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1 Introduction 

In 1941, during the London bombardment, the British physician Eric Bywaters (1910-

2003) studied victims of the bombing. They had suffered from crushed limbs and – 

even if initially appeared in a good condition - developed kidney failure after release of 

the crushing pressure. This sequence became known as the “crush syndrome”. Bywaters 

observed dark brown casts in the urine and casts in the renal tubules containing brown 

pigment. Ironically, Bywaters himself was rejected from military service because of a 

kidney problem. A few years later, in 1944, he showed that leakage of muscle contents, 

as a consequence of ischemia and reperfusion of the affected body parts, into the 

circulation caused renal failure as demonstrated by experiments he performed by 

injecting myoglobin (or myohaemoglobin as it was called at that time) into rabbits. This 

condition, termed rhabdomyolysis (RM), can have various causes such as trauma, 

exertion, muscle hypoxia, genetic defects, infections, changes in body temperature, 

metabolic and electrolyte disorders, drugs and toxins or may be idiopathic. Depending 

on the cause, there is a moderate to high risk for patients to develop acute renal failure 

(ARF) with fatal outcome. Almost 70 years after Bywaters observations, little is known 

about the precise molecular events leading to this pathology and further investigation on 

the mechanism of renal damage and therapeutic approaches to combat this are 

warranted. Over a long period, renal vasoconstriction, direct heme protein-induced 

cytotoxicity and intraluminal cast formation have been proposed as the main 

pathophysiological factors involved in RM-induced renal failure and this has lead to a 

number of proposed treatments, which were more or less unsuccessful. Recent studies 

have highlighted the importance of oxidative injury to the kidney in the development of 

RM-induced renal failure. This work aims to elucidate the role of myoglobin-mediated 

oxidative stress and how renal tissue may be protected against it. We used both an in 

vitro cell model and an in vivo rat model to simulate the conditions as they appear under 

myoglobinuric conditions. We tested selected iron chelators and antioxidants in regards 

of inhibiting oxidative stress and correlated this with protection from renal dysfunction. 

The data obtained in these studies may help to gain a deeper understanding of the 

molecular processes that are initiated by myoglobin and may contribute to develop new 

strategies to combat ARF after RM. 

 



 

 

2
2 Literature Review 

2.1 Clinical Background: Rhabdomyolysis 

Pathophysiologically, rhabdomyolysis (RM) can be defined as “an injury to the 

sarcolemma of skeletal muscle, resulting in leakage of its components into the blood or 

urine” (Knochel 1993). Though the syndrome has been recognized for a few thousand 

years (Moses), renal failure and RM was ultimately linked for the first time by the 

classic description of the crush syndrome after London bombardment during the World 

War II (Bywaters and Beall 1941). Later, the authors could show the presence of 

abnormal levels of myoglobin (Mb) in the urine of these patients (Bywaters, Delory et 

al. 1941). 

Excessive RM, and hence Mb-release, may be caused by a variety of factors, the most 

common of them in adults range from illicit drugs, alcohol abuse, medical drugs, 

muscle diseases, trauma, neuroleptic malignant syndrome, seizures and immobility. In 

paediatric patients lysis of myocytes is most commonly caused by viral myositis, 

trauma, connective tissue disorders, exercise, and drug overdose (Khan 2009). Ischemia 

or metabolic disorders can also cause RM leading to hypokalemia, hypernatremia, or 

hypophosphatemia. 

Burns are one of the main causes leading to RM. Burns may be caused due to thermal, 

chemical or electrical injuries. Thermal and chemical injuries lead to coagulative 

necrosis of the skin and the underlying subcutaneous tissue including muscle cells. The 

major determinants of burn severity are extent (as determined by percentage of involved 

body surface area) and depth (partial – or full thickness) of the injury (Bellomo, Kellum 

et al. 2008). It has been shown that severe burn injury and systemic inflammatory 

response syndrome can initiate serious systemic illness often accompanied by various 

clinical complications. Multi-organ injury following severe burn has been reported in up 

to 50% of mortality cases (Sabry, Wafa et al. 2009). 

2.2 Acute Renal Failure 

One of the significant clinical pathologies that develop in burns patients is acute renal 

failure (ARF). This subset is reported to have a mortality rate of 85% on average 

(Mustonen and Vuola 2008) indicating that while ARF occurs in a small fraction of 
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burns patients, it is often associated with unacceptably high rates of mortality. The 

occurrence of ARF in burn patients can be promoted by several variables such as 

occurrence of septicemia, fluid loss, muscle damage, hypotension, cardiopulmonary 

failure and use of nephrotoxic agents (Holm, Hörbrand et al. 1999). In addition, renal 

insult subsequent to severe burns can be measured by the level of intensive acute phase 

response as an indicator of extensive inflammation in the kidney (Sabry, Wafa et al. 

2009). Yet, there are different criteria suggested in the literature to conclude from burn 

severity to ARF what makes them difficult to compare. Despite this complication, the 

link between burn severity and the likelihood and severity of ARF is not disputed 

(Mustonen and Vuola 2008). 

2.3 Myoglobin 

Due to the lysis of peripheral muscle cells, large amounts of salts, enzymes (aldolase, 

creatine kinase, lactate dehydrogenase), and Mb are released into the systemic 

circulation which leads to electrolyte disturbances, hypovolemia, metabolic acidocis, 

coagulation defects and importantly, ARF due to the accumulation of extracellular Mb 

(Criddle 2003). Mb is a 17 kDa small intracellular heme protein that is found in the 

skeletal, smooth and cardiac muscle (Perkoff, Hill et al. 1962; Lewin and Moscarello 

1966). It has a porphyrin moiety with an iron centre, which is surrounded by four alpha-

helical loops. The primary function of Mb within muscle tissues is the transport and the 

storage of di-oxygen and the release if required, e.g., under hypoxic conditions, to the 

mitochondria for oxidative phosphorylation. The maintenance of cellular energetics 

through the sustained production of ATP is essential for the cellular response to insult, 

which is linked to cell viability (Gordon 1986). 

2.4 Pathophysiology 

Current data indicates that RM leads to ARF in burns victims via the effect of 

extracellular Mb on the kidneys (Khan 2009). However, the exact pathogenesis of Mb 

induced/mediated renal failure is still a matter of contention. The theme of this 

particular thesis will be focused on enhanced oxidative stress as a causal factor in early 

onset ARF, and whether amelioration of oxidative stress with a suitable iron chelator, 

synthetic or natural antioxidants will be of benefit in an animal model of ARF. 

Rhabdomyolysis results in both the initiation of an endotoxin cascade (Zager 1996) and 
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volume depletion, which can lead to ischemia/reperfusion injury in the kidneys. At the 

same time, the extracellular Mb causes physical and chemical damage. 

Some level of RM is normal and occurs on a daily basis in response to mechanical 

stress (Vanholder, Sever et al. 2000). In a normal functioning system, extracellular Mb 

is easily cleared away by a plasma protein, haptoglobin (Hp) (Sakata, Yoshioka et al. 

1986; Vanholder, Sever et al. 2000). Often the amount of extracellular Mb reaching the 

proximal tubule cells through passive filtration exceeds their ability to convert iron to 

ferritin, the circulating Mb damages the kidney by renal tubular obstruction and 

necrosis, which are accompanied by intense renal vasoconstriction leading to 

intracellular ferrihemate accumulation (Sharp, Rozycki et al. 2004). Finally, 

extracellular Mb reaches the urine. This phenomenon is closely related to complications 

in burns victims as hypermyoglobinemia occurs in up to 88.5% of the patients (Walsh, 

Miller et al. 1982). 

Rhabdomyolysis affects about 1 in 10,000 persons in the United States and accounts for 

an estimated 8 to 15% of all cases of ARF (www.rhabdomyolysis.org). About 5% of 

RM cases result in death (about 1500 for the United States). Some data suggest that the 

number of patients with RM after trauma may be underestimated and that the current 

treatments may not improve the outcome in a large proportion of patients with renal 

failure after RM. 

The current therapy in RM is conservative and aims to stabilize the patient and to 

prevent ARF. Aggressive repletion with fluids is indicated to maintain kidney function 

and microvascular circulation and can be forced by addition of mannitol. In despite, the 

alkalinization of urine with bicarbonate to stabilize the heme group from dissociation 

has no or little clinical evidence (Huerta-Alardin, Varon et al. 2005). Upon failure of 

conservative treatment and onset of ARF, patients require emergency hemodialysis, 

although this does not remove Mb from the renal system. In conclusion, there is a 

necessity to explore new therapeutic avenues for the prevention of RM-induced ARF. 

It is also known that Mb scavenges endothelial nitric oxide (•NO) (Kavdia, Tsoukias et 

al. 2002). This property of Mb plays a role in vasoconstriction by restraining •NO-

bioavailability (Andriambeloson and Witting 2002). As a consequence, this could be a 

reason for cast development in the kidney (Zager, 1996). Although, it is not clear if 
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these casts are the result of the renal failure, occurring during tubular stasis, or causally 

related (Zager 1996). 

Precipitation of Mb within the tubular cells could act as a physical barrier to glomerular 

filtration at higher Mb concentrations. However, renal dysfunction may also occur at 

relatively low levels of Mb, suggesting that an alternative mechanism of damage may 

be operative. For example, prior research has shown that cultured kidney epithelial cells 

are sensitive to low concentrations of extracellular Mb (in the range 0-100 μM) (Parry, 

Ellis et al. 2008). These cells showed signs of decreased monolayer permeability, 

decreased transferrin endocytosis, and increased expression of antioxidant genes along 

with increased activity of antioxidant proteins (Parry 2006; Parry, Ellis et al. 2008). A 

possible reason for such Mb-induced epithelial cell dysfunction could be enhanced 

oxidative stress. 

Mb can exhibit a pro-oxidant activity, but this activity is modulated by an associated 

reductase enzyme that maintains the heme iron primarily in the Fe(II) redox state for the 

binding of molecular oxygen (Ueda, Baliga et al. 1996). Because of its relatively small 

protein size, extracellular Mb is filtered through the glomeruli and reabsorbed in the 

proximal tubules by endocytosis. Under acidic conditions (pH<5.6) the iron-containing 

ferric-hemate group is released from the globin portion of the protein. This degradation 

normally happens in the lysosome within the cell cytoplasm, where free iron released by 

this process is rapidly bound to ferritin where it is rendered redox inactive (Sharp, 

Rozycki et al. 2004).  In the extracellular environment, the release of heme or free iron 

results in increased oxidative stress through the action of these pro-oxidants. For 

example, it has been suggested that the iron within Mb becomes released from its heme 

moiety. Redox available iron has the ability to donate and accept electron as well as the 

capability to generate free oxygen radicals. This leads to oxidative stress and injury of 

the renal cell through its role in Fenton chemistry, as a catalyst of the Haber-Weiss 

reaction (Vanholder, Sever et al. 2000). The Haber-Weiss reaction generates the 

hydroxyl radical from superoxide radical anion and hydrogen peroxide catalyzed by 

iron (refer to schematic below) (Fenton 1894; Haber and Weiss 1932), which can then 

damage cellular targets including lipids, protein and DNA, and contribute to enhanced 

oxidative stress (Winterbourn 1995). 

 



LITERATURE REVIEW 

  

6
Fe3+(aq) + O2•

–   →  Fe2+
(aq) + O2 (g)  

Fe2+
(aq) + H2O2   →  •OH + OH- 

(aq)  

Net reaction: O2•
–  + H2O2 (Fe catalyst) →  •OH + OH- + O2 (g) 

 

2.5 Oxidative Stress 

Oxidative stress is defined as a disturbance in the equilibrium between pro- and 

antioxidant factors in the normal redox state within the biological system. This 

imbalance can be caused during the over-production of free radicals or the body’s 

inability to readily detoxify the reactive intermediates or repair the resulting damage 

(Pentón-Rol, Cervantes-Llanos et al. 2009). Free radicals such as reactive oxygen 

species (ROS) are stable, but highly reactive species with one unpaired valence 

electron. Once formed, ROS react rapidly with neighboring species, including lipids, 

proteins and a wide range of other biomolecules, causing changes and/or damages in the 

target molecule and disturbing their function. Subsequently, they pass on the unpaired 

electron to create a secondary free radical. The secondary free radical then reacts in turn 

with its adjacent species to continue the cycle of damage (Halliwell 2007). 

ROS can be produced by various mechanisms including generation during oxidative 

phosphorylation in the mitochondria as a by-product of normal cellular aerobic 

metabolism (Davies 1995; Ide, Tsutsui et al. 1999). Free radicals are usually oxygen- or 

nitrogen-centered and always contain a single unpaired electron. 

Characterized as a di-radical, molecular oxygen (O2) possess a property that permits 

liquid oxygen to be attracted to the poles of a magnet. This property also dictates that 

full chemical reduction of oxygen to water is the terminal event in the electron transport 

chain overall requiring 4 electrons. The sequential donation of electrons to oxygen 

during this process can generate ROS as intermediates, and “electron leakage” can also 

contribute to the formation of ROS (Davies 1995; Genova, Pich et al. 2003; Miwa and 

Brand 2003). Various ROS are produced in the mitochondria including: 

 Donation of a single electron to molecular oxygen results in the formation of the 

superoxide radical (O2•
–).  
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 Donation of a second electron yields peroxide, which then undergoes protonation 

to yield hydrogen peroxide (H2O2).  

 Donation of a third electron, such as occurs in the Fenton reaction (Fe2+ + H2O2 

→ Fe3+ + •OH + OH-), results in production of the highly reactive hydroxyl 

radical (•OH).  

 Donation of a fourth electron yields water.  

 Singlet oxygen (1O2), a very short-lived and reactive form of molecular oxygen in 

which the outer electrons are raised to a higher energy state, can be formed by a 

variety of mechanisms, including the Haber-Weiss reaction (see above) 

(Toufektsian, Boucher et al. 2001). 

 

2.6 Iron Chelation 

Due to its ability to inhibit the redox activity of transition metals through chelation, 

desferrioxamine B (referred to henceforth as DFOB-AdAOH; structure shown in Figure 

1) has been used to examine the mechanisms of oxidative stress caused by iron in many 

disease states (Gabutti and Piga 1996). As a result of the increased heme catabolism, the 

iron released saturates the binding capacity of transferrin, resulting in a pool of non-

transferrin-bound-iron (NTBI) or iron overload similar to patients with Thalassemia (α 

and β), hemochromatosis or hemodialysis (Valko, Rhodes et al. 2006). Humans do not 

have an active iron excretion mechanism and the excess iron causes organ dysfunction 

from the unregulated production of ROS and cardiac siderosis; this iron overload 

requires treatment with iron chelators (Nick 2007). The first-line treatment for iron 

overload is Desferal®, which is the mesylate salt of the trihydroxamate-based 

siderophore, desferrioxamine B (DFOB). 
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Figure 1   Chemical structure of the therapeutic iron chelator DFOB. 

Reprinted with permission from Liu, Obando et al. Conjugates of desferrioxamine B 
(DFOB) with derivatives of adamantane or with orally available chelators as potential 
agents for treating iron overload. Journal of medicinal chemistry. 53(3), 1370-1382. 
Copyright  2010, American Chemical Society. 

 

Siderophores are low-molecular-weight compounds produced by both non-pathogenic 

and pathogenic bacteria in response to Fe deprivation. DFOB is the siderophore native 

to the soil bacterium Streptomyces pilosus; the use of DFOB in the clinic for almost 50 

years underscores the value of mapping bioactive compounds from nature (Stintzi, 

Barnes et al. 2000). Previous studies have shown that desferrioxamine decreased RM-

induced renal injury in the rat and prevented cell toxicity induced by direct exposure to 

Mb (Boutaud and Roberts 2011). Desferal® is not orally active and requires treatment 

through subcutaneous or intravenous infusions. The water solubility ~ 0.4 M of DFOB 

impacts significantly on the ability of this hydrophilic agent to cross cell membranes to 

access intracellular iron pools and this has a marked impact on the efficacy of this 

chelator. The hydrophilicity of DFOB manifests as rapid clearance of the drug with a 

short plasma half-life (t1/2 ~ 5.5-12 min) (Porter, Rafique et al. 2005). The aqueous 

solubility of DFOB is attributable in part to the positive charge at the amine tail at 

physiological pH values. 

The low membrane partition coefficient of DFOB (P = 0.02) describes a drug, which is 

unable to readily traverse the cell membrane to access intracellular iron pool. With this 

background in mind, Liu et al. aimed to modify DFOB without compromising the 

Fe(III)-binding ability but gaining superior pharmacokinetics (Liu, Obando et al. 2009). 

First, they designed covalent adducts between DFOB and adamantane-based 
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compounds that have analogues in the clinic which are orally available and generally 

well tolerated by patients. Adamantane-1-carboxylic acid belongs to a family of 

functionalized polycyclic cage-based compounds with several compounds in use to treat 

influenza A (amantadine, rimantadine), and Parkinson’s disease (amantadine), 

Alzheimer’s disease (memantine)  and pulmonary tuberculosis (SQ109) (Spasov, 

Khamidova et al. 2000). Each of amantadine, rimantadine and memantine are orally 

active and are generally well tolerated by patients (Ison and Hayden 2001). Second, 

they designed conjugates of DFOB, which would have greater partition coefficients 

relative to DFOB (see Figure 2). 

 

 

Figure 2   Desferrioxamine B conjugates 

DFOB-AdA (1), DFOB-AdAOH (2), DFOB-AdAdMe (3), DFOB-AdAc (4) 
Reprinted with permission from Liu, Obando et al. Conjugates of desferrioxamine B 
(DFOB) with derivatives of adamantane or with orally available chelators as potential 
agents for treating iron overload. Journal of medicinal chemistry. 53(3), 1370-1382. 
Copyright  2010, American Chemical Society. 

 

The ability of selected compounds to inhibit cellular proliferation of Madin−Darby 

canine kidney type II (MDCK II) cells was assessed using the [3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay (Mosmann 1983) (Table 1). 

Compounds that are well tolerated by cells will not affect regular cellular proliferation 

or growth and will have high IC
50

 (or LD
50

) values relative to more cytotoxic 

compounds. 
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Table 1   IC50 Values (μM) of 1−5 in Madin−Darby Canine Kidney Type II (MDCK II) 

Compound  IC50 (μM) 

DFOB 9.49 ± 1.24 

DFOB-AdA 118.86 ± 1.16 

DFOB-AdAOH > 100 

DFOB-AdAdMe 163.37 ±1.52 

DFOB-AdAc 225.56± 1.28 

Adapted from Liu, J.; Obando, D.; Schipanski, L. G.; Groebler, L. K.; 
Witting, P. K.; Kalinowski, D. S.; Richardson, D. R.; Codd, R. J. Med. 
Chem. 2010, 53, 1370-1382 

 

The cell viability data using the human SK-N-MC neuroepithelioma cell type reflects 

similar trends as observed in the MDCK II cell line. Importantly, in both cell types, all 

of the conjugates showed less cytotoxicity than DFOB itself but similar Fe chelating 

efficacy. In this work, we tested the ability of DFOB-N-(3-hydroxyadamant-1-

yl)carboxamide to protect cultured kidney epithelial cells in an established cell model of 

RM that mimics urinary Mb levels detected in severe electrical burn-induced muscle 

myolysis (Parry, Ellis et al. 2008). 

 

2.7 Antioxidants 

Antioxidants are agents capable of interfering with processes involved in oxidative 

stress (Sies 1997). The specific effects of antioxidants, which include the regulation of 

gene expression, have been revealing but not yet fully understood. There has been some 

progress in the use of antioxidants to treat oxidative damage but there is certainly 

considerable work remaining. Antioxidants are widely used as constituents in dietary 

supplements in the hope of maintaining health and preventing oxidation related diseases 

(Ames, Shigenaga et al. 1993). 
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2.7.1 Naturally occurring Antioxidants 

Natural antioxidants play a vital role by participating in the body’s endogenous defense. 

Oxidation reactions are crucial for life and represent a major mechanism for the 

production of cellular energy required for normal function. However, in some 

pathologies the depletion of natural antioxidants is a hallmark. For example, during 

acute cerebral ischemia plasma content of low-molecular weight antioxidants are 

consumed (Hendryk, Czuba et al. 2010). 

Antioxidant potency can be measured by the redox potential, which is a thermodynamic 

parameter that determines efficacy in a defined system. The lower the value of the redox 

potential, the greater the antioxidant activity for the agent; although kinetic effects must 

also be considered when assigning antioxidant efficacy. For example, glutathione has a 

redox potential of 920 mV and comparably lower antioxidant activity than Vitamin C 

(ascorbate, 280 mV), α-tocopherol (480 mV) and flavonoids (510 mV) (Jovanovic, 

Steenken et al. 1996). However, the relatively high abundance of glutathione in cells 

and tissues can compensate for its relatively low redox potential as rates of reaction are 

defined by both thermodynamic and quantity parameters. 
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2.7.2 Ascorbic Acid 

Vitamin C (Vit C) or L-Ascorbate is a hexose sugar derivative that is a highly effective 

antioxidant in living organisms  (see Figure 3). It has been known for a long time to be 

essential for protection of humans against scurvy. It is also known for its role in 

collagen production, leukocyte function, tissue metabolism and adrenocortico-hormone 

(Dylewski and Froman 1992). The main part of the molecule with regards to its 

biological activity is the ene-diol group at carbon atoms 2 and 3. This group gives the 

molecule its acidic nature and chemical reducing properties as it can ionise (pKa = 4.17 

and 11.17) and readily donate an electron to form a stable ascorbyl radical that decays 

to a non-radical product (dehydroascorbate). The latter can be taken up by cells and 

recycled to regenerate ascorbate making this a highly effective radical-scavenger 

(Smirnoff, Running et al. 2004). 

 

Figure 3   Structure of vitamin C 

Chemical structure of water-soluble vitamin C showing the ene-diol group at 
carbon atoms 2 and 3. 

 

Due to its low redox potential, Vit C is capable of reducing an array of reactive species 

such as oxygen-related radicals (superoxide, hydroxyl radical, peroxyl radicals), sulphur 

radicals and nitrogen-oxygen radicals (Padayatty, Katz et al. 2003). In addition, it can 

regenerate/recycle other phenolic antioxidants such as α-tocopheroxyl, urate and β-

carotene. An example of this radical scavenging mechanism of Vit C is shown below 

(Figure 4): 
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Figure 4   Regeneration of phenolic radicals by ascorbate/vitamin C 

The figure shows a phenol molecule retaining with free radical producing neutral 
species and a phenoxyl radical. The phenoxyl radical reacts with the ascorbate to 
produce ascorbyl radical and regenerate the original phenolic compound. The ascorbyl 
radical is biologically inert and decomposes to yield dehydroascorbate (Smirnoff, 
Running et al. 2004). Figure created with ACD/ChemSketch freeware. 

 

2.7.3 Bisphenol 

Phenolic compounds are prototype chain-breaking antioxidants during the autoxidation 

of lipids (Sies 1997). The synthetic antioxidant 3,3’,5,5’-tetra-t-butyl-biphenyl-4,4’-diol 

(Bisphenol) was designed through a structure activity study (Witting, Westerlund et al. 

1996). The redox potential measured for Bisphenol (BP) is significantly less positive 

than that for other common synthetic or natural phenols. This is indicative of the 

increased antioxidant activity in vitro (see Table 2). For reference, the redox potential 

for the two common phenols probucol and vitamin E (as α-tocopherol) are shown 

together with their respective octanol-water partition coefficients. 

In general, by lowering the redox potential in the design of the synthetic polyphenol 

without significantly altering lipophilicity, they have enhanced the antioxidant activity 

of BP in biological systems. The bisphenol BP is superior to methyl-BP because the 

redox potential increases markedly when -OH groups are replaced by a shielding methyl 

group and the presence of the phenol group imparts the antioxidant activity to this 

compound. 
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Table 2   Redox potentials and partition coefficients for natural and synthetic phenols 

Agent Structure Redox 

potential 

(mV)a 

Partition 

valueb 

Probucol 

 

545 12.1 

Bisphenol 

 

307 10.3 

α-TOH 

 

600 12.2 

a Redox potentials were determined with cyclic voltammetry and analytically pure 
samples as described previously (Wu, Kathir et al. 2006). b Corresponding octanol-
water partition coefficients as determined by Kim et al. Free radical research. 2011, 
45(9): 1000-1012. 

 

2.8 Rationale for Antioxidant Selection 

Bisphenol (BP) has been adopted in this study for two reasons. As described in the 

previous section, the activity of this synthetic compound is superior to many other 

natural antioxidants. It is more important, however, to note that BP was designed as a 

potent antioxidant with a potential to exert biological benefits primarily via reducing 

oxidative stress. The idea to use antioxidants as inhibitors of RM-induced ARF has 

some merit (Stefanovic, Savic et al. 2000; Chander, Singh et al. 2003; Rodrigo, Bosco 

et al. 2004), although not all studies reported improved renal function with antioxidant 

supplementation (Aydogdu, Atmaca et al. 2006; Vlahovic, Cvetkovic et al. 2007). 

HO S S OH

HO OH



LITERATURE REVIEW 

  

15
These conflicting outcomes may have arisen from different biological activities of the 

test compounds with some antioxidants capable of exhibiting other activities including 

anti-inflammatory and cell signaling capacity when employed at relative high 

concentrations e.g., the case for vitamin E which can provide anti-inflammatory activity 

such as gene regulatory actions independent of anti-inflammatory activity (Azzi 2007). 

The use of BP either alone or in combination with Vit C may assist in resolving the 

question on whether antioxidants are useful in the setting of RM-induced ARF as lower 

doses of the antioxidant can be employed due to the relatively high degree of 

antioxidant activity. To be an efficient antioxidant, bisphenol needs to react with initial 

free radicals, such as lipid peroxyl radicals, at suitable rates and interact with Vit C for 

its own regeneration and to enhance antioxidant activity (Sies 1997). 

 

2.9 Statement of Hypothesis and Aims 

In this work we propose to ascertain whether chelators or antioxidants are able to 

ameliorate ARF through inhibiting oxidative stress. 

The objectives/aims of the study are to: 

 

1) Assess the efficacy of a novel chelator to inhibit Mb-mediated oxidative damage 

in a cell model using cultured kidney epithelial cells. 

2) Assess the efficacy of combined antioxidant therapy in an animal model of RM.
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Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with 
orally available chelators as potential agents for treating iron overload 

Konjugate von Desferrioxamin B (DFOB) mit Derivaten von Adamantan oder oral 
verfügbaren Chelatoren als potentielle Wirkstoffe zur Behandlung von Eisenüber-
schuss 

 

DOI: 10.1021/jm9016703 

 

3.1 Abstract (German Translation) 

Konjugate von Desferrioxamin B (DFOB) mit Adamantan-1-carbozyklischer Säure, 3-

hydroxyadamantan-1-carbozyklischer Säure, 3,5-dimethyladamantan-1-carbozyklischer 

Säure, Adamantan-1-Essigsäure, 4-methylphenoxy-Essigsäure, 3-hydroxy-2-methyl-4-

oxo-1-pyridin-Essigsäure (N-Essigsäure-Derivat von Deferiprone), oder 4-[3,5-bis(2-

hydroxyphenyl)-1,2,4-triazol-1-yl]-Benzoesäure (Deferasirox) wurden synthetisiert und  

die Integrität der Fe(III)-Bindung dieser Wirkstoffe wurde mittels Elektrosprayionisa-

tion-Massenspektromie und RP-HPLC-Messungen untersucht. Die von der DFOB-3,5-

dimethyladamantan-1-carbozyklischen Säureverbindung mobilisierte Menge an intra-

zellulärem 59Fe war 3-mal höher als bei DFOB allein, und der IC50-Wert dieser Ver-

bindung war 6- oder 15-mal höher als bei DFOB in zwei verschiedenen Zelltypen. Die 

Beziehung zwischen logP und 59Fe-Mobilisierung ergab bei den DFOB-Konjugaten, 

dass die maximale Mobilisierung von 59Fe bei einem logP-Wert von �2.3 geschieht. 

Dieser Parameter scheint, mehr als die Fe(III)-Affinität, das Ausmass der intrazellulären 

59Fe-Moblisierung zu beeinflussen. Die Effizienz der hohen Eisenmobilisierung bei 

niedriger Toxizität von ausgewählten, auf Adamantan basierenden DFOB-Konjugaten 

untermauert das Potential dieser Wirkstoffe Erkrankungen durch Eisenüberschuss bei 

Patienten mit transfusionsabhängigen Störungen wie β-Thalassemie zu behandeln. 

pubs.acs.org/doi/pdf/10.1021/jm9016703 

http://pubs.acs.org/doi/pdf/10.1021/jm9016703
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Conjugates of Desferrioxamine B (DFOB) with Derivatives of Adamantane or with Orally Available

Chelators as Potential Agents for Treating Iron Overload

Joe Liu,† Daniel Obando,† Liam G. Schipanski,† Ludwig K. Groebler,‡ Paul K. Witting,‡

Danuta S. Kalinowski,‡ Des R. Richardson,‡ and Rachel Codd*,†
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Desferrioxamine B (DFOB) conjugates with adamantane-1-carboxylic acid, 3-hydroxyadamantane-
1-carboxylic acid, 3,5-dimethyladamantane-1-carboxylic acid, adamantane-1-acetic acid, 4-methylphe-
noxyacetic acid, 3-hydroxy-2-methyl-4-oxo-1-pyridineacetic acid (N-acetic acid derivative of deferi-
prone), or 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (deferasirox) were prepared and
the integrity of Fe(III) binding of the compounds was established from electrospray ionization mass
spectrometry and RP-HPLC measurements. The extent of intracellular 59Fe mobilized by the DFOB-
3,5-dimethyladamantane-1-carboxylic acid adduct was 3-fold greater than DFOB alone, and the IC50

value of this adduct was 6- or 15-fold greater than DFOB in two different cell types. The relationship
between logP and 59Fe mobilization for the DFOB conjugates showed that maximal mobilization of
intracellular 59Fe occurred at a logP value ∼2.3. This parameter, rather than the affinity for Fe(III),
appears to influence the extent of intracellular 59Femobilization. The low toxicity-high Femobilization
efficacy of selected adamantane-basedDFOB conjugates underscores the potential of these compounds
to treat iron overload disease in patients with transfusional-dependent disorders such as β-thalassemia.

Introduction

Inheritable disorders of hemoglobin arising from mono-
genic defects are the most common diseases in the world, with
about 7% of people estimated as carriers.1,2 Each year,
300000-500000 children are born with severe hemoglobin
disorders, which include sickle cell anemia and the thalasse-
mias.1 Without treatment for their anemia, these infants die
in the first few years of life.1 Patients with severe forms of
β-thalassemia require lifelong blood transfusions at 2-4
weekly intervals.3 These regular blood transfusions increase
macrophage-induced heme catabolism, which releases iron
into the serum. This saturates the iron transport protein,
transferrin, resulting in an increased pool of nontransferrin-
bound-iron (NTBIa).4 Humans do not have an active iron
excretion mechanism, and levels of NTBI in excess of the
normal, tightly regulated Fe(III) concentrations (about 10-24

M) can generate reactive oxygen species (ROS) that can cause
dysfunction of the heart, liver, anterior pituitary, and pan-
creas.5 Therefore, β-thalassemia patients must undergo, in
addition to their blood transfusions, treatment with chelating

agents that coordinate the excess iron and form complexes
that are excreted via the urinary and/or fecal route.6,7 Before
the advent of chelation therapy in 1962, β-thalassemia pa-
tients maintained on prophylactic blood transfusions would
die in early adulthood from complications arising from iron
overload.3

The first-line treatment for iron overload is themesylate salt
of the trihydroxamic acid-based siderophore, desferrioxamine
B (DFOB; 1), producedby the bacteriumStreptomyces pilosus
(Figure 1).8 Siderophores are low-molecular-weight organic
compounds produced by nonpathogenic and pathogenic
bacteria in response to Fe deprivation.9-12 With poor gastro-
intestinal absorption and a short plasma half-life (t1/2 ∼ 12
min),13 DFOB 3mesylate is not orally active, which requires
that patients are treated via subcutaneous or intravenous
infusion for about 60 h per week.3 This arduous treatment
regimen has a negative impact upon the quality of life of
patients. Poor compliance with chelation therapy can lead to
siderotic cardiac disease, which accounts for 71% of the
mortality from thalassemia.5,14 Significant drawbacks in the
efficacy of themonocationic, hydrophilic 1 (water solubility∼
0.4 M) as a chelation agent, include both its rapid clearance
(reflected in the treatment regimen) and its inability to readily
cross cell membranes to access intracellular iron pools.15 The
distinguishing attribute of 1, which confers value upon its
clinical use, is the very high affinity toward Fe(III), forming a
stable 1:1 Fe(III):1 hexadentate complex via the three hydro-
xamic acid functional groups (logβ110 = 30.5).16-18 The
drawbacks of 1 have prompted research efforts to find orally
available iron chelating agents.5,6,19 Two of these candidates,
deferiprone (1,2-dimethyl-3-hydroxypyrid-4-one, L1 (2)) and

*Towhom correspondence should be addressed. Phone:þ61-2-9351-
6738. Fax: þ61-2-9351-4717. E-mail: rcodd@med.usyd.edu.au.

aAbbreviations: AdAc, adamantane-1-acetic acid; AdA, adaman-
tane-1-carboxylic acid; LDX, 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-
1-yl]benzoic acid (deferasirox); DFOB, desferrioxamine B; AdAdMe,
3,5-dimethyladamantane-1-carboxylic acid; ESI-MS, electrospray ioni-
zation mass spectrometry; 59Fe-Tf, 59Fe-labeled transferrin; AdAOH, 3-
hydroxyadamantane-1-carboxylic acid; Dp44mT, di-2-pyridyl ketone
4,4-dimethyl-3-thiosemicarbazone; MPOAc, 4-methylphenoxyacetic
acid; L1D, 3-hydroxy-2-methyl-4-oxo-1-pyridineacetic acid; NTBI, non-
transferrin-bound-iron; ROS, reactive oxygen species; RP-HPLC,
reversed-phase high pressure liquid chromatography.
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deferasirox (4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-
benzoic acid, ICL670 (3)) (Figure 1), both of which are orally
active, have varied profiles in the clinic.19-21

Deferiprone (2) is an orally active, three-times-daily,
R-ketohydroxypyridine-based bidentate iron chelator, which
can remove iron from noncardiac parenchyma,macrophages,
transferrin, ferritin, and hemosiderin.19 Deferiprone is not as
effective as 1 at removing Fe(III) and has toxicity issues,
including agranulocytosis.5,22,23 Its use is largely limited to the
European Union as a second-line treatment for patients
intolerant to 1. Currently, 2 is not approved for use in the
USA. Deferasirox (3) is a tridentate, one dose-per-day, orally
administered iron chelator in use since 2005 in the USA,
Switzerland, and Europe.19,20 Deferasirox crosses hepatocyte
and cardiac myocyte cell membranes and has shown good
tolerance and safety with side effects that include mild gastro-
intestinal symptoms andmild aminotransferase elevation.24,25

The first-in-class thiazolecarboxylic acid-based iron chelator,
desferrithiocin, showed good iron clearance in monkeys but
was severely nephrotoxic.26,27 The less toxic derivative, defer-
itrin, showed favorable pharmacokinetics in rats, dogs, and
monkeys28 and is currently in phase II clinical trials.19 Renal
toxicity has also been observed in some patients treated
with 3.29,30 The development of acceptable iron chelating
drugs for iron overload, therefore, requires consideration of
efficacy of Fe-binding, renal toxicity, and other potential side
effects. Other drugs in development as iron chelators include
the deferiprone derivative L1NA11,19 hydroxypyridinone-
based compounds,31 isonicotinoyl hydrazones,32-35 and
thiosemicarbazones;32,36-40 the latter two classes of com-
pounds being developed principally as anticancer agents.

An alternative approach toward the design of new iron
chelating compounds for the treatment of iron overload
involves 1-based semisynthesis, where ancillary compounds
are appended to 1 via the free primary amine group, which
itself is not involved in the Fe(III)-1 coordination sphere.17 In
this approach, the integrity of the 1-derived Fe(III)-binding
hydroxamic acid groups of the conjugate are retained, yet the
properties of the compoundmay be tuned as a function of the
ancillary fragments. Conjugates of 1havebeenpreviously pre-
pared with a variety of groups appended at the amine termi-
nus, including fluorophores,41-44 ferrocene,45 hydroxypyridi-
none-, or catecholate-based ligands46-48 and others.49-52

Most recently, the octanol-water partition coefficients of a
series of alkylated 1 compounds were determined to be
200-3900 times that of free 1 at 25 �C.51 This may have
implications for improving the ability of free 1 to traverse cell
membranes to access intracellular iron stores. Starch poly-
mers of 1 have also been explored as a mechanism to improve
the plasma half-life and toxicity.52 In a more general context,
conjugates of hydroxamic acid-based and catechol-based

siderophores have a rich research profile as potential anti-
bacterial and anticancer agents.44,53,54

Here, we describe the synthesis, characterization, and
structure-activity relationships of seven DFOB conjugates
(4-10, Figure 2). These studies include examination of the
integrity ofFe(III)-binding using electrospray ionizationmass
spectrometry (ESI-MS) and reversed-phase high pressure
liquid chromatography (RP-HPLC). We report the determi-
nation of the logP values of 4-10 in the absence and presence
of Fe(III) and the iron chelation efficacy of 4-10with regard
to their ability to mobilize intracellular 59Fe from SK-N-MC
neuroepithelioma cells and to prevent 59Fe uptake from 59Fe-
transferrin (59Fe-Tf). Furthermore, we have examined the
antiproliferative activity of 4-10 in SK-N-MC cells and in a
renal epithelial cell type. Together, the results indicate that
selected conjugates of 1 should be further evaluated as poten-
tial new agents for the treatment of iron overload disease.

Results and Discussion

Rationale for Chelator Design. Semisynthesis was used to
prepare conjugates between 1 and lipophilic compounds
with structures similar to those of selected orally available
compounds in clinical use. Our rationale was that the favor-
able properties of the ancillary fragments (oral availability,
lipophilicity, low toxicity) may be conferred upon the con-
jugates of 1. We selected adamantane-1-carboxylic acid-
based ancillary fragments for conjugation to 1, with several
compounds of this class in use clinically to treat influenza A
(amantadine, rimantadine),55 Parkinson’s disease (amanta-
dine),56 Alzheimer’s disease (memantine),57 and pulmonary
tuberculosis (N-adamantan-2-yl-N0-((2E)-3,7-dimethyl-2,
6-octadien-1-yl)-1,2-ethanediamine (SQ109)).58 Amanta-
dine, rimantadine, and memantine are orally active and are
generally well tolerated by patients. Among our target com-
pounds, we included conjugates between 1 and (i) 4-methyl-
phenoxyacetic acid, which mimics the internal fragment
of the orally available compounds rosiglitazone and pro-
pranolol, (ii) 3-hydroxy-2-methyl-4-oxo-1-pyridineacetic
acid, which mimics deferiprone (2), and (iii) deferasirox (3)
itself.

Chemistry. 3-Hydroxy-2-methyl-4-oxo-1-pyridineacetic
acid (L1D), which is the N-acetic acid derivative of 2, was
prepared according to literature methods,59,60 and the purity
of the compoundwas confirmed by 1H and 13CNMRspectro-
scopy. Seven carboxylic acid derivatives, adamantane-1-
carboxylic acid (AdA), 3-hydroxyadamantane-1-carboxylic acid
(AdAOH), 3,5-dimethyladamantane-1-carboxylic acid (AdAdMe),
adamantane-1-acetic acid (AdAc), 4-methylphenoxyacetic acid
(MPOAc),L1D,or4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-
benzoic acid (LDX, 3), were conjugated to 1 to yield 1-AdA (4),
1-AdAOH (5), 1-AdAdMe (6), 1-AdAc (7), 1-MPOAc (8), 1-L1D

(9), or 1-LDX (10), respectively (Figure 2). Initially, 4 was
prepared via the conjugation of 1 with NHS-activated
adamantane-1-carboxylic acid.61 A more streamlined
synthesis of 4-10 used HOBt-based, EDC-activated con-
jugation62 (Scheme 1) and the compounds were purified to
>95% using preparative RP-HPLC. Conjugation in each
of 4-10 was evident from the absence in the 1H NMR
spectra of the amine group signal (δ = 2.7 ppm) of 1 and
of the CO2H signal in each of AdA, AdAOH, AdAdMe,
AdAc,MPOAc, L1D, or 3 (δ∼11.9 ppm). Additionally, the
appearance of the signal due to the amide peak (δ ∼ 7.3
ppm) and of the signals assigned to the ancillary ligands
confirmed conjugation.

Figure 1. Schematic of the clinically used iron chelators used in
this study: desferrioxamine B, DFOB (1); deferiprone (2); defera-
sirox (3).
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Charge of 4-10 in the Absence and Presence of Fe(III) and
Fe(III)/(II) Redox Potentials.Upon the basis of the range of
the pKa values determined for the three hydroxamic acid-
based protons of DFOB (pKa 8.32-9.71)63 and that com-
pounds 4-8 have ancillary fragments with protons that will
not ionize under biologically relevant conditions (as a re-
ference point for 5, 1-adamantanol pKa = 1864), 4-8 will be
neutral at physiological pH values. While compounds 9 and
10 have ancillary fragments with ionizable protons, the pKa

values of the hydroxyl group of 2 (pKa=9.75)65,66 and of the
phenolate groups of 3 (pKa = 10.13 and 12.09)67 prescribe
that 9 and 10 will be neutral at physiological pH values.
Therefore, 4-10would be expected to be able to readily cross
cell membranes as neutral species, which is likely to be
favorable for accessing intracellular iron pools. The 1:1
complex formed between Fe(III) and the triple deprotonated
DFOB fragment of 4-8 will also be neutral. Therefore,
Fe(III)-loaded 4-8 are expected to exit the cell as neutral
complexes. Depending uponmetal:ligand stoichiometry, the
charge of Fe(III)-loaded complexes of 9 and 10may deviate

from neutral. Upon the basis of the established coordination
chemistry of Fe(III) and 268 or 3,67,69 it is likely that there will
be more than one type of Fe(III)-loaded complex formed
with 9 and 10.

The negative Fe(III)/(II) redox potentials reported for
[Fe(1(3-))]þ/0 (E1/2 -0.48 V vs NHE at pH 7.5),70,71

[Fe(2(1-))3]
0/1- (E1/2 -0.62 to -0.54 V vs NHE)72 and

[Fe(3(3-))2]
3-/4- (E1/2 -0.6 V vs NHE),69 indicate that the

Fe-loaded complexes of 4-10 will exist as redox stable
Fe(III) complexes. Thus, it is unlikely that these complexes
would engage in one-electron reduction reactions to yield the
corresponding Fe(II) complexes under physiological condi-
tions. Therefore, the possibility of the generation of ROS
from Fe(II)-based Fenton reactions is unlikely for 4-10.
This enhances the potential for these compounds as Fe(III)
chelators for iron overload rather than as iron chelators for
cancer treatment.32 The latter class of compounds, which
includes di-2-pyridyl ketone 4,4-dimethyl-3-thiosemicarba-
zone (Dp44mT), are thought to depend upon Fe(III)/(II)
redox cycling mechanisms for cytotoxicity.32,33,36,37

Scheme 1. Synthesis of 4-10

Figure 2. Schematic of the new DFOB conjugates prepared in this investigation: DFOB-AdA (4), DFOB-AdAOH (5), DFOB-AdAdMe (6),
DFOB-AdAc (7), DFOB-MPOAc (8), DFOB-L1D (9), and DFOB-LDX (10).
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Fe(III) Coordination. The Fe(III) coordination of 4-10

was examined using ESI-MS (Table 1), electronic absorption
spectroscopy, and RP-HPLC measurements. For Fe(III)-
loaded solutions of 4-7, the dominant species in the positive
ionESI-MSformulatedas theprotonated ([M- 3HþþFe3þþ
Hþ]þ) or sodiated ([M - 3Hþ þ Fe3þ þNaþ]þ) form of the
intrinsically uncharged species, [M- 3HþþFe3þ ], in which
Fe(III) was bound to the triple deprotonated 1motif. For 8,
the [M - 3Hþ þ Fe3þ þ Hþ]þ and [M - 3Hþ þ Fe3þ þ
Naþ]þ ions were present in low abundance (both ∼12%),
with themajor signal (100%) ascribed to [M- 3HþþFe3þþ
Hþ]þ 3 2NaCl 3 0.5H2O. The Fe(III):ligand ratio of 1:1 for
4-8 determined from ESI-MS measurements was also
established from Job’s plots analyses. The isotope pattern
of the signal atm/z=868.1 for Fe(III)-loaded 9 simulated as
[M- 4Hþ þ 2Fe3þ þCl-]þ ([C33H51N7O11ClFe2]

þ requires
868.9). For Fe(III)-loaded 10, the observed isotope pattern
(m/z = 1022.2) was consistent with [M - 5Hþ þ 2Fe3þ]þ

([C46H56N9O11Fe2]
þ requires 1022.7) (Figure 3). For 9 and

10, which feature pendant groups with the capacity to bind
iron, it is possible that species exist where the metal:ligand
ratio is >1. This is evident from the ESI-MS analysis,
with Fe(III):9 or 10 = 2:1, indicating that 9 and 10 could
potentially carry a greater than stoichiometric load of Fe.

Under iron saturation, Fe(III)-loaded 9 or 10 could yield
[Fe4(9(4-))3] or [Fe3(10(5-))2]

-, respectively (Figure 4). The
argument against Fe(III)-saturated complexes of 9 and 10 as
efficacious Femobilizing agents relates to the highmolecular
weights of each of these complexes, [Fe4(9(4-))3] (Mr =
2388.8 g mol-1) and [Fe3(10(5-))2]

- (Mr = 1989.6 g mol-1),
which may impede cellular efflux. Models of Fe(III)-loaded
complexes of 1-10 were built in HyperChem 7.5 using data
from X-ray crystal structures of [Fe(1(3-))]þ,17 2,5-dioxo-
pyrrolidin-1-yl adamantane-1-carboxylate,61 [Cr(2(1-))3],

73

and [Fe{(3,5-bis(2-hydroxyphenyl)-1-phenyl-1,2,4-triazole)-
(2-)}2].

69 The volumes of [Fe4(9(4-))3] (5335 Å3) and
[Fe3(10(5-))2]

- (4436 Å3) were significantly greater than
the volume of [Fe(6(3-))] (1984 Å3). The size and shape of
the Fe(III) complex may be an important structure-activity
relationship with regard to the ability of 9 and 10 to mobilize
cellular Fe, although the variable stoichiometry of Fe(III):9
or 10 complexesmakes it difficult to establish such a relation-
ship with certainty.

RP-HPLC of Compounds in the Absence and Presence of

Fe(III). All compounds were purified by preparative scale
RP-HPLC because the modest solubility of 4-10 in water or
methanol prevented purification by recrystallization or flash
chromatography. A single major peak was observed in the
analytical RP-HPLC of 4-10, which demonstrated that the
purity of the compounds was >95% (Figure 5). In the
presence of Fe(III), the values of the retention time (tr) of
the peaks attributable to Fe(III)-loaded 4-9 decrease (range
of 0.5min (6) to 2.1min (9)), which indicates that the Fe(III)-
loaded complexes are more water-soluble that the free
ligand. This is consistent with the function of bacterial
siderophores in nature to increase the aqueous solubility of
Fe(III) under aerobic conditions10 and with the decrease in
logD7.4 values for Fe(III)-loaded complexes of 1-3, relative
to the values of the respective free ligands.74

Two peaks eluted in the RP-HPLC trace of a solution of
Fe(III)-loaded 9 (tr 12.2 and 10.9 min). Analysis from RP-
HPLC-MS (positive ion mode) showed a distribution of
Fe(III)-loaded 9 species. The HPLC-MS trace from the
fraction eluting at tr = 12.2 min yielded signals at m/z:
390.32 (60), m/z 416.79 (1), 779.22 (100), and 1557.90 (5),
corresponding to [M - 3Hþ þ Fe3þ þ 2Hþ]2þ (m/zcalc
390.34), [M - 3Hþ þ 2Fe3þ - Hþ]2þ (m/zcalc 416.75), [M -
3Hþþ Fe3þþHþ]þ (m/zcalc 779.67), and [M- 4Hþþ Fe3þþ
M - Hþ þ Fe3þ]þ or [2(M - 3Hþ þ Fe3þ) þ Hþ]þ (m/zcalc
1558.34), respectively. The major Fe(III)-9 species present in
the fraction eluting at tr = 12.2 min occurred as 1:1 or 2:2
species. The HPLC-MS trace from the fraction eluting at tr
= 10.9 min yielded signals at m/z 390.32 (60), m/z 416.79
(100), 779.22 (75), 868.09 (25), and 946.04 (40). The latter
two signals were unique to the peak eluting at tr = 10.9 min
and corresponded with [M - 3Hþ þ 2Fe3þ - Hþ þ Cl-]þ

(m/zcalc 868.96) and [M - 3Hþ þ 2Fe3þ þ SO4
2- 0.5CH3-

OH]þ (m/zcalc 946.61). The three major Fe(III)-9 species
present in the peak eluting at tr = 10.9 min occurred as 2:1
species. Therefore, the HPLC-MS analysis indicated that
there was a distribution of Fe(III)-9 species present with
different Fe(III):ligand ratios with charges that may con-
tribute a distribution coefficient (logD) based effect upon the
tr values in the RP-HPLC for the two groups of species. In
support of this idea is the Job’s plot analysis for 9, which
showed diffuse isosbestic points at 260, 310, and 370 nm,

Table 1. ESI-MS Data (Positive Ion Mode) from 4-10 in the Absence and Presence of Fe(III)

Fe(III) free Fe(III) loaded

compd [M] exp calcd species exp calcd species

4 722.9 723.1 723.9 [M þ Hþ]þ 776.5 776.8 [M - 3Hþ þ Fe3þ þ Hþ]þ

745.3 745.9 [M þ Naþ]þ 798.5 798.8 [M - 3Hþ þ Fe3þ þ Naþ]þ

1467.5 1468.8 [2 M þ Naþ]þ

5 738.9 737.2 739.9 [M þ Hþ]þ 792.5 792.8 [M - 3Hþ þ Fe3þ þ Hþ]þ

814.5 814.8 [M - 3Hþ þ Fe3þ þ Naþ]þ

6 751.0 751.1 752.0 [M þ Hþ]þ 804.5 804.8 [M - 3Hþ þ Fe3þ þ Hþ]þ

826.6 826.8 [M - 3Hþ þ Fe3þ þ Naþ]þ

7 736.9 737.4 737.9 [M þ Hþ]þ 790.6 790.8 [M - 3Hþ þ Fe3þ þ Hþ]þ

759.6 759.9 [M þ Naþ]þ 812.6 812.8 [M - 3Hþ þ Fe3þ þ Naþ]þ

782.3 781.9 [M - Hþ þ 2Naþ]þ

8 708.8 710 709.8 [M þ Hþ]þ 762.3 762.7 [M - 3Hþ þ Fe3þ þ Hþ]þ

732 731.8 [M þ Naþ]þ 784.3 784.7 [M - 3Hþ þ Fe3þ þ Naþ]þ

1439.2 1440.6 [2 M þ Naþ]þ 887.2 888.6 [M - 3Hþ þ Fe3þ þ Hþ]þ 3 2NaCl 3 0.5H2O

9 725.8 727 726.8 [M þ Hþ]þ 868.1 868.9 [M - 4Hþ þ 2Fe3þ þ Cl-]þ

748.5 748.8 [M þ Naþ]þ

10 916.0 916.5 917.0 [M þ Hþ]þ 1022.2 1022.7 [M - 5Hþ þ 2Fe3þ]þ

938.7 939.0 [M þ Naþ]þ
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indicative of the presence of more than two species in
solution. A distribution of species formed between Fe(III)
and 2 has been detected within the limits of ESI-MS,68 which
further supports the presence of more than one species in
solutions of Fe(III) and 9.

For 10, there was not a clear shift in the retention time of
the peak ascribed to Fe(III)-loaded 10 compared to the free
ligand. However, Fe(III) binding was evident from the
significant change in the absorbance value of the peak of
Fe(III)-loaded 10. The absorbance value at 220 nm of an
electronic absorption spectrum from a 1:1 Fe(III):10 solu-
tion (0.1 mM) and 10 (0.1 mM) from the Job’s plot analysis
was 1.8 and 0.15, respectively. A similar fold difference in
absorbance was observed in the RP-HPLC traces of 10 in the
absence and presence of Fe(III). The phenomenon of a
change in electronic absorption spectrum but not in RP-
HPLC retention time for hydrophobic siderophores has been
reported for those derived from bacteria.75 The apex of the
major peak from a solution of Fe(III)-loaded 10 analyzed
by RP-HPLC-MS (positive-ion mode) gave a signal at

m/z = 969.29, which corresponded to [M - 3Hþ þ Fe3þ þ
Hþ]þ. The sloping front of the peak gave a signal at m/z =
1022.13, which corresponded to [M - 5Hþ þ 2Fe3þ]þ, as
observed in the ESI-MS experiments (Table 1). Therefore,
similarly to Fe(III)-loaded 9, there appeared to be a distribu-
tion of species of Fe(III)-loaded 10, which accords with
the complex pH-dependent species distribution previously
observed for 3.69

Determination of LogP Values of 4-10. The tr values for
4-10 were greater than the tr value of 1, which is congruous
with the predicted increase in the logP values of 4-10,
compared to 1. The water solubility of 1 is attributable, in
part, to the charged amine group at physiological pH values.
The charge neutrality of 4-10, in addition to the lipophilicity
inherent to the ancillary fragments (Figure 2), would expect
to yield compounds that are more lipophilic than the parent
1. Previous work has shown this to be the case for alkylated
adducts of 1.51

The logP values of 4-10 in the absence and presence of
Fe(III) were estimated using RP-HPLC (Table 2). This

Figure 3. ESI-MS (positive ion) from Fe(III)-loaded solutions of 6, 9, or 10 as experiment (A) and (B) simulated. For 6,m/z 826.6 (obs) [M-
3Hþ þ Fe3þ þ Naþ]þ requires 826.8 (calcd) [C38H63N6O9FeNa]þ. For 9, m/z 868.1 (obs) [M - 4Hþ þ 2Fe3þ þ Cl-]þ requires 868.9 (calcd)
[C33H51N7O11ClFe2]

þ. For 10, m/z 1022.2 (obsd) [M - 5Hþ þ 2Fe3þ]þ requires 1022.7 (calcd) [C46H56N9O11Fe2]
þ.
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method is valid in this case because, under the conditions
used for RP-HPLC measurements, 4-10 will be neutral and
there will be no logD contribution to the logP values. For
neutral, Fe(III)-loaded complexes of 4-8, the logP values
will also be valid, as determinable via RP-HPLC. However,
due to the non-neutral charge on Fe(III)-loaded 9 and 10,

logP values are not able to be calculated reliably using RP-
HPLC, alongside values for 1-3 and for Fe(III)-loaded 1-3.
The tr values for 4, 6-8, and 10 fell within or close to the tr
values of the four standard compounds used to generate the
regression analysis.76 For 5 and 9, the tr values fell outside the
range of the standards, which prompted parallel determina-
tions of logP values for 4-10 using the shake-flask method.
The experimentally determined logP values for 4-10 using
both RP-HPLC and shake-flask methods compared reason-
ably well (Table 2) and were also in broad agreement with
logP values calculated using Advanced Chemistry Develop-
ment Software V8.14 or for models of 4-10 that were built
using HyperChem 7.5 (Table 2).

Cellular
59
Fe Mobilization. The ability of 1-10 and

Dp44mT to mobilize intracellular 59Fe from human SK-N-
MC neuroepithelioma cells prelabeled with 59Fe-Tf was
examined (Figure 6A). The Fe metabolism of this cell type
and the effect of a variety of chelators on this cell type is well
characterized,77,78 which underscores its choice for measur-
ing Fe mobilization. The ability of 1 (logP(av) = -2.1) to
induce themobilization of intracellular 59Fe is rather modest
(12 ( 1%), relative to control medium alone (5 ( 1%;
Figure 6A). This is consistent with our previous findings
using this assaywhereDFOB 3mesylatewas unable to readily
access intracellular iron stores over short incubation
times.77,78

Of the four adamantane-1-carboxylic acid-based conju-
gates of 1, three compounds (4, 6, and 7) were effective in
increasing the mobilization of intracellular 59Fe in compar-
ison to free 1 by factors of 2.2, 3, and 2.8, respectively.
Compound 6 increased 59Fe release to an extent that was
comparable (p > 0.05) to the positive controls, 3, and
Dp44mT (Figure 6A). Compound 7 showed 59Fe mobilizing
efficacy comparable (p > 0.05) to that of 3. In contrast, 5
showed activity that was similar to control medium and was
significantly (p < 0.001) less efficient as an 59Fe mobilizing
agent than 1.

Because no major steric or electronic perturbations were
made to the 1 motif of the monofunctional 1-adamantyl
adducts 4-7, the affinities of 4-7 toward Fe(III) will
be similar to the affinity between 1 and Fe(III) (logβ110 =
30.5).16,17 These values, or the pFe(III) values (pFe(III) =

Figure 4. Models built using HyperChem 7.5 of [Fe(6(3-))], [Fe4(9(4-))3] and [Fe3(10(5-))2]
- based on data fromX-ray crystal structures of

related fragments.17,61,69,73 Hydrogen atoms have been omitted for clarity.

Figure 5. RP-HPLC traces of 1, 4, 5, 6, 9, and 10 in the absence
(black) or presence (gray) of Fe(III).
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-log[Fe(III)] when [Fe(III)]total=10-6 M and [ligand]total =
10-5M at pH 7.4; for 1, pFe(III)= 26),79 are not expected to
differ significantly among this subgroup of compounds.
Therefore, the decreased release of 59Fe mediated by 5,
compared to the 59Fe mobilization mediated by 4, 6, and 7,
suggests the efficacy of a chelator is not solely determined by
the affinity toward Fe(III). In fact, multiple factors are
involved in terms of optimal Fe chelation efficacy, as found
for other types of ligands.80

Of the remaining 1 conjugates (8, 9, and 10), 8 and 10

showed significantly (p < 0.001) greater 59Fe cellular efflux
activity than 1. The conjugate between L1D and 1 (9)
demonstrated little activity, not being significantly (p >
0.05) more active that control medium at mobilizing 59Fe
from cells. Compared to the control, the clinically used orally
active chelator, L1 (2), also showed little ability to mobilize
59Fe (Figure 6A) andwas less effective than the other positive
controls (1, 3 and Dp44mT). Previous studies using a similar
protocol have demonstrated that relatively high concentra-
tions of L1 (i.e., 0.5 mM) are necessary to induce only
moderate 59Fe mobilization from cells.81 Hence, in terms
of structure-activity relationships, conjugates between 1

and 2 do not appear optimal. The conjugate between 1 and
3 (10) showed 59Fe mobilization efficacy that was signifi-
cantly (p < 0.001) less effective than 3 alone.

An ideal iron chelating molecule for iron overload treat-
ment should have properties that allow the compound to:
(i) cross the cell membrane to access intracellular iron stores,
(ii) selectively form a redox-inactive Fe(III) complex, and
(iii) exit the cell as a stable, Fe(III)-loaded complex for
excretion.7,32 Criteria (i) and (iii) are described in part by the
charge and the partition coefficient of the free compound and
of theFe(III)-loaded complex, respectively, and criterion (ii) is
described by the thermodynamics and kinetics of Fe(III)
coordination. In the case of some of the 1 conjugates
(namely, 4, 6-8), these properties have been favorably altered
in comparison to 1. In contrast, for other conjugates such as 5
and 9, structure-activity relationships involving properties
such as relatively low logP values and/or the high molecular
weight of Fe(III)-loaded complexes may explain the hindered
membrane permeability and, thus, Fe chelation efficacy.

Inhibition of Cellular 59Fe Uptake from 59Fe-Transferrin.

The ability of 1-10 or Dp44mT to prevent the internaliza-
tion of 59Fe from 59Fe-Tf was analyzed in the human SK-N-
MC neuroepithelioma cell line (Figure 6B). Generally, these
results reflected those of the intracellular 59Fe mobilization
study (Figure 6A), demonstrating that compounds with high
59Fe mobilization efficacy were also efficient at preventing
the uptake of 59Fe from 59Fe-Tf. The ability of 1 to prevent
59Fe uptake from 59Fe-Tf was poor, inhibiting 59Fe uptake
to 87% of the control (Figure 6B), as shown in previous
studies.77,78 Of the compounds in this work, 4, 6-8, and 10

were significantly (p<0.01) more active than 1. Compound
6 was the most efficient compound, inhibiting 59Fe uptake
from 59Fe-Tf to 18 ( 2% of the untreated control. This
efficiency was significantly (p < 0.001) greater than the
positive control 3, which reduced 59Fe uptake to 39 ( 2%
of the control and was slightly less effective than the highly
potent antitumor chelator, Dp44mT, which inhibited
59Fe uptake to 12 ( 1% of the control.

In summary, examining both the Fe efflux and Fe uptake
studies (Figure 6A,B), the most effective 1 conjugates in
terms of Fe chelation efficacy were 4, 6, 7, and 10, with
activities that are at least twice that of 1.

Structure-Activity Relationship between LogP Values and
59
Fe Mobilization. A parabolic relationship is evident bet-

ween the logP values of 4-10 and the cellular efflux of 59Fe
(Figure 7A), giving an optimal logP value of 2.3 for maximal
Fe efflux. The data from 1, 2, and Dp44mT36 also fit well
onto this parabola, with data for 3 an outlier. Because the
descending parabola is described by only one data point with
a broad error margin (10), there is some uncertainty as to
whether the relationship between the logP values and 59Fe
efflux is truly parabolic. However, the ascending data is
populated by sufficient data points to claim at least a
sigmoidal relationship between 59Fe efflux and logP values
<2.3. This optimal logP value for Fe mobilization is also
supported by the parabolic, or at a minimum, sigmoidal
relationship, between logP and 59Fe uptake from 59Fe-Tf
(Figure 7B). Thus, the lipophilicity of the chelator appears to
be an important factor in determining the ability of the
ligand to mobilize cellular Fe.

Table 2. LogPValues of 1-10 in the Absence and Presence of Fe(III) as Determined fromRP-HPLC, the Shake-FlaskMethod, and from Calculation

Fe(III) free Fe(III) loaded

compd tr (min)b LogPexp
c LogPexp

d LogPcalc
e LogPcalc

f LogPav tr (min)b LogPexp
c V (Å3)

1 12.04 NCg ND -2.74 -1.45 -2.10( 0.91 10.40 NC 1470

2 NDh ND -1.02i -0.22 -0.81 -0.68( 0.41 ND ND 1155

3 25.43 NC 3.8j 6.43 5.18 5.14( 1.32 25.39 NC 1766

4 19.31 1.29 2.11 ND 1.35 1.58( 0.46 18.56 1.04 1903

5 15.39 -0.11 0.29 ND 0.11 0.10( 0.20 14.51 -0.48 1922

6 21.54 1.95 2.92 ND 2.22 2.36 ( 0.50 21.08 1.82 1984

7 19.92 1.47 2.21 ND 1.28 1.65( 0.49 19.38 1.31 2002

8 18.21 0.93 1.68 ND 0.80 1.14( 0.48 17.48 0.68 1918

9 13.04 -1.16 -1.29 ND -0.66 -1.04( 0.33 10.93 NC 5335k

12.23 NC

10 25.8 3.02 2.17 ND 4.17 3.12 ( 1.00 25.8 NC 4436l

BDMEa 20.02 ND 1.61m 1.64 1.51 1.59( 0.07 ND ND ND

BDEEa 24.09 ND 2.54m 2.70 2.19 2.48 ( 0.26 ND ND ND

NAPHa 26.99 ND 3.32 3.45 3.05 3.27( 0.20 ND ND ND

DBFNa 28.88 ND 4.04 4.12 3.11 3.76( 0.56 ND ND ND
aBDME = 1,2-benzenedicarboxylic acid 1,2-dimethyl ester; BDEE = 1,2-benzenedicarboxylic acid 1,2-diethyl ester; NAPH = naphthalene;

DBFN = dibenzofuran. b to = 1.81 min. cDetermined from RP-HPLC (multiple runs showed reproducibility; given data is from a single series of
experiments). dDetermined from shake-flask. eAs reported as calculated usingAdvancedChemistryDevelopment SoftwareV8.14.onSciFinder Scholar
Database. fCalculated frommodels built using HyperChem 7.5. gNC=not calculable. hND=not determined. iFrom ref 91. j From ref 92. kModeled
for Fe(III) saturated 9:Fe(III) = 3:4 complex (Figure 4). lModeled for Fe(III) saturated 10:Fe(III) = 2:3 complex (Figure 4). mFrom ref 93.
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Cell Viability. The ability of selected compounds from
1-10 and Dp44mT to inhibit cellular proliferation of
Madin-Darby canine kidney type II (MDCK II) cells and
human SK-N-MCneuroepithelioma cells was assessed using
the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide] (MTT) assay82 (Table 3). Compounds that are well
tolerated by cells will not affect regular cellular proliferation
or growth andwill have high IC50 (or LD50) values relative to
more cytotoxic compounds. The cell viability data using the
human SK-N-MCneuroepithelioma cell type reflects similar

trends as observed in the MDCK II cell line. Importantly, in
both cell types, all of the 1 conjugates (4-10) showed less
cytotoxicity than 1. Moreover, the most active 1 conjugates
at mobilizing 59Fe from cells and reducing cellular 59Fe
uptake from 59Fe-Tf, namely 4, 6, 7, and 10, were signifi-
cantly (p< 0.005) less cytotoxic than 1, demonstrating that
these compounds are highly tolerated and do not remove
cellular Fe pools vital for cellular proliferation. This low
antiproliferative activity is vital in the design of an iron
chelator for the treatment of iron overload. The antiproli-
ferative activity of all of the 1 conjugates are 1600 to>20000
times less effective than the known cytotoxic iron chelator,
Dp44mT (IC50 0.01 μM; Table 3).40 Hence, this analysis

Figure 6. The effect of the new DFOB conjugates (4-10) in
comparison with the clinically used chelators DFOB (1), deferi-
prone (2), deferasirox (3), or Dp44mT on: (A) cellular 59Fe released
(%) from human SK-N-MC neuroepithelioma cells prelabeled with
59Fe-transferrin (59Fe-Tf), or (B) 59Fe uptake (% of control) from
59Fe-transferrin (59Fe-Tf) by SK-N-MC neuroepithelioma cells.
Results are mean ( SD of three experiments with three determina-
tions in each experiment.

Figure 7. LogP values (average of values determined by RP-
HPLC, shake-flask, and calculation) of 1-10 and Dp44mT as a
function of (A) cellular 59Fe released (%) from human SK-N-MC
neuroepithelioma cells prelabeled with 59Fe-transferrin (59Fe-Tf) or
(B) 59Fe uptake (% of control) from 59Fe-transferrin (59Fe-Tf) by
SK-N-MC neuroepithelioma cells.

Table 3. IC50 Values (μM) of 1-10 and Dp44mT in Madin-Darby
Canine Kidney Type II (MDCK II) or in SK-N-MCNeuroepithelioma
cell types

IC50 (μM)

compd

MDCK II

canine kidney

SK-N-MC neuro-

epithelioma

1 DFOB 9.49 ( 1.24 16.04 ( 0.47

2 deferiprone NDa 165.88 ( 1.90

3 deferasirox NDa 20.54 ( 0.56

4 DFOB-AdA 118.86 ( 1.16 174.04 ( 1.61

5 DFOB-AdAOH >100 >200

6 DFOB-AdAdMe 163.37 ( 1.52 92.36 ( 1.66

7 DFOB-AdAc 225.56 ( 1.28 167.14 ( 2.82

8 DFOB-MPOAc >150 >200

9 DFOB-L1D >300 >200

10 DFOB-LDX 23.41 ( 1.53 20.62 ( 1.79

Dp44mT NDa 0.01 ( 0.01
aND = not determined.
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suggests that the 1 conjugates are more appropriate for
the treatment of iron overload disease rather than cancer.
Finally, a recent study showed a positive correlation between
the logP value and toxicity of desferrithiocin analogues.27

For 4-10, no structure-activity relationships were evident
between logP and toxicity.

Conclusions

The high solubility of 1 in water, which impacts negatively
on its biological activity, can be significantly reduced by
conjugating an ancillary fragment to the amine group of 1
without adversely affecting the Fe(III) coordinating ability of
the conjugate. This is a crucial structure-activity relationship
thatmay be useful to exploit in the future.We conjugated to 1:
(i) polycyclic-cage based compounds (adamantane-based
derivatives), which have analogues in the clinic (amantadine,
rimantadine, and memantine) that are orally active and that
are generally well-tolerated by patients, (ii) 4-methylphenoxy-
acetic acid, and (iii) a deferiprone mimic (3-hydroxy-2-
methyl-4-oxo-1-pyridineacetic acid), and deferasirox itself.
Given that the affinity toward Fe(III) will not vary signifi-
cantly among 4-8, the relatively poor Fe mobilization ability
of 5 illustrates that Fe(III) affinity is not the sole determinant
ofFe chelating efficacy.FromFeefflux andFeuptake studies,
4, 6, 7, and 10 were at least twice as active as 1 with regard to
Fe chelation efficacy andwere significantly less cytotoxic than
1, as determined using two different cell types. Therefore,
these compounds may have promise as compounds for the
treatment of iron overload disease rather than as anticancer
agents. Neurological conditions that have been associated
with transition metal ion dys-homeostasis, such as Parkin-
son’s disease, Alzheimer’s disease, and Huntington’s dis-
ease,83 or other conditions that have shown benefits from
treatment via Fe chelation, such as malaria,41,84 could also be
potentially targeted by this class of compounds.

Experimental Section

Chemical Studies. Chemicals. Desferrioxamine B 3mesylate
(DFOB, 95%), 3-hydroxy-2-methyl-4-pyrone (maltol, 99%),
glycine (>99%) adamantane-1-carboxylic acid (AdA, >99%),
3-hydroxyadamantane-1-carboxylic acid (AdAOH, 97%), 3,5-
dimethyladamantane-1-carboxylic acid (AdAdMe, 97%), ada-
mantane-1-acetic acid (AdAc, 98%), 4-methylphenoxyacetic acid
(MPOAc, 98%), N-(3-dimethylaminopropyl)-N0-ethylcarbodii-
mide 3HCl (EDC, protein sequence grade), Fe(ClO4)3 3H2O,
dimethylformamide (DMF, biotech grade), and acetonitrile
(CH3CN, biotech grade) were obtained from Sigma-Aldrich
(St. Louis, MO). 1-Octanol (99.5% GC grade) was from Fluka
(Buchs, Switzerland). N-Hydroxybenzotriazole (HOBt) was ob-
tained from Auspep (Parkville, VIC, Australia), and 4-[3,5-bis-
(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (LDX, defera-
sirox) was obtained fromAmplaChem (Carmel, IN).N,N-Diiso-
propylethylamine (DIPEA) (99%) was purchased from Lan-
caster Synthesis, Inc. (Pelham, NH), and methanol (99%) was
obtained from Mallinckrodt Chemicals (Phillipsburg, NJ). All
chemicals and solvents were used as received.

General Instrumentation. 1H Nuclear magnetic resonance
spectra were recorded using a Bruker Avance DPX 200
(Rheinstetten, Germany) at a frequency of 200.13 MHz or a
Bruker Avance DPX 300 at a frequency of 300.10 MHz.
Chemical shifts are reported as parts per million (ppm) with
DMSO-d6 (δH = 2.50) or CD3OD (δH 3.31) used as an internal
reference. 13C Nuclear magnetic resonance spectra were re-
corded using a Bruker Avance DPX 200 spectrometer at a
frequency of 50.3 MHz or a Bruker Avance DPX 300 at a
frequency of 75.5 MHz. Electron spray ionization mass spectra

(ESI-MS) were recorded using positive ionization on a Finnigan
LCQ or a Finnigan MAT 900 XL ion trap mass spectrometer
(San Jose, CA) with the following parameters. Mobile phase,
methanol; flow rate, 0.30 mL min-1; injection volume, 25 μL,
spray voltage, 4.50 kV; capillary voltage, 35 V; capillary tem-
perature, 210 �C; tube lens-offset, 10 V. Analytical thin layer
chromatography (TLC) was performed using precoated silica
gel plates (Sigma-Aldrich), which were eluted with MeOH:
CHCl3 = 1:3 and visualized using solid iodine or by dipping
the plate into an ethanolic solution of FeCl3 (60mM). Reversed-
phase high pressure liquid chromatography (RP-HPLC) used a
Waters system (Milford, MA) consisting of a GBC 1460 degas-
ser, a Rheodyne 7725i injector (analytical 20 μL loop, prepara-
tive 1700 μL loop) (Apple Valley, MN), a Waters 486 tunable
absorbance detector, and a Waters Empower 2 software with
Waters Sunfire C18 columns (particle size 5 μm, column dimen-
sion 4.6 mm � 150 mm i.d. (analytical), or particle size 5 μm,
column dimension 19 mm � 150 mm i.d. (preparative)) and a
flow rate of 0.2 mL/min (analytical) or 7.0 mL/min (prepara-
tive), with a mobile phase of water (0.1% TFA, solvent A) and
acetonitrile (0.1% TFA, solvent B). HPLC-MS was conducted
on a Thermo Separation system with a ThermoQuest Finnigan
LCQ Deca mass spectrometer (San Jose, CA, USA).

General Procedure. 3-Hydroxy-2-methyl-4-oxo-1-pyridine-
acetic acid (L1D) was synthesized according to the literature59,60

from an aqueous solution (75 mL) of glycine (30 g, 400 mmol),
maltol (12.7 g, 100mmol), andNaOH (11 g, 275mmol), whichwas
reacted at 35 �C for 5 d. The solution was acidifed with 5MHCl (4
mL) and was refrigerated for 2 h to yield a cream colored residue,
which was filtered and washed with cold water. The solid product
was redissolved in basic aqueous solution (pH 10.8) using 2 M
NaOH (20mL) andwas acidifiedwith 5MHCl (4mL) to give L1D

as a pale-white solid (3.28 g, 18%). 1H NMR (300 MHz, DMSO-
d6) δH: 7.3 (1H, s, OH), 2.1 (3H, s, CH), 1.9 (6H, s, CH2), 1.7
(6H, s, CH2).

Compounds 4-10 were prepared based upon a literature
bioconjugation method62 from a solution of DMF (10 mL)
containingAdA,AdAOH,AdAdMe, AdAc,MPOAc, L1D, or 3 (1
mmol), EDC (1.5 mmol), 1 (1 mmol), and HOBt (0.19 g, 1.5
mmol), which was heated to 45 �C. After the reagents had
dissolved, DIPEA (2 mmol) was added to the solution and the
mixture was stirred overnight at room temperature under
nitrogen. The solution was evaporated to dryness in vacuo
and the solid residue was washed with diethylether (3 mL) and
distilled water (3 mL) before redissolving the solid in methanol
and removing the solvent under reduced pressure. The progress
of all syntheses was monitored using TLC. Compounds 4-10

were not sufficiently soluble in water or methanol to enable
purification using either recrystallization or flash chromatogra-
phy and were, therefore, purified to >95% purity, using pre-
parative RP-HPLC. This level of purity was confirmed by CHN
microanalysis.

DFOB-AdA (4). The residue was triturated with diethylether
(5 � 5 mL), recrystallized from methanol and purified by
preparative RP-HPLC (90:10 (A:B) to 25:75 (A:B) over 30 min)
to give 4 as a off-white solid (0.56 g, 70%). Solubility in ethanol
(25 �C): 28mgmL-1 (∼38mM). 1HNMR(300MHz,DMSO-d6)
δH: 9.6 (2H, m, NH), 7.7 (3H, s, OH), 7.3 (1H, s, NH), 3.4 (6H, t,
J=9Hz, CH2), 3.0 (4H, q, J=6Hz, CH2), 2.6 (4H, t, J=6Hz,
CH2), 2.3 (4H, t, J = 6 Hz, CH2), 1.9 (3H, s, CH3), 1.7 (3H, s,
CH), 1.6 (12H, m, CH2), 1.1-1.5 (18H, m, CH2).

13C NMR (300
MHz, DMSO-d6) δC: 177.1, 172.3, 171.6, 47.5, 47.2, 36.5, 30.3,
29.2, 28.0, 27.9, 26.4, 23.9, 23.8, 20.7. MS:m/z ESI (positive ion).
Found [M þ Hþ]þ 723.07 (98), [M þ Naþ]þ 745.27 (100),
[C36H62N6O9Na]þ requires 745.91. MeOH (320 nm), ε = 18.27
M-1 cm-1. Anal. Calcd for C36H62N6O9: C, 59.81% H; 8.64%;
N, 11.63%. Found: C, 57.44% H; 7.50%; N, 11.15%.

DFOB-AdAOH (5). The residue was triturated with diethyl-
ether (5 � 5 mL), recrystallized from methanol and purified by
RP-HPLC (90:10 (A:B) to 25:75 (A:B) over 30 min) to give 5 as
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an off-white solid (0.45 g, 61%). Solubility in ethanol (25 �C):
15.2mgmL-1 (∼20mM). Solubility inwater (25 �C): 5mgmL-1

(∼6.5 mM). 1H NMR (300 MHz, DMSO-d6) δH: 9.6 (2H, m,
NH), 7.7 (3H, s, OH), 7.3 (1H, s, NH), 3.4 (6H, t, J = 9 Hz,
CH2), 3.2 (1H, s,OH), 3.0 (4H, q, J=6Hz,CH2), 2.6 (4H, t, J=
6Hz,CH2), 2.3 (4H, t, J=6Hz,CH2), 1.9 (3H, s, CH3), 1.7 (2H,
s, CH), 1.5-1.6 (12H, m, CH2), 1.2-1.5 (18H, m, CH2).

13C
NMR (300 MHz, DMSO-d6) δC: 176.3, 171.7, 67.0, 56.4, 47.2,
44.7, 38.2, 31.0, 30.3, 29.2, 27.9, 26.4, 23.9, 23.8, 20.7. MS: m/z
ESI (positive ion). Found [M þ Hþ]þ 737.20 (100),
[C36H63N6O10]

þ requires 739.92. MeOH (320 nm), ε = 49.74
M-1 cm-1. Anal. Calcd for C36H62N6O10: C, 58.51%H; 8.46%;
N, 11.38%. Found: C, 56.88% H; 8.21%; N, 10.92%.

DFOB-AdAdMe (6). The residue was triturated with diethyl-
ether (5 � 5 mL), recrystallized from methanol, and purified by
RP-HPLC (90:10 (A:B) to 40:60 (A:B) over 30 min) to give 6 as
an off-white solid (0.57 g, 80%). Solubility in ethanol (25 �C): 15
mg mL-1 (∼20 mM). 1H NMR (300 MHz, DMSO-d6) δH: 9.6
(2H,m,NH), 7.7 (3H, s, OH), 7.3 (1H, s, NH), 3.4 (6H, t, J=15
Hz, CH2), 3.0 (4H, q, J = 6 Hz, CH2), 2.6 (4H, t, J = 9 Hz,
CH2), 2.3 (4H, t, J = 6 Hz, CH2), 1.9 (3H, s, CH3), 1.6-1.1
(31H, m, CH2, CH), 0.8 (6H, s, CH3).

13C NMR (300 MHz, d6-
DMSO) δC: 176.8, 172.3, 171.7, 50.7, 45.4, 42.8, 37.8, 31.1, 28.2,
27.9, 26.4, 23.9, 23.8, 20.7. MS: m/z ESI (positive ion). Found
[M þ Hþ]þ 751.13 (100), [C38H67N6O9]

þ requires 751.98.
MeOH (320 nm), ε=32.17M-1 cm-1. Anal. Calcd for C38H66-
N6O9: C, 60.77% H; 8.86%; N, 11.19%. Found: C, 58.85% H;
8.04%; N, 10.71%.

DFOB-AdAc (7).The residue was triturated with diethylether
(5 � 5 mL), recrystallized from methanol, and purified by RP-
HPLC (90:10 (A:B) to 25:75 (A:B) over 30 min) to give 7 as an
off-white solid (0.55 g, 80%). Solubility in ethanol (25 �C): 15mg
mL-1 (∼20 mM). 1H NMR (300 MHz, DMSO-d6) δH: 9.6 (2H,
m, NH), 7.7 (3H, s, OH), 7.3 (1H, s, NH), 3.4 (6H, t, J= 6 Hz,
CH2), 3.0 (4H, q, J=6Hz, CH2), 2.6 (4H, t, J=6Hz, CH2), 2.3
(4H, t, J = 6 Hz, CH2), 1.9 (3H, s, CH3), 1.8 (2H, s, CH2), 1.7
(3H, s, CH), 1.5-1.6 (12H, m, CH2), 1.0-1.5 (18H, m, CH2).
13C NMR (300 MHz, d6-DMSO) δC: 171.6, 170.1, 50.4, 42.5,
36.8, 30.2, 29.2, 28.4, 27.9, 26.4, 23.9, 20.7. MS: m/z ESI
(positive ion). Found [M þ Hþ]þ 737.44 (100), [C37H65N6O9]

þ

requires 737.95. MeOH (320 nm), ε = 16.53 M-1 cm-1. Anal.
Calcd for C37H64N6O9: C, 60.30% H; 8.75%; N, 11.41%.
Found: C, 58.37% H; 8.53%; N, 11.72%.

DFOB-MPOAc (8). The residue was triturated with diethyl-
ether (5 � 5 mL), recrystallized from methanol, and purified by
RP-HPLC (90:10 (A:B) to 40:60 (A:B) over 30 min) to give 8 as
an off-white solid (0.23 g, 73%). 1H NMR (200 MHz, DMSO-
d6) δH: 7.1 (2H, d, J=7.1Hz, CH), 6.8 (2H, d, J=7.0Hz, CH),
4.4 (2H, s, CH2), 3.5 (6H, t, J=6.8Hz, CH2), 3.0 (4H, m, CH2),
2.5 (4H, m, CH2), 2.3 (4H, m, CH2), 2.2 (3H, s, CH3), 1.9 (3H, s,
CH3), 1.3-1.5 (12H, m, CH2), 1.2 (6H,m, CH2).

13CNMR (200
MHz,DMSO-d6) δC: 21.1, 21.4, 24.5, 27.1, 28.5, 29.8, 31.0, 47.8,
48.2, 68.2, 115.6, 130.8, 156.7, 168.6, 172.3, 173.0. MS: m/z ESI
(positive ion). Found [M þ Naþ]þ 731.7 (100), [C34H56N6-
O10Na]þ requires 731.40. MeOH (320 nm), ε = 101.63 M-1

cm-1. Anal. Calcd for C34H56N6O10: C, 57.61% H; 7.96%; N,
11.86%. Found: C, 56.60% H; 7.31%; N, 11.73%.

DFOB-L1D (9). The residue was triturated with diethylether
(5 � 5 mL), recrystallized from methanol, and purified by RP-
HPLC (95:5 (A:B) to 40:60 (A:B) over 30min) to give 9 as a very
pale-pink solid (0.11 g, 70%). 1HNMR (300MHz, CD3OD) δH:
8.2 (1H, d, J = 7.0 Hz, CH), 7.2 (1H, d, J = 7.0 Hz, CH), 5.2
(2H, s, CH2), 3.6 (6H, t, J=5.6Hz, CH2), 3.2 (4H, t, J=6.9Hz,
CH2), 2.8 (4H, t, J=6.8Hz, CH2), 2.5 (4H, t, J=7.0Hz, CH2),
2.1 (3H, s, CH3), 1.5-1.7 (12H, m, CH2), 1.3-1.4 (6H,m, CH2),
(OH not observed). 13C NMR (300 MHz, CD3OD) δC: 19.2,
23.9, 26.2, 26.3, 27.9, 28.8, 28.9, 30.4, 39.3, 39.7, 48.9, 58.0,
113.1, 139.8, 142.8, 143.9, 159.7, 165.6, 172.5, 173.5, 173.9. MS:
m/z ESI (positive ion). Found [M þ Hþ]þ 726.6 (65), [M þ
Naþ]þ 748.7 (100), [C46H61N9O11Na]þ requires 748.8. MeOH

(320 nm), ε = 99.6 M-1 cm-1. Anal. Calcd for
C33H55N7O11 3 2H2O: C, 52.02%H; 7.81%; N, 12.87%. Found:
C, 49.69% H; 6.42%; N, 11.93%.

DFOB-LDX (10).The residue was triturated with diethylether
(5 � 5 mL), recrystallized from methanol, and purified by RP-
HPLC (95:5 (A:B) to 45:55 (A:B) over 30 min) to give 10 as an
off-white solid (0.14 g, 65%). 1HNMR (200MHz, CD3OD) δH:
8.2 (2H, d, J = 6.9 Hz, CH), 7.9 (2H, d, J = 6.5 Hz, CH), 7.6
(2H, d, J=6.8Hz, CH), 7.4 (2H,m, CH), 6.9-7.0 (4H,m, CH),
3.6 (6H, t, J=6.8Hz,CH2), 3.2 (4H,m,CH2), 2.8 (4H,m,CH2),
2.4 (4H, m, CH2), 2.1 (3H, s, CH3), 1.6-1.7 (8H, m, CH2), 1.5
(4H, m, CH2), 1.3 (6H, m, CH2), (OH not observed). 13C NMR
(200 MHz, CD3OD) δC: 19.2, 23.7, 23.9, 26.3, 27.9, 29.0, 30.5,
39.2, 39.9, 44.7, 116.3, 119.6, 119.8, 123.8, 127.2, 128.3, 130.9,
131.4, 133.5, 141.5, 157.2, 160.1, 173.2, 173.5. MS: m/z ESI
(positive ion). Found [M þHþ]þ 916.5 (85), [M þNaþ]þ 938.7
(100), [C46H61N9O11Na]þ requires 939.03.MeOH (320 nm), ε=
3.127 � 103 M-1 cm-1. Anal. Calcd for C46H61N9O11: C,
60.31% H; 6.91%; N, 13.76%. Found: C, 59.40% H; 5.63%;
N, 13.38%.

Extinction Coefficients and Job’s Plot Analysis. A plot of
absorbance/path length (cm-1) at 320 nm vs concentration (M)
in methanol of 4-10 was measured using a SpectraMax
M5/M5e UV-vis (Molecular Devices, Sunnyvale, CA) and the
slope of the line determined as ε (M-1 cm-1). Job’s Plots
analyseswere carried out for 4-10, as detailed in the literature,85

with compounds (0.1 mM) dissolved in a solution of 20% (v/v)
MeOH in Tris 3HCl (100 mM, pH 7.4) and the pH value of the
solution adjusted to pH 7.4 prior to making the solution to
volume.A stock solution of Fe(III) (0.1mM)was prepared from
FeCl3 3 6H2O in a similar fashion to the compounds (20% v/v
MeOH in 100 mM Tris, pH 7.4). Molar ratios of Fe:compound
were 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, with 0
containing no iron and 1 containing no ligand.All samples had a
final concentration ([Fe(III)]þ [ligand]) of 0.1 mM and electro-
nic absorption spectra were acquired from 200 to 800 nm, with
the absorbance value of 450 nm absorbance used to construct
the Job’s plot.

Fe(III)-Loading of 4-10 for ESI-MS and RP-HPLC. An
aliquot of a freshly prepared methanolic solution of
FeCl3 3 6H2O (100 μL of 10 mM) was added to an aliquot
(100 μL of 10 mM) of 4-8 in methanol. For 9 and 10, the
volume ratio of FeCl3 3 6H2O:compound was 150:50 μL.

Partition Coefficients. Analytical RP-HPLC was used to
estimate the log of the partition coefficients (logP) of 4-10.
Samples (5 mM) of 4-10 in MeOH (HPLC grade) were filtered
(0.22 μm) and analyzed by analytical RP-HPLC, together with a
set of compounds with known logP values (1,2-benzenedicarbo-
xylic acid dimethylester (logP=1.59), 1,2-benzenedicarboxylic
acid diethylester (logP = 2.48), naphthalene (logP = 3.27), and
dibenzofuran (logP = 3.76)). The capacity factor (k) was deter-
mined for the samples using eq1,where tr was the retention timeof
the compound and towas the deadtime (to=1.81min). The log of
the partition coefficient (logP) was calculated according to eq 2.76

k ¼ ðtr -toÞ=to (1Þ

log k ¼ aþ blog P (2Þ
Partition coefficients were also determined using the shake-

flask method with presaturated 1-octanol and water solutions
as follows.An aliquot (1mL) ofwaterwas added to an aliquot of
1-octanol containing dissolved 4-10 (1 or 2 mg) in a glass vial,
and themixturewas shaken overnight atRT.Aliquots (20μL) of
each phase were analyzed by analytical RP-HPLC using the
conditions described above.

Molecular Modeling. Models were built in HyperChem 7.5
using data from X-ray crystal structures of [Fe(1(3-))]þ,17 2,5-
dioxopyrrolidin-1-yl adamantane-1-carboxylate,61 [Cr(2(1-))3],

73

and [Fe{(3,5-bis(2-hydroxyphenyl)-1-phenyl-1,2,4-triazole)(2-)}2].
69

The structure of the organic ancillary fragment was minimized
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using the Polak-Ribiere algorithm and the MMþ force field
and the structure of the Fe(III)-loaded ligand was frozen. No
conformational searching procedure was used.

Biological Studies. Cell Culture. The human SK-N-MC neu-
roepithelioma and Madin-Darby canine kidney type II
(MDCK II) cell lines were obtained from the American Type
Culture Collection (ATCC;Manassas, VA). The SK-N-MC cell
type was grown as described previously,77 while MDCK II cells
were cultured by standard procedures.86

59Fe-Transferrin Labeling. Human transferrin (Tf) was la-
beled with 59Fe (Dupont NEN, MA) to produced 59Fe2-Tf
(59Fe-Tf), as previously described.87,88

59Fe Efflux from SK-N-MCNeuroepithelioma Cells. Efflux of
59Fe from SK-N-MC neuroepithelioma cells were measured for
1-10 and for Dp44mT at concentrations of 50 μM using
established techniques.38,77,89 Briefly, following prelabeling of
cells with 59Fe-Tf (0.75 μM) for 3 h at 37 �C, the cell cultures
werewashed four timeswith ice-cold PBS and then subsequently
incubated with each chelator (50 μM) for 3 h at 37 �C. The
overlying media containing released 59Fe was then separated
from the cells using a Pasteur pipet. Radioactivity wasmeasured
in both the cell pellet and supernatant using a γ-scintillation
counter (WallacWizard 3, Turku, Finland). In these studies, the
new ligands were compared to the previously characterized
chelators, 1, 2, 3, and Dp44mT.

Effect of 1-10 at Preventing 59Fe Uptake from Transferrin by

SK-N-MC Neuroepithelioma Cells. The uptake of 59Fe from
59Fe-labeled transferrin was measured for 1-10 and for
Dp44mT at concentrations of 50 μMin SK-N-MCneuroepithe-
lioma cells using standard techniques.38,77,89 Briefly, cells were
incubated with 59Fe-Tf (0.75 μM) for 3 h at 37 �C in the presence
of each of the chelators (50μM). The cells were thenwashed four
times with ice-cold PBS and internalized 59Fewas determined by
standard techniques by incubating the cell monolayer for 30min
at 4 �Cwith the general protease Pronase (1mg/mL; Sigma).87,88

The cells were removed from the monolayer using a plastic
spatula and centrifuged for 1min at 14000 rpm. The supernatant
represents membrane-bound, Pronase-sensitive 59Fe that was
released by the protease, while the Pronase-insensitive fraction
represents internalized 59Fe. The new ligands were compared to
the previously characterized chelators, 1, 2, 3, and Dp44mT.

Effect of 1-10 on Cell Viability. This was examined in
Madin-Darby canine kidney type II (MDCK II) cells and in
human SK-N-MC neuroepithelioma cells using the MTT assay
by standard methods.77,82,90 MTT color formation was directly
proportional to the number of viable cells measured by Trypan
blue staining (SK-N-MC)77 or total cell protein (MDCK II).86

Statistical Analysis. Experimental data were compared using
Student’s t-test. Results were expressed as mean or mean ( SD
(number of experiments) and considered to be statistically
significant when p < 0.05.
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Comparing the potential renal protective activity of desferrioxamine B and the 

novel chelator desferrioxamine B-N-(3-hydroxyadamant-1-yl)carboxamide in a cell 

model of myoglobinuria 

Der Vergleich der Wirkung von Desferrioxamin B und dem neuen Eisenchelator 

Desferrioxamin B-N-(3-hydroxyadamant-1-yl)carboxamid zum Schutz der Niere 

in einem in vitro-Modell von Myoglobinurie 

 DOI: 10.1042/BJ20101728 
 

4.1 Abstract (German Translation) 

Die Akkumulation von Mb (Myoglobin) in der Niere als Folge schwerer Verbrennung 

fördert oxidativen Schaden und Entzündung, was zu akutem Nierenversagen führt. Die 

Vermutung, dass Häm-Eisen oxidativen Schaden verursacht, hat dazu geführt, Eisen-

chelatoren [z.B. DFOB (desferrioxamin B)] auf ihre Wirkung zu testen, die Niere vor 

diesem Schaden zu schützen. Es wurde die Eigenschaft von DFOB und einem DFOB-

Derivat {DFOB-AdAOH [DFOB-N-(3-hydroxyadamant-1-yl)carboxamid]} verglichen, 

Nierenepithelzellen vor Mb zu schützen. Epithelzellen aus dem Nierentubulus wurden 

mit Dihydrorhodamin-123 geladen und mit 100 μM Mb inkubiert. Mb erhöhte die Rho-

damin-123-Fluoreszenz im Vergleich zur Kontrolle (kein Mb), was auf erhöhten oxida-

tiven Stress hindeutet. Extrazelluläres Mb führte zu einer Reorganisation des Transfer-

rinrezeptors, was durch Verwendung von markiertem Transferrin und mit Hilfe der 

Durchflusszytometrie und Fluoreszensmikroskopie gezeigt werden konnte. Mb stimu-

lierte die Genexpression von HO-1 (Hämoxygenase-1), TNFα (Tumornekrosefaktor α), 

und sowohl ICAM (intrazelluläres Adhäsionsmolekül) als auch VCAM (vaskuläres Ad-

häsionsmolekül) und verringerte die Permeabilität von einschichtigem Epithel. Die In-

kubation mit DFOB oder DFOB-AdAOH verminderte die Mb-vermittelte Rhodamine-

123-Fluoreszenz, Genexpression von HO-1, ICAM und TNFα und stellte die Permea-

bilität des einschichtigen Epithels wieder her. Die Sekretion des entzündungsfördernen 

Chemokins MCP-1 erhöhte sich in Zellen, die Mb ausgesetzt waren und dies wurde von 

http://www.biochemj.org/bj/435/0669/4350669.pdf
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DFOB und DFOB-AdAOH aufgehoben. Zellen, die nur mit DFOB oder DFOB-AdAOH 

behandelt wurden zeigten keine Veränderung in der Permeabilität, MCP-1-Sekretion 

oder Genexpression von HO-1, TNFα, ICAM oder VCAM. Ähnlich wie bei DFOB 

konnten nach Inkubation von DFOB-AdAOH mit Mb und H2O2 mittels EPR-Spektro-

skopie Nitroxidradikale ermittelt werden, was auf eine potentielle antioxidative Aktivi-

tät zusätzlich zur Eisenchelation hindeutet: mit Fe(III) geladenes DFOB-AdAOH zeigte 

keine Formation eines Nitroxidradikals. Zusammengefasst verringerten die Chelatoren 

Mb-induzierten oxidativen Stress, hemmten Entzündungsprozesse und verbesserten die 

Funktion von Epithelzellen. DFOB-AdAOH zeigte ähnliche Eigenschaften wie DFOB, 

womit dieser neue, geringtoxische Chelator die Niere vor akutem Nierenversagen nach 

Verbrennungen schützen könnte. 
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Comparing the potential renal protective activity of desferrioxamine B and
the novel chelator desferrioxamine B-N-(3-hydroxyadamant-1-yl)
carboxamide in a cell model of myoglobinuria
Ludwig K. GROEBLER*, Joe LIU†, Anu SHANU*, Rachel CODD† and Paul K. WITTING*1

*Discipline of Pathology, Redox Biology Group and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia, and †Discipline of Pharmacology and Bosch Institute,
The University of Sydney, Sydney, NSW 2006, Australia

Accumulating Mb (myoglobin) in the kidney following severe
burns promotes oxidative damage and inflammation, which leads
to acute renal failure. The potential for haem–iron to induce
oxidative damage has prompted testing of iron chelators [e.g.
DFOB (desferrioxamine B)] as renal protective agents. We
compared the ability of DFOB and a DFOB-derivative {DFOB-
AdAOH [DFOB-N-(3-hydroxyadamant-1-yl)carboxamide]} to
protect renal epithelial cells from Mb insult. Loading kidney-
tubule epithelial cells with dihydrorhodamine-123 before
exposure to 100 μM Mb increased rhodamine-123 fluorescence
relative to controls (absence of Mb), indicating increased
oxidative stress. Extracellular Mb elicited a reorganization of
the transferrin receptor as assessed by monitoring labelled
transferrin uptake with flow cytometry and inverted fluorescence
microscopy. Mb stimulated HO-1 (haem oxygenase-1), TNFα
(tumour necrosis factor α), and both ICAM (intercellular adhesion
molecule) and VCAM (vascular cell adhesion molecule) gene
expression and inhibited epithelial monolayer permeability.
Pre-treatment with DFOB or DFOB-AdAOH decreased Mb-

mediated rhodamine-123 fluorescence, HO-1, ICAM and TNFα
gene expression and restored monolayer permeability. MCP-1
(monocyte chemotactic protein 1) secretion increased in cells
exposed to Mb-insult and this was abrogated by DFOB or
DFOB-AdAOH. Cells treated with DFOB or DFOB-AdAOH alone
showed no change in permeability, MCP-1 secretion or HO-1,
TNFα, ICAM or VCAM gene expression. Similarly to DFOB,
incubation of DFOB-AdAOH with Mb plus H2O2 yielded nitroxide
radicals as detected by EPR spectroscopy, indicating a potential
antioxidant activity in addition to metal chelation; Fe(III)-loaded
DFOB-AdAOH showed no nitroxide radical formation. Overall, the
chelators inhibited Mb-induced oxidative stress and inflammation
and improved epithelial cell function. DFOB-AdAOH showed
similar activity to DFOB, indicating that this novel low-toxicity
chelator may protect the kidney after severe burns.

Key words: acute renal failure, antioxidant, burn, metal chelation
therapy, myoglobinuria, oxidative stress.

INTRODUCTION

In the event of skeletal muscle breakdown, which occurs
subsequent to severe burns, the affected muscle mass can undergo
a process termed RM (rhabdomyolysis) [1]. This leads to the re-
lease of toxic factors including skeletal Mb (myoglobin) into the
circulation, where the protein is rapidly cleared and accumulates
in the kidney (termed myoglobinuria) [2]. Myoglobinuria has been
linked to ARF (acute renal failure) [3], and research in this field
has demonstrated that accumulating Mb promotes both oxidative
damage [4] and inflammation [5] within the kidney. Although the
proportion of burns patients developing ARF is relatively low,
mortality rates for these patients consistently remain above 80 %
[6]. Therefore development of therapeutic strategies to limit the
extent of ARF following severe burns would be advantageous.

The molecular mechanisms that underlie Mb toxicity have
been studied previously and include renal vasoconstriction,
intraluminal cast formation and haem-induced cytotoxicity [7]. It
is not clear whether renal tubular cast formation is causally related
or rather a consequence of the pathology associated with ARF
[8]. In addition, degradation of the accumulating Mb probably
results in the release of free haem and its catabolism by HOs
(haem oxygenases) [9] coupled with release of iron and carbon

monoxide [10] and the concomitant formation of the antioxidant
bilirubin [11]. Accumulating ferrous iron (Fe2 + ) can generate
hydroxyl radicals via the Fenton reaction, which can then damage
cellular targets, including lipids, protein and DNA, and contribute
to enhanced oxidative stress [12].

Several studies have also linked oxidative stress and
inflammatory responses in renal tissues and cells following RM
[13,14]. The potential for iron to be involved in these responses
has prompted research aimed at testing whether iron chelators
such as DFOB (desferrioxamine B) can provide protection for
renal tissues. For example, DFOB provides renal protection in
an animal model of RM [15,16], indicating that the supplemented
chelator preserves kidney function in the presence of extracellular
Mb. Studies in cell models also implicate DFOB in preserving
mitochondrial function in renal cells [17], although this may not
be due to iron chelation alone, since DFOB also inhibits Mb pro-
oxidative activity [18]. However, the corresponding therapeutic
drug Desferal® is limited by its hydrophilic nature and short
plasma half-life [19], low oral activity [20], an inability to cross
cell membranes and modest nephrotoxicity [21]. Other orally
available chelating agents are not as effective as DFOB in the
primary goal of sequestering iron and show adverse side effects
or increased nephrotoxicity [22,23].

Abbreviations used: ARF, acute renal failure; CCL2, CC chemokine ligand 2; DFOB, desferrioxamine B; DFOB-AdAOH, DFOB-N-(3-hydroxyadamant-1-
yl)carboxamide; DHR-123, dihydrorhodamine-123; HO, haem oxygenase; HRP, horseradish peroxidase; ICAM, intercellular adhesion molecule; MCP-1,
monocyte chemotactic protein 1; MDCK II cell, Madin–Darby canine kidney II cell; Mb, myoglobin; NF-κB, nuclear factor κB; R-123, rhodamine-123; RM,
rhabdomyolysis; ROS, reactive oxygen species; RT, reverse transcription; TNFα, tumour necrosis factor α; VCAM, vascular cell adhesion molecule.
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Figure 1 Chemical structures of the therapeutic iron chelator DFOB (1) and
DFOB-AdAOH (2)

Arrows indicate the hydroxamic acid moiety adjacent to the terminal amine group in each
compound.

Recently, a number of lipophilic low toxicity iron-chelating
compounds were synthesized by conjugating DFOB to adamantyl
derivatives [24]. Characteristically, these compounds showed
similar iron-chelating properties to DFOB, but with decreased
cytotoxicity towards cultured renal epithelial cells. Notably, in
terms of toxicity, the conjugates of DFOB exhibit 6–15-fold
greater IC50 values than DFOB under the same culture conditions
[24]. The conjugates also exhibited subtle differences in their
ability to efflux iron from cells, suggesting that structural elements
and/or physical properties modulate their uptake and secretion
from different cell types. It is envisaged that this novel class of
iron chelator may potentially overcome the selected therapeutic
limitations of Desferal® and show improved renal tolerance, as
well as still maintaining a high iron-binding efficacy.

In the present study, we compared the ability of DFOB-
AdAOH [DFOB-N-(3-hydroxyadamant-1-yl)carboxamide; struc-
ture shown in Figure 1] and its parent compound DFOB to protect
cultured kidney epithelial cells in an established cell model of RM
that mimics urinary Mb levels detected in severe electrical-burn-
induced muscle myolysis [25].

EXPERIMENTAL

Materials

Chemicals were of the highest quality available. DFOB mesylate
(95%) and cell culture materials were from Sigma–Aldrich. The
DFOB–adamantane conjugate DFOB-AdAOH was synthesized
and purified by HPLC as described previously [24]. Chelators
were analytically pure as defined by HPLC. Fresh stock solutions
of DFOB and DFOB-AdAOH (final concentration 1 mM) were
prepared in DMSO. Experiments were carried out with chelators
present at a final concentration 100 μM, as this was within the
IC50 toxic level for each agent [24].

Cell culture

Kidney epithelial cells [MDCK II (Madin–Darby canine kidney
II); A.T.C.C.] were cultured as described previously [25]. Plates
of cells were randomly allocated for control or iron chelator
pre-treatment. Cells were washed twice in PBS (pH 7.4) and
treated with vehicle (DMSO, control) or 100 μM iron chelator
diluted in HPSS (Hepes-buffered physiological salt solution;
22 mM Hepes, pH 7.4, 124 mM NaCl, 5 mM KCl, 1 mM MgCl2,
1.5 mM CaCl2, 0.16 mM H3PO4, 5 mM NaHCO3 and 5.6 mM
D-glucose). After 2 h at 37 ◦C, cells were washed and then
treated with 100 μM Mb or vehicle (as a control). In rats

with glycerol-induced ARF, urinary Mb can reach ∼2 mM
[26]. However, despite significant myolysis of skeletal muscle
in cases of severe electrical burns, urinary Mb is only within
the range of ∼50–60 μM [25]. Therefore in the present study
we chose to employ a dose of 100 μM Mb as an insult
to the cultured epithelial cells to mimic the renal pathology
induced by severe burns. Under these conditions, cell viability
in control and Mb-treated cells remained unchanged after 24 h
[25] and this time point was judged as suitable to make the bio-
chemical and molecular comparisons described below.

Cell model of RM

Equine heart ferric Mb (Sigma) was used to establish the cell
model of RM. Mb solutions were freshly prepared in PBS,
sterilized by passage through 0.2 μm pore-size filters (Millipore)
and then standardized using ε409 = 188 mM− 1·cm− 1 [27]. All
solutions prepared in this way displayed a Soret band at 409 nm
assigned as ferric haem with no other absorbance in the range
410–425 nm, indicative of the absence of ferrous-oxy-Mb. The
stock solution of Mb was then diluted in culture medium to a final
concentration of 100 μM for use in cell studies. After 24 h, cells
were washed twice with PBS and harvested for the assays outlined
below. Where required, cells were harvested with 0.1% trypsin
and pellets were isolated by centrifugation (358 g for 4 min, 4 ◦C).

Oxidative stress response

To determine oxidative stress during experimental RM, cells were
pre-treated with iron chelator or vehicle alone and incubated
with Mb for 24 h as described above. Prior to harvest (∼4 h),
cells were exposed to 50 μg/ml non-fluorescent DHR-123
(dihydrorhodamine-123; Invitrogen). In some experiments, Mb
was removed prior to incubation with DHR-123. Oxidation
of DHR-123 yields the fluorescent product R-123 (rhodamine-
123). The cellular probe DHR-123 reacts non-specifically with
intracellular ROS (reactive oxygen species) in a reaction mediated
by peroxidase, cytochrome c or Fe2 + and thus is a useful
fluorigenic probe for detecting enhanced oxidative stress in cells
and tissues [28]. Mean fluorescence intensity was measured by
flow cytometry (FACSCalibur; BD Biosciences) with excitation at
488 nm and emission at 540 nm. For each experiment conducted,
10000 events were recorded before assessment of the data using
standard FACSCalibur software.

Gene regulation

Isolation of total mRNA and assessment of gene regulation was
determined by quantitative real-time RT (reverse transcription)–
PCR. Briefly, MDCK II cells were lysed and total RNA was
isolated with a commercial kit according to the manufacturer’s
instructions (GenElute; Sigma). Equal amounts (1 μg) of RNA
were primed with oligo(dT)15 primers and reverse-transcribed
using a cDNA synthesis kit (Bioline). Amplification of cDNA
was performed in a total volume of 15 μl of SYBR Green I
Mastermix (Quantace; Bioline) containing appropriate primers
using a Roche LightCycler 480. After initial denaturation (95 ◦C
for 10 min), 40 PCR cycles were performed using the following
conditions: 95 ◦C, 15 s; 60 ◦C, 15 s; and 72 ◦C, 15 s followed by
a melt-step (55–95 ◦C). Primer pairs used for the assessment of
β-actin, HO-1, TNFα (tumour necrosis factor α), NF-κB (nuclear
factor κB), VCAM-1 (vascular cell adhesion molecule 1) and
ICAM-1 (intercellular adhesion molecule 1) levels are shown in
Table 1. Relative gene expression was assessed using the second
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Table 1 Forward and reverse primer sequences used in gene analysis

Primers were obtained from Sigma and diluted to 10 μM before use. Annealing temperature
was 60◦C for all primer sets employed.

Gene Sense Anti-sense

β-Actin 5′-AGCCATGTACGTAGCCATCC-3′ 5′-CTCTCAGCTGTGGTGGTGAA-3′

HO-1 5′-GCGTCGACTTCTTCACCTTC-3′ 5′-GGTCCTCAGTGTCCTTGCTC-3′

TNFα 5′-GAGCCGACGTGCCAATG-3′ 5′-CAACCCATCTGACGGCACTA-3′

NF-κB 5′-AACCCGTAGTGTCAGATGCC-3′ 5′-GGACGAACACAGAGGTTGGT-3′

VCAM-1 5′-CAACTGAGTGGCCCCCTAG-3′ 5′-GAGATCATTGCCATTCAGCA-3′

ICAM-1 5′-AGAGAGGCTGCACTCCACAG-3′ 5′-GCTCACTCAGGGTCAGGTTG-3′

derivative maximum method and normalized to the corresponding
β-actin response for the same sample. Gene expression in the
control sample was arbitrarily assigned a unitary value and gene
response was expressed as a fold change relative to the control.

Endocytosis of fluorescently labelled transferrin

Preparations of MDCK II cells were supplemented with 100 μM
iron chelator or vehicle (DMSO) alone and then either exposed
to Mb or vehicle (PBS) as indicated in the Figure legends. After
24 h, the cells were harvested and the cell pellets that were either
exposed to Mb treatment or not (control) were resuspended in 1 ml
of PBS and treated with transferrin conjugated to Alexa Fluor®

488 (5 μg/ml; Invitrogen). After 15 min, the cells were analysed
by flow cytometry (FACSCalibur; BD Biosciences) as described
previously [29].

In separate experiments, cells were grown on to sterile
coverslips, treated as described above and then washed with 0.2 M
acetic acid containing 0.5 M NaCl (pH 2.8), then fixed in 4%
(w/v) paraformaldehyde (pH 7.5) for 15 min at 20 ◦C. Coverslips
were then mounted with Fluorescent Mounting Medium (Dako)
and examined with an inverted fluorescent microscope using
identical microscope settings (Axiovert 200; Zeiss) and then saved
as tagged image files for further manipulation (AxioVision v4.5;
Carl Zeiss).

Evaluation of monolayer permeability

Cells were seeded (1 × 105 cells/ml) on to six-well, 0.4 μm
pore size, transparent transwells (Greiner) and cultured to
90% confluence. Following supplementation with 100 μM iron
chelator or vehicle alone, cells were exposed to 100 μM Mb
or vehicle as a further control (to assess the impact of the
chelators alone on monolayer permeability). After 24 h, cells
were treated with 2.5 μCi of [3H]inulin/ml of complete medium
(Sigma) and the amount of [3H]inulin present in the upper or lower
chamber was assayed with a scintillation counter (Packard-Bell)
as described previously [25]. Finally, monolayer permeability
was expressed as a percentage of [3H]inulin passing through the
monolayer of cells.

Expression of MCP-1 (monocyte chemotactic protein 1)

For quantitative determination of CCL2 (CC chemokine ligand
2)/MCP1, adherent cells were pre-treated with iron chelator or
vehicle alone and incubated in the presence or absence of Mb as
described above. After 24 h of incubation, samples of cell culture
medium were taken and analysed using an AlphaLISA assay
(PerkinElmer). Briefly, cell supernatants were centrifuged, diluted
and incubated with anti-m/rCCL2/MCP-1 acceptor beads and
the corresponding biotinylated antibody anti-m/rCCL2/MCP-1

for 60 min. Then, streptavidin donor beads were added and the
absorbance was measured after a 30 min incubation on an Enspire
plate reader (PerkinElmer).

Oxidation of chelators DFOB and DFOB-AdAOH by peroxidases

Solutions of the individual chelators (final concentration 500 μM)
were incubated with either 250 μM HRP (horseradish peroxidase,
Sigma) or Mb (Sigma), dissolved in phosphate buffer (50 mM
phosphate, pH 7.4) and oxidation was initiated by the addition
of 500 μM H2O2 or buffer (as a negative control). Mixing the
chelator with 500 μM H2O2 alone served as a further control.
After a 5 min incubation at 20 ◦C, a sample of the reaction
mixture was taken and transferred into a quartz flat cell (Wilmad)
for measurement with a Bruker EMX EPR spectrometer at
293 K; with parameters of: power 100 mW, microwave frequency
9.8 GHz, modulation amplitude 1 mT and sweep 84 s. EPR spectra
were recorded as an average of four cumulative scans. Hyperfine
couplings were obtained by spectral simulation using the simplex
algorithm [30] provided in the WINSIM program (http://www.
niehs.nih.gov/research/resources/software/tools/index.cfm). All
hyperfine couplings are expressed in units of mT. Simulations
were considered acceptable if they produced correlation factors
of R = 0.98. The detection limit of the stable nitroxide (TEMPO)
radical was ∼50 nM. The remaining sample was frozen for
analysis by reversed-phase HPLC with DFOB and DFOB-AdAOH

eluting at ∼10 and 13 min respectively, as described previously
[24]. Where required, Fe(III) was added to DFOB-AdAOH at
a 1:1 molar ratio and the Fe(III)–DFOB-AdAOH complex was
purified by HPLC as described previously [24]. The purified
Fe(III) complex was verified by ESI-MS yielding a molecular
mass of 792.5 Da (spray voltage 4.5kV, capillary voltage 35V,
carrier N2 gas) and was used in further EPR studies to assess the
impact of iron loading on nitroxide radical formation.

Statistical analyses

Statistical analyses were performed with Prism (GraphPad).
Results are presented as means +− S.D. of replicate analyses
from at least three independent experiments (or as indicated in
the Figure legends). Differences between data sets were assessed
with one-way ANOVA using Bonferroni’s multiple comparisons
post-hoc test. Significance was accepted at the 95% level;
P < 0.05.

RESULTS

Oxidative stress in MDCK II cells exposed to Mb

Treating cultured MDCK II cells with 100 μM Mb for 24 h
resulted in a 2.3-fold increase in R-123 fluorescence relative to the
controls (Figure 2), whereas removal of Mb prior to addition of
DHR-123 completely diminished R-123 fluorescence, indicating
that added Mb promoted DHR-123 oxidation (results not shown).
Pre-treatment of cells with DFOB-AdAOH significantly decreased
the mean fluorescence intensity, although this did not reach
baseline levels in the control. Similarly, pre-treatment of cells with
DFOB before addition of Mb diminished the mean fluorescence
intensity; however, this did not reach statistical significance.

Gene regulation in MDCK II cells treated with Mb

The gene response for the antioxidant response element HO-1, and
the inflammatory markers TNFα, NF-κB, ICAM-1 and VCAM-1,
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Table 2 Gene expression in cultured kidney epithelial cells

Confluent MDCK II cells were pre-incubated with the iron chelator indicated (final chelator
concentration 100 μM) or vehicle (control) in the absence or presence of 100 μM Mb. After
24 h, cells were harvested, mRNA isolated and the corresponding cDNA was probed for gene
regulation as described in the Experimental section. Gene expression levels in the control were
arbitrarily assigned a value of 1 and the other results were expressed relative to this level in the
controls.The results represent the means (+− S.D.) from three to six different cell preparations.
*Significantly different to the control; P < 0.05. †Significantly different to the corresponding
Mb-treated group; P < 0.05.

Mb + DFOB-
Gene Control Mb Mb + DFOB AdAOH DFOB DFOB-AdAOH

HO-1 1.0 (0.0) 3.0 (0.7)* 1.5 (1.1)† 1.2 (0.6)† 1.2 (0.4) 0.9 (0.3)
TNFα 1.0 (0.0) 5.3 (2.3)* 1.7 (0.9)† 1.8 (0.9)† 1.3 (0.9) 1.2 (0.3)
NF-κB 1.0 (0.0) 1.5 (0.7) 0.9 (0.2) 0.7 (0.6) 0.4 (0.2)* 0.6 (0.3)*
ICAM-1 1.0 (0.0) 2.6 (1.5) 1.2 (0.5) 1.1 (0.5) 1.0 (0.5) 0.9 (0.0)
VCAM-1 1.0 (0.0) 3.3 (4.8) 7.6 (13.8) 7.6 (0.9)* 1.6 (0.9) 1.4 (0.2)

Figure 2 Mb-stimulated oxidative stress in MDCK II cells

Cells were treated in the absence or presence of 100 μM iron chelator and subsequently exposed
to extracellular Mb for 24 h. Prior to harvest, cells were loaded with 50 μg/ml DHR-123 and
the extent of R-123 fluorescence was monitored. The results represent the means +− S.D. from
three independent studies each performed in triplicate. *Significantly different to the control;
P < 0.001. #Significantly different to the corresponding Mb-treated group; P < 0.05.

were monitored by quantitative real-time RT–PCR and are shown
in Table 2. Consistent with extracellular Mb eliciting a heightened
oxidative stress 24 h after insult (Figure 2), HO-1 expression
increased significantly in response to the same Mb insult, with
expression reaching 3-fold higher levels than in the control.
Addition of the iron chelators DFOB and DFOB-AdAOH muted
HO-1 gene expression, suggesting that the chelators inhibited the
cellular oxidative response that promotes HO-1 expression [9].
Notably, no change in HO-1 gene expression was evident in cells
pre-treated with the iron chelators in the absence of Mb insult.

The pro-inflammatory genes TNFα, NF-κB and ICAM-1 all
showed a trend to increased expression in the presence of
extracellular Mb, but only TNFα reached statistical significance
(Table 2). Interestingly, gene expression of VCAM-1 was
increased in renal epithelial cells exposed to Mb and greater
increases were evident in cells pre-loaded with chelators,
suggesting that the chelators DFOB and DFOB-AdAOH acted in
concert with Mb to induce some pro-inflammatory responses in
cultured renal epithelial cells as well as down-regulating others.
Importantly, pre-treatment of the cells with DFOB or DFOB-
AdAOH in the absence of extracellular Mb had no material impact
on the genes monitored in the present study, with the exception
of NF-κB, which was decreased in response to incubation with
the chelators (Table 2). The latter is interpreted as depletion
of the intracellular pool of iron leading to decreased (oxidative)
activation of the transcription factor.

Figure 3 Endocytosis of labelled transferrin in cultured MDCK II cells
assessed by flow cytometry

Mb-treated cells were incubated with fluorescently labelled transferrin (5 μg/ml) for 15 min at
37◦C prior to analysis. Data shown represent histograms of MDCK II cells in the (A) absence
(control) or (B) presence of Mb (100 μM) both without chelator treatment, or samples pre-treated
with 100 μM (C) DFOB or with (D) DFOB-AdAOH before addition of extracellular Mb. The arrow
in (B) indicates the declining peak response that was inhibited by the presence of the chelators.
(E) Endocytosis of labelled transferrin (TFN) was monitored and re-expressed as a proportion
of the total cell population for each of the treatment groups. The results represent the means +−
S.D. from three experiments. *Significantly different to the control; P < 0.001. #Significantly
different to the corresponding Mb-treated group; P < 0.001.

Receptor-mediated endocytosis in cultured MDCK II cells

The receptor-mediated endocytosis of fluorescently labelled
transferrin in the absence or presence of added Mb and with or
without DFOB or DFOB-AdAOH supplementation was quantified
by flow cytometry as shown in Figure 3. The presence of two sub-
populations of cells was indicative of two distinct intracellular
pools of transferrin in the MDCK II cells [29]. These pools were
assigned previously as a slow-cycling population of transferrin
receptor complex that is mobilized to the Golgi apparatus and
a pool of fast-cycling transferrin receptor complex that releases
transferrin in the cytoplasm [31]. The latter mechanism leads to a
rapid recycling of the receptor to the plasma membrane without
translocation to the Golgi [31]. Assessment of the population
scatter plots in the absence of added Mb indicated that the
chelators had no material impact on the distribution of cells
(results not shown).

Exposure of the cells to extracellular Mb induced a selective
reorganization of these intracellular transferrin pools, with the
left-hand peak remaining largely unaffected and the right-hand
peak decreasing markedly (compare Figures 3A and 3B). By
contrast, pre-treatment of the cells with DFOB or DFOB-AdAOH

somewhat restored the distribution of transferrin endocytosis
(Figures 3C and 3D). Quantitative analysis (accounting for both
peak populations) showed a distinct Mb-dependent loss in mean
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Figure 4 Inhibition of endocytosis by added Mb is reversed by pre-
treatment of cells with iron chelators as judged by fluorescent microscopy

MDCK II cells were seeded (1 × 105 cells/ml) on to glass coverslips, sub-cultured at 37◦C in
a 5 % CO2(g) atmosphere and then incubated with fluorescently labelled transferrin (5 μg/ml)
for 15 min at 37◦C prior to analysis. Representative micrographs show MDCK II cells in the
(A) absence (control) or (B) presence of Mb (100 μM) both without chelator pre-treatment,
or samples pre-treated with 100 μM (C) DFOB or with (D) DFOB-AdAOH before addition of
extracellular Mb. The chelators (E) DFOB and (F) DFOB-AdAOH marginally enhance the uptake
of labelled transferrin in the absence of added Mb. Images were taken using an inverted
fluorescence microscope (63× oil objective) fitted with a high-resolution colour digital imaging
camera and then transformed to tagged image files and downloaded into Microsoft PowerPoint
(2007) for further manipulation.

fluorescence intensity that was sensitive to pre-treatment of the
cells with the chelators DFOB or DFOB-AdAOH (Figure 3E).

The ability of DFOB or DFOB-AdAOH to enhance transferrin
uptake in the presence of Mb was verified by monitoring the
receptor-mediated binding of labelled transferrin in MDCK II
cells with fluorescent microscopy (Figure 4). As anticipated,
exposure of cells to Mb down-regulated the endocytosis of
labelled transferrin (compare Figures 4A and 4B), whereas
pre-incubation with the chelators restored transferrin receptor-
mediated endocytosis as judged by the increased membrane
fluorescence (compare Figures 4A, 4C and 4D). Pre-treatment
with the chelators alone showed a marginal increase in transferrin
endocytosis relative to the control in the absence of chelators

Figure 5 Monolayer permissiveness decreases in MDCK II cells after
exposure to extracellular Mb and added chelators inhibit this activity

Non-specific [3H]inulin transport was monitored in the absence or presence of 100 μM iron
chelator in both the presence and absence of extracellular Mb (final concentration 100 μM).
Monolayer permissiveness improves in the presence of iron-chelating drugs, whereas the
chelators alone have no material effect on monolayer permeability. The results represent
the means +− S.D. from nine experiments. *Significantly different to the control; P < 0.001.
#Significantly different to the corresponding Mb-treated group; P < 0.05.

and added Mb (compare Figures 4A, 4E and 4F), consistent with
repletion of the iron stores after chelator treatment.

Evaluation of monolayer permeability

Monitoring the transport of [3H]inulin across a confluent
monolayer of epithelial cells provides an indication of the
bulk epithelial monolayer integrity as described previously
[32]. Overall, non-specific monolayer permeability decreased
significantly upon Mb challenge yielding ∼15% lower
permeability than the control (Figure 5). Pre-treatment of the cells
with the iron chelators reversed this decrease in permissiveness
and restored monolayer permeability to the control levels in the
absence of extracellular Mb. Notably, pre-treatment of the cells
with DFOB or DFOB-AdAOH alone had no impact on monolayer
permeability in the absence of an Mb insult, consistent with the
low toxicity of the chelators at the selected dose.

Expression of MCP-1

The secreted protein MCP-1 displays chemotactic activity for
monocytes and basophils and is considered as a biomarker of
inflammation [33]. Renal cells produce MCP-1 upon stimulation
through activation of the NF-κB pathway [34]. Notably, secretion
of MCP-1 from MDCK II cells significantly increased (1.3-fold)
in the presence of Mb compared with cells cultured in Mb-free
medium. Pre-treatment of cells for 2 h with DFOB or DFOB-
AdAOH inhibited these inflammatory responses and decreased
MCP-1 levels to below baseline (Figure 6). Pre-treatment of the
cells with DFOB or DFOB-AdAOH in the absence of Mb insult
had no effect on MCP-1 levels in cultured MDCK II cells, which
was consistent with the unchanged level of TNFα gene expression
recorded under identical conditions (see Table 2).

Formation of stable nitroxide radicals

Enzymatic oxidation of DFOB by HRP is known to yield a
stable nitroxide radical through hydrogen atom extraction from
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Figure 6 Monocyte chemoattractant protein 1 expression in MDCK II cells
after exposure to extracellular Mb

Upon exposure to Mb for 24 h, cell supernatant was collected and the AlphaLISA assay was
performed to determine the MCP-1 concentration. Mb increases the expression of MCP-1,
whereas pre-treatment with DFOB or DFOB-AdAOH suppressed MCP-1 expression. In the
absence of extracellular Mb, the iron-chelating drugs showed no material effect on MCP-1
secreted into the medium. The results represent the means +− S.D. from three experiments.
*Significantly different to the control; P < 0.01. #Significantly different to the corresponding
Mb-treated group; P < 0.001.

the hydroxamic acid moiety closest to the terminal amine group
[35] (indicated by arrows in Figure 1). We recapitulated the
generation of this radical using the HRP/H2O2 oxidizing system
(results not shown) and demonstrated that a similar radical was
formed in the reactions between DFOB-AdAOH and HRP/H2O2

as determined by EPR spectroscopy (Figure 7A). Simulation of
the EPR spectrum indicated hyperfine couplings (aN 0.78 and aH
0.62 mT, obtained by spectral simulation to high correlations;
r = 0.98) (Figure 7B). The identical radical was formed in
reactions of DFOB-AdAOH and Mb/H2O2 (Figure 7C). Consistent
with HRP exhibiting greater peroxidase activity than Mb, the
steady-state concentration of nitroxide radical was increased in
mixtures containing HRP (compare Figures 7A and 7C). Notably,
binding of Fe(III) to DFOB-AdAOH completely inhibited the
formation of the nitroxide radical by Mb/H2O2 (Figure 7D),
indicating that binding of iron regulated the availability of
the hydroxamic acid moiety for enzymic oxidation. No radical
products were detected in the absence of H2O2 or in mixtures of
chelator and peroxide alone, indicating that an enzymatic reaction
is required to yield the radical (results not shown).

Addition of peroxide to mixtures containing Mb and DFOB-
AdAOH resulted in near complete depletion of the chelator (99.0
+− 3%: mean +− S.D.; n = 5) (Figure 8). No product peaks were
detected in the period monitored by HPLC (up to 40 min) (results
not shown). A similar extent of chelator depletion occurred with
reaction mixtures containing Mb/H2O2 and DFOB (results not
shown). Taken together, these results indicate that both DFOB-
AdAOH and parental DFOB scavenge oxidants produced by
peroxidase enzymes (including Mb, which has limited peroxidase
ability [27]) in a redox reaction that involves generation of a free
nitroxide radical.

DISCUSSION

Multiple mechanisms have been suggested to explain the role of
Mb in promoting acute renal injury following RM [13]. However,
the exact link between the presence of extracellular Mb in the
vascular system and acute kidney injury is not yet clear. The

Figure 7 Peroxidase enzymes oxidize DFOB or DFOB-AdAOH to yield a stable
nitroxide radical

Solutions of HRP (A) or Mb (C and D), both at a final concentration of 250 μM, were mixed with
the chelator DFOB-AdAOH (final concentration 250 μM) either without (A and C) or with (D)
ligation to Fe(III). Next, the reaction mixtures were treated with 500 μM H2O2 and incubated at
20◦C for 2 min before transfer to a flat cell for EPR spectroscopy as described in the Experimental
section. Spectrometer settings: power 100 mW, modulation amplitude 1 mT and sweep time
84 s. EPR spectra were recorded as an average of four cumulative scans. The spectrum shown
in (B) represents EPR simulation of the spectrum in (A). Simulations were performed using
WIMSIM software as described in the Experimental section. The results are representative of
three independent experiments.

protective effect of DFOB in animal models of RM [15,16] has
led to the notion that free iron plays a critical role in this acute
pathology by participating in reactions that generate free radicals
that cause an increase in cellular oxidative stress. Consequently,
chelators that effectively bind and export iron from within cells
have the potential to diminish intracellular oxidative stress and
thereby protect renal cells from the effects of extracellular Mb
and improve kidney function.

To attenuate the production of Fe(II)-dependent Fenton-based
ROS, an ideal chelator will bind Fe as a stable Fe(III)–chelator
complex that does not redox cycle to the Fe(II)–complex, since
the dissociation of the latter could add to the Fe(II) burden. The
thermodynamic stability of Fe(III)-loaded DFOB manifests as a
negative Fe(III)/Fe(II) redox potential [E1/2

=−0.48 V compared
with NHE (normal hydrogen electrode) at pH 7.5] [36,37]. Since
the structural modification in DFOB-AdAOH occurs in a region
distal to that of Fe(III) co-ordination, the stability of Fe(III)-loaded
DFOB-AdAOH will reflect closely that of Fe(III)-loaded DFOB.
Indeed, previous work that studied the co-ordination chemistry
of DFOB-AdAOH and analogues found that all complexes were
formed as Fe(III) complexes and there was no evidence of Fe(II)
co-ordination [24]. The potential value of DFOB-AdAOH above
DFOB as a stable Fe(III)-based chelator lies in its reduced toxicity
and its improved membrane partition properties, as reflected by
logP values (DFOB-AdAOH, logP = 0.11; DFOB, logP =−2.10)
[24].
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Figure 8 Oxidation of DFOB-AdAOH with Mb completely depletes the
chelator from solution

Solutions of Mb (final concentration 250 μM) were mixed with DFOB-AdAOH (final concentration
250 μM) in the absence (A) or presence (B) of H2O2 (final concentration 500 μM). Next, the
mixtures were incubated at 20◦C for 5 min before analysis with reversed-phase HPLC. The arrow
in (A) denotes the retention time for DFOB-AdAOH. Chromatograms shown are representative of
two independent experiments each performed in triplicate.

Consistent with the notion that extracellular Mb promotes
renal epithelial dysfunction through enhancing oxidative stress
[25,29], exposure of MDCK II cells to Mb in the presence of
DHR-123 increased ROS production. This resulted in a parallel
increase in the gene response for HO-1 and TNFα, implying
an oxidative activation of the cells upon exposure to extracellular
Mb. Pre-treatment of the cells with iron chelators decreased R-123
mean fluorescence intensity, indicating that the chelating agents
diminished oxidative stress induced by Mb. Completely congruent
with a decrease in oxidative stress, the gene response for HO-1 and
pro-inflammatory TNFα also diminished to baseline levels upon
pre-treatment with the chelators, with similar activities noted for
both DFOB or DFOB-AdAOH.

On the basis of the results shown in the present study, it is
clear that the chelators ameliorate Mb-induced oxidative stress in
cultured kidney epithelial cells to similar extents. Gene expression
of HO-1 can be dependent on antioxidant response elements
in the promoter region of the gene encoding HO-1 [38], and
the redox-sensitive transcription factor NF-κB is also linked to
TNFα expression [39]. Whether this potential renal protective
activity is due to the direct chelation of intracellular iron or
the ability of the chelators to act as antioxidants, which inhibit
Mb-oxidant production independent of iron chelation in the
extracellular milieu [35,40], or alternatively a combination of
these mechanisms, is not clear.

The unregulated pro-oxidant activity of extracellular Mb can
lead to indiscriminate damage to lipids [41] and proteins [42],
whereas redox cycling of Mb has been implicated in the
pathogenesis of RM-induced renal failure [43]. We have shown
previously that haptoglobin efficiently binds extracellular Mb and
inhibits Mb-mediated renal cell dysfunction [25]. This renal-
protective action can also be recapitulated by supplementing cells
with a phenolic antioxidant [29]. Our results from the present
study demonstrating that peroxidase enzymes are able to oxidize
the iron-free chelators to yield a nitroxide radical indicate a
potential for the chelators to inhibit the peroxidase activity of Mb
by an oxidant-scavenging mechanism in addition to decreasing
the impact of intracellular iron (over)load, effectively expanding
their spectrum of biological activity.

Previous studies have suggested that free radicals can injure
the renal tubular epithelium by initiating a cascade of pro-
inflammatory mediators such as cytokines and chemokines
[44]. For example, activation of the NF-κB pathway stimulates

TNFα expression that in turn enhances apoptosis [45], increases
glomerular damage and cytotoxicity and decreases renal cell
viability [45]. In the case of renal epithelial cells, extracellular
Mb elicits an inflammatory response through activation of the
c-Src kinase-activator protein-1 and NF-κB pathways [14]. As
a consequence, the activated or injured kidney cells secrete
selectins, integrins and adhesion proteins [46]. Consistent with
DFOB or DFOB-AdAOH exhibiting an anti-inflammatory action,
both chelators down-regulated the expression of TNFα and
subsequent secretion of MCP-1 in the presence of Mb, whereas
in the absence of Mb the chelators had no impact on TNFα or
MCP-1.

This anti-inflammatory activity may be beneficial to renal
tissues during ARF. Secreted CCL2/MCP-1 plays a key role
in acute and chronic renal diseases and leads to the infiltration
and activation of monocytes [47], a hallmark of renal injury, and
fibrosis in diabetic nephropathy [48]. The ability of iron
chelators to decrease pro-inflammatory signalling in the kidney
following RM probably results in a suppression of monocyte-
macrophage activation driven by CCL2/MCP-1 as demonstrated
in atherosclerosis [49].

Receptor-mediated endocytosis plays a crucial role in
membranous transport function within kidney tubules. The
decrease in transferrin uptake (shown in Figures 3 and 4)
highlights the potential for extracellular Mb to promote the renal
insufficiency that underlies ARF [50]. Transferrin receptors at the
cell surface are sensitive to oxidative stress, presumably induced
by thiol oxidation [31]. Humans do not have an active mechanism
for iron excretion and the balance of intracellular iron is tightly
regulated by the rate of erythropoiesis and distribution between
intracellular iron stores by specialized proteins [51]. Therefore, a
decrease in transferrin receptors can be interpreted as an overload
of cellular iron, reflecting iron dysregulation. Importantly, both
iron chelators increased transferrin uptake primarily through
restoring the recycling of transferrin receptors to the cell surface.
Whether this is due to an inhibition in oxidative stress as suggested
previously [31] or whether chelation and removal of cellular iron
plays a primary role in maintaining intracellular homoeostasis is
presently unclear and further studies are warranted to elucidate
which pathway is responsible for maintaining receptor-mediated
endocytosis in this cell model of RM.

As well as receptor-specific transport via endocytosis, passive
flow of ions/solutes following a concentration gradient is one
of the major transport pathways in tubular epithelium [52].
Oxidative stress is known to impair epithelial function, potentially
via damaging of tight junctions by free radicals and hydrogen
peroxide acting as a protein tyrosine phosphatase inhibitor [53].
The supplementation of iron chelators significantly enhanced
monolayer permeability in the presence of extracellular Mb,
indicating a sustained tight junction function in the presence of
Mb insult.

In this in vitro model of RM, supplementation with the
iron chelator DFOB and the novel derivative DFOB-AdAOH

resulted in overall enhanced cell function. We were able to
demonstrate that iron chelators ameliorate oxidative stress and
restore receptor-mediated transport as well as passive transport by
maintaining epithelial monolayer permissiveness. Pre-treatment
with the chelators also decreased the pro-inflammatory response
elicited by extracellular Mb, and the pseudo-peroxidase was able
to oxidize the chelators to yield the identical nitroxide radical.
DFOB-AdAOH shows similar properties to DFOB. However, due
to the decreased renal toxicity of this class of chelator [24], DFOB-
AdAOH and other conjugated analogues show significant promise
in the treatment of iron overload disease as well as a potential
therapeutic strategy to combat ARF after RM.

c© The Authors Journal compilation c© 2011 Biochemical Society
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5 Publication 3 

Co-supplementation with a synthetic polyphenol and vitamin C inhibits oxidative 
damage and improves vascular function yet does not inhibit acute renal injury in 
an animal model of rhabdomyolysis 

Die parallele Verabreichung von einem synthetischem Polyphenol und Vitamin C 
verhindert oxidative Gewebeschäden und verbessert die Gefäßfunktion in einem 
Tiermodell der Rhabdomyolyse ohne dabei akutes Nierenversagen zu verhindern 

 
DOI: 10.1016/j.freeradbiomed.2012.02.011 

 

5.1 Abstract (German Translation) 

In einem in vivo-Modell für Rhabdomyolyse wurde untersucht, ob die gemeinsame 

Verabreichung von synthetischem tetra-tert-butyl Bisphenol (BP) und Vitamin C (Vit 

C) oxidativen Stress und akutes Nierenversagen (AKI) günstig beeinflusst. Ratten wur-

den in vier Gruppen unterteilt: Sham und Kontrolle (Standardfutter), BP mit Vitamin C 

(BP+) und BP ohne Vitamin C (BP-). Rhabdomyolyse wurde durch die intramuskuläre 

Injektion von Glycerol induziert. Vor Induktion der Rhabdomyolyse erhielten die Tiere 

der BP+ und BP- Gruppen für 4 Wochen eine Diät, die 0.12% w/w BP enthielt. Die 

BP+-Gruppe wurde parallel mit Vitamin C behandelt (100 mg/kg Ascorbat in PBS i.p. 

bei 72, 48 und 24 h vor Rhabdomyolyse-Induktion). Anschließend wurde bei allen Tie-

ren, ausgenommen der Sham-Gruppe, durch die intramuskuläre Injektion einer Glyce-

rollösung (50% v/v Glycerol/PBS; 6 ml/kg) in die Oberschenkel eine Rhabdomyolyse 

induziert. Nach 24 h wurden die Tiere euthanasiert und Urin, Plasma, Nieren und Aor-

ten asserviert. Im Nierengewebe und Plasma war die Konzentration von Cholesteryl- 

esterhydroperoxid, Cholesterylesterhydroxyd und F2-Isoprostan erhöht, was auf eine 

gesteigerte Oxidation von Lipiden hinweist. Weiterhin war in  der Aorta der Gehalt an 

zyklischem Guanylylmonophosphat (cGMP) vermindert. Im Nierengewebe verursachte 

die experimentelle Rhabdomyolyse eine Stimulation der Genexpression von 

Glutathionperoxidase (GPx-4), Superoxiddismutase (SOD-1/2) und nukleärem Faktor 

kappa-beta (NFκB). Darüber hinaus entwickelten die Tiere akutes Nierenversagen, was 

durch die Bildung von tubulären Zylindern, geschädigtem Epithel und Proteinurie und 

erhöhten Urinkonzentrationen von Kidney Injury Molecule-1 (KIM-1) und Clusterin im 

http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.011

http://www.sciencedirect.com/science/article/pii/S0891584912000883
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Urin gezeigt werden konnte. Die parallele Supplementierung mit BP und Vit C unter-

drückte die Oxidation von Lipiden und ging mit einer verringerten Genexpression der 

gegenregulatorischen Enzyme GPx-4 und SOD-1/2 einher. Ebenso wurden NFκB und 

cGMP im Aortengewebe günstig beeinflusst. Die renale Dysfunktion und die morpho-

logischen Veränderungen der Niere blieben allerdings bestehen. Im Gegensatz dazu re-

duzierte die alleinige Supplementierung mit Vit C die Entstehung von oxidativem Stress 

und verminderte die Bildung von Zylindern und Proteinurie, andere Plasma- und Urin-

marker des akuten Nierenversagens blieben jedoch erhöht.  

Diese Daten legen nahe, dass lipid- und wasserlösliche Antioxidantien variable thera-

peutische Effekte auf Rhabdomyolyse-bedingte Nierenfunktionsstörungen haben. 
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Cosupplementation with a synthetic, lipid-soluble polyphenol and vitamin C inhibits
oxidative damage and improves vascular function yet does not inhibit acute renal
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We investigated whether cosupplementation with synthetic tetra-tert-butyl bisphenol (BP) and vitamin C (Vit
C) ameliorated oxidative stress and acute kidney injury (AKI) in an animal model of acute rhabdomyolysis
(RM). Rats were divided into groups: Sham and Control (normal chow), and BP (receiving 0.12% w/w BP in
the diet; 4 weeks)with or without Vit C (100 mg/kg ascorbate in PBS ip at 72, 48, and 24 h before RM induction).
All animals (except the Sham)were treated with 50% v/v glycerol/PBS (6 mL/kg injected into the hind leg) to in-
duce RM. After 24 h, urine, plasma, kidneys, and aortae were harvested. Lipid oxidation (assessed as cholesteryl
ester hydroperoxides and hydroxides and F2-isoprostanes accumulation) increased in the kidney and plasma
and this was coupled with decreased aortic levels of cyclic guanylylmonophosphate (cGMP). In renal tissues,
RM stimulated glutathione peroxidase (GPx)-4, superoxide dismutase (SOD)-1/2 and nuclear factor kappa-
beta (NFκβ) gene expression and promoted AKI as judged by formation of tubular casts, damaged epithelia,
and increased urinary levels of total protein, kidney-injury molecule-1 (KIM-1), and clusterin. Supplementation
with BP±Vit C inhibited the two indices of lipid oxidation, down-regulated GPx-4, SOD1/2, and NF-κβ gene re-
sponses and restored aortic cGMP, yet renal dysfunction and altered kidney morphology persisted. By contrast,
supplementation with Vit C alone inhibited oxidative stress and diminished cast formation and proteinuria,
while other plasma and urinary markers of AKI remained elevated. These data indicate that lipid- and water-
soluble antioxidants may differ in terms of their therapeutic impact on RM-induced renal dysfunction.

© 2012 Elsevier Inc. All rights reserved.

In the event of skeletal muscle breakdown subsequent to severe
burns (termed rhabdomyolysis; RM [1]), the affected muscle releases
toxic factors into the extracellular milieu including skeletal myoglobin
(Mb). Extracellular Mb accumulates in the blood where the protein is
rapidly filtered by the kidney into the urine (a process termed myoglo-
binuria). Accumulation of extracellular Mb in the kidney has been
linked to acute kidney injury (AKI), which is a clinical complication of

severe burns [2]. Numerous studies have demonstrated that accumulat-
ingMb promotes both oxidative damage [3] and inflammation [4]with-
in the kidney, which is associated with the clinical progression of AKI
toward renal insufficiency/failure. While the proportion of burn pa-
tients developing AKI is relatively low ranging 8–39% [5], mortality
rates for these patients consistently remain above 80% [6]. Therefore,
the development of therapeutic strategies to limit the extent of AKI
and improve renal function following severe burnmay impact positively
on both morbidity and mortality.

The underlying molecular mechanism for extracellular Mb toxicity
in the kidney have been studied and includes renal vasoconstriction,
intraluminal cast formation within the renal tubular network, and
heme protein-induced cytotoxicity affecting various renal cells [7].
The contribution of vasoconstriction to AKI is mediated by several fac-
tors including scavenging and/or oxidation of vasodilating NO by
(oxy)Mb [8] and radical-mediated lipid oxidation, which yields iso-
prostane products that impact on vascular tone and kidney function
[9,10]. Currently, it is unclear whether the presence of renal tubular
casts can be causally related or rather a consequence of AKI [11]. In
addition, degradation of accumulating Mb likely results in the release

Free Radical Biology & Medicine 52 (2012) 1918–1928

Abbreviations: AKI, acute kidney injury; β-actin, beta-actin; CCL2/MCP-1, chemo-
kine (C-C motif) ligand 2/monocyte chemotactic protein-1; CCr, creatinine clearance;
CE, cholesterylesters derived from linoleic and arachidonic acids; CeO(O)H, cholestery-
lester hydroperoxides and hydroxides; cGMP, cyclic guanylyl monophosphate; eNOS,
endothelial nitric oxide synthase; F2-isoprostanes, 8-iso-prostaglandin F2α; FC, unes-
terified cholesterol; GFR, glomerular flow rate; HO-1, hemeoxygenase-1; HPSS,
HEPES-buffered physiological salt solution; Mb, myoglobin; NFκB, nuclear factor
kappa-B; PBS, phosphate-buffered saline; PTP, protein tyrosine phosphatase; RM, rhab-
domyolysis; RT-PCR, reverse transcription polymerase chain reaction; BP, 3,3′,5,5′-
tetra-tert-butyl-biphenyl-4,4′-diol; TNF-α, tumor necrosis factor alpha; Vit C, vitamin
C; α-TOH, the most biologically active isomer of vitamin E.
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of free heme and its catabolism by hemeoxygenases [12,13], which
liberate iron and carbon monoxide [14] with concomitant formation
of the antioxidant bilirubin in the intracellular compartment [13,15].

It is debated whether antioxidants may play a role in the prevention
or therapy for AKI [13,16]. Employing antioxidants in the inhibition of
RM-induced acute renal failure has yielded renal protection [17–20], al-
though not all antioxidant supplementation studies [13,21,22] report
improved renal function in thismodel of AKI. Such conflicting outcomes
may arise from different biological activities of the test agents or com-
partmentalization of the antioxidant [13]. Antioxidants can exhibit ad-
ditional functions including anti-inflammatory and cell signaling
regulation independent of their antioxidant activity, e.g., vitamin E [23].

Phenolic compounds are a class of lipid-soluble chain-breaking anti-
oxidants [24] that readily synergizewith vitamin C (Vit C), the highly ef-
fective water-soluble antioxidant in living organisms [25]. Vitamin C is
able to regenerate phenolic antioxidants to enhance their potency in
vivo. We have demonstrated that the low-molecular-weight polyphe-
nol 3,3′,5,5′-tetra-tert-butyl-biphenyl-4,4′-diol (BP) protects cultured
kidney epithelial cells from Mb-mediated oxidative damage [26]. Simi-
larly, rats supplemented with BP prior to experimental RM showed en-
hanced resistance to oxidative stress resulting in decreased kidney lipid
oxidation and expression of antioxidant response genes [13]. Despite
enhancing antioxidant capacity, rats supplemented with synthetic BP
showed the same degree of AKI and loss of renal function. This lack of
renal protection may be related to the compartmentalization of the li-
pophilic polyphenol that limits its effectiveness in vivo. Through syner-
gizing with water-soluble antioxidants such as Vit C phenols can
enhance their antioxidant action. Herein we have compared the renal
protection of a synthetic phenolic antioxidant BP in an experimental
model of RM with or without Vit C cosupplementation.

Experimental

Materials

Chemicals were of the highest quality available, and all solutions
were freshly prepared using MilliQ Water or high quality analytical
grade organic solvents and, where appropriate, sterilized prior to
use. Unless otherwise indicated, materials were obtained from
Sigma (Sydney, Australia). The synthetic polyphenol 3,3′,5,5′-tetra-
t-butyl-biphenyl-4,4′-diol (referred to here as BP) was obtained
from Maybridge (Cornwall, UK).

Electron paramagnetic spectroscopy

Ethanolic samples of BP (100 μM) were dispersed into 100 mM
cetyltrimethylammonium chloride micelles and either irradiated
with white light or incubated in the dark for 5 min as described pre-
viously [24]. Next, micelle solutions were transferred into a standard
quartz flat cell (Wilmad, Buena, NJ) and the formation of phenoxyl
radicals was monitored by EPR spectroscopy with an X-band Bruker
EMX EPR spectrometer as described previously [27]. EPR spectra
were acquired as an average of 3 scans with modulation frequency
100 kHz, sweep time 84 s, microwave power 63 mW, and modulation
amplitude 0.1 mT. Where required, a solution of 200 μM ascorbic acid
or PBS alone (control) was added to the micelle solutions before mea-
surement. The limit of detection of a stable nitroxide (TEMPO) under
identical spectrometer conditions was ~50 nM.

Animals

Male Wistar rats (0.4–0.6 kg) were obtained from the ARC facility
(Western Australia) and acclimatized to the local environment. After
1 week, animals were fed a standard rodent chow, or chow supplemen-
tedwith BP at 0.12%w/w,which yielded ~50 μMof the polyphenol in the
circulating blood [13]. Thus, BP was dissolved in ethylalcohol, mixed

with the diet, and left in a fume hood to completely evaporate the alco-
holic vehicle. Animals designated to the Control group received
vehicle-treated chow. Food andwaterwere available ad libitum. Animals
designated to the Vit C and Vit C/BP cosupplemented groups were ad-
ministered Vit C (100 mg/kg body weight ip) 72, 48, and 24 h before in-
duction of experimental RM as described previously [28]. In parallel,
animals designated to the Sham, Control, and BP groups received sterile
saline solution (administered ip). Experimental procedures were ap-
proved by Sydney South West Animal Welfare Committee and adhered
to the Australian Code of Practice for the care and use of animals for sci-
entific purposes.

For the induction of RM animals were initially dehydrated for 18 h
and anesthetizedwith isoflurane (2% v/v inO2(g), 1.5 L/min) and a base-
line blood sample was collected through the tail vein. Next, animals
were injected with a total of 6 mL/kg of freshly prepared hypertonic
glycerol (50% v/v in sterile PBS), with equal volume administered into
each hind limb. Animals assigned to the Sham group received an iden-
tical volume of sterile PBS. All animals were then housed in metabolic
cages for 24 h (respective chow and water provided ad libitum) and
the total urine output was collected and stored at 4 °C. Urinary globin
concentrations (combined Mb and hemoglobin monitored at absor-
bance 405 nm [13]) were similar in animals administered hypertonic
glycerol (53.4±4.5 μM;mean±SD; n=52). Consistentwith our previ-
ous report [13], urinary pH did not vary significantly between Control
and antioxidant treatment groups (pH 7.2±0.3 across all groups;
mean±SD; n=44), although this was marginally lower than urinary
pH measured in the Sham group (pH 7.4±0.4). These data indicated
that the extent of RM was similar among glycerol-treated animals and
that antioxidant supplementation had no marked impact on the extent
of muscle myolysis or urinary pH value.

Harvest of blood and organs

After 24 h, animals were anesthetized with isofluorane followed by
ip injection of ketamine (60 mg/kg weight) and xylazine (10 mg/kg
weight). Following a midline incision and thoracotomy, blood was col-
lected via direct cardiac puncture into the left ventricle (5–10 mL into
citrate), the right atriumwas then cut, and the vasculaturewas perfused
with sterile PBS. Plasma fractions were immediately separated and
stored at -80 °C. The left kidney was frozen in liquid nitrogen for ensu-
ing tissue studies, whereas the right kidney was stored in 10% v/v for-
malin for histological analysis. Thoracic aortae were harvested, rinsed
with saline (0.9%w/v), stored in phosphate buffer (50 mM, pH7.4) con-
taining the phospho-diesterase inhibitor 3-isobutyl-1-methyl-xanthine
(final concentration 100 μM), and then immediately frozen in liquid ni-
trogen for analysis of cyclic guanylyl monophosphate (cGMP).

Biochemistry

Biochemical analyses of plasma and urine were performed by the
Diagnostic Pathology Unit (Concord Hospital, Sydney). Creatinine levels
in plasma and urine were used to calculate the rate of creatinine clear-
ance (CCr in units of mL/min) as an estimation of glomerular filtration
rate as indicated below:

CCr ¼ UCr " U24Vð Þ= PCr " 1440ð Þ:

Here UCr=urinary creatinine concentration in milligrams per mil-
liliter; U24V=volume of urine passed in 24 h; PCr=plasma creatinine
concentration in milligrams per milliliter; and 1440=total min/24 h
(time constant).

Tissue biochemistry

Frozen kidneys or aortae were thawed, diced with scissors, and
snap-frozen in liquid nitrogen and pulverized to a fine powder with
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a mortar and pestle. The powdered tissue was suspended in Buffer A
(50 mM PBS, pH 7.4) containing 1 mM EDTA, 10 μM butylated hydro-
xytoluene and a Protease Inhibitor Cocktail tablet (Roche Diagnostics,
Bern Switzerland), transferred to a glass tube, and homogenized with
a rotating piston arrangement (Wheaton Specialty Glass, USA;
500 rpm) as described [13]. After 5 min, a sample (50 μL) was taken
for protein analysis and the remaining fraction was split into two
equal volumes. One sample was stored at -80 °C for mRNA extraction,
and the other immediately extracted into a mixture of hexane and
methanol (5:1 v/v): the lipid-soluble fraction was isolated, dried
under reduced pressure, and resuspended in isopropanol for lipid
analysis.

Assessment of lipid markers of oxidation

The tissuehomogenate content of lipid-soluble vitamin E (asα-TOH,
themost biological active form), free cholesterol (FC), cholesteryl esters
(cholesteryl linoleate, C18:2, and cholesteryl arachidonate, C20:4, to-
gether referred to as CE), and CE-derived lipid hydroperoxides and hy-
droxides (referred to as CeO(O)H)were determined byHPLC analysis as
described previously [29,30]. Where required, measurement of BP and
its oxidized product, diphenoquinone (3,3′,5,5′-tetra-tert-butyl-4,4′-
diphenoquinone) (DQ), was determined by gradient reversed-phase
HPLC [31]. Lipids and antioxidants were quantified by area under the
curve comparison with authentic standards.

Plasma and tissue levels of ascorbate and urate were determined by
using an ion-paired, reversed-phase HPLC system in conjunction with
oxidative electrochemical detection using a glassy carbon electrode
(Bioanalytical Systems) with applied potentials of +500 mV versus
the silver/silver chloride reference electrode as described previously
[30]. Recovery of tissue ascorbate was corrected for adventitial oxida-
tion by the addition of a known quantity of isoascorbate (final concen-
tration 5 μM) during preparation of the individual homogenates,
thereby acting as an internal standard in the processing of the sample.
The average recovery of the internal standard for plasma and renal tis-
sues was determined to be 86.3±6.1 and 66.6±4.1%, respectively (not
shown), and data were corrected for loss of the internal standard.

F2-Isoprostanes (8-iso-prostaglandin F2α), nonenzymatic peroxida-
tion products of arachidonic acid, were measured in plasma and renal
tissues with a commercial immunoassay kit (Cayman, Ann Arbor, MI):
detection limit of 5 pg/mL (plasma) and 12 pmol/mg protein (renal tis-
sues). Plasma and tissue samples were initially hydrolyzed by saponifi-
cation with 5 M NaOH, neutralized with 1 M HCl, and centrifuged
(3060× g), and the supernatant was collected for isoprostane determi-
nations. The results were expressed as picograms per milliliter for plas-
ma and normalized to total protein for renal tissues. Consistent with
previous reports, the inter- and intraassay coefficients of variation
were ~8 and 10%, respectively [32].

Determination of tissue protein content was performed using the
BCA assay (Sigma, Sydney, Australia) with an Ultramark Microplate
system (Bio-Rad, Sydney, Australia) and Microplate Manager soft-
ware v5.1. All lipid- and water-soluble analytes in renal homogenates
were normalized to total protein.

Urinary protein markers of kidney dysfunction

Urinary kidney injurymolecule-1 (KIM-1) and clusterinwere deter-
mined using a Rat Kidney Toxicity Multiplex Panel 1 (Millipore) and a
Luminex system. Briefly, urine samples were diluted and incubated
with antibody-immobilized beads overnight. After washing, detection
antibodies were added and incubated for 1 h at 37 °C. Next,
streptavidin-phycoerythrin was added and after a further 30 min incu-
bation at 37 °C the samples were washed under vacuum and resus-
pended in PBS for analysis using a Luminex 200 xMAP platform
(Abacus, Sydney Australia) and finally the median fluorescent intensity
was converted to sample concentration using a standard curve.

Gene regulation

Isolation of totalmRNA, conversion to cDNA, and assessment of gene
regulation was determined by RT-PCR with an Eppendorf MasterCycler
as described in detail elsewhere [13]. Primer pairs employed for the as-
sessment ofβ-actin, SOD-1/2, and GPx-4 are collected in Table 1. Ampli-
fied cDNA was resolved on 1% w/v agarose gel containing ethidium
bromide (2 μg/mL). Products were visualized and photographed
under short-wavelength UV light and converted to TIFF using standard
software. Densitometry was performed with ImageJ v1.42 (http//rsb.
info.nih.gov/ij, NIH, USA). Gene expression in the control was arbitrarily
assigned a unitary value and responses expressed as a relative fold-
change.

Expression of monocyte chemoattractant protein 1

Determinations of the chemokine-2/monocyte chemoattractant
protein-1 (CCL2/MCP-1) were performed using an AlphaLISA assay
(PerkinElmer, Australia). Briefly, plasma samples were centrifuged,
diluted, and incubated with Anti-m/r CCL2/MCP-1 acceptor beads
and the corresponding biotinylated Anti-m/r CCL2/MCP-1 antibody.
After 60 min, streptavidin donor beads were added and samples incu-
bated further (30 min; 37 °C)and then measured using an Enspire
plate reader (PerkinElmer, Australia).

Antioxidant enzyme activity

Glutathione peroxidase activity was determined by monitoring the
time-dependent oxidation of NADPH (ε340nm=6220 M-1 cm-1) at
5 min intervals over 15 min at 37 °C in the presence and absence of kid-
ney homogenates as described previously [33]. For the assessment of
total GPx activity, NADPH oxidation was initiated by addition of
350 μm H2O2. For GPx-4 activity, 100 μM phosphatidylcholine hydro-
peroxide was employed as the substrate (Cayman Chemicals, Ann
Arbor, MI). In the absence of tissue, NADPH oxidation was negligible
and independent of the presence or absence of phosphatidylcholine hy-
droperoxide (not shown). Enzyme activity was reported as a protein-
normalized fold-change relative to the Sham.

SOD activity

Total SOD activity was assessed by measuring the inhibition of py-
rogallol autooxidation monitored at 405 nm at 5 min intervals over
30 min at 37 °C as described previously [34]. Total SOD activity was
expressed as a protein-normalized fold-change relative to the SOD ac-
tivity determined in the Sham group.

Kidney histology

Kidneys were cut longitudinally and fixed in 10% v/v formalin solu-
tion. Tissues were embedded in paraffin wax, and 5 μm sections were
stained with hematoxylin and eosin or periodic acid Schiff-base (PAS)
stain. After staining, the images were viewed and captured using an
Olympus Photo Microscope fitted with a digital camera and image sys-
tem (Olympus DP Controller; v2.2.1.227). The images captured were
converted to TIFF for manipulation with MS Power Point (2008, v7).

Table 1
Forward and reverse primer sequences used in gene analysis studies.

Gene Sense Antisense

β-Actin 5′-AGCGGTAGAGCTGCTTGAACT-3′ 5′-CTCTCAGCTGTGGTGGTGAA-3′
SOD-1 5′- GAGATTGAGCGCAACAAGGA -3′ 5′-AGCCATGTACGTAGCCATCC-3′
SOD-2 5′- GGAGATGAGACCCTTAGGTT -3′ 5′-AGCAAGTGTAATCCAATAGC-3′
GPx-4 5′-TGAGAAGTGCGAGGTGAATG -3′ 5′-AACACCGTCTGGACCTACCA -3′

Primers were obtained from Sigma (Australia) and diluted to 10 μM before use.
Annealing temperatures were 60 °C for all primer sets employed.
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Assessment of vascular function

Activation of the enzyme-soluble guanylyl cyclase by endothelial
nitric oxide within VSMC promotes the conversion of intracellular gua-
nosine diphosphate (GDP) to cGMP, which initiates vasorelaxation [35].
To determine the effect of extracellular Mb on the vascular function,
aortic samples were first thawed then pulverized and homogenized in
1 mL buffer A containing 100 μM IBMX. Aortic cGMP was then deter-
mined with a commercial ELISA kit (Cayman Chemical) by monitoring
absorbance (420 nm) with an Ultramark Microplate Reader (Bio-Rad,
Australia) and Microplate manager v5.1. Finally, the levels of cGMP
were normalized to homogenate protein.

Renal kinase activity

Assessment of the mitogen-activated protein kinase (MAPK) Erk
activity in renal homogenates was determined using a luminescent
ADP-Glo assay kit (Promega, Australia) to assess ADP production by
the protein kinase reaction. The assay was performed at 30 °C for
15 min in a final volume of 25 μL containing kinase buffer,
phospholipase-A2 (substrate for Erk), and 2.5 mM ATP. The reaction
was terminated by the addition of 25 μL of ADP-Glo stop reagent
after 40 min. Next, 50 μL of kinase detection reagent was added, the
reaction was incubated for a further 50 min, then luminescence was
measured, and total ERK activity was calculated using a standard
curve with correction for homogenate protein concentration.

Statistical analyses

Statistical analyses were performed with Prism (GraphPad, San
Diego, CA). Data are presented as mean±SD of replicate analyses
from at least 3 independent experiments (or as indicated in the legends
to the figures). Differences between data sets were assessed with one-
wayANOVAwith a Bonferroni correction formultiple comparisons. Sig-
nificance was accepted at the 95% level; Pb0.05.

Results

Vitamin C synergizes with phenoxyl radicals generated from the poly-
phenol BP

To establish that BP was capable of interacting with Vit C, micellular
dispersions of BP were subjected to irradiation and a radical product
was detected with EPR spectroscopy (Fig. 1). Irradiated solutions of BP
yielded a broad singlet (Fig. 1A) that was not detected in the absence
of the light source (Fig. 1B). Based on these observations, the EPR signal
was assigned as the phenoxyl radical derived from the one-electron ox-
idation of BP. Hyperfine coupling toH-atomson the biphenyl ringswere
not resolved, even after decreasing modulation amplitude to 0.01 mT
(data not shown). The potential for rapid electron transfer between
the biphenyl ring structure and/or themolecular oxygen likely explains
this line-broadening effect detected. In the presence of Vit C, the broad
singlet featurewas replaced by a doublet signal with hyperfine splitting
~0.2 mT (compare Figs. 1A and C), which has previously been assigned
as the ascorbyl radical [36]. These data indicate that phenoxyl radicals
derived from BP are chemically reduced by Vit C to yield ascorbyl radi-
cals, overall regenerating BP in this process.

To assess whether this interaction between Vit C and BP inhibits
oxidation in a biological context, we determined the impact of Vit C
and BP cosupplementation on Mb-mediated lipid oxidation using
low-density lipoprotein (LDL) as a target [37]. As anticipated, expo-
sure of LDL to horse heart ferric Mb and H2O2 (final ratio Mb/H2O2

1:5 mol/mol) in the absence of antioxidant pretreatment resulted in
the consumption of Vit E (α-tocopherol; α-TOH) and concomitant ac-
cumulation of CeO(O)H (hatched squares in Supplemental Figs. IA
and B). Supplementation of LDL with BP alone prior to treatment

with Mb/H2O2 inhibited the consumption of α-TOH and protected
LDL lipids from oxidation and this coincided with depletion of BP
prior to α-TOH (filled circles in Supplemental Figs. IA, B, and C). Intro-
duction of Vit C at 25, 50, or 100 μM before supplementation with BP
increased the time for onset of BP and α-TOH consumption and in
turn inhibited CeO(O)H accumulation in a dose-dependent fashion
(Supplemental Figs. IA, B, and C). Depletion of Vit C preceded BP
followed by the consumption of α-TOH and accumulation of CeO(O)
H (cf. Supplemental Figs. ID with A, B, and C): notably, the highest
Vit C dose tested completely inhibited lipid oxidation and spared
both BP and α-TOH. Thus, cosupplementation with low-molecular-
weight antioxidants may lead to an enhanced antioxidant capacity
through a synergistic mechanism that protects lipids from oxidation
initiated by ferric Mb.

Antioxidant levels in supplemented animals

The antioxidant status of the animals was examined both before
and after induction of RM. Consistent with the study design, animals
treated with BP (0.12% w/w) in the diet contained both BP and the
oxidation product DQ in both plasma (total drug 42.19±8.3 μM;
mean±SD, n=8) and renal tissue homogenate (total drug 6.6±3.4
pmol/mg protein; n=8), suggesting that a significant amount of the
drug was present in the samples (Figs. 2A and B). Notably, the pheno-
lic antioxidant was primarily present in its antioxidant active form
(ratio of BP/DQ>96.7%; Pb0.05) as opposed to its oxidized form in

Fig. 1. Vitamin C chemically reduces the phenoxyl radical derived from the polyphenol
BP to yield ascorbyl radicals. Micelles containing 100 μM BP were prepared as de-
scribed in the methods section and then irradiated to generate a phenoxyl radical
detected by EPR spectroscopy. Where required, vitamin C was added to the micellular
dispersions. EPR spectra were obtained from (A) 100 μM BP irradiated with white light,
(B) samples containing BP without irradiation, (C) 100 μM BP irradiated with white
light and then treated with 250 μM vitamin C, and (D) samples containing BP and vita-
min C without irradiation. Spectra were recorded at 9.41 GHz with modulation ampli-
tude 0.8 G and modulation frequency 12.5 kHz and are the average of three cumulative
scans.
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vivo. In the absence of dietary supplementation no BP or DQ was
detected in the Sham or Control groups.

The concentration of Vit C was also elevated significantly in the
plasma and kidneys of ascorbate-treated animals compared with the
Sham and Control animals (Figs. 3 and 4A and B): supplementation
with BP had no affect on plasma or tissue levels of Vit C. Interestingly,
after RM induction animals in the Control group showed a significant
decrease in plasma Vit C, which was not apparent in samples from an-
imals supplemented with BP, indicating that the synthetic bisphenol
may ameliorate the depletion of endogenous Vit C after the induction
of muscle myolysis. The impact of experimental RM on the plasma
and tissue urate levels was also assessed by liquid chromatography
(Fig. 3 and Figs. 4C and D). In the absence of antioxidant supplemen-
tation, urate increased markedly in plasma and renal tissues after RM.
Supplementation with Vit C or BP either alone or in combination sig-
nificantly prevented this increase in plasma urate, while in the kidney
Vit C was more effective than BP in decreasing urate concentrations.

Lipid markers of oxidative damage

Analysis of lipid profiles afforded a comparison of plasma and
renal tissue markers of lipid oxidation following experimental RM
(Tables 2 and 3). Plasma concentrations of FC and CE remained
unchanged in all groups except animals treated with both BP and
Vit C whereas a significant increase in C20:4 was observed compared
to the Sham group. Notably, plasma concentrations of CeO(O)H in-
creased in the Control versus Sham groups, indicative of enhanced
oxidative damage. In animals supplemented with BP, CeO(O)H levels
were decreased to background levels detected in the Sham. While an-
imals supplemented with Vit C alone showed a ~4-fold decrease in
plasma CeO(O)H this level of lipid oxidation remained significantly
higher than for the Sham group.

Animals treated with both BP and Vit C showed a 10-fold decrease
relative to the Control group and this was not different from the effect
of BP alone. Overall, α-TOH levels showed no significant changes

Fig. 2. Supplementation with dietary bisphenol increases the antioxidant content in
plasma and renal tissues of rats. Animals were supplemented with BP (0.12% w/w in
the diet) for 4 weeks. After treatment, they were euthanized and samples of kidney tis-
sue and blood were obtained. Plasma was derived fromwhole blood and the kidney tis-
sue was homogenized as detailed in the methods section. The concentration of BP and
its oxidized product, DQ, in plasma (A) and kidney tissues (B) were determined by
reversed-phase gradient liquid chromatography. Concentrations of renal antioxidants
were normalized against total protein and expressed in units of ρmol/mg protein.
Data represent mean±SD; n=8 for both groups. *Decreased relative to the BP concen-
tration detected in the same samples, Pb0.05.

Fig. 3. Representative chromatograms showing changes in Vit C and urate in rats after in-
duction of experimental RM. Animals were separated into different experimental groups
andwere supplementedwith BP (0.12%w/w in the diet) for 4 weekswith andwithout vi-
tamin C (500 mg/kg administered ip as a solution in PBS) as described in themethods sec-
tion. After induction of experimental RM (or not Sham), animals were euthanized, blood
and kidneys were harvested, plasma was isolated, and the renal tissues were homoge-
nized. Next, the concentration of Vit C and urate was measured in the plasma (Panel B,
Sham; Panel C, Vit C supplemented group) and renal tissue (Panel D, Vit C supplemented
group; Panel E, Control) with liquid chromatography using electrochemical detection and
concentrations determined by comparison to corresponding authentic standards
(Panel A) 1 μMVit C, 1 μM isoascorbate, and 1 μM urate. In all analyses, 5 μM isoascorbate
was employed as the internal standard and values of Vit Cwere corrected against recovery
of isoascorbate after sample workup as described previously [30].

Fig. 4. Quantification of vitamin C and urate levels in plasma and renal tissues following
experimental RM. The levels of the Vit C and urate in the plasma (A, C) and kidney ho-
mogenates (B, D) were measured as described in the legend to Fig. 3. Values were nor-
malized using total protein and expressed in units of ρmol/mg protein. Data are
expressed as mean±SD for Sham (n=8), Control (n=8), BP (n=6), Vit C (n=8),
and combined BP+Vit C (n=8) groups. *Different to the Sham group, Pb0.05; #Differ-
ent than animals supplemented with BP, Pb0.05.
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irrespective of any treatment with regard to Sham and Control
groups, indicating that inhibition of lipid peroxidation was unlikely
directly dependent on this lipid-soluble antioxidant.

In renal homogenates the levels of FC and α-TOH remained
unchanged in all groups indicating that antioxidant supplementation
did not affect the tissue content of lipid-soluble vitamin E. In the an-
imals treated with both BP and vitamin C renal tissues contained sig-
nificantly higher levels of C20:4 than the Sham group, which was
consistent with the increase in C20:4 detected in the plasma of the
same animals. Levels of CeO(O)H increased in renal tissues after in-
duction of experimental RM, whereas antioxidant supplementation
significantly decreased oxidized lipid accumulation in renal tissues
with all groups reaching baseline levels detected in the Sham group.

Relative to the Sham, total F2-isoprostane concentration was ele-
vated significantly in the Control group after RM. Thus similar to the
marker of cell membrane of oxidation CeO(O)H, F2-isoprostane levels
increased ~3- and ~7-fold in plasma and renal tissues, respectively.
Supplementation with either BP or Vit C prior to RM induction signif-
icantly inhibited the formation of F2-isoprostanes in both plasma and
renal tissues. Interestingly, cosupplementation with BP and Vit C was
more efficient in inhibiting plasma F2-isoprostanes than animals re-
ceiving Vit C or BP alone, suggesting that the synergy between Vit C
and BP may have enhanced plasma antioxidant activity and protected
plasma lipids from pro-oxidant Mb. By contrast, this enhanced anti-
oxidant efficacy was not evident in renal tissues where the inhibition
of F2-isoprostanes was similar among all antioxidant-supplemented
groups.

Expression of monocyte chemoattractant protein-1

The secreted protein MCP-1 displays chemotactic activity for
monocytes and is produced in renal cells through activation of the

NF-κB/TNF pathway [38]. The plasma concentration of MCP-1 in-
creased 3-fold after induction of experimental RM compared to the
Sham group, suggesting that enhanced inflammation may be linked
to increased oxidative stress resulting from extracellular Mb accumu-
lation in the kidney (Fig. 5A). All antioxidant treatments (alone or in
combination) yielded a significant decrease in this inflammatory
marker.

Aortic function

In the absence of antioxidant supplementation aortic cGMP de-
creased substantially in animals subjected to experimental RM (com-
pare levels in Control and Sham groups, Fig. 5B). By contrast, aortic
cGMP concentration was restored to near baseline levels in animals
receiving BP or vitamin C compared with Control animals. The recov-
ery of aortic cGMP levels in animals cosupplemented with BP and Vit
C was greater than that determined in animals supplemented with BP
or Vit C alone; however, this trend was not statistically significant.

Gene regulation in renal tissues

Next, the regulation of antioxidant response genes was examined
in renal tissues (Table 4). In comparison with the Sham group, a~6-
fold increase in GPx-4 gene expression was determined in the Control
group.Within the SOD family, only SOD-1 showed amarked elevation
after RM induction. Supplementation with antioxidants inhibited
Gpx-4 gene and SOD-1 gene regulation in renal tissues. Induction of
RM also markedly increased expression of the transcription factor
NF-κB coupled with a trend to increase TNF-α that did not reach sta-
tistical significance, at least when determined 24 h after RM induction
(Table 4).

Table 2
Plasma concentrations of native and oxidized lipids and vitamin Ea.

Sham (n=4)b Control (n=4) BP (n=4) Vitamin C (n=8) BP+vitamin C (n=8)

[FC] mM 0.8±0.3 0.8±0.2 0.8±0.2 0.7±0.3 0.9±0.1
[TOH] μM 7.3±2.6 5.7±1.8 7.4±1.9 6.0±4.3 5.6±1.9
[CeO(O)H] nM 13±2 37±2⁎ 10±6# 16±2# 10±1#

[C18:2] mM 0.3±0.02 0.3±0.02 0.3±0.3 0.4±0.2 0.4±0.2
[C20:4] mM 0.9±0.4 1.1±0.6 1.0±0.5 2.1±2.2 1.2±0.4
[F2-Isoprostanes] pg/mL 45.2±2.7 138.5±6.9⁎ 80.1±7.8⁎,# 68.8±19.2# 39.8±9.1#

a Animals supplemented with normal chow (Sham), vehicle-treated chow (Control), chow supplemented with bisphenol (BP; 0.12% w/w in the diet for 4 weeks) with or without
Vit C coadministration (three consecutive ip injections as described in the methods section) were subjected to experimental RM (except Sham). After 24 h, animals were euthanized
and samples of blood were obtained and the parameters listed were measured by liquid chromatography as described in the methods section. Data are expressed as mean±(SD).
FC, unesterified cholesterol; α-TOH, α-tocopherol (biologically active vitamin E); C18:2, cholesteryl linoleate; C20:4, cholesteryl arachidonate; CE, combined cholesteryl esters
representing the sum of C18:2 and C20:4; CeO(O)H, CE-derived lipid hydroperoxides and hydroxides.

b Units of measurement and the numbers of samples tested (n) for all parameters are as indicated.
⁎ Different to the Sham group; Pb0.05.
# Different to the Control group; Pb0.05.

Table 3
Kidney tissue concentrations of native and oxidized lipids and vitamin Ea.

Sham (n=6)b Control (n=6) BP (n=6) Vit C (n=8) BP+Vit C (n=8)

[FC] nmol/mg protein 0.2±0.1 0.2±0.1 0.3±0.1 0.3±0.1 0.4±0.2
[TOH] pmol/mg protein 425±207 388±157 398±190 385±163 475±185
[CeO(O)H] pmol/mg protein 2.4±1.9 43.1±8.8⁎ 1.6±1.2# 10.1±2.1⁎,# 4.5±1.7#

[C18:2] nmol/mg protein 0.03±0.03 0.03±0.01 0.02±0.01 0.02±0.01 0.03±0.02
[C20:4] nmol/mg protein 0.06±0.02 0.06±0.01 0.07±0.02 0.07±0.04 0.13±0.1
[F2-Isoprostanes] pmol/mg protein 33.8±6.9 227.2±35.5⁎ 61.9±13.3# 51.2±15.6# 44.3±27.1#

a Animals supplemented with normal chow (Sham), vehicle-treated chow (Control), chow supplemented with bisphenol (BP; 0.12% w/w in the diet for 4 weeks) with or without
vitamin C (Vit C) coadministration (three consecutive ip injections as described in the methods section) were subjected to experimental RM (except Sham). After 24 h, animals
were euthanized, the kidneys were harvested and homogenenized, lipids were extracted, and the parameters listed were measured by liquid chromatography as described in
the methods section. Data are expressed as mean±(SD). FC, unesterified cholesterol; α-TOH, α-tocopherol (biologically active vitamin E); C18:2, cholesteryl linoleate; C20:4, cho-
lesteryl arachidonate; CE, combined cholesteryl esters representing the sum of C18:2 and C20:4; CeO(O)H, CE-derived lipid hydroperoxides and hydroxides.

b Units of measurement and the numbers of samples tested (n) for all parameters are as indicated.
⁎ Different to the Sham group; Pb0.05.
# Different to the Control group; Pb0.05.
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Enzyme activity

To further confirm the effects of RM and antioxidant treatment on
the antioxidant response elements, activities for total GPx and SOD
were determined in renal tissues as well as specific Gpx-4 activity
(Figs. 5C and D). Overall, RM induced a ~3-fold increase in GPx activ-
ity, whereas antioxidant treatment (BP, Vit C, BP+Vit C) diminished
this effect (Fig. 5C). Animals supplemented with BP or Vit C alone
showed greater inhibition of GPx activity than the group treated
with both BP and Vit C. Of the GPx isoforms GPx-4 is characterized
by its ability to preferentially reduce phospholipid hydroperoxides

[39]. Consistent with this increase in total GPx activity, specific GPx-
4 activity increased and this was also modulated by antioxidant sup-
plementation (Fig. 5C). Similarly, renal SOD activity increased after
RM (relative to the Sham group) (Fig. 5D). Unexpectedly, renal SOD
activity remained elevated in animals supplemented with antioxi-
dants despite the marked decrease in SOD-1 gene expression in the
same animals.

Renal kinase activity

Measurement of Erk activity in renal homogenates was performed
by using a commercial kit. Overall, RM induced a marked elevation in
Erk activity as judged by comparing the Control and Sham groups,
whereas animals supplemented with BP, Vit C, or the combination
of both antioxidants showed lower activity levels, suggesting that di-
minished oxidative stress was linked to normalization of renal Erk ac-
tivity (Fig. 6).

Kidney morphology

Histopathological assessment of renal sections from the Sham
group (Fig. 7A) showed normal morphology in the glomerular tuft
and tubular network. By contrast, the kidneys obtained from rats sub-
jected to experimental RM (Fig. 7B) showed an abundance of tubule
casts and disruption of the epithelial brush border of the renal tubule
network. Supplementation with BP alone or in combination with Vit C
had no marked effect on the renal histopathology (Figs. 7C and E),
whereas animals supplemented with Vit C alone (Fig. 7D) showed de-
crease frequency of renal casts and near to normal appearance of ep-
ithelial brush borders.

Biochemical analysis of renal function

In the absence of antioxidant treatment, muscle myolysis stimu-
lated significant increases in plasma urea and creatinine, while levels
of most other mono- and divalent cations remained unchanged
(Table 5). Elevation of urinary K+ ion was determined, and this
occurred concomitantly with a significant decrease in CCr (Table 5).
Assessment of urinary markers of AKI indicated increased proteinuria
accompanied by elevated levels of KIM-1 and clusterin, all consistent
with significant renal dysfunction after RM (Fig. 8). Overall, supple-
mentation with BP or Vit C had no or little effect on renal dysfunction
induced by RM as judged by assessing CCr and blood nitrogen levels
(Table 5) or urinary biomarkers of AKI (Figs. 8A–C). However,

Fig. 5. Plasma levels of monocyte chemoattractant protein 1, aortic content of cGMP, and
renal antioxidant enzyme activity in rats exposed to experimental RM. Animals were sep-
arated into five experimental groups as described in the legend to Fig. 3 and exposed to
experimental RM, and after 24 h the plasma, aorta and kidney were isolated as described
in the methods section. Plasma was assessed for (A) MCP-1 concentration; (B) levels of
cGMPwere determined in aortic homogenates and kidney tissue homogenates were sub-
jected to determinations of (C) total GPx (black bar) and specific GPx-4 activity (hatched
bar) and (D) total SOD activity. Parameters were normalized to the corresponding total
protein and where appropriate activity was expressed as a fold-change compared to the
Sham (arbitrarily assigned unitary value). Data are expressed as mean±SD for Sham
(n=8), Control (n=8), BP (n=6), vitamin C (n=8), and BP+vitamin C (n=8). *Differ-
ent to the Sham group, Pb0.05. #Different to the Control group; Pb0.05.

Table 4
Gene expression in renal tissues.

Treatment

Sham
(n=8)

Control
(n=8)

BP
(n=8)

Vit C
(n=8)

BP+Vit C
(n=7)

SOD-1 1.0 (0.0) 3.1 (0.1)* 1.5 (0.1)# 1.2 (0.1) 1.3 (0.1)#

SOD-2 1.0 (0.3) 1.3 (0.2) 1.3 (0.1) 1.2 (0.1) 1.3 (0.0)
GPx-4 1.0 (0.1) 5.7 (0.1)* 2.7 (0.4)# 4.4 (0.2) 2.5 (0.0)#

NF-κB 1.0 (0.2) 2.7 (0.2)* 2.0 (0.4)* 1.4 (0.7) 2.0 (0.0)*
TNF-α 1.0 (0.4) 1.8 (0.8) 1.6 (0.2) 1.4 (1.1) 1.1 (0.1)*

Animals supplemented with normal chow (Sham), vehicle-treated chow (Control), and
chow supplemented with BP (0.12% w/w in the diet for 4 weeks) with or without
(Vit C) coadministration (three consecutive ip injections as described in the methods
section) were subsequently subjected to experimental RM (except Sham). After 24 h,
animals were euthanized, the kidneys harvested and homogenenized, and then total
mRNA was isolated and the corresponding cDNA probed for gene regulation using
RT-PCR as described in the methods section. Note, gene expression levels in the
Sham were arbitrarily assigned a value=1 and other data are expressed relative to
this level. Data represent mean±(SD) from n=different animals as indicated.
⁎Significantly different to the Sham; Pb0.05.

# Significantly different to the corresponding Control group; Pb0.05.

Fig. 6. Activation of the MAPK ERK in renal tissues after experimental RM. Animals
were separated into five experimental groups as described in the legend to Fig. 3 and
exposed to experimental RM, and after 24 h the kidneys were isolated and homoge-
nized as described in the methods section. MAPK activity was determined using a com-
mercial kit. Data are expressed as mean±SD for Sham (n=8), Control (n=8), BP
(n=6), vitamin C (n=8), and BP+vitamin C (n=8). *Significantly different to the
Sham group, Pb0.05. # Different to the Control group; Pb0.05.
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proteinuria decreased significantly in animals supplemented with Vit
C alone (Fig. 8A), although CCr, blood nitrogen levels, and urinary
concentrations of KIM-1 and clusterin remained elevated in this
same group of animals (Table 5 and Figs. 8B and C).

Discussion

Despite advances in renal replacement therapies, AKI remains a
prevalent clinical complication that is strongly associated with high

Fig. 7. Morphological changes in kidneys following experimental RM. Animals were separated into five experimental groups as described in the legend to Fig. 3 and exposed to
experimental RM, and after 24 h the kidneys were isolated, stored in 4% v/v formalin, and prepared for histology. Representative sections shown are from (A) Sham, (B) Control,
(C) BP-treated, (D) Vit C-treated, and (E) animals cosupplemented with both BP and Vit C. Figures are representative of at least four independent samples from each treatment
group at two different fields of view (40×magni fication). Red arrows indicate cast formation; blue arrows indicate changes in brush border.

Table 5
Renal function assessed by plasma and urinary biochemistry a.

Parameter Sham (n=8) Control (n=16) BP (n=12) Vit C (n=8) Vit C+BP (n=8)

Urine
Na+ (mmol/L) 31.3 (16.0) 48.8 (12.9) 33.6 (13.3) 26.6 (13.8) 27.6 (13.0)
K+ (mmol/L) 179.9 (32.3) 137.3 (27.3)⁎ 121.4 (31.6)⁎ 126.7 (49.4)⁎ 99.5 (30.3)⁎

CCR (mL/min) 3.6 (1.2) 1.2 (0.8)⁎ 1.3 (0.8)⁎ 1.9 (0.9)⁎ 1.4 (1.1)⁎

Plasma
Na+ (mmol/L) 178.3 (49.7) 190.3 (60.6) 167.1 (30.5) 211.1 (21.0) 207.4 (20.2)
K+ (mmol/L) 4.6 (1.4) 4.4 (1.0) 5.1 (0.7) 4.0 (0.9) 4.1 (0.9)
Cl- (mmol/L) 119.9 (18.7) 108.1 (19.2) 113.0 (11.7) 106.3 (4.4) 104.5 (3.4)
Urea (mmol/L) 5.0 (0.8) 13.3 (6.2)⁎ 17.5 (9.9)⁎ 16.2 (8.9)⁎ 19.5 (9.9)⁎

Creatinine (μmol/L) 16.8 (2.1) 56.3 (19.6)⁎ 63.5 (21.0)⁎ 48.8 (15.9)⁎ 55.9 (27.6)⁎

Ca (mmol/L) 2.2 (0.4) 2.1 (0.6) 2.4 (0.3) 2.0 (0.3) 2.0 (0.2)
a Blood plasma and urine were collected 24 h after the induction of experimental RM and concentrations of different biochemical parameters were measured. Data are expressed

as mean±(SD). Units of measurement and the numbers of samples tested (n values for all parameters) are as indicated in the table. Creatinine clearance (CCR) was calculated as
described in the methods section.
⁎ Different to the Sham group; Pb0.05.
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mortality rates in patients with RM subsequent to severe burns [8,40].
Studies assessing the peak levels of plasma Mb as a risk factor for
renal failure suggest that Mb may be useful for predicting the extent
of AKI in patients [41]. Although the use of urinary Mb as a marker re-
quires further evaluation [42], it is known that redox cycling of the
Mb from ferrous to ferric and to ferryl oxidation states can initiate
lipid peroxidation and renal injury without invoking release of free
iron [43,44]. Extracellular Mb is a pro-oxidant and causes the oxidation
of a wide range of biological targets including low-molecular-weight
phenols and amino acids in proteins [45,46]. Urinary malondialdehyde,
used as an in vivomarker of in vivo oxidation, increases in thermal burn
patients before the development of acute renal failure [47]. Therefore,
antioxidants that inhibit Mb pro-oxidant activity and decrease oxida-
tive damage have the potential to also regulate the extent of AKI during
RM. Here we demonstrated that pharmacological concentrations of BP
or Vit C (administered either separately or in combination) protected
plasma constituents and renal tissues from oxidative damage (as
assessed using two indices of lipid oxidation) and inflammation in-
duced by experimental RM, yet only rats supplemented with Vit C
alone were protected from renal failure as judged by monitoring
some, though not all, markers of AKI in this animal model.

Renal tissues showed elevated SOD and Gpx activities, indicating an
endogenous increase in antioxidant capacity in response to experimen-
tal RM. Despite this response, oxidative processes led to cumulative
damage in renal tissues, decreased vascular function, and increases in

markers of AKI that reflect renal insufficiency after RM. Therefore, the
idea to enhance antioxidant capacity prior to experimental RM has
some merit. Overall, increasing plasma and tissue levels of BP, Vit C, or
both BP and Vit C effectively inhibited CE oxidation and F2-isoprostane
accumulation in the plasma and renal tissues and this is likely due to
the synergistic action of BP and Vit C that enhances their antioxidant ef-
ficacy (Supplemental Fig. I). Reduced oxidative damage in the kidney
was associated with a decrease in renal inflammatory status, indicating
that the low-molecular-weight antioxidants were highly effective in
protecting the vasculature and renal tissues from Mb-mediated injury.
With the exception of F2-isoprostane accumulation in plasma, the ef-
fects of cosupplementation with BP and Vit C onmarkers of lipid oxida-
tion and inflammation did not differ from supplementation with BP or
Vit C administered separately, suggesting that optimal synergism be-
tween these antioxidants was already evident before increasing Vit C
levels in these animals. These results taken together demonstrate that
supplementation with either BP or Vit C efficiently bolsters antioxidant
capacity in vivo; however, this does not consistently lead to improved
renal function after challenge with experimental RM. Our data demon-
strate that both Vit C and BP exhibit near identical antioxidant activity,
yet only Vit C improves selectmarkers of AKI, which suggests that other
characteristics of this water-soluble antioxidant are important to renal
protection.

Impaired renal perfusion by RM-induced vasoconstriction causes is-
chemic damage to kidney tissues including damage to the glomerular
basement membrane and renal tubule epithelia that together promote
AKI [29,48]. The importance of maintaining renal vascular perfusion is
highlighted by studies demonstrating that administration of an NO
donor and L-arginine, the substrate for endothelial nitric oxide synthase
(eNOS), protects renal tissues from experimental RM[49]. Furthermore,
renal perfusion is altered in eNOS-deficient mice [50,51], suggesting
thatmaintenance of factors associatedwith normal vascular tone is cru-
cial for sustained renal function. Notably, antioxidants are capable of
protecting the renal vasculature through NO-dependent mechanisms
[52] and through inhibiting the formation of F2-isoprostanes [9,10]
that also impact on vascular relaxation. Here we demonstrated that
both BP and Vit C (either administered alone or together) restored aor-
tic function to similar extents as judged by the yield of aortic cGMP from
antioxidant-supplemented animals. If this result can be extrapolated to
the renal (micro)vasculature then it suggests that, similar to the inhibi-
tion of oxidative stress in renal tissues, improved renal perfusion alone
cannot be the only critical factor associatedwith protecting renal tissues
from experimental RM.

The activation of Erk in renal epithelial cells [53] and other renal cell
types [54] is considered a response to oxidant-induced stress and the
current paradigm is that Erk activity is renal protective. However, not
all studies support such a role for activated Erk. For example, Erk inhibi-
tion decreases damage in response to renal ischemia reperfusion injury
[55]. Consistent with extracellular Mb stimulating ischemia in this ani-
mal model, we determined a Mb-mediated decrease in aortic cGMP
with increases in renal Erk activity. Several mitogen-activated protein
kinase (MAPK) pathways are activated in the kidney after experimental
RM including Erk and the stress-activated kinase JNK and this response
is associatedwith improved renal function following glycerol-mediated
AKI [56], although not all studies support this conclusion [57]. Indeed,
the MAPK inhibitor U0126 decreases TNF-α-mediated inflammation
and apoptosis in renal injury induced by heavymetals [58]. Herewe de-
termined that BP and Vit C (supplemented separately or together) ef-
fectively inhibited Erk activation to similar extents, decreased both
oxidative stress and the expression of the chemokine MCP-1 but did
not consistently lead to renal protection. Therefore, the impact of Erk
activation and its regulation by low-molecular-weight antioxidants
warrants further study in this animal model.

Outcomes from this study indicate that Vit C ameliorates some
markers of RM-induced AKI as judged by the restoration of urinary
protein and plasma urate to near baseline levels and the presence of

Fig. 8. Biochemical markers of renal function following experimental RM. Animals were
separated into five experimental groups as described in the legend to Fig. 3 and ex-
posed to experimental RM, and after 24 h of isolation urine was collected and analyzed
for the content of (A) total protein, (B) KIM-1, and (C) clusterin. *Different to the Sham
group, Pb0.05. #Different to the Control group; Pb0.05.

1926 L.K. Groebler et al. / Free Radical Biology & Medicine 52 (2012) 1918–1928



PUBLICATION 3 52
fewer renal casts in the kidney tubule network: hyperuricemia is
linked to the pathogenesis of RM-induced renal failure through pro-
moting intratubular obstruction by precipitated urate [59]. However,
other markers of renal damage/dysfunction remained unaffected in
this interventional study. For example, irrespective of Vit C supple-
mentation, both KIM-1, an early marker for epithelial cell dedifferen-
tiation in response to renal tubular injury [60], and clusterin, a
secreted protein that may play a role in apoptosis suppression and
cell aggregation in the kidney [61], were elevated after induction of
experimental RM and this result was similar to that obtained with
rats supplemented with BP alone or in combination with Vit C.
These data suggest that different biomarkers can indicate different
outcomes within the same intervention and caution is required to as-
sert renal protection unless a range of biomarkers of renal dysfunc-
tion is assessed in this animal model. Notably, KIM-1 and clusterin
are currently being further evaluated in this regard. Diagnostic as-
sessment of KIM-1 as a urinary biomarker for renal injury concluded
that elevated levels in the urine correlated with injury in preclinical
models of AKI and outperformed traditional biomarkers of evaluating
renal damage [62]. In addition, age-adjusted levels of KIM-1 in the
urine were higher in patients prior to death or where patients re-
quired renal replacement therapy when compared with survivors
that did not require renal replacement therapy [63]. Although to
date there has been no clinical study assessing the use of clusterin
as a diagnostic marker of renal injury, preclinical testing has indicated
that clusterin may be a useful biomarker when used in conjunction
with traditional clinical biochemical markers and histopathological
assessment of AKI in rodents [64,65].

The data obtained in this study indicate that antioxidants are effec-
tive in decreasing renal oxidative stress and inflammation following
RM-mediated AKI; however, their therapeutic benefit is complicated
by a lack of strong correlation between antioxidant activity and the
array of biomarkers for assessing renal dysfunction. Data collected to-
gether in Supplemental Table I summarize outcomes from some antiox-
idant interventions using thismodel of experimental RM. These data are
presented with the corresponding octanol/water partition coefficients
for the agents tested and their antioxidant action. Overall, all antioxi-
dants tested inhibited oxidative damage. In general, those agents with
low partition coefficients (or enhancedwater solubility) showed greater
renal protective potential than themore lipid-soluble agents (i.e., hydro-
phobic agents with higher partition coefficients), at least when assessed
using older generation biomarkers of renal damage. However, this trend
is not always the case. For example, although the hydrophilic analgesic
acetominophen shows reno-protection that is strongly associated with
inhibiting plasma and urinary F2-isoprostane accumulation, the hydro-
philic antioxidant caffeic acid is unable to protect kidney tissues from ex-
perimental RM despite inhibiting malondialdehyde accumulation.
Therefore, the question of whether antioxidants have a place in the pre-
vention or therapy for AKI after RM andwhichmarkers of renal dysfunc-
tion best reflect reno-protective activity remains unclear and further
studies evaluating RM-induced AKI using a combination of early and
late markers of renal damage may be required to provide a definitive
answer.
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Supplementary Experimental Section 
Materials 

Phosphate buffer (pH 7.4, 50 mM) was prepared from nanopure water and the 

corresponding conjugate acid and base. All reagents were of the highest purity 

available. Buffers were stored over Chelex-100 (Bio-Rad) at 4 °C for 24 h then treated 

with diethylentriamene pentaacetate (DTPA; final concentration 100 μM) to remove 

any contaminating transition metals. Ferric horse heart myoglobin (Mb), potassium 

bromide (KBr), diethylentriamene pentaacetate and hydrogen peroxide (H2O2; 30% 

w/v) were obtained from Sigma (Sydney Australia). 

Isolation of low-density lipoprotein (LDL) 

Blood was obtained from a non-fasted healthy donor (male 44 years of age), drawn into 

heparin-containing vacutainers, and LDL was isolated by ultracentrifugation using a 

KBr gradient as described previously [1]. The isolated LDL (0.25-0.5 mg apoB100/mL) 

was stored at 4 °C for 16 h before use. Immediately prior to use, KBr and remaining 

low-molecular mass, water-soluble antioxidants were removed by gel filtration (PD-10 

column, Pharmacia, Uppsala, Sweden). LDL protein concentrations were determined 

with the using the BCA assay (Sigma, Sydney Australia) with an Ultramark Microplate 

system (Bio-Rad, Sydney, Australia) and Microplate Manager software v5.1. 

Where required, isolated LDL was treated with an ethanolic solution of BP (diluted to a 

final concentration of 50 μM) or vehicle as control.  LDL samples containing BP were 

then treated with ascorbate from a 5 mM stock solution to yield final concentrations of 

25, 50 and 100 μM or vehicle to yield co-supplemented LDL samples and a sample 

containing BP in the absence of added Vit C.  Next, the lipoprotein mixtures were 

chilled to 4 °C and combined with ferric Mb and H2O2 (Mb/H2O2 ratio 5:25 

mol/mol/mol), and the reaction mixture was incubated at 37 °C and samples obtained 

after 0, 15, 30, 60 and 240 min. 

Oxidation of isolated LDL 

Analysis of lipid oxidation and consumption of lipid- and water-soluble antioxidants 

were performed by reversed-phase HPLC as described previously [1,2] except that 

accumulating lipid oxidation products were estimated using UV234nm rather than post-

column chemiluminescence detection; cholesteryl linoleate hydroperoxides and 

hydroxides (together referred to as CeO(O)H)) exhibit similar retention times under the 
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HPLC conditions employed. Accumulating CeO(O)H were quantified by area 

comparison with an authentic standard of cholesteryl linoleate hydroperoxide. 
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6 Discussion 

6.1 Oxidant Injury and Rhabdomyolysis-Induced Renal Failure 

There is accumulating evidence for a causative role of Mb-mediated oxidative injury to 

the kidney in the development of RM-induced renal failure (Reeder, Hider et al. 2008). 

Herein, we tested two hypotheses to explain the mechanism by which Mb can cause 

injury to the kidney. First, we compared the ability of a novel chelator DFOB-AdAOH 

and its parent compound DFOB to protect cultured kidney epithelial cells in an 

established cell model of RM that mimics urinary Mb levels detected in severe electrical 

burn-induced muscle RM. Second, we compared the renal protection of a synthetic 

phenolic antioxidant BP in an experimental model of RM with or without Vit C co-

supplementation. The outcomes from the studies undertaken here indicate that chelators 

and antioxidants may play a role in ameliorating damage to kidney cells and tissues but 

that this may not be sufficient to reverse the underlying acute kidney injury, leading to 

renal failure. 

6.2 Desferrioxamine B 

The release of free ferrous iron from Mb during degradative processes can lead to the 

generation of free radicals (e.g., hydroxyl radicals via the Fenton reaction) and this may 

be causally linked to renal failure. Previous studies showed that desferrioxamine 

decreased RM-induced renal injury in the rat (Paller 1988) and protected kidney cells 

from direct exposure to Mb (Zager 1992; Zager and Burkhart 1997). However, there is a 

growing school of thought that it is the intact Mb protein itself rather than the iron that 

leads to myoglobinuric oxidative stress after induction of RM (Boutaud and Roberts 

2011). The reactive oxygen species produced by Fenton reaction is the hydroxyl radical. 

Therefore, a wide range of compounds that scavenge •OH, such as dimethylthiourea, 

benzoate and mannitol were tested to protect the cells from the Mb-induced injury, but 

this approach has been largely unsatisfactory (Zager and Burkhart 1997). 

The effects of DFOB observed both in vivo and in cell culture instead point to Mb 

acting via a pseudo-peroxidase manner, which mediates lipid peroxidation (Figure 5). 

Moreover, the urine of humans with RM contains increased levels of F2-isoprostanes 

and hemoprotein cross-links, both outcomes indicative of Mb peroxidase activity 
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(Reeder, Sharpe et al. 2002). These data unambiguously demonstrate that Mb redox 

cycling occurs in the kidney of patients with RM, as the hemoprotein cross-link forms 

only by the reaction of the ferryl-heme and the globin radical (Reeder, Svistunenko et 

al. 2002). 

In addition to the evidence presented above that supports a peroxidase action for Mb in 

the setting of RM, the ability of catalase, an endogenous scavenger of H2O2, to 

completely inhibit Mb induced damage in vitro confirms the importance of H2O2 in the 

Mb pro-oxidative mechanism (Zager and Burkhart 1997). Both ferric and ferrous Mb 

can react with H2O2 to produce water, and perferrylmyoglobin. Also known as 

Compound I, the ferryl Mb contains hypervalent iron that manifests as a radical 

porphyrin cation, a potent two-electron oxidant. This oxidant is able to react with a wide 

range of biological substrates, yielding oxidatively modified products. For example, 

Compound I reacts with phenols (including amino acids) to produce the corresponding 

quinones, and regenerates ferrous Mb in the process, thus continuing the cycle of 

damage (see Figure 5). 

Oxidizing Mb reacts with low-molecular weight antioxidants such as ascorbate (Irwin, 

Østdal et al. 1999) and glutathione (GSH) (Galaris, Cadenas et al. 1989) and this can 

lead to a depletion of the cell antioxidant status and increased cellular oxidative stress. 

For example, depletion of GSH in the endothelium upon exposure to pro-oxidant Mb 

linked to the cytotoxicity of this hemoprotein (D'Agnillo, Wood et al. 2000). 
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Figure 5   The pseudo-peroxidase activity of Myoglobin 

Reduction of H2O2 to water results in oxidation of the Fe(III) heme to an 
Fe(IV) species that cycles back to Fe(III) heme in the presence of suitable 
substrates. Modified from Reeder et al. (2008). FRBM 44(3): 264-273. 

 
This leads to a logical hypothesis that an appropriate antioxidant (for example, perhaps 

a synthetic polyphenol) may offer protection against this oxidative stress if it is 

preferentially oxidized by the various Mb-derived oxidants over other biological 

substrates. 

The chelator DFOB is also known to be a reductant of ferryl-Mb (Rice-Evans, Okunade 

et al. 1989; Reeder, Hider et al. 2008), which would explain its beneficial effects apart 

from iron chelation. But even if it is a combination of these different mechanisms 

involving antioxidant and metal chelating activities, we have clearly shown that DFOB 

and its new derivative can intervene in both pathological pathways. First, we have 

shown that DFOB and DFOB-AdAOH bind Fe as a stable Fe(III)-chelator complex that 

does not redox cycle to the Fe(II)-complex (Liu, Obando et al. 2009). Second, we tested 

the ability of this new chelator to inhibit the peroxidase activity of Mb. We confirmed a 

similar antioxidant activity of DFOB-AdAOH compared to DFOB by the ability of the 

chelators to inhibit oxidizing Mb through formation of nitroxide radicals that lead to the 

depletion of DFOB-AdAOH. 

The advantage of DFOB lies in its broad spectrum of biological activity but is limited 

due to its relatively high toxicity. By conjugating DFOB to an adamantyl derivative we 
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have a new class of iron chelator with superior properties in regards of toxicity and 

lipophilicity. DFOB-AdAOH is not only a promising candidate in the prevention of ARF 

as a consequence of RM but also in the treatment of diverse iron overload diseases such 

as β-thalassemia (Liu, Obando et al. 2009). 

6.3 Bisphenol and Vitamin C 

The phenolic antioxidant BP exhibits biological activity that is in part based on its free 

radical scavenging (or antioxidant) activity. Synthetic BP was strategically designed 

through a structure-function study using the inhibition of lipoprotein oxidation and 

synergism with Vit C was used in this study for developing an improved antioxidant 

(Witting, Westerlund et al. 1996). Notably, studies performed with BP supplementation 

in animal models of atherosclerosis showed both inhibition of aortic accumulation of 

oxidized lipids and a concomitant reduction of markers of aortic oxidative damage. 

However, the studies produced conflicting results in terms of pathological outcome with 

BP-supplementation inhibiting atherosclerosis in genetically modified low-density 

lipoprotein deficient mice (Witting, Pettersson et al. 1999), but being unable to inhibit 

lesion development in Watanabe heritable hyperlipidaemic rabbit (Witting, Pettersson et 

al. 1999). Nevertheless, these data demonstrated that supplemented BP was active in 

vivo and readily inhibited aortic lipid oxidation consistent with its molecular design. 

Vit C is capable of scavenging/neutralizing an array of reactive oxygen species and can 

regenerate/recycle other phenolic antioxidants. Similar to the polyphenol BP, Vit C 

reacts with lipid-derived free radicals to protect cell membranes from oxidation (Retsky, 

Chen et al. 1999) and this has been shown to be beneficial in some animal models 

where oxidative damage is reported to play a central role in disease progression 

(Bendich and Langseth 1995). 

A range of outcomes investigated in this study confirmed increasing oxidative stress in 

the modified-glycerol model of RM. Most notably, there is evidence of increased lipid 

(per)oxidation in both the circulating blood and renal tissues that occurs concomitantly 

with the release of extracellular Mb. In line with other studies our experiments support 

the role of Mb redox cycling in the development of RM-induced renal failure. The high 

levels of Mb accumulating in the kidney have been shown to cause lipid peroxidation in 

that target organ as reflected by markedly increased F2-isoprostane and CE oxidation in 

the plasma and accumulation of F2-isoprostanes in the kidney in the rat model of RM 
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(Moore, Holt et al. 1998). Supplementation with BP, Vit C or both BP and Vit C 

inhibited lipid peroxidation and inflammation but only Vit C, when administered alone, 

improved renal function in this animal model of RM. 

This enhanced oxidative damage was paralleled by a decrease in the aortic content of 

cGMP suggesting that nitric oxide (•NO) production is decreased during RM-induced 

acute renal failure and that changes in vascular function may be centrally related to 

impaired renal function in this animal model. The balance between vaso-constriction 

and vaso-relaxation acts to maintain vascular tone and regulate circulating blood 

pressure (Andriambeloson and Witting 2002). Indeed, it has been suggested that 

vascular dysfunction induced by myoglobinuria plays a role in limiting blood supply to 

the kidney and exacerbating damage to the renal tissues (Wakabayashi and Kikawada 

1996). 

Experimental administration of an •NO donor or the •NO precursor L-arginine have the 

potential to protect the kidneys from injury after RM (Chander and Chopra 2005). 

Endothelium-derived •NO is the primary vaso-dilating agent produced in the 

vasculature, which is produced by the action of endothelial nitric oxide synthase on L-

arginine. This process generates L-citrulline and •NO as products, and •NO plays a vital 

role in vessel dilation by regulating peripheral vascular resistance and ultimately blood 

pressure (Andriambeloson and Witting 2002). To initiate vessel dilation, •NO binds to 

and activates its molecular target protein, the enzyme soluble guanylyl cyclase (sGC) 

within the underlying vascular smooth muscle cells (VSMC). The binding of •NO to 

sGC activates the enzyme by up to 200-fold and this catalyses the conversion of GTP to 

the effector molecule cGMP. Subsequently, synthesised cGMP activates a cascade of 

effector proteins that initiate vessel dilation by stimulating VSMC relaxation. 

However, •NO is highly reactive with free radicals such as superoxide radical anion, 

and both peroxyl and hydroxyl radicals. Importantly, extracellular Mb is potentially 

toxic to the vascular endothelium (D'Agnillo, Wood et al. 2000) and has the potential to 

bind or chemically modify •NO on the physiological timescale, promoting vascular 

dysfunction (Zager 1996; Andriambeloson and Witting 2002). In vitro studies have also 

shown that oxygenated ferrous Mb rapidly reacts with dissolved •NO gas (k~107 M-1s-

1) to yield higher order N-oxides such as nitrate (Doyle and Hoekstra 1981). Together, 

these chemical reactions have the potential to effectively scavenge •NO within its 

expected lifetime in biological systems. As mentioned before, RM produces a large 
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amount of F2-isoprostanes, which have been shown to be potent vasoconstrictors. 

Vasoconstriction is mediated by activation of thromboxane receptors and specific 

antagonists have been shown to prevent vasoconstriction in a rat model of RM (Chander 

and Chopra 2005). 

Consistent with this idea, our study demonstrated that extracellular Mb causes vascular 

dysfunction, and this is associated with oxidative stress. The decrease in cGMP level in 

aorta from myoglobinuric rats may be taken as an evidence of diminished 

bioavailability of •NO, which was improved by BP and Vit C supplementation through 

a mechanism that likely involved diminution of oxidative stress. 

The kidney tissue also exhibited a selective increase in the (early) antioxidant gene 

response. Although not exhaustive, our studies demonstrate that the cellular antioxidant 

response to Mb insult is confined to an induction of SOD-1 gene and GPx-4 activities. 

No significant inflammatory response was evident in the absence of antioxidant 

supplementation at least for the time period (24 h post glycerol injection) monitored. 

These latter observations effectively rule out RM-inducing an early inflammatory 

response in the renal tissues and dissociate inflammation as a causal factor in ARF (at 

least up to 24 h after initiation of RM). Whether inflammatory responses become 

increasing relevant to the renal pathology at later times (>24 h) is not clear and this 

issue was not addressed in this study. 

Overall, the data obtained in this study demonstrates that administration of either BP or 

Vit C to rats prior to induction of RM prevents the accumulation of oxidative damage, 

in both the vasculature and kidneys, which is normally evident in myoglobinuria-

induced ARF. Supplementation also reverses the decrease in aortic cGMP content as 

well as the increase of GPx activity. Notably, BP and Vit C alone showed a greater 

inhibition of oxidative damage than the group treated with both BP and Vit C in kidneys 

of myoglobinuric animals. Unexpectedly, supplementation with antioxidants did not 

reduce SOD-1 activity despite the marked decrease in SOD-1 gene expression in the 

same animals. 

Assessment of renal function showed increases in plasma urea and creatinine 

concomitantly with a significant decrease in CCr. Though other studies showed 

improvement in kidney function assessed by the classical marker creatinine and 

filtration rate (Ustundag, Yalcin et al. 2008), these results might need to be 

reconsidered. Creatinine concentration is based on the constant release from the body 
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into the blood and secretion through the kidneys (Perrone, Madias et al. 1992). As RM 

means an instant release of creatinine from the damaged muscle fibers, the high plasma 

concentration of creatinine is rather due to the exhausted excretion capacity of the 

kidneys and may not reflect glomerular filtration. Therefore, kidney markers in animal 

models of ARF after RM should be reassessed with a focus on early markers of renal 

damage. In this study, various other biomarkers were employed to investigate renal 

function. For example, Kidney Injury Molecule-1 (KIM-1) which has been found to 

serve as a novel biomarker for renal proximal tubule injury (Han, Bailly et al. 2002) and 

clusterin (Vaidya, Ferguson et al. 2008) increased in all groups with RM regardless of 

the intervention therapy. Even in the Vit C group, which had a significant decrease in 

proteinuria, urinary biomarkers remained elevated. Taken together, a re-evaluation of 

markers of renal damage in animals supplemented with antioxidants is vital to obtain a 

definite assessment of the relationship between inhibiting oxidative damage and 

reinstating renal function. 

Treatment with BP showed an inhibition of oxidative stress however this did not seem 

to have an effect on renal damage. In comparison, Vit C treatment was seen to remove 

oxidative stress in this investigation and also, showed a restoration of renal morphology 

and decreased proteinuria. However, co-supplementation of BP with Vit C was seen to 

lower the oxidative stress but did not seem to ameliorate renal dysfunction as evident 

when assessing renal histology. One possible analogy could be that BP due to its 

lipophilic nature is directed to the capillaries in the glomerular tuft and hence, is not 

able to exercise its antioxidant effects on the kidneys. However, Vit C due to its water-

soluble nature does not stick to the glomerular tuft and is present in the blood and the 

extracellular fluid and can exercise its antioxidant effects since it has access to the site 

of damage within the kidney. Due to this compartmentalization where BP is stuck in the 

glomerular tuft and Vit C being available in the blood and the extracellular fluid could 

indicate the reversal of renal dysfunction in samples treated with Vit C. Hence, BP did 

not have a significant effect on renal morphology. This could mean that water solubility 

and lipophilicity may play an important role in the antioxidant affecting renal damage. 

Previous studies have employed various other antioxidants to inhibit oxidative stress 

and thus, reverse renal damage. One such group of water-soluble polyphenolic 

antioxidants that have been reported to exhibit potent antioxidant and free radical 

scavenging activities are the flavonoids. They may function to scavenge reactive 
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oxygen species and chelate metal ions. Also, they may act as chain-breaking 

antioxidants by scavenging lipid peroxyl radicals or portion in to the lipid bi-layer to 

prevent lipid damage. Some flavonoids used in previous studies to protect renal 

function against damage from RM induced myoglobinuria include catechins (found in 

green tea and black tea) (Chander, Singh et al. 2003), Naringin (found in grapefruit) 

(Singh, Chander et al. 2004) and resveratrol (found in red wine) (Jang and Surh 2003). 

The aforementioned polyphenolic compounds have been successful in the restitution of 

renal function by inhibiting oxidative damage albeit limited to traditional markers of 

renal damage. Therefore, in future studies the use of water-soluble phenolic antioxidants 

could be considered and may assist in defining the necessary physical properties of 

suitable antioxidant therapies to combat RM-induced ARF. 

Overall, the data obtained in this investigation suggest that oxidative stress may not be 

causally associated with renal damage. Although, co-supplementation with antioxidants 

(BP with Vit C) was to some extent seen to be successful in removing oxidative stress, 

it was not successful in improving renal insufficiency. In addition, this study 

demonstrated that co-supplementation of BP with Vit C improved vascular function in 

vivo, but still renal dysfunction was not affected. Hence, it could be concluded that 

supplementation with an antioxidant to inhibit vascular oxidation in union with tissue 

oxidation does not lead to protection of renal tissues from RM-induced ARF. Results 

obtained indicate that oxidative stress could be an outcome of myoglobinuria, which 

affects vessel function and this may have a significant role in RM and ARF. Further 

investigation in this direction could be conducted using water-soluble phenolic 

antioxidants and the inclusion of other markers to detect renal changes such as NGAL 

or cystatin-C (Parikh and Devarajan 2008). In addition, the animal model employed in 

this study was limited by its timescale. Assessment of injury was only conducted on the 

first 24 h following RM, whereas early-onset ARF may occur up to 5 days post-burn. 

Therefore, other complications or delayed effects may have been missed and not taken 

into consideration. Hence, a suitable timescale incorporating other factors could be 

employed in future research. Prospective studies could also involve examination of 

intratubular cast material and other inflammatory responses in regards to myoglobinuria 

induced ARF. It could be that administration of these other factors together with 

oxidative stress may have a protective effect on RM induced renal damage. 
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Another possibility is that, although oxidative stress has an evidential role in ARF, it is 

a combination of several factors that include, but are not limited to, cytokines released 

during RM, shock, dehydration and acidosis (Bosch, Poch et al. 2009). Whether 

limiting Mb pro-oxidant activity also impacts on these other factors is not clear and 

warrants further study.  

6.4 Clinical Implication of this Study 

The development of ARF with delay of intensive management of burn lesions impacts 

significantly on survival (Chrysopoulo, Jeschke et al. 1999). A significant population of 

patients with severe AKI require hemodialysis or hemo-filtration, and their in-hospital 

mortality rate ranges from 45 to 70% (Wald, Quinn et al. 2009). Among those who 

survive, 15% require dialysis at the time of discharge (Silvester, Bellomo et al. 2001; 

Uchino, Kellum et al. 2005). Dialysis has improved prognosis and survival rates in 

burns patients with ARF, however the mortality rate among these patients remains 

unacceptably high. Moreover, little is known about burns patients who survive ARF 

especially once they leave the hospital and recover enough kidney function to be free of 

dialysis in the short term. Hence, it is not yet known if the improved survival is a lasting 

effect or if further severe clinical pathologies in addition to renal complications arise in 

any portion of this population. 

An improved therapy to prevent RM-induced renal failure should aim to reverse the 

main critical events: decrease of the glomerular filtration rate, reduced blood flow to the 

glomerulus, tubular obstruction by myoglobin casts, damage through direct cyotoxicity 

of myoglobin and oxidative stress by both free iron and Mb pro-oxidant activity. The 

gold standard in shock patients and renal diseases is infusion with large volumes to 

restore normovolemia and perfusion of the kidneys.  

Several intervention therapies have been suggested such as supplementation with 

mannitol or bicarbonate. Mannitol was thought to increase the removal of Mb in the 

renal tubule through its diuretic effect. Bicarbonate increases the urine pH and therefore 

prevents from the accumulation of Tamm-Horsfall-proteins. Another side effect of this 

is that the pro-oxidant activity of Mb is decreased at a higher pH. However, clinical 

studies did not confirm the potential benefits of mannitol and bicarbonate (Homsi, 

Barreiro et al. 1997). 
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Though oxidative stress may only be one aspect that leads to ARF in RM patients, it 

still plays a central role in the pathology. Based on our results, another approach for an 

intervention therapy could be to further investigate the antioxidative capacity of DFOB-

AdAOH and the other DFOB derivatives. As we have shown, DFOB and its derivative 

DFOB-AdAOH are able to effectively bind Fe and therefore inhibit any iron-mediated 

(oxidative) processes. Further research should test if experiments in vivo confirm the 

ability of these compounds to reduce Mb in vitro as seen in EPR spectoscropy. If this is 

the case, generation of radicals and F2-isoprostanes should be inhibited and •NO levels 

restored resulting in an improved microcirculation in the kidneys and an increased 

glomerular filtration. If necessary, a suitable antioxidant should be added to restore the 

antioxidant capacity of the chelator similar to the Vit C/BP concept. If this needs to be a 

lipophilic or hydrophilic antioxidant requires further evaluation. 

DFOB-AdAOH and the other derivatives were primarily developed to become orally 

available and to reach intracellular compartements. Therefore, penetration to a precise 

site in the membrane or intracellular space may be an important feature of the protection 

against ROS and minimize oxidative stress in the lipid phase. However, the animal 

studies revealed certain benefits of the water-soluable antioxidant Vit C raising the 

question if the initiating process for ARF starts in the aqueous phase. 
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7 Summary 

Therapeutic approaches to minimise acute renal failure in an animal 

model of myoglobinuria 

Ludwig K. Groebler 

Burns are one of the main causes leading to lethal acute renal failure (ARF). 

Coagulative necrosis of the skin and the underlying subcutaneous tissue including 

muscle cells, a process termed RM (rhabdomyolysis), leads to the release of toxic 

factors including extracellular skeletal myoglobin (Mb). If its amount in the circulation 

exceeds the binding capacity of the protein haptoglobin, Mb is filtered by the glomeruli 

and is secreted in the urine, a condition termed myoglobinuria. Accumulating Mb can 

damage the kidneys by intrarenal vasoconstriction, direct and ischemic tubule injury 

and tubular obstruction. However, the exact mechanisms are yet unclear. It has been 

proposed that the release of free iron from the heme group can generate hydroxyl 

radicals and cause cellular injury. In addition, extracellular myoglobin can undergo 

redox cycling to yield ferric Mb and from then to the pro-oxidative ferryl state. The 

ferryl form can initiate lipid peroxidation and renal injury without invoking release of 

free iron. Furthermore, Mb is a pro-oxidant and initiates the oxidation of biological 

targets including cell membranes, proteins and DNA. This study tested whether 

chelators or antioxidants are able to ameliorate ARF through inhibiting oxidative stress. 

In a cell model using cultured kidney epithelial cells the chelators inhibited Mb-induced 

oxidative stress and inflammation and improved epithelial cell function. The new iron 

chelator DFOB-AdAOH showed similar activity to DFOB and due to its low toxicity 

may be a promising candidate in the treatment of iron overload disease as well as a 

potential therapeutic strategy to combat ARF after RM. 

In an animal model of RM, co-supplementation with tetra-tert-butyl bisphenol (BP) and 

vitamin C (Vit C) or both BP and Vit C inhibited lipid peroxidation and inflammation 

but only Vit C, when administered alone, improved renal function as monitored by 

selected markers of AKF. These data indicate that lipid- and water-soluble antioxidants 

may differ in terms of their therapeutic impact on RM-induced renal dysfunction. 

However, the lack of correlation between antioxidant activity and biomarkers of renal 
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dysfunction makes it difficult to evaluate renal damage. Although oxidative stress has 

an evidential role in ARF, it seems to be a combination of several factors that include, 

but are not limited to, cytokines released during RM, shock, dehydration and acidosis. 

Therefore, a therapeutic intervention should aim to restore glomerular filtration rate, 

increase blood flow to the glomerulus, and inhibit tubular obstruction by Mb casts. 

Finally, our studies indicate that further work with the chelator DFOB-AdaOH is 

warranted.  Thus, whether DFOB-AdaOH diminishes oxidative stress caused by both 

free iron and Mb pro-oxidant activity and whether this can protect the kidneys from 

experimental ARF should be evaluated further using in vivo models in the future. 
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8 Zusammenfassung 

Therapeutische Ansätze zur Verminderung von akutem Nieren-

versagen in einem Tiermodell der Myoglobinurie 

Ludwig K. Gröbler 

Verbrennungen sind eine der Hauptursachen für akutes Nierenversagen (ARF). Nekro-

sen der Haut und des darunterliegenden Gewebes einschließlich der Muskulatur, RM 

(Rhambdomyolyse) genannt, führen zur Freisetzung von toxischen Substanzen wie ex-

trazellulärem Myoglobin. Wenn dessen Menge im Blutsystem die Bindungskapazität 

des Proteins Haptoglobin übersteigt wird Mb von den Glomeruli ausgeschieden und 

über den Urin entfernt (Myoglobinurie). Die Akkumulation von Myoglobin kann durch 

intrarenale Vasokonstriktion, direkte und ischämische Schäden des Tubulus oder durch 

Blockade des Tubulus zu Nierenschäden führen. Trotzdem sind die genauen Ursachen 

noch unbekannt. Eine Theorie ist, dass die Freisetzung von freiem Eisen aus dem Häm 

Hydroxylradikale produziert und diese Zellschäden verursachen. Des weiteren kann ex-

trazelluläres Mb durch „redox cycling“ den Fe(III)- und daraufhin den pro-oxidativen 

Fe(IV)-Zustand annehmen. Die Fe(IV)-Form kann auch ohne die Beteiligung von 

freiem Eisen zu Lipidoxidation und Nierenschäden führen. Zusätzlich ist Mb ein Pro-

Oxidant und fördert die Oxidation von Zellmembranen, Proteinen und DNA. In dieser 

Studie wurde getestet, ob Chelatoren oder Antioxidantien durch die Verminderung von 

oxidativem Stress die Entstehung von ARF verhindern können. In einem in vitro-Mo-

dell mit Nierenepithelzellen reduzierten die Chelatoren oxidativen Stress, unterdrückten 

Entzündungsprozesse und verbesserten die Funktion der Zellen. Der neuentwickelte Ei-

senchelator DFOB-AdAOH zeigte ähnliche Eigenschaften wie DFOB und könnte auf-

grund seiner geringeren Toxizität sowohl für die Behandlung von Eisenüberschuss als 

auch für die Prävention von ARF nach RM ein aussichtsreicher Wirkstoff sein. 

In einem Tiermodell der RM verminderte die Verabreichung von tetra-tert-butyl 

bisphenol (BP) und Vitamin C (Vit C) oder in Kombination Lipidoxidation und Ent-

zündungsprozesse, aber nur Vit C allein verbesserte ausgewählte Marker des akuten 

Nierenversagens. Die gewonnenen Daten deuten darauf hin, dass lipid- und wasserlösli-

che Antioxidantien unterschiedlichen Einfluss auf durch RM verursachtes Nierenversa-
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gen haben können. Allerdings bestehen aufgrund der mangelnden Korrelation von an-

tioxidativer Wirkung und Nierenschaden Schwierigkeiten diesen korrekt zu erfassen. 

Obwohl oxidativer Stress zweifelsfrei eine wichtige Rolle bei ARF spielt, scheint es 

eine Kombination aus verschiedenen Faktoren wie Freisetzung von Zytokinen, Schock, 

Dehydration und Azidose zu sein. Daher sollte eine mögliche Therapie darauf zielen, 

die glomeruläre Filtrationsrate zu erhalten, den Blutfluss zum Glomerulus zu erhöhen 

und die Blockade durch Mb-Zylinder zu lösen. Aufgrund dieser Ergebnisse scheinen 

weitere Studien mit dem Chelator DFOB-AdAOH notwendig. Daher sollte in einem in 

vivo Experiment untersucht werden, ob DFOB-AdAOH sowohl den durch freies Eisen 

als auch den durch die pro-oxidative Wirkung des Myoglobins enstandenen oxidativen 

Stress vermindert und ob dies ARF verhindern kann. 
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