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Allgemeine Kurzfassung der Ergebnisse  

 

Der evolutionäre Pfad der uns zu Musik geführt hat, wie wir sie heute kennen, ist schwer 

nachzuverfolgen. Artübergreifend vergleichende Forschung hilft uns das biologische Substrat 

zu ergründen, das es dem Menschen ermöglichte, dieses eigenartige Verhalten zu entwickeln. 

Rhythmus, die zeitliche Organisation von Ereignissen, ist ein zentraler Bestandteil der 

Struktur jeglicher Form von Musik. Musikalischer Rhythmus ruft oft die Wahrnehmung eines 

isochronen Takts, oder Pulses, hervor. Gelernte Vokalisationen nicht-menschlicher Tiere, wie 

Vogelgesang und die Gesänge bestimmter Fledermausarten, zeigen auffällige Parallelen zu 

Vokaler Musik (d.h. menschlicher Gesang). Diese Dissertation untersucht solche 

Vokalisationen auf das Vorkommen  einer isochron rhythmischen Struktur, die es einem 

zuhörenden Artgenossen erlauben könnte einen solchen Takt wahrzunehmen. Zu diesem 

Zweck entwickelte ich eine Methode (genannt ‚generate-and-test‘; GAT) um einen isochronen 

Puls aus einer zeitlichen Sequenz von Ereignissen, z.B. Notenanfängen, zu extrahieren. Diese 

Methode wird verglichen mit einer Reihe von existierenden analytischen Techniken zur 

Analyse unterschiedlicher Aspekte von Rhythmen in Vokalisationen, Bewegungen und anderen 

Verhaltensweisen die sich zeitlich entwickeln. Die Eignung der verschiedenen Methoden, um 

bestimmte Fragestellungen zu beantworten wird anhand einer Reihe von Beispielen 

veranschaulicht. Die Anwendung des GAT Ansatzes auf verschiedene Vokalisationstypen der 

großen Sackflügelfledermaus (Saccopteryx bilineata) brachte eine gemeinsame zeitliche 

Regelmäßigkeit zum Vorschein, die einen auf eine interessante Beziehung zwischen 

physiologisch determiniertem  Rhythmus und dem Rhythmus von erlernten sozialen Lauten 

hindeuten könnte. In den Gesängen von Zebrafinken (Taeniopygia guttata) entdeckten wir 

eine hierarchisch isochrone Struktur die an die metrische Struktur vieler Musikarten erinnert. 

Wir berichten dann von dem Effekt genetischer Manipulationen auf den Gesangslernerfolg 

von Zebrafinken. Die Expression von FoxP2, einem Gen, das im Spracherwerb und im 

Gesangserwerb bei Singvögeln involviert ist, sowie von zwei verwandten Genen, FoxP1 und 

FoxP4, wurde in juvenilen Vögeln während ihrer Gesangslernphase experimentell reduziert. 

Neben anderen Effekten produzierten die adulten Vögel Gesänge mit einer beeinträchtigten 

isochronen Struktur. Überraschenderweise zeigten Kontrollvögel, deren FoxP Expression 

nicht reduziert wurde, einen ähnlichen Effekt in diesem Zusammenhang. Ich diskutiere dieses 

Ergebnis angesichts aktueller Kenntnisse über neuronale Mechanismen und 

Verhaltensprozesse im Bezug auf Gesangslernen und –produktion. 
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General Abstract 

 

The evolutionary path that led to music as we know it today is difficult to trace. Cross-species 

comparative research can help us uncover the biological substrates that enabled humans to 

develop this peculiar behavior. Rhythm, the organization of events in time, is a central 

component in the structure of all forms of music. Oftentimes musical rhythm gives rise to a 

perceptionally isochronous beat, or pulse. Learned vocalizations of non-human animals, such 

as birdsong and the songs of certain bat species, show striking parallels to vocal music (i.e. 

human song). This thesis investigates these vocalizations for the presence of an isochronous 

rhythmic structure that could allow a conspecific listener to perceive such a beat. To this end, 

I have developed a generate-and-test (GAT) method to extract an isochronous pulse from a 

temporal sequence of events, such as the onsets of notes. This method is compared to a 

variety of existing analytic techniques for analyzing different aspects of rhythms in 

vocalizations, movements and other behaviors developing over time. The suitability of the 

different methods for addressing particular questions is illustrated through various examples. 

The application of the GAT approach to different types of vocalizations of the greater sac-

winged bat (Saccopteryx bilineata) revealed a common temporal regularity that might point 

towards an interesting relationship between physiologically determined rhythm and the 

rhythm of learned social vocalizations. In the songs of zebra finches (Taeniopygia guttata) we 

discovered a hierarchical isochronous structure that is reminiscent of the metrical structure 

of many types of music. We then report the effect of genetic manipulations on the song 

learning success of zebra finches. The expression of FoxP2, a gene involved in speech 

acquisition and birdsong learning, as well as of two related genes, FoxP1 and FoxP4, was 

experimentally reduced in juvenile birds during their learning period. Among other effects, the 

adult birds produced song with an impaired isochronous structure. Surprisingly, control 

animals whose FoxP levels were not reduced, showed a similar effect in this regard. I discuss 

possible interpretations of this result in the light of current knowledge about neural 

mechanisms and behavioral processes of song learning and production.  
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General Introduction 

 

Music has often been called the “universal language”. This term is not without its problems. It 

seems obvious, however, that music is intimately linked to the human experience. It plays an 

important role in social life across cultures (Trehub et al. 2015). Already as newborns our 

auditory system is tuned to musical features such as pitch and rhythm similarly to the way it is 

in adults (Stefanics et al., 2009; Winkler et al. 2009). These and other observations suggest 

that it is somehow grounded in our biology. If so, how did this peculiar behavior, whose 

adaptive function is far from obvious, evolve? 

 

Uncovering the evolutionary roots of music is severely hampered by missing archeological 

evidence, as behaviors such as vocal music do not fossilize (Honing et al., 2015). As 

musicologist Gary Tomlinson put it: “Following such developments may seem to pose 

intractable problems, even imponderable ones; for what kind of evidence can be brought to 

bear on the case? The question is pressing for musicking [music-making] since, whatever else 

it is, it is an evanescent act or set of acts that fades as it sounds. Its product does not have the 

staying power of mammoths painted on cave walls or the heft of carved ‘Venus’ figurines” 

(Tomlinson, 2015, p. 12). The earliest direct and undisputed archeological evidence for human 

musicality is that of musical instruments that were found in different parts of Eurasia, in the 

form of flutes carved out of animal bones (Buisson, 1990; Conard et al., 2009; Hahn and 

Münzel, 1995; Kunej and Turk, 2001). Carbon dating of these artefacts proves the existence of 

a widespread musical tradition that is at least around 40.000 years old, shortly after the first 

humans settled in Europe (Higham et al., 2012). The relative sophistication of the instruments 

suggests that they were likely predated by simpler instruments, many of which were made of 

biodegradable material and might never be recovered (Trehub et al., 2015). Even the earliest 

tools built specifically for making music are thought to have drawn upon an already 

established repertoire of musical behavior unaided by tools, i.e. vocal music (song) and 

percussive use of the body, e.g. clapping (Honing et al., 2015; Morley, 2014). Song is thought to 

be a universal in human music (Brown and Jordania, 2011; Nettl, 2001; Trehub, 2001) and 

vocalization – the production of sound with the vocal organs – a promising candidate for an 

evolutionary progenitor to music (Fitch, 2006; Mehr and Krasnow, 2017). 

 

Cross-species comparative research can offer insights into the evolution of music 

In the face of this scarcity of empirical evidence, comparative studies can greatly aid the 

endeavor of piecing together the evolutionary path that led to our present music faculty. 

Investigating which musical behaviors are shared among all human musical cultures (‘musical 
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universals’) can help disentangle whether they are more likely shaped by innate cognitive 

dispositions or developed through cultural evolution. This approach hinges on the availability 

of multiple independent data points. In the case of music the opportunities to gather these are 

rapidly diminishing, as western music – through globalization – leaves its mark even on the 

most remote cultures (Huron, 2008). 

 

Many authors have stressed the utility of species comparative animal research in this very 

endeavor (e.g. Carterette and Kendall, 1999; Fitch, 2006; Honing, 2018; Hulse and Page, 1988). 

Here it is important to distinguish between musicality, “a natural, spontaneously developing 

set of traits based on and constrained by our cognitive abilities and their underlying biology” 

and music, “a social and cultural construct based on that very musicality” (Honing, 2018). In 

this sense musicality is what allowed humans to develop music. Both the traits that make up 

musicality, as well as the biological foundations that enable those traits, can be broken up into 

their constituent components. One can then ask which of these components we share with 

other animal species. Musical universals across human cultures can help uncover which 

features of music are fundamentally rooted in musicality. The discovery and study of 

components of musicality shared with non-human species can in turn inform our 

understanding of the evolution of musicality. Rhythm is a central component of musical 

structure and its perception and production fundamental to musicality. At its most basic 

conception, it is simply the organization of events in time. As such, it governs the wealth of 

animal behavior, from locomotion to foraging to communication. It thus constitutes a potent 

domain for inquiry into universals of musicality. 

 

Isochronous rhythmic structure in human music 

One of the countless definitions for rhythm was formulated by Patel (2008, p. 96), specifically 

for application in music and speech: “Rhythm [is] the systematic patterning of sound in terms 

of timing, accent, and grouping”. When rhythmic patterns are regularly repeated, they give 

rise to periodicity. In terms of grouping, for example, a melodic phrase of four different notes 

might be repeated several times, so that each of those notes periodically reoccurs, 

interspersed with the remaining three. Like such phrasal patterns, also temporal patterns can 

be periodic. Consider the first seven notes of the children’s song ‘Mary had a little lamb’ 

(Figure 1A). The timing of the onsets of all seven notes is isochronous, i.e. the onsets are 

equally spaced in time. In other words, all notes have the same inter-onset interval (IOI). In 

this simple case of temporal periodicity, the temporal pattern is repeated with each note. If 

you were to clap your hands to this tune, your claps might coincide with every second note 

(‘Mary had a little lamb’). This is then the tempo of the beat, “a perceptually isochronous pulse 
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to which one can synchronize with periodic movements such as taps or footfalls” (Patel, 2008, 

p. 97). In this example, there are notes that occur between single beats (i.e. single events in the 

beat), namely every second note. The beat period is thus twice as long in duration as the IOI. 

In melodies with more complex patterns, some single beats might not coincide with salient 

acoustic events (e.g. note onsets), instead occurring in the space between successive events 

(Figure 1B). Thus, the beat is not necessarily instantiated in the acoustic signal itself, although 

it can be emphasized by an instrument, as the bass drum in electronic dance music often 

does. Instead it is a cognitive construct of the listener that is implicit in the acoustic structure 

of music (Arom, 1991, p. 230; Fitch, 2013).  

 

 
Figure 1 – Isochronous rhythmic subdivisions of two example song sections. The examples are the first two bars of 

vocalization of the nursery rhyme ‘Mary Had a Little Lamb’ (A) and the Rolling Stones song ‘(I Can’t Get No) 

Satisfaction’ (B). The middle row in each panel shows the Western musical notation of the vocal melody and lyrics. 

The musical symbols here are spaced according to their durational values. The dots below represent possible 

perceptual rhythmic subdivisions and the terms used for those in this thesis (center column). Tatum: the inferred 

“time division which most highly coincides with all note onsets” (Bilmes, 1993). Beat or perceived pulse (pulseP): “a 

perceptually isochronous pulse to which one can synchronize with periodic movements such as taps or footfalls” 

(Patel, 2008, p. 97). Note that listeners might perceive the beat on a different level, e.g. at twice the tempo. Metric 

levels: hierarchic pattern of more strongly accentuated events of the beat pattern. Above the musical notation is a 

visual representation of the audio signal (oscillogram) of the sung melody. The arrows indicate the time points of the 

note onsets. Also indicated in (A) is the first inter-onset interval (IOI). The extracted note onsets can be used to 

computationally fit a signal-derived pulse (pulseS). Note that the tatum and the pulseS coincide, while the tempo of the 

pulseP often is a small integer fraction of that of the tatum – ½ in (A) and ¼ in (B). Different listeners might perceive 

the beat on different levels, e.g. at twice or half the tempo. Further note that the strong accent on the beginning of (B) 

is carried in the song by non-vocal instruments not depicted here. De-emphasizing the highest metrical level is rare 

in music, but can be used as a stylistic device, e.g. the ‘one drop’ rhythm in Jamaican popular music (Oliver, 2013, p. 

244). 
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The rhythmic pattern is often further organized into a recurrent hierarchical pattern of 

weakly and strongly accentuated beats, the meter (Fitch, 2013; Longuet-Higgins, 1976). In the 

example, the first and third beat, coincident with the first and fifth note, is percieved as more 

strongly accentuated than the others (‘Mary had a little lamb’). The metric hierarchy can have 

multiple levels, such that the first beat, for example, could be percieved as having an even 

stronger accent than the third (Figure 1). 

 

As the term beat often implies the presence of a metrical structure, I will call the bare periodic 

percept without any assumptions of heterogeneous accentuation the (isochronous) pulse. I 

make a further distinction between this subjectively percieved pulse (abbreviated as pulseP) 

and a signal-derived pulse (pulseS), that is computationally extracted from an acoustic signal or 

pattern (extraction methods are exemplified in Publication A, sections 2.6 and 2.7). The events 

in such a pattern (e.g. note onsets) can themselves be quasi-isochronous, as in Figure 1A. If 

they are not (Figure 1B), the events can still be temporally organized in a regularity that gives 

rise to an isochronous rhythmic structure. That structure can be revealed through the pulseS 

and the robustness of its isochronicity evaluated through the temporal fit between pulseS and 

events. Given sufficient goodness of fit, this pulseS indicates a regularity required for a listener 

to percieve a pulseP. The pulseS corresponds temporally to the tatum, the inferred “time 

division which most highly coincides with all note onsets” (inspired by a portmanteau of 

'temporal atom' and named after jazz pianist Art Tatum; Bilmes, 1993). The temporal level of 

the pulseP, however, depends on the listener. People show a preference for pulsesP with a 

period of around 500–700 ms, although they can attend to a much wider range (Parncutt, 

1994; van Noorden and Moelants, 1999). This tempo also exhibits a degree of inter-cultural 

variability (Drake and El Heni, 2003) that may partly depend on knowledge of the specific 

music structure (Toiviainen and Eerola, 2003). 

 

Note that not all music has an isochronous beat. Notable exceptions include the music played 

on the Chinese Guqin (or Ch’in) lute. The traditional notation for the Guqin contains no 

temporal markings for individual notes (Patel, 2008, p. 97-98). However, a recent study on a 

diverse global set of 304 music recordings found an isochronous beat to be one of six 

‘statistical universals’ of human music, a feature that was present in the majority of songs 

sampled from each of nine geographical regions spanning the globe (Savage et al., 2015).  
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This thesis was motivated by the question of whether an equivalent to this central 

characteristic of human music can be found in the behaviors of non-human animals. For my 

specific research pertaining to the evolution of vocal music, some animal behaviors are more 

suited than others. A variety of animal species produce highly rhythmic communication 

signals through different mechanisms and modalities. Examples can be found in the visual 

domain, such as the claw waving displays of fiddler crabs (Kahn et al., 2014) and the 

bioluminescent flashes in fireflies (Buck, 1938; Moiseff and Copeland, 2010). The rhythmic 

chirps of bush crickets (Greenfield and Roizen, 1993; Sismondo, 1990) are acoustic signals, but 

are produced by mechanical stridulation of the wings, rather than through vocalizations. 

Various species of frogs produce vocalizations with high temporal regularity (reviewed by 

Greenfield, 2005). The rhythms underlying these vocalizations, however, are thought to be 

controlled by vocal pattern generators in the brainstem, and to be more homologous to 

largely innate human vocalizations like laughter and crying (Bass et al., 2008; Hage, 2018; 

Yamaguchi et al., 2017). Rhythmic drumming behavior as exhibited, for example, by palm 

cockatoos (Heinsohn et al., 2017), woodpeckers (Dodenhoff et al., 2001), and chimpanzees 

(Babiszewska et al., 2015) is non-vocal, but might be highly informative in the context of the 

evolution of human percussive music, especially considering that it is present in great apes, 

our closest living relatives (Fitch, 2015; Ravignani et al., 2017). 

 

Vocal learning 

A fundamental prerequisite for the development of vocal music is our capacity for vocal 

production learning. It is defined as the process of modifying one’s vocalizations as a result of 

experience with those of other individuals (Janik and Slater, 1997, 2000). Production learning 

is distinct from contextual learning, i.e. learning the context in which an existing vocalization 

is used. The latter comprises vocal comprehension learning – the extraction of a novel 

meaning from the use of a vocalization by another individual – and vocal usage learning – the 

learned production of an existing vocalization in a new context (Janik and Slater, 2000). 

Contextual learning is relatively wide-spread in vertebrates (Schusterman, 2008). Dogs, for 

example, can learn to sit in response to hearing the word ‘sit’ (comprehension learning) and 

can be trained to bark in response to a specific signal (usage learning; Salzinger and Waller, 

1962). They cannot, however, learn to produce the word ‘sit’ themselves, instead being 

restricted to their innate vocalizations. Vocal production learning (henceforth only referred to 

as ‘vocal learning’) appears to be a comparatively rare trait in the animal kingdom. Apart from 

humans, it has been clearly documented so far only in songbirds, hummingbirds and parrots 

as well as several species of bats, some marine mammals, and elephants (reviewed by Petkov 

and Jarvis, 2012). Note that only few species have been systematically tested for this capacity, 
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and in many more it may still await discovery. The faculty of vocal learning has traditionally (at 

least implicitly) been discussed as a dichotomy, separating animals into vocal learners (those 

listed above) and non-learners. Findings that some species generally considered ‘non-

learners’ show some degree of flexibility in their otherwise innate vocalizations have led to the 

formulation of the continuum hypothesis for vocal learning (Arriaga and Jarvis, 2013; Petkov 

and Jarvis, 2012). Species on one end of this continuum can subtly modify their vocalizations 

using auditory feedback, but are able to develop their species-typical vocal repertoire without 

an external model (‘limited vocal learning’; Scharff et al., in press). On the other end of the 

spectrum are those that learn most of their vocalizations by imitative learning from an 

external model (‘extensive vocal learning’; ibid.).  

 

Birdsong as a genuine model for vocal learning 

Among the most accomplished vocal imitators, next to humans, are many species of songbirds 

and parrots. Vocal learning has been studied more extensively in songbirds than in parrots 

(reviewed by Catchpole and Slater, 2008; c.f. Pepperberg, 2010). Much of that research in the 

last couple of decades has been motivated by striking parallels between the processes through 

which we learn to speak, and birds learn to sing, as well as in the underlying neural and 

genetic systems (Bolhuis et al., 2010; Doupe and Kuhl, 1999; Marler, 1970; Prather et al., 2017). 

Both children and juvenile songbirds learn their vocalizations by imitating adult conspecifics. 

Early in their development, songbirds start to produce relatively unstructured sounds called 

‘subsong’, akin to the babbling phase of babies. Like children, they then gradually modify those 

sounds through imitative learning to increasingly resemble the memorized sounds of their 

vocal models (e.g. adults). This learning process 

 

(i) depends on external auditory input; birds that grow up in complete acoustic isolation 

barely progress past subsong and end up with a highly impoverished song as adults (Fromkin 

et al., 1974; Thorpe, 1958). 

 

(ii) is shaped by innate dispositions; when given the choice between multiple different vocal 

models, they preferentially learn from their conspecifics (Wheatcroft and Qvarnström, 2015). 

An experiment by Fehér et al. (2009) aptly demonstrated that the neural substrate of zebra 

finches, a vocal learning songbird species, already carries relatively specific dispositions for 

particular features of their species’ song (Bolhuis et al., 2010): They established a colony 

consisting exclusively of isolated juvenils that never heard a ‘normal’ adult song, which then 

tutored their offspring with their subsong. Over several generations the songs in the colony 

increasingly resembled wild-type zebra finch song. 
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(iii) depends on auditory feedback; in modifying their vocalizations toward their memorized 

template, individuals have to compare the two in order to correct the perceived mismatch 

error (Brainard and Doupe, 2000; Möttönen and Watkins, 2009). 

 

The production of learned vocalizations in both humans and songbirds rely on comparable 

specialized forebrain regions. These include vocal motor pathways that evolved 

independently, likely out of a motor pathway that existed in the last common ancestor of birds 

and mammals (Chakraborty and Jarvis, 2015; Jarvis, 2004), accompanied by convergent 

transcriptional specializations (Pfenning et al., 2014).  

 

While these parallels have mostly been studied in the context of comparative language 

research, many apply more broadly to vocal learning in general and thus to the basis of vocal 

music. In some aspects of form and function birdsong is more reminiscent of music. Birdsong, 

like human song, is repeated again and again, both in practice and performance contexts (in 

zebra finches the two distinct modes are called ‘undirected’ and ‘directed’ song). Many bird 

songs sound very musical to the human ear, which has prompted several composers to 

incorporate them into their music, or to emulate birdsong in their arrangements (Baptista and 

Keister, 2005; Taylor, 2014). The very word birdsong reflects this perception. Despite 

differences in absolute pitch and duration, songs from a wide range of songbird species tend 

to exhibit similar descending or arched melodic contours as human songs (Savage et al., 2017). 

These might come out of basic energetic and motor constraints (Tierney et al., 2011), and/or 

shared perceptual preferences. The rhythmic structure of birdsong has received surprisingly 

little attention so far. Two related methods have been developed to visualize and explore the 

overall developmental dynamics of birdsong rhythm (Saar and Mitra, 2008; Sasahara et al., 

2015), but have found little application so far. 

 

Some recent work has examined the balance between repetition and novelty in the structure 

of bird songs. This well-studied balance is highly abundant in music (e.g. Hargreaves, 1984; 

Leach and Fitch, 1995; Sallavanti et al., 2015). David Huron (2006) has posited that one of the 

main drivers of the emotive power of music is the interplay between fulfillment and violation 

of expectations in the form of successful anticipations and surprises. For this interplay to 

occur, there has to be a ‘sweet spot’ (or rather range) between simplicity and complexity: an 

extremely repetitive song without any form of variation might quickly loose one’s interest. On 

the other hand, a constantly changing song devoid of any recurring patterns might strain the 

cognitive capacities of the listener and might not even allow for expectations to form. A study 
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(Janney et al., 2016) examined the temporal reoccurrence of motifs in up to hundreds of 

phrases consecutively sung by pied butcherbirds (Cracticus nigrogularis), a species noted for 

its virtuosity (Taylor, 2008; Taylor and Lestel, 2011). The authors found that individuals with a 

large repertoire tended to maximize the regularity in the repetition of motifs, while those with 

smaller repertoires showed reduced regularity. One of several alternative explanations they 

offer for this negative correlation of temporal diversity with repertoire size is somewhat 

related to Huron’s theory. It assumes that potential mates prefer accurate reproduction of 

song motifs, which has been shown to be the case in several bird species (Catchpole and 

Slater, 2008; Riebel, 2009). To evaluate the accuracy of a motif’s performance, i.e. compare 

multiple renditions, they must memorize it between subsequent presentations. A bird with a 

large repertoire should avoid exceeding the memory capacities of its avian listener by 

minimizing the temporal distance between renditions and thus increasing temporal regularity. 

For a bird with a small repertoire this is less of a concern, and it could instead reduce the 

chances of the listener habituating to its performance by ‘mixing it up’, i.e. increasing the 

temporal diversity in its song. An isochronous pulse could potentially serve as a temporal 

scaffolding for song and thus as a strong driver for anticipations in the time-domain of 

rhythm.  

 

The parallels in vocal learning between humans and songbirds has motivated a wealth of 

research into the behavioral, neurobiological and genetic mechanisms of birdsong over the 

last decades. The overall ethical acceptance of invasive studies in non-human animals has 

enabled the attainment of a finer grained understanding of basic biological mechanisms. 

Electrophysiological and optogenetic experiments, genetic manipulation and measurement of 

behavior-dependent gene expression provide a window into the proximate ‘how’ of vocal 

learning that can inform our inquiry into the neural and genetic substrate for speech and 

vocal music. The zebra finch (Taeniopygia guttata) has been established as the main model 

species in this line of research (Lattenkamp and Vernes, 2018), particularly in the domain of 

neuroscience (Griffith and Buchanan, 2010). The high resolution of knowledge about song and 

its development in the zebra finch, as well as the fact that its song is short and highly 

stereotyped makes it a good first candidate for investigations into isochronous rhythmic 

structure in learned vocalizations of non-human animals. 

 

The zebra finch 

Zebra finches live in large flocks where they have to navigate a complex social environment. 

Much of their communication takes place in the acoustic modality. Both male and female 

zebra finches are very vocal, uttering a variety of unlearned calls in different social situations 
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(Zann, 1996). Only the males produce a learned song. Each adult male sings an individual 

repeated motif of roughly 1s duration (Figure 2). A motif is composed of about 3–9 

bioacoustically distinct notes (also called syllables or elements; range from this thesis), which 

are separated by silent gaps of short but deep inhalations (‘minibreaths’; Wild et al., 1998) . 

Song notes consist of one or more sub-note elements that correspond to neuromuscular 

gestures (henceforth simply called 'gestures'; Amador et al., 2013). These are characterized by 

discontinuities in motor control parameters in the vocal organ, like membrane tension and air 

pressure, and often result in sudden frequency shifts (Figure 2, top). Animals mostly sing in 

bouts of several repetitions of the motif. These bouts are typically preceded by a variable 

number of usually identical elements called introductory notes. The sequential order of song 

notes is generally very stereotyped, and many birds sing only a single motif variant (e.g. abcd 

abcd abcd). Others have several motif variants and note insertions and deletions are common 

occurrences (Helekar et al., 2000). 

 

 
Figure 2 – Units of zebra finch song. A sonogram of a typical zebra finch song bout (bottom) and a magnification of 

the first motif of this bout (top). The song bout begins with a series of short introduction notes (white bars; bottom), 

followed by three motifs (black bars). The first and third motif consist of five song notes (black bars above the motif 

bars), separated by silent inhalation gaps. The second motif is a variant with a sixth note added at the end. The 

magnification of the first motif highlights the sub-note elements called gestures (alternating black and white bars). 

 

 

As so-called closed-ended (or age limited) vocal learners, zebra finch juveniles go through a 

finite learning period, after which their song remains largely unchanged. This distinguishes 

them from open-ended learners like canaries (Nottebohm et al., 1986; Nottebohm and 

Nottebohm, 1978), European starlings (Mountjoy and Lemon, 1995) and nightingales (Kiefer et 

al., 2006), whose song plasticity seasonally reopens. The song learning period of a male zebra 

finch consists of two overlapping phases: The sensory and the sensorimotor phase. During the 
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sensory phase, which lasts from around 25 to 65 days after hatching (‘post-hatch day’, PHD), 

juvenile birds memorize the song heard from adult male tutors, preferentially their social 

father’s song (Immelmann, 1969; Mann and Slater, 1995; Roper and Zann, 2006; Zann, 1990). 

Beginning around the same time, the birds start to produce noisy and relatively unstructured 

vocalizations called subsong, analogous to infants babbling (Doupe and Kuhl, 1999; Marler, 

1970). In the sensorimotor phase, from around 35 PHD onward, these vocalizations are 

gradually modified, increasingly resembling the memorized tutor song (Derégnaucourt, 2011). 

At the time of sexual maturation, around 90 PHD, vocal plasticity closes and the song 

crystallizes (Immelmann, 1969). 

 

Two specialized neural pathways in the songbird brain are involved in song learning and 

production. Together they form what is commonly called the ‘song system’ (Figure 3). Both 

pathways consist of anatomically discrete brain regions (nuclei) connected by projection 

neurons and both originate at the pallial nucleus HVC (historically an abbreviation, now used 

as a proper name; Reiner et al., 2004). Although birds do not possess the layered neocortex 

found in the mammalian brain, the avian pallium is argued by many to be analog, if not 

homolog to the mammalian neocortex (e.g. Jarvis et al., 2005).  

 

The vocal motor pathway (or song motor pathway, SMP) is essential for song production. 

Lesions in any part of this pathway lead to either elimination or severe disruption of song 

(Nottebohm et al., 1976; Simpson and Vicario, 1990). Neurons project from HVC to the robust 

nucleus of the arcopallium (RA) and from there to the tracheosyringeal portion of the 

hypoglossus (nXIIts), which innervates the muscles of the syrinx, the bird’s vocal organ (Wild, 

1997). 

 

The second, the anterior forebrain pathway (AFP), forms a closed cortico – basal ganglia – 

thalamic loop. It plays a crucial role in sensorimotor learning and adult plasticity of song (Kao 

and Brainard, 2006; Scharff and Nottebohm, 1991; Thompson et al., 2011), and contributes to 

recognition of conspecific song (Brenowitz, 1991; Scharff et al., 1998). It is involved in 

generating variability across song renditions, thereby facilitating the learning process through 

motor exploration and subsequent performance evaluation (Aronov et al., 2008; Kojima et al., 

2018; Ölveczky et al., 2005). This pathway passes through Area X, the nucleus dorsolateralis 

anterior pars medialis (DLM) and the lateral magnocellular nucleus of the anterior nidopallium 

(LMAN). From there it converges with the SMP at the RA. 
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FoxP2: A genetic building block for vocal learning 

Another intriguing parallel between songbirds and humans in terms of vocal learning is one on 

the genetic level. In 1990 an extended family was discovered of which some members showed 

a severe speech disorder called ‘developmental verbal dyspraxia’ (DVD) or ‘childhood apraxia 

of speech’ (Hurst et al., 1990). Unlike earlier described cases of DVD, the disorder was 

autosomal dominantly inherited in this family. It was found that the affected members carried 

a heterozygous point-mutation in the gene coding for FOXP2 (forkhead box protein P2; Lai et 

al., 2001). It belongs to a large family of transcription factors – proteins that bind to the DNA 

to repress or enhance the expression of other genes. Patients with DVD caused by intragenic 

mutations of FOXP2 typically exhibit difficulties in sequencing speech sound into syllables, 

words and sentences and in planning or programming of oral movements (Morgan et al., 2016). 

Symptoms also commonly include receptive and expressive language deficits, both semantic 

and syntactic. Non-verbal IQ and general fine motor skills are not – or in some cases only 

mildly – affected (Morgan and Webster, 2018). To my knowledge there are no reports on 

rhythm production and perception abilities in patients with FoxP2-related DVD to date. 

 

The genes encoding these proteins are highly conserved across vertebrates (Scharff and Petri, 

2011; Schatton & Scharff, 2016). In songbirds, FoxP2 expression is regulated developmentally 

and in relation to singing activity in Area X (Haesler et al., 2004; Teramitsu et al., 2010). Studies 

in which Foxp2 was experimentally downregulated in Area X of juvenile zebra finches, resulted 

in impairment of proper song learning (Haesler et al., 2007). These birds copied fewer notes 

from their tutors, those that were copied were copied less accurately and the sequential order 

of notes was jumbled. In addition to inaccurate copying of spectral features, the duration of 

the copied notes was significantly more different from their tutors than was the case in 

Figure 3 – Schematic overview of the song system 

pathways in the songbird brain. The song motor 

pathway (SMP, orange arrows, right) includes the 

nuclei HVC (used as a proper name), the robust nucleus 

of the arcopallium (RA), and the tracheosyringeal 

portion of the hypoglossus (nXIIts). The anterior 

forebrain pathway (AFP, dark blue arrows, left) passes 

through HVC, Area X, the nucleus dorsolateralis 

anterior pars medialis (DLM), the lateral magnocellular 

nucleus of the anterior nidopallium (LMAN) and ends at 

the RA. Image based on Bolhuis et al. (2010). 
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control birds. In the adult song of these birds, the variability of note durations was also 

significantly increased. FoxP2 thus appears to be involved in both learning and production of 

accurate timing in song. 

 

Besides FoxP2, two other members of the FoxP family of transcription factors are expressed in 

the brain: FoxP1 and FoxP4 (Lu et al., 2002; Teufel et al., 2003). These have been demonstrated 

to form homo- and heterodimers in cultures of human (Sin et al., 2015) and mouse neural 

tissue (Li et al., 2004) and in the zebra finch brain (Mendoza and Scharff, 2017). Dimerization 

seems to be essential for the transcriptional function of FoxP2 (Li et al., 2004). FoxP2, as well 

as FoxP1 and FoxP4 may therefore play a role in the development of zebra finch song rhythm. 

 

Echolocating bats as mammalian vocal learners 

Despite the apparently high convergence of the neural mechanisms underlying vocal learning 

in songbirds and humans, the divergent evolutionary paths since their last common ancestor 

led to marked differences, e.g. in brain morphology. A species comparative approach in the 

search for the evolutionary path to isochronous rhythmic structure in music could be 

benefited greatly by including species that are phylogenetically closer to humans.  

 

One group of mammals in which the capacity for vocal learning evolved apparently 

independently from humans, are echolocating bats. Compared to the breadth of research on 

vocal learning in songbirds, studies on bat vocal learning are relatively scarce (Knörnschild, 

2014). Pups of the greater sac-winged bat (Saccopteryx bilineata) has been shown to learn 

territorial songs from adult males through vocal imitation (Knornschild et al., 2010). The 

vocalizations produced early in their learning phase show similarities to human babbling and 

the subsong in songbirds (Knörnschild et al., 2006). Within the phylogenic group of bats FoxP2 

exhibits a high level of sequence diversity, an intriguing deviant to the gene’s otherwise 

marked conservation (Li et al., 2007). The significance of this diversity for vocal learning is yet 

unclear, but it offers new opportunities for research into the molecular mechanisms of FoxP2 

(e.g. Chen et al., 2013). 

 

Thesis outline 

This thesis begins with a review of different statistical methods and visualization tools for the 

analysis of temporal structure in vocalizations, movements and other behaviors developing 

over time (Publication A: Ravignani & Norton, 2017). This article provides an overview of the 

various methods available for both the quantification of rhythmic complexity in single 

vocalizations and the comparison of rhythmic structure between multiple vocalizations (or 
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other behaviors). Most of the presented methods are demonstrated by application to a set of 

computer-generated temporal sequences that differ in their rhythmic structure. Thereby we 

describe the appropriateness of the tests to particular hypotheses and provide possible 

interpretations of the exemplary results. The article incudes the code that was used to carry 

out the exemplary analyses and create the figures as supplementary material, including a 

detailed explanation and instructions on its usage. Due to the broad applicability of these 

analytic tools in diverse disciplines and the importance of cross-species comparative 

research, the paper also intends to provide a common point of reference for language 

researchers, musicologists and behavioral biologists, hopefully facilitating interdisciplinary 

exchange and fostering comparability of results. 

 

One of the methods presented in Publication A is the generate-and-test approach (GAT) I 

developed as a tool to investigate zebra finch song for an underlying isochronous regularity. 

Publication B describes this method and reports the results of its application to the songs of 

adult zebra finches (Norton & Scharff, 2016). The GAT algorithm finds a signal-derived 

isochronous pulse (pulseS) that fits best to a series of temporal events. Here we chose note 

onsets as the events to which the pulsesS were aligned. In each of the 15 birds whose songs 

were analyzed, the frequencies (i.e. tempo) of the best fitting pulsesS clustered closely around 

a dominant frequency between 10 and 60Hz (25–45Hz for most birds), that differed from 

individual to individual. These pulses fit significantly better than pulses aligned to artificial 

‘songs’ with randomized note and gap durations but identical sequential structure. This result 

indicates that the analyzed songs have a strong isochronous temporal structure in the timing 

of notes, and thus the potential for a listener to perceive a pulse akin to the beat in many 

types of music. Interestingly, this regularity extends to the sub-note level: the transitions 

between gestures within complex notes coincided with the pulse significantly more often than 

expected by chance. This implies a hierarchical temporal structure, on the lowest level of 

which lies the gesture, that is reminiscent of the metrical rhythm of many types of music. 

 

In Publication C the GAT method was applied to three different vocalization types produced 

by the greater sac-winged bat. Echolocation calls, one of the three types, are emitted by the 

bat during flight. Echolocation calls during search flights are known to be coupled to wing 

beat frequency. The other two types –learned male territorial songs and innate pup isolation 

calls – are produced while the bats are stationary and therefore not coupled to wingbeat. The 

frequencies of the best fitting pulseS mostly clustered in a range of 6–20Hz for all animals. 

Interestingly, the range for the non-coupled vocalization types was in a similar range to the 

wingbeat-coupled echolocation sequences. This led us to speculate that attentional tuning to 
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the rhythms of conspecifics’ echolocation calls might have an influence on the rhythm of 

social vocalizations. 

 

Publication D reports the effects of experimentally reduced levels of FoxP1, 2 and 4 in Area X 

of juvenile male zebra finches on their song learning success. Four groups of animals received 

lentivirus-mediated downregulation targeting either FoxP1, FoxP2 or FoxP4, or with a non-

targeting control construct. All non-control treatment groups showed impaired song learning 

and an impoverished song as adults, compared to the control group. Despite overlap in the 

parameter-space of the affected song features, discriminant analysis revealed that the 

treatment groups diverged from each other in linear combinations of these features. This 

suggests that developmental manipulations of FoxP1, FoxP2 and FoxP4 in Area X differentially 

impact adult song. One of the strongest discriminating factor was related to the variability in 

note timing. Surprisingly the songs of the control group birds had a markedly reduced 

isochronous rhythmic structure, comparable to those of the knockdown groups. The general 

discussion offers some possible interpretations of these results in light of recent research on 

neural and behavioral mechanisms of song learning and production. 

 

 

Table 1 – Different terms used for important concepts in the four publications. 

Introduc-

tion 

Publica-

tion A 

Publica-

tion B 

Publica-

tion C 

Publica-

tion D 

Description/Definition 

pulseS pulse pulseS rhythmS pulse Isochronous sequence of timepoints that 

best aligns to a given temporal pattern 

note note note element song 

element 

Unit of animal vocalizations that is 

separated by silent inhalation intervals 

(gaps) 

gap - gap gap gap Silent inhalation interval 
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Abstract 

 

Research on the evolution of human speech and phonology benefits from the comparative 

approach: Structural, spectral, and temporal features can be extracted and compared across 

species in an attempt to reconstruct the evolutionary history of human speech. Here we focus 

on analytical tools to measure and compare temporal structure in human speech and animal 

vocalizations. We introduce the reader to a range of statistical methods usable, on the one 

hand, to quantify rhythmic complexity in single vocalizations, and on the other hand, to 

compare rhythmic structure between multiple vocalizations. These methods include: time 

series analysis, distributional measures, variability metrics, Fourier transform, auto- and 

cross-correlation, phase portraits, and circular statistics. Using computer-generated data, we 

apply a range of techniques, walking the reader through the necessary software and its 

functions. We describe which techniques are most appropriate to test particular hypotheses 

on rhythmic structure, and provide possible interpretations of the tests. These techniques can 

be equally well applied to find rhythmic structure in gesture, movement and any other 

behaviour developing over time, when the research focus lies on their temporal structure. 

This introduction to quantitative techniques for rhythm and timing analysis will hopefully spur 

additional comparative research, and will produce comparable results across all disciplines 

working on the evolution of speech, ultimately advancing the field.  
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1. Introduction 

 

Research on the evolution of speech has greatly benefitted from the comparative approach 

(Fitch, 2000; Yip, 2006; Rauschecker & Scott, 2009; Fedurek & Slocombe, 2011; Scharff & Petri, 

2011; de Boer, 2012; Rauschecker, 2012; Ghazanfar, 2013; Lameira, Maddieson & Zuberbühler, 

2014; Lameira et al., 2015; Fehér, 2016; Filippi, 2016; Gustison & Bergman, under review). In 

fact, relating human speech, and animal vocal production learning can inform the evolution of 

speech both by comparing the signals produced across species, and by inverse inference, 

comparing the neurocognitive machinery used to generate the signals (Bolhuis, Okanoya, & 

Scharff, 2010; Fitch, 2014; Bowling & Fitch, 2015; Collier et al., 2014). 

 

Three main avenues seem particularly relevant to the comparative study of the evolution of 

speech (Figure 1). 

 

Positional regularities: how the building blocks of speech or language, each taken holistically, 

are organized and related to each other (Fitch, 2014; Kershenbaum et al., 2014; ten Cate, 2016). 

 

Spectral characteristics: how different frequencies and their intensities relate to one another, 

giving rise to tone in speech, liaison, vowel quality, harmonicity, etc. (Fitch, 2000; Yip, 2006; 

Spierings & ten Cate; 2016). 

 

Temporal structure: how the speech/vocal signal is organized and develops over time (Ramus, 

Nespor, & Mehler, 1999; Goswami, & Leong, 2013; Bekius et al., 2016; Benichov et al., 2016; 

Hannon et al., 2016; Jadoul et al., 2016). Timing, together with some spectral characteristics, 

contributes to rhythm (see Table 1 for a definition of rhythm and other major concepts 

presented in this paper). 
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Figure 1 – Three approaches to the analysis of animal vocalizations, including human speech, laying emphasis on 

sequential, spectral or temporal features of the signal. The three-dimensional space presents a common 

multicomponent approach to speech and animal vocalizations, showing that these components constitute 

complementary dimensions, rather than a mutually exclusive classification. Depending on the species and scientific 

question, one dimension might be particularly relevant. Research focus on structural, spectral and temporal 

information is exemplified along the three main axes, with many cases of vocalizations falling between two categories. 

Counter-clockwise, the figure shows structures where a possible research emphasis is laid on: (a) Sequential: an 

abstract representation of a series of song notes, and its mirror permutation, containing the same elements and 

having the same duration but different sequential properties; (b) Spectro-sequential: spectrogram of a chunk of zebra 

finch song (Taeniopygia guttata), where complex spectral information is combined into a sequential repetitive 

structure (dashed boxes); (c) Spectral: spectrogram of a harbour seal pup call (Phoca vitulina), showing harmonic 

features, with less emphasis on structural/positional regularities; (d) Spectro-temporal: schematic representation of a 

spectrogram showing a singing lemur vocal duet (Indri indri), where spectral and temporal information might be 

interacting (Gamba et al., 2016); (e) Temporal: spectrogram of a California sea lion’s bark (Zalophus californianus), 

showing a clear rhythmic, isochronous pattern: barks contain little spectral information and variability, but are 

produced with remarkable regularity, like a metronome; (f) Tempo-sequential: notes composing a zebra finch song, 

which in turn possesses an underlying rhythmic structure (Norton and Scharff, 2016). Notice that these examples 

concern the research focus, rather than the nature of the signal: for instance, panel (e) is taken as a prototype of 

temporal signal, but it also has a clear spectral structure. This paper focuses on useful methods to analyse cases (d), 

(e) and (f), that is, when emphasis is put on analysing the temporal structure of vocalizations. Panel (d) reproduced 

and modified from Gamba et al., 2016 and panels (a) and (f) from Norton and Scharff, 2016, both published open access 

under the CC BY 4.0. Other panels generated using Praat (Boersma & Weeninck, 2013).   
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Table 1 – Definition of crucial concepts in comparative rhythm research 

Name 

(abbreviation) 

Definition 

Rhythm Structure over time; durations marked by (acoustic) events 

(McAuley, 2010) 

Isochronous A series of events repeating at a constant rate 

Synchronous A series of events individually occurring at the same time as events 

from another series 

Time series Sequence of events occurring over time, sampled at regular time 

intervals 

Inter-onset 

interval (IOI) 

Time elapsed between the beginning of one event (i.e. onset) and 

the beginning of the next event 

Meter Hierarchical organization of timed events based on spectral 

properties (stress, e.g. loudness alternation, pitch variation) 

Syllable-timed Language in which all syllables (both accented and unaccented) are 

roughly isochronous 

Stress-timed Language with an isochronous occurrence of stressed syllables 

Mora-timed Language in which all moras (syllables and some combinations 

thereof) are isochronous 

Pulse Isochronous grid most suitable to a given temporal pattern. 

Iambic Metrical form alternating a weak (unstressed) syllable with a strong 

(stressed) syllable 

Trochaic Metrical form alternating a strong syllable with a weak syllable 
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Rhythmic properties of human speech (Ramus, et al., 1999; Grabe & Low, 2002; Tilsen, 2009; 

Lehiste, 1977) and animal vocal communication (Saar & Mitra, 2008; Norton & Scharff, 2016; 

Ravignani et al., 2016) are often investigated. However, lack of an interdisciplinary statistical 

approach to rhythmicity of vocalizations across species hinders comparative and comparable 

research. 

 

Here we introduce the reader to a broad range of quantitative methods useful for rhythm 

research within and across species. The paper is structured as follows. A first distinction 

between methods concerns measuring either rhythmic complexity of one pattern, that is, how 

regular and predictable a sequence of events is (section 2), or rhythmic relationships between 

multiple patterns, that is, similarities in the temporal structure of two or more sequences of 

events (section 3).  

 

In section 2 we characterize inter-onset intervals, used to measure temporal information, and 

show how rhythmicity can be quantified using: distributional measures, such as histograms 

(2.2), Kolmogorov-Smirnov D (2.3) and normalized pairwise variability index (2.4); 

autocorrelation (2.5); beat-finding algorithms, such as Fourier transform (2.6) and Pulse 

generate-and-test (2.7); time series analysis (2.10). We also present two powerful techniques 

to visualize regularities in rhythmic patterns: phase portraits (2.8) and recurrence plots (2.9). 

 

Section 3 extends section 2 by focusing on measures of temporal similarity between two 

patterns, namely: cross-correlation (subsection 3.1); multidimensional time series analysis, 

testing how one pattern can be linearly estimated (3.2) or causally predicted (3.3) from the 

other; statistical analysis of circular data, including visualization with rose plots (3.4). 

 

Section 4 describes some research areas where the techniques we present may be particularly 

useful. Section 5 provides some overall conclusions. Section 6 describes how to access the 

data and scripts used in this paper. To get a better understanding of the methods presented in 

this article, we encourage the reader to use the provided code (Supplementary Material) to 

experiment with different patterns. New versions of the code will be uploaded at 

http://userpage.fu-berlin.de/phno/mrc/. 
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2. Within-pattern analytical techniques: Quantifying rhythmicity 

 

2.1. Overview 

The temporal structure of vocalizations can be analyzed on the raw audio signal, or more 

commonly on time series extracted from the signal, like the amplitude envelope. Often 

however, one is interested in the timing of certain discrete events, e.g. syllable onsets, 

amplitude peaks, or any other behaviour developing over time. Some of the methods 

described here apply to patterns represented by their inter-onset intervals (IOIs), while others 

– like autocorrelation and Fourier transform – are more readily applied to a time series, i.e. a 

sequence of values sampled at equally spaced points in time (see Supplementary Material for 

details).  

 

To demonstrate the methods described in this section, we generated 5 sequences that differ 

in their rhythmic structure, each consisting of 24 events (Figure 2, left column). To simplify 

notation, we demonstrate techniques for events with IOIs in the range of 1–6 seconds (s), 

though all presented techniques can be used at any time scale, depending on the observed 

behavior.  

 

2.2. IOI distribution: Which intervals occur in the pattern, and how often? 

A histogram of all IOIs in a sequence provides a first visualization of its rhythmic structure 

(Figure 2, right column). A normal distribution suggests a roughly isochronous pattern, where 

a lower spread indicates a more isochronous pattern (Figure 2.b). The existence of a few 

distinct IOI categories may appear as a multimodal distribution (Figure 2.c). Uniformly 

distributed IOIs might hint at a lack of such categories or a rhythmic structure in general 

(Figure 2.a). However, when many durational categories exist, a uniform distribution might 

also appear, concealing higher order structure (Figure 2.d). A particular limitation of 

histograms and statistical measures of durational distributions is their lack of sensitivity to 

structure: for instance, any permutation of the order of IOIs will change the structure while 

leaving distributional measures unaltered.  
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Figure 2 – Five different example patterns that differ in their rhythmic structure (a–e, left column), as well as 

histograms of their inter-onset intervals (IOI, right column). (a) Random sequence: The time points of events of the 

first sequence are pseudorandomly drawn from a uniform distribution. (b) Isochronous sequence: The second 

sequence is isochronous, i.e. IOIs of successive events are equal for all events (in this case 2s). This sequence with 

added noise is taken to loosely represent the hypothesized syllable-timed structure of some languages (Grabe & Low, 

2002). (c) Rhythmic sequence: The third pattern contains 4 repetitions of a sub-pattern consisting of 6 events (IOIs: 1s, 

1s, 3s, 2s, 2s, 3s). (d–e) The final two sequences are loosely based on concepts of timing division in language: stress 

timing and mora timing. (d) The stress sequence consists of clusters of 4 events each. The duration of all clusters is 8s 

and the pattern of IOIs within a cluster are different each time (e.g. [0.5,1.5,3.75,2.25], [2,1,3.5,1.5], …). (e) The mora 

sequence contains clusters of 3s duration each, that either contain one or two events (e.g. [1,2], [3], [2.25,0.75], …). 

Gaussian noise with a standard deviation of 0.04s (isochronous and rhythmic sequence) or 0.02s (stress and mora 

sequence) was added to the timing of the events.  

 

 

2.3. Kolmogorov-Smirnov D: Does interval distribution differ from any hypothesized 

distribution? 

The one-sample Kolmogorov-Smirnov test (K-S test, Table 2) can be used to evaluate how 

different an observed IOI distribution is from a particular, specified distribution, e.g. a normal 

distribution in the isochronous case, or a uniform distribution in the case of no actual 

structure (Lilliefors, 1967). The test uses the statistic D, measuring the maximum distance 

between two cumulative distribution functions. This measure can be used to compare e.g. 

different languages based on the normality of the intervals between syllable nuclei (Jadoul et 

al., 2016). When compared to a normal distribution, the isochronous pattern in Figure 2.b has 

a D of 0.085, about half of the 0.14 of the mora pattern (Figure 2.e). In order to statistically test 

an IOI distribution for normality, a modification of the K-S test by Lilliefors can be used 

instead (Lilliefors, 1967). Of the five example patterns in Figure 2 only the random and 



Measuring rhythmic complexity – Publication A 

 
36 
 

rhythmic patterns are significantly non-normal according to the Lilliefors test (p=0.035 and 

p=0.024 respectively; n=24). 

 

 

 

 

Table 2 – Analytical techniques to unveil temporal structure in one pattern, including their specific function. 

Technique 

(References) 

Function  Advantage Disadvantage 

Kolmogorov-

Smirnov D 

(Jadoul et al., 

2016) 

One number 

describing the 

distribution of a 

sequence of IOI  

Common and well-

studied statistical 

tool 

Not an absolute 

number, instead the 

relative distance 

from a specific 

hypothesized 

distribution 

nPVI (Grabe & 

Low, 2002; 

Jadoul et al., 

2016) 

One number 

describing temporal 

variability of a 

sequence of IOI, 

taking only 

information about 

adjacent intervals into 

account 

Summarizes 

temporal regularity 

with one number 

Not very robust to 

different speakers 

and replications 

Autocorrelation  

(Ravignani & 

Sonnweber, 

2015; Hamilton, 

1994) 

Probes the existence 

of repeating 

subpatterns within a 

pattern 

Few assumptions 

required 

Provides only little 

information on the 

pattern (difficult to 

map 

autocorrelations to 

necessary/sufficient 

conditions on 

pattern structure) 

Fourier analysis  

(Saar & Mitra, 

2008; Norton & 

Scharff, 2016) 

Decomposes signal 

into sum of 

isochronous pulses 

Common, fast 

method in signal 

analysis 

May return several 

best fitting pulses 
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GAT Pulse 

matching  

(Norton & 

Scharff, 2016) 

Finds a metronomic 

pulse best fitting the 

pattern 

Aimed and 

proficient at 

finding the slowest 

pulse in the pattern 

Computationally 

intensive; less used 

than Fourier analysis 

Phase portrait 

(Rothenberg et 

al., 2014; 

Wagner, 2007; 

Ravignani, in 

press) 

Enables temporal 

regularities to be 

visualized as 

geometric regularities 

Easy to plot, 

straightforward 

interpretation 

Not an analytical, 

rather a visualization 

technique 

Recurrence 

plots (Thiel et 

al., 2004; Coco 

& Dale, 2014) 

Visualizes temporal 

regularities among 

non-adjacent 

elements  

Provides a quick 

glance at higher-

order regularities 

Sensitive to the 

initial parameters 

(threshold for 

considering two IOIs 

similar), which can 

produce false 

positives/negatives 

ARMA 

(Hamilton, 1994; 

Jadoul et al., in 

review) 

Tests whether each 

IOI can be expressed 

as a linear 

combination of 

previous IOI 

Most common 

method to analyse 

time series; based 

on much 

theoretical work; 

many statistical 

packages available; 

using Akaike sets 

increases 

robustness 

Only captures linear 

relations 
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2.4. The normalized pairwise variability index: How variable are adjacent intervals? 

The normalized pairwise variability index (nPVI) is a measure originally developed to quantify 

temporal variability in speech rhythm (Table 2; Grabe & Low, 2002; Toussaint, 2013). It is 

computed as follows. For each pair of adjacent IOIs, one calculates their difference and divides 

it by their average. The nPVI equals the average of all these ratios, multiplied by 100, namely: 

 

 𝑛𝑃𝑉𝐼 =
100

𝑛−1
[|

𝐼𝑂𝐼2−𝐼𝑂𝐼1
𝐼𝑂𝐼2+𝐼𝑂𝐼1

2

| + ⋯ + |
𝐼𝑂𝐼𝑛−𝐼𝑂𝐼𝑛−1
𝐼𝑂𝐼𝑛+𝐼𝑂𝐼𝑛−1

2

|]        [1] 

 

The nPVI equals zero for a perfectly isochronous sequence, and it increases with an increasing 

alternation in onset timing. Some have suggested nPVI captures cross-linguistic rhythmic 

classes, with syllable-timed languages exhibiting low nPVI, stress-timed languages having high 

nPVI, and mora-timed languages lying between the two extremes (Grabe & Low, 2002). The 

nPVI values of our computer-generated example patterns align with this classification: The 

isochronous pattern, representing syllable-timing, has a low nPVI of 3.3, the stress pattern a 

high value of 92.74 (close to the random pattern with 94.54), while the mora pattern lies in 

between with 52.84. Notice however that nPVI has little explanatory power beyond simple, 

zeroth-order distributional statistics, such as Kolmogorov-Smirnov D (Jadoul et al., 2016; 

Ravignani, in press). 

 

2.5. Autocorrelation: How similar is a pattern to itself at different points in time? 

Autocorrelation is a technique that can help reveal higher order structure within a pattern, 

specifically repeating temporal sub-patterns (Hamilton, 1994; Ravignani, & Sonnweber, 2015). 

Autocorrelation correlates a time series (Figure 3.b) with a copy of itself at different time lags 

(Figure 3.c–f, red dotted line). It is calculated by having one copy of the signal slide stepwise 

across the other; at each step the products of all points in the two signals are calculated and 

added together. The result of the process is a function of these sums at the different time lags 

between the two signals (Figure 3.h). The autocorrelation starts at a time lag of zero, where 

the two copies overlap perfectly (Figure 3.c). At zero lag the autocorrelation function is 

normalized to 1 (Figure 3.h). Since the signal is non-zero only at the time points of the events, 

the function will be zero at the lags at which none of the events overlap (Figure 3.d&h). When 

one or more events in the two signals overlap a peak appears in the function (Figure 3.e&h). 

The more events overlap at a certain lag, the higher the peak in the function (Figure 3.f&h), 

suggesting that a sub-pattern might repeat after a duration that equals this lag. Note that 

unless the IOIs are exactly equal in duration, the events in the raw time series will not overlap. 

Real world patterns, however, are rarely isochronous and any rhythmic structure usually 
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contains some amount of noise or jitter. To deal with noise one can convolute the time series 

with a narrow normal probability density function prior to autocorrelation, effectively 

replacing every single time point event with narrow Gauss curves (Figure 3.a&b). Several 

nearby, though not simultaneously overlapping, events can thereby partially overlap over a 

range of lags and together contribute to a single peak in the autocorrelation function (e.g. 

Figure 3.e). 

 

 

 
Figure 3 – Visualization of the autocorrelation process (a–f) and the resulting autocorrelation function for three of the 

example patterns (g–i).(a) The first nine events of the rhythmic sequence depicted in Figure 2.c. (b) The same events 

converted to a time series and convoluted with a narrow normal probability density function (npdf). (c) At zero lag the 

stationary copy of the time series (blue, continuous line) and the time-lagged copy (red, dotted line) overlap perfectly. 

For the sake of the example the time lagged copy is only shown for the first six events (i.e. the first repetition of the 

sub-pattern). (d) At a time lag of 0.5s none of the events overlap, i.e. across the whole time range at least one of the two 

signals is zero. (e) At 1s lag events 1 and 2 of the lagged copy partially overlap with events 2 and 3 of the stationary signal. 

(f) At a lag of 2s, three of the events overlap, resulting in a higher peak ("f" in h). The peak is also narrower than the one 

at 1s lag, indicating that the events overlap more closely. (g) Autocorrelation function of the isochronous sequence, 

depicted in Figure 2.b. (h) Autocorrelation function of the rhythmic sequence, seen in Figure 2.c. The letters c–f point 

to the lags that are depicted in (c–f). (i) Autocorrelation function of the mora sequence (see Figure 2.e).  
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Figure 2.b shows an isochronous pattern (IOI ≈ 2s) of 24 events with a small amount of 

Gaussian noise added. At a lag of 2s a peak close to one appears in the autocorrelation 

function, as events 2–24 of the signal overlap with events 1–23 of the lagged signal (Figure 3.g). 

The height of the following peaks – regularly occurring at n*2s – gradually decreases as the 

lagged signal moves beyond the original signal and fewer events overlap. 

 

The “rhythmic sequence” contains 3 repetitions of a random sub-pattern consisting of 6 

events with IOIs equaling 1, 2, or 3s (total duration = 12s; Figure 2.c). Looking at the 

autocorrelation plot of this pattern, the first peak appears at a lag of 1s, where some of the 

events start to overlap, and all following peaks are at lags 2,3,4,...s (Figure 3.h). This suggests 1s 

is the basic time unit of this pattern, i.e. all IOIs are multiples of 1s. The largest peak is located 

at 12s lag, because 12s is the total duration of the repeating sub-pattern. At this point all 

events of sub-patterns 2, 3 and 4 of the signal overlap with sub-patterns 1, 2 and 3 of the 

lagged signal. Note that a higher peak could potentially occur at a lower lag, if more than three 

quarters of events were to overlap. Relatively high peaks are likely to appear at harmonics (i.e. 

multiples) of the 12s lag, namely at 24 and 36s where the following repetitions of the sub-

pattern overlap. In the “mora sequence” events occur every 3s as well as at varying time points 

in between (Figure 2.e). Accordingly, the autocorrelation function shows peaks at 3s, 6s, etc., 

as well as some noise stemming from less regularly occurring events (Figure 3.i). 

 

2.6. Fourier transform: Decomposing the pattern into a sum of regular, clock-like 

oscillators 

The Fourier transform is used to express any signal as a sum of sine waves of different 

frequencies and phases. In acoustics, one application is to decompose a sound wave into its 

constituent frequencies. When applied to the time series of a rhythmic pattern, the Fourier 

transform finds periodicities in the timing of the events. A particularly important periodicity is 

the pulse: the slowest isochronous sequence to which most events align. The Fourier 

transform can be visualized in a power spectrum, where the x-axis denotes the frequencies of 

the waves and the y-axis their magnitude, i.e. how much they contribute to the signal (Figure 

4).  
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Figure 4 – Power spectra of four of the example patterns. The power spectrum is the result of a Fourier transform, 

which decomposes a signal into waves of different frequencies. It shows in what magnitude (y-axis) the different 

frequencies (x-axis) contribute to the signal. 

 

 

In the “isochronous sequence” the first and largest peak in the power spectrum is located at 

0.5Hz, corresponding to the pulse of the pattern, i.e. the frequency at which the events 

regularly occur, namely every 2 seconds (Figure 4.a). If a signal is a sine wave, the power 

spectrum will consist of only this peak. However, often the signal is a sequence of narrow 

spikes, hence additional waves are needed to reconstruct the signal. This explains the higher 

frequency waves in the power spectrum in Figure 4.a. 

 

In the stress and mora patterns, the maximum peaks in the power spectra are located at 4Hz 

(Figure 4.c&d) because all IOIs are integer multiples of 0.25s, so a 4Hz pulse coincides with all 

events. 

 

2.7. Pulse GAT: Which isochronous grid fits the pattern best? 

A more direct, albeit computationally intensive, approach to finding the pulse of a sequence is 

“generate-and-test” (GAT). First, a low frequency, isochronous grid or pulse is created in the 

form of regularly spaced timestamps (Figure 5.a). The deviation of each event in the pattern to 

its nearest grid element is measured and the root-mean-squared deviation of the whole 

pattern, multiplied by the grid frequency (frmsd) is calculated. The grid is then shifted forward 

in time in small steps in order to find the best fit (i.e. lowest frmsd) for the grid of that 

particular frequency (Figure 5.b). Next, the grid frequency is increased in small steps and the 

minimal frmsd is again calculated for each step (Figure 5.c&d). If a rhythmic sequence has an 

underlying isochronous regularity, its frequency can be determined by finding the grid 
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frequency with the overall lowest frmsd value. This GAT approach was recently used to find 

isochrony in zebra finch song (Norton & Scharff, 2016). 

 

 
Figure 5 – Visualization of the pulse generate-and-test (GAT) method (a–d), and the result of its application to four of 

the example patterns (e–h). Note that the y-axis in (e–h) is inverted. (a–d) Depicted are the first nine events of the 

rhythmic sequence (black vertical lines) and the deviations (d1–d9, blue lines) to their nearest element of the 

isochronous grid (red dotted lines). Example grid frequencies are 0.5Hz (a&b) and 1Hz (c&d). (e) The isochronous 

sequence, where all events occur roughly 2s apart, best fits a pulse of 0.5Hz. (f) In the rhythmic sequence all IOIs are 

multiples of one (1, 2 and 3), so a pulse of 1Hz has the lowest frmsd (see also d). (g&h) In the mora and stress sequences 

all IOIs are multiples of 0.25s (0.25, 0.5, 0.75, …), so a pulse of 4Hz fits best to both. 

 

 

In many cases, the GAT frequency with the lowest frmsd corresponds to the frequency of 

highest power in the Fourier transform. The GAT method, however, is specifically aimed at 

finding the slowest pulse that still fits all events in the sequence, also called the tatum (Bilmes, 

1993). In our computer-generated “rhythmic sequence”, for example, the tatum has a 

frequency of 1Hz, because all IOIs (1s, 2s and 3s) are integer multiples of 1s (Figure 5.f). 

However, the frequency of highest power in the Fourier transform is located at twice the 

frequency, 2Hz (Figure 4.b). While a pulse of 2Hz covers all events as well, the slower pulse of 

1Hz is enough to explain the underlying rhythmic structure. An advantage of the GAT method 

is that it provides the frmsd as a measure for goodness of fit. This can be used to statistically 

compare different patterns in terms of their pulse fidelity, albeit only to pulses of similar 

frequency, since the frmsd is frequency-dependent. 
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2.8. Phase portraits: How to visualize repeating rhythmic patters 

Unlike IOI histograms, phase portraits visualize the durations of all IOIs of a pattern, while 

taking their first order sequential structure (i.e. adjacent IOIs) into account. Pairs of adjacent 

IOIs hereby serve as x- and y-coordinates respectively. A line connects coordinates of 

neighboring pairs. Together these lines form a continuous trajectory on a 2-dimensional 

plane. In the “rhythmic sequence” (Figure 2.c) for example, the first two IOIs are both 1s long, 

hence a dot is plotted at coordinates (1,1) (Figure 6.a). The next dot is plotted at coordinates 

(1,3), corresponding to the second and third IOI, which are 1s and 3s respectively. The 

trajectory connects these coordinates and moves from (1,1) to (1,3) to (3,2) and so on until it 

reaches (1,1) again at the end of the first sub-pattern (Figure 6.b–d). As the pattern repeats, the 

trajectory traces the same path three more times, albeit with slight deviations due to the noise 

in the timing of events (Figure 6.e). 

 

Geometrical regularities in phase portraits correspond to rhythmic regularities in the acoustic 

patterns (Ravignani, in press; Ravignani, Delgado & Kirby, 2016). A repeated rhythmic pattern 

corresponds to similar superimposed polygons. A cyclical permutation of a rhythmic pattern 

(e.g. from 1,3,2,2 to 2,2,1,3) will produce the same polygon from a different starting point. 

Reversing the pattern (e.g. from 1,2,3 to 3,2,1) will result in the same, though rotated, polygon. 

Patterns that are palindromic on any phase (the “rhythmic sequence” for example has a 

palindromic cyclical permutation: 1,3,2,2,3,1) appear as polygons symmetrical with respect to 

the diagonal (Figure 6.h). An isochronous pattern or sub-pattern appears as a relatively dense 

cloud of nearby points (Figure 6.g). Some other structural regularities, like the fact that sets of 

four IOIs in the “stress pattern” add up to the same duration, might go undetected and 

resemble a “random pattern” (Figure 6.f&i).  
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Figure 6 – Step-by-step visualization of the phase portrait based on the rhythmic sequence (a–e) and phase portraits 

of the five example patterns (f–j).Pairs of adjacent IOIs serve as x- and y-coordinates respectively and a line connects 

coordinates of neighboring pairs. (f) The random pattern shows no discernable geometrical structure. (g) The 

isochronous sequence appears as a dense cloud of nearby points. (h) Repetitions of a sub-pattern as in the rhythmic 

sequence appear as superimposed polygons, slightly shifted due to the jitter introduced by the Gaussian noise. (i&j) 

Higher order regularities like the constant cluster duration of the stress sequence do not appear in the phase portrait. 

 

 

2.9. Recurrence plots: Visualizing pairwise similarities among all intervals in a pattern 

Recurrence plots are another descriptive method for visualizing rhythmic structure, with the 

potential to reveal repeating sub-patterns at a glance. These plots show when a time series 

re-visits the same regions of phase space (Coco & Dale, 2014; Dale, Warlaumont & Richardson, 

2011). Recurrence plots can be used to visualize any time series or – as shown in Figure 7 – the 

sequence of IOIs. As such, the recurrence plot is a 2-dimensional matrix in which the 

similarity between any two IOIs is color-coded. The color code can be a gradient or, as shown 

here, monochromatic, where a black square represents similarity between two IOIs above a 

particular threshold. The IOI indices are noted on both axes of a recurrence plot in sequential 

order. Looking at the bottom row from left to right, the position of black squares indicates the 

sequential positions of IOIs that are similar to the first IOI, the second row to the second IOI, 

and so on. 
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Figure 7 – Recurrence plots of the five example patterns (a–e). Each square reflects the similarity of two IOIs. Black 

squares represent pairs of IOIs whose difference is below a certain threshold (here: 0.3s). Recurrence plots are always 

symmetrical on the diagonal. (a) The random sequence shows no regular structure. (b) The plot for the isochronous 

sequence is all black, as all IOIs are similar to each other. (c) The repeating sup-patterns of the rhythmic sequence 

appear as repeating patterns in both dimensions. (d) Higher order regularities of the stress pattern do not appear in the 

recurrence plot. (e) Repeating IOIs of similar duration (3s, in the middle of the mora pattern) appear as larger black 

patches. 

 

 

The plot for the “isochronous sequence” is all black, indicating that all IOIs are similar to each 

other (Figure 7.b). The repetition of the sub-pattern (6 IOIs) of the “rhythmic sequence” is 

plotted as repeating patterns in the horizontal and vertical directions. As the sub-pattern is 

palindromic, the plot is symmetrical with respect to both diagonals (Figure 7.c). Larger black 

patches, as seen in the “mora sequence” (Figure 7.e), indicate that a number of neighboring 

events share a similar IOI. Like phase portraits, recurrence plots visualize sequential 

structure, but fail to capture higher level structures, such as the equal cluster duration in the 

“stress pattern” (Figure 7.d). 

 

2.10. Time series and regressions: Can the structure in a pattern be described by a linear 

equation? 

Time series analysis denotes a broad range of statistical methods used to extract information 

from data points ordered in time. Time series analysis encompasses some of the techniques 

described above, namely autocorrelation, cross-correlation and Fourier analysis. In addition, 

autoregressive moving average models (ARMA) are promising time series techniques for 

speech rhythm (Jadoul et al., 2016), until now commonly employed in ecology, neuroscience, 

demography, and finance (Hamilton, 1994). While autocorrelation probes the existence of 

some linear relationship between intervals in a pattern, ARMA is used to test for, model, and 

quantify this linear relationship. In brief, an ARMA model is a parametric, linear description of 

a time series: One IOI is expressed as a linear combination (i.e. weighted sum) of previous IOI 

values, possibly previous values of another time series (e.g. intensity of previous units of 
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speech/vocalization), and random noise. In principle, a number of metrical stress patterns in 

human speech could be captured by the equation: 

  

𝐼𝑂𝐼𝑡 = 𝑎 + 𝑏 𝐼𝑂𝐼𝑡−1 + 𝑐 𝐼𝑂𝐼𝑡−2 + 𝑒𝑡                [2] 

 

where 𝑎, 𝑏, and 𝑐 are the (empirically estimated) model parameters, and 𝑒𝑡 is the random error. 

For instance, if  𝐼𝑂𝐼1 = 1, 𝑎 = 4, 𝑏 = −1, and 𝑐 = 0, the equation becomes 

  

𝐼𝑂𝐼𝑡 = 4 − 𝐼𝑂𝐼𝑡−1                  [3] 

 

and it describes both iambic and trochaic meters, namely an alternation of one short and one 

long interval, corresponding to a strong-weak, or weak-strong, alternation in stress. (The 

reader can try this herself by plugging 𝐼𝑂𝐼𝑡−1 = 1 in Equation [3] and iterating, i.e. the resulting 

𝐼𝑂𝐼𝑡 becomes the next 𝐼𝑂𝐼𝑡−1.) Instead, if 𝑐 = −1, then 

 

𝐼𝑂𝐼𝑡 = 4 − 𝐼𝑂𝐼𝑡−1 − 𝐼𝑂𝐼𝑡−2           [4] 

 

corresponding to the dactyl meter, that is one long interval followed by two short ones. ARMA 

models are extremely powerful but, apart from few exceptions (Gamba et al., 2016; Jadoul et 

al., 2016), still scarcely used in human phonology and animal communication. 

 

 

3. Between-pattern analytical techniques: Comparing rhythms 

 

3.1. Cross-correlation: Are patterns linearly related? 

The process of cross-correlation is similar to the autocorrelation described above, except that 

it correlates two different signals instead of two copies of the same signal. This makes it a 

useful tool to find common rhythmic properties in multiple sequences.  

 

The cross-correlation function of two isochronous sequences (Table 3), one with noise added 

(“noisy-isochronous”) and one without (“isochronous”), is similar to the autocorrelation 

function, except that the function is smaller than one at lag zero, as the events do not 

perfectly overlap (Figure 8.b, middle column). Cross-correlating two different “mora 

sequences” reveals a common rhythmic property: a subset of events occurs regularly every 3s 

in both sequences (Figure 8.d). 
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Figure 8 – Cross-correlation functions (middle) and rose plots (right) for four sets of two patterns each, with different 

rhythmic structure (a–d). Rose plots show the mean vector as a thick black line. The mean vector can have a length 

between 0 (uniform distribution) and the radius of the plot (all vectors have the same direction) (a) Comparison of a 

random pattern and an isochronous pattern (without added noise). (b) Comparison of two isochronous patterns, one 

with added noise (top, “noisy-iso”), the other without (bottom, “iso”). (c) Comparison of a ‘rhythmic’ pattern and an 

isochronous pattern (without added noise). (d) Comparison of two different mora patterns (mora A, top and mora B, 

bottom). In the rose plot for the mora patterns each of the 20 sections is split between values from mora A (light gray, 

dotted mean vector) and mora B (dark gray, solid mean vector). Both patterns are compared against an isochronous 

sequence with IOI=3s. 
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Table 3 – Analytical techniques to compare temporal structure between two or more patterns, including their specific 

function. 

Technique 

(References) 

Function Advantage Disadvantage 

Cross correlation 

(Ravignani & 

Sonnweber, 2015) 

Common 

subpatterns 

between two 

patterns 

  

Few statistical 

assumptions 

required 

Provides neither 

sufficient nor necessary 

conditions for two 

patterns to be 

structurally similar 

ARMA 

(Hamilton, 1994) 

IOIs in one pattern 

can be expressed as 

a linear combination 

of IOIs from 

another pattern 

Common method 

for 

multidimensional 

time series 

Only captures linear 

relations between 

patterns 

Granger causality 

(Hamilton, 1994; 

Seth, 2010; 

Fuhrmann et al., 

2014; Ravignani & 

Sonnweber, 2015) 

Information from 

one pattern’s IOIs 

helps better predict 

the other pattern 

  

Useful test, 

powerful 

inference, easy to 

implement 

Not a real test for logical 

causality, rather testing 

the added value of one 

time series in predicting 

another series. 

Circular statistics 

(Fisher, 1995; 

Berens, 2009) 

Testing hypotheses 

on periodically 

occurring events 

  

Necessary for 

some data types; 

using classical 

statistics would be 

a mistake 

A number of 

assumptions, 

concerning periodicity 

of events generating the 

data, are required 
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3.2. Multidimensional time series: How are patterns linearly related? 

The ARMA models presented above for one pattern can be used to model the linear 

relationship between two patterns’ IOIs. To test for temporal structure between two 

individuals vocalizing synchronously, performing turn-taking, etc., the ARMA equation for one 

individual can be enriched by past IOI terms of the other individual (e.g. 𝐼𝑂𝐼′𝑡−1 and 𝐼𝑂𝐼′𝑡−2), 

leading to the equation: 

 

𝐼𝑂𝐼𝑡 = 𝑎 + 𝑏 𝐼𝑂𝐼𝑡−1 + 𝑐 𝐼𝑂𝐼𝑡−2 + 𝑏′ 𝐼𝑂𝐼′𝑡−1 + 𝑐′ 𝐼𝑂𝐼′𝑡−2 + 𝑒𝑡 .                             [5] 

 

Statistical estimation of parameters 𝑎, 𝑏, 𝑐, 𝑏′, and 𝑐′ allows in turn to draw inference about the 

relative contribution of the two individuals to each other’s timing.  

 

3.3. Granger causality: Can one pattern structure help predict the other? 

Based on ARMA modelling, one can test whether one time series significantly affects the 

other, using a test for Granger causality (Hamilton, 1994). This technique tests whether future 

values of a target time series are better predicted by considering values of another time 

series, rather than using past values of the target series alone. In terms of Equation [5], 

Granger causality corresponds to testing whether 𝑏′ 𝐼𝑂𝐼′𝑡−1 + 𝑐′ 𝐼𝑂𝐼′𝑡−2 contributes to the 

statistical prediction of 𝐼𝑂𝐼𝑡. Granger causality has been successfully applied in neuroscience 

and economics, and it is being increasingly employed to analyse production of rhythmic 

patterns in humans and other animals (Seth, 2010; Fuhrmann et al., 2014; Gamba et al., 2016). 

 

3.4. Circular statistics: How does a pattern relate statistically to a fixed-pace clock? 

Circular statistics (or directional statistics) offer a set of techniques that are useful when 

dealing with data from a circular distribution, like compass direction and time of day (Fisher, 

1995). In such distributions both ends of the scale have the same value, i.e. they “wrap around” 

and can be mapped to a circle. On a linear scale, for example, the mean of 355° and 5° would 

be 180°, which makes little sense when calculating e.g. compass directions. The circular mean 

on the other hand is 360°, which is identical to 0°. 

 

Circular statistics can be used to compare any sequence against a known isochronous pattern. 

In such cases the distance of all events in the sequence to their nearest event in the 

isochronous pattern can be expressed as a circular distribution. An event that exactly 

coincides with an isochronous event is defined to have an angular direction of 0°. Events that 
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lag behind the nearest isochronous event have positive angles >0° (i.e. positive delay), and 

events that precede have negative angles (equivalently, positive angles of <360°).  

 

The distribution of events can be visualized on a so-called rose plot, which is the circular 

equivalent of a linear histogram (Figure 8, right column). An arrow can be added to mark the 

circular mean vector, which indicates the mean direction and has a length between 0 (events 

are uniformly distributed) and 1 (events concentrate on a single direction). 

 

Several significance tests exist to evaluate the circularity of a distribution (Zar, 2010). The 

Rayleigh z test can determine whether the sample data comes from a uniform distribution; 

For instance, the deviations of the random sequence from the isochronous pattern are 

uniformly distributed (Figure 8.a, p=82.7, z=216, n=24). The z test assumes that the data is 

unimodally distributed and sampled from a von Mises distribution, the circular equivalent of a 

normal distribution. Kuiper’s test is the circular analogue of the Kolmogorov-Smirnov test and 

can be used to test the difference between two distributions, e.g. the sample data against a 

von Mises distribution. The bimodal distribution of the rhythmic pattern (Figure 8.c) for 

example differs significantly from a von Mises distribution (Kuiper’s test, p<0.005, V=336, 

n=24).  If an expected mean direction is known beforehand (e.g. 0° in synchronization 

experiments), the more precise V-test can be used to test against uniformity. If directions are 

not uniformly distributed and the mean direction does not significantly differ from 0°, the 

patterns are synchronous (V-test, p<0.001, V=23.8, n=24; Figure 8.b, isochronous pattern). 

 

 

4. Where can these methods be fruitfully used? 

 

Here we suggest some avenues of research where to apply the methods described above. 

 

First, the field of birdsong bioacoustics should put more emphasis on temporal and rhythmic, 

not only spectral or positional, properties of the signal. Building on recent findings, songs 

from different birdsong species could be compared to temporal structures hypothesized a 

priori or across species (Benichov, Globerson & Tchernichovski, 2016; Norton & Scharff, 2016; 

Spierings & ten Cate, 2016, Janney et al. 2016), ultimately constructing ‘rhythmic phylogenies’. 

Fourier analysis, GAT pulse matching and circular statistics might be particularly suitable to 

uncover isochronous structure in birdsong and human speech. 
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Second, the comparative study of vocal complexity has traditionally encompassed species 

capable of vocal production learning, putting relatively more emphasis on animals’ abilities to 

modify spectral, rather than temporal, properties of the vocalizations (e.g. Kershenbaum et al., 

2014). The methods presented here could be used to analyse rhythmic properties of acoustic 

behaviour in animals with limited vocal learning, which however have potential for temporal 

flexibility, for instance primates’ chorusing (Fedurek et al., 2013; Gamba et al., 2016), sea lions 

barks (Schusterman, 1977, Ravignani et al., 2016), ape drumming (Dufour et al., 2015; Ravignani 

et al., 2013), etc. Phase portraits, autocorrelation, circular statistics, and recurrence plots 

could be used, among others, to uncover the possibly flexible temporal structures in these 

acoustic behaviours. 

 

Third, conversational turn-taking across human languages and animal species is a topic 

gaining increasing scientific interest (Levinson, 2016; Vernes, 2016). This area is however 

missing an advanced and unified quantitative analytical framework. We suggest that the 

methods described here can be used for exactly such purpose, enabling comparisons of 

temporal structure in communicative interaction across human languages, modalities and 

species. Time series analysis, in particular ARMA models and Granger causality, might be 

particularly suitable to investigate turn-taking. 

 

Fourth, the methods we present make almost no top-down assumptions about the structure 

present in the signal. Hence, they can be employed to investigate phonology, individual timing 

and rhythm in modalities and domains other than speech (e.g. Dale, Warlaumont & 

Richardson, 2011; Fan et al., 2016), most notably in sign languages (de Vos, Torreira & Levinson, 

2015). Distributional indexes and all other structural measures in Table 2 could be used to 

quantify temporal structure in a given modality or domain. 

 

Fifth, and finally, the statistical methods presented can be used to test for cross-modal 

influences in multimodal communication (e.g. Tilsen, 2009). Temporal interdependencies 

between modalities could arise, for instance, in the co-evolution of human rhythmic 

vocalizations and coordinated movement (Laland, et al., 2016; Ravignani & Cook, 2016) or the 

simultaneous song and ‘dance’ display of some bird species (Dalziell et al., 2013; Ullrich, 

Norton & Scharff, 2016). Levenshtein distance (Post & Toussaint, 2011; Ravignani, Delgado & 

Kirby, 2016), and other dyadic techniques in Table 3 could be used to relate temporal 

structure between modalities.   
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5. Conclusions 

 

Quantitative cross-species comparison of rhythmic features can inform the evolution of 

human speech (Fitch, 2000; Yip, 2006; Petkov & Jarvis, 2012; Spierings & ten Cate, 2014, 2016; 

Lameira et al., 2015; Norton & Scharff, 2016; Ravignani et al., 2016), be it its origin, mechanisms 

or function. 

 

 

 
Figure 9 – Flux diagram to select the most appropriate technique for rhythm analysis. Answers (regular font) to 

specific questions (in bold) guide the reader towards the appropriate technique and corresponding subsection (in 

italics). 

 

 

Here we present a number of techniques to analyse rhythmic temporal structure in animal 

vocalizations, including human speech. Figure 9 provides an aid to select the appropriate 

technique in the behavioral analysis of timing. This figure guides researchers in their initial 

approach to rhythm analysis, and presents an overview of all techniques and methods 

described here. 

 

Theoretically, comparative research should avoid treating rhythm as a monolithic entity (Fitch 

2012; 2015). This theoretical advance can only be achieved via improvement of the 

methodological tools to discern and test for specific properties of rhythm. Figure 9 and the 

techniques it refers to provide a roadmap to testing hypotheses on specific rhythmic 

characteristics in the data. 
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Finally, this paper focuses on temporal structure in rhythm. Timing is the main but not the 

only component underlying speech rhythm. Similarly, rhythm in animal phonology might 

derive from an interaction between temporal and spectral characteristics of the signal. New 

statistical techniques for comparative analyses should also be developed to incorporate 

spectral information like intonation, stress, etc. (Ramus et al., 1999). 

 

 

6. Data accessibility 

 

All sequences, figures and statistical results were generated in Mathworks Matlab R2012b. All 

code used in this paper can be freely downloaded from http://userpage.fu-

berlin.de/phno/mrc/. It can be run in Matlab as well as the free and open-source alternative 

GNU Octave. The supplementary material accompanying this article contains a detailed 

explanation of the code and instructions on its usage. Table 4 describes useful software 

(columns), packages (in square brackets), and functions, with their intended use. 
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Table 4 – Some available software to perform comparative speech/vocal production analyses of rhythmic features. 

Software (columns) aimed at specific measures (rows), specifying packages (in square brackets), and functions (in 

parentheses). All software discussed here is free except for Matlab (paid software, free packages). Note that the Octave 

implementation of the Kolmogorov-Smirnov test differs from that of Matlab and R (R core team, 2013). 

Technique Matlab Octave R 

Histogram 
histogram() (since version 

2014b), hist() 
hist() hist() 

Kolmogorov

-Smirnov D 
kstest() 

kolmogorov_smir

nov_test() 

[statistics] 

ks.test() 

Auto-

/Cross-

correlation 

xcorr() xcorr() [signal] acf() 

Fast Fourier 

transform 
fft() fft() 

fft(); periodogram() 

[TSA] 

Rose plots 
polarhistogram() (since 

version 2016b), rose() 
rose() 

rose.diag() 

[ggplot2] 

Circular 

Statistics 
[CircStats] (Berens, 2009) [CircStats] [circular] 

ARMA 
arima() [Econometrics]; 

[GCCA toolbox] (Seth, 2010) 
arma_rnd()  arima() [TSA] 

Recurrence 

plots 
plotRecurrence() plotRecurrence() 

[crqa] (Coco & 

Dale, 2014) 
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Supplementary Material 

 

This document describes the code that was written for the article “Measuring rhythmic 

complexity: A primer to quantify and compare temporal structure in speech, movement, and 

animal vocalizations.” The code was used to carry out all analyses and produce most of the 

figures. It can be obtained from http://userpage.fu-berlin.de/phno/mrc/. With the help of 

this document the readers will be able to carry out the rhythmic analyses described in the 

article on their own.  

 

The code was written in Mathworks Matlab. It was tested in Matlab versions 2012b, 2015b and 

2016b, but should run in all modern Matlab versions. If you do not have access to Matlab, you 

can run the code in GNU Octave, a free and open source alternative that is mostly compatible 

with Matlab's syntax. Octave is available for Windows, OSX and Linux from this address: 

https://www.gnu.org/software/octave/download.html. The code was tested in Octave 

versions 3.8.1 and 4.0.3. For the full code to run in Octave the packages 'control', 'signal', 

'statistics' and 'io' are needed. These can be downloaded from 

http://octave.sourceforge.net/packages.php. On Windows they should come pre-installed 

with Octave. To load all installed packages type the following in the command window after 

starting Octave (omitting the ‘>>’): 

 

>> pkg load all 

 

The code consists of several functions (Table S1), each contained in a separate text file with 

the extension '.m'. To access these functions, make sure that either the files are in your 

current folder (browse to the folder within Matlab/Octave in the left hand panel), or the 

folder containing the files is in your search path (type e.g. "addpath('C:/exampleFolder')" in the 

command window). You can call these functions from within the Matlab/Octave command 

window by typing the function name, followed by one or several arguments in parentheses, 

e.g.:  

 

>> plotCorr(pattern, 0, 1000)  
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Multiple arguments are separated by commas. Most functions require as an argument either 

an array containing timepoints of events (e.g. 2,4,6,9,10, the "pattern"), or an array of inter-

onset intervals, i.e. the time intervals between successive events (e.g.2,2,3,1, the "ioi"). Both 

these arrays can be created in one of three ways:  

 

 

1. Typing in a pattern at the command line. To create a pattern from scratch, assign a 

comma-separated list of numbers in square brackets to a new array. The array name can be 

any string of letters (a-z), numbers (0-9) and underscores (_). They following example creates 

an array named "examplePattern" with a pattern consisting of events at 2, 4, 6 and 9 seconds:  

 

>> examplePattern = [2, 4, 6, 9]  

 

The corresponding array of IOIs would consist of the numbers 2 (difference between the 

second and the first event), 2 (difference between the third and the second event), and 3 

(difference between the fourth and the third event):  

 

>> exampleIOIs = [2, 2, 3];  

 

Adding a semicolon (;) to the end of a line executes the command like normal, but suppresses 

the output.  

 

 

2. Generating a pattern procedurally. The patterns that served as examples in the article 

were generated by the function generatePattern(). This function takes a number of arguments 

that affect the properties of the resulting pattern. It returns an array of events ("pattern") and 

an array of inter-onset intervals ("ioi"). To view a description of a function and its arguments 

and return values, the reader should type either "help" or "doc" followed by the function name 

in the command window, e.g.:  

 

>> doc generatePattern  
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This prints the following text:  

 

[pattern,iois] = generatePattern(n,nRep,type,stdev,seed)  

 

generates random, isochronous, or one of three types of non-isochronous 

rhythmic patterns.  

 

n:      number of events (must be divisible by nRep wtithout remainder)  

nRep:   number of repetitions of the rhythmic pattern  

type:   either 'random', 'isochronous', 'rhythmic', 'stress' or 'mora'  

stdev:  standard deviation for gaussian noise  

seed:   seed for the random number generator 

 

returns a 1-dimensional array of timestamps of events (pattern) and a 

1-dimensional array of the corresponding inter-onset intervals (ioi). 

 

The different pattern types (random, isochronous, rhythmic, stress and mora) follow certain 

rules as described in the main article. The stress pattern for example always produces clusters 

of four events that have a total duration of 8 seconds. The duration of the events within a 

cluster, however, is determined by a random number generator. The random number 

generator can be initialized into a certain state by the argument seed. This allows to 

reproduce a specific pattern. Calling the function with a seed value of 8 (see example below) 

will produce the same pattern each time the function is called, if all other arguments are the 

same. Calling the function with a different seed value will produce a different pattern. Setting 

the seed value to zero will result in a different pattern each time the function is called. The 

random number generator also affects the Gaussian noise added to the event timing. 

Isochronous patterns created with different seed values, for example, will therefore produce 

slightly different patterns, as the jitter of the events is slightly different. Readers are 

encouraged to experiment with different randomized patterns to see their effect on the 

different plots, for example how different permutations of a rhythmic pattern can lead to 

mirrored phase portraits. 
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The following command creates a 'rhythmic' pattern (and corresponding list of IOIs) similar to 

that used in the article, that has 24 events, 4 repetitions of a sub-pattern, an average inter-

onset interval of 2s and Gaussian noise added with a standard deviation of 0.04:  

 

>> [patternR, ioiR] = generatePattern(24, 4, 'rhythmic', 0.04, 8);  

 

When a function has multiple return values, they are assigned to a comma-separated list of 

variables (in this case our two arrays) in square brackets. Again, the names of the variables can 

be any alphanumeric string.  

 

 

3. Reading a pattern from an Excel table. The five example patterns from the article are 

included with the code as Excel table files (e.g. example_pattern_isochronous.xls). You can 

read these, or your own data, using the function readPatternFromXls(). Tables must contain 

the time values of several events either in a single row or a single column. The function takes 

the filename of the table as an argument and returns arrays for the pattern and the IOIs. If the 

table file is in your current folder or in a folder in the search path you can supply just its 

filename in single quotes (e.g. 'example_pattern_isochronous.xls'). Otherwise "filename" must 

contain the whole path to the file (e.g. 

'C:/exampleFolder/example_pattern_isochronous.xls'). The following command reads the 

values of the mora sequence from the excel file:  

 

>> [myPattern, myIOIs] = readPatternFromXls('example_pattern_mora.xls');  

 

 

4. Plotting and analyzing patterns. The function plotAllSingle() calls several of the other 

functions and in doing so creates separate figures for all the single pattern analyses presented 

in the article. It takes as arguments the arrays "pattern" and "ioi" that you created through one 

of the three methods described above. The function also prints the Kolmogorov-Smirnov D 

(K-S D) and the normalized pairwise variability index (nPVI) to the command window. In 

addition, it returns a structure that contains the outputs of some of the functions called by 

plotAllSingle(), which can be used for further analyses. Type "doc plotAllSingle" or open the file 

"plotAllSingle.m" to view a list of all outputs contained in the results structure.  

 

>> myResults = plotAllSingle(myPattern, myIOIs)  
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To access any of the outputs in the results structure, type the name of your results structure, 

followed by a period and the name of the output variable you are interested in, for example:  

 

>> myResults.nPVI  

 

All of the analysis functions can also be called separately. Each function takes either the 

pattern or the IOIs as an argument. The functions that transform the pattern to a time series – 

plotCorr() and plotFFT() – additionally take the temporal resolution of the time series as an 

argument. These functions transform the pattern into a time series by creating an array with a 

certain temporal resolution (e.g. one value per millisecond). This array has the value 1 at the 

time points of the events and the value 0 elsewhere. For the article a temporal resolution 

value of 1000 (time points per second) was used and the plotAllSingle() function uses 1000 as a 

default. Readers who wish to change this value should edit the appropriate line in the 

plotAllSingle.m file.  

 

To only plot the autocorrelation function for the pattern "myPattern", type:  

 

>> plotCorr(myPattern, 0, 1000);  

 

This function takes either one or two patterns as arguments. If the user inputs a single 

pattern, this pattern will be autocorrelated. In this case set the second argument to zero. The 

correlation function can also be used to cross-correlate two different patterns. To do this, 

readers should supply a different pattern as the second argument, for instance:  

 

>> plotCorr(patternOne, patternTwo, 1000);  
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The function plotRose() creates a circular histogram of deviations of a pattern from a 

previously defined strictly isochronous pattern. The following commands create a rhythmic 

pattern and an isochronous pattern without Gaussian noise added and creates a rose plot: 

 

>> [patternR,ioiR] = generatePattern(24, 2, 4, 'rhythmic', 0.04, 0); 

>> [patternI,ioiI] = generatePattern(24, 2, 0, 'isochronous', 0, 0); 

>> plotRose(patternR, patternI); 

 

To view any function, readers can open it in the Matlab or Octave editor or any other text 

editor. There, they will find a description of the function and its usage, as well as comments 

explaining each step (lines beginning with %). Users can change all functions according to 

their needs. Some internal parameters of the functions, for example, depend somewhat on the 

magnitude of your IOIs, like the standard deviation and width of the normal distribution in the 

plotCorr() function, or the threshold for the recurrence plots in plotRecurrence(). Other 

values that one might want to adjust include the width of the histogram bins in 

plotHistogram() and the freuquency limits in plotFFT() and plotGAT(). 
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Supplementary Table 1 - Overview of all functions 

Function Arguments Returns Description 

generatePattern 

n, nRep, 
type,  
stdev, seed pattern, ioi 

Generates one of five different types of 
patterns (random, isochronous, 
rhythmic, stress, mora) and inter-onset 
intervals (IOI). 

getKolmogorovSmirnovD ioi d 
Calculates the Kolmogorov-Smirnov D  
(K-S D) from a list of IOIs. 

getNPVI ioi nPVI 
Calculates the normalized pairwise 
variability index (nPVI). 

getPhaseFromPatterns 
pattern, 
patternIso phaseRad 

Calculates the phase (in radians) of each 
event in a pattern, relative to a second, 
isochronous pattern. This function gets 
internally called by plotRose(). 

getTimeSeriesFromPattern 
pattern, 
resolution timeSeries 

Constructs a time series from a pattern. 
This function gets internally called by 
plotCorr() and plotFFT(). 

plotAllSingle pattern, ioi results 
Calls all plot functions consecutively for 
a pattern and prints the K-S D and nPVI. 

plotCorr 

patternOne, 
patternTwo,  
resolution 

correlation, 
sigConvOne,  
sigConvTwo 

Performs and plots either 
autocorrelation (if patternTwo = 0) or 
crosscorrelation. The pattern is first 
convoluted with a Gauss curve. 

plotFFT 
pattern, 
resolution 

freq, power, 
timeSeries 

Calculates the fast Fourier transform 
(FFT) of a pattern and plots the power 
spectrum. 

plotGAT pattern freq, frmsd 

Performs the pulse generate-and-test 
(GAT) method and plots the frmsd for 
the tested frequencies (default: 0.2-5Hz; 
set within the function). 

plotHistogram ioi - 
Plots a histogram of IOIs. (default bin 
width: 0.075) 

plotPattern pattern - 
Plots the events of a pattern as vertical 
lines on a timeline. 

plotPhasePortrait ioi - Creates a phase portrait of IOIs. 

plotRecurrence ioi - 
Creates a recurrence plot of IOIs. 
(default threshold: 0.3) 

plotRose 
pattern,  
patternIso phaseRad 

Creates a rose plot (circular histogram) 
of phases of a pattern relative to a pre-
determined strictly isochronous 
pattern. 

readPatternFromXls filename pattern, ioi 
Reads a pattern from an Excel table file 
(*.xls/*.xlsx). 
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Publication B: ‘Bird Song Metronomics’ 

 

Norton, P., and Scharff, C. (2016). ‘Bird Song Metronomics’: Isochronous organization of zebra 

finch song rhythm. Frontiers in Neuroscience 10:309. doi:10.3389/fnins.2016.00309. 
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‘Bird Song Metronomics’: 

Isochronous Organization of Zebra Finch Song Rhythm 

 

Philipp Norton & Constance Scharff 

 

Department of Animal Behaviour, Freie Universität Berlin 

 

 

Abstract 

 

The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in 

contrast to non-human primates, share this vocal production learning with humans. The 

process through which birds and humans learn many of their vocalizations as well as the 

underlying neural system exhibit a number of striking parallels and have been widely 

researched. In contrast, rhythm, a key feature of language and music, has received 

surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has 

the potential to inform the relationship between neural mechanisms and behavioral output 

and can also provide insight into the biology and evolution of musicality. Here we present a 

method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from 

one note onset to the next as input, we found for each bird an isochronous sequence of time 

stamps, a ‘signal-derived pulse’, or pulseS, of which a subset aligned with all note onsets of the 

bird’s song. Fourier analysis corroborated these results. To determine whether this finding 

was just a byproduct of the duration of notes and intervals typical for zebra finches but not 

dependent on the individual duration of elements and the sequence in which they are sung, 

we compared natural songs to models of artificial songs. Note onsets of natural song deviated 

from the pulseS significantly less than those of artificial songs with randomized note and gap 

durations. Thus, male zebra finch song has the regularity required for a listener to extract a 

perceived pulse (pulseP), as yet untested. Strikingly, in our study, pulsesS that best fit note 

onsets often also coincided with the transitions between sub-note elements within complex 

notes, corresponding to neuromuscular gestures.  Gesture durations often equaled one or 

more pulseS periods. This suggests that gesture duration constitutes the basic element of the 

temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically 

structured components of regular rhythms in human music.  
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Introduction 

 

Rhythm is a key element in the structure of music and can be defined as the "systematic 

patterning of sound in terms of timing, accent and grouping" (Patel, 2008, p. 96). These 

patterns can be either periodic (i.e. regularly repeating) or aperiodic. A special case of a 

periodic pattern is an isochronous one, where the time intervals between successive events 

share the same duration. In many types of music across the world, including the Western 

European (Patel, 2008, pp. 97–99) and African (Arom, 1991, p. 211) traditions, the timing of sonic 

events, mostly note onsets, is structured by a perceptually isochronous pulse (Nettl, 2001). 

This pulse is a cognitive construct that is usually implicit rather than being materialized in the 

acoustic signal itself (Arom, 1991 p. 230; Fitch, 2013). For the purpose of this article we will call 

this the ‘perceived pulse’, or pulseP. In all but the simplest of rhythms not all notes fall on the 

pulse and some pulses occur in the silence between notes. Therefore, the intervals between 

the notes in a piece are rarely isochronous, but many note onsets align to an isochronous 

pulse. In some musical styles, variations of tempo – and therefore pulse – are used for artistic 

effect (e.g. accelerando and ritardando in classical music), while in others the tempo remains 

constant throughout a piece or performance (e.g. Central African music; Arom, 1991, p. 20). 

Often the pulse is further organized by a metrical structure, the recurring hierarchical 

patterning of strongly and weakly accented events. In a waltz, for example, the pulse is 

perceptually divided into groups of three, of which the first one – the so-called downbeat – is 

perceived as more strongly accented than the following two (“one, two, three, one, two, 

three”). In this example, pulses on the lower level of the metrical hierarchy, i.e. every pulse, 

happen at three times the tempo of the higher level, consisting of only the strong pulses. The 

process of finding the pulse and frequently the subsequent attribution of meter allow us to 

infer the beat of a piece of music. 

 

If you have ever danced or clapped your hands along to music, you have already encountered 

one function of a regular pulse: it facilitates the coordination of synchronized movements 

through a process called ‘beat perception and synchronization’. It also provides musicians 

with a common temporal reference that is necessary for coordinated ensemble performance 

(Arom, 1991, p. 179; Patel, 2008, pp. 99–100). Furthermore, expectations and the interplay of 

successful anticipations and surprises emerging from these expectations are thought to drive 

the “emotive power” of human music (Huron, 2006). Pulse and meter, as well as deviations 

thereof, can build anticipations in the time-domain that subsequently are either fulfilled or 

violated.  
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How did such an apparently universal aspect of human music evolve? Several authors have 

stressed the importance of a cross-species comparative approach to gain insights into the 

evolution of music (Carterette and Kendall, 1999; Fitch, 2006; Hauser and McDermott, 2003; 

Hulse and Page, 1988; Patel and Demorest, 2013). Crucial to this endeavor is the realization 

that the music faculty hinges on a variety of interacting perceptual, cognitive, emotional and 

motor mechanisms that may follow different evolutionary trajectories. It is therefore helpful 

to break down the music faculty into these different components and investigate which of 

them are present, either by homology or analogy, in non-human animals (Fitch, 2006, 2015; 

Honing et al., 2015; Ravignani et al., 2014). 

 

One critical component is our capacity for vocal learning. It allowed us to develop speech as 

well as song, which is assumed to be universal to human music (Brown and Jordania, 2011; 

Nettl, 2001; Trehub, 2001). Of the many species that produce vocalizations or other acoustic 

signals of varying complexity, only a few are well known to rely on developmental learning to 

acquire some of their adult vocalizations, e.g. songbirds, hummingbirds and parrots as well as 

several species of bats, some marine mammals and elephants (rewieved by Petkov and Jarvis, 

2012). 

 

Birdsong in particular has caught the interest of researchers for its putative musical features 

(Baptista and Keister, 2005; Dobson and Lemon, 1977; Kneutgen, 1969; Marler, 2001; 

Rothenberg et al., 2014; Taylor, 2013). It has frequently inspired human music and prompted 

composers to incorporate it into their compositions (Baptista and Keister, 2005; Taylor, 2014). 

Birdsong and music might also share similar mechanisms and functions. For instance, the 

same regions of the mesolimbic reward pathway that respond to music in humans are active 

in female white-throated sparrows listening to conspecific song (Earp and Maney, 2012). Many 

bird species also coordinate their vocalizations by simultaneous or alternating chorusing 

(reviewed by Hall, 2009) or have been shown to temporally coordinate bodily movements in a 

dance-like manner with song during courtship (e.g. Dalziell et al., 2013; DuVal, 2007; Ota et al., 

2015; Patricelli et al., 2002; Prum, 1990; Scholes, 2008; Soma and Garamszegi, 2015). Whether 

zebra finches (Taeniopygia guttata) coordinate singing among individuals has not been 

studied, but they do integrate song and dance during courtship in a non-random 

choreography (Ullrich et al., 2016; Williams, 2001). As in human ensemble music and dance, an 

isochronous pulse might serve as a temporal reference for duetting and dancing birds, 

facilitating the temporal coordination of vocalizations and movements. A recent study by 

Benichov et al. (2016) showed that zebra finches are also adept at coordinating the timing of 

unlearned calls in antiphonal interactions with a robot producing isochronously spaced calls. 
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When the robot produced some additional calls, timed to coincide with the birds’ response, 

both males and females quickly adjusted their calls to avoid jamming, successfully predicting 

the regular call pattern of the robot. The forebrain motor pathway that drives learned song 

production in male zebra finches seems to play a major role in this precise and flexible 

temporal coordination, not only in males but also in females that do not sing and have a much 

more rudimentary song system (Benichov et al., 2016). The capacity for ‘beat perception and 

synchronization’ that enables humans to extract the pulse from a complex auditory signal and 

move to it has so far been found only in several species of parrots (Hasegawa et al., 2011; Patel 

et al., 2009; Schachner, 2010) and a California sea lion (Cook et al., 2013).  Since human music 

was used as a stimulus in these studies it is not clear how these findings relate to the animals’ 

own vocalizations: is there regularity in any learned natural vocalization signal that permits 

extraction of a regular pulse? 

 

Song production in zebra finches has been successfully used as a model for studying vocal 

learning and production for several decades, motivated by its parallels to speech acquisition at 

behavioral, neural and genetic levels (reviewed by Berwick et al., 2012; Bolhuis et al., 2010; 

Doupe and Kuhl, 1999). Therefore a large body of knowledge exists about zebra finch song 

structure and development as well as their neurobiological basis. Zebra finch song learning 

and production is controlled by a neural network of specialized song nuclei (Bolhuis et al., 

2010; Nottebohm et al., 1976). The nucleus HVC, cortical in nature, significantly contributes to 

the coding of song. Different ensembles of neurons fire short, sparsely occurring bursts of 

action potentials which, through a series of downstream nuclei, translate into a motor code 

controlling particular ensembles of muscles of the vocal organ (Fee et al., 2004; Hahnloser et 

al., 2002; Okubo et al., 2015). The level of resolution of our knowledge about how behavior is 

neurally coded is much finer grained in songbirds than in humans. So, while the present study 

in songbirds is guided by what we know about rhythm from human music it has the potential 

to shape our inquiry into the neural basis of human rhythm production and perception. The 

highly stereotypic structure of zebra finch song and the fact that it remains largely unchanged 

in the adult bird contributes to making it a good target for first investigations of periodicity, 

compared to more complex singers. We therefore analyzed zebra finch song rhythm, asking 

whether an isochronous pulse can be derived from the timing of its notes (signal-derived 

pulse; pulseS).   
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Materials and Methods 

 

Birds 

This study used 15 adult male zebra finches, aged between 384 and 1732 days at the time of 

song recording. They were bred and raised at the Freie Universität Berlin breeding facility. 

Before entering this study, they were housed together with conspecific males, either in a large 

aviary or in a cage sized 90x35x45cm. In both cases they had acoustic and visual contact to 

female zebra finches held in other cages or aviaries in the same room. The rooms were kept 

under an artificial 12h/12h light/dark cycle at 25 ± 3°C. The birds had access to food, water, 

grit and cuttlebone ad libitum at all times. Birds in this study were solely used for song 

recording, a procedure for which the local authorities overseeing animal experimentation do 

not require a permit because it does not cause pain or discomfort. Information on the degree 

of relationship between the test subjects was only available for some of the birds. Of those, 

none were siblings, or had been raised by the same parents (3534, 4295, 4306, 4523 and g13r8). 

We cannot exclude dependencies in song structure arising from the possibility that pairs of 

birds were influenced by the same tutors. 

 

Recording 

For song recording, each male was transferred into a separate cage (40x30x40cm) inside a 

sound attenuation box (60x60x80cm), kept under a 12h/12h light/dark cycle. Audio was 

recorded through cardioid microphones, mounted at about 2cm distance from the center of 

the cage’s front wall in each box. These were connected to a single PC through an external 

audio interface. Audacity 2.0.3 was used to record a single-channel audio track (WAVE file, 

44.1kHz, 16-bit) for each bird. Recording took place over a period of 3 years: 2013 (10 birds), 

2014 (4) and 2015 (1) at varying times between 8 AM and 6 PM. In addition to song recorded in 

isolation (‘undirected song’) we also solicited so called ‘directed’ song from 9 of the 15 males by 

exposing them to the sound and sight of a female finch in a transparent plastic box placed in 

front of the recording cage. Directed and undirected songs of the same bird were recorded 

within one to three days. 

 

Labeling 

Recordings were segmented into smaller files of up to 10,000s (2h 46min) length and for each 

bird the segment containing most song was used for the analyses. Then, an IIR Chebyshev 

high-pass filter with a 1kHz cutoff was applied to remove low-frequency noise, using Avisoft 

Bioacoustics SASLab Pro 5.2.07 (henceforth SASLab). Note on- and offsets were determined by 
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automatic amplitude threshold comparison in SASLab and saved as timestamps. All 

measurements obtained through this procedure were reviewed by visual examination of the 

song spectrogram and corrected by hand where necessary. Timestamps of falsely identified 

elements (i.e. above-threshold noise) were removed. In the rare cases in which notes could 

not be reliably measured by hand (due to overlapping noise or recording artifacts), all 

timestamps from the entire song were discarded. Introductory notes as well as calls preceding 

or following song were measured but not included in the subsequent analysis. All remaining 

timestamps were exported to MathWorks MATLAB R2012b 8.0.0.783 (henceforth Matlab), 

which was used for the rest of the analysis. 

 

Song of zebra finches is composed of different notes, separated by silent intervals resulting 

from inhalation gaps. Notes consist of one or more sub-note elements, corresponding to 

neuromuscular gestures (hence called ‘gestures’; Amador et al., 2013). For the analysis, we 

labeled notes with alphabetical letters. A string of recurrent note sequences is called a motif.  

Slight changes of note order can result in motif variants.  For each bird, notes with the same 

bioacoustic features within a motif were labeled with the same alphabetical letter (for 

examples see Figure 1). The number of different notes sung by each individual ranged from 

four to seven, labeled a through g.  The most commonly sung motif received the note labels in 

alphabetical order. The interval between notes (hence called ‘gap’) following note a was 

labeled a’, following note b b’ etc. Gaps were associated with the preceding syllable, as note 

duration correlates more strongly with the duration of the subsequent than the preceding gap 

(Glaze and Troyer, 2006). Introductory notes and calls were assigned different letters, and the 

corresponding timestamps were subsequently filtered out. When the first note of a motif was 

similar or identical to the introductory notes, it was considered the first note of the motif if it 

was present in each motif repetition and the gap between this note and the next was in the 

range typical of gaps within the motif. We used this criterion to distinguish between 

introductory notes and motif notes, because the former are separated by gaps of variable 

duration and the latter are not. 

 

Rhythm analyses were performed on ‘chunks’, e.g. songs containing 1 to 10 continuously sung 

motifs. A new chunk started when a pause between two motifs lasted 300ms or more.  Chunks 

containing fewer than four notes (e.g. abc) or fewer than three bioacoustically distinct notes 

(e.g. ababab) were discarded in order to avoid ‘false positives’, e.g. finding a regular pulseS as a 

mathematical consequence of few notes or low complexity. For each bird we analyzed 

between 12 and 68 undirected song chunks, consisting of 4–34 notes each (9.1 ± 4.5; mean ± 
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std). Recordings of directed song contained 15–107 chunks, consisting of 4–42 notes (8.6 ± 5.9; 

mean ± std). 

 

Pulse matching 

We used a generate-and-test (GAT) approach to find the pulseS (signal-derived pulse) that 

best fitted the note onsets. Essentially, isochronous pulses, i.e. strings of timestamps of equal 

intervals, were created for a range of different frequencies. To assess the goodness of fit of 

each of those pulses to a particular recorded song, the root-mean-square deviation (RMSD) of 

all notes in the song chunk from their nearest single pulse (i.e. timestamp) was calculated. 

Specifically, we aimed to determine the slowest regular pulse that could coincide with all note 

onsets of the particular song under investigation. 

 

To numerically determine the lower range of pulse intervals we therefore used the shortest 

measured inter-onset interval (IOI) for each tested song chunk and added 10% to account for 

variability. Lower frequency limits calculated this way ranged from 5.5Hz (bird 4042) to 14.9Hz 

(bird 4669). Starting there, the pulse frequency was incremented in 0.01Hz steps up to 100Hz.  

Preliminary investigation revealed that the best fitting pulses very rarely had frequencies 

above 100Hz. 

 

For each chunk, the pulse that fitted note onsets best was determined in the following way.  

Each of the pulses of incrementing frequency (by 0.01Hz steps) was displaced from the 

beginning of the recording by offsets ranging from zero to one period in 1ms steps. For each 

offset of each pulse the RMSD was calculated. The offset at which the RMSD was minimal was 

regarded as the “optimal offset”. The result of this process was a list of pulses of different 

frequencies (e.g. 5.50Hz, 5.51Hz, …, 100Hz) for each chunk and their respective minimal RMSD. 
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Figure 1 – Sonograms of song chunks from five different birds: 3534, 4669, 4427, 4462 and 4052 (top to bottom). For 

each song, note identity is indicated by color. Amplitude envelopes of the notes are outlined overlying the sonograms. 

Thicker black bars underneath the notes indicate note duration as determined by SASLab software. Isochronous pulsesS 

fitted to note onsets are marked as vertical dotted lines. Triangles indicate gesture transitions that either coincide with 

the pulse (white) or do not (grey, see Section Materials and Methods for details). Bird ID numbers and pulse frequencies 

are given to the left of each sonogram. 
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Because pulse frequency is mathematically related to RMSD, e.g. faster pulses are associated 

with lower RMSDs, we normalized the RMSD by multiplication with the pulse frequency, 

resulting in the ‘frequency-normalized RMSD’ (FRMSD). The FRMSD, unlike the RMSD, does 

not exhibit this long-term frequency-dependent decrease (Supplementary Figure 1). The 

RMSD on its own is an absolute measure of deviation. In contrast, the FRMSD was used in this 

study, measuring the deviation relative to pulse frequency. Essentially it indicates how well 

the pulse fits, taken into account its tempo.  We selected the pulse with the lowest FRMSD as 

the best fitting pulse for each chunk. 

 

Fourier analysis 

A Fourier analysis was performed to confirm the results of the GAT pulse matching method 

(Saar and Mitra, 2008). To this end the note onset timestamps of each song were used to 

generate a point process, i.e. a number string with a 1ms time resolution, which was 1 at note 

onsets and 0 elsewhere. After performing a fast Fourier transform (FFT) on this string, we took 

the frequency of maximum power for each chunk (within the same Hz limits as above) and 

compared it to the frequency given by the GAT method. 

 

Gesture transitions 

Examination of the sonograms showed that not only note onsets, to which the pulses were 

fitted, but also onsets of distinct bioacoustic features within notes, corresponding to 

neuromuscular gestures, coincided with the pulse remarkably often. We identified possible 

time points of these gesture transitions quantitatively through a previously published 

algorithm that determines significant local minima in the amplitude envelope (Boari et al., 

2015). Amplitude minima occur not only on gesture transitions, but also within gestures and 

notes of quasi-constant frequency (e.g. note e of 3534, Figure 1). Thus, we selected from the 

time points produced by the algorithm only those as gesture transitions that corresponded to 

clear discontinuities in the frequency trace, identified by visual examination of the sonograms. 

The percentage of gesture transitions that fell within certain ranges around the pulse, namely 

one tenth, one sixth and a quarter of the pulse period, were calculated. In Figures 1 & 3 

gestures with a distance of less than one sixth of the pulse period to the nearest pulse are 

highlighted. 

 

Clustering 

Visual examination revealed that the frequencies of the best fitting pulses of all song chunks 

from each bird tended to form clusters with individual values scattered between clusters 

(Supplementary Figure 2). To quantify this impression we used agglomerative hierarchical 
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clustering, taking the group average of frequency distances as a dissimilarity measure. The 

dissimilarity threshold was set at 0.025 for all datasets. There was a significant positive 

correlation between cluster frequency mean and standard deviation (Linear regression; R² = 

0.21; p < 0.001; n = 78), i.e. pulse frequency clusters were more tightly packed, the lower their 

frequency and vice versa. In order to obtain comparable clusters, different frequency 

transformations (square root, loge and log10) were applied pre-clustering and their effect on 

this correlation was tested. Clustering in this study was done on the basis of log10-transformed 

frequency data because log10 transformation led to clusters with the least frequency-

dependent standard deviation (Linear regression; R² = 0.0007; p = 0.824; n = 77). 

 

Modeling 

To address whether the pulse frequencies found through the GAT method could also be 

detected with similar goodness of fit in any arbitrary sequence of notes, we developed two 

sparse models of song with varying degrees of randomization. These models produce 

sequences of timestamps comparable to the ones obtained from the song recordings and 

consist of on- and offsets of virtual “notes”. The pulse deviation of the recorded bird songs 

was then compared to that of these artificial songs. We used the results to test the hypothesis 

that note onsets in zebra finch song align to an isochronous pulse more closely than expected 

by chance. 

 

The first model, called “random sequence” model (Model R), creates virtual notes and gaps of 

random duration, albeit within a certain range. It ignores the note sequence of the original 

song, instead picking a new duration for each individual note. Therefore, the note sequence is 

not consistent across motif repetitions (e.g. natural song abcd abcd abcd compared to artifical 

song a’c’b’d’ g’i’h’k’ m’l’n’o’). Model R creates a pseudorandom value for each individual note in 

the analyzed song chunk and uses that as the duration of the corresponding modeled note. 

These pseudorandom values are drawn from a Pearson distribution using Matlab’s pearsrnd() 

function. The distribution’s mean, standard deviation, skewness and kurtosis are equal to the 

distribution of all observed note durations from either undirected or directed song, depending 

on which is to be modeled. The same is done for each gap, only this time the distribution is 

modeled on that of the observed gap durations. To be more conservative and avoid 

introducing high variability into the gaps of the model songs, outlier values and durations of 

gaps with unusually high mean and variability (gray points in Figure 6) were excluded in the 

creation of the pseudorandom number distribution. 
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Like model R, the second so called “consistent sequence” model (Model C) creates notes and 

gaps of random duration within the range of actually observed durations. Unlike model R 

though, model C takes the note sequence of the original song into account, keeping the 

duration of individual notes and their associated gaps  in their sequence consistent across 

motif repetitions (e.g. natural song abcd abcd abcd compared to artificial song a’b’c’d’ a’b’c’d’ 

a’b’c’d’). In the first step of creating a virtual “song”, the different note types in the analyzed 

song chunk were determined (e.g. a, b, c, d). Then a set of 100 pseudorandom numbers were 

created for each note type of a bird, drawn from a standard normal distribution using Matlab’s 

randn() function. These sets were then transformed to have their respective means equal a 

random value (drawn from a uniform distribution) between the minimum and maximum of the 

means of all durations of each observed note type. The standard deviation of all sets equals 

the mean of the standard deviations of the durations of each note type in the database. The 

same was done for each gap, only this time using the standard deviations and range of means 

of the gap durations as the basis for the set transformation. Model C draws a random element 

from the appropriate set for each individual note in the analyzed song chunk and its 

associated gap, and uses that value as the duration of the corresponding modeled note/gap. 

The note/gap type durations in this model were kept consistent not only across motif 

repetitions within a chunk, but also across all analyzed chunks of a bird. This was achieved 

through seeding Matlab’s random number generator (RNG) before the creation of the duration 

sets during the modeling of each song chunk. The same seed value was used for all chunks of a 

single bird and different seed values were used for different birds. The RNG was seeded again 

before drawing the individual note/gap durations from the sets. Here, each chunk from a bird 

was assigned a different seed value. As a result, each modeled chunk used the same set of 100 

durations for each note/gap type, but different values from that set were selected each time. 

 

The deviations of two songs from their best fitting pulses cannot be compared if those pulses 

strongly differ in frequency. Just as the RMSD depends on the pulse frequency (described 

above), so does the FRMSD, as it measures deviation relative to pulse frequency.  We therefore 

repeated the pulse matching process for both the recorded songs and the artificial songs, this 

time restricting the matched pulses to a certain frequency range that was different for each 

bird and identical for all recorded and artificial songs of one bird. Since we wanted to test 

whether we can find equally well fitting pulses for the artificial songs as we did for the 

recorded songs, we chose the mean of the largest frequency cluster of each bird as the center 

of the range. Furthermore, the upper bound of the range was twice the frequency of the lower 

bound. This assured that for any frequency outside of this range, either one integer multiple 



‘Bird Song Metronomics’ – Publication B 

 
80 
 

or one integer fraction of that fell within the range.  We then compared the FRMSD values of 

all recorded songs and their best fitting pulse in their frequency range to those of the artificial 

songs. To exclude the possibility of the models producing particularly periodic or aperiodic 

songs by chance, the artificial song creation and subsequent FRMSD comparison were 

repeated 50 times for each song. 

 

Statistics 

To test the differences in pulse deviation between bird song and model song or between song 

contexts (directed and undirected song), a linear mixed effects analysis was performed (linear 

mixed model, LMM) using the statistical programming language R 3.0.2 (R Core Team, 2013) 

with the package lme4 (Bates et al., 2014). FRMSD was entered into the model as fixed effect. 

As FRMSD increases with the number of notes in a chunk (Supplementary Figure 3), the latter 

was used as a random intercept. P-values were obtained by likelihood ratio tests of the full 

model versus a reduced model without the fixed effect (FRMSD). One sample t-tests were 

used to test whether the percentage of gesture transitions occurred in certain ranges around 

the pulses significantly more often than expected by chance. 
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Results 

 

For each of the 15 analyzed adult male zebra finches we found an isochronous pulseS (signal-

derived pulse) that coincided with all note onsets, using two independent analysis methods.  

For both, we used a continuous undirected song sample from each bird. The analyses were 

performed on segments, called ‘chunks’ that contained notes not separated by more than 

300ms.  Each analyzed chunk consisted of 1 to 10 motifs, composed of repeated unique notes, 

varying between 4 and 7 depending on the bird. Using a generate-and-test approach (GAT; see 

Section Materials and Methods) we identified for each chunk of a bird’s recording a pulseS that 

fitted best to the note onsets, i.e. had the lowest frequency-normalized root-mean-square 

deviation (FRMSD; Figure 1). 

 

 

 
Figure 2 – Frequencies of the best fitting pulsesS for all analyzed chunks of undirected song for all 15 birds (bird ID 

numbers depicted on x-axis). Circles indicate frequency clusters as determined by hierarchical clustering analysis. 

Circle size corresponds to the percentage of chunks in the cluster relative to all chunks from the respective bird. The 

cluster containing the most chunks for each bird is black, the number inside the circle indicates the percentage of 

chunks within that cluster.  
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Pulse frequencies 

For all birds except one, a particular best fitting pulse dominated, e.g. between 36% and 70% 

of analyzed chunks from each bird clustered around a particular frequency (black circles in 

Figure 2). For 11 of 15 birds, best fitting pulse frequencies lay between 25 and 45Hz.  As a 

second analysis method to determine the best fitting pulses we applied fast Fourier 

transformations.  We found that 91% of all chunks differed by less than 0.25Hz from the pulse 

frequencies identified by our GAT method. 

 

In all birds a portion of songs were best fitted with pulses of different frequencies than those 

in the largest frequency cluster. Slight measurement inaccuracies may have led to different 

pulses having a lower deviation than the putative ‘real’ pulse in some songs. Song amplitude 

throughout the recordings varied slightly depending on the birds’ position in the cage and the 

orientation of their heads during singing. This is likely to have introduced some variability in 

the note onset measurement by amplitude threshold detection. The use of a dynamic time-

warping algorithm for onset detection should provide more accurate measurements (e.g. 

Glaze and Troyer, 2006). Another factor that might tie into the variability in pulse deviation is 

the fact that zebra finches gradually slow down by a small degree during bouts of continuous 

song (Glaze and Troyer, 2006). 

 

Gesture transitions 

Often the best fitting pulse coincided not only with note onsets, but also with onsets of 

particular bioacoustic features within notes, corresponding to neuromuscular gestures. This 

was unexpected because the pulse was determined based on note onset times and not based 

on gesture transitions. To quantify this observation, we identified possible time points of 

gesture transitions through an algorithm that determines significant local minima in the 

amplitude envelope (Boari et al., 2015). Out of these time points we selected those that 

coincided with clear discontinuities in the frequency domain of the song spectrograms as 

gesture transitions. We did this for one song chunk from each of the 15 birds and found that 

overall 50.8% of gesture transitions fell within one sixth of the pulse period around single 

pulses (white triangles in Figure 1). If the gesture transitions were randomly distributed, 33.3% 

would be expected to fall in this range, as the range within one sixth of the period to either 

side of each pulse adds up to a third of total song duration. The percentage of gesture 

transitions that were within this range was significantly higher than the percentage expected 

by chance (one sample t-test, t14 = 2.894, p = 0.0118).  
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Figure 3 – Sonograms of one song chunk from bird 4042. PulsesS are the one best fitting on note onsets (18.3Hz, black 

box) as well as integer fractions and multiples of that frequency. Triangles indicate gesture transitions that either 

coincide with the respective pulse (white) or do not (grey, see Section Materials and Methods for details).  
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We found that the pulses also had a significantly higher coincidence with the gestures than 

expected by chance when we chose other ranges. Within one tenth of the period around 

pulses lay 34.3% of the transitions, significantly more than the 20% expected by chance 

(t14 = 2.315, p = 0.0363). Within a quarter lay 65.9%, while 50% were expected if gesture 

transitions were randomly distributed (t14 = 2.639, p = 0.0195). Inspection of the spectrograms 

revealed many cases in which gesture duration equaled one or multiple pulse periods (for one 

pulse period see e.g. note c of bird 3534; c of 4669; d of 4427; a & b of 4462; b & d of 4052; for 

multiple pulse periods see c of 4427; Figure 1). In other cases multiple successive gestures 

added up to one pulse period (c of 3534; c of 4669; b of 4052). Note offsets did not 

systematically fall on the pulse, but in some cases notes consisting of a single gesture spanned 

one or more pulse periods (d of 3534; b & e of 4669; c of 4462; a of 4052). These observations 

imply a strong relationship between gesture durations and inter-onset intervals (IOI). 

 

Motivated by the unexpected finding that the pulses fitted not only note onsets but also many 

of the gestures, we wondered whether even shorter gestures would coincide with faster 

pulses, corresponding to integer multiples of the slowest fitting one. Interestingly, inspection 

of one bird under five additional pulse frequencies revealed increasingly higher coincidence of 

pulses with all observable gesture transitions (Figure 3). 

 

Directed song 

Song directed by zebra finch males at females during courtship is less variable in various ways 

than when males sing so called ‘undirected’ song (Sossinka and Böhner, 1980).  During 

courtship, zebra finches deliver their song slightly faster than during undirected singing 

(Cooper and Goller, 2006; Sossinka and Böhner, 1980). In addition, notes and the sequence in 

which they are sung are produced in a more stereotyped manner from rendition to rendition 

during directed singing. Whether the duration of notes is also less variable in the directed 

than the undirected singing context is not known (Glaze and Troyer, 2006). To find out 

whether directed song had a faster pulse or whether the pulse fitted better due to lower 

variability (i.e. lower FRMSD) we recorded 9 of the previously analyzed birds also in a directed 

song context. 
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Figure 4 – Frequencies of the best fitting pulsesS for all analyzed chunks of undirected (left in each box) and directed 

song (right, e.g. “4042dir”) for 9 birds. Circles indicate frequency clusters as determined by hierarchical clustering 

analysis. Circle size corresponds to the percentage of chunks in the cluster relative to all chunks from the respective 

bird and condition. The cluster containing the most chunks for each bird and condition is black and the percentage of 

chunks in that cluster is given. Mean frequency of those clusters is shown on top of the figure. 

 

 

 
Figure 5 – Boxplot of frequency-normalized root-mean-square deviation (FRMSD) of note onsets to pulseS for all 

undirected (left in each box) and directed song chunks (right in each box, e.g. “4042dir”) of 9 birds. Outliers are marked 

by crosses. There was no significant difference in FRMSD between undirected and directed song (LMM; p>0.05 for all 

9 birds). Note that FRMSD increases with the number of notes in the chunk (Supplementary Figure 3), which was 

accounted for in the linear mixed model. 
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Mean pulse frequency of the largest cluster of undirected song was slightly lower than the 

nearest cluster in directed song in all birds (Figure 4). This is consistent with the fact that 

directed song is performed faster than undirected song (Kao and Brainard, 2006; Sossinka and 

Böhner, 1980; Woolley and Doupe, 2008), linked to a higher level of motivation during directed 

singing (Cooper and Goller, 2006). In 7 of 9 birds the pulse frequency best fitting most chunks 

was in the same range for undirected and directed songs. Interestingly, there was no 

significant difference in FRMSD between directed and undirected song (LMM; p>0.05 for all 9 

birds; Figure 5), indicating that note onsets in directed song do not appear to have a stronger 

or weaker periodicity than those of undirected song. 

 

 

 
Figure 6 – Durations of all labeled notes and silent gaps of undirected song. Left: Scatterplots of durations separated 

by note type and bird ID (x-axis). Gaps are categorized by the preceding note. Right: Histograms of all note and gap 

durations. The durations of all 5006 notes ranged from 26–256ms (134 ± 60ms; mean ± std). Of all gaps, 4456 were within 

song chunks and had durations between 6 and 288ms (43 ± 23ms; mean ± std). Of those, 305 were either considered 

outliers or were part of gap types that had a high mean duration and large variance (dark gray and light gray points, 

respectively). Excluding those, the remaining gap durations ranged from 6–88ms (38 ± 12ms; mean ± std).  

 

 



‘Bird Song Metronomics’ – Publication B 

 
87 

 

Comparison to randomized model “song” 

To evaluate the fit of note onsets to the pulses, we created artificial “songs” consisting of 

randomized note and gap durations and compared the deviations of their note onsets from an 

isochronous pulse to those of the recorded birds. 

 

The songs of the first model (“random sequence”, model R) do not replicate the note sequence 

of the recorded song. Instead a new pseudorandom duration is picked for each individual note 

and gap from a distribution modeled on that of the recorded notes and gaps. Through this 

comparison we could answer the question of whether a similar periodicity could be found in 

any arbitrary sequence of an equal number of (finch-like) song elements. We modeled the 

durations on the population of measured values of all birds in this study (Figure 6) 

For each chunk we created 50 artificial songs with different randomized duration values each 

time and compared those to the recorded song chunks (see Section Materials and Methods 

for details). In overall 99% of comparisons bird songs had a lower pulse deviation (FRMSD) 

than the artificial songs created by model R (Table 1). In 88% of cases deviations were 

significantly lower compared to model songs, while the opposite never occurred (LMM; 

p<0.05). The analyzed natural songs therefore match a regular pulse significantly better than 

expected by chance. In other words, all inter-onset intervals (IOI) of one bird are proportional 

to each other (i.e. integer multiples of the pulse period), unlike an arbitrary sequence of 

(finch-like) durations. 

 

In most cases IOIs within one chunk are not completely independent of each other, as notes 

or whole motifs are repeated, and repetitions of notes and associated gaps are mostly very 

similar in duration. Thus, we compared the recorded songs to a second model (“consistent 

sequence”, model C), that preserves the sequence of the recorded song. In all artificial songs 

produced by model C for one bird, for example, the notes based on note a have a similar 

duration. In 81% of comparisons, FRMSD was lower in the natural song than in the model C 

songs (Table 1). It was significantly lower in bird songs in 55% and significantly lower in model 

songs in 8% of comparisons (LMM; p<0.05). Model C songs performed better than model R 

songs in terms of pulse deviation, but still worse than the natural songs in the majority of 

cases. This leads us to conclude that the pulse is a result of the durations of the song elements 

as well as their sequence. 

  



‘Bird Song Metronomics’ – Publication B 

 
88 
 

Table 1 – Results of the comparison between recorded undirected songs and model songs for all 15 birds. Artificial song 

creation was repeated 50 times for each song chunk with different pseudorandom values for each repetition. Values 

are the percent of repetitions in which the pulseS deviation (FRMSD) was lower in natural songs compared to model 

songs and vice versa (first and third column in each block) and the percentage in which this difference was statistically 

significant (LMM; p < 0.05; second and fourth column of each block). Column mean is given at the bottom. 

bird 

  Model R (random sequence) 

  

Model C (consistent sequence) 

  

deviation 

bird < 

model 

p < 

0.05 

deviation 

model < 

bird 

p < 

0.05 

deviation 

bird < 

model 

p < 

0.05 

deviation 

model < 

bird 

p < 

0.05 

2994   100 100 0 0 95 73 5 0 

3534   98 70 2 0 98 50 2 0 

4042   100 100 0 0 93 82 7 0 

4052   100 100 0 0 84 66 16 0 

4217   100 100 0 0 100 98 0 0 

4295   100 100 0 0 77 57 23 11 

4306   100 100 0 0 98 86 2 2 

4344   100 60 0 0 95 50 5 0 

4427   100 100 0 0 82 50 18 2 

4462   100 100 0 0 77 43 23 7 

4502   84 0 16 0 59 5 41 0 

4523   100 98 0 0 98 77 2 0 

4635   100 100 0 0 66 39 34 14 

4669   100 94 0 0 70 39 30 9 

g13r8   100 100 0 0 18 9 82 70 

 

mean:  99 88 1 0  81 55 19 8 
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Discussion 

 

We showed here for the first time that the song of a passerine songbird, the zebra finch, can 

be fitted to an isochronous pulseS (signal-derived pulse). Note onsets coincided with pulses of 

frequencies between 10 and 60Hz (25–45Hz for most birds) and at different frequencies for 

each individual. In female-directed song this periodicity was not significantly different from 

undirected song. In addition to note onsets, many of the transitions between gestures within 

complex notes coincided with the same pulse as well, more so than expected by chance. 

Finding a pulse in zebra finch song raises questions about the underlying neural mechanism 

and its behavioral function. We cannot offer definite answers but some suggestions: 

 

Song is coded in HVC neurons projecting to nucleus RA (HVCRA) of the motor pathway. 

Different ensembles of those neurons fire at particular positions of each rendition of a song 

motif in a single, roughly 10 ms long, burst of action potentials (Hahnloser et al., 2002). Finding 

no connection between temporal firing of these neurons and note on- and offsets led to a 

working hypothesis, according to which HVCRA neurons act together like a clock, producing a 

continuous string of ticks (‘synfire chain’) throughout song on a 5–10ms timescale (Fee et al., 

2004). Additional evidence for a clock-like signal in HVC controlling song production comes 

from experiments in which HVC was locally cooled (Long and Fee, 2008). This caused song to 

slow down up to 45% across all timescales, including gaps, while only slightly altering the 

acoustic structure. Since neural activity in RA gives rise to the motor code for song 

production (Mooney, 2009), one could expect to see the periodicity of the synfire chain 

reflected in the temporal structure of song. The frequency of this periodic activity would be in 

the range of 100–200Hz. The best fitting pulses found in this study, however, are between 

three and ten times slower. This suggests that the timing of song notes is organized on a 

slower timescale, occurring only at every nth clock tick, with n depending on the individual. 

Since we found these slower pulses in the songs of all birds and the songs were made up of 

several different notes, we propose that additional mechanisms must operate to orchestrate 

the timing signals of the internal clock into higher hierarchical levels giving rise to the slower 

pulse. 

 

One such mechanism was proposed by Trevisan et al. (2006) to explain the diverse temporal 

patterns in the songs of canaries (Serinus canaria). They constructed a simple nonlinear 

model of respiratory control that could reproduce the air sac pressure patterns recorded 

during singing. This model, in which respiratory gestures emerge as different subharmonics of 
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a periodic forcing signal, could predict the effects of local cooling of canary HVC on song 

notes (Goldin et al., 2013). As in zebra finches, canary song begins to slow linearly with falling 

temperature. At a certain point, however, notes begin to break into shorter elements, as 

forcing and respiration lock into a different integer ratio (e.g. from 2:1 to 1:1). Such a model 

might explain how a minimal time scale – e.g. in the form of an HVC synfire chain – could 

drive the timing of zebra finch notes on a subharmonic frequency. Zebra finch songs include 

more complex notes, in which several gestures of different duration are strung together in a 

single expiratory pulse. Our observation that gesture transitions preferentially coincided with 

the pulse on the note level, suggests that a similar mechanism might be responsible for 

periodic activation of the syringeal membrane. 

 

Another study that recorded from HVCRA in zebra finches found that they fired preferentially 

at so called ‘gesture trajectory extrema’. These comprise gesture on- and offsets as well as 

extrema in physiological parameters of vocal motor control within gestures, namely air sac 

pressure and membrane tension of the syrinx (Amador et al., 2013). This suggests that gestures 

might be the basic units of song production and that their timing is coded early in the song-

motor pathway. It cannot be ruled out in this scenario that a number of neurons continue to 

fire throughout the song, sustaining a clock-like functionality (Troyer, 2013). Our results imply 

that gestures transitions, like note onsets, contribute to song regularity. On average around 

half of the gesture transitions coincided with the pulse fitted to note onsets, significantly 

more than expected if they were randomly distributed. Those that did not, often occurred at 

the boundaries of gestures shorter than the pulse period, and successive short gestures often 

added up to one or multiple periods. These observations imply a strong relationship between 

gesture duration and inter-onset intervals (IOI), where gestures constitute the lowest level of 

the temporal hierarchy. Notes are on a higher level of this hierarchy, combining one or more 

gestures and the intervening inhalation gaps. In this sense the rhythmic structure in zebra 

finch song is reminiscent of the relationship between notes and phrases in metrical rhythms 

of human music. 

  



‘Bird Song Metronomics’ – Publication B 

 
91 

 

What might be the behavioral function of the periodic organization of song? Temporal 

regularity in an auditory signal can facilitate the anticipation of events. In the wild, zebra 

finches live in large colonies that provide a very noisy environment. Females have to attend to 

the song of a single male against a backdrop of conspecific vocalizations as well as other 

sources of noise. Temporal predictability of an auditory signal has been shown to enhance 

auditory detection in humans (Lawrance et al., 2014), a phenomenon from which zebra finches 

could benefit as well.  Humans are also thought to possess a form of periodic attention. When 

asked to judge the pitch difference of the last of an isochronous sequence of 10 tones of 

different pitches to the first, they were more successful when the last tone was on the beat 

than when it came slightly early or late (Jones et al., 2002). This supports the idea that 

accurate expectation (i.e. when a stimulus might occur) has a facilitating effect on attention, 

improving the ability to assess what the characteristics of the stimulus are (Huron, 2006; 

Seashore, 1938). The benefit of successful anticipation of events is that it allows the 

optimization of arousal levels and therefore the minimization of energy expenditure (Huron, 

2006). When female zebra finches were given the choice between undirected and directed 

song from the same individual, they preferred to listen to the latter (Woolley and Doupe, 

2008). In this study the strength of this preference was negatively correlated with the 

variability in fundamental frequency of multiple renditions of harmonic stacks (parts of notes 

with clear harmonic structure and little frequency-modulation, e.g. the first two gestures of 

note c in 4669’s song; Figure 1). This suggests that females attend to the pitch at specific times 

in a male’s song and show a preference for males that are able to consistently “hit the right 

note”. If that is the case, it would be advantageous for them to be able to anticipate the timing 

of these structures. Since these gestures seem to be periodically timed, females could benefit 

from a form of periodic attention. Instead of maintaining a constant high level of attention 

throughout the song or establishing a new set of expectations for each individual male, they 

could then simply adjust the “tempo” of their periodic attention to fit that of the singer. 

Females possess most of the nuclei of the song system, including HVC and RA, albeit much 

smaller. Until recently, the function of these nuclei was largely unknown, although in canaries 

HVC is implicated in song recognition and discrimination (Halle et al., 2002; Lynch et al., 2013). 

Benichov et al. (2016) showed that following disruption of the song system, the ability for 

precise, predictive timing of call coordination is greatly reduced in both males and females. It 

is therefore probable that females use some of the same structures that enable males to 

produce song with high temporal regularity, to either assess the quality of this regularity, or 

to use it for the anticipation of other song features. 
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Whether zebra finches perceive the apparent periodicity in song and if so, on what timescale, 

is still an open question that is crucial for our understanding of their function. A recent study 

showed that ZENK expression was found to be elevated in several auditory nuclei after 

exposure to arrhythmic song, where inter-note gaps were lengthened or shortened, 

compared to natural song (Lampen et al., 2014). The observed differences in neural response 

suggest that rhythm plays a role in auditory discrimination of songs. In another study, zebra 

finches learned to discriminate an isochronous from an irregular auditory stimulus (van der Aa 

et al., 2015). The birds did not generalize this discrimination well across tempo changes, 

suggesting that they discriminated based on differences in absolute time intervals rather than 

relative differences (i.e. equal intervals in the isochronous versus variable intervals in the 

irregular stimulus). Subsequently, zebra finches were asked to discriminate regular from 

irregular beat patterns, consisting of strongly accented tones with either a regular or a 

varying number of interspersed weakly accented tones. Here, some of the individuals were 

sensitive to the global pattern of regularity, but in general seemed to be biased towards 

attending to local features (ten Cate et al., 2016). The stimuli used in these studies, a series of 

metronome-like tones, lack features present in natural song – like timbre, pitch and amplitude 

modulation – which might be necessary for regularity detection, or for the birds to perceive it 

as a relevant signal. Further studies are needed to uncover whether zebra finches perceive a 

regular pulseP in song. 

 

The pulsesS fitted to song notes in the present study were faster by multiple factors than 

those humans preferentially perceive in musical rhythm. The latter are in a tempo range of 

around 500–700ms, which translates to a pulseP frequency of 1.5–2Hz (Parncutt, 1994; van 

Noorden and Moelants, 1999). Zebra finches do possess a higher auditory temporal resolution 

than humans (Dooling et al., 2002). It is important to note, however, that pulsesS in the current 

study were fitted to all note onsets and represent the lowest level pulse in terms of note 

timing. In human music the perceived pulseP is usually slower than this low level pulse with 

notes occurring between successive beats. If birds perceive a pulseP in song, one could expect 

it to be on a longer timescale as well, e.g. integer multiples of the pulseS period, where some 

but not all notes coincide with the pulseS (see the top sonogram in Figure 3 for an example). 

 

Looking into the development of song regularity during song learning, especially in isolated 

juveniles, might provide further insights into whether periodicity is a result of song culture or 

whether it is neurally ‘hard-wired’.  
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Supplementary Material 

 

 
Supplementary Figure 1 – Frequency-normalized root-mean-square deviation (FRMSD, top) and root-mean-square 

deviation (RMSD, bottom) for one song chunk from bird 4052 (shown in the bottom sonogram in Figure 1). Isochronous 

pulsesS for this chunk were created between 9.47 and 100Hz in 0.01Hz steps. RMSD of note onsets to nearest single 

pulse were calculated for each pulse frequency and multiplication with that frequency yielded FRMSD. The RMSD, 

unlike the FRMSD, decreases non-monotonically with increasing frequency. The pulse with the lowest FRMSD was 

selected as the best fitting pulse (30.82Hz in this case). Note that the pulse of double frequency – at 61.64Hz – has an 

RMSD equal to the 30.82Hz pulse but a higher FRMSD. 
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Supplementary Figure 2 - Frequencies of the best fitting pulsesS for all analyzed chunks of undirected song for all 15 

birds (bird ID numbers depicted on x-axis). Lines next to points indicate which points belong to one cluster and 

numbers indicate the number of chunks in that cluster. This figure is identical to Figure 2 in the main article, except 

that it shows individual points. 

 

 

Supplementary Figure 3 – FRMSD versus number of notes for all analyzed song chunks.  
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Abstract 

 

Rhythm is an essential component of human speech and music but very little is known about 

its evolutionary origin and its distribution in animal vocalizations. We found a regular rhythm 

in three multisyllabic vocalization types (echolocation call sequences, male territorial songs, 

and pup isolation calls) of the neotropical bat Saccopteryx bilineata. The intervals between 

element onsets were used to fit the rhythm for each individual. For echolocation call 

sequences, we expected rhythm frequencies around 6-24 Hz, corresponding to the wingbeat 

in S. bilineata which is strongly coupled to echolocation calls during flight. Surprisingly, we 

found rhythm frequencies between 6 Hz and 24 Hz not only for echolocation sequences but 

also for social vocalizations, e.g. male territorial songs and pup isolation calls, which were 

emitted while bats were stationary. Fourier analysis of element onsets confirmed an 

isochronous rhythm across individuals and vocalization types. We speculate that attentional 

tuning to the rhythms of echolocation calls on the receivers’ side might make the production 

of equally steady rhythmic social vocalizations beneficial.  
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Introduction 

 

Music is widespread in all human cultures but its evolutionary origin is poorly understood (1). 

The field of biomusicology attempts to answer questions on the origin and purpose of music 

by focusing on the physiological, psychological, behavioral and evolutionary aspects of music 

in a comparative approach. That approach includes not only human music but musicality as a 

term for different traits that occur spontaneously and are based on and constrained by 

biology and cognition in animal vocalizations (2, 3). Music contains several key components – 

that can be separately investigated as musicality traits – such as pitch (governing melody and 

harmony), rhythm (defining temporal structure), and sonic qualities named timbre (1). Our 

study focuses on rhythm as a musicality trait.  

 

Rhythm can be defined as a “systematic patterning of sound in terms of timing, accent, and 

grouping” (4). Overall, our intuitive understanding of rhythm concerns periodicity, which is 

the expectation of a recurrent event. One special kind of periodic rhythm is an isochronous 

beat, as produced e.g. by a metronome. In an isochronous beat, all beats have the same length 

and all beat-to- beat intervals have the same length (4). When it comes to analyzing animal 

vocalizations for rhythmicity, two questions need to be answered. (a) How well can an animal 

produce a certain rhythm and (b) are rhythmic patterns similar or different between 

vocalization types and between individuals? Another interesting comparison not regarded in 

this project would be between species. Furthermore, the relevance and biological constraints 

shaping an existing rhythm need to be discussed.  

 

In a recent study on rhythm in song of zebra finches (Taeniopygia guttata) both questions 

were answered. Individual males had a distinct isochronous rhythm which fitted syllable 

onsets better than expected by chance. Distinct rhythms between individual males ranged 

from 10 to 60 Hz (5). Other examples of animals producing rhythmic signals include the Palm 

Cockatoo (Probosciger aterrimus) which uses tools to ‘drum’ a quasi-isochronous beat on 

branches in a consistent context (the rhythm frequencies were not analyzed in detail) (6) or 

chimpanzees cracking baobab fruits in a fashion probably eligible to generate individual 

signatures, which might help to recognize unseen companions (7). A subsequent question 

would be whether animals can distinguish between rhythms, isochronous or otherwise. Rats 

for example are able to discriminate between different isochronous rhythms in a habituation-

dishabituation experiment (8) while European Starlings are able to discriminate between 

rhythmic and arrhythmic patterns (9). Moreover, the first instance for a biologically relevant 
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rhythm in non-human mammalian vocalizations was found in the Northern Elephant Seal, 

where males can discriminate between familiar and unfamiliar male opponents using the 

temporal structure of vocalizations. Rhythms apparently differ between individuals in a way 

that facilitates discrimination of  individuals (10). Nevertheless, compared to other aspects of 

vocal communication, studies on rhythmicality in animals are still sparse.  

 

Our study aims to broaden the knowledge of rhythm in animal vocalizations by investigating 

whether isochronous rhythms can be found in different vocalization types of bats. Specifically, 

we investigated how well different vocalizations of bats fit an isochronous beat and whether 

the patterns are similar between individuals or vocalization types.  

 

We studied the Neotropical greater sac-winged bat Saccopteryx bilineata which has a rich 

vocal repertoire (11) and is capable of vocal production learning (12). The species’ vocal 

repertoire consists of distinct vocalization types that are uttered in different behavioral 

contexts. In this study, we focused on echolocation call sequences, isolation calls, and 

territorial songs, all of which are multisyllabic vocalizations with clear syllable onsets. 

Isolation calls are produced by pups to solicit maternal care and by adult males to appease 

dominant conspecifics (13-15). With a length of up to 2 seconds and a multisyllabic structure, 

isolation calls of S. bilineata are amongst the most acoustically complex bat isolation calls 

described (13, 14). Territorial songs are produced by adult males to repel rivals and attract 

mating partners (11, 16). They are acquired by imitating conspecifics’ song during ontogeny (12, 

16, 17). Echolocation calls are produced by male and female S. bilineata for orientation, 

navigation, and insect prey capture (18); in addition to their primary function, echolocation 

calls facilitate social communication among group members (19). We chose those three 

vocalization types to get insight into rhythmicity in both innate vocalizations (isolation calls, 

echolocation call sequences) and learned ones (territorial songs) as well as to investigate 

potential age differences in rhythmicity (in pup isolation calls).  

 

The individual rhythms found in zebra finch song were discussed to be potentially 

advantageous for anticipating events, i.e. song syllables. Tuning attention to rhythmic 

production could reduce ‘attentional energy’ (sensu: (20)) and increase signal perception 

(5).Correspondingly, rhythmicity in bat vocalizations might be adaptive for saving metabolic 

energy since flight is energetically costly. In many bat species, echolocation calls are coupled 

to wingbeat and respiratory cycle (e.g. (21-24)), which is thought to be energy efficient. 

Moreover, not only behavioral correlates can be found but neuronal correlates: wingbeat and 

echolocation calls in Roussettus aegyptiacus are tightly coupled around theta frequencies (5 – 
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12 Hz, (25)), brain wave frequencies which are known to play a role in active movement and 

stimulus intake (26). Consistently, preliminary data on S. bilineata suggests a wingbeat of 

around 6- 12 Hz (pers. communication H.-U. Schnitzler). During search flight one or two 

echolocation calls might be uttered per wingbeat, which corresponds to echolocation call 

intervals of 6 to 24 Hz (wingbeat frequencies of around 6-12 Hz) found in other studies on S. 

bilineata (18, 27, 28). 

 

Because of the coupling of wingbeat and echolocation pulses, we predicted isochronous 

pulses with frequencies between approximately 6 to 24 Hz in echolocation call sequences of S. 

bilineata. We assumed that echolocation call sequences would fit a specific isochronous pulse 

significantly better than random vocal sequences would. Moreover, we expected this rhythm 

to be similar between individuals due to common physiological constraints. Since social 

vocalizations (pup isolation calls and male territorial songs) are uttered by perched bats in the 

day roost, not coupled to wingbeat, we predicted to find individually different rhythms that 

might support vocal discrimination of different individuals, as previous research suggests. 

 

 

Methods 

 

Labeling of vocalization types 

We analyzed three different vocalization types of S. bilineata, namely isolation calls, territorial 

songs, and echolocation call sequences (Figure 1). Isolation calls and territorial songs are 

multi- component vocalization types containing four different element types each, while 

echolocation call sequences are series of one element type with alternating frequencies.  

 

For each vocalization, the on- and offset of its elements and the duration of the silent gaps 

between elements was determined for subsequent analyses. For isolation calls and territorial 

songs, element on- and offsets were determined manually based on oscillograms (see (13) and 

(29) for details). For echolocation call sequences, we used an automatized procedure in Avisoft 

SASLab Pro (based on amplitude detection threshold; - 20 dB relative to the call’s peak 

frequency) to determine element on- and offsets.  

 

We analyzed isolation calls from 25 pups (10 males, 13 females, 2 not sexed) belonging to a 

population of wild S. bilineata in Costa Rica (see (13) for details on study site and sound 

recordings). Each isolation call contained 5 – 26 elements (14 ± 3.5, mean ± SD) and was 
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composed of 2 – 4 different element types (mean: 3 element types). We followed the 

nomenclature introduced in an earlier study (14) and labeled the element types (a-d) as 

introductory elements (a), simple variable elements (b), composite elements (c), and simple 

stereotyped elements (d). Data for each pup consisted of 20 isolation calls, recorded at two 

ontogenetic stages (non-volant and volant; 10 isolation calls each). Only one call per pup and 

day was selected to minimize temporal dependence among vocalizations.  

 

 
Figure 1 – RhythmS fits well on three vocalization types: Oscillograms (top rows in A-C) and spectrograms (middle rows) 

of vocalizations (A: isolation call, B: territorial song, C: echolocation call sequence) with fitted rhythmS as dotted lines 

in the bottom row. Element durations are indicated by coloured bars, measured from the oscillograms. Note that echoes 

visible in the spectrograms may make the elements appear longer than they are in the oscillograms. Different colours 

indicate different element types (described in earlier studies (14, 29)). (A) Introductory elements, simple variable 

elements followed by composite elements and simple stereotyped elements in an alternating order. (B) Echolocation-

like calls (comparable to the introductory elements in A), short tonal elements and buzz elements. (C) Echolocation 

calls. (*) indicates two elements not being labelled due to a low amplitude. 

 

We analyzed territorial songs of 14 adult males belonging to a population of wild S. bilineata in 

Costa Rica (see (29) for details on study site and sound recordings). Data for each male 

consisted of 10 – 11 songs, which were recorded on different days. Each song contained 6 – 46 

elements (20 ± 8.0 mean ±SD) and was composed of 1 – 5 five different element types (mean: 3 
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different element types). We followed the nomenclature introduced in an earlier study (29) 

and labeled the element types (a-e) as short tonal elements (a), buzz elements (b), trills (c), 

noise bursts (d) and echolocation-like calls (e) (Figure 1).  

 

Sequences of echolocation calls were recorded from 33 wild Costa Rican S. bilineata (15 males, 

18 females) when they were released after capture, i.e. in a non-foraging context. Calls of 

known individuals were recorded in standardized release situations in relatively open space 

(e.g. at a forest clearing). Recorded calls resembled normal search calls (see (19) for details on 

study sites and sound recordings). Echolocation call sequences consisted of 11 – 38 elements 

(21± 6.95, mean ± SD) with no further differentiation into different elements types. One 

echolocation call sequence per bat was used for further analysis. 

 

Assessment of best-fitting rhythms 

Simply analyzing inter-onset intervals of social vocalizations, as is often done for echolocation 

call sequences (e.g. (18, 27, 28)), is problematic since this would oversimplify the temporal 

structure of multisyllabic social vocalizations with strongly varying syllable durations. Other 

approaches to analyze temporal structure of animal vocalizations include generate-and-test 

approaches or Fourier Analysis (30). We chose a generate-and-test approach (GAT approach) 

originally developed for rhythm analysis in zebra finch song (5). The GAT approach allowed us 

to find an isochronous rhythm (i.e. a pattern with equal time intervals) that best fitted the 

onsets of elements in a given sequence. We named this best fitting rhythm ‘signal-derived 

rhythm’ or rhythmS (same as pulseS in (5)). The GAT approach was performed by a custom 

MATLAB program (see (5) for more details). It creates isochronous pulse trains in 0.01 Hz 

increments in a predefined frequency window of 5-100 Hz (i.e. 5-100 pulses per second). The 

lower range of rhythm frequencies was determined by expected values (18, 27, 28) the upper 

range experimentally by testing different ranges. 100 Hz was deemed appropriate because, 

when testing for up to 200 Hz only very few values for best fitting rhythms lay above 100 Hz. 

Restricting the frequency window was a question of minimizing computing time. For each 

rhythm, temporal deviations of each element to the nearest pulse gave an overall root-mean-

square deviation (RMSD). Pulses were offset (+ one phase in 1 ms steps, see (5)) to minimize the 

RMSD. Since RMSD is negatively correlated with rhythm frequency (i.e. faster rhythms 

generally result in lower RMSD values; see Figure 2, bottom), we normalized the RMSD by 

multiplying it by the respective rhythm frequency, yielding a measure for deviation relative to 

the rhythm period. The resulting frequency-normalized RMSD (FRMSD) was used to assess 

the goodness-of-fit for each rhythm: the lowest FRMSD indicated the best-fitting rhythm 
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frequency. This way the slowest isochronous rhythm, coinciding best with element onsets, 

was found (Figure 2). 

 

 
Figure 2 – Optimization Process: Best fitting rhythms were found by selecting the rhythm with the lowest 

corresponding FRMSD (black cross with corresponding rhythmS), the frequency normalized root-mean-square 

deviation (upper panel). The lower panel shows the corresponding RMSD values. 

 

Clustering 

A visual examination of the resulting best-fitting rhythmS indicated an accumulation of certain 

frequency values for each individual and vocalization type. Rhythm frequencies showed a 

strong right skewness, which is why common measures such as mean, or median would have 

been inaccurate. Therefore, we performed a cluster analysis to assess whether specific 

rhythm frequency clusters existed. We applied an agglomerative, hierarchical clustering 

algorithm which used the group average of frequency distances as a dissimilarity measure 

(dissimilarity threshold was set to 0.05 for all data sets). The frequency data were log10-

transformed before clustering because an earlier study (5) showed that log10-transformation 

resulted in comparable clusters for different frequencies since these clusters had the least 

frequency- dependent standard deviation. 
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Modeling 

To confirm that the rhythm frequencies obtained by the GAT approach are an inherent 

property of the respective vocalization type and cannot be found in arbitrary element 

sequences, we created artificial temporal vocalization patterns based on the previously 

measured element and gap durations, assessed their FRMSD values and compared them to the 

FRMSD values of the original vocalization types. We created two different types of artificial 

vocalization patterns that were used in different models: In Model 1 we used artificial 

vocalization patterns with randomized element and gap duration but intact sequence 

information (i.e. the correct order of consecutive elements). In Model 2, we used artificial 

vocalization patterns where each element and gap were replaced with a random duration, 

irrespective of element type and sequence. Model 2 did not apply to echolocation call 

sequences because they consisted of only one element type repeated in series, thus making 

the dismissal of sequence information pointless. Element and gap durations for both models 

were drawn randomly out of the pool of original recorded durations of the same type from all 

individuals (elements a–e and gaps following elements a–e respectively). The respective pool 

from which durations were drawn contained only element and gap durations of the 

vocalization type (isolation calls, territorial songs, or echolocation call sequences) to be 

modeled.  

 

For each vocalization, we ran both Model 1 and 2 (not for echolocation call sequences, see 

above) 50 times. For every iteration, a new FRMSD value was obtained. We calculated the 

means of all model FRMSD values per individual and compared them to the means of all 

original FRMSD values per individual. 

 

Fourier Analysis 

Results of the GAT approach were compared to FFT analyses of all sequences (following (5, 

31)). Timestamps of element onsets were used to form a binary point process. We created 

strings with a time resolution of 5 ms in which only events (i.e. element onsets) were 

represented by ‘1’, everything else in the string was represented by ‘0’. The higher the 

temporal resolution of the input data, the lower the frequency resolution of the FFT output 

will be. With the sequence lengths available to us, a time resolution of 5 ms proved to be the 

best compromise between the two constraints. After calculating a fast Fourier analysis, 

frequencies of maximum power were selected as ‘best fitting rhythms and the pattern 

compared to GAT-results. A customized Matlab script was used for the analysis. 
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Statistics 

Data distribution was assessed using a Shapiro-Wilks test for all datasets. Artificial data from 

both randomizations (1 and 2) were compared to original data with repeated measures ANOVA 

(Tukey’s post hoc comparison) for isolation calls and territorial songs. Echolocation call 

sequences were tested against randomization 1 via a Welch-corrected t-test because 

variances differed significantly. A paired t-test was used to compare the results of different 

ontogeny stages in isolation calls. Statistical differences were considered significant for 

P<0.05 (*P<0.05, **P<0.01, ***P<0.001). When random numbers were needed those were 

generated using the R-function ‘runif’. 

 

Software 

For analyses and preparing figures, we used Matlab (Version 2016b & 2015b), R (Version 3.5.1), 

GraphPad Version 5 and AvisoftSASLab Pro Version 5.2.10. Customized Matlab programs 

written by Philipp Norton (PN) and Lara Sophie Burchardt (LSB) were adjusted and used for 

the rhythm optimization (PN), model calculations (PN & LSB), FFT analysis (LSB) and cluster 

visualization (PN). 
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Results 

 

Isochronous rhythm 

For each vocalization, we found an isochronous rhythm (rhythmS) that coincided best with the 

onsets of elements (supplementary audio files A1-3). A rhythmS between 6 – 20 Hz dominated 

across individuals as well as across vocalization types: 49.4% of isolation calls (247 out of 500 

calls), 41% of territorial songs (59 out of 143 songs) and 57% of echolocation call sequences (19 

out of 33 sequences) had a best fitting rhythm of 6-20 Hz (Figure 3). Corresponding results 

were obtained when focusing on individuals instead of vocalization types. 20 out of 25 pups 

produced isolation calls which clustered predominantly in the frequency range of 10-20 Hz; 

the largest clusters contained 25-70% of calls per pup (Figure 4A). 9 out of 14 males produced 

territorial songs which clustered predominantly in the frequency range of 10-20 Hz; the 

largest clusters contained 30-60% of songs (Figure 4B). We considered clusters with their 

mean falling into the range between 10-20 Hz and the cluster comprising at least 25% of data 

(clusters are marked in red in Figure 4A-C). Echolocation call sequences clustered 

predominantly in the frequency range of 6-20 Hz, 39% of sequences making up the strongest 

cluster (between 6 and 10 Hz), adding up to 57% between 6 and 20 Hz. Note that echolocation 

call sequences were pooled over all individuals (Figure 4C, see Methods). 

 

 
Figure 3 – GAT Analysis: Regular rhythms in S. bilineata vocalizations. The relative majority of calls/songs occurred in 

rhythm frequencies below 20 Hz for all vocalization types. 
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Figure 4 – Isochronous beat in bat vocalization: (A) Rhythm clusters in isolation calls of S. bilineata pups. (B) Rhythm 

clusters in territorial songs of S. bilineata males. (C) Rhythm clusters in echolocation call sequences of S. bilineata adults. 

Marked in red are the data belonging to the largest cluster containing at least 25% of songs/calls, within the range of 

6 to 20 Hz. Marked in blue are the data belonging to the largest cluster that were not considered. The percentage of 

data in the largest cluster is shown in the bottom of each column. The area of circles is scaled to the percentage of 

calls/songs in the respective clusters. 

 

Comparison to artificially randomized vocalizations 

To confirm that the observed element onsets in S. bilineata vocalizations aligned to an 

isochronous rhythm well and more closely than expected by chance, we compared the FRMSD 

values of artificial vocalization types to the FRMSD values of the original vocalization types. All 

artificial vocalization types had randomized element and gap durations; sequence information, 

i.e. the consecutive order of elements was either preserved (Model 1) or ignored (Model 2).  

 

As expected, original vocalizations had significantly lower FRMSD values than artificial model 1 

or model 2 vocalizations (Repeated Measures ANOVA: isolation calls: F=71.17, df= 74, p<0.0001; 

territorial songs: F=30.38, df= 41, p<0.0001; unpaired t-test (with Welch correction): 

echolocation call sequences: t=2.35,df=33, p= 0.0023), indicating that the element onsets of 

original vocalizations matched an isochronous rhythm more closely than expected by chance 

(Figure 5). 
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Figure 5 – Model validation: Mean values for FRMSD, comparing original data to 'bat-like' artificial data (Model 1: intact 

sequence information, Model 2: random sequences). Original data showed significantly lower deviations (*P<0.05; 

**P<0.01; ***P<0.001). Depicted are means per individual for isolation calls and territorial song and best fitting rhythms 

of single sequences for echolocation call sequences, explaining the higher spread. Red lines indicate the respective 

mean of a dataset. 

 

Fourier analysis 

Results of the fast Fourier analysis of a binary point process string where element onsets were 

represented by ‘1’ resulted in the same if not stronger picture at the level of vocalization types. 

55.4% of isolation calls, 47.8% of territorial songs and 66% of echolocation call sequences 

showed a dominant rhythm between 6 and 20 Hz (54% between 6-10Hz) (Supplementary 

Figure 1). 

 

Ontogeny effect 

Furthermore, we ran statistical analyses to investigate the effect of ontogeny on rhythmicity 

for pup isolation calls. For each pup, we compared the frequencies of isochronous rhythms of 

the first and last two isolation calls recorded during ontogeny (non-volant phase and volant 

phase). RhythmS frequencies in isolation calls did not change significantly during the pups’ 

ontogeny (paired t-test: t=1.31, df= 49 p=0.20, Supplementary Figure 2). 
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Discussion 

 

The novel aspect presented in this study is the documentation of isochronous rhythm 

patterns in different vocalization types of the bat S. bilineata. With a generate-and-test 

approach (GAT) as well as an FFT analysis, vocalizations were analyzed to find a best fitting 

rhythm over a wide frequency range of 5-100 Hz (i.e. pulses per second). Even though the 

three analyzed vocalization types (pup isolation calls, male territorial songs, and echolocation 

call sequences) differed in their acoustic structure and the behavioral situation they were 

produced in, their best-fitting rhythms fell in a quite narrow frequency window. Element 

onsets coincided best with rhythm frequencies between 6-20 Hz, independent of vocalization 

type and vocalizing individual. Analyses showed that rhythm frequencies were most abundant 

between 6-10 Hz for echolocation call sequences and between 10-20 Hz for territorial songs 

and isolation calls. The same picture was found with an FFT analysis at the level of vocalization 

types.  

 

Therefore, the best fitting rhythms were comparatively similar across vocalization types and 

vocalizing individuals in S. bilineata, with social communication signals showing rhythms 

twofold of echolocation call sequences. Other studies on rhythmicality in animal vocalizations 

so far did show patterns that differed between individual animals (5), and temporal structure, 

namely the rhythm, may be used by conspecifics for individual discrimination (10). A biological 

constraint shaping rhythms to be more alike between individuals is not apparent. Since there 

are not many comparable studies yet our results might prove to be the rule rather than an 

exception.  

 

Nevertheless, the pattern of rhythmS in the analyzed vocalizations, could be caused by 

physiological constraints and/or mechanisms to save energy. The production of echolocation 

calls when a bat is searching for prey items but has not detected anything yet is correlated 

with respiration which, in turn, is tightly coupled to wing beat. For many bat species, a 1:1 

relation has been found (e.g. (22)). The soprano pipistrelle (Pipistrellus pygmaeus), for example, 

produces one or two echolocation calls per wingbeat and respiratory cycle (24). In other 

pipistrelle bats (P. pipistrellus, P. kuhlii, P. nathusii (23)), greater horseshoe bats (Rhinolophus 

ferrumequinum), little brown bats (Myotis lucifugus), Parnell's mustached bats (Pteronotus 

parnellii rubiginosus) and Seba's short-tailed bats (Carollia perspicillata (21)) wingbeat and 

echolocation calls are also coupled. Coupling was also found in the tongue-clicking 

Pteropodid bat Rousettus aegyptiacus, indicating that a strong coupling of wing beat, 



General isochronous rhythm in a neotropical bat – Publication C 

 
118 
 

respiration and sonar emission is widespread in bats regardless of sound production 

mechanism.  

 

In S. bilineata, respiratory cycle and wing beat are between 6 and 12 Hz during search flight 

(pers. communication H.-U. Schnitzler). Our results suggest that in the release situation the 

echolocation call sequences were recorded, bats mainly uttered one call per wingbeat, which 

fits the low sensory needs in the relatively open space in which releases took place. In a 

situation with higher sensory needs, expected rhythm frequencies should be doubled, i.e. lie 

between 12 and 24 Hz, most of which overlaps strongly with the rhythm frequencies found in 

the social vocalizations. Therefore, we argue that the rhythm frequencies most abundant in 

social vocalizations (10-20 Hz) and in echolocation call sequences during search flight (6-10 

Hz and, to a lesser degree, 10-20 Hz) can be regarded as comparatively similar.  

 

During prey capture, however, echolocation call sequences contain not only search flight calls 

but also approach flight calls (when prey has been detected and is approached) and a so-

called final buzz (immediately before prey capture, very short and broadband echolocation 

calls with extremely short IOIs are produced), which enhances the sensory information 

available for the foraging bat. Even though wing beat, respiratory cycle and sonar emission are 

tightly coupled during search flights (likely to increase energy efficiency), this might not 

provide sufficient sensory information during prey capture, i.e. in a situation where high 

temporal resolution is needed (per wing beat and respiratory cycle up to 10-15 pulses can be 

emitted (23). A larger ratio between wing beat, respiratory frequency, and emitted 

echolocation calls could result in a weaker rhythmic pattern in our analyses. In the approach 

phase, the number of echolocation calls per wing beat can vary widely, depending on the 

current sensory needs of a foraging bat. Therefore, it seems reasonable to assume that 

echolocation call sequences during prey capture do not follow any clear rhythm but strongly 

depend on the bats’ current sensory needs. This could easily be tested on echolocation call 

sequences recorded in foraging situations. Correspondingly, a previous study on the big 

brown bat Eptesicus fuscus showed that the strict 1:1 synchronization of wing beat, respiration, 

and call emission was not found during complex navigation tasks, where freely behaving 

individuals had to search for prey (tethered mealworms, suspended at about 1.5 m height) in a 

flight room, equipped with various obstacles, such as artificial houseplants (32). During search 

flights, however, metabolic needs, e.g. being energy efficient, may play a more important role 

(33). To investigate the task/situation dependence of the coupling of wing beat, respiration, 

and call emission it would be worthwhile to analyze rhythmS of echolocation call sequences 
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produced in a feeding context in bat species in which a strict 1:1 coupling has been found 

during search flight.  

 

The determination of rhythmS (method developed by (5)) could be a valuable addition to 

currently used methods since it is not dependent on a laboratory setting. Knowledge of wing 

beat, and/or respiratory rates could be combined with analyses of rhythmS of echolocation 

call sequences and social vocalizations recorded from freely behaving, wild bats to gain 

insights on coupling relations in natural situations. Especially for more complex vocalization 

types with variable element durations, the GAT approach and FFT analysis provide an 

advantage over simply assessing IOIs. The latter method ignores the sequential structure of 

vocalizations and their variable element durations, potentially concealing higher order 

regularity.  

 

To assess the goodness-of-fit for our analyses of rhythmS, we compared deviations from 

rhythmS of original and artificially created vocalizations that were randomly drawn from a 

pool of typical element and gap durations. Original vocalizations deviated significantly less 

from rhythmS than did artificial vocalizations (i.e. element onsets of original vocalizations 

coincided significantly better with an isochronous rhythm than artificial vocalizations), 

indicating that the rhythmS found in S. bilineata vocalizations was not an artifact of the typical 

duration and sequence of this species’ vocalizations.  

 

One aspect worthy of discussion is the relation between rhythm frequencies of echolocation 

call sequences produced by S. bilineata during search flight (which were coupled to wing beat 

frequencies) and social vocalizations produced by individuals hanging in their day-roost (pup 

isolation calls and male territorial songs). We doubt that rhythm frequencies of isolation calls 

and territorial songs are caused by a coupling of sound emission to respiration since 

echolocation calls produced by roosting bats can occur at any point in the respiratory cycle 

(22). Taken this into account, it seems reasonable to assume that social calls can be emitted at 

any point in the respiratory cycle as well. Nevertheless, as stated before, we argue there is a 

relation between the dominant frequencies of the three vocalization types, and we regard 

them as being comparatively similar. The similarity of rhythm frequencies could suggest a 

common evolutionary background, which might be the coupling between respiration, 

wingbeat and echolocation call emission. However, increasing evidence suggests that flight 

preceded echolocation (34, 35), which would indicate that vocal communication preceded 

echolocation as well (assuming that bats’ predecessors communicated with social calls, as 

many small mammals do). It is therefore possible that social calls, despite being probably 
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phylogenetically older than echolocation, adopted the rhythm frequencies of echolocation 

calls at some point.  

 

It is interesting to compare the strength of rhythms between isolation calls and territorial 

songs since isolation calls are produced within minutes after birth (14) while territorial songs 

are learned during ontogeny (12). Generally, a higher variability in rhythmS may be expected 

when comparing learned vocalizations to innate vocalizations. In our study, rhythm 

frequencies predominantly clustered between 6-20 Hz, but cluster strength of individuals was 

on average lower in territorial song than in isolation calls (37% in territorial song compared to 

44.7% in isolation calls; GAT approach). This difference in individual cluster strength 

resembled the overall difference between both vocalization types, since only 41.6% of all 

territorial songs had rhythm frequencies between 6-20 Hz, while 49.8% of isolation calls did.  

 

Rhythmic properties of echolocation could represent the same neuronal correlates underlying 

production of social vocalizations. In the Egyptian fruit bat (R. aegyptiacus) wingbeat and 

tongue clicks are tightly coupled around 10 Hz (25), as we found for S. bilineata. These rhythm 

frequencies show a resemblance to the frequency of theta brain waves. Thought to be 

important for movements, spatial memory and active stimulus intake (26) amongst others, 

theta waves might be a promising neural correlate explaining the production of the detected 

rhythms.  

 

It might be advantageous to produce rhythmic vocalizations because ‘rhythmic attention’ 

(sensu (36)) helps receivers to decode rhythmic signals easier and faster (37). The attention of 

receivers cycles in an oscillatory way when a rhythm exists (e.g. (38, 39)). Since rhythmic 

signals are predictable, ‘rhythmic attention’ enables receivers to provide most ‘attentional 

energy’ at a time point where the next stimulus is to be expected. This is advantageous 

because cognitive capacities are limited (40) and an optimization of attention timing is helpful 

to not miss relevant stimuli. For example, when humans were asked to assess the difference in 

pitch of two focal tones separated by regularly timed tones, the assessment of pitch difference 

was better when the second focal tone followed the regular timing of the separating tones 

than when was slightly displaced from the regular timing (41). Another example from 

macaques shows that neuronal oscillations in the primary visual cortex entrain to a stimuli 

stream (visual stimuli) when the stream is rhythmic, a mechanism resulting in decreased 

reaction time and an increase in the response gain for events that are task relevant (42). Bats’ 

attention as well as the auditory system collectively could be tuned to echolocation rhythms, 

because bats are exposed to those rhythms for large parts of their lives (43). Therefore, it 
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might be advantageous to produce vocalizations in the same frequency window to increase 

detection by receivers. At the moment, we do not know whether rhythmic attention plays a 

role in S. bilineata. Playback experiments violating expected rhythmic patterns in social 

vocalizations would be a valuable avenue for future research. A switch from a rhythm 

determined by physiological constraints to a rhythm decoupled from its original production 

constraints but still with an adaptive function (e.g. rhythmic attention) might have been one 

step during evolution that paved the way to develop music as we know it.  

 

In summary, this study demonstrates an isochronous rhythm in three bat vocalization types in 

which metabolic constraints leading to rhythmic patterns are more (echolocation calls) or less 

(isolation calls, territorial songs) likely. The two methods used in this study (GAT and FFT) 

enable the analysis of best fitting rhythms in a corresponding way. Future studies should 

profit by complementary use of both methods. To further study the coupling or decoupling of 

wing beat, respiration and sound emission in animals as well as its biological relevance, it 

would be highly beneficial to compare different species of bats and birds which sing in flight 

as well as other echolocating mammals. Such a comparative approach could provide valuable 

insights into the origin and relevance of rhythmicality in animals. 
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Supplementary Material 

 

Validation analysis - Tempo changes 

To assess tempo changes within vocalizations, we calculated linear regressions for the Inter-

Onset-Intervals (IOI) sequences to test whether these were significantly different from zero 

(using an F-test), which would indicate a significant change in tempo.  We conducted this 

analysis for a random subset of each vocalization type (two sequences per individual for 

isolation calls and territorial songs, all data for echolocation call sequences). To corroborate 

results from the tempo analysis, individual syllable deviations of the first, middle and last 

syllable were compared per vocalization type by means of a Friedman test; this was done to 

test whether deviations changed throughout a syllable sequence. This analysis was conducted 

on a subset of the data, chosen in the same way as for the tempo analysis. 

 

The majority of isolation calls (74%) had a stable tempo, 22% of calls showed a decrease in 

tempo and 4% of calls an increase. On the contrary, the majority of territorial songs (79%) 

decreased in tempo, especially in the last fifth of songs (Supplementary Figure 3). However, 

inter-onset intervals did not increase continuously but rather abruptly, often doubling and 

quadrupling. These multiples of inter-onset intervals make it unlikely that the observed 

change in tempo had a negative effect on rhythmS in our study. Furthermore results were 

confirmed by the FFT analysis, which is stable against tempo changes.  

 

To corroborate that changes in tempo did not affect rhythmS, we calculated individual 

element deviations to the nearest single pulse. Element deviations did not change throughout 

vocalizations, since a best fitting rhythm was found by an optimization task regarding all 

elements of a sequence. Nevertheless, individual element deviations of vocalizations with 

tempo changes (territorial songs) did not differ from vocalizations without tempo changes 

(isolation calls) (Kruskal-Wallis, p=0.78, F=2.47, df=6, Supplementary Figure 4), suggesting that 

changes in tempo played a negligible role in our study. Another argument for this 

interpretation is the results from FFT analysis. Since the same pattern was found with a 

method in which tempo changes cannot affect the outcome, it is reasonable to say that tempo 

changes did not influence the results from GAT analysis in a crucial way. 
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Supplementary Figure 1 – FFT analysis: Regular rhythmS in bat vocalizations. The relative majority of calls/songs occur 

in rhythmS frequencies below 20 Hz for all vocalization types. 

 

 

 
Supplementary Figure 2 – Effect of ontogenetic stage on rhythmS in pup isolation calls. Early ontogeny did not differ 

from late ontogeny. Medians, interquartile range (25-75%) and whiskers (0-100%) are shown. 
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Supplementary Figure 3 – Tempo changes in sequences: Three IOI sequences are shown as solid lines; dashed lines 

show corresponding linear regressions.  Slopes of regression lines were tested against zero. Significant difference from 

zero was interpreted as tempo change. In red (triangle) an isolation call with no tempo change is shown, in grey (circle) 

an isolation call increasing in tempo and in blue (square) a territorial song decreasing in tempo rather abruptly are 

shown. 
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Supplementary Figure 4 – Syllable deviations of individual syllables. Individual deviations from rhythmS of first, middle 

and last syllable of calls/songs were compared. Median and interquartile range are shown. No significant differences 

were found. 
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Mendoza, E., Norton, P., Barschke, P., and Scharff, C. (in preparation). Effects on song learning 

differ after lentivirally mediated knockdown of FoxP1, FoxP2 or FoxP4 in Area X of zebra 

finches. Journal of Neuroscience. 
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Abstract 

Mutations in the transcription factors FOXP11 and FOXP2 are associated with speech 

impairments. FOXP1 is additionally linked to cognitive deficits, as is FOXP4. These FoxP 

proteins are highly conserved in vertebrates and expressed in comparable brain regions 

including the striatum. In male zebra finches, experimental manipulation of FoxP2 in Area X, a 

striatal song nucleus essential for vocal production learning, affects song development, adult 

song production, spine density and dopamine-regulated synaptic transmission of striatal 

neurons. We previously showed that in the majority of Area X neurons FoxP1, FoxP2, and 

FoxP4 are co-expressed, can di- and multimerize with each other and differentially regulate 

the expression of target genes. These findings raise the possibility that FoxP1, FoxP2, and 

FoxP4 (FoxP1/2/4) affect neural function differently and in turn vocal learning. To address 

this directly, we downregulated FoxP1 or FoxP4 in Area X of juvenile zebra finches and 

compared the resulting song phenotypes to the previously described inaccurate and 

incomplete song learning after FoxP2 knockdown. We found that experimental down-

regulation of FoxP1 and FoxP4 led to impaired song learning with partly similar features as 

those reported for FoxP2 knockdowns. However, there were also specific differences between 

the groups leading us to suggest that specific features of the song are impacted differentially 

by developmental manipulations of FoxP1/2/4 expression in Area X.   

 
1 FOXP denotes human protein, Foxp rodent and FoxP all other species (Kaestner et al., 2000)  
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Significance Statement 

 

We compared the effects of reduced amounts of the transcription factors FoxP1, FoxP2 and 

FoxP4 in a striatal song nucleus, Area X, on vocal production learning in juvenile male zebra 

finches. We show for the first time that these temporally and spatially precise manipulations 

of the three FoxPs affect spectral and temporal song features differentially. This is important 

because it raises the possibility that the different FoxPs control different aspects of vocal 

learning through combinatorial gene expression or by acting in different microcircuits within 

Area X. These results are consistent with the deleterious effects of human FOXP1 and FOXP2 

mutations on speech and language and add FOXP4 as a possible candidate gene for vocal 

disorders. 

 

 

Introduction 

 

Heterozygous mutations of the FOXP2 transcription factor are associated with a speech 

deficit called developmental verbal dyspraxia (DVD) (Lai et al., 2001) or Childhood Apraxia of 

Speech (Morgan and Webster, 2018). FOXP1 mutations cause a wider spectrum of impairments 

including speech problems (Fisher and Scharff, 2009; Bacon and Rappold, 2012; Siper et al., 

2017; Sollis et al., 2017). A FOXP4 mutation is associated with delayed development, laryngeal 

hypoplasia and feeding problems (Charng et al., 2016). FOXP1/2/4 are expressed in diverse 

brain regions, including the striatum (Bowers and Konopka, 2012). The striatum in patients 

carrying FOXP2 mutations differs structurally and functionally from that of their unaffected 

siblings (Watkins et al., 2002; Liegeois et al., 2003). FoxP1/2/4 are expressed in the striatum in 

mice and other vertebrates (Shu et al., 2001; Ferland et al., 2003; Takahashi et al., 2003; 

Haesler et al., 2004; Teramitsu et al., 2004; Bonkowsky and Chien, 2005; Takahashi et al., 

2008a; Takahashi et al., 2008b; Takahashi et al., 2009; Mashiko et al., 2012; Mendoza et al., 

2015; Spaeth et al., 2015). In striatal neurons of mice carrying a mutant allele of Foxp2, similar 

to one reported in patients, synaptic plasticity is impaired and ultrasonic vocal 

communication is altered (Groszer et al., 2008; Castellucci et al., 2016; Chabout et al., 2016).. 

While the latter may also be due to the crucial functions of Foxp2 in the development of 

craniofacial cartilage (Xu et al., 2018), striatal-specific deletion of Foxp2 (French et al., 2018) 

causes mice to execute rapid motor sequences more variably, emphasizing the importance of 

the striatum for fine control of motor behaviors. Together these findings implicate the 

striatum as an important site of integrated FoxP1/2/4 neural function. 
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We study FoxP function in songbirds because birdsong and speech share many 

features (Doupe and Kuhl, 1999). Both are learned during critical developmental periods 

through auditory-guided vocal imitation. Speech learning in people and song learning in birds 

are constrained by innate predispositions and are also strongly affected by social factors. 

Birdsong and speech depend on analogous neural pathways that are functionally lateralized 

(Petkov and Jarvis, 2012; Pfenning et al., 2014). Thus songbirds provide a genuine model for 

behavioral, neural and molecular analyses of genes relevant for vocal communication (Bolhuis 

et al., 2010). 

In zebra finches, FoxP2 expression levels in Area X, the striatal song nucleus required 

for learning, discrimination and maintenance of song (Sohrabji et al., 1990; Scharff and 

Nottebohm, 1991; Scharff et al., 1998; Aronov et al., 2008) vary with age and singing activity 

(Haesler et al., 2004; Miller et al., 2008; Teramitsu et al., 2010; Thompson et al., 2013; Adam et 

al., 2016). Experiments disrupting the dynamic regulation of FoxP2 impair song learning, social 

modulation of song variability and dopamine-sensitive signal transmission through the 

cortical-basal ganglia-thalamic forebrain song circuit (Haesler et al., 2007; Murugan et al., 

2013; Heston and White, 2015). In many Area X medium spiny neurons (MSNs) FoxP2 can 

dimerize and oligomerize with FoxP1 and FoxP4 (Mendoza et al., 2015; Mendoza and Scharff, 

2017). In cell culture, FoxP proteins of mice (Li et al., 2004a) and humans (Estruch et al., 2018) 

also dimerize. Dimerization is prerequisite for the transcriptional function of FoxP proteins (Li 

et al., 2004a; Chae et al., 2006; Li et al., 2007; Song et al., 2012). Dimerization may also be 

important for the phenotype of FOXP human mutations (Mizutani et al., 2007; Sollis et al., 

2015; Sollis et al., 2017).  

In summary, FoxP2 in humans and songbirds are clearly relevant for vocal 

communication. Given the recent implications of FoxP1 and FoxP4 in related phenotypes and 

the co-expression of all three FoxPs and their molecular interaction we hypothesized that 

FoxP1 and FoxP4 in Area X are also relevant for song behavior. To address this, we 

experimentally down-regulated either FoxP1 or FoxP4 in zebra finch Area X and compared the 

resulting song phenotypes to the previously described inaccurate and incomplete song 

learning after the FoxP2 knockdown. 
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Materials & Methods 

 

Subjects 

All experiments were performed in accordance with the guidelines of the governmental law 

(TierSchG). 60 male zebra finches (Taeniopygia guttata) were used in this study under the 

project approved by the Landesamt für Gesundheit und Soziales (LaGeSo) G0117/12. Animals 

were housed under a 12h:12h light:dark cycle with food and water provided ad libitum. Birds 

were non-invasively sexed aged between 7-14 post-hatch days (PHD) (Adam et al., 2014).  

 

Generation of lentivirus against zebra finch FoxP1 and FoxP4.  

Short hairpins against FoxP1 and FoxP4 were generated as described for FoxP2 (Haesler et al., 

2007). The structure of the linear DNA encoding shRNA hairpins was sense-loop-antisense. 

The sequence of the loop was GTGAAGCCACAGATG. We tested the sequence specificity of 12 

short hairpins against FoxP1 and 11 short hairpins against FoxP4. To do so we over-expressed 

in HeLa cells each one either with FoxP1 or with FoxP2 or with FoxP4. All FoxP over-

expression constructs were cloned from adult zebra finch brain cDNA and tagged with the 

Flag epitope (Mendoza et al., 2015). Subsequent Western blot analysis using a Flag antibody 

(Flag-M2 Sigma-Aldrich Cat# F3165, RRID: AB_259529, previously Stratagene) revealed three 

hairpins that strongly reduced FoxP1 expression levels but not the expression of FoxP2 or 

FoxP4 (FoxP1-sh1, target sequence AACAGTATACCTCTATAC, FoxP1-sh2, target sequence 

TGCATGTCAAAGAAGAAC, and FoxP1-sh3, target sequence CCATTAGACCCAGATGAAA). Using 

the same approach for FoxP4, we identified two hairpins that strongly reduced FoxP4 

expression but not the expression of FoxP1 or FoxP2 (FoxP4-sh1, target sequence 

CCAGAATGTGACGATCCCC, FoxP4-sh2, target sequence CCCGTGCACGTGAAGGAGGAG). We 

used beta-actin as loading controls for all western blots (detected with antibody Sigma-

Aldrich Cat# A5441, RRID: AB_476744). The DNA fragments encoding the hairpins FoxP1-sh1, 

FoxP1-sh2, FoxP1-sh3 and FoxP4-sh1, FoxP4-sh2 were subcloned into a modified version of the 

lentiviral expression vector pFUGW containing the U6 promoter to drive their expression. As 

a control, we used the previously described non-targeting hairpin (Control-sh, sequence 

AATTCTCCGAACGTGTCACGT) cloned into the modified pFUGW (Haesler et al., 2007). All viral 

constructs expressed GFP under the control of the human ubiquitin C promoter. Recombinant 

lentivirus was generated as described previously (Haesler et al., 2007). Titers of virus solution 

were usually in the range of 1-3x10^6 IU/μl.  
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Stereotaxic neurosurgery  

Birds used subsequently for song analysis were injected with one of the different lentiviral 

vectors, e.g. one of the three FoxP1 knockdown (kd) constructs or one of the two FoxP4 kd 

constructs, or the control constructs (Haesler et al., 2007). Injections were performed as 

described (Haesler et al., 2007; Adam et al., 2016). Briefly, at PHD 23 birds were injected 

bilaterally with approximately 200nL each into 8 sites per Area X. Injection side, order and the 

type of construct, were randomized. To determine kd efficiency via qRT-PCR (see below) we 

injected additional birds into Area X in one hemisphere with the vector carrying one of the 

different kd constructs, and Area X of the other hemisphere with a non-silencing Control-sh 

construct (Figure 1a-c)(Haesler et al., 2007).  

 

Quantification of FoxP1 or FoxP4 mRNA knockdown efficiency 

To test whether FoxP1 or FoxP4 contribute to song learning in zebra finches the levels of both 

genes were reduced separately in Area X in vivo, using lentivirus-mediated RNA interference 

(RNAi; FoxP1-sh2/3 or FoxP4-sh7/19). The rationale and overall procedure followed previously 

published protocols (Haesler et al., 2007; Adam et al., 2016). Briefly, 6 birds for each FoxP for 

follow-up by qRT-PCR were transferred to their home cages after surgery and grew up in the 

presence of their biological parents and siblings. All birds were sacrificed at 50±2 PHD and did 

not sing for two hours prior to it (for a timeline of experiment see Figure 1a). Each hemisphere 

was embedded in Tissue-Tek O.C.T. compound in a mold and immediately shock-frozen in 

liquid nitrogen or dry ice and stored at -80°C. Brains were cut by cryostat as described (Olias 

et al., 2014; Adam et al., 2016). Microbiopsies (0,5-1,5 mm diameter) of Area X from both 

hemispheres were excised and stored individually at -80 °C (Figure 1c-d). Remaining sections 

were stored in 4 % (w/v) paraformaldehyde/PBS solution (PAF) and used to verify successful 

targeting and to assess the location of GFP signal in the surroundings of the punched out Area 

X (Figure 1d). For the RNA extraction from these small amounts of tissue (approximating 1 mm3 

per hemisphere), we used 200μl of TRIZOL for each punch. To digest remaining DNA we used 

Turbo DNAse from AMBION following the manufactures instructions. cDNA synthesis was 

carried out using random hexamer primers and 100ng total RNA of the combined 

microbiopsies of each bird. Reverse-transcriptase free reactions were included to control for 

genomic DNA contamination. All cDNAs were diluted with nuclease free water (5-fold for 

individual microbiopsies). 

For the quantification of FoxP1 and FoxP4 mRNA expression levels in Area X of kd 

animals, we used the real-time PCR system Mx3005P and the MxPRO QPCR program 

(Stratagene; Agilent Technologies, U.S.A.). qRT-PCR reactions were run in triplicates in a total 

reaction volume of 25 µL as described (Olias et al., 2014; Adam et al., 2016). The efficiency of all 
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primer pairs ranged from 2±10%. We used the following primer pairs:  

FoxP1 (5´ CGTTAAAGGGGCAGTATGGA 3´ / 5´ GCCATTGAAGCCTGTAAAGC 3´),  

FoxP4 (5´ TGACAGGGAGTCCCACCTTA 3´ / 5´ AGCTGGTGTTGATCATGGTG 3´),  

HMBS (5’ GCAGCATGTTGGCATCACAG 3’ / 5’ TGCTTTGCTCCCTTGCTCAG 3’)  

(Haesler et al., 2007),  

GFP (5’ AGAACGGCATCAAGGTGAAC 3’ / 5’ TGCTCAGGTAGTGGTTGTCG 3’)  

(Adam et al., 2016, 2017). Reactions were run with the following times and temperatures: 10‘ at 

95 °C followed by 40 cycles of 30’’ at 95 °C, 30’’ at 65 °C, 30´´ at 72°C (60 °C for HMBS and 

FoxP1); and a melting curve to check for amplification specificity. The mean Ct for each 

sample was derived from the run data and used to calculate relative gene expression for the 

gene of interest (GOI) (FoxP1 or FoxP4). We used HMBS as a reference gene, as it is the most 

stable of all tested potential reference genes for our experiments (Haesler et al., 2007; Adam et 

al., 2016, 2017). Relative expression values were averaged per animal and hemisphere. Only 

cDNA from GFP-positive biopsies in both hemispheres were used to measure the expression 

of FoxP1 or FoxP4 and HMBS. Data were normalized to the Control-sh hemisphere and set to 

100%.  

 

 

Figure 1 – Timeline of FoxP1 and FoxP4 qPCR quantification using lentiviral-mediated RNAi in vivo.  (a) 23 day old birds 

were injected bilaterally into Area X. One hemisphere received a Control-sh virus, the other hemisphere a sh-

knockdown virus against FoxP1 (FoxP1-sh2 or FoxP1-sh3) or against FoxP4 (FoxP4-sh7 or FoxP4-sh19). (b) After 

surgery, birds were kept with their parents until PHD 50. Brains were extracted, frozen and stored at -80°C. 200 μm 

slices were cut by cryostat, Area X microbiopsies were punched (c) and stored at -80°C for subsequent mRNA 

extraction. Correct targeting was assessed by PAF-fixing the slices from which punches were taken and assessing GFP 

expression in the surrounding tissue (d) and determining the location of Area X by phase contrast (arrows in c). Scale 

bar 2mm. 

 

 

Quantification of the percentage of targeted neurons 

Because it is not possible to verify the efficiency of knockdown via QPCR from microbiopsies 

of Area X and simultaneously to determine the percentage of infected neurons histologically 
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in the same animals, we checked the percentage of neurons infected in 3 additional animals. 

To do so, we quantified the number of medium spiny neurons in Area X that were infected by 

the Control-sh virus (GFP). We assessed the number of MSN by FoxP1 immuno-reactivity 

(Abcam, Foxp1 mouse monoclonal, ab32010; RRID: AB_1141518) because we determined 

previously that FoxP1 mostly co-localizes with FoxP4 Area X neurons (Mendoza et al., 2015), 

and because the FoxP4 antibody used in this article did not work in perfused brains. Sections 

were analyzed with a 40x oil objective on a Zeiss Axiovert 200M Digital Research Microscopy 

System. The Slidebook Digital Microscopy software package (Intelligent Imaging Innovations) 

was used for fluorescence image acquisitions. Per Area X in each hemisphere we acquired 4 

images at 40x magnification using the AxioVision 4.6 program and manually counted all 

neurons in which GFP and FoxP1 were co-localized.  

 

Quantification of the volume of Area X infected in birds whose song was analyzed 

Birds were overdosed with Isoflurane (Forane-ABBVIE (B5068)) and subsequently perfused 

with 4%PFA/PBS. Brains were dissected and post-fixed overnight in 4% PFA/PBS 

paraformaldehyde. Brains were sectioned sagittally at 40μm thickness with a vibratome (Leica, 

Wetzlar, Germany) and sections stored in PBS at 4°C in the dark. Every fourth slice was 

stained with Acetylcholinesterase (AChE)  (Karnovsky and Roots, 1964)  to visualize and 

measure the size of Area X. Sections were mounted on Chromalum (Chromium(III) potassium 

sulfate)/gelatin coated slides and embedded with Mowiol (6 g Glycerin, Merck, Darmstadt, 

Germany; 1.04092.1000; 2.4 g Mowiol 488; Calbiochem, La Jolla, CA; 475904; and 12 ml 0.2 M 

Tris-HCl, pH 8.5). The remaining sections were stored in cryoprotectant and stored at -20°C. 

To calculate the targeted area we quantified Area X as well as the GFP targeted area using 

ImageJ following the procedure of (Tramontin et al., 1998).  

 

Song tutoring, recording, and analysis 

Tutoring – Juveniles were raised in their respective family cohorts until PHD20. 

Between PHD20 and PHD30 the adult male was removed to prevent song exposure before 

tutoring (Roper and Zann, 2006). After surgery at PHD23 birds were returned to their home 

cages with their mother and sibling females and remained there until PHD30. Subsequently 

each experimental juvenile was tutored by one adult male in a sound-isolated recording box, 

because under these conditions the pupil learns to produce a song that most resembles the 

song of his tutor (Tchernichovski and Nottebohm, 1998). Song was recorded continuously 

throughout this period using Sound Analysis Pro [SAP (Tchernichovski et al., 2000)]. A day 

before sacrifice (at PHD95 or later) a minimum of 50 motifs (see next paragraph for definition) 

of undirected singing from the experimental bird was recorded in the absence of the tutor for 



Differential song deficits after knockdown of FoxP1/2/4 – Publication D 

 
140 
 

up to 5 days for subsequent bioacoustic analysis (Figure 2). To be able to directly compare the 

effects of experimental reduction of FoxP1 or FoxP4 in Area X on song development to those 

of FoxP2 we analyzed the recordings obtained in this study (FoxP1, FoxP4) and re-analyzed the 

recordings from Haesler et al., 2007 using the same bioacoustic parameters for all groups. 

This modus operandi served to minimize experimenter-induced variability and also to assess 

replicability of the present data and those of the two previous reports on developmental song 

deficits as a consequence of FoxP2 kd in Area X (Haesler et al., 2007; Murugan et al., 2013).  

 

 

Figure 2 – Timeline of FoxP1 or FoxP4 knockdown in Area X and vocal learning success. In the first two weeks after 

hatching the birds were sexed. On day 23, at the beginning of the sensory learning period, either Control-sh, or 

FoxP1-sh2/3, or FoxP4-sh7/19 virus was bilaterally injected into Area X of male zebra finches. From day 30 on, 

injected birds were housed in sound-recording chambers together with an adult male zebra finch as a tutor. After 

reaching 90 days of age, the tutor was removed and adult song was recorded. Before song analysis, we verified 

correct targeting by analysis of GFP expression in in Area X of both hemispheres. 

 

 

Song terminology – Zebra finch song is individual-specific and consists of a series of 

acoustically distinct elements (3-9 in this study) separated by silent gaps. The song elements 

are arranged in a repeated order, called ‘motif’. The order of song elements can vary slightly, 

resulting in slightly different motifs.  The most frequently sung motif is the ‘typical’ motif.  

Analysis of motif imitation – We quantified how well pupils copied the motif of their 

tutor using a similarity score and an accuracy score obtained in SAP from ten asymmetric 

pairwise comparisons of the pupil’s typical motif with the tutor motif, similar as described 

previously (Haesler et al., 2007). We report the similarity and accuracy scores of an M x N 

batch similarity analysis (which compares 10 motifs of the tutor to the 10 motifs of the pupil, 
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resulting in 100 independent comparisons). Similarity values reflect how much of the tutor’s 

song material was detected in the pupil’s motif. Accuracy is a measure of how well the sound 

elements were copied by the pupil.  

Song analysis – We investigated different aspects of pupils’ song learning success and 

song performance.  (i) How many song elements of the tutor did the pupil imitate. (ii) How 

many elements of a pupil’s song were not recognized in the tutor’s song.  Pupils’ song can 

contain elements that are sufficiently different from the tutor’s song to not be recognized as 

an imitated element by SAP. (iii) How accurate was the imitation of pupils’ song elements. (iv) 

How variable was the performance of individual song elements of pupils compared to 

variability of tutors. (v) How stereotyped was the sequential delivery of multiple song motifs of 

pupils’ songs compared to the stereotypy of tutors. Did pupils repeat elements (‘stutter’)? (vi) 

How were the durations of song elements and the inter-element intervals (‘gaps’) distributed 

in the tutors’ and pupils’ songs.  (vii) Did the delivery of multiple song motifs of pupils differ in 

rhythmic isochronicity from that of fathers.  

To address (i-iii) we compared each song element of the tutor to all song elements of 

the pupil with a symmetric batch MxN analysis in SAP. The element of a pupil with the highest 

similarity and accuracy score (in SAP) to an element of the tutor was considered imitated and 

thus ‘shared’ by tutor and pupil. When two pupil elements had similar scores to an element of 

the tutor, we took the order within the motif also into consideration. The scores of shared 

elements between tutor and pupils ranged between 70 and 100 in similarity or accuracy 

comparisons. To quantify (i) whether FoxP-sh birds imitated fewer elements of their tutors 

than did control-sh birds we quantified the number of elements shared by tutor and pupil. We 

then counted how many elements the pupil shared with the tutor and expressed this as the 

fraction of all elements specific to the tutor.  A value of 1 indicates that all tutor elements were 

found in the pupil’s song.  As the value approaches zero, increasingly fewer elements of the 

tutor are represented in the pupils’ songs. To quantify (ii) the fraction of elements the pupils 

sang that were not found in the tutor’s song was as the number of elements unique to the 

pupil divided by the total number of elements of the tutor. A value of zero reflects that there 

are no different or additional elements in the pupil's song.  

(iv) Element delivery – To assess the rendition to rendition variability in element 

performance we chose 32 motifs randomly, took 10 of each of the elements of the typical 

motif from tutors and pupils and measured the similarity and accuracy in a symmetric M x N 

batch analysis. We thus compared how similar to itself an element was in each rendition of a 

song of a pupil to the self-similarity of an element in the tutor song. Results of these 

comparisons between elements are expressed in a single measure which is the product of 
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similarity and accuracy to obtain the element identity score (as reported by (Haesler et al., 

2007).  

(v) Stereotypy of song performance and stuttering – Stereotypy is a measure that 

addresses whether the bird sings the same order of elements each time. We quantified 

stereotypy as described previously (Scharff and Nottebohm, 1991) from the same 32 randomly 

chosen motifs used to quantify element performance (see above) of each bird, Stereotypy 

scores range between 0 and 1, with 1 reflecting that the birds sang the same sequence of 

elements in the same order in all 32 motifs. Lower scores indicate more sequence variability in 

a motif from rendition to rendition. We also quantified the propensity of birds to repeat song 

elements by calculating the percentage of all elements sung by each bird that was preceded 

by an element of the same type (e.g. AA).  

(vi) Duration of song elements and silent gaps – We measured the overall distribution of 

all durations of song element and inter-element intervals (‘gaps’) from 48 ± 24 (mean ± SD) 

song motifs per bird. We then compared the distributions of element durations between 

pupils and tutors, using the Jensen-Shannon distance (the square root of the Jensen-Shannon 

divergence) as a dissimilarity metric between the two probability distributions (Lin, 1991; 

Endres and Schindelin, 2003; Sasahara et al., 2015). To estimate how similar/dissimilar song 

element and gap durations between two groups of untreated adult zebra finches are, we also 

compared the distributions of element and gap durations of a cohort of 15 adult males that 

were analyzed previously by Norton & Scharff (2016) to the tutors of the current study. In 

order to quantify the similarity in shape of the distributions of the gap duration independently 

of their position on the x-axis (i.e. their absolute duration), we shifted the tutor distribution in 

0.002s steps and calculated the Jensen-Shannon distance (JSD) between the lagged tutor 

distribution and the stationary pupil distribution for each step. We report the JSD and the lag 

at which the JSD was minimal. 

(vii) Rhythm analysis – We determined the isochronous pulse that best fit to the song 

element onsets of each motif in the 42 motifs used for duration analysis (above) using the 

method described in (Norton and Scharff, 2016). The frequencies of the best fitting pulses for 

all songs of each bird were clustered (see (Norton and Scharff, 2016) for details) and the 

percentage of songs in the largest cluster of each bird was determined. The higher this 

percentage is, the more songs have the same pulse. The best fitting pulses of tutor songs 

clustered in a range from 20 to 60Hz. To compare the rhythmicity of the pupil songs to that of 

the tutors, we restricted the analysis of the pulses to this frequency range. Pulse fit was 

quantified as the root-mean-square of the deviations of each song element onset to its 

nearest pulse, multiplied by the pulse frequency (Frequency-normalized Root-Mean-Square 

Deviation or FRMSD). To assess whether the rhythmic regularity (i.e. pulse fit) could just be a 
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by-product of zebra finch specific song element and gap durations independent of the birds’ 

individual song elements and their order, we compared each pupil’s song rhythm to the 

rhythm of 50 model songs with an identical number of song elements and identical sequence, 

but different randomized element and gap durations (“Model C” in Norton & Scharff, 2016). 

The FRMSD (pulse fit) of each of the 50 sets of model songs were compared to the bird songs 

in a separate linear model. Of the comparisons that detected a significant difference in FRMSD 

(p<0.05), the percentage of these comparisons in which the bird songs had a lower FRMSD (i.e. 

a better pulse fit and therefore a higher degree of isochronous organization of their song 

rhythm) is reported here (Figure 13d). 

Linear discriminant analysis (LDA) – To test whether the 4 groups (FoxP1-sh, FoxP2-

sh, FoxP4-sh, and Control-sh) could be discriminated by differences in their song phenotype 

alone we selected 5 features of song structure from different domains: One spectral feature 

(the amount of frequency modulation of song elements), one measure of song learning 

success (number of copied song elements from tutor), two measures of temporal variability 

(CV of duration of the most variable inter-onset-interval and average CV of gap durations) and 

one rhythmic parameter (average FRMSD). Discrimination success was evaluated by 

prediction of the treatment group of each bird through leave-one-out cross-validation. To do 

so one individual after another is removed from the set, the discriminant functions are 

calculated each time and used to classify the missing individual. 

Statistics – All statistical tests were performed using the data analysis software R (R 

Development Core Team, 2013) and/or GraphPad Prism 4.0. All graphs were prepared with 

GraphPad Prism 4.0 (GraphPad Software, San Diego, CA) or R.  

 

 

Results 

 

Selection of specific short hairpins to downregulate zebra finch FoxP1 or FoxP4 

To determine efficacy and specificity of different short hairpins against FoxP1 and FoxP4 we 

overexpressed FoxP1 or FoxP4 in HeLa cells. Three (FoxP1-sh1, -sh2, -sh3) out of the twelve 

FoxP1 short hairpins tested strongly reduced FoxP1 protein levels (Figure 3) but did not affect 

the expression of FoxP2 (Figure 3b) or FoxP4 (Figure 3c). This is interesting because the 

FoxP1-sh2 differed only at 2 nucleotides from the FoxP2 gene and at 5 nucleotides from the 

FoxP4 gene, whereas FoxP1-sh1 and FoxP1-sh3 ranged from 57% to 63% in sequence 

similarities to the other FoxP members. The FoxP1-sh1 affected the expression of the protein 

least and was therefore not further used in this study. 
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Two (FoxP4-sh7 and -sh19) of the eleven short hairpins tested reduced FoxP4 protein 

levels (Figure 3f). FoxP4-sh7 and FoxP4-sh19 were 23-71% similar when compared to the other 

FoxP subfamily members and did not alter the expression of FoxP1 (Figure 3d) or FoxP2 

(Figure 3e). We used both for further studies. In a previous study (Haesler et al., 2007) a 

nontargeting short hairpin control (Control-sh) was shown not to affect FoxP2 expression. We 

used the same Control-sh in this study and showed that it did not alter the expression of 

either FoxP1 (Figure 3g) or FoxP4 (Figure 3h). 

 

 

Figure 3 – Western blots showing specific downregulation of FoxP1 or FoxP4 using short hairpins (sh). Overexpression 

of zebra finch FoxP1 (a, d and g), or FoxP2 (b and e), or FoxP4 (c, f and h), each tagged with a Flag-epitope, and one of 

different hairpin constructs against FoxP1 (FoxP1-sh1, FoxP1-sh2, or FoxP1-sh3; a-c), or FoxP4 (FoxP4-sh7 and FoxP4-

sh19; d-f), or control short hairpin (g-h) in HeLa cells. Western blot analysis using the Flag antibody (top panels in a-h) 

revealed that all short hairpins against FoxP1 (a-c) efficiently reduced FoxP1 levels (a, upper panel), but did not 

downregulate FoxP2 (b) or FoxP4 (c); all short hairpins against FoxP4 efficiently reduced FoxP4 levels (f, upper panel), 

but did not downregulate FoxP1 (d) or FoxP2 (e); the control short hairpin did not downregulate FoxP1 (g) or FoxP4 (h). 

Immunostaining with actin antibody shows comparable loading of protein samples in all cases (a-h; bottom panels). 

Westerns shown in panels  (a, b, c, g and h) were run in the same membrane but due to different loading order some 

were cut to arrange them in the same order for all panels.  

 

 

Efficacy of cellular infection by lentivirus in Area X 

To assess how many MSN in Area X can on average be infected we injected GFP-expressing 

control virus stereotaxically into Area X of three 23-day old birds and at PHD 50 quantified 

the number of cells in which the GFP signal was co-localized with FoxP1 immunoreactivity 

(Figure 4a-d). We chose FoxP1 because most MSN in Area X express FoxP1, either in 

combination with FoxP2 and/or FoxP4 or alone (Mendoza et al., 2014). 89% of GFP positive 

cells were also immunoreactive against FoxP1 (Figure 4a-e), consistent with previous studies 
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(Wada et al., 2006; Haesler et al., 2007). Off the total FoxP1-expressing neuron population in 

Area X on average 16% of the cells also expressed GFP, indicating virus infection 

(Figure 4a-d, f). 

 

 

Figure 4 – Efficacy of infection.  Quantification of Area X MSN neurons at PHD50 expressing GFP as a result of virus 

injection (control short hairpin) at PHD23. Photomicrograph at 40x magnification shown in a Z stack projected photo 

(a) blue fluorescence of DAPI stained cell nuclei, (b) green fluorescent GFP expression indicating virus infected cells 

(c), FoxP1 immunoreactivity revealed by a secondary Alexa 568 antibody (red) false-color-coded in white and (d) 

overlay with vertical arrows pointing to neurons co-expressing FoxP1 and GFP. One GFP positive cell that does not 

express FoxP1 is indicated by a horizontal arrow. (e) Infected neurons co-expressing GFP and FoxP1 expressed as a 

percentage of the total number of GFP expressing neurons. (f) Virus-infected GFP-expressing and FoxP1 

immunoreactive neurons expressed as percentage of the total number of FoxP1 expressing neurons.  In (e) and (f) bars 

refer to mean of means + standard error of the mean [SEM]. Error bar in (a) applies to panels (a-d) 50 µm. 

 

 

Efficacy of FoxP1 or FoxP4 mRNA downregulation in Area X 

We evaluated the reduction of FoxP1 or FoxP4 mRNA expression at PHD50 by QPCR after 

injections of the respective knockdown viruses in Area X of PHD23 males (Figure 1a-d). The 

amount of knockdown was quantified by comparing FoxP expression in the knocked down 

hemisphere with the control injected one, as described (Haesler et al., 2007; Olias et al., 2014; 

Adam et al., 2016, 2017).  

FoxP1 mRNA levels in Area X were on average 20% lower in the hemispheres injected 

with the knockdown FoxP1-sh2 or FoxP1-sh3 viruses than in the control injected hemispheres 

(Figure 5a). Comparable results were obtained for FoxP4-sh7 or sh19 (Figure 5c) and controls 

(Figure 5b). In contrast, GFP mRNA levels did not differ statistically between control and 
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knockdown-injected hemispheres (data not shown), as reported previously reports (Haesler et 

al., 2007).  

 

 

Figure 5 – In vivo downregulation of FoxP1 or FoxP4 in Area X. mRNA levels of FoxP1 (a) or FoxP4 (b) assessed by qRT-

PCR in Area X tissue was significantly lower in the FoxP1-sh or FoxP4-sh injected hemisphere than in the Control-sh 

injected hemisphere of the same animal (Wilcoxon signed rank test, W=-21, p=0.03, n=6).  

 

 

Quantification of virus-infected Area X volume  

Before analyzing the adult songs of birds that were injected as juveniles with knockdown 

viruses in Area X bilaterally, or with corresponding controls, we assessed the percentage of 

Area X tissue that was infected, as judged by GFP fluorescence in tissue sections, and 

compared this to the previously published results on FoxP2 (Haesler et al., 2007) (Figure 6a-c). 

The volume of the infected area was similar across hemispheres in FoxP1, FoxP4 and control 

birds (One way ANOVA; p>0.05; F=2.71; DF=2; Figure 6c). On average, the GFP fluorescence in 

both hemispheres covered 34.8% of Area X for FoxP1 (SEM 17.16), 28,6% for FOXP4 (SEM 16.27), 

and 19.6% for the controls (SEM 8.92), i.e. were in the same range as the 20.4% reported for 

FoxP2 knockdown birds (Haesler et al., 2007).  

 

  



Differential song deficits after knockdown of FoxP1/2/4 – Publication D 

 
147 

 

 

 

Figure 6 – Quantification of Area X volume targeted by the viral infection in birds whose song learning was assessed. 

Representative photomicrographs of Area X (a,b). (a) bright-field photo of a sagittal section stained for AChE 

delineating Area X (white arrows) scale bar 200μm; (b) same section under fluorescence illumination showing GFP 

signal. (c) volume of the virus induced GFP-expressing tissue within Area X, expressed as percentage of total Area X 

volume in left and right brain hemispheres. Both hemispheres were infected to similar degrees in all groups s(average 

for each hemisphere ±SEM). 

 

 

Knockdown of FoxP1/2/4 in juveniles affects adult song in multiple ways.  

Comparing sonograms from tutors and pupils in the different treatment groups we noticed 

striking deficits in the adult songs of pupils that had received FoxP1 or FoxP4 knockdown 

injections as juveniles (Figure 7b,d) in contrast to control injected birds (Figure 7a). The song 

deficits of birds with FoxP1 and FoxP4 knockdowns were partly similar to the ones reported 

for FoxP2 knockdowns (Haesler et al., 2007) but there were also differences between the 

FoxP1/2/4 knockdown animals.  To exemplify the type of deficits observed, Figure 7 provides 

two song motifs each of tutor-pupil pairs per treatment group.  
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Figure 7 – Representative sonograms with amplitude envelops overlaid illustrating different deficits in the 

experimental groups (bottom two rows in a-d) and their respective tutors (top two rows in a-d).  Song elements of the 

same type in each tutor-pupil pair are indicated by the same color and identified by the same letter. The identity of 

song elements was determined by systematic similarity comparison between pupil and tutor elements using Sound 

Analysis Pro software (Tchernichovski et al., 2000). Song elements are separated by silent inhalation gaps. (a) Control-

sh injected pupil 3677 imitated all elements from his tutor 1604 and delivered them in the same order. (b) FoxP1-sh 

injected pupil 4103 had the same tutor as the control injected juvenile in (a). In contrast to the control-sh, the FoxP1-

sh pupil did not copy element E, added an element that was not recognized by SAP as matching any tutor element 

between B and C (highlighted in gray, X) and copied element C less accurately. (c) FoxP2-sh injected pupil 622 only 

copied elements C, E and G from the tutor 334, included an element not recognized in the tutor song and the 

sequence of elements varied from rendition to rendition. (d) FoxP4-sh injected pupil 3584 only copied elements A, C, 

D and I from tutor 2047, the sequence as well as durations of song elements and gaps were altered. Delivery from 

rendition to rendition was not stereotyped and elements were repeated often (I I A A in the second example) 

 

 

The tutor birds (Figure 7a-d top two panels) produced the stereotyped song that is 

characteristic for zebra finches, singing their song elements mostly in the same order in every 

motif rendition. The Control-sh injected bird (Figure 7a bottom two panels) copied all 

elements, kept them in the same sequence as the tutor and sang them consistently from 

rendition to rendition. This high copy fidelity is typical when one pupil grows up in the 
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presence of one tutor (Tchernichovski and Nottebohm, 1998; Tchernichovski et al., 1999). In 

contrast, none of the FoxP1/2/4 knockdown birds copied the songs of their tutors as 

faithfully.  While there were differences in degree and kind between the treatment groups, 

some song deficits were observed in all knockdown conditions. For instance, pupil songs were 

only partly composed of song elements that were recognizable as tutor imitations, whereas 

other pupil elements could not be matched to the tutor (Figure 7b, c). Even when elements 

were clearly imitations of the tutor’s elements, the copy fidelity was often lower in knockdown 

pupils than in controls (Figure 7d element C and I). There was also a higher incidence of pupils 

not singing the copied song elements in the same order as the tutor (e.g. Figure 7c, d). 

Moreover, knockdown pupils had a higher tendency to repeat the same song element multiple 

times, resulting in a stutter (e.g. Figure 7b, d) and to change the order in which song elements 

were delivered from rendition to rendition (e.g. Figure 7b-d). The latter was particularly 

evident in FoxP4 knockdown pupils, in which we also noted a tendency for atypical timing of 

song.   

Taken together, visual inspection of sonograms indicated that reduced levels of FoxP1 

or FoxP4 in Area X during the song learning phase impaired song along multiple dimensions, 

mirroring some of the previously described song deficits resulting from FoxP2 knockdown in 

Area X (Haesler et al., 2007). Because other features were not seen before and seemed to 

segregate with the particular treatment group, we analyzed the songs of all FoxP-sh birds and 

their tutors in more detail. 

 

Similarity of motifs is affected in all FoxP-sh groups, accuracy only in the FoxP2-sh group  

First, we compared all pupils’ songs to the songs of their tutor’s to quantify overall song 

learning success. We analyzed undirected song of birds after they had reached 90 days when 

song is well learned and does not change much thereafter (Williams, 2004). Song learning 

success was quantified using Sound Analysis Pro software (SAP) (Tchernichovski et al., 2000). 

SAP analyzes the acoustic features of song along multiple dimensions and provides ‘similarity’ 

values, a measure for the amount of song material copied by the pupil and ‘accuracy’ values 

that indicate how well the copied song material is imitated. To get a comprehensive view of 

how well pupil and tutor motifs matched acoustically, we compared 10 motifs each of Control-

sh with FoxP1-sh, FoxP2-sh, and FoxP4-sh birds to their tutors using SAP MxN batch 

processing and asymmetric (used for songs of different birds) comparison, resulting in 100 

independent comparisons (FoxP2-sh song data from Haesler et al., 2007).  

Confirming our impression from the visual analysis of sonograms, the SAP similarity 

scores were significantly lower in all FoxP-sh birds compared to Control-sh animals 

(Figure 8a), reflecting the fact that knockdown birds copied the tutor material incompletely 
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(Figure 7). Examining the copied portions of the song revealed that lower accuracy of 

imitation was found more often in birds of the knockdown groups than in control birds, but 

this was statistically significant only in the FoxP2-sh group (Figure 8b).  

 

 

Figure 8 – Pupils in all three knockdown groups imitate tutor song incompletely ((a) Kruskal-Wallis test, p=0.0053, 

Kruskal-Wallis statistic = 12.73; Dunn`s Multiple Comparison Test *p<0.05;**p<0.005), but only FoxP2-sh pupils are 

significantly more inaccurate in the imitation fidelity of the copied song material ((b) Kruskal-Wallis test, n.s. p=0.054, 

Kruskal-Wallis statistic = 7.640; Dunn's Multiple Comparison Test *p<0.05 ). Scatter dot plots, each dot represents the 

mean similarity or accuracy score for each animal, the red line indicates the mean of means.  

 

 

Frequency modulation (FM) is altered only in FoxP4-sh birds  

More detailed analysis of spectro-temporal features of song at the motif level revealed no 

significant differences for pitch, goodness of pitch, amplitude modulation and entropy (data 

not shown), but frequency modulation was significantly different in the group of FoxP4-sh 

birds (Figure 9).  

 

 

 

  

 

Figure 9 – Knockdown of FoxP4 in Area X affects frequency 

modulation (FM). Scatter dot plot, each dot represents the mean 

scores of an asymmetric M x N batch comparison between tutor 

and their respective pupil using SAP, the red line is the mean of 

means (Kruskal-Wallis test, p=0.0467, Kruskal-Wallis statistic = 

7.967; Dunn's Multiple Comparison Test *p<0.05 ) 
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Knockdown FoxP1/2/4 copy fewer song elements from their tutors than control birds 

To gain further insight into the exact nature of the lower motif imitation success and the 

reduced accuracy of copying in the different knockdown groups, we quantified whether pupils 

a) copied all tutor elements or improvised/invented some; b) copied tutor elements 

accurately; c) copied the sequential order of tutor elements; d) copied the duration of tutor 

elements, and e) copied the duration of the silent gaps between elements.  

Knockdown animals copied fewer song elements from their tutors than did control 

animals (Figure 10a). The majority of Control-sh birds copied all elements of the tutor (4 of 6 

birds), whereas none of the FoxP down-regulation birds copied all elements from their tutors. 

FoxP2 knockdown birds copied significantly fewer song elements from their tutors than did 

Control-sh birds (Figure 10a).  

In all experimental and control groups some song elements could not be matched to 

any elements present in the tutors’ song (Figure 10b). This was most prominent in FoxP1 

knockdown birds  (4 of 6 birds), but also occurred to different degrees in the other groups.  

 

 
Figure 10 – Fraction of pupil elements copied from the tutor(a) and fraction of pupil elements not present in the tutor 

(b). FoxP knockdown birds copied fewer elements than control birds. (a) All FoxP knock-down birds copied fewer 

elements from their tutors than control birds, Foxp2-sh birds significantly so. Values 0 to 1 calculated as the number 

of copied elements in the pupil divided by the number of elements present in the tutors’ song (Kruskal-Wallis test 

p=0.0075, Kruskal-Wallis statistic = 11.98; Dunn's Multiple Comparison Test **p < 0.005). (b) The song of some pupils 

in all groups contained elements not matched to any element in the tutors’ songs. Values 0 to 1 calculated as the 

number of elements in the pupil that are not found in the tutor divided by the number of total elements present in the 

tutor (Kruskal-Wallis test, n.s. p=0.4494, Kruskal-Wallis statistic = 2.640; Dunn's Multiple Comparison Test n.s.). 
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FoxP2/4-sh birds’ elements are less self-similar  

To see how consistently elements were reproduced from rendition to rendition, we compared 

the similarity and accuracy of copied elements in ten renditions of the same element. We 

multiplied the resulting similarity and accuracy scores and called that product the identity 

score (Haesler et al., 2007). We found that the identity score between the Control-sh and 

FoxP1-sh birds did not significantly differ from their tutors (Figure 11a-b). In contrast, the 

FoxP2-sh and FoxP4-sh birds had a significantly lower identity score of their elements than 

their tutors (Figure 11c-d).  

 

 

 

 

 

 

Sequence stereotypy and Stuttering in FoxP-sh birds 

To follow up our initial impression that some FoxP-sh birds varied the sequence of elements   

in subsequent motifs more than is typical for zebra finches (Figure 7b-d), we chose 32 random 

motifs of each bird and calculated a stereotypy score as described previously (Scharff and 

Nottebohm, 1991). Here a value of 1 means that birds sang the same element sequence in all 32 

motifs without any variations, and with increasing sequence variability the stereotypy score 

approaches zero (Figure 12a-d). We found the FoxP2-sh and FoxP4-sh pupils to be 

significantly more variable than their tutors (Figure 12c-f). In addition, some birds in each of 

the knockdown groups repeated song elements, which was not the case in the tutor or 

control groups (Figure 12g-h). This stuttering-like behavior, measured as the percentage of 

elements that are preceded by an element of the same type (e.g. AA), was most pronounced in 

FoxP2-sh birds with 4 birds having an element repetition rate of at least 4% (2 each in FoxP1-

sh and FoxP4-sh, none in tutors and Control-sh (Figure 12g)).  

Figure 11 – Consistent reproduction of 

copied song elements is impaired in FoxP2-

sh and FoxP4-sh birds. Scatter dot plot, 

each dot represents the mean identity 

score ((similarity*accuracy)/100) for each 

animal of a symmetric batch MxN analysis 

of ten renditions of each element in SAP, 

the red line is the mean of means (Wilcoxon 

matched pairs signed rank test, FoxP2-sh 

and FoxP4-sh p=0.0313, n=6, W=21). 
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Figure 12 – After FoxP2 and FoxP4 knockdown the sequential delivery of song elements was more variable in pupils 

than in their tutors. In addition, some FoxP1-sh, FoxP2-sh, and FoxP4-sh have a high rate of song element repetitions 

(stuttering) not found in tutors and control animals. (a-d) Paired scatter dot plot. Each dot represents the stereotypy 

score for one animal, the red line is the mean. Tutor-pupil pairs are connected by black lines (Wilcoxon matched pairs 

signed rank test, FoxP2-sh and FoxP4-sh exact rank p=0.0313, n=6, W=21). (e) Sequence diagrams of the songs of 

FoxP4 knockdown bird 3584 (bottom) and its tutor 2074 (top). Boxes with letters A to I represent song elements, a 

song element not found in the tutor song is marked by a question mark. The arrows represent transitions between 

subsequent song elements. The size of an arrow is proportional to the relative frequency of occurrence. Arrows that 

do not originate at a song element mark the start of a song and arrows that do not point to an element mark the end 

of a song (e.g. all songs of 2074 start with A and end mostly with I, rarely with D or F). (f) Representative examples of 

sequence variability in 20-50 sequentially sung motifs (y-axis), indicated as thin color coded lines, sorted and stacked. 

The duration of each song elements is indicated by one color, song elements of the same type have the same color, 

silent gaps are shown in black (x-axis). Motifs are sorted alphabetically by element sequence and within identical 

sequences by motif duration. For each experimental group, we show one bird with high (top row) and one with low 

sequence stereotypy (bottom row) from each group (left-to-right: Tutors, Control-sh, FoxP1-sh, FoxP2-sh, FoxP4-sh). 

Pupils that were tutored by one of the tutors shown in the first column are indicated by (i) and (ii). (g) Quantitative 

representation of stuttering. Each dot represents the percentage of all song elements of one animal that are preceded 

by an element of the same type. (h) Qualitative representation of stuttering.  Sonogram of an example song of FoxP2 

knockdown bird 628, showing an element repetition rate of 55 percent (6 out of 11 elements are preceded by an 

element of the same type).  
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Isochronus pulse in FoxP-sh birds 

We also evaluated the isochronous organization of song in all four groups and compared it to 

that of the tutors. We determined the isochronous pulse that best fit the song element onsets 

for each song (Figure 13a, b). As observed previously (Norton and Scharff, 2016), frequencies of 

the best fitting pulses formed well-defined clusters. The largest frequency cluster of each 

tutor bird contained on average 56% of songs in contrast to pupils (34%) (Figure 13c). All but 3 

of the pupils had a smaller percentage of their songs in their largest cluster than their tutor 

(exceptions were one bird each of Control-sh, FoxP2-sh and FoxP4-sh, Figure 13c). The same 

pulse was, therefore, less consistently detected in pupil songs than in tutor songs. This 

suggests a looser isochronous organization in the pupil songs. A direct comparison of pulse 

deviation between the songs of different birds (unlike a comparison of pulse frequencies) is 

problematic, as deviation depends on a number of factors that differ between individuals, such 

as pulse frequency and the number of song elements. We therefore created simple model 

songs based on each of the analyzed bird songs and compared pulse deviation between bird 

and model songs. The latter featured the same number of elements in the same sequence as 

the birdsong they were modeled on but element and gap durations were randomized (see 

Methods). For each song of one bird a model song was created, the best fitting pulse for that 

song determined and the pulse deviation (FRMSD) between all songs of one bird and their 

respective model songs tested for a significant difference in a linear model. This process was 

repeated 50 times with different randomized element and gap durations in the model songs. 

In an average of 77% of the comparisons of tutor versus a model song that reported a 

significant difference in FRMSD, tutors had a lower FRMSD, i.e. a better pulse fit than the 

pupils, including the control pupils (Figure 13d). The poor rhythm of control birds might be 

due to their age, a point we will take up in the discussion.  
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Figure 13 – All pupil groups have lower song isochronicity than tutors. (a-b) Two example motifs each of FoxP1-sh 

bird 4103 (b) and its Tutor bird 1604 (a) with the isochronous pulse best fitting to song element onsets overlaid as 

vertical dashed lines. (a) Tutor bird 1604 had almost the same pulse frequency for both renditions (top: 27.49Hz; 

bottom: 27.64Hz). Pulse fit as measured by frequency-normalized root-mean-square deviation of the pulse from 

element onsets (FRMSD, see methods) was relatively high (top: FRMSD=0.019; bottom: FRMSD=0.024). (b) FoxP1-sh 

bird 4103 had pulses of different frequencies best fitting the two motifs (top: 39.91Hz; bottom: 27.92Hz) and a 

relatively low pulse fit (top: FRMSD=0.086; bottom: FRMSD=0.086). (c) Paired plot of the percentage of all songs that 

were in the largest pulse frequency cluster for each bird. Lines connect each tutor (left) with his pupil (right). Gray 

horizontal lines show the mean. Except for 3 birds (one Control-sh, one FoxP2-sh, one FoxP4-sh), all pupils had a 

lower percentage compared to their tutor. (d) Bargraph of the percentage of bird-to-model comparisons with 

significant differences (p<0.05) in pulse deviation (FRMSD), in which the bird had a lower deviation (±SEM) than the 

model, e.g. a better rhythm.  

 

 

Analysis of element and GAP durations in FoxP-sh birds  

In search for possible explanations of the impaired song rhythm of Control-sh birds, we 

looked at the overall distribution of element and gap durations in the different treatment 

groups and their tutors (Figure 14) by quantifying the dissimilarity between the distributions. 

To do so, we calculated the Jenson-Shannon distance (JSD); the higher the JSD, the more 

dissimilar the two distributions are. Song element distributions were about equally dissimilar 

to the tutors in all treatments (Control-sh: JSD = 0.43; FoxP1-sh: 0.41; FoxP2-sh: 0.47; FoxP4-

sh: 0.46; Figure 14c), as was the distribution of a cohort of 15 different previously analyzed 
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adult males (JSD = 0.43; duration data from Norton & Scharff, 2016). As expexted the gap 

distribution of the cohort of adult males was very similar to that of the tutors (JSD = 0.25). 

Distributions of the gap durations of Control-sh, FoxP1-sh and FoxP2-sh had higher, but 

comparable dissimilarities (Control-sh: JSD = 0.38; FoxP1-sh: 0.41; FoxP2-sh: 0.44; Figure 14d). 

In contrast, FoxP4-sh had a considerably higher JSD (0.66), likely due to the increased overall 

durations of gaps. FoxP knockdown birds had an increased gap duration variability compared 

to control birds (Control-sh: Standard deviation = 0.017; FoxP1-sh: 0.021; FoxP2-sh: 0.025; 

FoxP4-sh: 0.022). Among the pupil birds, the percentage of element repetition was positively 

correlated with the coefficient of variation of inter-onset-intervals (Pearson, R = 0.79, 

p < 0.001), indicating that birds that stutter also have problems with the accurate timing of 

song elements. 

 Pupil birds were 96 ± 6 days of age at the time of recording (mean ± std). While song 

learning is largely completed by ~90 days, some song changes occur beyond that age. Among 

those is a gradual shortening of the gaps, while the song element duration remains unchanged 

on average (Glaze and Troyer, 2013). In order to quantify the similarity of the shape of the gap 

duration distributions independently of their position on the x-axis (i.e. leaving aside the 

overall higher duration of pupil gaps), we therefore shifted the tutor distribution in 2ms steps 

and calculated the Jensen-Shannon distance (JSD) between the lagged tutor distribution and 

the stationary pupil distribution for each step. Even after shifting the tutor distributions 

towards the pupil distributions to the point of smallest dissimilarity, knockdown birds still 

showed a relatively high JSD (FoxP1-sh: minimal JSD = 0.41 at lag 2ms; FoxP2-sh: 0.38 at 8ms; 

FoxP4-sh: 0.44 at 18ms). Control bird gap distribution, on the other hand, was as similar to 

tutors as the adult cohort after shifting (Control-sh: JSD = 0.22 at lag 8ms; adult cohort: 0.22 

at lag 2ms). This result suggests that the songs of Control-sh birds – like those of normal 

untreated birds – would have acquired the level of isochronous rhythmic organization found 

in the tutor birds with age. 
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Figure 14 – The duration of song gaps is abnormally variable in FoxP knockdown birds. (a-b) Spectrograms of two 

example songs each for FoxP4-sh bird 3584 (b) and its tutor 2074 (a). Black dotted lines connect the song element on- 

and offsets of the two songs. The duration of gaps in the songs of the FoxP4 knockdown bird is abnormally variable. 

(c-d) Histograms of the durations of all song elements (c) and song gaps (d) of tutors (blue) as well as Control-sh, 

FoxP1-sh, FoxP2-sh and FoxP4-sh (red, left to right, top to bottom). Triangles on the top show the means. JSD = 

Jensen-Shannon distance between tutor and pupil distribution.  

 

 

Segregation of the phenotypes of FoxP-sh birds 

 As we found the treatment groups differentially affected in various aspects of song 

learning, we wanted to find out if the four groups could be discriminated by their song 

phenotype alone. To that end we performed a linear discriminant analysis (LDA) using 5 

features of song structure from different domains: Two spectral measures (the amount of 

frequency modulation of song elements and the tutor-to-pupil identity score difference), one 

measure of song learning success (number of copied song elements from tutor) and two 

temporal measures (CV of duration of the most variable inter-onset-interval and pulse 

deviation vs. model, see Figure 13d). Birds of the same group cluster together in the signal 

space, with very little overlap (Figure 15). Control-sh birds, FoxP2-sh and FoxP4-sh are well 

separated. FoxP1-sh is closest in space to the control birds, consistent with song deficits 

occurring in the fewest number of measures (e.g. not significantly affected in identity and 
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stereotypy scores, copied notes, and frequency modulation). To test discrimination by these 

features, we applied leave-one-out cross-validation. Following this procedure, 54% of the 

birds were correctly classified as belonging to their respective treatment group. Classification 

rate as expected by chance was 25%, as there are four possible classes.  

 

 

 

 

 

 

 To summarize, FoxP1/2/4 knockdown in Area X affects song learning. Reduced motif 

similarity (Figure 8a), scrambled order of song elements (Figure 7) and a smaller fraction of 

elements copied (Figure 10) is a common phenotype of all FoxP knockdown pupils. FoxP1 

knockdown seems to result in the mildest impairment of all FoxPs. Although FoxP1 knockdown 

birds do not copy all the elements of their tutors, the material that they do copy has high 

spectro-tempral fidelity. FoxP2 and FoxP4 knockdown resulted in a more severe phenotype 

than FoxP1, affecting most of the features studied. FoxP2-sh was more severely affected in 

motif accuracy (Figure 8b), fraction of copied notes (Figure 10) and temporal regularity 

(Figure 13d), while FoxP4 was most affected in frequency modulation (Figure 9). Although 

there is some overlap between the knockdown groups, taken together each group has a 

specific combination of impairments that makes most members of the group more similar to 

each other than to the other groups (Figure 15).  

  

Figure 15 – The different treatment groups cluster together in 

the signal space of a linear discriminant function analysis, 

indicating that they can be discriminated by their song 

phenotype above chance. Each dot represents one bird in the 

signal space of the first two linear discriminant functions (LD1 & 

LD2, arbitrary units). Asterisks mark group centroids and lines 

connect each animal to the centroid of its group. 
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Discussion 

 

We previously showed that many medium spiny neurons of zebra finches co-express FoxP1, 

FoxP2, and FoxP4 in Area X, a region important for vocal learning (Mendoza et al., 2015). 

Furthermore, FoxP1/2/4 can dimerize and oligomerize with each other in those neurons and 

can share the same binding sites and target genes (Mendoza and Scharff, 2017). In the present 

study, we addressed whether and how the knockdown of FoxP1 or of FoxP4 in Area X of 

juvenile male zebra finches affects song development. To do so, we used the lentivirally 

mediated siRNA methodology previously employed to precisely reduce FoxP2 spatially and 

temporally, which resulted in incomplete and inaccurate song development (Haesler et al., 

2007; Murugan et al., 2013).  Of note, homozygous deletions of FoxP1 (Li et al., 2004b) and 

FoxP4 (Wang et al., 2004) in mice are embryonic lethal, so that postnatal manipulations are 

essential to test for post-developmental effects.  

A limitation of the local knockdown technology is the variability in the targeted area 

reached and the efficacy of knockdown.  The maximum volume reached was 80% of Area X 

but on average, the knockdown of FoxP1 was 36 % and FoxP4 of 29% was sufficient to cause 

learning deficits. Importantly, Area X expands considerably in both size and cell number 

between the injection at day 23 and analysis at day 90 or later, so that the fraction of Area X 

infected during the song learning period was likely larger than that measured at 90 days 

(Nordeen and Nordeen, 1988; Haesler et al., 2007). These results are in line with a previous 

study on virally injected rats, in which blocking neural plasticity in 10-20% of lateral amygdala 

neurons was sufficient to impair memory formation (Rumpel et al., 2005). In zebra finches the 

same approach for manipulating FoxP2 expression resulted in song learning deficits (Haesler 

et al., 2007), reduction of spine density (Schulz et al., 2010), and affected the speed of signal 

propagation through the cortico-striatal pathway (Murugan et al., 2013) and song performance 

(Heston and White, 2015).  

The protein reduction of FoxP1 and FoxP4 in cell culture was evident (Figure 3a,f), but 

the down-regulation in the brain (Figure 5a,c) was not as strong as the one reported 

previously for FoxP2 with the same virus (Haesler et al., 2007). A reason for that could be that 

many more neurons express FoxP1 or FoxP4 than FoxP2 (Mendoza et al., 2015), so that the 

fraction of neurons with reduced FoxP1 or FoxP4 protein levels compared to the entire 

population of neurons that express FoxP1 of FoxP2 is lower (Figure 4). In addition, the majority 

of FoxP2 neurons express low levels of FoxP2 (Thompson et al., 2013), whereas FoxP1 and 

FoxP4 neurons express these proteins at higher levels (Mendoza et al., 2015). Therefore 

experimental reduction of FoxP2 is more readily achieved than reduction of FoxP1 or FoxP4.  
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Regardless of the slightly less efficient reduction FoxP1 or FoxP4 expression compared 

to FoxP2, experimental lowering of all three neutrally expressed FoxP proteins in Area X 

affects song development significantly so, but with interesting differences and also differently 

than lesioning Area X (Scharff and Nottebohm, 1991). In contrast to the present results, adult 

male song after juvenile Area X lesions contains unusual long elements and reduced 

stereotypy, ruling out that our approach is damaging Area X neurons in a non-specific way.  

The cortico-basal ganglia circuits promotes learning of action sequences through 

trial-and-error learning and that basal ganglia drive the variability necessary for this 

reinforcement-based learning. This learning could be driven by the reward-related dopamine 

signaling that projects to the basal ganglia from the VTA and SNpc (Graybiel, 2005). In the 

striatum of the zebra finch, there is co-expression of D1A, D1B and D2 receptors and FoxPs 

(Kubikova et al., 2009; Mendoza et al., 2015). A down-regulation of FoxP2 in Area X affected 

dopamine receptor and DARPP-32 expression (Murugan et al., 2013) that might affect the 

dopaminergic reinforcement signals in the medium spiny neurons. Thus, the regulation of the 

FoxP subfamily members during times of vocal plasticity could be functionally related to 

dopamine signaling. When FoxP2 was manipulated to resemble the human FoxP2 in a mouse, a 

decrease in dopamine levels was reported (Enard et al., 2009; Enard, 2011), further suggesting 

a link between FoxP2 and dopamine. That FoxP2 is involved in plasticity of neurons was shown 

in the zebra finch using the same FoxP2 short hairpins. In this work, it was reported that 

neurons expressing the FoxP2-sh virus had fewer spine density (Schulz et al., 2010). 

Furthermore, target genes regulated by FoxP2 affect neurite outgrowth, synaptic plasticity 

and axon guidance (Spiteri et al., 2007; Vernes et al., 2007; Vernes et al., 2011). In addition, 

results of mouse FoxP2 manipulations support this showing alterations in dendrite length and 

synaptic plasticity (Groszer et al., 2008; Enard et al., 2009; Reimers-Kipping et al., 2010; 

French et al., 2011). Foxp1 and Foxp2 manipulations in mouse also resulted in abnormal 

vocalizations (Shu et al., 2005; Fujita et al., 2008; Gaub et al., 2010; Fischer and 

Hammerschmidt, 2011; Gaub et al., 2015). Genetic manipulations in Area X were also reported 

for FoxP2 (down- (Haesler et al., 2007) and up-regulation (Heston and White, 2015)) and mir-9 

(Shi et al., 2018). This microRNA down-regulates FoxP1 and FoxP2 in zebra finches.  

All Manipulations of FoxP2 in songbirds lead to song impairments and low motif 

similarity. All of them report syllable omissions and adding elements not found in the tutor 

(improvisations in (Heston and White, 2015)). Syntax similarity, a measure similar to 

stereotypy, was reported to be normal when FoxP2 is overexpressed (Heston and White, 2015) 

and also affected by mir-9 downregulation (Shi et al., 2018) which coincides with our results of 

FoxP2 downregulation. The frequency modulation of the fundamental (FM) is abnormal after 

FoxP2 over-expression (Heston and White, 2015), but when we down-regulated FoxP2, or 
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FoxP1 or after mir-9 induced FoxP2 down-regulation (Shi et al., 2018), FM was not different 

from the tutor, whereas downregulation of FoxP4 affected FM.  

Human phenotypes related to FOXP1 and FOXP2 mutations support a role for these 

transcription factors in vocal learning (Bacon and Rappold, 2012). FOXP4 mutations lead to 

developmental delay (Charng et al., 2016) but whether vocal learning was affected was not 

reported. FOXP4 is expressed more widely and homogeneously in the brain than FOXP1 and 

FOXP2 are, therefore a mutation might affect more brain functions than FOXP1 or FOXP2. In 

our experiments we down-regulated FoxPs in one area important for vocal learning, without 

the possible effects of the down-regulation in other brain regions that may contribute to a 

more severe phenotype and without developmental effects.  

Possible explanations for the fact that all FoxP downregulations in Area X impacted 

song learning might be that heterodimers of the FoxP subfamily are important for regulating 

pathways important for vocal learning, so the absence or mutation of one affects the whole 

machinery affecting song learning. This would suggest that either heterodimers have a 

different binding site, which is not known, or bind to a specific co-factor that is needed for 

controlling target genes important for vocal learning, which is also not known. FoxP subfamily 

members regulate different target genes, that could all be needed for vocal learning, and the 

absence of any (or a set) of these targets could affect vocal learning in specific ways. FoxP 

members can bind to, and regulate the same genes, and therefore affect song learning. This is 

supported by the fact that all FoxP subfamily proteins regulate the SV40 and VLDLR promoter, 

but it was also shown that they do not always bind to the same site (Sin et al., 2015; Mendoza 

and Scharff, 2017). The Area X equilibrium is likely to be affected no matter which gene is 

down-regulated and thereby song learning is affected. On a cautionary note, we cannot rule 

out that the observed effects re due to the induction of the same off-target effect, since we 

used the same virus and short hairpins against the same conserved subfamily members 

However, this is not probable because: i) we used different short hairpins for each FoxP 

subfamily members; ii) we demonstrated that down-regulation a possible cross-reaction to 

the closest homologs, and short hairpins are specific even if compared to the same subfamily; 

iii) we used small short hairpins proofed not to be toxic or induce other side effects; iv) not all 

gene down-regulations in Area X lead to impaired song (unpublished data); v) the specific song 

impairments differ after downregulation of FoxP1 from those due to downregulation of FoxP2 

and those due to  downregulation of FoxP4.  

Together, our data suggest that the neutrally expressed proteins of the FoxP 

subfamily, FoxP1/2/4, act in the basal ganglia in concert and regulate pathways important in 

song learning in the zebra finch. Thus, all three FoxPs are needed for the proper regulation of 

their target genes and in turn, behavior.  
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General Discussion 

 

This thesis presents the first evidence for an isochronous rhythmic structure in the learned 

vocalizations of two distantly related species: the zebra finch, Taeniopygia guttata, and the 

greater sac-winged bat, Saccopteryx bilineata. The differential influence of FoxP1, FoxP2 and 

FoxP4 during the zebra finch’s learning phase on this structure and on the other temporal and 

spectral song features is reported. Additionally it provides a broad overview of analytical 

methods for quantifying rhythmic regularity and complexity in vocalizations, movements and 

other behaviors unfolding in time.  

 

One of the many questions that was on my mind since the first discovery of the isochronous 

rhythmic structure in zebra finch song was: To what degree is this regularity ‘hard-wired’ (i.e. 

an emergent property of the way song is neurally coded), and to what degree is it more 

maturation dependent, shaped by an interplay of innate and acquired perceptional 

dispositions, potentially guided by feedback from other conspecifics? While I could not 

answer this question with my thesis, I will discuss our findings in context of the current state 

of knowledge about the neural and behavioral mechanisms of song and its development, and I 

will speculate about potential answers within this context. 

 

One finding from the study reported in Publication D was particularly unexpected. Zebra 

finches in the control group produced songs with a markedly reduced isochronous rhythmic 

structure compared to their tutors. FoxP levels were not experimentally reduced in these 

birds. Other than that they received the same treatment as birds in the FoxP1/2/4 

knockdown groups.  There are several possible interpretations for this result. Arguably the 

most promising, as briefly discussed in the article, is that their song rhythm might not have 

been fully developed at the time of recording, between 90 and 100 PHD (age in post-hatch 

days). Their tutors, as well as all of the birds analyzed in Publication B were older when they 

were recorded, most having been well over a year in age. The shape of the overall durational 

distribution of gaps in the control birds was very similar to that of their tutors, but gaps were 

longer on average. The isochronous rhythmic structure of zebra finch song might therefore 

only emerge after the gradual reduction and increasing stereotypy of the between-note gaps 

that takes place in zebra finches after song crystallization (Glaze and Troyer, 2013).  

 

Unlike gap durations, notes stabilize with crystallization in both absolute duration and 

variability (Glaze and Troyer, 2013). A similar development has been reported in Bengalese 
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finches (Lonchura striata domestica; James and Sakata, 2014) and Java sparrows (Lonchura 

oryzivora; Ota and Soma, 2014), hinting at a more general pattern in Estrildid finches. The 

spectral structure of notes is actively maintained in adulthood through a process that requires 

auditory feedback (Leonardo and Konishi, 1999; Lombardino and Nottebohm, 2000; Nordeen 

and Nordeen, 1992; Vallentin et al., 2016) and likewise remains highly stereotyped 

(Tchernichovski et al., 2001). The fact that note structure, both spectral and temporal, 

consolidates with crystallization indicates that the rhythmic structure on the level of gestures 

is established for individual notes around the time of sexual maturity (~90 PHD). 

 

At this time the neural code of song in HVC appears to consolidate as well. In adult male zebra 

finches, individual HVC neurons projecting to downstream motor areas fire short (roughly 10 

ms long) bursts of action potentials at precise time points during different song renditions 

(Hahnloser et al., 2002). This temporal precision gradually emerges during song development, 

as an increasing fraction of neurons fire single bursts time-locked relative to the onset of a 

specific note (Okubo et al., 2015). A subset of these successively bursting HVC neurons has 

been argued to form chains that act as an internal clock that underlies song timing ('chain 

model'; Fee et al., 2004; Li and Greenside, 2006; Long et al., 2010; Troyer, 2013; c.f. Amador et 

al., 2013; Boari et al., 2015; see also Publication B Discussion). While this clock was originally 

hypothesized to ‘tick’ throughout the motif, several observations suggest that multiple 

discrete chains of neurons are responsible for the temporal structure of different notes 

(Danish et al., 2017). Durational variability of gaps is higher than that of notes in normal adult 

song (Glaze and Troyer, 2006). When locally manipulating the temperature of HVC, song is 

performed more slowly, the more HVC is cooled down. Interestingly, notes stretch uniformly 

on all timescales in this situation, whereas stretching of inspiratory gaps is less pronounced 

and not uniform (Andalman et al., 2011; Long and Fee, 2008). Inspiration during singing thus 

seems to be influenced not exclusively by top-down ‘cortical’ control of the song system 

(Schmidt and Goller, 2016). Instead, nonlinear dynamics of the brain stem respiratory control 

system could interact with the song control system and contribute to the respiratory pattern 

of song (Hamaguchi et al., 2016; Schmidt and Ashmore, 2008). Taken together, these findings 

support the view that the isochronous structure on the level of individual notes is indeed in a 

sense ‘hard-wired’ in the adult zebra finch.  

 

Although Glaze and Troyer (2013) reported that gaps shortened on average, different gaps did 

not shorten to the same degree and some even increased in duration. The adjustment of the 

gap duration might act as ‘tuning screws’ for the birds and enable to fine-tune the temporal 

regularity on the motif-level. Modification of the intervals connecting the now ‘hard-coded’ 
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song notes could give rise to the pulseS that we detected in older birds. Further studies are 

needed to determine whether gap modification in adulthood actually leads to song rhythm 

converging on an isochronous rhythmic structure. To that end, song development could be 

tracked over the months after crystallization. Given what we know about the pulseS in adult 

birds, testable predictions can be made regarding the hypothesized endpoint of this 

development already at the time of crystallization. I often observed that integer ratios of the 

pulseS period equaled the durations of the shortest gestures, around 10ms in duration. For an 

example see the repeated gesture (middle of note 1 and 4) and the single gesture (middle of 

note 2 and 5) in the bottom row of Figure 3 in Publication B. These pulses around or above 

100Hz, the equivalent of the tatum on the level of gestures (i.e. the pulse fitting all gesture 

onsets), are in the range of the tempo of the hypothesized clock in the chain model. A single 

‘tick’ of the clock could therefore correspond to the shortest possible gesture, while other 

gestures may last two, three, or more ticks. Given that this gesture-level pulse is present at 

crystallization, a finite number of possibilities for the tempo of the final note-level pulse can 

be predicted (2x, 3x, 4x, … the gesture-level pulse; 6x in the example in Publication B, Figure 

3). Some of these should be more likely, as most adult birds tested so far had pulsesS in the 25–

45Hz range. Further constraints may arise from limits in the flexibility of gap duration 

modification. For example, if a proposed pulse would necessitate a gap to double in speed, it 

might be an unlikely candidate due to physiological limits. The comparison of predicted and 

observed gap modifications can then provide evidence for or against the hypothesis of a 

maturation dependent process guiding the emergence of the pulseS and of a hierarchical 

rhythmic structure through an interaction of different ‘cortical’ and ‘subcortical’ neural 

systems. Repeating this process under different experimental conditions (e.g. isolation from 

adult males during different phases pre- and post-crystallization) may furthermore allow to 

entangle innate from acquired rhythmic predispositions. 

 

Another intriguing opportunity to decipher neural coding of song rhythm and its development 

may lie in a phenomenon that has received relatively little experimental attention since its 

discovery. While most bird vocalizations are exclusively produced during expriations, some 

zebra finches also produce tonal notes during inspiration (Goller and Daley, 2001). During 

these phonations, inspiratory pressure is increased two-fold compared to other minibreaths 

in the same song, and respiratory and syringeal motor patterns apparently differ. They seem 

to develop from broadband inspiratory sounds into high-frequency whistles in juveniles (Veit 

et al., 2011). Interestingly, these can consist of multiple gestures (Goller and Daley, 2001). 

Examining the temporal development of inspiratory notes and the underlying neural pattern 

has the potential to further disentangle the contributions of song system and respiratory 
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system to the development of the temporal isochronous structure in zebra finch song. For 

example, a continuing development of the internal structure of multi-gesture inspiratory 

notes past crystallization would suggest a different control mechanism compared to 

expiratory notes. If this further gesture modification then results in an overall hierarchically 

structured song regularity comparable to songs without inspiratory notes, this implies a 

process of rhythm development in adult life that includes a form of phonetic plasticity. Tape-

tutored juveniles have been shown to readily learn these types of notes also produce them 

during inspiration (Goller and Daley, 2001). This allows for the creation of artificial song 

learning targets containing inspiratory notes with various spectro-temporal parameters.  

 

The fast respiratory patterns during zebra finch song can cause significant hyperventilation, 

leading to almost complete apnea in some individuals (Franz and Goller, 2003). The 

observation that gaps gradually become shorter and less variable might be an outcome of the 

birds’ increasing proficiency in producing the demanding minibreaths with continuing 

practice. A study showed that food restrictions in early life significantly reduce the number of 

notes sung per second (note rate) in zebra finches (Zann and Cash, 2008). Note rate may thus 

be an honest signal for condition during mate choice, and males could further increase this 

rate through practice. Support for this idea comes from the observation that the proportion of 

sound versus silence within song plays a positive role in female song preferences (Holveck and 

Riebel, 2007; Leadbeater et al., 2005). 

 

In this sense, the song would ‘mature’ well past the onset of reproductive activity. Considering 

song in the context of mate selection, what could explain female preferences for older males? 

Zebra finches in the wild face a high mortality rate (Zann, 1996, p. 142-145). Increased age can 

be an indicator for disease resistance and other traits that contribute to survivability. Studied 

immune traits in the zebra finch either increase with age or increase in the first years, before 

decreasing again (Noreen et al., 2011). Additionally, the likelihood of previous pairings 

increases with age, bringing with it experiences in parental care. Females with previous 

breeding experience are more successful at rearing chicks from subsequent pairings, even in a 

captive colony with minimal foraging demands (Baran and Adkins-Regan, 2014). Since both 

male and female zebra finches invest in parental care, the male’s previous experience is likely 

to increase the reproductive success of a pair as well. For several other bird species age is in 

fact positively related to quality in terms of survival and reproduction (Martin, 1995). In 

addition to its function in mate choice, zebra finch song also plays a role in pair bonding. 

Zebra finches often form life-long pairs, and males frequently direct their song performance 

at their partner (e.g. Ikebuchi and Okanoya, 2006). The attractiveness of song should therefore 
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also play a role in established pairs, and females might even influence further developments of 

song through feedback. 

 

Lack of feedback might provide an alternative explanation for the reduced isochronous 

rhythmic structure in the songs of the control birds in Publication D. In order to limit their 

auditory exposure to a single model and to reduce confounding variables, the juveniles were 

housed with only one adult male conspecific, their song tutor. Zebra finch song plays an 

important role in mate choice and females show specific preferences for certain song features 

(reviewed by Riebel, 2009). It is conceivable that they use these preferences in assisting the 

song learning process of their offspring, thereby increasing its chances of mating and thereby 

their own reproductive success.  

 

As discussed in Publication B, little is known about rhythmic perception in zebra finches. In 

the years since this publication no new reports on this specific question have come to my 

attention. The question of whether zebra finches perceive a pulseP in their conspecific songs 

(as opposed to in an artificial stimulus; ten Cate et al., 2016) remains open. Further research in 

this area has the potential to uncover shared and diverging principles in the relation of pulse 

and melodic content in animal vocalizations and human music. In my analyses I came across 

several songs with a relatively low pulseS fit, that had the following properties. They contained 

a multi-gesture note with an initial short high-frequency gesture followed by a gesture of 

much lower frequency (see last note in Publication D, Figure 14a for an example). In most of 

these cases a much better fitting pulseS could be found if I used the first gesture transition (i.e. 

the onset of the second, low-frequency geture) as the event for this note instead of the note 

onset. Although anecdotal, I mention this observation for two reasons. First, as a reminder 

that any attempts at relating the pulseS as measured in this thesis and the pulseP must be 

based on the assumption that note onsets are of particular (but not necessarily exclusive) 

salience for rhythm perception of the studied animal. The second point is also related to the 

question of salience in pulse perception, as well as to another rhythmic phenomenon 

observed in music. Low-pitched sounds (e.g. bass instruments and low voices) often carry the 

musical beat and provide a stronger support for the synchronization of movement to music 

(such as in dance) than high-pitched sounds (Burger, 2013; Burger et al., 2018; Large, 2000; 

Lerdahl and Jackendoff, 1996). There are first implications of underlying auditory and cortical 

neurophysiological mechanisms (Hove et al., 2014; Lenc et al., 2018), providing further 

opportunities for species comparative research. 
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We chose the zebra finch as a starting point for our search for the equivalent of a musical beat 

in learned animal vocalization due to the species’ short and highly stereotyped song and for 

the wealth of knowledge about its behavior, neurobiology and genetics that accrued in the 

past decades. I validated the generate-and-test method for detection of an isochronous 

rhythmic structure and reported the existence of such a structure in zebra finch song. This 

paves the way for future comparative research into the development and production of this 

form of rhythmic regularity, as well as the biological substrates that facilitate it. I propose the 

European starling (Sturnus vulgaris) as one of many promising songbird species for further 

studies. Starlings have demonstrated the ability to discriminate isochronous and hierarchical 

temporal patterns of metronome-like pulses from heterochronous patterns (Hulse et al., 

1984). They also generalized this learned discrimination across tempo changes to a degree 

(Hulse et al., 1984). This tentatively suggests an intriguing cognitive ability to abstract the 

concept underlying metrical rhythm. 

 

Similarly Saccopteryx, one of the few bat species for which vocal learning has been 

demonstrated conclusively so far, has only been a first target of examination of isochronous 

structure in bat vocalizations. Only a fraction of the many bat species have been investigated 

for the capacity of vocal learning, and there are several promising families for future studies in 

this regard (Knörnschild, 2014). Publication C reported a comparable rhythmic tempo of 

wingbeat-coupled echolocation calls and non-coupled vocalizations in the greater sac-winged 

bat. This finding provides compelling incentive for further studies on the influence of diverse 

physiological constraints on rhythmic predispositions in different bat species and perhaps 

echolocating marine mammals. 

 

Taken together, this thesis underlines the importance of a broad cross-species comparative 

approach to uncover how the different traits of musicality came together to form music as we 

know it today. 
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