Dissertation

Führt ein Sozialer Jetlag zu einer Beeinträchtigung des psychischen Wohlbefindens?

Konsequenzen einer Diskrepanz zwischen tatsächlichen Schlafzeiten und Chronotyp auf die psychische Gesundheit

zur Erlangung des akademischen Grades
Doctor medicine (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von

Julia Sophie Tabea Kleeblatt
aus Berlin

Datum der Promotion: 01.03.2019
Inhaltsverzeichnis

Abkürzungsverzeichnis ... 5
Abbildungs- und Tabellenverzeichnis ... 6

1. Abstrakt ... 8
 1.1. Deutsches Abstrakt ... 8
 1.2. Abstract in English .. 9

2. Einleitung ... 10
 2.1. Chronotyp .. 11
 2.2. Der Soziale Jetlag (SJL) ... 13
 2.3. Geographische Verbreitung des Sozialen Jetlags ... 14
 2.4. Gesundheitliche Auswirkungen des Sozialen Jetlags .. 16
 2.4.1. Stressempfinden ... 17
 2.4.2. Depressivität ... 17
 2.4.3. Schlafrhythmus und Schlafqualität ... 18
 2.4.4. Substanzkonsum .. 19
 2.4.5. Somatische Konsequenzen ... 20
 2.4.6. Einfluss auf die Kognition .. 20
 2.5. Herleitung der Fragestellung ... 21
 2.6. Hypothesen ... 21

3. Methodik .. 23
 3.1. Studienpopulation .. 23
 3.2. Ablauf der Datenerhebung .. 25
 3.3. Fragebögen .. 25
 3.3.1. Munich Chronotype Questionnaire (MCTQ) .. 26
 3.3.2. Schlafdefizitkorrigierte Form des Sozialen Jetlags ... 27
 3.3.3. Ermittlung des Urbanitätsindex ... 28
 3.3.4. Perceived Stress Scale (PSS) .. 29
 3.3.5. Patient Health Questionnaire – Depression Section (PHQ9) 29
 3.3.6. Pittsburgh Sleep Quality Index (PSQI) ... 30
 3.4. Statistische Methoden ... 30
4. Ergebnisse .. 32
 4.1. Studienpopulation ... 32
 4.2. Basisdaten zum Sozialen Jetlag ... 37
 4.2.1. Chronotyp (MSF und MSF_{sc}) 37
 4.2.2. Sozialer Jetlag .. 39
 4.2.3. Sozialer Jetlag und Schlafdefizit 42
 4.2.4. Geographische Verbreitung des Sozialen Jetlags- Urbanitätsindex 45
 4.3. Psychische Folgen des Sozialen Jetlags 46
 4.3.1. Stressempfinden (PSS) ... 47
 4.3.2. Depressivität (PHQ9) ... 48
 4.3.3. Schlafqualität (PSQI) .. 51
 4.3.4. Substanzkonsum .. 52
 4.3.5. Übergewicht (BMI) .. 54
 4.4. Schlafdefizitkorrigierte Form des Sozialen Jetlags (SJL_{sc}) 56
 4.5. Zusammenfassung der Ergebnisse ... 57
5. Diskussion .. 58
 5.1. Chronotyp .. 58
 5.2. Sozialer Jetlag ... 59
 5.2.1. Sozialer Jetlag und Chronotyp .. 59
 5.2.2. Sozialer Jetlag und Schlafdefizit 60
 5.3. Geographische Verbreitung des Sozialen Jetlags (Urbanität) 60
 5.4. Psychische Folgen des Sozialen Jetlags 62
 5.4.1. Stressempfinden ... 62
 5.4.2. Depressivität ... 64
 5.4.3. Schlafqualität ... 66
 5.4.4. Substanzkonsum ... 67
 5.4.5. Übergewicht ... 69
 5.5. Schlafdefizitkorrigierte Form des Sozialen Jetlags 70
 5.6. Konzept des Sozialen Jetlags ... 71
 5.7. Limitationen und Ausblick .. 73
 5.8. Fazit .. 76
6. Literaturverzeichnis ... 78
Eidesstattliche Versicherung ... 91
Lebenslauf ... 93
Publikationsliste ... 94
Danksagung .. 95
Abkürzungsverzeichnis

Abb. Abbildung
ADHS Aufmerksamkeits-Defizit-Hyperaktivitäts-Störung
BBSR Bundesinstitut für Bau-, Stadt- und Raumforschung
BMI Body Mass Index
CAR Cortisol Awakening Response (Kortisolaufwachreaktion)
h Stunde (n)
HDL High-Density Lipoprotein
HPA-Achse Hypothalamic-Pituitary-Adrenal-axis (Hypothalamus-Hypophysen-Nebennieren-Achse)
ICD-10 International statistical Classification of Diseases and related health problems, 10th edition
K-S Test Kolmogorow-Smirnow Test
LDL Low-Density-Lipoprotein
min Minute (n)
MSF Schlaufmittelpunkt an freien Tagen (Midpoint of Sleep Free days)
MSF_sc schlafkorrigierter Schlaufmittelpunkt an freien Tagen (Midpoint of Sleep Free days sleep corrected)
PHQ9 Patient Health Questionnaire 9
PSS Perceived Stress Scale
PSQI Pittsburgh Sleep Quality Index
SEf Aufwachzeit an freien Tagen (Sleep End on free days)
SEw Aufwachzeit an Arbeitstagen (Sleep End on work days)
SDf Schlafdauer an freien Tagen (Sleep Duration free days)
SDw Schlafdauer an Arbeitstagen (Sleep Duration work days)
SDweek durchschnittliche Schlafdauer/Woche (average Sleep Duration per week)
SOf Einschlafzeit an freien Tagen (Sleep Onset free days)
SOw Einschlafzeit an Arbeitstagen (Sleep Onset work days)
S JL Sozialer JetLag (alte Form)
S JL_sc Sozialer JetLag (neue Form; sleep corrected)
Tab. Tabelle
UN/ DESA United Nations Department of Economic and Social Affairs
WHO World Health Organization
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb. 1</td>
<td>Prozess der Ausschlusskriterien Phase I und Phase II</td>
<td>24</td>
</tr>
<tr>
<td>Tab. 1</td>
<td>Formelübersicht der verwendeten Variablen des MCTQ</td>
<td>28</td>
</tr>
<tr>
<td>Tab. 2</td>
<td>Berechnung des Urbanitätsindex</td>
<td>29</td>
</tr>
<tr>
<td>Abb. 2</td>
<td>Altersverteilung getrennt für beide Geschlechter der Gesamtstichprobe</td>
<td>32</td>
</tr>
<tr>
<td>Abb. 3</td>
<td>Darstellung der verschiedenen Schlafvariablen getrennt nach freien Tagen und Arbeitstagen und nach Geschlechtern in Abhängigkeit der Altersgruppen</td>
<td>34</td>
</tr>
<tr>
<td>Abb. 4</td>
<td>Altersverteilung getrennt für beide Geschlechter der Teilstichprobe</td>
<td>36</td>
</tr>
<tr>
<td>Abb. 5</td>
<td>Darstellung der aktuellen Tätigkeit und des höchsten Bildungsabschlusses der Teilstichprobe</td>
<td>36</td>
</tr>
<tr>
<td>Abb. 6</td>
<td>Verteilung der Chronotypen [Uhrzeit] A) MSF und B) MSF_sc</td>
<td>37</td>
</tr>
<tr>
<td>Abb. 7</td>
<td>Verteilung des Chronotyps [Uhrzeit] eingeteilt nach Kategorien A) MSF und B) MSF_sc</td>
<td>38</td>
</tr>
<tr>
<td>Abb. 8</td>
<td>Mittelwerte des Chronotyps [Uhrzeit] getrennt für beide Geschlechter und in Abhängigkeit der Altersgruppen für A) MSF und B) MSF_sc</td>
<td>39</td>
</tr>
<tr>
<td>Abb. 9</td>
<td>A) Verteilung des SJL [h] und B) Einteilung des SJL [h] in Kategorien</td>
<td>39</td>
</tr>
<tr>
<td>Abb. 10</td>
<td>Mittelwerte des SJL [h] in Abhängigkeit der Altersgruppen</td>
<td>40</td>
</tr>
<tr>
<td>Tab. 3</td>
<td>Darstellung von Einschlaf- und Aufwachzeiten (SO/SE), jeweils an freien Tagen und Arbeitstagen [Uhrzeit] getrennt für die Kategorien des SJL [h]</td>
<td>41</td>
</tr>
<tr>
<td>Abb. 11</td>
<td>Mittelwerte der Schlafdauer [h] an freien Tagen und Arbeitstagen für Kategorien des SJL [h]</td>
<td>41</td>
</tr>
<tr>
<td>Abb. 12</td>
<td>A) SJL [h] und Chronotyp (MSFsc) [Uhrzeit] und B) Mittelwerte des MSFsc [Uhrzeit]für Kategorien des SJL[h]</td>
<td>41</td>
</tr>
<tr>
<td>Abb. 13</td>
<td>A) Verteilung des Schlafdefizits [h] und B) Kategorien des Schlafdefizits [h]</td>
<td>42</td>
</tr>
<tr>
<td>Abb. 14</td>
<td>Mittleres Schlafdefizit [h] in Abhängigkeit der Altersgruppe</td>
<td>43</td>
</tr>
<tr>
<td>Tab. 4</td>
<td>Darstellung von Einschlaf- und Aufwachzeiten (SO/SE), jeweils an freien Tagen und Arbeitstagen [Uhrzeit] getrennt für die Kategorien des Schlafdefizits [h]</td>
<td>44</td>
</tr>
<tr>
<td>Abb. 15</td>
<td>Mittelwerte der Schlafdauer [h] an freien Tagen und Arbeitstagen für</td>
<td>44</td>
</tr>
</tbody>
</table>
Kategorien des Schlafdefizits [h]

Abb. 16	Streudiagramm für den SJL [h] und das Schlafdefizit [h]	45
Tab. 5	Mittelwerte des Schlafdefizits [h] für Kategorien des SJL [h]	45
Abb. 17	Gesamtwerte der Urbanität für die Teilstichprobe	45
Abb. 18	Mittelwerte des SJL [h] je nach Kategorie der Urbanität	46
Tab. 6	Anzahl Probanden pro Kategorie des SJL [h]	46
Tab. 7	Anzahl Probanden pro Kategorie des Schlafdefizits [h]	46
Abb. 19	Gesamtwerte des PSS für die Teilstichprobe	47
Abb. 20	Mittelwerte des PSS getrennt für A) Kategorien des SJL [h] und B) Schlafdefizits [h]	48
Abb. 21	PHQ9-Gesamtwerte für die Teilstichprobe	48
Tab. 8	PHQ9-Punkte getrennt für beide Geschlechter und in Abhängigkeit der Altersgruppen	49
Abb. 22	Punktwolke Schlafdefizit [h] und PHQ-Gesamtwert	50
Abb. 23	Mittelwerte des PHQ9 Gesamtwerts für A) Kategorien des SJL [h] und B) des Schlafdefizits [h]	50
Abb. 24	PSQI-Gesamtwerte für die Teilstichprobe	51
Abb. 25	Punktwolke Schlafdefizit [h] und PSQI-Gesamtwert	52
Abb. 26	Mittelwerte des SJL [h] je nach Kategorie des Nikotinkonsums	52
Abb. 27	Anteil an Rauchern [%] für Kategorien des A) SJL [h] und B) Schlafdefizits [h]	53
Tab. 9	Mittelwerte BMI [kg/m²] für beide Geschlechter und in Abhängigkeit der Altersgruppen	54
Abb. 28	Punktwolke Schlafdefizit [h] und BMI	55
Tab. 10	Mittelwerte des SJL [h] nach Normal- (BMI < 25) und Übergewicht (BMI ≥ 25) getrennt für alle Altersgruppen	55
Tab. 11	Spearman Korrelationen von SJLsc (Gruppe 1) und Schlafdefizit, PHQ9-, PSS- und PSQI-Gesamtwerten	56
Abb. 29	Mittelwerte des SJLsc Typ 1 [h] je nach Kategorie des Nikotinkonsums	56
Tab. 12	Hypothesen und Zusammenfassung der Ergebnisse	57
1. Abstrakt

1.1. Deutsches Abstrakt

Einleitung: Die Abweichung tatsächlicher Schlafzeiten von der individuell unterschiedlichen inneren Uhr, dem Chronotyp, durch die Erfüllung sozialer Zeitvorgaben, führt zum Phänomen des Sozialen Jetlags (SJL). Dieser wird in der Literatur verknüpft mit negativen gesundheitlichen Auswirkungen auf psychischer, kognitiver (Depressionen, Substanzenkonsum und schlechtere akademische Leistungen) sowie psychosomatischer Ebene (höherer BMI und metabolisches Risiko). Dabei ist unklar, inwieweit gesundheitliche Folgen des SJL vom gleichzeitig auftretenden Schlafdefizit getrennt werden können. In dieser Arbeit wird der Einfluss des SJL und zusätzlich des Schlafdefizits mittels subjektiver Fragebögen auf mehrere Parameter der psychischen Gesundheit überprüft.

Schlussfolgerung: Die MCTQ-Daten unserer Stichprobe sind mit denen anderer Studien vergleichbar. Je urbaner unsere Probanden aufwuchsen, desto mehr SJL hatten sie. Die Relevanz des SJL zeigt sich unter Anderem in dieser gefundenen Assoziation zur Urbanität, da die Urbanisierung ein zunehmendes Phänomen der Gesellschaft darstellt. Probanden mit hohem SJL

1.2. Abstract in English

Background: The discrepancy between actual sleep times and the individual inner clock, the chronotype, results in a phenomenon called social jetlag (SJL), related to social obligations such as working hours. SJL is associated with negative health effects on a psychological, cognitive (depression, substance use, low academic performance) and psychosomatic level (obesity, metabolic risk). The question is raised if potential negative effects can be separated from sleep loss that often accompanies SJL. This work studies effects of SJL and sleep loss on parameters of mental health tested by subjective questionnaires.

Methods: In Phase I SJL, chronotype, sleep loss, substance use and BMI are assessed in 1308 participants, using the “Munich Chronotype Questionnaire (MCTQ)“. In Phase II parameters of mental health are measured using stress (PSS), depression (PHQ9) and sleep quality (PSQI) questionnaires in 688 remaining participants. Distribution of SJL is assessed by an urbanity score. The variables were tested for normal distribution and non parametric tests were applied. The Mann-Whitney-U-Test and Kruskal-Wallis-Test were used to assess gender and age differences and to test for group differences in SJL categories. Spearman and partial correlations were computed to analyze associations between SJL, sleep loss and mental health.

Results: SJL decreased with age. No sex differences were found. Later chronotypes and participants with more sleep loss presented a higher SJL. A significant association could be detected between SJL and urbanity score. Tendencies of more psychological impairments in participants with higher SJL were observed. However, they did not reach statistical significance except for SJL and smoking. Small positive significant associations between sleep loss and PHQ9, PSQI and BMI were detected.

Conclusions: Our sample corresponded well with previous MCTQ studies. The more urban participants grew up, the higher was their SJL. This association underlines the relevance of SJL as urbanization is a growing phenomenon in our society. In this study participants with higher
SJL tended to be smokers. Although trends were detected, no other significant association between higher SJL and mental health impairments was found. One reason could be the unformed concept of SJL. Especially the calculation method seems to be controversial. The limited representativity of our sample and assessment of parameters by subjective questionnaires can be criticised. More studies with well planned designs and alternative objective assessment methods are needed to assure better representativity of the sample and to further answer the question if SJL causes impairments of mental health.

2. Einleitung

Nach einer theoretischen Einführung in das Thema, werden im Rahmen dieser Doktorarbeit ausschließlich die ersten zwei Phasen der Studie vorgestellt, ihre Ergebnisse präsentiert und Schlussfolgerungen abgeleitet und diskutiert.

2.1. Chronotyp

beschriebenen Fragebögen besteht ein starker Zusammenhang (17), weshalb Studien zu beiden Fragebögen für den Theorieteil in dieser Arbeit verwendet werden. Man sollte jedoch die verschiedenen Definitionen und Unterschiede nicht außer Acht lassen und bedenken, dass der MEQ keinen SJL berechnet.

2.2. Der Soziale Jetlag (SJL)

Uhr frühe Chronotypen zu früh an freien Tagen weckt bei sozial beeinflusstem späteren Einschlafen (2). Bei Betroffenen eines SJL ist der Schlaf nicht nur von der Dauer sehr unterschiedlich zwischen Arbeitstagen (kürzer) und freien Tagen (länger). Es unterscheiden sich vielmehr vor allem die stark auseinanderweichenden Einschlaf- und Aufwachzeiten, also die zeitlich gewählte Schlafperiode, die an freien Tagen ohne soziale Verpflichtungen entsprechend der inneren Uhr nach hinten auf spätere Uhrzeiten verschoben wird. Folglich kann diese Schlafverschiebung zu der Akkumulation eines beträchtlichen Schlafdefizits an Arbeitstagen führen, das am Wochenende durch Verlängerung der Schlafdauer kompensiert wird (19). Da junge Erwachsene bis zum 20. Lebensjahr im Durchschnitt den spätesten Chronotyp aufweisen und dennoch morgens mit einem frühen Schul- oder Studienbeginn konfrontiert sind, betrifft der SJL diese Altersklasse in besonders ausgeprägtem Maß (11). Zwar ist es auch möglich, außerhalb des präferierten Zeitfensters der eigenen zirkadianen Uhr zu schlafen (sogenannte „Nickerchen“), allerdings ist der Schlaf sehr viel effizienter innerhalb des Zeitfensters der endogenen Vorlieben (21). In der aktuellen Literatur wird das Konzept und die Berechnungsmethode des SJL nach Roenneberg et al. (2003) kritisch hinterfragt und diskutiert (22). Das liegt unter anderem daran, dass der SJL in seiner ursprünglichen Definition zwei verschiedene Tatsachen einschließt: Zum einen die Verschiebung der gesamten Schlafperiode, zum anderen ein entstehendes Schlafdefizit durch eine Verkürzung der Schlafdauer. Der SJL wird als Form einer zirkadianen Schlafstörung betrachtet, die eine der Hauptursachen für die Entwicklung eines Schlafdefizits ist (18). Diese Thematik wird von Jankowski et al. (2017) aufgegriffen und betont, dass es für zukünftige Studien zum SJL wichtig sein könnte, zwischen diesen beiden unterschiedlichen Punkten zu differenzieren und gegebenenfalls eine Trennung zwischen SJL und Schlafdefizit vorzunehmen. Dabei wird eine Möglichkeit zur Berechnung einer neuen Form des SJL vorgeschlagen, die das Schlafdefizit nicht mehr umfasst, um das Konzept des SJL akkurater darzustellen (22).

Insgesamt wird der SJL in der Literatur zu einer möglichen Ursache für verschiedene gesundheitliche Einschränkungen insbesondere auf psychischer Ebene vor allem bei Menschen mit einem späteren Chronotyp (23).

2.3. Geographische Verbreitung des Sozialen Jetlags

Der SJL ist im Gegensatz zu einem transienten Jetlag beim Reisen zeitlich nicht genau begrenzt, sondern währt von der Schulzeit an das gesamte Arbeitsleben durch konträre Arbeitszeiten fort (18). Während sich der transienten Jetlag also akut präsentiert, wird der SJL zu einem chronischen Phänomen, das die Mehrzahl der Bevölkerung betrifft (19). Die Mehrheit einer mittels MCTQ

In den nächsten Abschnitten werden die in der Literatur diskutierten verschiedenen Folgen eines SJL näher beleuchtet.
2.4. Gesundheitliche Auswirkungen des Sozialen Jetlags

2.4.1. Stressempfinden

Es konnte gezeigt werden, dass die Höhe der gemessenen Kortisolwerte am Morgen positiv mit dem Ausmaß des SJL zusammenhängen (45). Die erhöhte Kortisolsekretion aufgrund des SJL könnte eine Ursache für negative gesundheitliche Konsequenzen vor allem auf psychischer Ebene darstellen (53).

2.4.2. Depressivität

2.4.3. Schlafrythmus und Schlafqualität

abgeleitet werden bereits Lichttherapien und die aktive Beeinflussung des Schlaf-Wach-Rhythmus eines Patienten als effektive Behandlungsstrategien in diesem Bereich eingesetzt (80,81). Einige Studien weisen darauf hin, dass der Schlaf-Wach-Rhythmus bereits vor der erstmaligen klinischen Diagnose einer psychischen Erkrankung gestört ist, was ein gesundes Schlafverhalten in der Prognose, Entwicklung und Behandlung mentaler Erkrankungen hervorhebt. Obwohl eine Assoziation zwischen Schlafstörungen und psychischen Erkrankungen also bekannt ist, bleiben der genaue ursächliche Zusammenhang dieser Assoziation weiterhin wenig verstanden (18). Es gibt also Hinweise in der Forschung, dass insuffizienter Schlaf und schlechte Schlafqualität einen negativen Einfluss auf die physische und psychische Gesundheit, das Aktivitätsniveau und die Leistungsfähigkeit haben (82). Der SJL könnte durch die Induktion eines chronischen Stresszustandes der Betroffenen ein Grund für eine schlechtere Schlafqualität sein (83), da anhaltender Stress bekanntermaßen auch Schlafprobleme hervorrufen kann. Es wird daher vermutet, dass der SJL nicht nur Auswirkungen auf den Schlafrhythmus, sondern auch auf die Qualität des Schlafes hat (52). In zwei Studien wurde beobachtet, dass spätere Chronotypen eher ein gestörtes Schlafverhalten haben als andere Typen (84,85) und häufiger von einer geringeren Schlafqualität und mehr Tagesmüdigkeit berichten als frühe Typen (26,30). Es wird diskutiert, dass für diesen möglichen Zusammenhang zwischen spätem Chronotyp und schlechterer Schlafqualität der SJL als verbindender Faktor verantwortlich sein könnte (19). Zwei neuere Studien fanden in Einklang mit dieser Vermutung einen direkten Zusammenhang zwischen SJL und schlechterer Schlafqualität (23,83).

2.4.4. Substanzkonsum
zu (18). Verschiedene Autoren sehen im Konsum von Alkohol und Nikotin eine Coping-
strategie, um Stress besser zu bewältigen zu können (19,90).

2.4.5. Somatische Konsequenzen
Übergewicht hat sich zu einem häufigen Phänomen entwickelt und stellt eines der größten
gesundheitlichen Probleme in industrialisierten Gesellschaften dar (91,92). Viele Risikofaktoren
für Übergewicht wurden bereits identifiziert, dazu zählt unter anderem auch die Schlafdauer
(93,94). Assoziationen zwischen SJL und vermindertem Allgemeinbefinden, geringerer
körperlicher Aktivität und erhöhtem Body-Mass-Index (BMI) wurden ebenfalls beschrieben
(20,45). Der SJL wird zudem als direkter Risikofaktor für metabolische Dysfunktionen
diskutiert. Dabei spielt der beschriebene erhöhte Kortisolspiegel bei vermehrtem SJL eine Rolle
(45,95). Laut Beobachtungen steigt pro Stunde SJL die Wahrscheinlichkeit für Übergewicht um
33% (18,20,24). Folglich könnte der SJL für die Entwicklung von Diabetes und
kardiovaskulären Erkrankungen prädisponieren (20,96,97).

2.4.6. Einfluss auf die Kognition
Ein Zusammenhang zwischen zirkadianer Uhr und kognitiven Leistungen wurde mehrfach
nachgewiesen: So zeigten sich bessere Leistungen in neuropsychologischen Gedächtnistests zu
früheren Tageszeiten bei morgendlichen Typen, während abendliche Typen zu späteren
Tageszeiten bessere Ergebnisse erzielten (98). Eine andere Studie beobachtete, dass der negative
Einfluss eines späten Chronotyps auf Prüfungsleistungen verschwindet, wenn diese am frühen
Nachmittag statt am Morgen stattfanden (99). Als Folge einer zirkadianen Schlafstörung, zum
Beispiel in Form des SJL, werden verschiedene kognitive Einschränkungen vermutet. So wird
von einer reduzierten Konzentrationsfähigkeit, Aufmerksamkeit, Gedächtnisleistung,
Entscheidungsfreudigkeit, Kreativität und Produktivität gesprochen (18,100). Der SJL war
assoziert mit schlechteren akademischen und kognitiven Leistungen sowohl bei Schülern
(30,101) als auch bei Studenten (102). Letztere Studie zeigte, dass die akademische Leistung der
untersuchten Medizinstudenten negativ mit dem SJL assoziiert war, nicht aber mit dem
Chronotyp. Diese Ergebnisse deuten darauf hin, dass erst der SJL zu beschriebenen negativen
Folgen führt, und nicht ein später Chronotyp an sich. Diese Hypothese wird unterstützt durch
Ergebnisse einer jüngeren Studie mit 1008 Probanden von Panev et al. (2017), die durch Testung
mittels Ravens Matrizentests (sprachfreie Multiple-Choice Intelligenztests) zwar einen höheren
Grad an Intelligenz bei späten Chronotypen fand als bei früheren Chronotypen, jedoch
verschwand dieser Vorteil, wenn Probanden einen SJL von zwei Stunden aufwiesen. Der
negative Einfluss eines SJL von mindestens zwei Stunden konnte nur bei späten Chronotypen
gezeigt werden (103). Vor allem bei späten Chronotypen könnten zirkadiane Missverhältnisse in Form des SJL so einen signifikant negativen Effekt auf akademische Leistungsfähigkeit und damit den Lebenslauf und Karrierechancen haben (73).

2.5. Herleitung der Fragestellung

2.6. Hypothesen

Die Arbeitshypothesen, die es mittels statistischer Methoden zu überprüfen gilt, werden im Einzelnen in diesem Abschnitt vorgestellt. Sie wurden nach Wichtigkeit und Relevanz in dieser Monografie geordnet und weichen von der Reihenfolge ab, wie sie im Ergebnisteil getestet und im Diskussionsteil bewertet werden.

Hauptsynthese

Der SJL hat negative Auswirkungen auf psychisches Wohlbefinden. Probanden mit größerem SJL haben daher im Vergleich zu Probanden mit geringerem SJL:

- ein höheres Maß an subjektiv empfundenem Stress
• höhere Depressivitätswerte
• eine schlechtere Schlafqualität
• eine höhere Neigung zu Substanzkonsum (Alkohol und Nikotin)
• einen höheren Body Mass Index (BMI)

Nebenhypothese 1
Es gibt einen positiven Zusammenhang zwischen SJL und Schlafdefizit. Die in der Haupthypothese beschriebenen psychischen Folgen des SJL hängen daher auch direkt mit dem Schlafdefizit zusammen.

Nebenhypothese 2
Es gibt einen positiven Zusammenhang zwischen SJL und Chronotyp, da besonders bei späteren Chronotypen eine höhere Wahrscheinlichkeit für einen SJL als bei anderen Chronotypen besteht.

Nebenhypothese 3
Mit steigendem Alter werden der Chronotyp früher und der SJL und das Schlafdefizit geringer. Männer haben einen späteren Chronotyp und einen höheren SJL und ein höheres Schlafdefizit als Frauen.

Nebenhypothese 4
Das Auftreten des SJL unterscheidet sich zwischen Personen, die in ländlicheren und Personen, die in städtischeren Gebieten aufwuchsen: Der SJL ist größer in der urbanen als der ruralen Gruppe. Dabei haben Probanden, die in städtischen Regionen aufwuchsen, einen höheren Urbanitätsindex.

Nebenhypothese 5
Der positive Zusammenhang zwischen SJL und Schlafdefizit ist nicht mehr nachweisbar bei Berechnung mit der neuen Form des SJL nach Jankowski et al. (2017). Ebenso werden Zusammenhänge zwischen SJL und psychischen Folgen der Haupthypothese bei Betrachtung der neuen Form des SJL geringer oder sind nicht mehr nachweisbar.
3. Methodik
Im Folgenden werden Studienablauf, erfasste Stichprobe mit Ein- und Ausschlusskriterien, verwendete Untersuchungsmethoden und die angewandten statistischen Verfahren näher beschrieben.

3.1. Studienpopulation
Zielgruppe der Studie waren gesunde Freiwillige ab 18 Jahren beider Geschlechter. In Phase I dieser Studie nahmen 1781 Personen teil. Es wurden Probanden ausgeschlossen, die keine Angaben gemacht hatten bezüglich der Anzahl an Arbeitstagen pro Woche (n= 173), Einschlaflzeiten an freien (SOf) und Arbeitstagen (SOw), Aufwachzeiten an freien (SEf) und Arbeitstagen (SEw) (n= 5), im Schichtdienst tätig waren (n= 95), an arbeitsfreien Tagen mit Wecker aufstanden (n= 134) und schlaffördernde Medikamente einnahmen (n= 66). Es verblieben damit 1308 Probanden in Phase I (Abbildung 1).

Insgesamt füllten 889 Probanden die zweite Phase der Online-Befragung auf der Plattform „LimeSurvey“ vollständig aus. Außerdem wurden Probanden ausgeschlossen, die den Konsum von schlaffördernden Medikamenten bejahten (n= 49). Es blieben so letztlich 840 Probanden aus Phase II. Nach Zusammenführung der beiden Datensätze aus Phase I (n= 1308) und II (n= 840), bestand die Stichprobe unter Anwendung der gleichen Ausschlusskriterien wie in Phase I für weitere Analysen aus 688 Probanden (Abbildung 1).
Abbildung 1: Prozess der Ausschlusskriterien Phase I und Phase II
3.2. Ablauf der Datenerhebung

3.3. Fragebögen

Über den online-basierten Fragebogen MCTQ erfolgte die Ermittlung verschiedener soziodemographischer Daten (E-Mail-Adresse, Alter, Geschlecht, Größe, Gewicht, Land, Wohnort und Postleitzahl) und die Erfassung des Schlafverhaltens der Probanden an freien und Arbeitstagen (2).

In der darauffolgenden Phase II wurden erneut soziodemographische Daten erhoben (Alter, Geschlecht, Nationalität, Nationalität der Eltern, höchster Bildungsabschluss, Beschäftigung und gesundheitliches Befinden in Bezug auf chronische Erkrankungen). Außerdem wurden Urbanität (ländliches und städtisches Aufwachsen bis zum 15. Lebensjahr), subjektive Stresswahrnehmung, depressive Symptomatik, sowie die subjektive Schlafqualität erfasst. Zu diesem Zweck wurden folgende psychometrische Tests verwendet:

- als Bewertungsinstrument für urbanes Aufwachsen wird der Urbanitätsindex genutzt (105)
- als Bewertungsinstrument für subjektiv wahrgenommenen Stress der letzten vier Wochen dient die Perceived Stress Scale (PSS) in der 10 Item Kurzfassung (106)
als Screeningfragebogen für Depressivität wird der Patient Health Questionnaire 9 (PHQ9) eingesetzt (107)

als Fragebogen zur Erfassung der subjektiven Schlafqualität der letzten vier Wochen fungiert der Pittsburgh Sleep Quality Index (PSQI) (108)

Im Folgenden werden die eingesetzten Untersuchungsverfahren näher erläutert.

3.3.1. Munich Chronotype Questionnaire (MCTQ)

Der MCTQ (2) dient als Instrument zur Erfassung des individuellen Schlaf- und Wachverhaltens, Konsums von Nikotin und Alkohol sowie des Body Mass Index (BMI). In Tabelle 1 werden die verwendeten Formeln zur Berechnung der wichtigsten Parameter dargestellt.

Unter anderem werden Fragen zu exakten Schlafzeiten (Zubettgehen, Bettliegezeit, Einschlafzeit, Aufwachzeit) an Arbeitstagen und an freien Tagen gestellt, um daraus die Schlafdauer und auch den mittleren Schlafzeitpunkt an Arbeits- (midpoint of sleep on work days, MSW) und freien Tagen (midpoint of sleep on free days, MSF) zu berechnen. Der MSF ist assoziiert mit dem Chronotyp, da er im Gegensatz zu Schlafzeiten an Arbeitstagen relativ frei von sozialen Einflüssen wie einem frühmorgendlichen Arbeitsbeginn ist. Schlafzeiten an Arbeitstagen hingegen unterliegen dem Einfluss sozialer zeitlicher Verpflichtungen (11,19).

Berechnet wird der Chronotyp daher anhand des MSF als zeitlichem Referenzpunkt, der in lokaler Uhrzeit angegeben wird. Allerdings kann ein Schlafdefizit während der Arbeitswoche durch längeres Schlafen an freien Tagen kompensiert werden und den MSF so auf eine spätere Uhrzeit verschoben. Aus diesem Grund wurde eine korrigierte Form des MSF, der MSF_{sc} (schlaf-korrigiert bzw. im Englischen sleep corrected), entwickelt. Diese berücksichtigt den Einfluss des angehäuften Schlafdefizits während der Arbeitswoche, indem die Differenz zwischen Schlafdauer an freien Tagen und der wöchentlichen Durchschnittsschlafzeit berechnet und der mittlere Schlafzeitpunkt so proportional zum akkumulierten Schlafdefizit wieder auf einen früheren Referenzpunkt verschoben wird (10). Die deskriptive Darstellung des Chronotyps (MSF und MSF_{sc}), die Gruppierung in sieben Kategorien angelehnt nach Roenneberg et al. (2) und die Testung auf Alters- und Geschlechtsunterschiede im Ergebnisteil dieser Arbeit dienen der Etablierung des SJL. Der Chronotyp ist darüber hinaus nicht zentraler Inhalt dieser Monografie. Das Thema Chronotyp und mögliche gesundheitliche Folgen sind Bestandteil einer separaten Dissertation dieser Arbeitsgruppe.

Der SJL als Ausdruck der Diskrepanz zwischen innerer Uhr und sozialen Zeitvorgaben ergibt sich aus der absoluten Differenz (Betrag) zwischen dem Schlafmittelpunkt an freien Tagen und an Arbeitstagen und kann daher keine negativen Werte annehmen. Im Rahmen dieser Arbeit

3.3.2. Schlafdefizitkorrigierte Form des Sozialen Jetlags

Zusätzlich zu oben genannten Variablen wurden die kürzlich von Jankowski et al. vorgestellten Formeln zur Berechnung einer korrigierten Version des SJL analog zum Vorgehen der Korrektur des MSF zu MSFsc angewandt, um so eine neue Variable des SJL als SJLsc zu kreieren, die frei vom Einfluss eines Schlafdefizits ist (22). Dabei wird zwischen drei Formen und unterschiedlichen Berechnungen unterschieden. Die erste Form umfasst Probanden, die an freien Tagen länger oder gleich lang schlafen und später oder zum gleichen Zeitpunkt einschlafen als an Arbeitstagen. Bei dieser Gruppe ergibt sich der SJLsc1 aus der Differenz der Einschlaufzeit an freien Tagen und der an Arbeitstagen. Zum zweiten Typ gehören Teilnehmer, die an Arbeitstagen länger schlafen und früher oder zur gleichen Zeit einschlafen als an freien Tagen und bei denen sich der SJL errechnet aus der Differenz der Aufstehzeit an freien Tagen und der an Arbeitstagen. Die dritte Form ergibt sich aus Personen, die keines der Kriterien für die ersten beiden Gruppen erfüllen und der SJLsc wird in diesem Fall nach der ursprünglichen Formel für den SJL berechnet.
Eine zusammenfassende Darstellung der Formeln zur Berechnung der verwendeten Variablen (20,110) findet sich in Tabelle 1.

\[
\begin{align*}
SD_w &= SE_w - SO_w \\
SD_f &= SE_f - SO_f \\
SD\text{_week} &= \frac{SD_w \times WD + SD_f \times (7 - WD)}{7} \\
MSF &= SO_f + SD_f / 2 \\
MSW &= SO_w + SD_w / 2 \\
SJL &= |MSF - MSW| \\
MSF\text{sc} &= \frac{MSF - (SD_f - SD\text{_week})}{2} \\
Schlafdefizit &= (SD\text{_week} - SD_w) \times WD
\end{align*}
\]

Tabelle 1: Formelübersicht der verwendeten Variablen des MCTQ; SDw= Schlafdauer an Arbeitstagen; SEw= Aufstehzeit an Arbeitstagen; SOw= Einschlafzeit an Arbeitstagen; SDF= Schlafdauer an freien Tagen; SEf= Aufstehzeit an freien Tagen; SOf= Einschlafzeit an freien Tagen; SD\text{_week}= durchschnittliche Schlafdauer/Woche; WD= Arbeitstage; MSF= Schlafmittelpunkt freie Tage; MSW= Schlafmittelpunkt Arbeitstage; MSF\text{sc}= korrigierter Schlafmittelpunkt; SJL\text{sc}= neuer korrigierter SJL.

3.3.3. Ermittlung des Urbanitätsindex

<table>
<thead>
<tr>
<th>Art der Stadt</th>
<th>Einwohnerzahl</th>
<th>Kategorie/ Punktewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millionenstadt</td>
<td>> 1 Million</td>
<td>5</td>
</tr>
<tr>
<td>Großstadt</td>
<td>100.000 - < 1 Million</td>
<td>4</td>
</tr>
<tr>
<td>Mittelstadt</td>
<td>20.000 - <100.000</td>
<td>3</td>
</tr>
<tr>
<td>Kleinstadt</td>
<td>5000 - < 20.000</td>
<td>2</td>
</tr>
<tr>
<td>Landstadt</td>
<td>< 5000</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 2: Berechnung des Urbanitätsindex

Der Gesamtscore wird in dieser Arbeit für weitere Analysen aufgeteilt in die zwei Gruppen Stadt und Land. Dabei zählen Orte ab 20.000 Einwohnern (Kategorie 3 im Urbanitätscore) zu der Gruppe Stadt (15 Lebensjahre in einer Mittelstadt und mit dem Punktewert 3 multipliziert, ergibt einen Urbanitätsindex \(\geq 45 \)); Orte mit unter 20.000 Einwohnern zu der Kategorie Land (Urbanitätsindex < 45). Dieser Cut-off wurde gewählt, angelehnt an die Aussage des BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung), dass ein Stadt- bzw. Landkreis als ländlich gilt, wenn der Anteil der Bevölkerung, der in Groß- und Mittelstädten (bis 20.000 Einwohner) lebt, unter 50% liegt (111). Es wird auch der aktuelle Wohnort erhoben und in die letztgenannten zwei Kategorien eingeteilt.

3.3.4. Perceived Stress Scale (PSS)

3.3.5. Patient Health Questionnaire – Depression Section (PHQ9)

Die deutsche Version des Gesundheitsfragebogens für Patienten (107) dient der Erkennung und dem Screening der häufigsten psychischen Störungen in der Primärmedizin. Die hier angewendete deutsche Kurzform des Fragebogens (PHQ9) mit neun Items erfasst aktuell bestehende depressive Symptome. Es können fünf Schweregrade für den Bereich Depressivität

3.3.6. Pittsburgh Sleep Quality Index (PSQI)
Der PSQI (108) ist ein international bekannter Fragebogen zur Erfassung der Schlafqualität. Er erfragt retrospektiv für einen Zeitraum von vier Wochen die Häufigkeit schlafstörender Ereignisse, die Einschätzung der Schlafqualität, die gewöhnlichen Schlafzeiten, Einschlaflatenz und Schlafdauer, die Einnahme von schlaffördernder Medikation, sowie die Tagesmüdigkeit. Es werden insgesamt 18 Items zur quantitativen Auswertung herangezogen und sieben Komponenten zugeordnet, die jeweils einen Wertebereich von 0 („sehr gut“) bis 3 („sehr schlecht“) annehmen können. Der Gesamtscore ergibt sich aus der Summe der Komponentenscores und kann von 0 bis 21 Punkten variieren, wobei ein höherer Punktwert einer verringerten Schlafqualität entspricht. Eine empirisch ermittelte Cut-off-Grenze liegt bei fünf und erlaubt eine Einteilung der Probanden in gute (≤ 5 Punkte) und schlechte Schläfer (> 5 Punkte).

3.4. Statistische Methoden

4. Ergebnisse

4.1. Studienpopulation

Die Gesamtstichprobe von 1308 eingeschlossenen Probanden aus der Phase I setzte sich zusammen aus 366 (28%) Männern und 942 (72%) Frauen. Das mittlere Alter der Gesamtstichprobe lag bei 37,5 ± 13,3 (18-87) Jahren. Das Durchschnittsalter der Frauen betrug 37,1 ± 13,0 Jahre und das der Männer 38,4 ± 13,9 Jahre. Für weitere Auswertungen wurde die Gesamtstichprobe in fünf Altersgruppen unterteilt. Dabei fanden sich in der Gruppe der 18-30-jährigen 536 (41%) Probanden, 266 (20,3%) der Probanden waren zwischen 31-40 Jahre alt, zu der Altersgruppe der 41-50-jährigen gehörten 235 (18%), zwischen 51 und 60 Jahren wurden 208 (15,9%) erfasst und schließlich bildeten 63 Teilnehmer (4,8%) die Gruppe der über 60-jährigen (Abbildung 2).

Eine grafische Beschreibung der Gesamtstichprobe der Phase I anhand einiger im MCTQ abgefragten Schlafvariablen (getrennt für freie Tagen und Arbeitstage: Einschlaf-, Aufwachzeiten, Schlafdauer) findet sich aufgeteilt nach beiden Geschlechtern und allen Altersgruppen in Abbildung 3. Dabei werden zum besseren Verständnis auch der SJL, MSF und MSF\textsubscript{sc} (Chronotypen) dargestellt, auf die unter Punkt 4.2 noch detaillierter eingegangen wird.

Ergebnisse des folgenden Abschnitts werden in Abbildung 3 dargestellt. Insgesamt schliefen die Probanden an Arbeitstagen durchschnittlich um 23:29 Uhr ± 1 h 05 min ein, während sie an freien Tagen erst circa eine Stunde später (00:26 Uhr ± 1 h 21 min) einschliefen. Unter der Arbeitswoche wachten die Teilnehmer durchschnittlich um 06:27 Uhr ± 1 h 04 min auf, demnach zwei Stunden früher als am Wochenende (08:27 Uhr ± 1 h 31 min). 63,7% der Teilnehmer wachten unter der Arbeitswoche zwischen 06:00 und 08:00 auf, dabei gaben 79% an,
einen Wecker zu benutzen. Durchschnittlich schließen die Teilnehmer über die gesamte Woche gemittelt 7 h 17 min ± 57 min pro Nacht. 9,3% schließen unter 6 Stunden, 27% zwischen 6 und 7 Stunden und 43% zwischen 7 und 8 Stunden. Die Schlafdauer an Arbeitstagen betrug 6 h 58 min ± 1 h 01 min, während sie am Wochenende knapp eine Stunde länger bei 8 h 01 min ± 1 h 14 min war.

Männer schließen durchschnittlich sowohl an Arbeits- als auch freien Tagen später ein und wachten später auf als Frauen und zeigten im Durchschnitt eine kürzere Schlafdauer sowohl unter der Woche als auch an freien Tagen als Frauen.

Es zeigte sich, dass mit steigendem Alter die wöchentliche Schlafdauer pro Nacht abnahm. Am längsten schließen die 18- 30-jährigen mit einer Schlafdauer von durchschnittlich 7 h 31 min ± 57 min pro Nacht und am kürzesten die über 60- jährigen mit 6 h 57 min ± 1 h 01 min. Die Altersgruppe der 18- 30-jährigen schließt an freien Tagen 1 h 08 min länger als an Arbeitstagen und hatte damit gemeinsam mit den 41- 50-jährigen die größte Diskrepanz bezüglich der Schlafdauer zwischen freien und Arbeitstagen. Die jüngste Altersgruppe schließt durchschnittlich an Arbeitstagen am spätesten ein (23:40 Uhr ± 1 h 09 min) und wachte an freien Tagen 1 h 40 min (09:10 Uhr ± 1 h 23 min) später auf als die älteste Altersgruppe der über 60- jährigen.
Abbildung 3: Darstellung der verschiedenen Schlafvariablen (siehe Legende nächste Seite) getrennt nach freien Tagen und Arbeitstagen und nach Geschlechtern in Abhängigkeit der Altersgruppen.
Fortsetzung Abbildung 3: Legende

- SOf/SOW: Einschlafzeit an freien Tagen/an Arbeitstagen
- SEF: Aufwachzeit an freien Tagen/an Arbeitstagen
- MSF: Schlafmittelpunkt an freien Tagen (Midpoint of Sleep Free days)
- MSFsc: Schlafkorrigierter Schlafmittelpunkt an freien Tagen (Midpoint of Sleep Free days sleep corrected)
- SJL: Sozialer Jetlag

Altersgruppe

Alte (n=360)
Freie Tage
Arbeitstage
18-30 (n=148)
Freie Tage
Arbeitstage
31-40 (n=73)
Freie Tage
Arbeitstage
41-50 (n=61)
Freie Tage
Arbeitstage
51-60 (n=58)
Freie Tage
Arbeitstage
>60 (n=28)
Freie Tage
Arbeitstage

Gesamt
(n=1308)
Freie Tage
Arbeitstage

Gesamtstichprobe

Schlafdauer
8h 01min
6h 58min
7h 50min
6h 52min
7h 30min
7h 01min
7h 45min
6h 29min
7h 22min
6h 36min
7h 16min
6h 49min

Uhrzeit
23 23:30 24 0:30 1:30 2:30 3:30 4:30 5:30 6:30 7:30 8:30 9:30 10
Die Teilstichprobe (n= 688) der Phase II, siehe Abbildung 1, setzte sich zusammen aus 167 Männern (24,3%) und 521 Frauen (75,7%). Das mittlere Alter lag bei 38,6 ± 13,4 (18-87) Jahren. Männer waren durchschnittlich 38,4 ± 13,7 und Frauen 38,64 ± 13,4 Jahre alt. Es wurden erneut die oben beschriebenen Altersgruppen mit fünf Kategorien gebildet (Abbildung 4).

Knapp 70% der Probanden der Teilstichprobe (n= 688) waren berufstätig, 24,1% waren Studenten, 6,8% gaben die Kategorie „Andere“ für ihre aktuelle Tätigkeit an und 0,6% machten aktuell eine Berufsausbildung. 80% der Probanden hatten Abitur oder einen Hochschulabschluss und 20% der Teilnehmer hatten ihre Schulbildung nicht mit dem Abitur abgeschlossen (Abbildung 5).

Abbildung 4: Altersverteilung getrennt für beide Geschlechter der Teilstichprobe (n= 688)

Abbildung 5: Darstellung der aktuellen Tätigkeit und des höchsten Bildungsabschlusses der Teilstichprobe
4.2. Basisdaten zum Sozialen Jetlag

4.2.1. Chronotyp (MSF und MSFsc)
Dieser Abschnitt bezieht sich auf die Gesamtstichprobe (n=1308). Der Mittelwert des nicht korrigierten MSF lag in dieser Stichprobe bei 04:26 Uhr ± 1h 18min lokaler Zeit, der Maximalwert bei 09:32 Uhr und der Minimalwert bei 00:35 Uhr. Der Mittelwert des um das Schlaufdefizit korrigierten MSFsc wiederum lag bei 04:02 Uhr ± 1h 15min lokaler Zeit, der Maximalwert bei 08:54 Uhr und der Minimalwert bei 00:20 Uhr. Der MSF und MSFsc unserer Stichprobe zeigten bei grafischer Beurteilung annähernd eine Normalverteilung (Abbildung 6A und B). Diese konnte im K-S Test jedoch nicht bestätigt werden.

Abbildung 6: Verteilung der Chronotypen [Uhrzeit] A) MSF und B) MSFsc

Die Chronotypen wurden in sieben verschiedene Kategorien gruppiert (≤ 2 (vor beziehungsweise gleich 02:00 Uhr); 2- 3 (> 02:00- ≤ 03:00 Uhr); 3- 4 (> 03:00- ≤ 04:00 Uhr); 4- 5 (> 04:00- ≤ 05:00 Uhr); 5- 6 (> 05:00- ≤ 06:00 Uhr); 6- 7 (> 06:00- ≤ 07:00 Uhr); > 7 (nach 07:00 Uhr); Abbildung 7A und B). Dabei zeigte sich bei der Verteilung des Chronotyps nach MSF, dass mit 32% am häufigsten ein Chronotyp zwischen 04:00 und 05:00 Uhr vertreten war (Abbildung 7A). Bei der Verteilung des Chronotyps nach MSFsc fand eine Verschiebung des Häufigkeitsgipfels in den früheren Bereich statt: 33% hatten einen Chronotyp zwischen 03:00 und 04:00 Uhr; 48% schließen später und 19% früher (Abbildung 7B).
Abbildung 7: Verteilung des Chronotyps [Uhrzeit] eingeteilt nach Kategorien A) MSF und B) MSF_sc

Die weiblichen Probanden unserer Stichprobe hatten mit 04:21 Uhr ± 1 h 15 min / 03:56 Uhr ± 1 h 12 min (MSF/ MSF_sc) durchschnittlich einen früheren Chronotyp als die männlichen Probanden mit 04:41 Uhr ± 1 h 22 min / 04:18 Uhr ± 1 h 20 min (Abbildung 8A und B). Dieser Unterschied erwies sich sowohl beim MSF als auch beim MSF_sc als hochsignifikant (U(942, 366) = 143524; p <.0001) beziehungsweise (U(942, 366) = 147400; p <.0001). Es zeigte sich, dass der mittlere MSF und MSF_sc mit zunehmendem Alter abnahmen (Abbildung 8A und B). Dies konnte bei beiden Variablen als hoch signifikant eingeordnet werden (χ² (df=4)= 205; p < .0001). Post hoc hatten Probanden der Altersgruppe zwischen 18- 30 Jahren bei 05:07 Uhr ± 1 h 14 min / 04:35 Uhr ± 1 h 14 min (MSF/ MSF_sc) den spätesten Chronotyp im Vergleich zu allen anderen Altersgruppen (31- 40: U(536,266)= 48368; 41- 50: U(536,235)= 38052; 51- 60: U(536,208)= 22694; >60: U(536,63)= 8599; alle p <.0001). Mittels Mann-Whitney-U-Tests konnte post hoc außerdem beim MSF beziehungsweise MSF_sc ein signifikanter Unterschied zwischen den Altersgruppen der 51- 60- und der 31- 40-jährigen (U(208,266)= 19792; p <.0001), sowie der 41- 50- (U(208,235)= 18935; p <.0001) und der über 60-jährigen (U(208,63)= 5427; p=.039 bzw. U(208,63)= 4860; p=.002) festgestellt werden.
4.2.2. Sozialer Jetlag

Der folgende Abschnitt bezieht sich auf die Gesamtstichprobe (n= 1308). Der mittlere Wert des SJL lag in unserer Gesamtstichprobe bei 1,48 ± 0,92 (0-5,68) Stunden. Der SJL zeigte bei deskriptiver Auswertung eine rechtsschiefe Verteilung (Abbildung 9A). Auch mittels K-S-Test konnte keine Normalverteilung bestätigt werden. Für spätere Analysen wurde der SJL in sechs Kategorien eingeteilt (0 h; 0-1 (> 0- ≤ 1 h); 1-2 (> 1- ≤ 2 h); 2-3 (> 2- ≤ 3 h); 3-4 (> 3- ≤ 4 h); >4h). Während 4% der Probanden keinen SJL aufwiesen, konnte bei 31% ein SJL zwischen über 0 bis einschließlich 1 Stunde und bei 41% zwischen über 1 bis einschließlich 2 Stunden festgestellt werden. Circa 25% der Probanden hatten einen SJL von über zwei Stunden (Abbildung 9B).
Der mittlere Wert des SJL war bei Frauen mit 1,46 ± 0,89 Stunden etwas geringer als bei Männern mit 1,54 ± 0,98 Stunden, jedoch war dieser Unterschied nicht signifikant (U(942, 366) = 165281; p = .247). Der SJL nahm mit steigendem Lebensalter ab. Diese erwies sich im Kruskal-Wallis-Test als signifikant (χ^2 (df=4)= 105; p < .0001). In der Gruppe der 18-30-jährigen wurde der größte SJL mit 1,77 ± 0,92 Stunden festgestellt (Abbildung 10). Post hoc war dieser Unterschied signifikant im Vergleich zu allen anderen Altersgruppen (31-40: U(536,266) = 53625; 41-50: U(536,235) = 46426; 51-60: U(536,208) = 34906; >60: U(536,63) = 8364; alle p < .0001). Post hoc zeigten sich außerdem signifikante Unterschiede zwischen den Altersgruppen der über 60-jährigen und der Altersgruppe der 31-40- (U(63,266) = 6011; p < .0001), der Altersgruppe der 41-50- (U(63,235) = 5316; p < .001) und der Altersgruppe der 51-60-jährigen (U(63,208) = 5286; p = .020). Bei allen folgenden Untersuchungen des SJL in Bezug auf andere Parameter (Urbanität, Depressivität, Stress, Schlafqualität, Substanzkonsum, BMI) wurde der gefundene Einfluss des Alters auf den SJL mittels getrennter Berechnungen in den einzelnen Altersgruppen betrachtet. Um eine bessere Übersichtlichkeit zu erhalten, wurden die Ergebnisse aber nur dann nach Altersgruppen unterteilt dargestellt, wenn bedeutsame Unterschiede gefunden wurden.

Ein Trend zeigte sich bei Betrachtung der Einschlaf- und Aufwachzeiten je nach Ausmaß des SJL: Je mehr SJL die Probanden hatten, desto später schlossen sie an freien Tagen ein und desto später wachten sie auf. Während sich Einschlaf- und Aufwachzeiten an Arbeitstagen nur um
maximal circa 30 Minuten zwischen den verschiedenen Kategorien des SJL unterschieden, zeigten sich an freien Tagen zum Teil Unterschiede von über drei Stunden bei der Einschlafzeit und bis zu beinahe fünf Stunden bei der Aufwachzeit, abhängig vom Ausmaß des SJL (Tabelle 3).

<table>
<thead>
<tr>
<th>SJL</th>
<th>SOw</th>
<th>SOf</th>
<th>SEw</th>
<th>SEf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23:27±1h16m</td>
<td>23:24±1h16m</td>
<td>06:25±1h17m</td>
<td>06:27±1h18m</td>
</tr>
<tr>
<td>0-1</td>
<td>23:27±1h01m</td>
<td>23:50±1h02m</td>
<td>06:33±1h03m</td>
<td>07:24±1h11m</td>
</tr>
<tr>
<td>1-2</td>
<td>23:26±1h01m</td>
<td>00:22±1h10m</td>
<td>06:30±1h03m</td>
<td>08:35±1h04m</td>
</tr>
<tr>
<td>2-3</td>
<td>23:36±1h10m</td>
<td>01:12±1h14m</td>
<td>06:17±1h03m</td>
<td>09:32±1h10m</td>
</tr>
<tr>
<td>3-4</td>
<td>23:46±1h11m</td>
<td>02:04±1h19m</td>
<td>06:10±1h01m</td>
<td>10:43±1h04m</td>
</tr>
<tr>
<td>>4</td>
<td>23:11±1h37m</td>
<td>02:47±1h35m</td>
<td>05:54±1h20m</td>
<td>11:15±1h04m</td>
</tr>
</tbody>
</table>

Tabelle 3: Darstellung von Einschlaff- und Aufwachzeiten (SO/SE), jeweils an freien Tagen und Arbeitstagen [Uhrzeit] getrennt für die Kategorien des SJL [h]

Bei Betrachtung der Schlafdauer in Zusammenhang mit dem SJL konnte folgendes beobachtet werden: Je größer der SJL, desto länger war tendenziell die Schlafdauer an freien Tagen und desto geringer die an Arbeitstagen (Abbildung 11).

Abbildung 11: Mittelwerte der Schlafdauer [h] an freien Tagen und Arbeitstagen für Kategorien des SJL [h] Fehlerbalken= 95% Konfidenzintervalle

Deskriptiv wurde festgestellt, dass Probanden mit späterem Chronotyp in Form des MSFsc mehr SJL aufwiesen. Dies spiegelte sich auch in der Korrelationsanalyse wider (rs (1306)= .550; p < .0001); (Abbildung 12A). Dabei zeigte sich zum Beispiel bei einem SJL ab 2 Stunden ein
durchschnittlicher Chronotyp von 05:00 Uhr, während die höchste Kategorie des SJL einen durchschnittlichen Chronotyp von 06:00 Uhr hatte (Abbildung 12B).

Abbildung 12: A) SJL [h] und Chronotyp (MSFsc) [Uhrzeit] und B) Mittelwerte des MSFsc [Uhrzeit] für Kategorien des SJL[h]

4.2.3. Sozialer Jetlag und Schlafdefizit

Dieser Abschnitt bezieht sich auf die Gesamtstichprobe (n= 1308). Probanden, für die ein negatives Schlafdefizit berechnet wurde, wurden in dieser Arbeit nicht berücksichtigt. Für die Auswertung des Schlafdefizits blieben somit 1113 Probanden mit einem mittleren Wert pro Woche von 1,87 ± 1,49 (0- 9,95) Stunden (Abbildung 13A). Das Schlafdefizit war weder im Histogramm noch per Testung mittels K-S Test normalverteilt. 42% der Probanden hatten ein Schlafdefizit von über zwei Stunden pro Woche und 20% über drei Stunden. Für spätere Analysen wurde das Schlafdefizit in fünf Kategorien eingeteilt (0- 1 (0- < 1 h); 1- 2 (1- < 2 h); 2-3 (2- < 3 h); 3- 4 (3- < 4 h); ≥ 4 h; Abbildung 13B).

Abbildung 13: A) Verteilung des Schlafdefizits [h] und B) Kategorien des Schlafdefizits [h]
Männer (n= 303) hatten mit 1,79 ± 1,52 Stunden durchschnittlich ein geringeres Schlafdefizit als Frauen (n= 805) bei 1,90 ± 1,47 Stunden, jedoch war dieser Unterschied nicht signifikant (U(303,810)= 116758; p= .212). Die jüngste Altersgruppe zeigte mit 2,08 ± 1,54 Stunden den höchsten Wert und die Altersgruppe der über 60-jährigen mit 0,97 ± 1,09 Stunden das niedrigste Schlafdefizit (Abbildung 14). Die Gruppenunterschiede zwischen den Altersgruppen erwiesen sich im Kruskal-Wallis-Test als statistisch signifikant (χ^2 (df=4)= 37.72; p < .0001). Post hoc konnte mittels Mann-Whitney-U-Test ein signifikanter Unterschied zwischen der jüngsten Altersgruppe der 18- 30-jährigen und allen anderen Altersgruppen gefunden werden (31- 40: (U(451,220)= 44769; p= .040); 41- 50 (U(451,213)= 43452; p= .047); 51- 60 (U(451,178)= 32689; p <.0001); >60 (U(451,51)= 6190; alle p <.0001). Es konnte auch zwischen der Altersgruppe der über 60-jährigen und der 31- 40- (U(51,220)= 3462; p <.0001), der 41- 50-jährigen (U(51,213)= 3432; p <.0001) und 51- 60-jährigen (U(51,178)= 3217; p <.0001) signifikante Unterschiede festgestellt werden.

Probanden mit unter drei Stunden Schlafdefizit pro Woche schlichen sowohl an Arbeits- als auch an freien Tagen früher ein als Teilnehmer, die ein Schlafdefizit über drei Stunden hatten. Je größer das Schlafdefizit war, desto früher wachten die jeweiligen Probanden an Arbeitstagen auf und desto später an freien Tagen. Dabei betrug der maximale Unterschied der Aufwachzeiten an
Tendenziell hatten Personen mit höherem Schlafdefizit eine kürzere Schlafdauer an Arbeitstagen, aber eine längere Schlafdauer an freien Tagen, verglichen mit Probanden mit weniger Schlafdefizit (Abbildung 15).
von über 4 Stunden erfasst werden (Tabelle 5). Die Korrelation zwischen SJL und Schlafdefizit war positiv und hochsignifikant (\(rs (1111) = .506; \ p < .0001\)).

Abbildung 16: Streudiagramm für den SJL [h] und das Schlafdefizit [h]

Abbildung 17: Gesamtwerte der Urbanität für die Teilstichprobe

<table>
<thead>
<tr>
<th>SJL Kategorie [h]</th>
<th>Mittelwerte Schlafdefizit [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (n=51)</td>
<td>0,15±0,53</td>
</tr>
<tr>
<td>0-1 (n=295)</td>
<td>1,13±1,03</td>
</tr>
<tr>
<td>1-2 (n=469)</td>
<td>1,96±1,28</td>
</tr>
<tr>
<td>2-3 (n=232)</td>
<td>2,52±1,48</td>
</tr>
<tr>
<td>3-4 (n=49)</td>
<td>3,51±1,81</td>
</tr>
<tr>
<td>>4 (n=17)</td>
<td>3,53±2,60</td>
</tr>
</tbody>
</table>

4.2.4. Geographische Verbreitung des Sozialen Jetlags - Urbanitätsindex

Dieser Abschnitt bezieht sich auf die Teilstichprobe (n= 688). Sechs Probanden gaben keine eindeutigen Angaben zur Region ihres Aufwachens an und wurden daraufhin ausgeschlossen. Die Verteilung wird als nicht normalverteilt angenommen (Abbildung 17) und konnte im K-S Test auch nicht bestätigt werden.

Der mittlere Wert des Urbanitätsscores lag bei 47,7 ± 21,1 während der kleinste Wert 15 und der größte 75 war. Nach Bildung von zwei Kategorien aus den Ergebnissen mittels des Grenzwertes von 45 konnten 273 Probanden (40%) der Gruppe Land und 409 (60%) der Gruppe Stadt zugeordnet werden. Bei Betrachtung des aktuellen Wohnortes, lebten von 681 Probanden 603 (88,4%) in einer Stadt (ab 20.000 Einwohner) und 78 (11,4%) in einer ländlicheren Region (unter 20.000 Einwohner).
Die Korrelationsberechnung zwischen SJL und Urbanitätsscore erwies sich als signifikant (rs (682)= .102; p= .008). Auch nach Einteilung der Urbanitätsscores in die zwei Gruppen Stadt oder Land konnte gezeigt werden, dass schwach signifikant ein höherer SJL vorlag bei Probanden, die der Kategorie Stadt angehörten (Abbildung 18) (U(273,409)= 50258; p= .027).

4.3. Psychische Folgen des Sozialen Jetlags

Im Folgenden werden Analysen zu möglichen gesundheitlichen Folgen des SJL beziehungsweise Schlafdefizits dargestellt. Für die Teilstichprobe (n= 688) der Phase II ist die Anzahl der Probanden pro Kategorie SJL in Tabelle 6 angegeben.

<table>
<thead>
<tr>
<th>SJL [h]</th>
<th>0</th>
<th>> 0-≤1</th>
<th>> 1-≤2</th>
<th>> 2-≤3</th>
<th>> 3-≤4</th>
<th>> 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>34</td>
<td>229</td>
<td>270</td>
<td>124</td>
<td>22</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabelle 6: Anzahl Probanden pro Kategorie des SJL [h]

Für die Teilstichprobe (n= 688) der Phase II blieben 597 Probanden für die Auswertungen zum Schlafdefizit. Die Anzahl der Probanden pro Kategorie des Schlafdefizits wird in Tabelle 7 angegeben.

<table>
<thead>
<tr>
<th>Schlafdefizit [h]</th>
<th>0- < 1</th>
<th>1- < 2</th>
<th>2- < 3</th>
<th>3- < 4</th>
<th>≥ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>207</td>
<td>139</td>
<td>131</td>
<td>65</td>
<td>55</td>
</tr>
</tbody>
</table>

Tabelle 7: Anzahl Probanden pro Kategorie des Schlafdefizits [h]
4.3.1. Stressempfinden (PSS)

Bei Betrachtung der PSS-Gesamtwerte in Verbindung mit dem Schlafdefizit zeigten sich tendenziell höhere Werte bei steigendem Schlafdefizit. Teilnehmer unter zwei Stunden Schlafdefizit hatten PSS-Werte unter 15, während ab zwei Stunden Schlafdefizit PSS-Werte von...
15,39 ± 7,06 bis 16,53 ± 7,91 erreicht wurden (Abbildung 20B). Bei Prüfung auf eine Assoziation zwischen Schlafdefizit und PSS-Gesamtwerten konnte kein signifikantes Ergebnis festgestellt werden (rs (595)= .057; p= .166).

Abbildung 20: Mittelwerte des PSS getrennt für A) Kategorien des SJL [h] und B) Schlafdefizits [h]; Fehlerbalken=95% Konfidenzintervall

4.3.2. Depressivität (PHQ9)

während 15,5% (n= 106) moderate (n= 85; 10- 14 Punkte), ausgeprägte (n= 17; 15- 19 Punkte) und schwere Symptome (n= 4; 20- 27 Punkte) zeigten. 74 (10,8%) Probanden gaben insgesamt an, je schon einmal unter einer depressiven Störung gelitten zu haben. Frauen hatten einen höheren Mittelwert mit 5,67 ± 3,98 Punkten als Männer mit 5,02 ± 3,91 Punkten. Dieser Unterschied war statistisch signifikant (U(521,167)= 39017; p=.044). Der PQH9-Gesamtwert zeigte tendenziell höhere Werte bei jüngeren Probanden. So hatte die Altersgruppe der 18-30-jährigen mit 6,07 ± 4,04 Punkten den höchsten Mittelwert im Vergleich zu den anderen Altersgruppen (Tabelle 8). Diese Gruppenunterschiede hatten statistische Signifikanz im Kruskal-Wallis-Test (χ² (df=4)= 13.406; p=.009). Post hoc mittels Mann-Whitney-U-Test unterschied sich die jüngste Altersgruppe signifikant von den beiden ältesten Altersgruppen der 51- 60- (U(254,114)= 12185; p=.015) und über 60-jährigen (U(254,40)= 3575; p=.002).

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>18-30 (n=254)</th>
<th>31-40 (n=140)</th>
<th>41-50 (n=140)</th>
<th>51-60 (n=114)</th>
<th>>60 (n=40)</th>
<th>Gesamt (n=688)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>6,07 ± 4,04</td>
<td>5,33 ± 3,81</td>
<td>5,45 ± 4,24</td>
<td>5,05 ± 3,73</td>
<td>4,18 ± 3,36</td>
<td>5,51± 3,97</td>
</tr>
<tr>
<td>Männer</td>
<td>5,77 ± 4,02</td>
<td>4,08 ± 2,82</td>
<td>6,71 ± 4,77</td>
<td>3,41 ± 3,21</td>
<td>2,90 ± 2,23</td>
<td>5,02 ± 3,91</td>
</tr>
<tr>
<td>Frauen</td>
<td>6,16 ± 4,05</td>
<td>5,78 ± 4,02</td>
<td>5,09 ± 4,03</td>
<td>5,53 ± 3,76</td>
<td>4,60 ± 3,59</td>
<td>5,67 ± 3,98</td>
</tr>
</tbody>
</table>

Tabelle 8: PHQ9-Punkte getrennt für beide Geschlechter und in Abhängigkeit der Altersgruppen

Die Mittelwerte des PHQ9-Fragebogens waren höher bei Probanden mit mehr Schlafdefizit, denn so zeigten Teilnehmer mit einem Schlafdefizit unter zwei Stunden PHQ9-Ergebnisse von unter 5,25 ± 4,02 Punkten, während ab einem Schlafdefizit von zwei Stunden die Werte von...
5,69 ± 3,91 bis 6,95 ± 5,10 Punkten in der höchsten Kategorie reichten (Abbildung 23B), jedoch mit einer sehr großen Streuung. Die Korrelationsanalyse kontrolliert für Alter und Geschlecht ergab eine positives und signifikantes Ergebnis zwischen dem Schlafdefizit und PHQ9-Gesamtsumme (r (595) = .092; p=.025), Abbildung 22.

Abbildung 22: Punktwolke Schlafdefizit [h] und PHQ-Gesamtwert

Abbildung 23: Mittelwerte des PHQ9 Gesamtwerts für A) Kategorien des SJL [h] und B) des Schlafdefizits [h]; Fehlerbalken= 95% Konfidenzintervalle
4.3.3. Schlafqualität (PSQI)

Bei der Analyse eines möglichen Zusammenhangs zwischen Schlafdefizit und PSQI-Werten konnten höhere Werte bei größerer Ausprägung des Schlafdefizits festgestellt werden. Es zeigte sich eine geringe positive und signifikante Korrelation der beiden Variablen miteinander (rs (540)=.105; p=.015), Abbildung 25.

4.3.4. Substanzkonsum
Dieser Abschnitt bezieht sich auf die Gesamtstichprobe (n= 1308). Insgesamt gaben 274 Probanden der Gesamtstichprobe (20,9%) an Nikotin zu konsumieren, dabei rauchten 19,9% der Frauen und 23,8% der Männer. Dieser Unterschied zeigte keine Signifikanz im Chi-Quadrat-Test (0,118). Die beiden jüngeren Altersgruppen der 18-30-jährigen und der 31-40-jährigen hatten den höchsten Anteil an Rauchern bei 20,1% beziehungsweise 27,1% im Gegensatz zu den älteren Probanden, bei denen der Anteil jeweils unter 20% lag. Im Chi-Quadrat-Test wurden Unterschiede zwischen Raucherstatus zwischen den verschiedenen Altersgruppen getestet und es zeigte sich eine asymptotische Signifikanz von 0,035.
Es zeigte sich ein signifikanter Unterschied von Mittelwerten des SJL zwischen Rauchern (1,69 ± 1,07 Stunden) und Nichtrauchern (1,43 ± 0,87 Stunden) (U(274,1034)= 122097; p <.0001; Abbildung 26).

Bei Betrachtung des SJL und dem Anteil an Rauchern zeigte sich der Trend eines höheren Raucheranteils bei höherem SJL: Während bei einem SJL unter zwei Stunden der Raucheranteil 23% nicht überstieg, konnte bei einem SJL über zwei Stunden mindestens ein Anteil von 27%
beobachtet werden mit einem Anstieg in der höchsten Kategorie auf 50% Raucher (Abbildung 27A).

Statistisch konnte bezüglich des Schlafdefizits kein signifikanter Unterschied der Mittelwerte des SJL zwischen Rauchern (1,86 ± 1,53 Stunden) und Nichtrauchern (1,87 ± 1,48 Stunden) festgestellt werden (U(228, 885)= 99710; p= .785). Bei Analyse von möglichen Unterschieden im Nikotinkonsum zwischen Gruppen mit unterschiedlich ausgeprägtem Schlafdefizit, zeigte sich mit 23% der höchste Raucheranteil bei Personen mit dem höchsten Schlafdefizit, jedoch konnte kein klarer Trend beobachtet werden (Abbildung 27B).

Abbildung 27: Anteil an Rauchern [%] für Kategorien des A) SJL [h] und B) Schlafdefizits [h]

911 Probanden (69,6%) bejahten einen Alkoholkonsum, dabei tranken 66,7% der Frauen und 77,3% der Männer Alkohol. Zwischen den Altersgruppen konnte kein klarer Trend festgestellt werden, ältere Probanden bejahten tendenziell etwas häufiger den Alkoholkonsum als jüngere Probanden, jedoch ohne Signifikanz im Chi-Quadrat-Test (0,054). Der mittlere Alkoholkonsum der Probanden lag bei 7,27 ± 10,21 g/Tag (beziehungsweise aufgerundet bei 2,65 l/ Jahr). Auch hier tranken die Männer mit 11,33 ± 14,07 g/Tag mehr Alkohol als die Frauen mit 5,69 ± 7,69 g/Tag. Ältere Altersgruppen ab 40 Jahre tranken durchschnittlich mehr Alkohol (zwischen 7-12 g/Tag) als jüngere Probanden bis 40 Jahre (circa 6 g/Tag).

Bei der Gegenüberstellung von Alkoholkonsum und Ausmaß an SJL konnte keine spezifische Tendenz beobachtet werden in der kategorialen Variable des Alkoholkonsums. Auch in der partiellen Korrelationsberechnung kontrolliert für Alter und Geschlecht zwischen SJL und genauen Alkoholmengen in g/Tag konnte kein signifikantes Ergebnis gefunden werden (r (1302)= .038; p=.172).
Weder bei der Betrachtung der kategorialen Variable des Alkoholkonsums noch bei quantitativer Analyse mittels partieller Korrelationsanalyse kontrolliert für Alter und Geschlecht zeigten sich signifikante Unterschiede zwischen Probanden mit viel beziehungsweise wenig Schlafdefizit (r (1107)= -.010; p= .737).

4.3.5. Übergewicht (BMI)

Dieser Abschnitt bezieht sich auf die Gesamtstichprobe (n= 1308). Es wurden drei Probanden aufgrund fehlender Angaben ausgeschlossen. Der mittlere Body Mass Index (BMI) der 1305 Probanden lag bei 23,57 ± 4,34 (15,39 - 50,08) kg/m². Der BMI wurde in zwei Gruppen eingeteilt: Als normalgewichtig wurden Personen bis zu einem BMI von unter 25 kg/m² angesesehen, Personen ab 25 kg/m² als übergewichtig. In die Gruppe der Normalgewichtigen fielen 73,8%, in die der Übergewichtigen 26,2% der Stichprobe. Männer hatten durchschnittlich einen höheren BMI mit 24,36 ± 3,48 kg/m² als Frauen mit 23,26 ± 4,60 kg/m², wobei sich dieser Unterschied als statistisch signifikant erwies (U(366,939)= 125860; p < .0001). In der Altersgruppe der 18-30-jährigen lag der Mittelwert des BMI am niedrigsten bei 22,21 ± 3,67 kg/m² und wurde mit zunehmendem Alter höher (Tabelle 9). Der Gruppenunterschied erwies sich als statistisch signifikant ($\chi^2 (df=4)$= 157.905; p < .0001). Post hoc zeigte sich dabei mittels Mann-Whitney-U-Test ein signifikanter Unterschied der Altersgruppe der 18- 30-jährigen zu allen anderen Altersgruppen (31- 40: U(534,266)= 55881; 41- 50: U(534,234)= 38097; 51- 60: U(534,208)= 28279; >60: U(534,63)= 8856; alle p < .0001), sowie zwischen der Altersgruppe der 31-40- und 41-50-jährigen (U(266,234)=25527; p=.001), 31- 40- und 51- 60-jährigen (U(266,208)= 19449; p < .0001) und über 60- jährigen (U(266,63)= 6200209; p < .001) und 41-50 und 51- 60 (U(234,208)= 21124; p= .017).

<table>
<thead>
<tr>
<th>BMI</th>
<th>18-30 (n=534)</th>
<th>31-40 (n=266)</th>
<th>41-50 (n=234)</th>
<th>51-60 (n=208)</th>
<th>>60 (n=63)</th>
<th>Gesamt (n=1305)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>22,21±3,67</td>
<td>23,55±4,33</td>
<td>24,63±4,44</td>
<td>25,55±4,91</td>
<td>24,56±3,41</td>
<td>23,57±4,34</td>
</tr>
<tr>
<td>Männer</td>
<td>23,06±2,88</td>
<td>24,73±3,40</td>
<td>24,90±3,57</td>
<td>26,17±4,02</td>
<td>25,45±2,68</td>
<td>24,36±3,48</td>
</tr>
<tr>
<td>Frauen</td>
<td>21,89±3,89</td>
<td>23,11±4,56</td>
<td>24,53±4,71</td>
<td>25,32±5,21</td>
<td>24,06±3,77</td>
<td>23,26 ±4,60</td>
</tr>
</tbody>
</table>

Tabelle 9 : Mittelwerte BMI [kg/m²] für beide Geschlechter und in Abhängigkeit der Altersgruppen

Nach Ausschluss des Einflusses von Alter und Geschlecht durch eine partielle Korrelationsanalyse, ergab die Prüfung einer Assoziation zwischen BMI und SJL kein signifikantes Ergebnis (r (1299)= .040; p= .148). In fast allen Altersgruppen zeigte sich eine leichte Tendenz zum Übergewicht bei höherem SJL. So konnten jeweils höhere Mittelwerte des
SJL bei Probanden mit Übergewicht festgestellt werden als bei solchen mit Normalgewicht, außer bei den über 60-jährigen (Tabelle 9). Der Unterschied von Mittelwerten des SJL zwischen Probanden ohne oder mit Übergewicht erwies sich nicht als signifikant (U(342,963)= 159897; p=.425).

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>BMI [kg/m²]</th>
<th>Mittelwert Schlafdefizit [h]</th>
<th>Mittelwert SJL [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-30</td>
<td>< 25</td>
<td>2,04± 1,50</td>
<td>1,76± 0,94</td>
</tr>
<tr>
<td></td>
<td>≥ 25</td>
<td>2,34± 1,74</td>
<td>1,84± 0,85</td>
</tr>
<tr>
<td>31-40</td>
<td>< 25</td>
<td>1,86± 1,34</td>
<td>1,36± 0,87</td>
</tr>
<tr>
<td></td>
<td>≥ 25</td>
<td>1,68± 1,45</td>
<td>1,49± 1,11</td>
</tr>
<tr>
<td>41-50</td>
<td>< 25</td>
<td>1,86± 1,44</td>
<td>1,34± 0,78</td>
</tr>
<tr>
<td></td>
<td>≥ 25</td>
<td>1,85± 1,77</td>
<td>1,37± 0,98</td>
</tr>
<tr>
<td>51-60</td>
<td>< 25</td>
<td>1,43± 1,26</td>
<td>1,07± 0,67</td>
</tr>
<tr>
<td></td>
<td>≥ 25</td>
<td>1,85± 1,49</td>
<td>1,30± 0,78</td>
</tr>
<tr>
<td>>60</td>
<td>< 25</td>
<td>0,91± 1,09</td>
<td>0,99± 0,98</td>
</tr>
<tr>
<td></td>
<td>≥ 25</td>
<td>1,09± 1,11</td>
<td>0,96± 0,87</td>
</tr>
</tbody>
</table>

Abbildung 28: Punktwolke Schlafdefizit [h] und BMI
4.4. Schlafdefizitkorrigierte Form des Sozialen Jetlags (SJL_{sc})

Analog zu der von Jankowski et al. (22) kürzlich geänderten Berechnung des SJL frei vom Einfluss des akkumulierten Schlafdefizits, wurden die drei vorgeschlagenen Formen des SJL gebildet (siehe auch Punkt 3.3.1). Von der Gesamtpopulation der Phase I (n=1308) gehörten 1059 (81%) der Probanden zur ersten Form, die an freien Tagen länger oder gleich lang schliefen und später oder um die gleiche Uhrzeit ins Bett gingen als an Arbeitstagen. Davon waren 287 Männer und 772 Frauen. 191 (15%) der Teilnehmer schlossen an Arbeitstagen länger und wachten früher oder um die gleiche Uhrzeit auf wie an freien Tagen und gehörten so dem zweiten Typ an. Dieser Gruppe wurden 61 Männer und 130 Frauen zugeordnet. 58 Probanden (4%) erfüllten weder die Kriterien der ersten noch der zweiten Form und wurden somit dem dritten Typ eingeordnet, die aus 18 Männern und 40 Frauen bestand.

Es bestand eine positive und signifikante Korrelation zwischen SJL und SJL_{sc} (rs (1057)= .806; p <.0001). Während es eine positive und signifikante Korrelation zwischen alter Form des SJL und Schlafdefizit gab, verschwand dieser Zusammenhang zwischen SJL_{sc} (beispielhaft anhand Typ 1) und dem Schlafdefizit. Korrelationen der neuen SJL-Form mit den Gesamtwerten der Fragebögen zu gesundheitlichen Folgen zeigten jeweils keine Signifikanzen (Tabelle 11).

<table>
<thead>
<tr>
<th>SJL_{sc} (Typ 1)</th>
<th>Schlafdefizit</th>
<th>PHQ9</th>
<th>PSS</th>
<th>PSQI</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>.018</td>
<td>.024</td>
<td>.009</td>
<td>-.044</td>
</tr>
<tr>
<td>p (2-seitig)</td>
<td>.676</td>
<td>.569</td>
<td>.829</td>
<td>.313</td>
</tr>
</tbody>
</table>

Tabelle 11: Spearman Korrelationen von SJL_{sc} (Typ 1) und Schlafdefizit, PHQ9-, PSS- und PSQI-Gesamtwerten

Eine partielle Korrelationsberechnung kontrolliert für Alter und Geschlecht zwischen SJL_{sc} und BMI erwies sich als nicht signifikant (r (1052)= .045; p=.142).

Beim SJL_{sc} konnte ein signifikanter Unterschied der Mittelwerte zwischen Nichtrauchern (0,89 ± 0,72 Stunden) und Rauchern (1,11 ± 0,84 Stunden) gefunden werden (U(844,215)= 76865; p=.001; siehe Abbildung 29).

Abbildung 29: Mittelwerte des SJL_{sc} Gruppe I [h] je nach Kategorie des Nikotinkonsums; U-Test *p< 0,05
4.5. Zusammenfassung der Ergebnisse

Hypothesen

<table>
<thead>
<tr>
<th>Haupthypothese</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der SJL hat negative Auswirkungen auf psychisches Wohlbefinden. Probanden mit größerem SJL haben daher im Vergleich zu Probanden mit geringerem SJL:</td>
<td></td>
</tr>
<tr>
<td>- ein höheres Maß an subjektiv empfundenem Stress</td>
<td>nicht bestätigt, statistisch nicht signifikanter Trend</td>
</tr>
<tr>
<td>- höhere Depressivitätswerte</td>
<td>nicht bestätigt, statistisch nicht signifikanter Trend</td>
</tr>
<tr>
<td>- eine schlechtere Schlafqualität</td>
<td>nicht bestätigt</td>
</tr>
<tr>
<td>- eine höhere Neigung zu Substanzkonsum (Alkohol und Nikotin)</td>
<td>bestätigt (Nikotinkonsum) nicht bestätigt (Alkoholkonsum)</td>
</tr>
<tr>
<td>- einen höheren Body Mass Index (BMI)</td>
<td>nicht bestätigt, statistisch nicht signifikanter Trend</td>
</tr>
</tbody>
</table>

Nebenhypothesen

1. Es gibt einen positiven Zusammenhang zwischen SJL und Schlafdefizit. Die in der Haupthypothese beschriebenen psychischen Folgen des SJL hängen daher auch direkt mit dem Schlafdefizit zusammen. | bestätigt |
2. Es gibt einen positiven Zusammenhang zwischen SJL und Chronotyp, da besonders bei späteren Chronotypen eine höhere Wahrscheinlichkeit für einen SJL als bei anderen Chronotypen besteht. | bestätigt |
3. Alter und Geschlecht
 - Mit steigendem Alter werden o der Chronotyp früher o der SJL geringer o das Schlafdefizit geringer | bestätigt |
 - Geschlecht: Männer haben einen … als Frauen o späteren Chronotyp o einen höheren SJL o höheres Schlafdefizit | bestätigt (fehlende statistische Signifikanz) nicht bestätigt |
4. Das Auftreten des SJL unterscheidet sich zwischen Personen, die in ländlicheren und Personen, die in städtischeren Gebieten aufwuchsen. | bestätigt |
5. Der positive Zusammenhang zwischen SJL und Schlafdefizit ist nicht mehr nachweisbar bei Berechnung mit der neuen Form des SJL nach Jankowski et al. (2017). Ebenso werden Zusammenhänge zwischen SJL und psychischen Folgen der Haupthypothese bei Betrachtung der neuen Form des SJL geringer oder sind nicht mehr nachweisbar. | keine Aussage möglich |

Tabelle 12: Hypothesen und Zusammenfassung der Ergebnisse
5. Diskussion

Die Relevanz der Forschung zur inneren Uhr wird hervorgehoben durch die Verleihung des Nobelpreis für Medizin 2017 an drei Chronobiologen. Das Nobelpreiskomitee erwähnte in der Pressemitteilung, dass ein längerfristiges Auseinanderweichen der inneren Uhr von unserem Lebensstil mit einem erhöhten Risiko für das Auftreten verschiedener chronischer Erkrankungen zusammenhängen könnte (116). Damit rückt die zentrale Frage dieser Monografie durch die Verleihung eines so hochrangigen Preises in der Medizin für die genetische Grundlage der inneren Uhr vermehrt in den Fokus der Öffentlichkeit.

Im Folgenden wird zunächst die Stichprobe dieser Studie im Vergleich zu bestehenden MCTQ-Daten (11) betrachtet. Anschließend werden Ergebnisse hinsichtlich der Hypothesen zur Grundlage, Verbreitung und zu gesundheitlichen Folgen des SJL auf psychischer Ebene diskutiert, mit der aktuellen Studienlage verglichen und Limitationen mit einem Ausblick auf zukünftige Forschung angeführt. Da es eine kontroverse Diskussion über das Konzept des SJL und eine enge Verbindung zwischen SJL und Schlafdefizit gibt sowie eine ursächliche Zuordnung möglicher gesundheitlicher Folgen zu einer der beiden Variablen bisher nicht erfolgte beziehungsweise nicht möglich war, wurde das Schlafdefizit in Bezug auf psychische Parameter in dieser Arbeit neben dem SJL ebenfalls untersucht.

5.1. Chronotyp
Wir konnten mit unserer Gesamtstichprobe von 1308 eingeschlossenen Probanden Ergebnisse im Vergleich zu der großen Stichprobe mit 65.000 Probanden der Langzeitstudie von Roenneberg et

Der durchschnittliche nichtkorrigierte Chronotyp (MSF) unserer Studie lag bei 04:26 Uhr und war vergleichbar mit dem von Roenneberg et al. (2007) bei 04:18 Uhr (11). Der Chronotyp in der schlafkorrigierten Form (MSF_{sc}) zeigte im Durchschnitt einen früheren Chronotyp (04:02 Uhr) als der MSF. Dies betont, dass der MSF durch das längere Schlafen an freien Tagen zur Kompensation eines angehäuften Schlafdefizits unter der Arbeitswoche später lag als der tatsächliche Schlafmittelpunkt ausgedrückt als MSF_{sc}. Hierdurch wird gezeigt, dass der MSF deutlich durch das entstehende Schlafdefizit verfälscht wird im Gegensatz zum korrigierten MSF_{sc}, weshalb es sinnvoll erscheint, letzteren Parameter für weitere Analysen zu verwenden.

5.2. Sozialer Jetlag

5.2.1. Sozialer Jetlag und Chronotyp

Wie auch schon in anderen Studien (20,45), zeigte sich in unserer Stichprobe eine deutliche positive Korrelation zwischen dem SJL und dem Chronotyp (MSF_{sc}), wobei ein späterer

5.2.2. Sozialer Jetlag und Schlafdefizit

In unserer Studie war die Diskrepanz zwischen Schlafdauer an freien und Arbeitstagen wie bei Roenneberg et al (2012) (20) am größten in der jüngsten Altersgruppe der 18-30-jährigen, während die älteste Altersgruppe den geringsten Unterschied der Schlafdauer zwischen freien und Arbeitstagen hatte. Dies spricht dafür, dass Probanden mit spätem Chronotyp und hohem SJL, also vor allem jüngere Probanden, auch ein höheres Schlafdefizit unter der Arbeitswoche entwickeln, das am Wochenende durch längeres Schlafen kompensiert wird (11,18–20). Dies konnte in unserer Studie so repliziert werden. 42% unserer Probanden hatten ein Schlafdefizit über zwei Stunden und knapp 36% der Probanden schließen weniger als 7 Stunden in der Nacht. Probanden wachten tendenziell umso später auf an freien Tagen, desto höher das Schlafdefizit war. Diese Zahlen lassen sich vergleichen mit Deutschlands Allgemeinbevölkerung, die laut den von RAND Europe zusammengetragenen Daten zu 30% ebenfalls weniger als 7 Stunden pro Nacht schlief, obwohl durchschnittlich 7 bis 8 Stunden Schlaf empfohlen werden (117).

5.3. Geographische Verbreitung des Sozialen Jetlags (Urbanität)

Ergebnisse der Forschung weisen darauf hin, dass ein früher Chronotyp häufiger in ruralen Gebieten beobachtet wird, als in urbanen Regionen, wo ein späterer Chronotyp vermehrt anzutreffen ist (118–120). In unserer Studie konnte eine schwache und positive Korrelation des

Ergebnisse unserer Studie müssen aufgrund schwach ausgeprägter Signifikanz aber auch mit Vorsicht behandelt werden. Die gewählten Cut-offs für die Einteilung der Kategorien Stadt beziehungsweise Land basieren nicht auf einer klaren Einteilungsvorgabe und sind kritisierbar. Obwohl die Ergebnisse zunächst in Einklang mit der früheren Beobachtung von Carvalho et al. (25) erscheinen, muss einschränkend die ungleiche Stichprobenverteilung hinsichtlich des Wohnortes und die Erhebungsmethode betrachtet werden: Der hier verwendete Urbanitätsindex bezieht sich ausschließlich auf urbanes Aufwachsen der ersten 15 Lebensjahre und nimmt dabei keine Rücksicht auf den aktuellen Wohnort der Probanden. Carvalho et al. untersuchten dagegen vor allem Assoziationen zwischen SJL und aktuellem Wohnort (25). Dabei bestand deren Stichprobe aus einem relativ hohen Anteil einer ruralen Bevölkerung mit 42,3% und einem etwa gleich vertretenen Anteil einer städtischen Bevölkerung mit 57,7%, die jedoch nur in einer Kleinstadt rekrutiert wurde. Zwar wurde der aktuelle Wohnort auch in unserer Studie erhoben, doch spiegeln die Daten durch einen mit über 80% unverhältnismäßig hohen Anteil von Menschen, die in einer Großstadt wohnen, die überwiegend im Berliner Raum durchgeführte Rekrutierung wider. Aufgrund dieses Missverhältnisses wurde von Analysen zwischen SJL und aktuellem Wohnort abgesehen. Um Ergebnisse besser vergleichen zu können und noch aussagekräftiger zu machen, könnte man sich in Zukunft auf eine einheitliche Erhebungsmethode einigen (Fokus auf urbanes Aufwachsen oder den aktuellen Wohnort) und bei der Rekrutierung auf eine Gleichverteilung zwischen urbaner und ruraler Gruppe achten.
5.4. Psychische Folgen des Sozialen Jetlags

Im Folgenden wird noch einmal detailliert auf die gefundenen Ergebnisse bezüglich der Haupthypothese eingegangen.

5.4.1. Stressempfinden

Stress ist grundsätzlich ein ubiquitäres Phänomen und wird, wenn er chronisch und schwer beeinflussbar ist, als ein Faktor für die Entwicklung psychischer Beeinträchtigungen sowie somatischer Folgen verantwortlich gemacht (53). Jedoch ist das Konzept von Stress beziehungsweise dessen Erfassung nicht einheitlich. Eine Form der Feststellung von psychischem Stress ist der hier verwendete Fragebogen PSS. In unserer Stichprobe konnten die höchsten Stresswerte bei der jüngsten im Vergleich zur ältesten Altersgruppe festgestellt werden. Dieses Ergebnis deckt sich mit Beobachtungen einer kürzlich erschienenen deutschen Validierungsstudie des PSS (121). Ergebnisse für Männer und Frauen werden in der Literatur inkonsistent beschrieben, jedoch zeigen Frauen meist ein höheres Maß an empfundenem Stress (121,122), was in unserer Stichprobe jedoch keine statistische Signifikanz erreichte.

von 56 Maximalpunkten im PSS-14 im Gegensatz zum Mittelwert unserer gesunden Stichprobe mit 15 von 40 Maximalpunkten im PSS-10 (123). Dies könnte ein Hinweis dafür sein, dass ein Zusammenhang zwischen späten Chronotypen und vermutlich auch zwischen SJL und Stresserleben, erst statistische Signifikanz erreicht bei einem höheren Basislevel an Stress einer Stichprobe.

Wir denken dennoch, dass dem Zusammenhang zwischen SJL und Stress eine Schlüsselrolle bei der Betrachtung von möglichen negativen Konsequenzen des SJL zukommt, obwohl in dieser Arbeit der Trend zwischen größerem SJL und erhöhtem Stressempfinden keine statistische Signifikanz erreichte. Dies führen wir vor allem auf die Erhebungsmethoden beider Parameter zurück, die aufgrund der beschriebenen Kontroverse um den SJL einerseits und die hohe Subjektivität des Stressempfindens und folglich schwere Erfassbarkeit des Stresszustandes eines Menschen andererseits nur begrenzt beide Aspekte objektivieren und vergleichbar machen können. Zur Objektivierung von chronischem Stress und zur Unterscheidung, ob ein SJL per se zu chronischem Stress führt oder eventuell nur zu einer erhöhten Stressvulnerabilität, könnte sich
die gleichzeitige Anwendung verschiedener Methoden empfehlen. Neben subjektiven Fragebögen und neuroendokriner Erfassung mittels einfacher Kortisolmessungen oder der Kortisolaufwachreaktion (CAR; cortisol awakening response), welche nach dem Aufwachen frühmorgens die Konzentration des Kortisols bei gesunden Menschen ansteigen lässt (124,125), könnte auch der etablierte Trierer Social Stress Test (TSST) zur Erfassung der Reaktion auf psychischen Stress (126) zur Anwendung kommen. Zusätzlich wäre es von hoher Relevanz diese Parameter in Längsschnittstudien zu testen, um aussagekräftigere Ergebnisse zu erhalten.

5.4.2. Depressivität

Viele Studien der letzten Jahre weisen der Chronobiologie, unter anderem dem späten Chronotyp und vor allem dem mit diesem verbundenen SJL, eine besondere Rolle in der Entwicklung der Erkrankung zu, jedoch sind die vielfältigen Zusammenhänge zwischen Schlaf, Depression und zirkadianer Rhythmik nicht bis zu jedem Detail geklärt (19,73). In unserer Studie konnte eine geringe Assoziation zwischen dem Schlafdefizit und depressiver Symptomatik gefunden werden, die jedoch aufgrund des kleinen positiven Korrelationskoeffizienten kaum Rückschlüsse zulässt

64

Von Bedeutung ist bei der Betrachtung von Assoziationen zwischen SJL und Depressionen ebenfalls, dass auch bei positiv gefundenem Zusammenhang in der Literatur bisher nicht geklärt ist, welche der beiden Variablen Ursache und Wirkung sein könnte und welche Faktoren als Mediatoren fungieren könnten. So kann bei einem gefundenen positiven Zusammenhang zwischen depressiver Symptomatik und zirkadianer Schlaufstörung nicht unterschieden werden, ob depressive Patienten im Laufe ihrer Erkrankung einen gestörten zirkadianen Schlafrythmus entwickeln oder ob dieser ursächlich an der Entstehung von depressiven Symptomen beteiligt ist. Der Effekt könnte laut Literatur zweiseitig sein (73): Erstens geht eine Depression oft mit einem
sozialen Rückzug einher und Betroffene verbringen so weniger Zeit im Sonnenlicht, wodurch ihr Chronotyp später wird. In diesem Sinne wurde beobachtet, dass depressive Patienten zu signifikant späteren Zeiten schlafen als gesunde Vergleichsgruppen (134). Zweitens könnte der SJL zu Schlafproblemen und schlechteren kognitiven Leistungen führen, die eine Depression bedingen (73). Es wäre jedoch bedeutsam, in zukünftigen Studien zwischen Ursache, Folge und medierenden Faktoren einer Assoziation unterscheiden zu können. Hier könnten zum Beispiel auch Längsschnittstudien durchgeführt werden, die die Dynamik zwischen zirkadianem Schlafrhythmus und der Depression genauer untersuchen und dabei vor allem darauf achten, ob sich der Chronotyp und die Größe des SJL im Verlauf einer Depression und einer Remission verändern oder nicht.

5.4.3. Schlafqualität
Schlaf als ein wichtiger biologischer Prozess des Menschen hat Effekte auf das Verhalten, das psychische Befinden und die allgemeine Gesundheit (135). Im Vergleich zu einer größeren deutschen Studie, die den Schlaf an 2443 Universitätsstudenten mittels PSQI evaluierte, zeigte sich, dass bei dieser der Anteil an schlechten Schläfern mit 36,9% etwas höher war (136) als bei unserer Stichprobe mit 34,8% schlechten Schläfern.

eine deutlich kleinere Stichprobe mit 62 Personen im Gegensatz zu unserem Sample der PSQI-Analyse von 626 Personen untersuchten (23), was zu unterschiedlichen Ergebnissen im Vergleich zu dieser Stichprobe führen kann. Außerdem fanden Polugrudov et al. nur signifikante Ergebnisse zwischen SJL und PSQI-Gesamtwert bei Frauen und nicht in der Gesamtauswertung (23), was die Aussagekraft der Beobachtungen weiter einschränkt. Wong et al. nutzten zum einen keinen Fragebogen, sondern die sogenannte Aktimetrie (siehe Punkt 5.5), um den SJL zu bestimmen. Zum anderen wiesen nur 6% der Probanden einen SJL über oder gleich einer Stunde auf bei einem durchschnittlichen SJL von 44 Minuten (97). Im Gegensatz dazu wurde in unserer Studie ein Fragebogen in Form des MCTQ zur Bestimmung des SJL verwendet und Teilnehmer zeigten zu 65% einen SJL über oder gleich einer Stunde bei einem mittleren SJL von 1,48 Stunden. Insgesamt kann also gesagt werden, dass aufgrund unterschiedlicher Studiendesigns, Stichprobenzusammensetzungen und Erhebungsmethoden bisherige Ergebnisse schwer miteinander vergleichbar sind.

5.4.4. Substanzkonsum

Kompetitionsversuchs nicht anhaltend und langfristig zeigten sich dosisabhängig vor allem negative Folgen des Nikotinkonsums auf die psychische Gesundheit (87,88,139). Der Beginn des Rauchens mit der die Aufmerksamkeit steigernden Wirkung wird in der Literatur als Reaktion auf kognitive Einbußen durch den SJL oder eine Depression angesehen (kurzfristig, Selbstmedikationshypothese) (74,140), jedoch vermutet man das Rauchen an sich längerfristig als Prädiktor für depressive Symptome durch neuroregulatorische Mechanismen (141,142). Diese Beobachtungen könnten als Erklärung dafür dienen, warum eine Assoziation von psychischen Auffälligkeiten, Schlafstörungen und späten Chronotypen bei Wittmann et al. (2010) nur gefunden wurde, wenn diese Probanden aufgrund des hohen SJL gleichzeitig auch Nikotin konsumierten (74). Der Raucheranteil der Stichprobe von Wittmann et al. lag mit einem Anteil von 26,8% allerdings etwas höher als in unserer Stichprobe. Es wurde daraufhin die Hypothese aufgestellt, dass der SJL, depressive Symptome und das Auftreten von Schlafstörungen möglicherweise nicht direkt miteinander assoziiert sind, sondern durch den Nikotinkonsum mediiert werden und erst bei regelmäßigem Nikotinkonsum zutage treten (74). In Zukunft sollte daher untersucht werden, ob das Rauchen eher Ursache, Folge oder Mediatorrole in der Assoziation zum SJL einnimmt, vor allem in Bezug auf weitere gesundheitliche Folgen. In unserer Studie konnte die Verbindung zwischen SJL, Raucheranteil und dem Auftreten depressiver Symptome aufgrund der fehlenden Signifikanz zwischen SJL und PHQ9-Werten nicht genauer analysiert werden. Es lässt sich jedoch vermuten, dass der relativ niedrige Raucheranteil unserer Stichprobe im Vergleich zur Gesamtbevölkerung und anderen Studien, als weiterer Erklärungsansatz für das Fehlen eines signifikanten Zusammenhangs zwischen depressiven Symptomen, Schlafqualität und SJL dienen könnte.

Obwohl die Mehrheit unserer Probanden einen Alkoholkonsum angaben, war die Menge an getrunkenem Alkohol im Vergleich zur Allgemeinbevölkerung moderat: Im Jahr 2013 trank die deutsche Bevölkerung pro Kopf rund 9,7 l reinen Alkohol (110,143), wohingegen Probanden unserer Studie laut eigenen Angaben nur circa 2,7 l Alkohol pro Jahr tranken. Riskanter Alkoholkonsum ist als eine durchschnittliche, tägliche Trinkmenge von mehr als 10–12 g/Tag beziehungsweise 20–24 g/Tag (Frauen bzw. Männer) Reinalkohol definiert (144). Probanden unserer Stichprobe tranken durchschnittlich nur 7,27 g/Tag. Männliche Probanden konsumierten 11,3 g/Tag und weibliche Probanden 5,7 g/Tag, womit in unserer Stichprobe insgesamt durchschnittlich kein riskanter Alkoholkonsum vorlag. Diese im Vergleich zur deutschen Allgemeinbevölkerung sehr geringe Menge an konsumiertem Alkohol könnte zum Teil erklären, warum entgegen der Erwartungen keine Assoziationen zum Schlafdefizit oder SJL festgestellt werden konnten. Es muss allerdings die Erhebungsmethode des Alkoholkonsums in dieser
Studie kritisch erwähnt werden, die alleine auf einer Selbsteinschätzung der Probanden beruhte und dann mittels grober Schätzungen anhand von Richtwerten in die Variable Alkohol in g/Tag umgerechnet wurde (110). Hierdurch entstanden Ungenauigkeiten und eine große Varianz der Werte, die unter anderem zu einer größeren Standardabweichung im Vergleich zum Mittelwert führten und Vergleiche mit anderen Studien einschränken.

5.4.5. Übergewicht

Im Jahr 2013 lag der durchschnittliche BMI der deutschen Bevölkerung bei 25,9 kg/m². Insgesamt waren 52% der erwachsenen Bevölkerung, davon 62% der Männer und 43% der Frauen, übergewichtig (145). Dies wird gemessen anhand einer Einstufung der WHO, nach der Erwachsene mit einem BMI über oder gleich 25 kg/m² als übergewichtig bezeichnet werden (109). In dieser Stichprobe war der durchschnittliche BMI im Vergleich zur Allgemeinbevölkerung deutlich geringer bei nur 23,6 kg/m². Lediglich 26,2% hatten einen BMI im Bereich des Übergewichts. Männer hatten auch in unserer Kohorte einen signifikant höheren BMI als Frauen und der BMI wurde, wie in der Literatur beschrieben, höher mit steigendem Alter (20).

5.5. Schlafdefizitkorrigierte Form des Sozialen Jetlags

Aufgrund der bestehenden Kontroverse um das Konzept des SJL, wurde in dieser Arbeit zusätzlich eine alternative Form der Berechnung des SJL durchgeführt. Wie schon in der Einleitung erwähnt, wird in einem aktuellen Paper von Jankowski et al. (2017) die Problematik behandelt, dass der SJL in der Form wie er von Roenneberg et al. (2) berechnet wird, zwei miteinander verwandte Phänomene umfasst, die jedoch möglicherweise zu unterscheiden sind (22). Dies ist zum einen eine Verschiebung des Schlaftimings zwischen freien und Arbeitstagen (SJL) und zum anderen ein über die Woche akkumuliertes Schlafdefizit. Aus diesem Grund wurden in dieser Studie neben dem SJL auch Assoziationen des Schlafdefizits und psychischen Parametern untersucht und zusätzlich die von Jankowski et al. postulierte, um das Schlafdefizit korrigierte Form des SJLsc in drei Formen je nach Schlafverhalten unterteilt, berechnet. In unserer Stichprobe von 1308 Probanden gehörten 81% der Probanden der ersten Form (Probanden, die an freien Tagen länger oder gleich lang schlafen und später oder zum gleichen Zeitpunkt einschlafen als an Arbeitstagen) an, 15% der zweiten (Teilnehmer, die an Arbeitstagen länger schlafen und früher oder zur gleichen Zeit einschlafen als an freien Tagen) und 4% der

5.6. Konzept des Sozialen Jetlags
Mit Blick auf die bestehende Literatur und Ergebnisse dieser Arbeit bleibt die Frage nach einer Berechnungsmethode des SJL, die möglichst akkurat zirkadiane Missverhältnisse erfasst, ohne durch soziale Erfordernisse oder ein akkumuliertes Schlafdefizit verfälscht zu werden. Aufgrund von dieser Unklarheit kann als wichtige Limitation dieser Studie das Konzept des SJL an sich angesehen werden. Wie von Jankowski et al. (22) betont, scheint dieses noch nicht ausgereift im Hinblick darauf, was der SJL darstellen und reflektieren soll, ob dieser vom Schlafdefizit abgegrenzt werden sollte und wie dieser optimal bestimmt werden könnte. Unterschiede zwischen SJL und Schlafdefizit ergaben sich in dieser Studie bei der Betrachtung des signifikant erhöhten Raucheranteils bei stärker ausgeprägtem SJL, der keine Assoziation zum Schlafdefizit
hatte. Es zeigten sich beim SJL lediglich nicht signifikante Trends zu vermehrt auftretenden psychischen Einschränkungen, wohingegen zwischen Schlafdefizit und BMI, PSQI und PHQ9 signifikante Assoziationen detektiert werden konnten, wobei die beiden letzten Zusammenhänge zu erwarten gewesen waren. Ob negative Folgen eines SJL eher Folge des damit zusammenhängendem Schlafdefizit sein könnten, kann im Rahmen dieser Arbeit aufgrund dieser Ergebnisse nicht beantwortet werden.

5.7. Limitationen und Ausblick
Es ergeben sich neben Fragebogenspezifischen Einschränkungen und der Kritik am Konzept des SJL auch zahlreiche allgemeinere Limitationen dieser Studie, die im Folgenden aufgeführt werden.

Zunächst kann die Zusammensetzung unserer Stichprobe in Hinblick auf deren Repräsentativität vor allem aufgrund der ungleichen Verteilung bezüglich des Lebensortes durch überwiegende Rekrutierung im urbanen Raum und bezüglich der Bildungsvariablen kritisiert werden. Unsere Stichprobe bestand im Vergleich zur deutschen Allgemeinbevölkerung aus einem sehr hohen Anteil an Akademikern. So zeigte sich bei Betrachtung der beiden Bildungsvariablen (aktuelle Tätigkeit und höchster Bildungsabschluss), dass in dieser Studie 24% der Teilnehmer Studierende waren. 80% hatten einen Hochschulabschluss oder Abitur und lediglich 0,9% einen Hauptschulabschluss. Im Gegensatz dazu hatten im Jahr 2015 in Deutschland laut Daten vom statistischen Bundesamt nur knapp 15% einen Bachelor- bzw. Master- oder Diplom-Abschluss einer Universität und 48,5% dagegen eine Berufsausbildung. Nur 30% der Bevölkerung hatte ein Abitur, 33% dagegen aber einen Hauptschulabschluss (155). Es fällt auf, dass die Verteilungen der in dieser Studie erhobenen gesundheitlichen Parameter eher rechtsschief waren. Teilnehmer wiesen folglich keine erheblichen gesundheitlichen
Einschränkungen oder Risikofaktoren auf. Es ergaben sich vermehrt Hinweise, dass Assoziationen zwischen SJL und anderen Parametern erst zutage treten bei höherer Ausprägung der in den einzelnen Fragebögen abgefragten Gesundheitsparameter (20,74,83,123,133). Ein Studiendesign mit einer anders zusammengesetzten Stichprobe hinsichtlich eines höheren Ausprägungsgrads gesundheitlicher Parameter scheint aus diesem Grund ergänzend notwendig, um Fragestellungen dieser Arbeit besser untersuchen und beurteilen zu können.

Die Berechnungsform des Schlafdefizits erscheint nicht optimal, da sie abhängig von der durchschnittlichen wöchentlichen Schlafdauer ist. Diese wird berechnet unter der Annahme, dass ein Schlafdefizit unter der Woche am Wochenende durch längeres Schlafen ausgeglichen wird, weshalb zum Ende einer Woche kein Schlafdefizit und keine interindividuellen Unterschiede in der Schlafquantität mehr bestehen würden. Eventuell sollte hier eine alternative Möglichkeit einer einfachen Formel gefunden werden wie zum Beispiel von Rutters et al., die das Schlafdefizit aus der Differenz der Schlafdauer an Arbeitstagen und der an freien Tagen berechnen (45).

Insbesamt muss beachtet werden, dass alle gefundenen signifikanten Assoziationen in Korrelationsberechnungen und Gruppenvergleichen nur Hinweise darstellen und nicht als kausale Zusammenhänge gewertet werden dürfen. Hier bedarf es weiterer konfirmatorischer Studien.

5.8. Fazit

Bei Detektion eines positiven Zusammenhangs zwischen SJL und dem Auftreten negativer psychischer Auswirkungen, die mehrheitlich stressassoziert scheinen (49,50,52,54), könnte eine Reduktion des SJL ein wichtiger Schritt sein, um chronisches Stresserleben einzudämmen, das

6. Literaturverzeichnis

41. Wang XS, Armstrong MEG, Cairns BJ, Key TJ, and Travis RC. Shift work and chronic

69. de Souza CM, and Hidalgo MP. Midpoint of sleep on school days is associated with depression among adolescents. Chronobiol Int. 2013/10/26. 2014;31(2):199–205.

77. Ohayon M. Epidemiology of insomnia: what we know and what we still need to learn.

139. Bellido-Casado J, Martín-Escudero J, Dueñas-Laita A, Mena-Martín FJ, Arzúa-Mouronte D, and Simal-Blanco F. The SF-36 Questionnaire as a measurement of health-related

89

Eidesstattliche Versicherung

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements for Manuscripts (URM)“ des ICMJE- www.icmje.org) kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) entsprechen den URM (s.o.) und werden von mir verantwortet.

Meine Anteile an etwaigen Publikationen zu dieser Dissertation entsprechen denen, die in der untenstehenden gemeinsamen Erklärung mit dem Betreuer, angegeben sind. Sämtliche Publikationen, die aus dieser Dissertation hervorgegangen sind und bei denen ich Autor bin, entsprechen den URM (s.o.) und werden von mir verantwortet.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst.“

Datum

Unterschrift

Anteilserklärung an etwaigen erfolgten Publikationen

Julia Kleeblatt hatte Anteil an der folgenden Publikation:

Unterschrift der Doktorandin
Lebenslauf

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.

Danksagung

Ich danke zunächst PD Dr. Mazda Adli für die Überlassung des Themas und für seine Anregungen.

Weiter danke ich Herrn Klaus Lenz (Institut für Biometrie, CBF) für die statistische Beratung.

Ich bedanke mich ebenso bei der Lieselotte und Dr. Karl Otto Winkler-Stiftung für die finanzielle Unterstützung im Rahmen eines Promotionsstipendiums. Meinem Vater und vor allem meinem Freund Julius danke ich für die vielen hilfreichen Hinweise, die Geduld und Unterstützung! Meiner Mutter und Tante danke ich ebenfalls für ihren liebevollen Beistand, genauso wie all meinen Freunden!

Außerdem danke ich mich natürlich herzlich bei den zahlreichen Teilnehmern dieser Studie.