized by a non-
linear uptake and the first order elimination. The pharmacokinetics model is linked with the viral
dynamics model. For DTG, we described a detailed nonlinear mixed-effects model for plasma
pharmacokinetics. The plasma pharmacokinetics is best described by two compartment model.
Due to the lack of the viral load data, the pharmacokinetics is not linked with pharmacodynamics.
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CHAPTER 6

In vitro and ex vivo drug potencies

Understanding and predicting dose-response relationships requires building pharmacokinetic- phar-
macodynamic models. As seen in Chapter 2, IC50 is an important parameter linking the two. We
refer to IC50 as the in vivo (target-process) drug potency, which determines how strongly a partic-
ular concentration of a drug inhibits the target-process. The IC50 can be estimated using a PK-PD
approach as in the previous chapter, illustrated for TDF, FTC and 3TC. We refer to this approach as
‘top-down’, as it utilizes clinical data and may lack mechanistic insight. A problem with the top-
down approach is that the necessary clinical data is notoriously difficult and expensive to obtain.
Moreover, in a number of scenarios clinical trials cannot be performed due to ethical reasons.

On the other hand, a number of in vitro and ex vivo experiments can be conducted under
controlled conditions. The ‘bottom-up’ approach builds on these in vitro and ex vivo experiments
to gain vital insights. Obviously, bottom-up models that can mechanistically translate in vitro

parameters to in vivo parameters or parameters of clinical relevancy are desirable, but usually
not available. Translation of in vitro or ex vivo parameters involves critical tasks, such as the
integration of dynamic processes that may occur on various time scales [187], and validation of
proposed processes/mechanisms.

In this chapter, we briefly recapitulate a bottom-up translation model based on the molecular
mechanism of action of NRTIs [24]. The model describes viral DNA polymerization process, a
crucial step in reverse transcription which is inhibited by NRTIs. We compare IC50 predictions
from the ‘bottom up’ model with those from the top-down approach in order to validate the bottom-
up model. For other antivirals, we provide a way to adjust their IC50s determined in ex vivo

single-round infectivity assays [87] for in vivo use.

6.1 A bottom-up model for NRTIs

NRTI are analogs of endogenous 2’-deoxy-nucleosides or nucleotides [141]. After an intracellular
uptake they undergo sequential phosphorylation by host cell kinases and phosphotransferases to
form analogs of naturally occurring deoxynucleoside triphosphate (dNTP) (see Figure 6.1 panel
A). They compete with their natural counterparts for the integration in nascent viral DNA during
HIV reverse transcription. If they become integrated, due to absence of the necessary chemical
group to attach the next incoming nucleotide unlike their natural counterparts (see Figure 6.1 panel
B), they bring the RNA/DNA polymerization to a halt, until they are excised I.

I This section is based on Duwal et al. [23]. For further details on the model based on molecular mechanism of
action for NRTIs, see von Kleist et al. [24]

67
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A B

Figure 6.1: Nucleoside reverse transcriptase inhibitor: A: Intracellular modification (sequential phos-
phorylation) of nucleoside reverse transcriptase inhibitor. Extracted from Jordheim et al. [188]. B: Chem-
ical structure of zidovudine and its natural occurring analog deoxythymidine. Adapted from Pubchem
database [189, 190].

6.1.1 Molecular mechanism of action

The bottom-up model requires various kinetic parameters for the incorporation and removal of
NRTI-TP and dNTP respectively, as well as typical concentrations of dNTPs in HIV-1 target cells.
These parameters are available from various enzymatic assays. The kinetic parameters can be
derived from pre-steady state kinetic in vitro experiments and are compiled in von Kleist et al.
[24]. Concentrations of endogenous dNTPs in HIV-1 target cells can be measured ex vivo and are
compiled in e.g. [191].

The residual polymerase activity in the presence of activated (tri-phosphorylated) nucleoside
analogs (1 − ǫ(DRTI)) is expressed as [24]:

1 − ǫ(DRTI) =
T0→N(∅)

T0→N(DRTI)
, (6.1)

where T0→N(∅) and T0→N(DRTI) denote the expected time to finalize DNA polymerization medi-
ated by the viral reverse transcriptase in the absence of drugs (∅) and in the presence of nucleoside
analog triphosphates (DRTI) respectively.

The dose response curve for Eqn (6.1) has the shape of the standard Emax-model with slope
coefficient 1 (see [24]), which is in line with observations by Shen et al. [87] for this inhibitor class.
If the virus does not succeed to reverse-transcribe its genome in time, the virus will eventually
be cleared intracellularly. The bottom-up model allows us to assess the relative probability that
reverse transcription finishes in the presence of NRTIs, before the virus is cleared. This parameter
can be compared to the ones derived from the top-down approach. The derivations can be found
in von Kleist et al. [24]. We get the following relation

1 − η(DRTI) =
1

ρrev,∅ +
1−ρrev,∅

1−ǫ(DRTI)

, (6.2)

with 1 − η(DRTI) = ρrev,DRTI/ρrev,∅, where ρrev,DRTI denotes the probability that the reverse tran-
scription is completed in the presence of inhibitors DRTI. Similarly, ρrev,∅ = 0.5 [192] is the
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probability that the reverse transcription is completed in the absence of inhibitors. After substi-
tuting the standard Emax model and solving for the respective IC50, one obtains the following
relation

IC50 =
IC50,poly

1 − ρrev,∅
. (6.3)

where IC50,poly denotes the concentration that reduces reverse transcriptase mediated DNA poly-
merization by 50 % with respect to the absence of the drug. On the other hand, IC50 denotes the
target-process drug potency which corresponds to the IC50 value from the top-down approach (see
Subsection2.5.2).

6.1.2 Comparison of bottom-up model and top-down model

Bottom-up approach Top-down approach
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Figure 6.2: Schematic of the two approaches to infer in vivo target-process potency for NRTIs. We
use two modelling strategies to infer target-process potency IC50s . In the bottom-up approach (left) we
explicitly model inhibition of reverse transcription by NRTI-TP and take in vitro kinetic parameters, as well
as ex vivo physiological parameters as input. The central box depicts the types of reactions that occur dur-
ing RT-induced DNA polymerization. A reverse transcriptase bound template:primer complex RT/T:Pi can
undergo four basic reactions: (i) The primer may be shortened by one nucleotide during the exonuclease
reaction RT/T:Pi→ RT/T:Pi−1. (ii) The primer may be extended by one base during the polymerase reaction
RT/T:Pi→ RT/T:Pi+1, (iii) the NRTI-TP may be incorporated and the primer blocked RT/T:Pi→ RT/T:P̃i+1.
In addition (iv) an incorporated NRTI may be excised from the blocked primer RT/T:P̃i+1 →RT/T:Pi. In
the top-down approach (right) we use pharmacokinetic (PK) data (plasma NRTI and intracellular NRTI-TP
concentrations) to successively build and validate a composite PK model that links oral prodrug adminis-
tration to intracellularly active NRTI-TP. The composite PK model is then linked to an established HIV-1
dynamics model [83, 85] and used to predict clinically observed, mono-therapy induced viral dynamics via
fitting an Emax model. Reproduced from Duwal et al. [23].
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Figure 6.2 schematically illustrates the top-down (PK-PD) and bottom-up (molecular mech-
anism of action) approaches for NRTIs. Both approaches can be used to infer the in vivo drug
potency (IC50). Next, we compare IC50 estimations from the bottom-up approach with those
from top-down approaches. For bottom-up approach, we estimated inhibition of DNA-based
polymerization in the wild type HIV-1 RT enzyme for 5000 nucleotide long heteromeric ran-
dom sequences containing equal proportions of adenosine, cytosine, guanine and thymidine for
lamivudine triphosphate (3TC-TP), emtricitabine triphosphate (FTC-TP) and tenofovir diphos-
phate (TFV-DP) with parameters stated in [24] (Table S1) and [191] (Table 2) for resting CD4+

T-cells, which are the main HIV-1 target compartment. The leftmost panel in Figure 6.3 panel A
shows the predicted % residual infection of resting CD4+ T-cells. As can be seen, TFV-DP appears
most potent in resting CD4+ T-cells with an estimated IC50 value of 0.1µM (≈ 18fmol/106cells),
followed by FTC-TP (0.82 µM; ≈ 146fmol/106cells) and 3TC-TP (1.72 µM; ≈ 302fmol/106cells),
which are similarly potent.

IC50= 0.1µM

 IC50 = 1.72µM

TFV-DP

FTC-TP

3TC-TP

10
−2

10
0

10
2

0

20

40

60

80

100

Inhibitor concentration [µM]

%
 c

e
ll

 i
n

fe
c

ti
o

n
 (

1
−
η

)

 

50

 IC50= 0.82µM

0.1 0.2 0.4 0.7 1 1.5 2.5

0.1

0.2

0.4

0.7

1

1.5

2.5

IC50 [µM] from the top-down approachIC
5

0
 [
µ

M
] 

fr
o

m
 t

h
e

 b
o

tt
o

m
-u

p
 a

p
p

ro
a

ch

TFV-DP

FTC-TP

3TC-TP

A B

Figure 6.3: Estimation of IC50 using a bottom-up model and comparison with top-down (PK-PD) esti-

mates. A: Relationship between the NRTI-TP intracellular concentration in µM and the inhibition of CD4+

T-cell infection by HIV-1 in the bottom-up model. Blue-line: concentration vs. response for TFV-DP, green
line : FTC-TP and magneta line: 3TC-TP. The black-dashed horizontal line marks 50 % inhibition and the
red downward pointing arrows mark the IC50s. B: The blue triangle, green square and red circle denote the
respective median IC50 estimates for 3TC-TP, FTC-TP and TFV-DP. The dashed black diagonal line repre-
sents the line of unity. IC50 values from the bottom-up model are indicated on the y-axis for the respective
drugs. Vertical error bars represent values contained by the 25-75th percentiles derived by recomputing
estimates from 500 bootstrap resampled kinetic micro-parameters from the respective literature sources.
Horizontal error bar represents the 25-75th percentiles of the corresponding IC50 estimates obtained from
the top-down approach. Statistical properties of the top-down estimates were derived by recomputing esti-
mates for each of the 500 bootstrap samples of the viral dynamics data used for IC50 calculation using the
top-down approach. Reproduced from Duwal et al. [23].

Figure 6.3 panel B compares the IC50 predictions from the bottom-up vs. the top-down ap-
proaches for all analysed NRTIs. The horizontal error bars represent the predicted IC50 values
contained by the 25-75th percentiles from the top-down approach whereas the vertical error bars
represent the corresponding IC50 estimates from the bottom-up approach. Qualitatively both ap-
proaches estimate a TFV-DP > FTC-TP ≈ 3TC-TP ranking with regard to target-potency. Quan-
titatively, the top-down approach under-predicts the 50% inhibitory concentrations for 3TC-TP
in comparison with the bottom-up approach (2.3 fold difference, discussed below), whereas for
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TFV-DP it is slightly over-predicted (< 2 fold difference). For FTC-TP, the agreement is excellent.
With the exception of 3TC-TP, this indicates that the predictions from the two different approaches
are in good agreement and that the bottom-up approach may be used to infer the clinical efficacy
of NRTIs.

In our specific case, we achieve an overall very good agreement between estimates of in vivo

potency. This apparent discrepancy may be largely attributed to the top-down approach: The
predicted IC50 from the top-down approach is highly dependent on the quality and statistical relia-
bility of the clinical data. For NRTIs, pharmacokinetic profiles of intracellular active components
are notoriously difficult to measure, sparse and noisy. Some of this difficulty may be contributed
to differences in the preparation of PBMC samples and their potential contamination with red
blood cells [193]. Along these lines, we utilized clinical data that reports lower concentrations of
3TC-TP than e.g. [176] and [175] (compare Figure 5.6C-D [150 and 300mg BID] in Chapter 5
with Figure 2 of Else et al. [175] [150 and 300mg QD]). Consequently, our top-down model might
predict a greater potency of 3TC-TP (smaller IC50 value) than if we had fitted our model to the
data of Else et al. [175], who report higher 3TC-TP concentrations.

Another limitation of the top-down approach is that in order to ensure parameter identifiability
some interdependent parameters have to be fixed. In our case parameters related to viral kinetics
were fixed to literature values in order to enable the estimation of the respective IC50 values.
Obviously, viral dynamics may exert some variability in different populations, which we could not
be fully accounted for.

6.2 Determining drug potency for other antiviral classes

Unlike NRTIs, for all other antiretrovirals drugs the dominant circulating agent in plasma corre-
sponds to the active moiety and does not need to undergo chemical modification for activation.
Obviously, their concentrations in the target site determine their effects. For RTI, InI and PI, the
target site is located intracellularly, whereas for CRA, the target site is the cell surface. How-
ever, it should be noted that not all drug molecules are available to exert antivirals effects, since
a fraction of these are bound to proteins and lipids. This is particularly true for lipophylic drugs.
According to the first statement of free drug hypothesis [194] (see Box 6.1), only the free unbound
concentration at the target-site exerts the pharmacological effect [195, 196].

The second key concept of the free drug hypothesis states that in dynamical equilibrium, the
unbound drug concentrations are identical on both sides of the cellular membrane. Under this
assumption, the unbound plasma concentration of antivirals corresponds to the unbound intracel-
lular concentration. In fact, all analysed NNRTIs, InIs and PIs, except for raltegravir (RAL), are
highly lipophilic, enabling the unbound drug to rapidly cross cellular membranes, generating an
equilibrium between the unbound drug on either side of the cellular membrane [197]. Even for the
weakly lipophilic compound raltegravir, intracellular concentrations are proportional to plasma
concentrations by a factor precisely resembling their unbound moiety [198,199], strongly arguing
for the validity of the free drug hypothesis for all analysed drugs. Note that for NRTIs, the free
drug hypothesis is not valid, since the dominant circulating agents are subjected to active transport
and intracellular modifications, which are saturable processes. Secondly, for NRTIs the active
moiety is strongly charged, such that passive diffusion across membrane is unlikely [160].

An important pharmacological parameter is the fraction unbound in plasma fu. Various meth-
ods can be used to determine the fraction unbound in plasma such as ultracentrifugation, ultrafiltra-
tion and equilibrium dialysis [196]. To summarize, for all antivirals except NRTIs, their unbound
plasma concentrations closely reflect their target site concentrations and hence, the plasma phar-
macokinetics can be directly linked to pharmacodynamics or viral dynamics obviating the need to
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explicitly model intracellular concentration.

Box. 6.1: Free Drug hypothesis

In vivo, a major fraction of drug molecules binds reversibly to proteins and lipids in blood plasma
and in tissues and the remaining fraction is free or unbound [194]. The free drug molecules can
diffuse from blood to other tissues across biomembranes and interact with the therapeutic targets.
The two key concepts of the hypothesis are that (i) the unbound or free drug concentration at the
site of action exerts the pharmacological activity and (ii) in equilibrium the unbound concentrations
are identical on both sides of any biomembrane. In equilibrium

Dplasma, unbound = Dtissue, unbound

where Dplasma, unbound and Dtissue, unbound denote unbound plasma and tissue drug concentrations re-
spectively. It should be emphasized that the total concentrations are not identical across the biomem-
brane, i.e.,

Dplasma, total , Dtissue, total

where Dplasma, total and Dtissue, total are total plasma and tissue drug concentrations. In plasma, drug
molecules bind to plasma proteins. The most relevant plasma protein are albumin and α1-acidic gly-
coproteins. The extent of plasma protein binding is closely related to the physiochemical properties
of drugs such as lipophilicity, polarity, molecular size, degree of ionization etc.
It should be noted that not all drugs obey the free drug hypothesis. Examples include drugs with
very low passive permeability (charged or polar compounds), drugs undergoing active transport in
or out the target-site tissues and drugs with poorly perfused target-site tissue.

In order to link plasma pharmacokinetics to pharmacodynamics, the in vivo drug potency
parameter IC50 is required. The drug potency parameter IC50 can be inferred from ex vivo exper-
iment such as a single-round infectivity assay [87] (see Figure 6.4). The virus is incubated with
HIV susceptible cells along with drug at a particular concentration. If a virus infects the cell, the
cell produces the green fluorescent protein, which can be detected by flow cytometry. This allows
to measure the drug efficacy as the percentage of cells producing green fluorescent protein with
respect to the absence of drug.

Figure 6.4: Schematic illustration of single-round infectivity assay: The pseudotyped viruses are gener-
ated by transfecting HEK293T cells with green fluorescent protein tagged, envelope-defective HIV-1 vector
along with a plasmid that expresses amphotrophic murine Leukemia virus [200]. Shen et al. [87] modified
the assay by replacing amphotrophic murine leukemia virus with an HIV-1 CXCR4 envelope expression
vector. After the transfection, the virus particles are harvested and are incubated with healthy CD4+ cells.
The successful infection of CD4+ cells is measured by the luciferase activity. Extracted from Petropoulos
et al. [200]).
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However, the ex vivo drug potency determined in the assay is not identical to the in vivo

parameter, since the unbound fraction fu,assay in the assay is different to the physiological unbound

fraction fu in plasma. This is attributed to the fact that the cells in the assays are not incubated in
100 % human plasma. Thus, IC50,assay determined need to be adjusted. In Appendix B, we derive
equation

IC50 = IC50,assay ·
2

fu + 1
, (6.4)

where IC50 denotes the total concentration (unbound and bound) in plasma that inhibits 50 % of
target process. IC50,assay is the total concentration (unbound and bound) determined in the single-
round infectivity assay that inhibits 50 % of the target process. The term fu represents the unbound
fraction of the drug in plasma. The derivation is based on the free drug hypothesis. Table B.1 in
Appendix B enlists adjusted IC50 from the single-round infectivity assay for various antivirals
utilizing Eqn (6.4) and drug specific protein binding parameter.

6.3 Summary

To understand how in vitro and ex vivo repeatable insights translate into clinical outcomes is of
great value, because this allows to optimize therapy and to assess particular treatment scenarios
before they are tested in human. While integration of pre-clinical knowledge and data with clinical
pharmacology is desirable, it is often a challenging task.

In this chapter, we briefly provided the main idea behind the bottom-up model for NRTIs [24].
For NRTIs, the free drug hypothesis cannot be used, as the formation of intracellular active moiety
requires saturable active transport process and intracellular modifications [156,201]. This makes it
particularly difficult to determine the potency of NRTIs experimentally: In a phenotypic assay (e.g.
single-round infectivity assay [200, 202]), it may be insufficient to relate the compounds potency
to the concentrations added to the medium surrounding the cells, unless the relation between
NRTIs and intracellular NRTI-TP is known for the analysed cell type. This possibly explains the
discrepancy between the quantitative results from different phenotypic assays [203].

We used top-down models to test the validity of the bottom-up model for NRTIs. The predic-
tions from the bottom-up model showed remarkable agreement with the predictions obtained from
the top-down models (see Figure 6.3), arguing for the validity of the mechanistic assumptions
regarding the molecular mechanism of action of NRTIs. Noteworthy, this argues that in vitro pa-
rameters can be translated into measures of clinical efficacy using the bottom-up model. This can
be extremely valuable, since many experiments cannot be conducted in the clinic. The bottom-up
model can be used to infer the potency of various NRTIs in inhibiting e.g. mutant viruses (using
e.g. parameters stated in von Kleist et al. [24]).

All other antivirals besides NRTIs exhibit physiochemical properties arguing for validity of the
free drug hypothesis. We provided a way to correct the IC50 determined in the ex vivo experiments
for in vivo use and the corrected IC50s are reported.
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CHAPTER 7

Viral extinction and infection

probabilities

In this chapter, we deal with methods to quantify the viral extinction probabilities and reciprocally
the infection probabilities influenced by antivirals employing methods discussed in Chapter 3.
We begin by simplifying the detailed viral replication cycle model described in Chapter 2. Then,
we proceed by distinguishing between scenarios where reaction propensities of the viral dynam-
ics are time-invariant and time-variant (see Section 3.5.2). Time-invariant reaction propensities
arise when the active moiety concentration at the target-site remains constant resulting in a time-
constant target-process inhibition. In general, the active moiety concentration at the target-site
does not remain constant. Correspondingly, the target-process inhibition is time-varying and re-
action propensities of the viral dynamics are time-variant (time-inhomogeneous Markov Jump
Process) I.

7.1 A simplified viral dynamics model for the early infection phase

k(t)

(early infected 
T-cell)

(productively 
infected T-cell)

T
2Tu⋅ βΤ(t)

Tu ⋅CLT(t)
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NT(t)
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T
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Figure 7.1: Schematic of the simplified HIV dynamics model and mechanism of action by treatment-

approved drug classes: CRA: Co-receptor antagonist, RTI: reverse transcriptase inhibitor, InI: Integrase
inhibitor, PI: Protease inhibitor. Reproduced from Duwal et al. [27].

IThis chapter is based on articles [25–27]
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Whether or not an infection occurs is determined very shortly after a viral challenge. For
instance, if an infection has occurred, the eclipse phase lasts for roughly 10 days (see Chapter 2
Section 2.3) after which viremia grows exponentially. Hence, for the aforementioned purpose,
it suffices that the viral dynamics model adequately describes the viral dynamics shortly after
a challenge and it might not need the complexity of the detailed model that captures long-time
viral dynamics behaviours such as three decay phases. Motivated by this insight, we pursue a
simplification of the detailed viral dynamics model.

Ping et al. [204] studied phenotypic and genotypic variations of HIV-1 in a large number of
acute and early infected subjects and reported that the transmitted or founder viruses are exclu-
sively T-cell tropic in agreement with other studies [205–207]. In similar lines, Isaacmen-Beck
et al. [208] reported that the transmission does not enhance macrophage-cell tropism. The pref-
erential infection of T-cell in comparison to slow replicating cells like macrophages during early
infection can be explained by the necessity to maintain high basic reproductive number R0 in order
to establish the infection [209].

Following these insights, we simplified the original model [83] and its extension [85] by fo-
cussing on T-cells, which are the primary target of virus during the early infection. We only
implicitly considered latent infected cells and macrophages. Similar simplifications have been
previously used by other studies [77, 210–213]. The simplified model is schematically depicted
in Figure 7.1. The term Tu,SS denotes the steady state level of uninfected T-cells prior to a virus
challenge and is given by following ratio:

Tu,SS =
λT

δT
. (7.1)

During the onset of infection, the number of viruses are relatively low and the number of un-
infected T-cells is fairly unaffected by virus dynamics [210, 214]. Thus, during simulations, we
consider the number of uninfected T-cells to be constant as described by equation (7.1), and in line
with related approaches [215].

The terms δT1 < δT2 denote the rates of clearance of T1 and T2 cells respectively and δPIC,T

denotes the rate of intracellular destruction of the pre-integration complex. Other than these events,
the dynamics of the stochastic viral replication model after the virus challenge are defined by six
reactions. In absence of antivirals ∅, we have
R1. Clearance of free virus V → ∗

a1(V(t),∅) =
(
CL + CLT · Tu,SS

) · V(t) (7.2)

R2. Clearance of an early infected cell T1 → ∗

a2(T1(t),∅) =
(
δPIC,T + δT1

) · T1(t) (7.3)

R3. Clearance of a late infected cell T2 → ∗

a3(T2(t),∅) = δT2 · T2(t) (7.4)

R4. Infection of a susceptible cell V → T1

a4(V(t),∅) = βT · Tu,SS · V(t) (7.5)

R5. Proviral integration T1 → T2

a5(T1(t),∅) = kT · T1(t) (7.6)
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R6. Production of virus T2 → V + T2

a6(T2(t),∅) = NT · T2(t), (7.7)

with CLT =
(

1
ρrev,∅

− 1
)
· βT in R1 where ρrev,∅ = 0.5 denotes the probability to successfully com-

plete reverse transcription in the absence of inhibitors [192,216]. The parameters of the simplified
viral dynamics model can be found in Table A.1. Note that in the first reaction we assumed that
the target-cell population changes only marginally during the initial steps of the infection and was
thus approximated by its steady state value Tu,SS (see Eqn (7.1)). Therefore, both the clearance of
free virus and the clearance of virus by unsuccessful infection can be subsumed into the expression
for a1.

7.2 Time-constant target-process inhibition

Here, we utilize the simplified viral dynamics described in Section 7.1, which is sufficient to
describe the stochastic behaviour shortly after a viral exposure. Let Y(t) be a state vector consisting
of all viral compartments i.e, number of free viruses, early and late infected cells at time t as shown
below:

Y(t) =


V
T1

T2

 , (7.8)

where V, T1 and T2 are the number of viruses, early and late infected T cells at time t respectively.
Let y0 denote an initial state vector i.e, Y(0) = y0. We are interested in the extinction probability
or reciprocally the infection probability for any given initial state. Mathematically, the extinction
probability is defined as

E(y0, •) := P

Y(t) =


0
0
0



∣∣∣∣∣∣ y0 =


V
T1

T2

 ; •

 (7.9)

for t → ∞ under some drug condition •. In other words, the extinction probability is the prob-
ability that a stochastic trajectory starting at y0 eventually reaches the absorbing state [0, 0, 0]⊤.
Obviously, the infection probability is the complement of the extinction probability, hence,

I(y0, •) = 1 − E(y0, •). (7.10)

Next, we will assume a time-constant drug inhibition i.e.,

ηK (t) = const., where const. ∈ [0, 1], t ≥ 0

and employ branching processes techniques to compute the virus extinction probability analyti-
cally [217]. Firstly, the assumption of a time-constant drug inhibition permits the computation of
the infection probability in an absence of a drug. The assumption is exactly valid, since the drug
inhibition is constant in the absence of drug (ηK (t) = 0).

The concentration of an active moiety for a dosing regimen varies over time and corresponding
the resulting target-process inhibition on the viral life cycle also varies. Hence, predicting the
stochastic behaviour of a viral dynamics trajectory shortly after exposure needs to account for the
time-varying target process inhibition. However, usually a detailed concentration time-profile may
not be easily available. Instead the range of concentration over a time period may be available.
Assuming the minimum concentration is maintained for the relevant time horizon, the lower range
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of the infection or extinction probabilities for the dosing regimen can be computed. Similarly, the
maximum concentration can be used to infer the upper range of the probabilities.

We use • = ∅ to denote the absence of any drug, whereas • = DK denotes some constant drug
concentration belonging to the drug class K . For ease of notation, we will replace E(y0, •) with
E(y0), since the results are valid as long as the target-process inhibition is constant throughout the
process.

When the drug pharmacokinetics is assumed to be constant Z(t) = const. or changes insignifi-
cantly Z(t) ≈ const., the hybrid stochastic-deterministic system X(t) can be reduced to the stochas-
tic system Y(t). For the ease of notation, we introduce the unit vectors V̂, T̂1 and T̂2 which denotes
the states where only one infected compartment is present (either virus, early or late infected cells)

V̂ =


1
0
0

 , T̂1 =


0
1
0

 , T̂2 =


0
0
1

 . (7.11)

Any state of the system can be expressed as a linear combination of these unit vectors, e.g. 5 · V̂⊕
3 · T̂1 ⊕ 2 · T̂2 denotes the state, where we have 5 viruses, 3 early infected cells and 2 late infected
cells. Similarly, the zero vector ([0, 0, 0]⊤ is denoted by 0.

7.2.1 Viral dynamics as a Markov jump process

The viral replication cycle can be interpreted as a Markov jump process II. For the sake of sim-
plicity, the state Y(tn) at time tn is denoted by yn and without loss of generality, y0 and y1 denote
the initial- and the next state respectively.

Here, we introduce a term ‘single path’ or ‘unit transition’ for the sake of clarity. A single
path or a unit transition is closely related to the next firing reaction in the context of the stochastic
approach for chemical systems. For example, consider a single virus in the host at time 0. For
some time to next reaction τ, let the next reaction firing for the illustration purpose be the clearance
of the virus (R1). In this case, the single path or the unit transition is denoted by V̂ → ∗ which
refers to the virus being cleared. The probability of the path is equivalent to the probability that
the associated reaction fires next:

P(y1 = 0|y0 = V̂) = p( j = 1|τ, V̂; 0), (7.12)

where j = 1 denotes the index of the reaction which clears the virus. Thus, we can write

P(y1 = 0|y0 = V̂) =
a1

a1 + a4
=

CL + CLT · Tu,SS

CL + CLT · Tu,SS + βT · Tu,SS
. (7.13)

where CLT and βT denote the rate constants of virus intracellular clearance and infection respec-
tively. Similarly, the probability of the path (V̂→ T̂1) is given by:

P(y1 = T̂1|y0 = V̂) =
a4

a1 + a4
. (7.14)

Notice that these unit transition probabilities are time-invariant due to the assumption of a time-
constant target-process inhibition.

Any composite path can be described by these unit transition probabilities. For instance, the
probability of a composite path such as V̂ → T̂1 → T̂2 can be broken into the corresponding
probabilities of a single paths as shown below (for further details see Appendix C):

P(y2 = T̂2|y0 = V̂) = P(y2 = T̂2|y0 = T̂1) · P(y1 = T̂1|y0 = V̂). (7.15)
IIFor our purpose, we constructed the embedded Markov chain model [217] from the continuous-time Markov jump

process model of the viral replication cycle.
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7.2.2 Closed-form solutions

Under the assumption of statistical independence(assuming that the competition for target-cells is
negligible during the onset of infection), the probability that n infectious viruses within a target-
cell environment go extinct is given by III

E(y0 = n · V̂) = (E(y0 = V̂))n. (7.16)

The extinction event can be interpreted as a high-dimensional analog to the classic gambler’s ruin
problem first solved by pascal [218]. The term E can be written as [219]

E(y0 = V̂) =
∞∑

i=0

P(yr = i · V̂|y0 = V̂) · E(yr = i · V̂),

=

∞∑

i=0

P(yr = i · V̂|y0 = V̂) · E(yr = V̂)i (7.17)

where E(yr = i · V̂) denotes the probability of a virus extinction when i viruses were produced
in the first replication cycle and where we used Eqn (7.16) in the second equality. In words, the
extinction probability for a single virus is given by the probability that i viruses are produced
in a single replication cycle r, P(yr = i · V̂|y0 = V̂), and that all of these viruses eventually go
extinct, considering all possible values of i. Herein, we assumed statistical independence, i.e.
E(yr = i · V̂) = E(yr = V̂)i. The extinction probability for parent- and progeny virus remain
identical, since the reaction rates do not change when the inhibition and uninfected target-cell
cells remain constant, hence the equality E(y0 = V̂) = E(yr = V̂) holds.

In Appendix C, we simplified Eqn (7.17) by breaking down it into its respective single path
probabilities, which are ratios of reaction propensities. The algebraic simplification results in a
quadratic equation with the unknown variable being the extinction probability for a single virus
E(y0 = V̂). Hence, two solutions exist and the extinction probability is given by the minimum of
the two solutions as shown below:

E(y0 = V̂) = min

(
1,

a1

a1 + a4
+

a4

a1 + a4
· a2

a2 + a5
+

a3

a6

)
. (7.18)

Reciprocally, the infection probability is given by :

I(y0 = V̂) = max

(
0, 1 − a1

a1 + a4
− a4

a1 + a4
· a2

a2 + a5
− a3

a6

)
. (7.19)

IIIHere, we used E(y0 = n · V̂) instead of explicitly denoting an absence of drug ( i.e. E(y0 = n · V̂,∅) or a constant
drug concentration E(y0 = n · V̂,DK ), as the derivation onward is valid for both cases.
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7.2.3 Relation to the reproductive number

Box. 7.1: Reproductive number (R0)

The concept of the basic reproductive number R0 is extensively used in population ecol-
ogy (study of spread or dynamics of species and their interaction with the environment),
epidemiology (study of spread and distribution of a disease in a population) and in the
study of within-host pathogen dynamics. In population ecology, the basic reproductive
number R0 is defined as the average number of offspring an individual has during its en-
tire life-time. Similarly, in context of epidemiology, it refers to the average number of
secondary infections produced by an infected individual during his or her entire infectious
period [220, 221].
R0 is an important parameter that indicates the transmissibility of an infection and the
potential for a species to spread in the population. For an infection, R0 determines whether
a pathogen can persist or perish in such a population. For an infection with R0 < 1, which
means that on average each infectious individual infects less than one other individual and
implies that the infection will die out. On the other hand, if R0 > 1, the infection or
pathogen may be able to spread in the population [220, 221].

Here, we are interested in R0 in the context of within-host infection. Let R0 denote the average
number of viruses produced from a single founder virus [220] in a replication cycle. Mathemati-
cally, R0 can be written as follows

R0 =

∞∑

i=1

P(yr = i · V̂|y0 = V̂) · i, (7.20)

and the algebraic simplification (shown in Appendix C) leads to the following expression:

R0 =
a4

a1 + a4
· a5

a2 + a5
· a6

a3
. (7.21)

Note that the number of viruses being produced from a single founder virus is likely bimodal.
This implies that in the majority of cases a single founder virus will not manage to produce any
progeny, however, those viruses that produce progeny will produce vast amounts of viral offspring.
The extinction and infection probabilities for a single virus inoculum can be expressed in terms of
R0 as given below:

E(y0 = V̂) = min

(
1, 1 − a4

a1 + a4
· a5

a2 + a5
·
(
1 − 1

R0

))
(7.22)

and

I(y0 = V̂) = 1 − E(y0 = V̂),

= max

(
0,

a4

a1 + a4
· a5

a2 + a5
·
(
1 − 1

R0

))
. (7.23)

Other compartments

Until now, we have derived a closed-form solution for the extinction probability conditioned that
a single virus reaches the target-cell compartment. Similarly, we can derive the extinction prob-
ability given a single early- or late infected cell T1 and T2 respectively. Let the term E(y0 = T̂1)
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and E(y0 = T̂2) be the respective extinction probabilities for a single T1 or T2 cell.

E(y0 = T̂1) = min

(
1, 1 − a5

a2 + a5
·
(
1 − 1

R0

))
(7.24)

⇔ I(y0 = T̂1) = max

(
0,

a5

a2 + a5
·
(
1 − 1

R0

))
(7.25)

and

E(y0 = T̂2) = min

(
1,

1

R0

)
, (7.26)

⇔ I(y0 = T̂2) = max

(
0, 1 − 1

R0

)
(7.27)

Under the assumption of statistical independence, the extinction probability of any given com-
bination of free virus V, early-stage infected cell T1 and late-stage infected cell T2 can then be
computed as

E

y0 =


V
T1

T2



 =
(
E(y0 = V̂)

)V ·
(
E(y0 = T̂1)

)T1 ·
(
E(y0 = T̂2)

)T2
(7.28)

Using the parameters in Table A.1 , the extinction probabilities in the absence of drug are com-
puted: E(y0 = V̂,∅) = 0.9018, E(y0 = T̂1,∅) = 0.5212 and E(y0 = T̂2,∅) = 0.0150. Recip-
rocally, the infection probabilities are: I(y0 = V̂,∅) = 0.0982, I(y0 = T̂1,∅) = 0.4788 and
I(y0 = T̂2,∅) = 0.985.

7.3 Time-varying target-process inhibition

We derived closed-form solutions for extinction probabilities for the time-constant target-site drug
concentration (time-invariant reaction propensities). In general, target-site drug concentrations
are time-varying and correspondingly the reaction propensities of viral dynamics are time-variant.
Figure 7.2 schematically depicts stochastic viral dynamics under deterministic pharmacokinetics
arising in the context of PrEP. Closed form solutions for extinction probabilities are not possible
for the time-varying target-site drug concentration. Thus, we have to employ algorithms discussed
in the hybrid stochastic-deterministic approach (see Chapter 3). In the following, we tailored the
algorithms (CME and SSA) to quantify the extinction probability or reciprocally the infection
probability for time-varying target-site drug concentrations (time-variant reaction propensities).

7.3.1 Reduced-state viral dynamics model and the chemical master equation

Solving a full state CME suffers from the curse of dimensionality. To circumvent this, we pro-
pose a reduced-state model for viral dynamics model as an approximation. This relies on the key
observation that reaching the T2 stage is critical in order to establish an infection. Previously,
we observed that in absence of drug the infection probability is very high once the viral dynam-
ics has advanced to T2. I(T̂2,∅) is roughly 10 fold of I(V̂,∅) and twice I(T̂1,∅) (compare
I(T̂2,∅) = 0.9850 vs. I(V̂,∅) = 0.0982 and I(T̂2,∅) = 0.9850 vs. I(T̂1,∅) = 0.4788). These
comparisons highlight that establishing a systemic infection is a boom or bust process, either there
is no offspring (bust) or T2 stage is reached producing a large number of offspring (boom) making



82 CHAPTER 7. VIRAL EXTINCTION AND INFECTION PROBABILITIES

*

*

*

*

*
*

*

A
 s

to
ch

a
st

ic
 t

ra
je

ct
o

ry
 o

f 

v
ir

a
l 

re
p

li
ca

ti
o

n
 p

ro
ce

ss

T
a

rg
e

t-
si

te
 D

ru
g

 

P
h

a
rm

a
co

k
in

e
ti

cs

Time

C
o

n
c

V T
1

T
2

V

V

V
V

V

V

T
1

T
1

T
1

T
1 T

1
T

2

T
2

T
2

Figure 7.2: Schematic depiction showing the target-site drug pharmacokinetics time profile (an ex-

trinsic process) affecting the intrinsic stochastic dynamics of viral replication cycle: The bottom most
panel depicts an exemplary target-site pharmacokinetic time profile for an integrase inhibitor after multiple
oral doses. The topmost panel illustrates an exemplary stochastic trajectory starting with a single virus
under the influence of drug pharmacokinetics.

extinction very unlikely. The transitions in the viral replication cycle before T2 is reached are
bottle-necking in nature.

Obviously, the question arises how reaching T2 determines whether or not a systemic infection
establishes in presence of a drug. To that end, let us look at the probability that a single virus fails
to produce any progeny until the end of the first replication cycle under some influence of drug.
We denote this probability ER(V̂):

ER(V̂) =
a1

a1 + a4
+

a4

a1 + a4
· a2

a2 + a5
+

a4

a1 + a4
· a5

a2 + a5
· a3

a3 + a6
. (7.29)

The above equation is the summation of probability that a virus is cleared before reaching T1,
probability that T1 is reached but cleared before advancing to T2 and the probability that T2 is
reached but cleared before producing any progeny (see Eqn (C.7) and Eqn (C.8)). Note that
the complement of this probability is the probability that a virus reaches T2 and produces some
offspring.

Next, we computed the relative difference between the extinction probability and the prob-
ability that a virus fails to produce any single progeny at the end of the first replication cycle.
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Mathematically, we computed

Relative difference =
E(V̂) − ER(V̂)

E(V̂)
. (7.30)

Figure 7.3 panel A depicts the relative difference with increasing target-process inhibition for all
drug classes given a single virus. Interestingly, for CRA, RTI and InI, the relative error is less than
0.2 % and is constant for a wide range of target-process inhibition. Whereas for PI, the relative
difference increases (up to 10 %) with increasing target-process inhibition. This highlights that
the completion of the first replication cycle is crucial in establishing the infection. Also, we see
that the probability that a virus fails to produce any progeny at the end of first replication cycle
(ER(V̂)) serves as a good proxy for the extinction probability of a single virus (E(V̂)) for drug
classes CRA, RTI and InI. However, ER(V̂) does not approximate E(V̂) for PI. Furthermore, we
plotted the relative difference vs. target-process inhibition for all drug classes, when a recipient
is challenged with 100 viruses in Panel B of Figure 7.3. Mathematically, the relative difference is
given by

Relative difference =
E(100 · V̂) − ER(100 · V̂)

E(100 · V̂)
. (7.31)

Figure 7.3 panel B shows that the relative difference is strongly magnified for all drug classes as a
consequence of exposure to multiple viruses. Hence, the suggested approximation for extinction
probability works only for CRA, RTI and InI given an exposure with a low number of viruses.

Target process inhibition [%]

10-2

10-1

100

101

102

R
e

la
ti

v
e

 e
rr

o
r 

[%
]

0 10 20 30 40 50 60 70 80 90 100
10-2

10-1

100

101

102

R
e

la
ti

v
e

 e
rr

o
r 

[%
]

Target process inhibition [%]

0 10 20 30 40 50 60 70 80 90 100

A B

Figure 7.3: Relative error due to an approximation of the viral extinction probability for various

drug classes with a varying target-process inhibition: The approximation utilizes the probability that a
virus fails to complete its first replication round as a proxy for the extinction probability. A: Relative error
of the approximation for a single virus B: Relative error of the approximation for 100 viruses. The dashed
green, red, blue and solid purple lines belong to RTI, CRA, InI and PI respectively.

We propose an approximation for CME based on the insight that the probability that a virus
fails to produce any progeny in the first replication round serves as a good approximation for
the extinction probability. Instead of considering all the possible states, we only consider states
relevant in the first replication cycle and introduce a virtual state ‘Pro’ (proliferation state). The
proliferation state Pro denotes that the first replication cycle has been completed (see Figure 7.4).
IV

IVNote that the introduction of the ‘proliferation’ state requires an extra dimension in the state vector and the state
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Figure 7.4: reduced-state viral dynamics model: The reduced-state viral dynamics model for the CME
constitutes a virtual state Pro. The state Pro denotes that the first replication cycle has been completed. The
proposed approximation is based on the insight that the probability that a virus fails to produce any progeny
in the first replication round serves as a good approximation for the extinction probability. Adapted from
Duwal et al. [27].

We make use of the stochastic transition function, which we introduce in Chapter 3. Here, we
have

p(t, Y(t0), Y(t)) := P(Y(t) = y|Y(t0) = V̂;D), (7.32)

which is the probability that the stochastic process is in state y at time t given that the process
started at t0 with a single virus V̂ under a some time-varying drug concentration trajectory D.

For ease of readability, we use a short notation p(t, Y(t)) where we leave the initial state vector
V̂ from the notation. The corresponding CME can be written as follows:

d

dt
p(t, V̂) = − (

CL + CLT(t) · Tu,SS + βT(t) · Tu,SS
) · p(t, V̂), (7.33)

d

dt
p(t, T̂1) = βT(t) · Tu,SS · p(t, V̂) − (

δPIC,T + δT1 + kT
) · p(t, T̂1), (7.34)

d

dt
p(t, T̂2) = kT · p(t, T̂1) −

(
δT2 + N̂

)
· p(t, T̂2), (7.35)

d

dt
p(t, Pro) = N̂ · p(t, T̂2). (7.36)

At t0, the simulation is started with p(t0, V̂) = 1. For t → ∞, the probabilities of states V̂, T̂1, T̂2

decay to zero and the stationary values of the probability of being in the state Pro is achieved. The
extinction probability can be approximated as shown below:

E(V̂,D) ≈ 1 − p(∞, Pro). (7.37)

Under the statistical independence assumption, the extinction of n viruses can be approximated as
shown below:

E(n · V̂,D) ≈ (1 − p(∞, Pro))n. (7.38)

vectors need to be redefined accordingly. For example, the state vector V̂ should be [1, 0, 0, 0]⊤ with the last entry for
the proliferation state instead of [1, 0, 0]⊤. Here, we implicitly assume such extension.
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Notice that this approximation using the reduced-state CME, instead of full-state CME, inherits
the same weakness as the approximation of the infection probability by the probability to complete
the first replication cycle. Thus, as mentioned previously, this approximation is only good for drug
classes CRA, RTI and InI and not for PI. Secondly, the relative error scales up with an increase in
the number of viruses.

This reduced-state CME assumes that the extinction is very unlikely once the first replication
cycle is completed. However, this might not hold in case of drug with high efficacy (η > 90%).
Thus, using the reduced-state CME is only suggested for drug classes CRA, RTI and InI when
their instantaneous target-process inhibition is under 90% for the time horizon of interest and for
a relatively low number of initial viruses.

7.3.2 Adaptation of stochastic simulation algorithms

Next, we discuss the adaptation of stochastic simulation algorithms for the purpose of quantifica-
tion of extinction and infection probabilities for time-varying drug concentrations.

7.3.2.1 EXTRANDE and upper bound of reaction propensities

EXTRANDE requires the selection of two parameters (i) a look-ahead time horizon L and (ii)
a way to compute the upper bound B(t) for the sum of reaction propensities valid for the entire
look-ahead time horizon. Here, we adapt EXTRANDE for simulating the dynamics of viral ex-
tinction/infection by proposing an upper bound that does not require a manual choice of a so called
look-ahead time horizon L.

In Subsection 2.5.2, we introduced a term ηK denoting the efficacy of an antiretroviral belong-
ing to the drug class K ∈ {CRA,RTI, InI, PI} described by an Emax equation.
Reverse transcriptase inhibitors. Since ηRTI ∈ [0, 1] and from Eqn (2.2), Eqn (2.3) and Eqn (2.4)
it can easily be shown that

a1(V(t),DRTI(t)) + a4(V(t),DRTI(t)) = a1(V(t),∅) + a4(V(t),∅) (7.39)

and therefore
a0(Y(t),DRTI(t)) = a0(Y(t),∅), (7.40)

where a0 =
∑

k ak is the sum of reaction propensities. It also follows that

a0(Y(t + s),DRTI(t + s)) = a0(Y(t),∅) (7.41)

where 0 ≤ s ≤ τ denotes any time interval before a stochastic reaction has fired. Consequently,
the sum of reaction propensities does not change for RTIs and we can choose B = a0(Y(t)).
Interestingly, there will be no rejection steps in this case.
Other inhibitor classes. Co-reception antagonists (CRA) decrease reaction propensity a1 and a4,
InIs decrease a5 and PIs reduce a6 respectively by a factor (1 − ηK ) ∈ [0, 1], which implies

a0(Y(t),DK (t)) ≤ a0(Y(t),∅), (7.42)

and consequently
a0(Y(t + s),DK (t + s)) ≤ a0(Y(t),∅). (7.43)

for any time interval 0 ≤ s ≤ τ before a stochastic reaction has fired. Therefore, we can always
choose B = a0(Y(t),∅) as an upper bound to meet condition (3.50) without the requirement to
select a look-up time horizon L.
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7.3.2.2 Stopping criteria for stochastic simulation algorithm

Using stochastic simulation algorithms to assess the PrEP/PEP efficacy requires classification of
stochastic trajectories of the viral dynamics as an extinction or an infection event. For the sim-
plified viral dynamics model, the null state is an unstable fixed point and also an absorbing state,
i.e. when trajectories hit this state, the virus is eliminated, and we can stop the simulation. To
stop the simulation when trajectories move away from the extinction state is not a straightforward
choice. We are interested to determine how or when to stop a trajectory that moves away from the

extinction state, in other words when to classify a trajectory as an infection trajectory.

One may set arbitrary thresholds
[
V(t) = const0,T1(t) = const1,T2(t) = const2

]⊤ and assume
that an infection occurred when a trajectory exceeds these thresholds. While too small thresholds
misleadingly overestimate the number of infection events, large thresholds increase the run-time
of the simulations considerably. Furthermore, there is no control of the numerical error made, i.e.
the probability to falsely classify a trajectory as an infection event.

Below, we present a method to rigorously classify stochastic trajectories as infection events,
incorporating a user-defined error tolerance (probability to falsely classify a trajectory as an in-
fection event). This can be used as the stopping criteria for a stochastic simulation using the
integral-based stochastic simulation algorithm and EXTRANDE.

Extinction simplex

Previously, we presented a closed form solution for computing the extinction probability for any
particular state of the virus dynamics system, under the assumption that the drug effect η is con-
stant. Under the assumption of statistical independence, the extinction probability for any state of
the system y = [V,T1,T2]⊤ is given by:

E

y =


V
T1

T2

 ,DK

 =
(
E(V̂,DK )

)V ·
(
E(T̂1,DK )

)T1 ·
(
E(T̂2,DK )

)T2
. (7.44)

Let us consider a term ε ∈ (0, 1]. We can divide the state space of viral dynamics y ∈ N3
0 into

two sets: The first set contains all the states where the extinction probability exceeds ε (which
we will refer as extinction simplex or extinction polyhedron). Mathematically, for any state in this
extinction simplex, the following should be valid

ε ≤ E(y,DK ), (7.45)

whereas in the second set, the extinction probabilities of states are smaller than ε:

ε > E(y,DK ). (7.46)

Taking the logarithm on both sides of Eqn (7.45), we get

log10(ε) ≤ log10
(E(y,DK )

)

= V · log10
(E(V̂,DK )

)
+T1 · log10

(E(T̂1,DK )
)
+T2 · log10

(E(T̂2,DK )
)
. (7.47)

For any state in the extinction simplex, this should be valid. Given a user-defined threshold ε ≪ 1
we therefore only consider stochastic states within the extinction simplex, e.g. states y for which

E(y,DK ) ≥ ε (7.48)
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Figure 7.5: Extinction simplices for all drug classes for a target inhibition of 80 %. A: CRA B: RTI
C: InI D: PI. The three dimensions are the number of free viruses, early-infected T cells (T1) and late-stage
infected T cells (T2). The colour varies from bright yellow denoting certain extinction, to black denoting an
extinction probability less than 0.0001. The region enclosed by green lines is the extinction simplex in the
absence of antivirals with a threshold of 0.0001.

is true. Figure 7.5 displays the extinction simplices belonging to different drug classes assuming
a respective target inhibition of 80 %. The colour varies from bright yellow denoting certain
extinction, to black denoting an extinction probability less than 0.0001.

For a constant target-site antiviral concentration the stopping criteria for the stochastic simu-
lation algorithm could be determined using the extinction simplex; Whenever a trajectory leaves
the simplex, an infection is encountered, i.e. the simulation is stopped whenever

E(Y(t),DK (t)) < ε

and the realization is classified as an infection event. This criterion guarantees that the probability
to falsely classify a trajectory as an infection event is smaller than ε. However, for the fixed target-
site concentrations, we already derived closed form solutions, making simulations unnecessary.

We will next incorporate the above derived stopping criteria to utilize them in the case of time-
varying drug efficacy. Note that there is a positive relationship between the size of the extinction
simplex and the drug efficacy η, this means for the more efficient (potent) drug, the extinction
simplex is larger.
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Figure 7.6: Adaptation of extinction simplex based on antiviral pharmacokinetics: A: Exemplary
dolutegravir (DTG) pharmacokinetics for 3days of 2mg oral DTG once daily. The blue line represents
DTG plasma concentrations. The dashed orange line represents the function Dmax(t), which for a particular
t returns the maximum DTG concentration achieved in any future time i.e Dmax(t) = max(D(s)) where
s ∈ [t,∞). The black horizontal dashed line marks the IC50 for DTG [222]. B: Instantaneous target-
process inhibition (blue line) corresponding to the concentration-time profile in A. The orange line is the
target-process efficacy profile for Dmax(t). The black horizontal dashed line marks η = 50%. C: Extinction
simplex corresponding to η = 84.5%. D: The extinction simplex corresponding to η = 50%. Panels C

and D show the state space with three dimensions corresponding to number of free viruses, early-infected
T cells (T1) and late-stage infected T cells (T2). The colour varies from bright yellow denoting certain
extinction, to black denoting an extinction probability less than 0.0001. The region enclosed by green lines
is the extinction simplex in absence of antivirals. Reproduced from Duwal et al. [26]

Therefore, a simple way is to pre-compute the maximum achievable target-site concentration
of an antiviral for a particular dosing regimen, i.e.

Dmax = max
t∈[0,∞]

DK (t) (7.49)

and to define an extinction simplex using Dmax, i.e. to stop the trajectories and count an infection
event if, for some state Y(t),

E(Y(t),Dmax) < ε, (7.50)

which guarantees that the probability to falsely classify a trajectory as an infection event is smaller
than ε. However, due to the relationship between the size of the extinction simplex and the drug
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efficacy η, the simplex might be large and therefore simulations may take a long time until they can
be regarded as infection events. In order to further improve the run-time of simulations, instead
of a fixed extinction simplex one can use the maximum antiviral concentration reachable in any
future time [t,∞]:

Dmax(t) = max
u∈[t,∞]

DK (t). (7.51)

Figure 7.6 illustrates the adaptation of the extinction simplex in the EXTRANDE algorithm
for a typical pharmacokinetics profile achieved during a short course PrEP with dolutegravir (once
daily for 3 days with 2 mg DTG - Panel A). The blue line represents DTG plasma concentration,
whereas the dashed orange line marks the Dmax(t). The black horizontal dashed line marks the
IC50 for DTG. The panel B shows the target inhibition corresponding to the PK profile in panel
A and Dmax(t). Panel C and D display the extinction simplices corresponding to Dmax(t) and IC50

respectively. Note that the size of the extinction simplex shrinks as the drug concentration tapers
after the last dosing and consequently reaches the size of extinction simplex without any drug.
Particularly during short-course PrEP and PEP simulations, this guarantees that the algorithm will
stop in reasonable CPU time.

Infection of long-lived cells as a stopping criterion

It has previously been shown that long lived- and latently infected cells are a major barrier to the
elimination of HIV and that they may be established early in infection [223–225]. This reservoir
has been attributed to infected macrophages [51, 79] and latently infected T-cells with very long
half-lives [226–228]. If any of these compartments become infected after viral exposure, infection
may be considered irreversible. During simulations we considered two parameters, pM|a4 = 1.25 ·
10−4 and pL|a5 = 8 · 10−6 to assess whether a long-lived cell (e.g. macrophage) had been infected
or whether a latently infected cell emerged. These parameter choices accurately reproduce viral
decay kinetics during antiretroviral combination therapy, as shown in articles [83,85] and recapture
estimated reservoir sizes during chronic infection [223, 229]. I.e., during simulations, whenever
reaction R4, or R5 fires, it is assessed whether a long lived- or latently infected cell emerged.

For our purpose, we adapted the EXTRANDE algorithm by introducing an intuitive upper
bound for the sum of reaction propensities and stopping criteria. Similarly, we adapted the integral-
based SSA algorithm by using stopping criteria. The pseudo-codes of the adapted algorithm are
provided in Appendix D. Figure 7.7 demonstrates two trajectories using the adapted EXTRANDE
for illustration purposes. We simulated a chronic PrEP with 2 mg of oral DTG with a low ad-
herence for a 3 month duration. The left panels belong to a simulation which led to an infection.
Panel A shows the instantaneous target-process inhibition time profiles due to the drug pharma-
cokinetics, whereas Panel B shows the stochastic time profiles of three viral compartments namely
V, T1 and T2. The right panels belong to the simulation leading to a viral extinction. Panel C and
D depict the instantaneous target-process inhibition profiles and trajectories of viral compartment
respectively.

In theory, both stochastic simulation algorithms are exact. However, the EXTRANDE algo-
rithm is preferential to integral-based SSA since the integral-based SSA might suffer from nu-
merical errors in integral steps. Additionally, the integral-based SSA is in general inefficient due
to computationally time consuming integral steps. It should be noted that if the upper bound of
the sum of reaction propensities for EXTRANDE is not stringent enough, there might be a large
number of extra reactions rendering EXTRANDE inefficient. To test whether or not the adapted
EXTRANDE is more efficient than the adapted integral-based SSA, we ran simulations for var-
ious scenarios comparing the performance of both algorithms (see Appendix D). For all the test
scenarios, EXTRANDE was indeed faster than the integral-based SSA. The performance of the
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Figure 7.7: Trajectories for time-varying drug effects. The left panels show an example of an infection
event, whereas the right panels show an example of viral extinction for chronic PrEP with 2mg DTG and
5% adherence. Panels A and C depict the instantaneous target-process inhibition profiles and panels B

and D depict the corresponding viral trajectories using the adapted EXTRANDE algorithm. Viral exposure
occurs randomly during a 3 month period and is sampled from the transmitted virus distribution as in
the article [25]. A and C: The blue lines depict the instantaneous target-process inhibition profiles ηD(t).
The dashed red line denotes the maximum target-process inhibition ηDmax

(t). The leftmost grey vertical
dashed lines mark the time of viral exposure, whereas the rightmost lines mark the time point of either
establishment of infection (panel A) or virus extinction (panel C). B and D: Stochastic trajectories of viral
compartments (orange: free viruses, green: early-infected cells T1, purple: late-infected T2 cells) for the
time after virus exposure and before virus infection/extinction. Stochastic simulations are stopped in panel
B when the trajectories leave the extinction simplex and because of virus extinction in panel D. Reproduced
from Duwal et al. [26].

integral-based SSA deteriorated strongly in comparison to EXTRANDE for simulations involving
a large number of reaction firings. This is usually the case with infection trajectories.

7.4 Summary

In this chapter, we derived closed-form solutions for extinction and infection probabilities for
various viral compartment (V, T1 and T2) for a time-constant target-site drug concentration. For
time-varying target-site drug concentration, the extinction and infection probabilities in general
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may not have closed-form solutions and require numerical methods such as solving an CME and
simulating SSA.

Solving the underlying CME is in general not possible due to the curse of dimensionality. We
proposed a reduced-state viral dynamics model which circumvents the need to consider all possible
states. This approximation is based on a key insight from the analysis of time-constant target-site
drug concentration that the extinction is unlikely once T2 stage is reached. This approximation
performs satisfactorily for CRA, RTI and InI and for a challenge with a low number of viruses,
however, there are a number of limitations. Hence, we explored stochastic simulation algorithms.
For the EXTRANDE algorithm, we introduced an intuitive upper bound for the sum of reaction
propensities that does not require manual selection of look-ahead time horizon.

Stopping simulations for trajectories leading to the extinction is straightforward, as all viral
compartments are zero. This is not case with simulations for infection related trajectories. Ar-
bitrary stopping criteria either lead to unnecessary increments in computation or inaccurate esti-
mation of infection probability. We tackle the problem by designing stopping criteria that obviate
unnecessary computation and at the same time limit the probability that a trajectory is wrongly
classified as an infection. A trajectory is stopped and classified as an infection when it moves out
of the extinction simplex. This guarantees that the extinction is very unlikely, and the extinction
probability of the trajectory is less than the user-defined threshold. The size of the extinction sim-
plex changes dynamically based on the drug pharmacokinetics. In addition to being less prone to
numerical error, the adapted EXTRANDE is also more efficient than the adapted integral-based
SSA.
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CHAPTER 8

Viral exposure model

In Chapter 7, we presented methods to quantify viral infection and extinction probabilities within
a host, which requires that the target-cell compartment has been reached by virus or viruses. How-
ever, the question arises how many viruses reach the target-cell compartment per coitus and what
are factors that affect the quantity of transmitted viruses? In this chapter, we proceed by presenting
various crucial insights regarding the HIV-1 transmission and present a novel statistical model for
a viral exposure taking those insights into account.

8.1 Statistical model of viral exposure per coitus

HIV transmission during coitus is a complex process, in which viruses need to overcome a number
of physical and immunologic barriers. For instance, a virus needs to reach the genital tract of the
donor, penetrate the mucosal barrier of the recipient and migrate to the environment conducive for
replication to establish a systemic infection [19]. The transmission process is inefficient which is
reflected in the low transmission probability per coitus. In fact, more than 99 % of unprotected
sex acts with an infected person fail to cause an infection [230]. Hence, HIV transmission is
stochastic in nature and is characterized by several bottlenecks [19, 209]. Next, we discuss briefly
some important observations regarding HIV transmission.

Since HIV is a sexually transmitted disease, the transmission risk is associated with genital
viral concentrations [231,232]. The plasma viral load of the donor correlates strongly with genital
viral concentrations [233–236]. In the Rakai study [237] conducted in Uganda, the plasma viral
load of the donor was identified as the most dominant factor that determines HIV transmission
from a donor to a recipient during a coitus (see Box. 8.1 for a brief summary on the Rakai study
[237]). Other studies also support the observation [14, 238]. The insight that controlling the viral
load in donors reduces their infectiousness formed the basis for the prevention strategy known as
treatment-as-prevention.

On the recipient side, an important observation was made by Keele et al. [239]. The authors
found evidence that HIV infection is established by a very low number of viruses, usually a single
founder virus (see Box 8.2 for a brief description of the article). A number of follow-up studies
corroborated the observation [206,240,241]. The finding indicates that a low number of transmit-
ted viruses reach the conducive environment in the recipient owing to the severe bottleneck. This
aligns with the stochastic and inefficient nature of the transmission.

The transmission probability per coitus is also affected by the modes of transmission. A num-
ber of studies have observed that the transmission probability per coitus in men who have sex with
men is higher than in heterosexuals [230, 242]. Interestingly, Keele et al. [239] and Li et al. [206]
have reported the number of transmitter or founder viruses in a homosexual transmission is in
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general larger than in a heterosexual transmission. This suggests that the bottleneck in case of a
homosexual exposure is comparatively less severe allowing more viruses to be transmitted. This
aligns with the knowledge that the rectal mucosa is more susceptible to traumatic tears than the
cervovaginal mucosa [243].

A number of empirical models have been developed which link the viral load in donors to the
transmission risk, for example Wilson et al. [244] and Duwal et al. [15]. Similarly, Chakraborty
et al. [232] presented a model linking genital HIV concentrations to the transmission probability
per coitus. However, these models cannot be used to assess effects of antiretroviral intake by the
recipient, since these models do not link the donor viremia to the number of transmitted viruses in
the recipient.

RecipientDonor

Uninfected personHIV infected person

Virus

HIV transmission

Figure 8.1: Illustration showing HIV transmission from an infected donor to an uninfected recipient

Box. 8.1: Viral load and transmission risk per coitus (Rakai study).

The Rakai study [237] was conducted in rural Uganda, where 415 serodiscordant couples were
prospectively followed for a period of up to 30 months. A serodiscordant couple refers to a couple
where one partner is HIV-1 positive and the other partner is HIV-1 negative. The HIV-1 negative
partner in such relationship is exposed to a high risk of contracting HIV-1 from the HIV-1 infected
partner. The couples in the study were in a stable heterosexual relationship.
The couples participated in a routine follow up every 10 months, where individuals were interviewed
and various samples such as blood and urine were taken. The uninfected partners were tested
for HIV-1 seroconversion using immunoassays. The seroconversion means that the sero status of
the person has changed from negative for HIV-1 to positive, confirming that HIV-1 infection has
taken place. The viral loads from the blood samples of the infected partners were retrospectively
determined to infer the viral load at the time of transmission.
The infected partner did not receive any antiretrovirals, because antiretrovirals were not available in
rural Uganda at the time of the study. Furthermore, they reported each ten-fold increment in the viral
load was associated with 2.45 fold increase in the transmission-risk of HIV-1 per coitus [237, 244].
The value of fold increase is in line with the recent study by Hughes et al. [238] which reports a
value of 2.9.

In order to avoid confusion, we define a few terminologies. We refer to unprotected sex acts
between an infected person (donor) and an uninfected person (recipient) as viral exposures. Dur-
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ing a viral exposure, it might be that viruses reach the mucus membrane of the recipient, but it is
not guaranteed that they reach the target-cell compartment. Viral challenges denote viral expo-
sures, where the target-cell compartment is reached by a virus or a number of viruses. The initial
number of transmitted viruses (viruses reaching the target-cell compartment) is called inoculum.
A founder virus is a transmitted virus that manages to establish the systemic infection. We also
distinguish between an infection event and a transmission event. We denote an infection event as
an intra-host process that refers to the establishment of the systemic infection in the recipient. In
contrast, we define a transmission event as an inter-host event. Precisely, transmissions are viral
exposures leading to a successful infection of the recipient. In summary, all transmissions are

viral challenges, all viral challenges are viral exposures, but the inverse statement is not valid.

8.1.1 Mean transmission probabilities

The mean transmission probability per coitus is a weighted average transmission probability over
all potential donors and their respective viral loads at the time of contact:

P(trans) =
∞∑

k=0

P(VL = k) · P(trans|VL = k) (8.1)

where the term P(VL = k) is the probability that a donor has a viral load k and the term P(trans|VL =
k) is the transmission probability per coitus conditioned that a donor has viral load k. Further, the
transmission probability per coitus conditioned that a donor has viral load k can be broken down
as shown below

P(trans|VL = k) =


∞∑

n=0

P(y0 = n · V̂|VL = k) · I(y0 = n · V̂,∅)

 , (8.2)

where P(y0 = n · V̂|VL = k) denotes the probability that n viruses reach the target-compartment
in a recipient given that the donor has viral load k. The term I(y0 = n · V̂) denotes the infection
probability given n viruses reach the target-compartment in the recipient. Substituting Eqn (8.2)
in Eqn (8.1), we can rewrite the mean transmission probability as given below:

P(trans) =
∞∑

k=0

P(VL = k)︸      ︷︷      ︸
1. part

·



∞∑

n=0

P(y0 = n · V̂|VL = k)

︸                          ︷︷                          ︸
2. part

· I(y0 = n · V̂,∅)︸              ︷︷              ︸
3. part


. (8.3)

The above equation of mean transmission probability consists of three parts. The first part captures
the viral load information of donors, whereas the third part captures the infection dynamics in
recipients. The second part is a function that links the viral load in donors to the number of
transmitted viruses.

Previously, we have dealt with the derivation of a closed-form solution for the infection prob-
ability in recipients (see Eqn (7.19)). Next, we will discuss the computation of probabilities
P(VL = k) and P(y0 = n · V̂|VL = k).

8.1.2 Viral load distribution in donors

The viral load in untreated HIV-1 infected individuals is log-normally distributed [237, 245], i.e.
k ∼ logN(µ, σ2). In order to infer the distribution of viral loads in treatment naive potential HIV-1
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donors, we analysed viral load data from recently infected treatment-naive individuals (German
HIV-1 sero-converter study and acute sero-converters, N = 1213) [246, 247]. Since viral trans-
mission occurs preferentially shortly after infection [247], this particular population will provide
a good source of relevant information regarding the viral load distribution at the time of trans-
mission. Figure 8.2 panel A shows the histogram of log10 transformed viral load data with a
superimposed red line representing the probability of viral load assuming a normal distribution
with mean µ = 4.51 and standard deviation σ = 0.98. This is in good agreement with reports from
the Rakai study [237] (µ = 4.02 and σ = 0.85).

Box. 8.2: A pioneer study identifying and characterizing early transmitted virus.

A B

Identification of early founder viruses using envelope sequences of acutely infected individuals : A: The
progression of HIV-1 env sequence diversity with advancement of Fiebig stage. Blue dots depict the predicted
env sequence identity in percent after a viral transmission by the mathematical model presented in Keele et
al. [239]. Various black symbols denote sequentially measured env sequence identity in 10 individuals, each
symbol representing an individual. B: A phylogenetic tree from neighbor-joining and a highlighter analysis
of env sequences of a subject at Fiebig stage II with evidence of infection by two viruses. Sequence 4801
resulted from a recombination. Extracted from Keele et al. [239].

Keele et al. [239] constructed a mathematical model for HIV-1 sequence diversification within a host
shortly after infection. The mathematical model assumes that initially an individual founder virus
replicates exponentially exhibiting a poisson distributed number of mutations in its sequence and a
star-like phylogeny. These assumptions are valid for the viral sequence diversification within a host
shortly after the infection before selection pressure by the immune system initiates. Using the model
the authors analysed 3,449 complete env sequences from 102 subjects at various Fiebig stages of
acute HIV-1 infection. The sequences were analysed by using neighbor-joining phylogenetic tree
and sequence highlighter that allows tracing the common ancestry between sequences based on
individual nucleotide polymorphisms.
The phylogeny construction of env sequences from an individual coalesced to a single or few most
recent common ancestor sequences at the time of viral transmission. The analysis showed that

78 acutely infected person out of 102 were infected by a single founder virus (a single consensus

sequence), whereas the rest were infected by two and five viruses (few consensus sequences). Fur-

thermore, they noted that men who have sex with men (MSM) are more likely to be infected by more

than one virus strain from their HIV-infected partner than the heterosexuals.

These observations have been corroborated by recent similar studies conducted by Li et al. [206]
and Abraham et al [240]. Both studies reported that the number of founder viruses is very low
and most of times there is a single founder virus. Li et al [206] applied the approach to HIV-1
env sequence in a cohort of acutely infected men who have sex with men and observed that a high
proportion of them has been infected by more than one virus. Of note, though men who have sex
with men are twice as much likely to be infected by more than one virus than the heterosexuals, yet
large proportion are infected by a single founder virus [206].
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This enables us to devise a function, which computes the probability of a viral load k in a
potential donor,

P(VL = k) = G(k, µ, σ) =

∫ <k+1

i=k

g(i, µ, σ). (8.4)

where g(i, µ, σ) is the probability density function for a log normal distribution with parameters µ
and σ.

8.1.3 Transmitted viruses distribution, donor’s viral load and transmission modes

We assume that the number of viruses transmitted and reaching a target-cell environment n is re-
lated to the virus load in the donor k through a binomial distribution with success rate s (probability
of successfully transmitting a donor virus to the recipient).

n ∼ B(h(k), s), (8.5)

where h(k) is some function of the viral load k in the donor. We propose a power function for h(k)
such that

h(k) = ⌈km⌉ (8.6)

where m is an exponent of the viral load k in the donor and ⌈•⌉ is a next integer function. The
rationale behind the selection of a power function for h(k) is explained later. The probability of
transmitting n viruses to the recipient when the viral load in the donor is k is then:

P(y0 = n · V̂|VL = k) =

(
⌈km⌉

n

)
· sn · (1 − s)(⌈km⌉−n). (8.7)

Algebraic simplification using Eqn (8.7) in Eqn (8.2) reveals the following equation :

P(trans|VL = k) = 1 − (1 − s · I(V̂,∅))⌈k
m⌉. (8.8)

Using a Taylor approximation, we can rewrite the above equation as shown below :

P(trans|VL = k) ≈ I(V̂,∅) · s · ⌈km⌉. (8.9)

Note that this approximation is only valid where I(V̂,∅) · s · f (k) ≪ 1. Taking the logarithm on
both sides of Eqn (8.9), we get

log10
(
P(trans|VL = k)

) ≈ log10
(
s · I(V̂,∅) · ⌈km⌉),

= log10(s) + log10(I(V̂,∅)) + log10
(⌈km⌉),

≈ log10(s) + log10(I(V̂,∅)) + m · log10(k). (8.10)

This shows that the relation between the logarithm of the transmission probability per coitus and
the corresponding viral load in logarithm is approximately linear with a slope m and an intercept
log10(s) + log10(I(V̂,∅)). This linear relationship is in agreement with previous reports by a
number of authors [237, 238]. Further, the slope parameter m can be inferred from these studies.
We used the value reported from the Rakai studies [244], which is log10(2.45). Hence, the proposal
of power function for h(k) is well justified and allows the simplification as shown in Eqn (8.10).
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Substituting Eqn (8.8) and Eqn (8.4) in Eqn (8.3), the mean transmission probability per coitus
can be rewritten as

P(trans) =
∞∑

k=0

P(VL = k) ·

∞∑

n=0

P(y0 = n · V̂|VL = k) · I(y0 = n · V̂,∅)

 ,

=

∞∑

k=0

G(k, µ, σ) ·
(
1 − (1 − s · I(y0 = V̂,∅))⌈k

m⌉
)
. (8.11)

In the above equation, as previously described, we inferred the parameters µ and σ from the
German HIV-1 sero-converter study. The slope parameter m is taken from the Rakai study [244].
In Chapter 7, we previously presented the computation of the infection probability for a single
transmitted virus. The mean transmission probabilities P(trans) for different transmission modes
are taken from literature: 0.03 for homosexual transmission and 0.003 [230, 248] for heterosexual
transmission [242]. The success rate s is then estimated by fixing all known parameters described
above using the least square method. The success rates s are estimated to be 3.7 × 10−3 and
3.6 × 10−4 for homosexual and heterosexual transmission respectively.
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Figure 8.2: Viral load distribution in potential donor and predicted transmitted viruses distribution

in the recipient. A : Viral load distribution ( log10 scale) in a representative donor population ( German
Sero-converter study). The mean and standard deviation of log10 viral load is 4.51 and 0.98 in good agree-
ment with Quinn et al. [237] B : Predicted transmitted viruses distribution in recipients for heterosexual
and homosexual transmission modes using the virus exposure model. The blue and orange bars belong to
heterosexual and homosexual transmission mode. Reproduced from Duwal et al. [25].

Using the viral exposure model presented above, we predicted the distribution of transmitted
viruses for different transmission modes displayed in panel B of Figure 8.2. Note that in the ma-
jority of cases no virus reaches a target-cell compartment and when the viral transmission occurs,
a low number of virus 1 to 5 are transmitted. If virus reached a target-cell compartment, it was a
single virus in more than 77 % of cases in homosexuals and 96 % of cases in heterosexuals. This
is in good agreement with studies [206, 239, 240] reporting a low number of founder viruses. The
analysis conducted by Keele et al [239] in heterosexuals and homosexuals reported that in 76 % of
infection cases, there was only a single founder virus. The low number of transmitted or founder
viruses indicates stringent physiological bottlenecks for viral transmission [209, 249]. Secondly,
one can see that the number of transmitted viruses is larger during homosexual transmission in
comparison to heterosexual transmission. This aligns with the observation of higher number of
founder viruses in homosexual transmission than in heterosexual transmission [206, 239].
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8.2 Summary

In this chapter, we presented a statistical model of virus exposure per coitus, which links the viral
load in a donor to the number of transmitted viruses in a recipient. The model can distinguish
between the homosexual and heterosexual transmission modes, and in the future, it can easily be
calibrated for the intravenous transmission mode (for intravenous drug users). The prediction of a
low number of transmitted viruses is in line with other studies [206, 239, 240]. In contrast to the
existing approaches [244], the model has the advantage which allows us to simultaneously analyse
the effect of treatment-as-prevention and chemo-prophylaxis on reducing HIV-1 transmission.
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CHAPTER 9

Prophylactic utility of various antivirals

In this chapter, we begin by recapitulating the various modules of the framework. We present
insights and results regarding the prophylactic utility of various antivirals obtained by using the
frameworkI.

9.1 Multiscale systems pharmacology framework

Uninfected person

with high risk of 

HIV-1

Viruses

Framework

Recipient

HIV-1 infected 

person

Donor

Pharmacokinetics 
Chap. 5

Chap. 5Pharmacodynamics

(Viral replication cycle)
Chap. 2, 7

Viral exposure module
Chap. 8

Methods/Algorithms to quantity infection probabilities

1) Branching process theory

3) Hybrid stochastic-deterministic 

approach  (EXTRANDE)

2) Reduced-state chemical master 

equation

Chap. 7

For NRTIs

Direct response

module (IC
50

, m)

1) Top-down approach 

(PK-PD)
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(MMoA)

Ex vivo experiment

(Fraction unbound 

correction)

For NNRTIs, CRA, InI, PIChap. 5, 6

Figure 9.1: Scheme of the multiscale systems pharmacology framework for PrEP and PEP

IThe results of this chapter are based on the articles [25–27]
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In order to predict the prophylactic utility of various antivirals, it is necessary to account for
processes occurring at various scales, which we have dealt with in Chapter 2, 5, 6, 8. On the other
hand, tailored algorithms are required to quantify the infection probability as described in Chap-
ter 7. Combining all of these modules and algorithms, we can build a flexible modular framework
(see Figure 9.1), which integrates processes mechanistically to predict the prophylactic utility of
various antivirals. The various modules and algorithms used in the pipeline are briefly described
below:
Pharmacodynamics module: In Section 7.1, we simplified the detailed viral replication cycle
model from Subsection 2.5.2. The simplified viral replication cycle model sufficiently captures
the early infection dynamics. The model allows for the mechanistic integration of antiviral effects
of all drug classes.
Pharmacokinetics module: The pharmacokinetic module can be used to specify pharmacokinetic
properties of antivirals of interest. Note that the model should include the pharmacokinetics of the
active moiety at the target-site. One can use a detailed compartmental pharmacokinetic model. In
Chapter 5, we presented plasma and intracellular pharmacokinetic models for TDF, FTC, 3TC. For
NRTIs, the plasma concentration is nonlinearly and asynchrously linked with the intracellular con-
centration of their active moieties. Thus, the intracellular concentrations of active moieties need
to be captured. We also presented a plasma pharmacokinetic model for DTG. Owing to the free
drug hypothesis, it is sufficient to link the plasma pharmacokinetics with pharmacodynamics with-
out explicitly modelling the intracellular pharmacokinetics. We employed various model building
methods (see Chapter 4) suitable for the available data. Usually, such compartmental model is
not readily available for all antivirals due to the lack of data. However, maximum and minimum
concentrations (peak and trough concentrations) and half-lives are easily available. These phar-
macokinetic parameters can also be used in the framework. Obviously, the predictions based on
these parameters are limited, compared to a detailed pharmacokinetics model.
Direct response module: The direct response module links the pharmacokinetics with pharma-
codynamics using the in vivo drug potency parameter IC50. IC50 can be estimated from the viral
load decay data for a particular dosing regimen (top-down approach). However, such data are dif-
ficult to obtain and are very noisy. For some scenarios, clinical trials might be unethical, limiting
the possibility of inferring the IC50. Hence, translation of in vitro and ex vivo parameters to in

vivo/clinical parameters is desirable.

In Chapter 6, we presented the main idea behind the bottom-up model based on the molecular
mechanism of action of NRTIs and compared its prediction with that from the top-down approach.
The bottom-up approach satisfactorily allows the translation of in vitro parameters to the in vivo

drug potency parameter IC50. For NRTIs, this is important as the free drug hypothesis is not valid
for them.

For all other antivirals, the free drug hypothesis is valid and the IC50 can be inferred from an
ex vivo single-round infectivity assay. However, a correction is required for translation to in vivo

use, due to differences in ex vivo and in vivo settings. In Chapter 6, we provided a way to adjust
the ex vivo drug potency to in vivo (target-process) drug potency (also see Appendix B).
Viral exposure module: The viral exposure module presented in Chapter 8 links the viremia of
an infected person (donor) to the distribution of transmitted viruses in an uninfected person (re-
cipient) per coitus. Moreover, the model can distinguish between heterosexual and homosexual
transmission modes.
Methods/Algorithms to quantify infection probabilities: In Chapter 7, we presented various
methods and algorithms to quantify infection probabilities. We derived closed-form equations for
the constant target-process inhibition (time-invariant propensities) utilizing the theory of branch-
ing processes.
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For the general case i.e., the time-varying drug efficacy (time-variant propensities), we ex-
plored various algorithms. We presented a reduced-state model for the chemical master equa-
tion, which approximates the infection probability. Furthermore, for our purpose we optimized
integral-based and rejection-based stochastic simulation algorithms (SSA) by introducing dynam-
ical stopping criteria. In contrast to the reduced-state CME approach, these algorithms are exact.
The integral-based SSA is more inefficient than rejection-based SSA (EXTRANDE) due to com-
putationally intense integral steps.

9.2 Prophylactic efficacy

The presented modelling framework predicts the infection probability by mechanistically integrat-
ing various essential processes. In order to assess, screen and optimize antivirals for PrEP, it is
crucial to define measures of efficacy.

Let us define the prophylactic efficacy for a given initial state vector y0 and a particular pro-
phylactic scheme S as

ϕ(y0, S ) = 1 − I(y0, S )

I(y0,∅)
. (9.1)

The prophylactic efficacy ϕ(y0, S ) refers to the reduction in the infection probability for a given
initial state vector y0 by a drug administration scheme, relative to the infection probability in the
absence of any drug. Note that the initial state vector does not necessarily mean only viruses but
can also refer to any possible combination of viruses and infected cells within a recipient.

Owing to the low transmission probability per coitus, in a large number of exposures, viruses
fail to reach the target-cell compartment. Hence, we can define the prophylactic efficacy in context
of viral challenge (exposure with non-zero transmitted viruses) as

ψ(S ) =
∞∑

n=1

P(y0 = n · V̂)

1 − P(y0 = 0)
· ϕ(y0 = n · V̂, S )

=

∞∑

n=1

P(y0 = n · V̂)

1 − P(y0 = 0)
·
1 −

I(y0 = n · V̂, S )

I(y0 = n · V̂,∅)

 . (9.2)

We refer this to as prophylactic efficacy per viral challenge. Note that the factor P(y0 = n · V̂)/(1−
P(y0 = 0)) denotes the probability that there are n number of transmitted viruses per exposure given
n being bigger than 0. In other words, ψ(S ) is the expected reduction in the infection probability

per viral challenge with respect to the absence of drug.
In a trial it is not possible to differentiate between exposures in which virus does not reach

the target-cell compartment and those where virus reaches the target-cell compartment (viral chal-
lenges). Accordingly, another possible measure of prophylactic efficacy can be defined by consid-
ering the expected reduction in the transmission probability per exposure:

Reduction in the transmission probability per exposure = 1 − P(trans, S )

P(trans,∅)
(9.3)

= 1 −
∑∞

n=0 P(y0 = n · V̂) · I(y0 = n · V̂, S )
∑∞

n=0 P(y0 = n · V̂) · I(y0 = n · V̂,∅)
.

Eqn (9.2) for prophylactic efficacy per viral challenge (ψ(S )) is, in fact, the mean of ratios, whereas
Eqn (9.3) is the ratio of means. Interestingly, in our modelling pipeline these two measures of
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prophylactic efficacy were found to be almost identical. Hence,

ψ(S ) ≈ 1 − P(trans, S )

P(trans,∅)
(9.4)

and for our purpose the prophylactic efficacy per exposure and prophylactic efficacy per viral
challenge are interchangeable II.

9.2.1 Dependency on the inhibited stage in the viral replication cycle.
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Figure 9.2: Relation of prophylactic efficacy ϕ and target-process inhibition. The relation between
target-process inhibition η and prophylactic efficacy ϕ (reduction in infection) is shown for different drug
classes utilizing the viral model depicted in Fig. 7.1 with parameters stated in Table A.1. Panel A: Relation
between η and ϕ when a single virus y0 = V̂ reached a target-cell compartment of the recipient. Panel B

and C: Relation between η and ϕ when a single early infected cell y0 = T̂1 or (panel C) a late infected
T-cell y0 = T̂2 are present in the target-cell compartment. Solid red lines: CRAs (Co-receptor antagonists),
solid green line: RTIs (reverse transcriptase inhibitors), dashed blue line: InI (integrase inhibitors), dashed
purple line: PIs (protease inhibitors). Reproduced from Duwal et al. [27].

While HIV transmission typically occurs after the target-cell compartment is reached by viruses,
it is insightful to study the prophylactic efficacy of distinct drug classes in the hypothetical case
when infected cells were present in the exposed individual. A realistic example for this scenario is
post-exposure prophylaxis (PEP): During PEP, drugs are taken shortly after a virus exposure and
initial viral replication steps may have taken place generating early- or late infected cells.

Figure 9.2 shows the relations between the prophylactic efficacy and target-process inhibition
for various drug classes and for different initial state vectors, namely when a free virus, a T1-cell or
a T2-cell is present. For a single virus y0 = V̂, target-process inhibition of RTI directly translates
to the prophylactic efficacy. The translation of the target-process inhibition to the prophylactic
efficacy for CRA, InI and PI deviates strongly from identity in aforementioned order (see Fig-
ure 9.2 A). As can be seen in Figure 9.2B–C, the prophylactic efficacy of all drugs profoundly
deteriorates compared to their target-process inhibition, i.e. only very effective (in terms of η)
drugs may prevent systemic infection once cells become infected in the exposed individual. An
exception is integrase inhibitors: Their prophylactic efficacy ϕ is moderately less than their direct
effect η (panel B) if only early infected cells T1 (before proviral integration) are present. Thus,
while the prophylactic efficacy of all other drug classes is profoundly less than their direct effects
once infected cells emerged, integrase inhibitors may still potently prevent infection.

IIOf cautionary note, the mean of ratios and ratio of means are in general not equal.



9.2. PROPHYLACTIC EFFICACY 105

9.2.2 Drug-class specific relation between concentration and prophylactic efficacy

Next, we derive closed-form equations for the prophylactic efficacy for various drug classes. This
allows us to obtain the concentration-prophylactic curve. The concentration-prophylactic curve
is motivated by concentration-effect or dose-response curve analysis in pharmacological studies.
The equations for RTI, CRA and InI, after a viral challenge with a single virus V̂, are given below

ϕ(V̂,DCRA) =
R0(∅)

R0(∅) − 1
·

Dm
CRA

ICm
50

(
1
ν

)
+ Dm

CRA

≈
Dm

CRA

ECm
50 + Dm

CRA

, (9.5)

ϕ(V̂,DRTI) =
R0(∅)

R0(∅) − 1
·

Dm
RTI

ICm
50 + Dm

RTI

≈
Dm

RTI

ECm
50 + Dm

RTI

, (9.6)

ϕ(V̂,DInI) =
R0(∅)

R0(∅) − 1
·

Dm
InI

ICm
50

(
1
ϑ

)
+ Dm

InI

≈
Dm

InI

ECm
50 + Dm

InI

, (9.7)

where D denotes the total concentration of the drug in the relevant site, m is a slope parameter and
IC50 denotes the drug concentration that inhibits the target-process (co-receptor binding, reverse
transcription or proviral integration) by 50 percent. The parameters m and IC50 are drug-specific
parameters as discussed in Chapter 2. R0(∅) denotes the basic reproductive number in the absence
of drugs, i.e. the average number of viruses produced from a single founder virus [220] in a single
replication cycle when no antiviral is present (R0(∅) ≈ 67 according to the utilized model). The
parameter

ν =
CL · ρrev,∅

CL · ρrev,∅ + βT · Tu,SS
< 1 (9.8)

denotes the probability that the virus is eliminated before entering a host cell. Similarly, the
parameter

ϑ =
δPIC,T + δT1

δPIC,T + δT1 + kT
< 1 (9.9)

denote the probability that essential virus components get cleared intracellularly after the reverse
transcription and before the genome integration in the absence of drugs. For any realistic model,
R0(∅) ≫ 1 and hence the left-side scaling factor in eqs. (9.5)–(9.7) will be close to one i.e.,
R0(∅)/(R0(∅) − 1) ≈ 1. The overall shape of the concentration-prophylactic curve for co-receptor
antagonists (CRAs), reverse transcriptase inhibitors (RTIs) and integrase inhibitors (InIs) is a clas-
sical Emax equation, which is the equation of choice for evaluating concentration-effect relations.
The parameter EC50 denotes the total concentration of the drug in the relevant site that decreases
the infection probability by 50 %.

For protease inhibitors (PIs), we derive a power function to describe their prophylactic efficacy:

ϕ(V̂,DPI) =
1

R0(∅) − 1
·

Dm
RTI

ICm
50

= G ·
Dm

RTI

ICm
50

for 0 ≤ ϕ ≤ 1 (9.10)

where G ≪ 1 is a constant. Moreover, for any realistic R0(V,∅) ≫ 3, their total concentrations
have to exceed their IC50 to decrease the probability of infection by at least 50%. Figure 9.3
depicts the concentration-prophylactic curve of all drug classes assuming challenges with a single
virus and 100 viruses.

9.2.3 Translation of target-process drug potency to prophylactic potency

Let ECx denote the total concentration of the drug in the relevant site that decreases the infection
probability by a single transmitted virus by x %. Algebraic simplifications of Eqn (9.5)–Eqn (9.7)
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Figure 9.3: Shape of the concentration-prophylactic efficacy curve. coloured lines depict the
concentration-prophylactic curve for an average drug class-specific slope parameter m̄ in Eqn (2.2). Solid
coloured line for an inoculum of one virus y0 = V̂ and dashed coloured line for an inoculum of y0 = 100 · V̂.
Shaded areas indicate the concentration-prophylactic curve for the smallest mmin and largest class-specific
slope parameter mmax for the respective drug class as indicated in Table B.1. A: Co-receptor antagonists.
Currently only one co-receptor antagonist, maraviroc, is approved. We use m̄ = mmin = 0.61 and also
plot mmax = 1 as a reference. B: Non-nucleoside reverse transcriptase inhibitors (NNRTIs); m̄ = 1.71,
mmin = 1.55 and mmax = 1.92. The overall shape for NRTI is also EMAX. C: Integrase inhibitors, m̄ = 1.12,
mmin = 0.95 and mmax = 1.3. D: Protease inhibitors; m̄ = 2.87, mmin = 1.81 and mmax = 4.53. Utilized virus
dynamics parameters are stated in Table A.1. Reproduced from Duwal et al. [27].

give us the following relation for CRA, RTI and InI:

ECx = IC50 ·
(
F · x

100 · C − x

)1/m
, (9.11)

where the term F ≥ 1 is a drug-class specific factor as shown below :

F =



1
ν for CRA

1, for RTI
1
ϑ , for InI

(9.12)

and

C :=
R0(∅)

R0(∅) − 1
≈ 1. (9.13)
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Similarly, for PI utilizing Eqn (9.10) we obtain the following relation:

ECx = IC50 ·
(
G · x

100

)1/m
(9.14)

where G := R0(∅) − 1.
EC50 and EC90 can be used to analyse the prophylactic utility of an antiviral in vivo. Notably,

for RTIs, we have EC50 ≈ IC50 i.e., the target-process drug potency (IC50) directly translates into
the prophylactic potencyEC50 of the drug. For CRAs and InIs, we observe EC50 > IC50, i.e.
compared to their target-process drug potency, they are less potent in preventing infection. This
is largely due to the respective factors ϑ−1, ν−1 > 1, compare Figure 9.3A–C. Consequently, for
CRAs and InIs, higher concentrations are required to prevent infection than suggested by target-
process drug potency. PIs exhibits a switch-like behaviour as seen in Figure 9.3D.

In case of exposure to a single virus particle V̂, the slope parameters of the prophylactic
efficacy coincide with the slope parameter for the respective drug target-process inhibition m

(Eqn (2.2)), stated in Table B.1. Importantly, when exposure to multiple viruses occurs, the
concentration-prophylactic curve is no longer an Emax equation for any inhibitor class, Fig-
ure 9.3A–C. Furthermore, the EC50 value and the slope parameter exceed their corresponding
in vitro measurable values m and IC50.

Similarly, in the case of exposure to multiple viruses, the slope parameter and EC50 of PIs
also increase, making the prophylactic efficacy of PIs strongly a switch-like as can be seen in
Figure 9.3D. This switch-like behaviour makes the prophylactic use of PIs vulnerable to non-
adherence, as well as general variations in concentrations (e.g. pharmacokinetics, inter-individual
variability), as the prophylactic efficacy with these inhibitors may alternate between zero- or com-
plete protection.

Note that we define parameters EC50 and EC90 considering a viral challenge with a single
virus. Accordingly, EC50 is defined as the total drug concentration at the target-site that reduces
prophylactic efficacy ϕ(V̂, S ) by 50 %. Obviously, it would make more sense to define these terms
for the prophylactic efficacy per challenge (ψ(S )), where the transmitted viruses are sampled from
the distribution as presented in the viral exposure model, rather than for the prophylactic efficacy
per challenge with a single virus (ϕ(V̂, S )). As previously mentioned, in the majority of challenges,
there is only a single transmitted virus (more than 96 % in heterosexual- and 77 % in homosexual
challenges, see Chapter 8), which indicates that the ϕ(V̂, S ) closely approximates ψ(S ) III. Here,
the rationale for preferring ϕ(V̂, S ) over ψ(S ) in computing ECx is that it results in a closed-form
equation that allows us to easily discern various factors affecting the prophylactic efficacy.

9.3 Prophylactic efficacy of NRTIs

We consider the following NRTIs currently used for treatment against HIV-1: tenofovir disoproxil
fumarate (TDF), emtricitabine (FTC), lamivudine (3TC), zidovudine (AZT), stavudine (D4T)
and abacavir (ABC). We built a detailed pharmacokinetic-pharmacodynamic model using pop-
ulation approaches for TDF, FTC and 3TC, which are presented in Chapter 5. For NRTIs, we
approximated the viral extinction probability (E) by using the probability that viruses are com-
pletely cleared in the first replication round (ER). As discussed previously (see Chapter 7 Subsec-
tion 7.3.1), this approximation works satisfactorily for NRTIs.

IIIIn the article [27], EC50 and EC90 after a challenge with a single virus V̂ and with viruses sampled from the
transmitted viruses distribution are compared. The relative difference between the corresponding values is less than 2.5
% (not shown here)
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9.3.1 Concentration-prophylactic efficacy curves for treatment-approved NRTIs

We obtained the range of intracellular concentrations of the active moieties for the aforementioned
NRTIs after chronic dosing with their respective standard of care from various literature [23, 142,
146,147,152,160,170,175,250–254]. We used the MMOA model to compute the IC50 associated
with the target-process inhibition for different NRTIs. Utilizing the modelling framework, we
assess the concentration-prophylactic curve (ψ, Eqn (9.2)) for AZT, TDF, 3TC, FTC, D4T and
ABC. The curves are shown in Figure 9.4A and allow for the first assessment of the suitability
of these drugs for repurposing as PrEP compounds. Note that the solid lines and the background
shading in Figure 9.4A show the prophylactic efficacy ψ and inter-quartile ranges at clinically
relevant concentrations. We predict that AZT can prevent 14–53% infections at clinically relevant
concentrations, followed by TDF (24–89%), D4T (55–95%), ABC (73–84%), 3TC (64–96%) and
FTC (92–99%).

We further assessed the prophylactic efficacy of TDF, FTC and 3TC when drug-resistant viral
strains are transmitted [255]. Resistance to FTC and 3TC is associated with the M184V mutation,
whereas resistance to TDF is associated with the K65R mutation [256, 257]. Inhibition of the
mutant viruses can be assessed in the MMOA model. Furthermore, the MMOA model allows
for the assessment the fitness costs associated with these mutations. The predicted prophylactic
efficacy of TDF, FTC and 3TC against wildtype (WT), and mutant viruses (M184V, K65R and
M184V/K65R) is shown in Figure 9.4B-D. We assessed the percentage of infections prevented
by prophylaxis after exposure to the mutant virus relative to the wildtype virus in the absence of
drugs, i.e.:

ψ(S ) =
∞∑

n=1

P(y0 = n · V̂)

1 − P(y0 = 0)
·
1 −

Imut(y0 = n · V̂, S )

Iwt(y0 = n · V̂,∅)

 (9.15)

where ‘mut’ denotes the mutant virus (M184V, K65R or M184V/K65R) and ‘wt’ denotes the wild
type virus. Thus, both the effect of the drugs, as well as inherent fitness costs are simultaneously
evaluated, allowing to assess whether PrEP fosters the transmission of resistant viruses (this is
the case whenever mutant transmission is more effective; i.e. whenever the dashed line is be-
low the solid line in Figure 9.4B-D). Our analysis shows that the K65R mutation may decrease
the PrEP efficacy of TDF, whereas the M184V-containing virus is very susceptible to TDF. The
M184V/K65R double mutant is almost as susceptible as the wildtype, but it has a profound fitness
deficit. In the case of FTC, both the M184V and K65R mutation, as well as the double mutant
diminish its PrEP efficacy from 92–99% (wildtype) to 72–92 % (K65R) and 47–71% (M184V). In
the case of 3TC, mutations K65R, M184V and the double mutant gradually diminish its efficacy
down to complete resistance (in case of the double mutant). At low drug concentrations, the fit-
ness defect of the resistant viruses causes their reduced transmission (≈ 37–54% less likely to be
transmitted than the wild type in the absence of drugs).

9.3.2 PrEP on demand with TDF, FTC and 3TC

Next, the prophylactic efficacy of TDF, FTC and 3TC alone, or in combination was analysed,
when PrEP is initiated shortly before a challenge (PrEP on demand), similar to the IPERGAY
protocol [258]. In the protocol, individuals initiate PrEP up to 24 hours before a viral challenge
with a double-dose and then take two more pills on day 1 and 2. Evaluated pill sizes are 200mg
for FTC or 300mg for 3TC and TDF. We simulated the population-average plasma and intracellu-
lar pharmacokinetics for TFV, FTC and 3TC, respectively TFV-DP, FTC-TP and 3TC-TP [23,84]
(see Chapter 5). We used the reduced-state CME to assess the infection probability (see Subsec-
tion 7.3.1).
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Figure 9.4: Target-cell NRTI-TP concentration vs. prophylactic efficacy in wild type and mutant

viruses ψ. A: Mean prophylactic efficacies per viral challenge (Eqn (9.2)) are illustrated by the dotted
lines. Solid thick lines mark the prophylactic profile at clinically relevant ranges for the respective drugs.
Shaded areas indicate the corresponding IQR of the efficacy estimate, taking variability in microscopic
parameters and virus exposure into account. B-D: Mean efficacies ψ of TDF, FTC and 3TC against the
wild type virus are highlighted by solid lines. Efficacies against mutant viruses combine both drug effects
and inherent fitness defects of the mutants. The relative reduction in infection with the mutant virus in
the presence of drug vs. the wild type virus in the absence of drugs is evaluated (dashed line: M184V,
dash-dotted line: K65R, dotted line M184V/K65R double mutant). Vertical black dashed lines indicate the
clinically relevant drug concentrations range after chronic therapy. Reproduced from Duwal et al. [25].
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Figure 9.5: Efficacy ψ of PrEP on demand against infection following viral challenges in homosexuals

within 24hours after PrEP initiation. A-C: Pharmacokinetic profiles during PrEP on demand for the
circulating NRTI prodrug (solid lines) and the intracellular, active NRTI-TP moiety (dashed lines). FTC
oral dose was 400mg at 0hours, followed by 200mg at 24 and 48hours (panel A), while TDF or 3TC
dosage was 600mg at 0hours, followed by 300mg at 24 and 48hours respectively. D-F: Infections averted
for PrEP on demand when viral challenge occurred either 1, 3, 6, 12, 18 or 24hours after PrEP initiation
with either FTC (panel D), TDF (panel E) or 3TC (panel F). Solid lines indicate the mean % infections
averted (see Eqn (9.2)), while shaded areas indicate interquartile ranges of this estimate, taking variability in
microscopic parameters in MMoA model and virus exposure during homosexual intercourse into account.
G-H: Infections averted for combinations of TDF+FTC (panel G) and TDF+3TC (panel H), taken on
demand (double doses at day 0, followed by single doses at day 1 and 2). Combination predictions assumed
that no significant pharmacokinetic interactions occur. Reproduced from Duwal [25].

One can see in Figure 9.5A-C that intracellular concentrations (dashed lines) quickly increase
to almost steady state levels for FTC-TP and 3TC-TP after ≈ 6–12 hours, but not for TFV-DP,
arguing that TFV-DP may not reach protective levels when applied on demand. For a challenge
occurring either 1, 3, 6, 12, 18 or 24 hours after PrEP initiation, Figure 9.5D-F show the prophy-
lactic efficacy ψ of the different drugs used alone. All tested drugs are more efficient at preventing
infection, if the viral challenge occurs late with respect to PrEP initiation. FTC is the most effica-
cious, preventing 73–90% of potential infections, followed by 3TC (55–71%). TFV is observed to
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poorly prevent an infection when taken on demand, only preventing 15–40% of potential infections
after virus exposure. The observation corroborates the hypothesis that protective TFV-DP levels
may build up too slowly in the intracellular compartment to provide sufficient protection [259].
The combination of FTC and TDF resembles the efficacy profile of FTC alone (see Figure 9.5G),
whereas the efficacy of the combination 3TC and TDF is slightly elevated (59–77%), in compari-
son to 3TC alone.

9.3.3 Efficacy after PrEP discontinuation with TDF, FTC and 3TC

The prophylactic efficacy of TDF, FTC and 3TC, alone or in combination, during chronic PrEP
and after its discontinuation is assessed based on population-average pharmacokinetics after oral
administration of 200mg FTC or 300mg TDF or 300mg 3TC daily, or combinations thereof. The
prophylactic efficacy profiles are computed using Eqn (9.2). The results are depicted in Fig-
ure 9.6A-E. Daily administration of FTC, TDF and 3TC for 30 days prior to a viral challenge
lead to a prophylactic efficacy ψ of ≈ 95, 74 and 75% respectively. After discontinuation, FTC,
TDF and 3TC remain ≥ 50% effective for about 7, 10 and 2 days respectively; the prophylactic
efficacy of 3TC declined most rapidly. The combination FTC+TDF and 3TC+TDF prevent ≈
96% and 87% of infections respectively after 30 days of daily administration. Both combinations
remain ≥ 50% effective for about 10 days after discontinuation. Figure 9.6F-G show the efficacy
of the combination, with the efficacy of the single drugs superimposed. Figure 9.6 indicates that
the prophylactic efficacy of tenofovir is retained after the discontinuation of the combination and
thus makes the regimen robust to poor adherence.

9.4 Prophylactic efficacy of antivirals other than NRTIs

Currently, a number of antivirals are under investigation for PrEP repurposing [18]. In this section,
we assessed the utility of treatment-approved antivirals other than NRTIs for prophylaxis.

9.4.1 Concentration-prophylactic efficacy curves for antivirals except NRTIs

We utilized drug-specific pharmacodynamic and pharmacokinetic parameters (Table B.1) to pa-
rameterize Eqn (2.2) and to predict the prophylactic efficacy of treatment approved CRAs, non-
nucleoside reverse transcriptase inhibitors (NNRTIs), InIs and PIs at clinically relevant concentra-
tion ranges. As for NRTIs, we sampled the number of viruses transmitted and reaching a target-
cell compartment using the viral exposure module from a previously parameterized model (see
Chapter 8). For each antiviral, the range of total concentrations after chronic administration of a
standard dose is obtained from literature (see Table B.1).

Figure 9.7 depicts the concentration-prophylactic curves for all antivirals except NRTIs. The
prophylactic efficacy per challenge (ψ) due to peak (Dpeak) and trough concentrations (Dtrough) are
marked by thick black lines and downward pointing arrows respectively. A desirable property of
an antiviral for prophylactic use is its pharmacologically forgiveness. Pharmacologic forgiveness
refers to the property where the efficacy does not deteriorate strongly, despite a couple of missed
doses. To preferentially select pharmacologically forgiving antivirals, we used the trough concen-
tration after two consecutive missed doses Dlow for the computation of prophylactic efficacy. The
trough concentration after two consecutive missed doses was computed as shown below

Dlow = Dtrough · exp(−2 · 24 · ke), (9.16)

where Dtrough is the trough concentration in the plateau phase and ke is the first order elimination
rate which can be computed as ke = log(2)/t1/2 (half-lives are reported in Table B.1). The range
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Figure 9.6: Prophylactic efficacy per challenge ψ (homosexual transmission mode) occurring within

30 days of PrEP or after its discontinuation. A-E: Mean prophylactic efficacy profiles (see Eqn (9.2))
when either oral doses of 200mg FTC (panel A), 300mg TDF (panel B), 300mg 3TC (panel C), 300mg
TDF+200mg FTC (panel D), 300mg TDF+300mg 3TC (panel E) were administered daily for 30 days and
discontinued thereafter are illustrated by solid lines. Mean prophylactic efficacy profiles for drug combi-
nations TDF+FTC (panel D) and TDF+3TC (panel E). Shaded areas indicate interquartile ranges of this
estimate, taking variability in microscopic parameters (module II) and virus exposure during homosexual
intercourse (viral exposure module, Figure 8.2B) into account. F: The mean prophylactic efficacy for the
combination 300mg TDF + 200mg FTC (violet solid line) is shown together with the mean prophylactic
efficacy profiles for the single drugs FTC (green) and TDF (red). G: The mean prophylactic efficacy profile
for the combination 300mg TDF + 300mg 3TC (yellow solid line) is shown together with the mean prophy-
lactic efficacy profiles for the single drugs 3TC (blue) and TDF (red). Combination predictions assumed
that no significant pharmacokinetic interactions occur. Reproduced from Duwal et al. [25].

of prophylactic efficacy per challenge (ψ(Dlow), ψ(Dpeak)) are listed in the Table 9.1. Figure 9.7
allows for an initial screen of the utility of the various drugs for oral PrEP. Table 9.1 lists EC50,
EC90 computed from the corrected IC50 as shown in Table B.1 using Eqn (9.11) for CRA, RTI and
InI and Eqn (9.14) for PI.

Most analysed drugs, except for maraviroc (MVC), raltegravir (RAL), elvitegravir (EVG)
and nelfinavir (NFV), potently prevent infection at concentrations ranges typically encountered
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in fully adherent individuals during treatment (range between minimum- to maximum concentra-
tion, [Dtrough; Dpeak]). Since the lack of adherence to the dosing regimen is a major problem, we
consider a lower bound concentration that would arise if the drug had not been taken for three days
prior to exposure Dlow (thin dashed vertical line in Figure 9.7). This emphasizes a ‘pharmacoki-
netic safety margin’ in case of poor adherence.

Numerical values for the computed maximum prophylactic efficacy and the efficacy at the
lower bound concentrations are presented in Table 9.1 alongside with estimated EC50 and EC90

values. Our simulations indicate a residual risk of infection for most analysed drugs. Notably,
most protease inhibitors may confer anything from none to absolute protection within relevant
concentration ranges, [Dlow; Dpeak], which highlights a severe limitation to their PrEP use in the
context of poor adherence or pharmacokinetic (intra-/inter individual) variability. An exception
is darunavir (DRV), which is predicted to be almost fully protective for the entire concentration
range.

prophylactic efficacy ψ [%] EC50(V̂) EC90(V̂)
drug ψ(Dpeak) ψ(Dlow) [nM] [nM]
MVC∗ 96.10 (74.11;100) 50.12 (18.63;85.42) 11.45 349.63
EFV 100 (100;100) 100 (100;100) 10.55 36.23
NVP 100 (100;100) 100 (100;100) 114.06 438.06
DLV 100 (100;100) 3.38 (0.88;10.19) 329.50 1254.58
ETR 100 (100;100) 100 (100;100) 8.45 26.75
RPV∗ 100 (100;100) 100 (99.02;100) 7.61 22.55
RAL∗ 100 (100;100) 8.15 (6.32;10.23) 45.40 302.36
DTG∗ 100 (99.03;100) 72.12 (57.77;84.85) 145.18 722.23
EVG 94.61 (89.02;97.97) 6.96 (3.66;12.49) 108.66 976.25
ATV 100 (100;100) 0.08 (0.04;0.15) 87.44 108.79
APV 100 (100;100) 0.01 (0.01;0.03) 1394.96 1848
DRV∗ 100 (100;100) 100 (100;100) 118.32 139.24
IDV 100 (100;100) 0 (0;0) 280.80 319.71
LPV 100 (100;100) 0 (0;0) 389.69 519.09
NFV 100 (64.01;100) 0 (0;0) 2253.66 3118.34
SQV 100 (100;100) 0 (0;0) 227.29 266.66
TPV 100 (100;100) 0 (0;0.02) 1944.89 2458.09

Table 9.1: Prophylactic efficacy and sensitivity to incomplete adherence. The table shows the prophy-
lactic efficacy (% reduction in infection probability per challenge) of all investigated drugs at their respective
maximum achievable drug concentrations after chronic oral administration of the standard regimen and its
efficacy at a concentration level that would be reached if the last dose had been taken least three days prior
to virus exposure Dlow = Dtrough ·exp(−2 ·24 ·ke), with ke = ln(2)/t1/2 and halflifes t1/2 reported in Table B.1.
The 5-95% range of these estimates are shown in brackets and consider uncertainty in pharmacodynamic pa-
rameters IC50, m and variability in virus exposure after homosexual contact, according to Duwal et al. [25].
The last two columns show the EC50 and EC90 in the case when an individual was exposed to a single
virus V̂. MVC -maraviroc, EFV -efavirenz, NVP -nevirapine, DLV -delavirdine, ETR -etravirine, RPV
-rilpivirine, RAL -raltegravir, EVG -elvitegravir, DTG -dolutegravir, ATV -atazanavir, APV -amprenavir,
DRV -darunavir, IDV -indinavir, LPV -lopinavir, NFV -nelfinavir, SQV -saquinavir, TPV -tipranavir. ∗

currently investigated for PrEP. Reproduced from Duwal et al. [27].

The NNRTIs efavirenz (EFV), nevirapine (NVP), etravirine (ETR) and rilpivirine (RPV) are
observed to be extremely potent: These drugs prevent infection, even when three consecutive days
doses were missed, Table 9.1. The co-receptor antagonist maraviroc (MVC) and the integrase
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inhibitor dolutegravir (DTG) retain some prophylactic efficacy (50 and 72% respectively) at lower
bound concentrations Dlow. The CRA maraviroc (MVC), the NNRTI rilpivirine (RPV) and the InI
raltegravir (RAL) are currently investigated for use as PrEP compounds (long-acting injections of
RPV and RAL; oral- or topical application of MVC). The predicted PrEP efficacy of these drugs
would drop to 8% (RAL) and 50% (MVC) after missing three consecutive doses prior to a virus
exposure. Notably, RPV remained 100% effective.

9.5 Prophylactic utility of oral dolutegravir

Next, we assessed the prophylactic utility of oral dolutegravir, because dolutegravir has an ex-
cellent safety profile and is currently investigated in a PrEP clinical trial [18]. The population
pharmacokinetic model of DTG was discussed in Chapter 5. The prophylactic efficacy of var-
ious prevention strategies based on dolutegravir is assessed using EXTRANDE algorithm (see
Chapter 7). Figure 9.8A shows the relation between the plasma concentration of DTG and its pro-
phylactic efficacy after homosexual virus exposure. For these simulations, the number of viruses
reaching a target-cell compartment after homosexual contact were sampled from the virus expo-
sure module (Chapter 8). Within the concentration range, the median prophylactic efficacy for
2mg QD ranged from 43.6 to 75.7%. For 10mg QD, efficacies ranged from 87.1 to 97.5%, and for
50mg QD almost complete (99.5 to 100%) protection was attained. The estimated EC50(V̂) and
EC90(V̂) were 145.18 and 722.23nM respectively.

9.5.1 Sensitivity to incomplete medication adherence

During pre-exposure prophylaxis, adherence to the regimen may be imperfect. Figure 9.8B dis-
plays the prophylactic efficacy of once daily 50mg, 10mg and 2mg oral dolutegravir, considering
varying levels of adherence (25-, 50-, 75-, 95- and 100% of doses taken). Viral challenges were
simulated to randomly take place during a 3 month interval with inoculum sizes drawn from the
transmitted virus distribution [25] (see Chapter 8). The mean predicted prophylactic efficacies for
50mg with 25-, 50-, 75-, 95- and 100% adherence were 60 %, 85.54%, 96.63% , 98.88% and
99.36%, respectively. Interestingly, the prophylactic efficacy of 50mg oral DTG becomes satu-
rated, and exceeds 95%, if at least 75% of the pills were taken. Conversely, 2mg and 10mg oral
dolutegravir allow for considerable residual infection events and 2mg oral dolutegravir efficacy
increases almost linear with increasing adherence levels.

9.5.2 PrEP on demand with DTG

We simulated PrEP on demand using DTG with a dosing scheme similar to the IPERGAY proto-
col [258]: An individual at risk initiates PrEP a few hours before a viral exposure and takes two
consecutive doses 24 and 48hours after the first dose. Figure 9.8C displays the predicted prophy-
lactic efficacy of DTG when taken on demand. The mean prophylactic efficacies for 50mg varied
between 78.63–83.93% depending on the timing of the first dose with respect to viral exposure.
For 10mg, it was 64.49–73.01% and for 2mg it was 36.86–46.34%. The prophylactic efficacy
decreased with a lowering of dose. An increment in the time difference between the initiation of
PrEP on demand and viral exposure causes a reduction in the prophylactic efficacy. This trend is
opposite to the trend for PrEP on demand with Truvada [25]. A reason for this is the rapid uptake
of systemic DTG (compare Figure 9.8B), whereas the Truvada’s active moieties tenofovir diphos-
phate (TFV-DP) and emtricitabine triphosphate (FTC-TP) require intracellular phosphorylation



9.5. PROPHYLACTIC UTILITY OF ORAL DOLUTEGRAVIR 115

0  

50 

100

MVC*

EFV

NVP

0  

50 

100

DLV ETR RPV*

0  

50 

100

RAL*
DTG* EVG

0  

50 

100

ATV APV DRV*

0  

50 

100

IDV LPV NFV

0  

50 

100

SQV TPV

100 101 102 103 104 105 100 101 102 103 104 105

100 101 102 103 104 105

 Drug Concentration [nM]  Drug Concentration [nM]

 Drug Concentration [nM]

Pr
op

hy
la

ct
ic

 E
ffi

ca
cy

 ψ
 [%

]
Pr

op
hy

la
ct

ic
 E

ffi
ca

cy
 ψ

 [%
]

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

p
e
a
k

tr
o
u
g
h

Pr
op

hy
la

ct
ic

 E
ffi

ca
cy

 ψ
 [%

]

Figure 9.7: Drug specific prophylactic efficacy. Solid and dashed coloured lines depict the concentration-
prophylactic curve for the individual drugs. The solid lines represent the concentration-prophylactic
curves and light and dark grey areas indicate the quartile ranges and 5-95% ranges of the concentration-
prophylactic curve, considering uncertainty in pharmacodynamic parameters (Table B.1) and the distri-
bution of viral inoculum sizes after homosexual exposure to HIV [25]. Maximum clinically achievable
concentrations Dmax for chronic oral administration of the standard dosing regimen and a lower bound con-
centration Dlow that would be achieved if the last dose had been taken three days prior to virus exposure
are marked by thick and thin vertical black dashed lines respectively. For IDV, LPV, NFV and SQV Dlow

falls below the range of the x-axis. Downward pointing arrows indicate minimum (pre-dose) concentrations
achieved for standard regimen in adherent individuals as reported in [87,260,261]. ∗ - Recently or currently
tested for PrEP. Reproduced from Duwal et al. [27].
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Figure 9.8: Prophylactic efficacy of different DTG regimen. A: Prophylactic utility of chronically
administered oral DTG regimen (homosexual contact [25]). The red-, green and blue dashed boxes mark
the considered concentration ranges of DTG [Cmin (pre-dose), Cmax] achieved with 50, 10 and 2mg once
daily (OD) oral dosing. The left pointing arrows at the y-axis mark the respective prophylactic efficacy
ranges. B: Prophylactic efficacy of chronically administered oral DTG regimen with varying adherence
levels. The red-, green- and blue lines denote mean prophylactic efficacy for a 50mg, 10mg and 2mg oral
DTG regimen. Error bars depict the 5–95% confidence bounds for the ensemble estimate, computed using
Greenwoods formula. C: Prophylactic efficacy of DTG for PrEP on demand. Only three doses of oral DTG
were ingested at 0, 24 and 48 hours. Homosexual viral exposure occurred within the first dosing interval at
either 1, 3, 6, 12, 18 or 23 hours after initiating PrEP on demand. The red, green and blue lines represent
the mean prophylactic efficacy for PrEP on demand using 50-, 10 or 2mg OD respectively, where error bars
denote the 5–95% confidence bounds for the ensemble estimate, computed using Greenwoods formula. D:

Prophylactic efficacy for post exposure prophylaxis (PEP) with 50mg DTG for various durations of PEP
(y-axis; 3, 5, 7 and 9 days) and delayed initiation of PEP after homosexual viral exposure (x-axis; 2, 4 , 6
, 12 and 24 hours). Error bars mark the 5-95% range computed using Greenwoods formula. Reproduced
from Duwal et al. [27].

after cellular uptake of the parent compound. This delays the time until maximal concentrations
are achieved at the target-site [23, 84].
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9.5.3 Post-exposure prophylaxis (PEP) with DTG

Here, we assessed the efficacy of 50mg oral DTG in preventing infection when taken as post-
exposure prophylaxis (PEP). We varied durations of PEP and the timing of PEP initiation after
virus exposure (see Figure 9.8D). Figure 9.8D indicates that 50mg oral DTG can effectively pre-
vent infection (> 80%) when initiated shortly (within 6 hours) after exposure and when continued
for as long as possible. One can see in Figure 9.8D that the efficacy starts to drop when PEP is
initiated later than 6 hours and when it is shorter than 7 days. Our simulations also suggest that
initiating the prophylaxis earlier has a more pronounced effect than prolonging PEP, arguing for
the immediate start of PEP in case of known or suspected HIV exposure.

9.5.4 Comparison with Truvada (TDF+FTC)

Our analysis shows that once daily PrEP with Truvada provides ≈ 96% protection in fully adherent
individuals (see Section 9.3.3). Due to difficulties in quantifying PrEP adherence clinically [262],
a surrogate measure is often used, which is based on the percentage of individuals with detectable
drug. In apparently highly-adherent individuals, clinical efficacy estimates of Truvada were 86-
100% in the IPERGAY study [263], 58-96% in the PROUD study [264] and 96% in the Partners
PrEP OLE study. In comparison, we predicted almost complete (99-100%) protection with 50mg
QD DTG. The VOICE [265] and FEM-PrEP [266] studies indicated that Truvada may not pre-
vent infection in poorly adherent individuals, i.e. if ≈ 30% of individuals had detectable drug.
In contrast, we estimated about 60% protection with 25% adherence to once daily 50mg DTG
and over 85% protection if at least half the pills were taken. For PrEP on demand with Truvada,
we estimated that about 74–92% infections can be averted, depending on the time of viral expo-
sure relative to the initiation of Truvada dosing [25]. The corresponding efficacy estimate in the
IPERGAY trial was 86% [258], in line with our work. Our analysis shows that PrEP on demand
with 50mg DTG is non-inferior to Truvada, providing 78.63–83.93% protection. While PEP with
Truvada is not recommended due to the slow intracellular accumulation of pharmacologically ac-
tive NRTI-triphosphates, PEP with 50mg DTG can prevent about 80% infections when initiated no
later than 6 hours post exposure. In summary, our simulations indicate that prophylaxis with 50mg
DTG is non-inferior to Truvada and that it may outperform Truvada in the case of poor adherence.
Furthermore, DTG may outperform Truvada in the case of the post-exposure prophylaxis.

9.6 Clinical trials and prophylactic efficacy

Until now, we predicted the prophylactic utility of various antivirals by means of the prophylactic
efficacy per challenge ψ. However, in a clinical trial an uninfected person may be repeatedly
challenged. In this section, we discuss a measure of PrEP efficacy that involve repeated viral
challenges similar to clinical trials. This is helpful as it delineates various confounding factors
that affect estimate of PrEP efficacy in a clinical trial.

Clinical trial efficacy

A clinical trial consists typically of two arms, –a treatment arm and a placebo arm–, which are
followed for the trials’ duration. At the end of the trial, based on the incidence rates in two arms,
the efficacy of the intervention is computed, e.g. [13, 231, 258, 264]:

ω = 1 − Incidence rate in the treatment arm

Incidence rate in placebo arm
(9.17)
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The clinical trial efficacy can be interpreted as the reduction in the expected number of infected
individuals in the treatment arm with respect to the expected number of infected individuals in the
placebo arm. In Appendix E, we derived the following:

ω ≈ 1 − 1 − (1 − P(trans, S ))T ·Nc,S

1 − (1 − P(trans,∅))T ·Nc,∅
(9.18)

where T is the trial duration in months, which is usually identical for both arms. Nc,S and Nc,∅ are
numbers of virus exposures per month in the treatment- and placebo arm respectively.

9.6.1 Trial duration, transmission modes and risk compensation

In order to compute the effects of trial duration, mode of transmission and risk compensation
on clinical trial efficacy estimates, we predicted clinical trial outcomes by stochastic simulations.
Stochastic simulations were motivated by the well-known Gillespie Algorithm [95]. Parameteri-
zations for the simulations (Figure 9.9 below) are largely based on data provided in the IPERGAY
study [258, 267]: Around 7 condom-less anal sex acts per month per study participant with differ-
ent sexual partners among MSM were reported in the IPERGAY study [267]. The HIV-1 preva-
lence in a similar MSM group was reported to be around 17 % [268]. Hence, the average number
of exposures (risky sex acts performed by a recipient) per month was fixed to 1.19 (7 × 0.17). We
consider the same risk behaviour in both arms i.e. Nc.∅ = Nc,S = 1.19. The prophylactic efficacy
per exposure of the PrEP treatment ψ was set to 80%. The average infection probabilities per
exposure P(trans,∅) for homosexual- and heterosexual transmission are assumed to be 0.03 and
0.003 respectively [230, 242, 248].

Figure 9.9 shows Kaplan-Meier estimates of the proportion of infected individuals during the
course of the simulated clinical trial in the untreated and placebo (panel A) and the PrEP-treated
arm (panel B) respectively. The clinical trial simulation had 400 individuals (200 in each arm)
belonging to homosexual vs. heterosexual risk groups. The solid yellow and blue lines indicate
the computed proportions using the analytical formula. Panel C of Figure 9.9 depicts the clinical
trial efficacy estimate ω computed from the analytical Eqn (9.18) for the homosexual (yellow),
and the heterosexual target group (blue). It can be seen that the clinical trial efficacy estimates ω
decrease with increasing trial duration, relative to the actual PrEP efficacy per exposure (dashed
horizontal line). In particular, this bias is much stronger for the homosexual target group. The
homosexual target group differs from the heterosexual target group in the simulations with respect
to the transmission probability P(trans,∅), which is 10-times larger than for the heterosexual target
group. The analysis highlights that PrEP efficacy estimate ω is difficult to evaluate when its value
is low. Specifically, in the PrEP treated arm almost no individual becomes infected after an average
follow-up time of ≈ 12 month. Thus, an estimate of the incidence rate would be highly unreliable.
The analysis recommends conducting a trial with a long-as-possible follow-up to ensure statistical
certainty in the incidence rate.

Risk compensation

Table 9.2 depicts the results of a simulated clinical trial with untreated and PrEP-treated arms in
homosexual target groups for different levels of risk compensation and follow-up durations (T =
6, 12, 18, 24 and 36 months). We considered the PrEP strategy with the prophylactic efficacy per
exposure of ψ =70, 80 and 90% respectively. For each efficacy, 0, 10 and 20% risk compensation
(additional percentage of risky sex acts in the treated arm compared to the untreated and placebo
arm) were assessed. For all cases, the clinical efficacy estimate ω is lower than the PrEP efficacy
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Figure 9.9: Simulated PrEP clinical trials for homosexual- and heterosexual transmission modes. A:

Proportion of infected individuals in the placebo arm. The yellow and blue solid lines represent the propor-
tion of infected individuals in the homosexual and heterosexual transmission groups. The solid black lines
represent the Kaplan-Meier estimate of a stochastic simulation with 200 individuals. The gray area marks
the region between the upper and lower bounds of the Kaplan-Meier estimate. The transmission probability
per coitus in the absence of any drug (P(trans,∅)) for homosexual and heterosexual transmission were fixed
to 3% and 0.3 % respectively. B: Proportion of infected individuals in the treated arm with prophylactic
efficacy of ψ =80% per coitus. The yellow and blue dashes lines denote the homosexual- and heterosex-
ual target group. The black dash lines denote the Kaplan-Meier estimate and the gray region denotes the
area between the upper and lower bound of the Kaplan-Meier estimate for a stochastic simulation with
200 individuals. C: The trial efficacies ω for the homosexual group(yellow) and heterosexual group(blue)
are compared. The horizontal black dashed line marks the actual prophylactic efficacy of PrEP per viral
challenge ψ. Reproduced from Duwal et al. [25].

per exposure ψ and it decreases with increasing follow-up time. The decrease is more pronounced
when the PrEP efficacy per exposure ψ is low. At 36 months of follow-up, without risk compensa-
tion, the clinical trial efficacy estimate ω underestimated the actual PrEP efficacy per exposure ψ

by 14, 11 and 7% respectively for ψ = 70, 80 and 90%. This underestimation becomes even more
pronounced when risk compensation occurs.

In summary, our simulations point to a profound limitation in estimating and comparing PrEP
efficacy per exposure from incidence rates in clinical trials: On the one hand, a clinical trial has to
be long enough to provide a statistically reasonable estimate of the incidence rate (a considerable
number of individuals have to become infected). On the other hand, the longer the trial, the
more confounded will the efficacy estimate ω be in relation to the actual PrEP efficacy ψ(S ) (see
Table 9.2). For this reason, we provide the following formula which allows us to convert clinical
efficacy estimates ω into unbiased PrEP efficacies per exposure ψ(S ), which can be compared
between different studies (see Appendix E):

1 − ω(S ) =
1 − (1 − P(trans,∅) · (1 − ψ(S )))T ·Nc,S

1 − (1 − P(trans,∅))T ·Nc,∅
. (9.19)

where the subscript S and ∅ denote the PrEP and untreated and placebo arm respectively.

9.7 Summary

In summary, we presented the framework and its modules, which can be used to assess the pro-
phylactic efficacy of various antivirals. Using the framework, we derived the drug-class spe-
cific concentration-prophylactic efficacy curves. We observed that for all drug classes expect for
the protease inhibitor, the concentration-prophylactic efficacy curves are approximately classical
EMAX equation, whereas the curve for the protease inhibitor is a power function and exhibits
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Trial-based PrEP efficacy estimates ω
Follow-up ψ = 70% ψ = 80% ψ = 90%
duration risk compensation risk compensation risk compensation

in months T 0 % 10 % 20 % 0 % 10 % 20 % 0 % 10 % 20 %
6 68.01 64.93 61.86 78.48 76.38 74.28 89.14 88.06 86.99
12 65.66 62.46 59.30 76.65 74.42 72.21 88.09 86.93 85.77
18 63.26 59.96 56.73 74.76 72.41 70.09 86.99 85.73 84.49
24 60.83 57.44 54.14 72.82 70.35 67.92 85.84 84.49 83.15
36 55.93 52.39 48.99 68.81 66.11 63.48 83.42 81.88 80.36

Table 9.2: Bias of clinical-trial efficacy estimates ω through risk compensation and follow-up du-

ration. Trial-based PrEP efficacy estimates ω (after repeated viral challenges) for different levels of risk
compensation (reported as 100 · (Nc,S − Nc,∅

)
/Nc,∅) and trial durations T were estimated using Eqn (9.18).

The number of exposures per month Nc,∅ in the untreated arm was set to 1.19. The transmission proba-
bility per exposure P(trans,∅) was set to 3% and the prophylactic efficacies ψ were set to 70, 80 and 90%
respectively. Reproduced from Duwal et al. [25].

a switch-like behavior. Furthermore, we provided formulas to translate the target-process drug
potency to prophylactic potency i.e., for instance a conversion of IC50 to EC50.

We used the framework to screen all the NRTIs. Besides TDF and FTC, 3TC and D4T also
showed high prophylactic efficacy for their respective standard of care. The detailed pharma-
cokinetic models of TDF, FTC and 3TC are used to investigate various scenarios in detail. We
observed that TFV-DP accumulation may be too slow for PrEP on demand, in agreement with
Louissaint et al. [269]. All treatment-approved antivirals not belonging to NRTI are also screened
for their PrEP utility. We predicted that the efavirenz (EFV), nevirapine (NVP), etravirine (ETR),
rilpivirine (RPV) and darunavir (DRV) may fully prevent infection after oral application and in
case of poor adherence. The drugs maraviroc (MVC) and dolutegravir (DTG) potently prevent
infection but may allow for HIV transmission when individuals poorly adhere to the medication.
Using the pharmacokinetic model of DTG, we analysed various roll-out schemes and found that it
is non-inferior to truvada.

We highlighted that the clinical endpoint or clinical efficacy in a PrEP trial is confounded by
various factors such as trial duration, transmission mode, risk compensation and risk behavior,
rendering the comparison of clinical efficacies of two trials unreliable. We provide a formula to
convert clinical efficacy ω(S ) to prophylactic efficacy per challenge ψ(S ), which can be compared
between different studies.
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Discussion

In this work, we presented a multiscale systems pharmacology framework that can be assembled
in a building block manner to assess the prophylactic efficacy of antivirals. The framework inte-
grates different relevant processes occurring at micro-, meso-, macro- and population-scale, such
as drug-target interactions, antiviral pharmacokinetics, viral replication dynamics, a single viral
challenge and multiple challenges in a clinical trial. We presented target-site pharmacokinetic
models of several antivirals (TDF, FTC, 3TC and DTG) by employing various methods for model
building. We coupled target-site pharmacokinetic models of antivirals with a well-established vi-
ral replication cycle models [83], which allows for the drug-class specific mechanistic integration
of antivirals effects. A novel statistical viral exposure model was developed that encompasses
insights from various studies linking the transmitted virus distribution with major factors deter-
mining the transmission risk.

The main algorithmic challenge considered in the work is the task of quantifying the infec-
tion probability after a viral challenge within a host in the context of antiviral pharmacokinetics.
The antiviral pharmacokinetics was considered as a continuous-time continuous-state determinis-
tic process, whereas the viral replication cycle was considered as a continuous-time discrete-state
stochastic process which is influenced by pharmacokinetics. Thus, we needed to pursue a hybrid
stochastic-deterministic approach. We distinguished between time-invariant- and time-variant re-
action propensities in the viral replication cycle.

Time-invariant reaction propensities are valid for constant target-site antiviral concentrations.
We constructed the embedded Markov process model of the viral replication cycle and employed
the theory of branching processes to derive extinction and infection probabilities for time-invariant
reaction propensities. For time-variant reaction propensities, the hybrid stochastic-deterministic
approach is utilized. The deterministic pharmacokinetics can be solved by numerically integrating
the corresponding ODE system. In theory, one can quantify the infection probabilities by using the
chemical master equation that describes the stochastic viral replication cycle when it is coupled
with pharmacokinetics. However, the chemical master equation cannot be solved due to the curse
of dimensionality. To circumvent this problem, we presented a reduced-state CME, exploiting an
important property of the viral replication cycle, namely that the probability to complete the first
replication cycle closely approximates the infection probability. Although the reduced-state CME
can be solved efficiently, it is only an approximation and can be applied only in a few cases.

Stochastic simulation algorithms based on Monte Carlo sampling can also be applied to cir-
cumvent the curse of dimensionality, and to empirically reconstruct P

(
Xt = xi

)
from simulated

trajectories. The challenge in doing so is the classification of a trajectory as an infection event.
While there exists an unambiguous criterion for the classification of a trajectory as an extinction
event, the analogous stopping criterion for an infection event is not straightforward to obtain. To
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tackle this issue, we devised a stopping criterion based on a dynamically adapting extinction sim-
plex that guarantees that the misclassification error is below the user-defined threshold and that
the run-time is optimal.

In this work, we adapted the recently developed rejection-based SSA, namely EXTRANDE
(extra reaction algorithm for networks in a dynamic environment) algorithm [28]. The algorithm
requires a look-ahead time horizon to compute an upper bound for the sum of reaction propensities.
The rejection-based SSA relies on extra reaction firings that do not change the state of the system
but guarantees that the algorithm is numerically exact. At the same time, extra firings are devised
in such a way that the computationally intense numerical integration step as in the integral-based
SSA can be omitted. However, whether or not EXTRANDE is computationally more efficient than
the integral-based SSA depends on the extent of computational overheads due to the look-ahead
time horizon and the number of extra firings. We proposed an intuitive way to compute an upper
bound of the sum of reaction propensities using an insight from the viral replication cycle model,
which also removes the necessity for a look-ahead time horizon for our system of interest. The
adapted EXTRANDE is run-time wise more efficient than the integral-based SSA method.

Another salient feature of the framework is that it captures drug-class specific effects of antivi-
rals at various levels ranging from target-process inhibition, inhibition of target-cell infection and
systemic infection, and finally long-term efficacy after multiple viral challenges akin to a clinical
trial. It, therefore, provides a way to translate the effect from one level to another. Technically,
the target-process drug potency (IC50) can be determined from clinical trial data involving HIV-
1 infected individuals under antiviral monotherapy, by employing a top-down approach (classical
PK-PD). However, in addition to being costly and time-demanding, such trials generate sparse and
noisy data and often cannot be conducted due to ethical reasons. On the other hand, pre-clinical
in vitro and ex vivo experiments can be conducted in controlled conditions and are relatively in-
expensive and less time-consuming. Hence, using in vitro and ex vivo parameters to determine
the drug potency regarding target-process inhibition (IC50) is desirable. However, it is difficult to
accomplish this, due to the lack of an accurate model based on a mechanism of action and also due
to a number of differences between in vitro and ex vivo experiment set-ups and in vivo or clinical
trial set-ups.

A noteworthy contribution to bridge the gap is the model of the molecular mechanism of action
for NRTIs developed by von Kleist et al. [24]. The model utilizes various in vitro parameters
such as the binding affinity of NRTI-TPs and endogenous nucleotides to the viral enzyme, the
maximum catalytic rate, intracellular concentrations of NRTI-TP and endogenous nucleotides etc.,
which can be used to compute IC50 for the target-process inhibition (reverse transcription). This is
particularly important since the free drug hypothesis is not valid for NRTIs. We used the model to
compute IC50s for various NRTIs. For antivirals belonging to other drug classes, their potencies
(IC50) can be determined in single-round infectivity assays. However, due to difference in the
plasma protein binding in the ex vivo assay and in vivo, a correction is required. We presented a
way to correct the drug potency from the ex vivo assay for the in vivo case (IC50).

Often, PrEP clinical trials are guided by target-process drug potency (IC50s). For all drug
classes except for RTI, we observed that the prophylactic drug potency (EC50) is bigger than
target-process drug potency IC50. This implies that if PrEP clinical trials are designed using IC50 or
IC90, the prophylactic utility of antivirals is overestimated; that results in underperforming clinical
trials. To make matters worse, IC50 from in vitro and ex vivo are used without proper translation
and correction. In this work, we derived a formula to translate the target-process drug potency
(IC50) to the prophylactic drug potency (EC50 and EC90). This can help to avoid unnecessary
clinical trials, which waste not only money and time, but also risk causing individuals harm.

In a clinical trial, an uninfected individual is likely to encounter a number of viral challenges.
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As a consequence, the clinical endpoint or efficacy (ω), which is the reduction in the number
of infected individuals in the treatment arm with respect to the placebo arm, is confounded by
a number of factors such as HIV-1 prevalence, risk behaviour, risk compensation, trial duration
and transmission modes. Hence, comparing the clinical endpoints from different clinical trials is
difficult due to differences in those factors. We provided a way to deconvolute the effects of various
confounding factors on the clinical efficacy to compute the prophylactic efficacy per challenge (ψ),
which is comparable across all clinical trials.

As mentioned earlier, the pharmacokinetic parameters and model can be integrated into the
framework to assess the prophylactic utility of any antiviral. A detailed target-site pharmacoki-
netic model allows one to assess various PrEP roll-out schemes. Unfortunately, a detailed phar-
macokinetic model is usually not available. Parameters such as trough and peak concentrations at
target-site and drug half-lives are easily available. These pharmacokinetic parameters can be used
for an initial screening and dose-finding based on the prophylactic efficacy. Here, it should be
emphasized that the selection of an antiviral and a roll-out scheme for a prophylactic use requires
careful considerations in addition to prophylactic efficacy, such as pill burden, pharmacological
forgiveness, financial cost, toxicity, and interactions with other drugs and food.

Using the framework, we showed that FTC is more effective than TDF for PrEP, in contrast
to the majority view. This is due to the fact that for FTC, higher concentrations with respect
to its potency is achieved faster in target-cells than for TDF. However, TDF seems to be more
pharmacologically forgiving owing to its long terminal half-life. Moreover, FTC’s efficacy is
strongly reduced by drug-resistant strains in comparison to TDF’s efficacy [255]. These facts
underscore the complementary roles of TDF and FTC in Truvada combination used for PrEP. The
Partner PrEP study [270] compared the efficacy of TDF alone vs. TDF and FTC in combination,
which is partly motivated by cost-effectiveness considerations. Our analysis discourages the use
of TDF alone for PrEP. In addition, it shows that the drug combination 3TC and TDF may be an
alternative to the combination of TDF and FTC. 3TC is interesting since it closely resembles FTC
with a similar safety and efficacy profile but is cheaper than FTC and patent-expired [271].

Although MVC is stated to be used for PrEP, our analysis suggests that MVC may not be
effective for PrEP, which is in line with results from the NEXT-PrEP (HPTN 069) phase II study
[272]. This agrees with the reported lack of efficacy of MVC as a PrEP candidate in animals
and human explant samples [273]. Our results suggest that the potency of any CRA, like MVC,
against infection will always be less than its potency in preventing HIV replication (EC50 > IC50,
EC90 > IC90).

In our screening, a number of protease inhibitors such as SQV, NFV and APV achieved high
prophylactic efficacy. However, due to their short half-lives, they require inconvenient multiple
doses per day to retain the efficacy (high pill burden) and are very sensitive to an imperfect ad-
herence. DRV is the only protease inhibitor that remained effective despite incomplete adherence.
DRV is currently in PrEP trial for topical use [18]. Notably, our screening shows a number of
NNRTIs, such as EFV, NVP, RPV and ETR to be very interesting candidates for PrEP. NNRTIs
exhibit long elimination half-lives (30-40h), and rapidly and durably achieve high concentrations
with respect to their IC50 at target-site. NVP and EFV are patent-expired and are relatively cheap
(US $ 0.1). NVP was shown to be effective in mother-to-child transmission [274, 275]. However,
NVP has a very strong contraindication, which might disqualify it from use in uninfected individu-
als [71]. EFV is associated with adverse effects related to the central nervous system [71,276]. For
EFV, reducing the dose amount for PrEP might be worth exploring, such that side-effects are pre-
vented or reduced without compromising prophylactic efficacy. Another issue with EFV and NVP
is the low barrier to viral resistance [277]. Resistant virus types are less fit than the wild type, and
hence not readily transmitted. However, if the infection occurs despite EFV or NVP prophylaxis
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treatment, for instance due to a low adherence, the virus is likely to develop resistance, thus reduc-
ing the treatment option for the infected person. RPV and ETR might be interesting too since they
have a stronger barrier to resistance than EFV and NVP [278, 279]. At the same time, they have
long half-lives similar to NVP and EFV and low side-effect profile. RPV is currently investigated
as a long-acting formulation in HPTN076 using 1200mg injections every 2 months [280].

In our screening, DTG is the best among integrase inhibitors and it also exhibits an excellent
safety profile. A detailed pharmacokinetic model of DTG was used to assess various PrEP scenar-
ios. We found that oral 50mg DTG is non-inferior to Truvuda. A long-acting formulation of the
integrase inhibitor carbotegravir, which is an analog of dolutegravir [281], is also currently being
investigated for PrEP use in HPTN-083 [282]. The framework can be used for carbotegravir to
address similar questions.

The framework utilizes target-site pharmacokinetic models of antivirals, which are either
plasma or target-cell intracellular pharmacokinetics. Our model assumes that the systemic an-
tiviral concentration corresponds to the concentration in the target-cell compartment. However,
since viruses first reach the mucous membrane during a viral exposure, some questions arise: Are
the drug concentrations at the site of mucosal exposure (e.g. cervix, rectum) more relevant than the
plasma drug concentration [280, 283]? How are various processes at the site of mucosal exposure
considered in the framework?

The framework does not take into account drug concentrations at the site of mucosal exposure,
because these concentrations have not been validated as targets for successful prevention or treat-
ment. For antivirals except for NRTIs, we utilized the unbound concentrations, in line with the
broadly accepted free drug hypothesis. For drugs highly bound to plasma protein (> 90%), their
total concentrations at sites other than the plasma can be comparatively lower [283]. However, the
unbound concentrations in plasma and various sites are found to be identical [284]. All analysed
NNRTIs, InIs and PIs, except for raltegravir (RAL), exhibit strong lipophilicity, which enables
the rapid exchange of unbound drug across cellular membranes, attaining an equilibrium between
the unbound drug on either side of the cellular membrane [197]. Even for the weakly lipophilic
compound raltegravir, evidence shows the validity of the free drug hypothesis [198, 199]. In con-
trast to other drug classes, the free drug hypothesis is not valid for NRTIs [23, 84, 155]. These
antivirals require active uptake in cells and intracellular conversion into pharmacologically ac-
tive triphosphates (NRTI-TP). Since the expression of transporters and intracellular enzymes is
likely cell-specific, different cell types may contain vastly different concentrations of the phar-
macologically active compound. It is, therefore, entirely unclear what relevance concentration
measurements of NRTI-TPs in tissue homogenates [285] (containing HIV target- and non-target
cells) from sites of viral exposure (e.g. cervix, rectum) have in terms of prophylaxis.

Our framework utilizes a viral exposure model that does not explicitly model the processes
at the site of mucosal exposure. Instead, the processes are considered in a lumped fashion. The
quantitative contribution of a number of physiological processes at the site of mucosal exposure
(e.g. the cells involved, their residence duration at the local site of exposure and their capabilities
to transduce virus through physiological barriers) are currently not fully resolved and difficult to
measure in humans. However, evidence shows that the target-cell abundance at the local site of
exposure is not sufficient to sustain the viral replication (R0 < 1). Hence, to circumvent model-
and parameter uncertainties, we presented a minimal and data-driven model, that subsumes all
physiological barriers before viruses reach the target-cell compartment into a single bottlenecking
process.

In line with the biological insight [207], our framework assumes that the target-cell compart-
ment is decisive for establishing and shedding infection (in the compartment, a virus exhibits
R0 > 1). We also assumed that this compartment is well-perfused at the time scale of interest and
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well-mixed. In the future, with more quantitative insights, these assumptions can be relaxed, and
the target-cell compartment can be further refined. In a similar vein, the subsumed processes in
viral exposure model can be modelled in detail. In particular, the processes at the mucosal site of
exposure require more attention, as the topical application of antivirals is being considered [18].

In the future, the framework can be readily coupled to pharmacokinetic models/parameters
of any novel antivirals (long-acting formulation and patent-expired or patent-protected) to assess
their prophylactic utility, as soon as such models/parameters are available. As in treatment, vari-
ous combinations of antivirals can be explored to increase the prophylactic efficacy and to reduce
the development of the viral resistance. In this work, we studied the prophylactic utility of various
antivirals for different sexual transmission modes. In the future, a similar analysis for the intra-
venous transmission mode (intravenous drug users) can be pursued, which is a major transmission
mode in a number of countries [286]. Furthermore, the framework can be used to investigate the
impact of treatment-as-prevention in conjunction with PrEP and to develop tailored deployment
strategies that considers various contextual factors such as risk behaviour, HIV-1 prevalence, trans-
mission mode and resource-availability. This is of particular importance, because these strategies
are complementary to each other and are likely to act synergistically.
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Deutsche Zusammenfassung

Die HIV-Epidemie ist nach wie vor ein globales Problem. Während die Suche nach einer Heilung
und einem Impfstoff weitergeht, hat sich das Hauptaugenmerk auf antiretrovirale Prävention-
sstrategien zur Eindämmung der Epidemie gelegt. Eine solche Strategie ist die sogenannte Prä-
expositionsprophylaxe (PrEP), die kürzlich von UNAIDS als eine der fünf Säulen zur Prävention
identifiziert wurde. Dabei ist Truvada das einzige für PrEP zugelassen Medikament. Obwohl der
Einsatz von Truvada Erfolge gezeigt hat, bestehen einige Einschränkungen. Eine Reihe neuar-
tiger Wirkstoffe und behandlungserprobter antiviraler Mittel, die noch nicht zur PrEP Behandlung
eingesetzt werden, könnten diese Einschränkungen bewältigen.

Die große Aufgabe besteht darin, unter diesen Wirkstoffen potenzielle PrEP Kandidaten aus-
findig zu machen und Einsatzstrategien zu entwickeln. Präklinische Experimente liefern hierbei
nicht genügend Ergebnisse um ein Kandidaten-Screening vorzunehmen und klinische Studien sind
ethisch problematisch und sehr kostspielig, da Tausende von Personen über mehrere Jahre hinweg
beobachtet und untersucht werden müssen. Als Hilfestellung haben wir ein Systempharmakologie-
Framework entwickelt, welches es ermöglicht, den prophylaktischen Nutzen von antiviralen Medika-
menten zu bestimmen, Kandidaten zu priorisieren und Einsatzstrategien zu entwerfen. Um ein
solches Framework zu entwickeln müssen verschiedene Modellierungs- und die Simulationen-
sprobleme gelöst werden, da bei der PrEP komplexe Prozesse verschiedene Größenordnungen
(Multiskala) involviert sind. Das Framework integriert flexibel Prozesse: (1) molekularen In-
teraktionen zwischen dem Medikament und den viralen Enzymen auf der Mikroskalenebene (2)
antivirale Pharmakokinetik, Pharmakodynamik (viraler Replikationszyklus) auf den Mesoskalen-
und Makroskalenebenen und (3) populationsebene Prozesse wie virale Exposition und die Infek-
tionswahrscheinlichkeit nach vermehrter viralen Expositionen wie in klinischen Studien.

Eine der größten algorithmischen Herausforderungen, die in dieser Arbeit bewältigt wurde,
ist die Quantifizierung der Infektionswahrscheinlichkeit. Wir haben mit Hilfe der Theorie des
Verzweigungsprozesses die Formeln für eine zeitkonstante Wirkstoffkonzentration am Wirkort
abgeleitet. Für die zeitvariable Wirkstoffkonzentration am Wirkort haben wir eine chemische
Master-Gleichung mit reduziertem Zustand eingeführt und einen stochastischen Algorithmus (EX-
TRANDE) adaptiert, die das Problem der Dimensionalität der chemische Master-Gleichung umge-
hen.

Das Framework ermöglicht es präklinisches Wissen in Parameter klinischer Relevanz zu über-
setzen. Dabei hilft es unnötige klinische Studien zu vermeiden, die nicht nur Geld und Zeit kosten,
sondern auch das Risiko bergen, dass Menschen Schaden nehmen. Mithilfe dieses Frameworks
haben wir alle bisherigen für die HIV-behandlung zugelassenen Medikamenten zum Prävention-
szweck überprüft. Wir haben die komplementären Rollen von Tenofovir Disoproxil Fumarate
and Emtricitabine für PrEP erklärt. Darüber hinaus haben wir einige kostengünstige Alternative
(Lamivudine, Nevirapine und Efavirenz) zu Truvada für eine weitere Überprüfung vorgeschlagen.
Außerdem hat unsere Analyse gezeigt, dass Dolutegravir Truvada nicht unterlegen ist.
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APPENDIX A: Viral dynamics parameters

Param. Value Ref. Param. Value Ref.
λT 2·109 [287] λM 6.9·107 [288]
δT, δT1 0.02 [288] δM, δM1 0.0069 [288]
δT2 1 [289] δM2 0.09 [83]
δTL 10−4 [290, 291] ς 10−3 [291]
δPIC,T 0.35 [192, 292] δPIC,M 0.0035 [83]
kT 0.35 [192] kM 0.07 [83]
βT(∅) 8·10−12 [82] βM(∅) 10−14 [83]

N̂T 1000 [288] N̂M 100 [288]
CL(infected) 23 [289] CL(naive) 2.3 [210, 212]
b · q · ρPR 0.67 [83] ℓ 8 · 10−6 [291]
ρrev 0.5 [192]

Table A.1: Parameters used for the viral model. All parameters refer to the absence of drug treatment
φ. All parameters in units [1/day], except ρrev and b · q · ρPR (unit less). NT/M = b · q · ρPR · N̂T/M [83].
Adapted from articles [83, 84, 88].
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APPENDIX B: IC50 correction accounting protein binding

Here, we derive a formula to correct the IC50 determined in a single round infectivity assay for
drug-classes other than NRTIs for in vivo use (target-process inhibition)I .

The Emax model requires two parameters: a hill coefficient m and an 50% inhibitory concen-
tration IC50. These two parameters are usually measured ex vivo using single-round CD4+ cell
infection assays in 96-well plates supplemented with 50 % human serum for the majority of clin-
ically utilized antivirals [87]. In these assays, the IC50 corresponds to the total (protein bound +

unbound) concentration of the drug. According to the free drug hypothesis [194] that the available
concentrations at the target-site correspond to their unbound moieties [195, 196]. For CRAs, the
target-site is extracellular, while it is the intracellular space of the target-cells for NNRTIs, InIs and
PIs. All analyzed NNRTIs, InIs and PIs displays physicochemical attributes that enable the un-

bound drug to rapidly cross cellular membranes, generating an equilibrium between the unbound

drug on either side of the cellular membrane [197]. However, since the unbound fraction fu,assay

in the assay is different to the physiological unbound fraction fu,plasma, the measured IC50 value
needs to be adjusted or scaled. This adjustment is particularly relevant to some highly protein
bound drugs (> 90% protein bound, see [196] for an overview).

IC50 value correction for protein binding

The fraction of unbound drug fu,plasma in the blood plasma is given by

fu,plasma =
Kd

Kd + [PR]
(B.1)

where Kd denotes the dissociation constant of the drug from serum proteins and [PR] denotes the
concentration of serum proteins. The above equation can be reformulated to obtain

Kd

[PR]
=

fu,plasma

1 − fu,plasma
(B.2)

The single-round infectivity assay is supplemented with 50 % human serum. Thus, the Eqn (B.1)
for the unbound fraction of drug in the assay fu,assay we have

fu,assay =
Kd

Kd + [PR]/2
. (B.3)

Using eqs (B.2)–(B.3) the relation between the unbound fraction in the assay fu,assay and the

IThe derivations in this appendix can be found in the supplementary note of Duwal et al. [27].
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plasma plasma fu,plasma is given by

fu,assay =
Kd/[PR]

Kd/[PR] + 1/2

=

fu,plasma

1 − fu,plasma

fu,plasma

1 − fu,plasma
+

1

2

=
2 · fu,plasma

fu,plasma + 1
. (B.4)

The IC50 for the unbound drug concentrations is computed as [196]:

IC50(unbound) = IC50(total) · fu (B.5)

From the equation above, we can derive the following

IC50(unbound) = IC50,plasma · fu,plasma = IC50,assay · fu,assay

⇒ IC50,plasma = IC50,assay ·
fu,assay

fu,plasma

(B.6)

Using Eqn (B.4) in Eqn (B.6), we derive

IC50,plasma = IC50,assay ·
2

fu,plasma + 1
(B.7)

which provides a way to translate the IC50 value from the single-round infectivity assays to the
corresponding IC50 in human plasma. Note that in the main manuscript, we denoted IC50,plasma by
IC50. Table B.1 summarizes protein adjusted IC50, hill coefficient m and fraction bound in blood
plasma fb of all analyzed antivirals.
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Class Name IC50 (CV) m (CV) Cmin Cmax fb t1/2

CRA MVC 5.06 (290) 0.61 (27.9) 45 557 76⋄ 14⋄

RTI EFV 10.7 (16.7) 1.69 (4.73) 5630 12968 99.4 [293] 40⋄

RTI NVP 116 (31.2) 1.55 (9.68) 10883 25153 60⋄ 45⋄

RTI DLV 336 (44.7) 1.56 (11.5) 10672 27134 98 [294] 5.8⋄

RTI ETR 8.59 (16.3) 1.81 (12.7) 688 1617 99.9 [295] 35 [296]
RTI RPV 7.73 (17.9) 1.92 (10.4) 177 470 99.1⋄ 44.5⋄

InI RAL 25.5 (12.1) 1.1 (4.55) 203 3996 83⋄ 9⋄

InI EVG 55.6 (43.8) 0.95 (4.21) 301 1661 99⋄ 8.7⋄

InI DTG 89.0 (25.3+) 1.3 (15.4+) 2918 8471 98.9⋄ 14.5 [297]
PI ATV 23.9 (11.8) 2.69 (10.4) 899 6264 86 [298] 7⋄

PI APV 262 (12.6) 2.09 (6.70) 2870 14319 90⋄ 7.1⋄

PI DRV 45.0 (21.6) 3.61 (8.86) 5081 14783 95 [295] 15⋄

PI IDV 130 (11.0) 4.53 (7.94) 1827 12508 60 [299] 1.8⋄

PI LPV 70.9 (20.1) 2.05 (5.85) 8757 15602 99 [196] 2.5♭

PI NFV 327 (26.8) 1.81 (12.7) 2285 5104 98⋄ 3.5⋄

PI SQV 88.0 (9.7) 3.68 (6.25) 897 13282 97 [300] 3.9 [301]
PI TPV 483 (18.0) 2.51 (14.3) 35598 77585 99.9⋄ 5⋄

Table B.1: Pharmacodynamic and pharmacokinetic parameters. IC50 [nM] and m [unit less] values
are available from single turnover experiments in primary peripheral blood mononuclear cells supplemented
with 50% human serum from Shen et al. [87], Laskey et al. [222] (DTG) and Jilek at al. [302] (MVC). Be-
cause some compounds are highly protein bound, IC50 values had to be adjusted for protein binding as
outlined in the Supplementary Text S3. Indicated values are after protein adjustment. IC50 values are
reported to be log normal distributed and m values to be normal distributed [87, 302] with respective coef-
ficients of variation CV = 100 · σ/µ [%]. Parameters Cmin and Cmax refer to the minimum and maximum
concentrations in [nM] during chronic administration using the standard dosing regimen, taken from Shen
et al. [87] except those for DTG [303], RPV [261] and MVC [260] (150mg twice daily). t1/2 – half life of
the drug in [hr], fb – fraction of the drug bound to plasma proteins in [%]. +These values were fixed to the
typical parameter distributions observed for all other compounds. ⋄Parameters were taken from Drug Bank
when available [304], accession numbers: DB04835, DB00625, DB00238, DB00705, DB08864, DB06817,
DB09101, DB08930, DB01072, DB00701, DB01264, DB00224, DB00220, DB00932 or ♭PubChem [305],
id: 92727. When parameters were not readily available in these databases, parameters were obtained from
the indicated literature source. MVC -maraviroc, EFV -efavirenz, NVP -nevirapine, DLV -delavirine, ETR
-etravirine, RPV -rilpivirine, RAL -raltegravir, EVG -elvitegravir, DTG -dolutegravir, ATV -atazanavir,
APV -amprenavir, DRV -darunavir, IDV -indinavir, LPV -lopinavir, NFV -nelfinavir, SQV -saquinavir,
TPV -tipranavir. Reproduced from Duwal et al. [27].
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APPENDIX C: Derivation of extinction and infection probabilities

In this appendix, we present the derivation of the viral extinction and infection probabilities for
time-invariant reaction propensities i.e., for a constant target-process inhibition I.

Markov jump process

A virus can be cleared by immune system or due to an unsuccessful infection attempt. The prob-
ability of the path V̂→ ∗ is given by

P(y1 = 0|y0 = V̂) =
a1

a1 + a4
= ̺. (C.1)

where 0 denotes the extinction state [0, 0, 0]T . Similarly, the probability of the path (V̂ → T̂1) is
given by:

P(y1 = T̂1|y0 = V̂) =
a4

a1 + a4
= ζ. (C.2)

In analogy, we have

P(y1 = 0|y0 = T̂1) =
a2

a2 + a5
= ϑ , P(y1 = T̂2|y0 = T̂1) =

a5

a2 + a5
= ξ (C.3)

P(y1 = 0|y0 = T̂2) =
a3

a3 + a6
= χ , P(y1 = V̂ + T̂2|y0 = T̂2) =

a6

a3 + a6
= γ (C.4)

where Eqn (C.1)–(C.4) define the entries of the transition matrix of the embedded Markov chain.
From the conservation of probabilities, we have ̺+ ζ = 1, ϑ+ ξ = 1 and γ+χ = 1. From the drug-
class specific target-process inhibition described in Eqn (7.2)–(7.7) (Chapter 7), it is evident that
RTIs and CRAs affect the transition probability ̺ and ζ. Similarly, InIs affect ϑ and ξ and PIs affect
γ and χ. Note that all paths of length one (one transition) can be expressed by Eqn. (C.1)–(C.4).

For example the probability of the path


n

0
1

→


n + 1

0
1

 is given by

P(y1 = (n + 1) · V̂ ⊕ T̂2 | y0 = n · V̂ ⊕ T̂2) =
a6

a3 + a6
= γ (C.5)

where n ∈ Z+. The probability of an arbitrary path, e.g. V̂ → T̂1 → T̂2 can be computed from
Eqn. (C.1)–(C.4) applying the fundamental laws of probability

P(y2 = T̂2|y0 = V̂) = P(y1 = T̂1|y0 = V̂) · P(y2 = T̂2|y1 = T̂1) = ζ · ξ (C.6)

IThe derivations in this appendix can be found in the supplementary note of Duwal et al. [27].
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If multiple paths can lead to the particular state of interest, the probability is computed by
summing over all possible paths. To demonstrate, let us consider the probability that the virus
goes extinct in the first replication cycle P(yr = 0|y0 = V̂), i.e., starting from a single virus, we
consider the paths V̂→ 0, V̂→ T̂1 → 0 and V̂→ T̂1 → T̂2 → 0 which is

P(yr = 0|y0 = V̂) = P(y1 = 0|y0 = V̂)

+ P(y2 = 0|y1 = T̂1) · P(y1 = T̂1|y0 = V̂)

+ P(y3 = 0|y2 = T̂2) · P(y2 = T̂2|y1 = T̂1) · P(y1 = T̂1|y0 = V̂).

Using the shorthand notation, we get

P(yr = 0|y0 = V̂) = ̺ + ζ · ϑ + ζ · ξ · χ (C.7)

and in terms of reaction propensities we have

P(yr = 0|y0 = V̂) =
a1

a1 + a4
+

a4

a1 + a4
· a2

a2 + a5
+

a4

a1 + a4
· a5

a2 + a5
· a3

a3 + a6
. (C.8)

Next, we can compute the probability that n > 0 progeny viruses are produced in the first repli-
cation cycle, i.e., starting from a single virus, all paths that reach the late infected T-cell stage
V̂ → T̂1 → T̂2, then R6 (virus release) fire reaction(see Eqn (7.7) in Chapter 7) n times before
finally reaction R3 (clearance of late infected T-cell) occurs.

P(yr = n · V̂|y0 = V̂) = P(y1 = T̂1|y0 = V̂) ×
P(y2 = T̂2|y1 = T̂1) ×
n−1∏

i=0

P(y3+i = T̂2 + (i + 1) · V̂ | y2+i = T̂2 + i · V̂) ×

P(yn+3 = n · V̂|yn+2 = T̂2 + n · V̂) (C.9)

and in shorthand notation
P(yr = n · V̂|y0 = V̂) = ζ · ξ · γn · χ. (C.10)

Closed-form solution for the extinction probability

The probability that n infectious viruses within a target-cell environment go extinct is given by

E(y0 = n · V̂) = (E(y0 = V̂))n, (C.11)

under the assumption of statistical independence (assuming that the competition for target cells
is negligible during the onset of infection). The extinction probabilities for parent- and progeny
virus remain identical since the reaction rates do not change when the target-process inhibition is
constant. The term E can be written as

E(y0 = V̂) =
∞∑

i=0

P(yr = i · V̂|y0 = V̂) · E(yr = i · V̂)

=

∞∑

i=0

P(yr = i · V̂|y0 = V̂) · E(yr = V̂)i (C.12)

where E(yr = i · V̂) denotes the probability of virus extinction when i viruses were produced in the
first replication cycle and where we used eqn. (C.11) in the second equality. Since we study the
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eventual extinction (t → ∞) and the entries of the transition matrix in our discrete-time process
are constant, the equality E(y0 = V̂) = E(yr = V̂) holds. For brevity we will use θ = E(y0 = V̂)
henceforth in the derivation below:

θ =

∞∑

i=0

P(yr = i · V̂|y0 = V̂) · θi,

= P(yr = 0 · V̂|y0 = V̂) · θ0 +

∞∑

i=1

P(yr = i · V̂|y0 = V̂) · θi,

= (̺ + ζ · ϑ + ζ · ξ · χ) +
∞∑

i=1

ζ · ξ · γi · χ · θi, (using Eqn (C.7) and Eqn (C.10))

= ̺ + ζ · ϑ + ζ · ξ · χ + ζ · ξ · χ ·

∞∑

i=1

γi · θi

 ,

= ̺ + ζ · ϑ + ζ · ξ · χ ·

∞∑

i=0

γi · θi

 ,

= ̺ + ζ · ϑ + ζ · ξ · χ ·
(

1

1 − γ · θ

)
, (C.13)

where we used the solution of the geometric series, noticing that γ · θ < 1 as both terms γ and θ are
probabilities. This shows that the extinction probability is the solution of the following quadratic
problem:

γ · θ2 − (1 + (̺ + ζ · ϑ) · γ) · θ + (̺ + ζ · ϑ + ζ · ξ · χ) = 0

⇒ θ2 −
(
1 + (̺ + ζ · ϑ) · γ

γ

)
· θ +

(
1 + (̺ + ζ · ϑ) · γ

γ
− 1

)
= 0

where we used ̺ + ζ = 1, ϑ + ξ = 1 and γ + χ = 1 in the summand on the right side of the last
equation. The possible solutions for θ of above quadratic problem are:

θ1/2 =
1

2
·
((

1 + (̺ + ζ · ϑ) · γ
γ

)
±

(
1 + (̺ + ζ · ϑ) · γ

γ
− 2

))
. (C.14)

The first solution θ1 = 1 is trivial, i.e. extinction is certain E(y0 = V̂) = 1, whereas the second
solution

θ2 =

(
1 + (̺ + ζ · ϑ) · γ

γ

)
− 1

provides some additional insights into the extinction probability. Rearranging the terms, we get:

θ2 =
1
γ
− 1 + (̺ + ζ · ϑ)

=
1−γ
γ + (̺ + ζ · ϑ)

= ̺ + ζ · ϑ + χ
γ (C.15)

where we used γ + χ = 1. The first part (̺ + ζ · ϑ) is the probability that the viral replication
cycle does not reach the late infected stage T2 and the second part represents the odds of T2 dying
instead of producing virus progeny (the odds of R3 firing rather than R6; the inverse of the average
number of viruses being produced once stage T2 has been reached). We have

χ/γ = a3/a6 =
δT2

NT
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as introduced in Eqn. (C.4). It is evident from here, that both solutions for the extinction probabil-
ity are valid and that

E(y0 = V̂) = θ = min

(
1, (̺ + ζ · ϑ) +

χ

γ

)
. (C.16)

Relation to the reproductive number

The reproductive number R0 denotes the average number of viruses produced from a single founder
virus [220].

R0 =

∞∑

i=1

P(yr = i · V̂|y0 = V̂) · i,

= ζ · ξ · χ ·
∞∑

i=1

γi · i,

= ζ · ξ · χ · γ

(1 − γ)2
,

=
ζ · ξ · γ
χ

,

=
a4

a1 + a4
· a5

a2 + a5
· a6

a3
,

where we used (1 − γ) = χ in the second last equation.
The infection probability for a single virus inoculum can be written as a function of R0, i.e.

I(y0 = V̂) = 1 − E(y0 = V̂) = max

(
0, ζ · ξ

(
1 − 1

R0

))
,

= max

(
0,

a4

a1 + a4
· a5

a2 + a5

(
1 − 1

R0

))
. (C.17)

The product ζ · ξ denotes the bottlenecking process of reaching a productive compartment (pro-
ductively infected cells).

Other compartments

Next, we derive the extinction probability given a single early- or late infected cell T1 and T2

respectively. Let the term E(y0 = T̂1) and E(y0 = T̂2) be the respective extinction probabilities for
a single T1 or T2 cell. These probabilities relate to E(y0 = V̂) < 1 as follows:

E(y0 = T̂1) = min

1, ϑ + ξ · χ ·


1

1 − γ · E(y0 = V̂)


 ,

= min

(
1, 1 − ξ ·

(
1 − 1

R0

))
,

= min

(
1, 1 − a5

a2 + a5
·
(
1 − 1

R0

))
(C.18)

⇔ I(y0 = T̂1) = max

(
0,

a5

a2 + a5
·
(
1 − 1

R0

))
(C.19)
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and

E(y0 = T̂2) = min

1, χ ·


1

1 − γ · E(y0 = V̂)


 ,

= min

(
1,

1

R0

)
, (C.20)

⇔ I(y0 = T̂2) = max

(
0, 1 − 1

R0

)
. (C.21)
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APPENDIX D: Pseudo-codes and performance of SSA
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Figure D.1: Results and performances comparison of SSA for PEP with DTG. A: prophylactic efficacy
for PEP strategy initiated 24 hours after a viral challenge where 3, 5, 7 and 9 daily doses of 50mg DTG are
taken. B: Simulation run-time with EXTRANDE simulations (green) vs. an integral based method (red).
C: Run-times of simulations where infection occurred. Median runtimes (sec) per infection simulation for
EXTRANDE vs. the integral-based method were 8.524 vs. 10.548, 9.976 vs. 23.021, 17.402 vs. 25.454,
26.065 vs. 34.116 when 3, 5, 7 and 9 consecutive PEP doses are taken. Reproduced from Duwal et al. [26].
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Figure D.2: Results and performances comparison of SSA for PEP with TDF. A: prophylactic efficacy
for PEP strategies initiated 12 hours after a viral challenge where 3, 5, 7 and 9 daily doses (300mg TDF)
are taken. B: Simulation run-time with EXTRANDE simulations (green) vs. an integral-based method
(red). C: Runtimes for those simulations where infection occurred. Median runtimes (sec) per infection
simulation for EXTRANDE vs. the integral based method were 0.382 vs. 0.566, 0.450 vs. 0.622, 0.469 vs.
0.676, 0.479 vs. 0.696 when 3, 5, 7 and 9 consecutive PEP doses are taken.
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1 Precomputation :

2 Compute target-site pharmacokinetic profile Ds for s ∈ [0, T ]
3 Compute Dmax,s profile for s ∈ [0, T ]
4 Initialization :

5 t = 0 #Initial time of the system
6 Yt = Y0 #Initial state of the stochastic system
7 while true do

#Determine the upper bound for the sum of reaction propensities

8 B = a0(Yt,∅) =
∑|RS |

k=1 ak(Yt,∅) #Sum of reaction propensities in absence of antivirals
#Generate putative reaction time i.e τ ∼ Exp(1/B) :

9 u1 ∼ U(0, 1) #Sample from a uniform distribution

10 τ← 1
B
· log

(
1
u1

)
#Transformation to an exponential distribution

11 t ← t + τ #Update time

12 a0 ←
∑|RS |

k=1 ak(Yt,Dt) #Sum of all stochastic reaction propensities at time t

13 u2 ∼ U(0, 1) #Sample from a uniform distribution
14 if a0 ≥ B · u2 then

#‘Acceptance Step’ - a reaction fires changing the state.
#Choose the reaction, i.e.

15 the smallest positive integer j such that
∑ j

k=1 ak(Yt,Dt) ≥ B · r2

16 if reaction R4 or R5 is chosen then

17 u3 ∼ U(0, 1)
18 if u3 ≤ pM|a4 , respectively u3 ≤ pL|a5 then

#a long lived/latently infected cell emerged.
19 Stop the simulation
20 end

21 end

22 Yt ← Yt + v j #Update the state of the system
23 if Yt = 0 then

#Extinction event - the trajectory has reached the absorbing extinction state.
24 Stop the simulation
25 else

#Compute the extinction probability of state Yt and drug concentration Dmax,t

26 Compute Dmax for the current time t

27 if E(Yt,Dmax,t) < ε then

#Infection event
28 Stop the simulation
29 else

#The trajectory at time t is within the extinction simplex.
30 end

31 end

32 else

#‘Rejection Step’ - Extra reaction fires without changing the state.
33 end

34 end

Algorithm 1: Adapted Extra Reaction Algorithm for Networks in Dynamic Environments (EX-

TRANDE). Reproduced from the supplementary note of Duwal et al. [26].
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1 Y0 #Initial state of the stochastic system
2 Precomputation :

3 Compute target-site pharmacokinetic profile Ds for s ∈ [0, T ]
4 Compute Dmax,s profile for s ∈ [0, T ]
5 Initialization :

6 t = 0 #Initial time of the system
7 Yt = Y0 #Initial state of the stochastic system
8 while true do

#Generate the time to next reaction:
9 u1 ∼ U(0, 1) #Sample from a uniform distribution

#Transformation to an exponential distribution
10 Solve the system of ODEs with initial value A0,t = 0 at time t with

d

ds
A0,s =

|RS |∑

k=1

ak(Ys,Ds)

until s = t + ∆t such that A0,t+∆t = u1

#Time to the next reaction
11 τ← ∆t

12 t ← t + τ #Update time
#Choose the next reaction:

13 a0 ←
∑|RS |

k=1 ak(Yt,Dt) #Sum of all stochastic reaction propensities at time t

14 u2 ∼ U(0, 1) #Sample from a uniform distribution
#Choose the reaction, i.e.

15 the smallest positive integer j such that
∑ j

k=1 ak(Yt,Dt) ≥ a0 · u2

16 if reaction R4 or R5 is chosen then

17 u3 ∼ U(0, 1)
18 if u3 ≤ pM|a4 , respectively u3 ≤ pL|a5 then

#a long lived/latently infected cell emerged.
19 Stop the simulation
20 end

21 end

22 Yt ← Yt + v j #Update the state of the system
23 if Yt = 0 then

#Extinction event - the trajectory has reached the absorbing extinction state.
24 Stop the simulation
25 else

#Compute the extinction probability of state Yt and drug concentration Dmax,t

26 Compute Dmax for the current time t

27 if E(Yt,Dmax,t) < ε then

#Infection event
28 Stop the simulation
29 else

#The trajectory at time t is within the extinction simplex.
30 end

31 end

32 end

Algorithm 2: Adapted integral-based SSA [101] for estimating the infection/extinction probabil-

ity for time-varying drug effects.
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APPENDIX E: Clinical trial efficacy

A clinical trial consists typically of two arms: A treatment arm and a placebo arm, which are
followed for the trials’ durationI . At the end of the trial, reduction in the incidence rate in the
treatment arm in comparison to the placebo arm is computed. Incidence rates is the number of
infections or new cases within the trial duration divided by the follow-up time. The trial efficacy
ω is measured as shown below [13, 231, 258, 264]:

ω(S ) = 1 − Incidence rate in the PrEP strategy arm

Incidence rate in the placebo arm
. (E.1)

Let #infS and #inf∅ denote the number of infected individuals in the PrEP strategy- S and placebo
∅ arm respectively. Let TF,S and TF,∅ denote the follow-up duration in person-years in the PrEP
strategy- and placebo arm respectively. Let ni,∅ and ni,S denote the number of individuals in the
placebo- and in the strategy arm respectively. We can express the trial efficacy as given below

ω(S ) = 1 −


#infS

TF,S

 ·


#inf∅

TF,∅


−1

. (E.2)

Next, we will replace the number of infected individuals in trial arms by the expected number of
infected persons in the trial. For a sufficiently large cohort, the number of infected persons will be
approach the expected number owing to the law of large numbers. Typically, we have TF,S ≈ TF,∅

in clinical trials. Hence, we can write

ω(S ) = 1 −
(
ES (#inf)

TF,S

)
·
(
E∅(#inf)

TF,∅

)−1

≈ 1 − ES (#inf)

E∅(#inf)
. (E.3)

Let Nc,∅ and Nc,S be the average number of viral exposures per month per individual in the
placebo- and treatment arms respectively.

Given a trial duration of T months (note that TF,∅ ≈ TF,S ), the expected number of in-
fected individuals in the placebo- and treatment arm are ni,∅ ·

(
1 − (1 − P(trans,∅))T ·Nc,∅

)
and

ni,S ·
(
1 − (1 − P(trans, S ))T ·Nc,S

)
respectively. Usually the number of individuals in both arms are

also roughly the same size (ni,∅ ≈ ni,S ). This allows us following simplification

ω(S ) ≈ 1 −
ni,S ·

(
1 − (1 − P(trans, S ))T ·NS

)

ni,∅ ·
(
1 − (1 − P(trans,∅))T ·N∅

) ,

≈ 1 −

(
1 − (1 − P(trans, S ))T ·NS

)
(
1 − (1 − P(trans,∅))T ·N∅

) . (E.4)

Rearranging Eqn (9.4) for the prophylactic efficacy per exposure, we get

P(trans, S ) = P(trans,∅) · (1 − ψ(S )) (E.5)

IThe derivations in this appendix is based on the supplementary note 5 in the article [25].
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where ψ is the prophylactic efficacy per exposure. Replacing the above Eqn (E.5) in Eqn (E.4), we
get

1 − ω(S ) =
1 − (1 − P(trans,∅) · (1 − ψ(S )))T ·NS

1 − (1 − P(trans,∅))T ·N∅
. (E.6)

which shows the dependence of clinical trial efficacy (ω(S )) on the duration of the clinical trial
(T ), the prophylactic efficacy of a strategy per exposure ψ(S ) and the number of unprotected sex
acts with an infected individual (exposures) in the treatment arm Nc,S and the placebo arm Nc,∅

respectively.
Eqn (E.6) can be used to assess the influence of risk compensation on the long-term efficacy,

i.e. when the number of risky sex acts in the treatment arm is higher than in the placebo arm
Nc,S > Nc,∅. Another important implication from Eqn (E.6) is the dependence of the trial efficacy
on the trial duration. For instance, two trials using the same treatment PrEP strategy (i.e. same
treatment efficacy ψ) evaluated over different trial durations (or alternatively evaluated in different
risk groups) would result in different trial efficacy estimates. Thus, for an unbiased comparison,
it is advisable to compute the treatment efficacy ψ from the clinical trial efficacy ω(S ) estimate.
Rearranging Eqn (E.6) gives the following relation to compute prophylactic efficacy per exposure
of an intervention given the estimate of trial efficacy.

1 − ψ(S ) =
1 − T ·Nc,S

√
(1 − P(trans,∅))Nc,∅ ·T + ω(S ) − ω(S ) · (1 − P(trans,∅))Nc,∅ ·T

P(trans,∅)
. (E.7)

Let us hypothetically consider the case where there is exactly one exposure in both arms. In this
case, we have

Nc,∅ · T = Nc,S · T = 1

and the identity
1 − ψ(S ) = 1 − ω(S )

which follows from Eqn (E.7). In all other cases, where Nc,S · T ≥ Nc,∅ · T ≥ 1, we have
ω(S ) ≤ ψ(S ), i.e. the trial efficacy may under predict the PrEP efficacy per exposure or stated
inversely, the PrEP efficacy per exposure over predicts risk prevention following multiple viral
challenges, and in the case of risk compensation.
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