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1. Table of abbreviations 

10N ...................................................................................... dorsal motor nucleus of the vagus nerve 

ABA ................................................................................................................ activity-based anorexia 

ABC ............................................................................................... avidin-biotin-peroxidase complex 

AC ...................................................................................................................... activity animal group 

AL ................................................................................................................. ad libitum animal group 

AN .............................................................................................................................. anorexia nervosa 

ANOVA .................................................................................................................analysis of variance 

Arc ............................................................................................................................... arcuate nucleus 

CRF ....................................................................................................... corticotropin-releasing factor 

D receptor ............................................................................................................... dopamine receptor 

DAB .................................................................................................. diaminobenzidine tetrachloride 

DMH ............................................................................................ dorsomedial hypothalamic nucleus 

DR .......................................................................................................................... dorsal raphe nuclei 

EW ............................................................................................................. Edinger-Westphal nucleus 

FAA .............................................................................................................. food-anticipatory activity  

GOAT ......................................................................................................... ghrelin-O-acyltransferase 

LC ................................................................................................................................. locus coeruleus 

LHA ............................................................................................................ lateral hypothalamic area 

LS ........................................................................................................................ lateral septal nucleus  

NAcc ....................................................................................................................... nucleus accumbens 

NTS .......................................................................................................... nucleus of the solitary tract 

NUCB2 ........................................................................................................................... nucleobindin 2 

PBS .............................................................................................................. phosphate-buffered saline 

PVN ................................................................................................................ paraventricular nucleus 

Rpa ................................................................................................................................. raphe pallidus  

RF ...................................................................................................... restricted feeding animal group 

Sch ................................................................................................................. suprachiasmatic nucleus 

SEM .......................................................................................................... standard error of the mean 

SON ......................................................................................................................... supraoptic nucleus 

SSRI .........................................................................................selective serotonin reuptake inhibitor 

VTA ................................................................................................................. ventral tegmental area 
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2.1. ABSTRACT [English] 

Anorexia nervosa (AN) in an eating disorder diagnosed by the occurrence of the ensuing 

symptoms: a strong wish to lose body weight, restricted caloric intake, a distorted body image, 

and hyperactivity. Despite the well-defined symptomatology of the disease, the 

pathophysiology still remains poorly explained. Moreover, a specific pharmacological 

treatment is lacking. In order to better characterize pathophysiological alterations occurring 

under disease conditions, animal models can be useful. The activity-based anorexia (ABA) 

model for rats mimics the disease by combining the two factors of restricted feeding (access to 

food: 1.5h/day) with the possibility of voluntary exercise in a running wheel installed in the 

rats’ cage. The aim of the studies was to investigate the modulation of food intake and body 

weight under conditions of ABA as well as to describe neuronal changes possibly underlying 

the observed alterations. Female Sprague-Dawley rats were used and randomly assigned to one 

of four groups: ad libitum (AL, ad libitum food, no running wheel, n=9), activity (AC, ad 

libitum food and running wheel, n=9), restricted feeding (RF, food restriction, no running 

wheel, n=12) and activity-based anorexia (ABA, food restriction and running wheel, n=11). 

Following validation of an automated food intake-monitoring system for the use in rats, food 

intake microstructure was assessed under conditions of ABA. ABA resulted in a pronounced 

body weight loss of -22% compared to the first day of food restriction (p<0.001) and compared 

to the other groups (RF -13%, AC +10% and AL +13%, p<0.001). However, the food intake 

microstructure (different continuously measured parameters including meal size, frequency and 

duration) and the activity pattern did not differ from the respective control groups (ABA vs. RF 

and AC vs. AL, p>0.05). An analysis of the neuronal changes showed that ABA leads to an 

activation of distinct brain nuclei involved in the regulation of food intake (LS, LHA, Arc, 

DMH, NTS), gastrointestinal motility (LHA, NTS, 10N), thermoregulation (DMH), circadian 

rhythm (DMH), stress (PVN, LC), memory (hippocampus) and depressiveness/anxiety (SON, 

PVN, DR, Rpa). Immunohistochemical doublestaining for c-Fos and the anorexigenic peptide 

nesfatin-1 -indicated by a significant increase of nesfatin-1 immunoreactive cells in PVN, 

DMH, Arc, LC and NTS in ABA rats (p<0.05)- suggested that nesfatin-1 might play a role in 

the development/maintenance of ABA and potentially in patients with AN too. In summary, 

although cautious interpretation is necessary, ABA might be a useful tool to investigate 

pathophysiological alterations occurring also in AN. 
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2.2. ABSTRACT [German] 

Anorexia nervosa (AN) ist eine Essstörung mit folgenden Symptomen: starker Wunsch 

Gewicht abzunehmen, Kalorienrestriktion, Körperschemastörung und, bei vielen Patienten, 

Hyperaktivität. Wenn auch das klinische Erscheinungsbild gut beschrieben ist, ist die 

Pathophysiologie der Erkrankung noch weitgehend ungeklärt und es gibt bisher keine 

spezifische Pharmakotherapie. Tiermodelle von Erkrankungen können hier manchmal einen 

hilfreichen Beitrag zur besseren Charakterisierung von pathophysiologischen Veränderungen 

leisten. Das Aktivitäts-basierte Anorexie-Modell (ABA) für Ratten stellt die Erkrankung nach, 

in dem es die zwei Faktoren, eingeschränkten Zugang zu Nahrung auf 1.5h täglich und die 

Möglichkeit sich in einem im Käfig befindenden Laufrad zu bewegen, kombiniert. Das Ziel der 

Experimente war erstens, die Veränderungen von Nahrungsaufnahme und Körpergewicht bei 

ABA zu untersuchen, und zweitens, die neuronalen Veränderungen, die den untersuchten 

Parametern eventuell zugrunde liegen, zu beschreiben. Zu diesem Zweck wurden weibliche 

Sprague-Dawley Ratten zufällig einer von vier Gruppen zugeteilt: ad libitum (AL, kein Laufrad, 

n=9), Aktivität (AC, ad libitum Futter und Laufrad, n=9), Futterrestriktion (RF, kein Laufrad, 

n=12) und Aktivitäts-basierte Anorexie (ABA, Futterrestriktion und Laufrad, n=11). Zuerst 

wurde ein automatisches Nahrungsaufnahme-Messsystem für die Anwendung bei Ratten 

validiert und anschließend damit die Mikrostruktur der Nahrungsaufnahme unter ABA-

Bedingungen erhoben. Verglichen mit dem ersten Tag der Nahrungsrestriktion verloren ABA-

Tiere -22% ihres Körpergewichts (p<0.001, im Vergleich zu den anderen Gruppen: RF -13%, 

AC +10% und AL +13%, p<0.001). Dennoch gab es weder einen Unterschied in der 

Mikrostruktur der Nahrungsaufnahme (ABA vs. RF und AC vs. AL p>0.05), noch in der 

Laufradaktivität (ABA vs. AC, p>0.05). Die Analyse der neuronalen Veränderungen ergab, 

dass ABA zu einer Aktivierung von Gehirngebieten führt, die in die Regulation von 

Nahrungsaufnahme (LS, LHA, Arc, DMH, NTS), gastrointestinaler Motilität (LHA, NTS, 

10N), Thermoregulation (DMH), zirkadiane Rhythmen (DMH), Stress (PVN, LC), Gedächtnis 

(Hippocampus) und Depressivität/Angst (SO, PVN, DR, Rpa) involviert sind. 

Immunhistochemische Doppelfärbungen von c-Fos und dem anorexigenen Peptid Nesfatin-1 

gaben Anlass zu der Vermutung, dass Nesfatin-1 eine Rolle bei ABA und eventuell auch bei 

Patienten mit AN spielt, denn Nesfatin-1 immunreaktive Zellen waren bei ABA-Tieren im 

PVN, DMH, Arc, LC und NTS (p<0.05) vermehrt nachweisbar. Zusammengefasst stellt ABA 

ein potentiell hilfreiches Modell zur Untersuchung von pathophysiologischen Veränderungen 

bei AN dar, auch wenn die Tiermodell-Daten vorsichtig interpretiert werden sollten. 
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3. INTRODUCTION 

The eating disorder anorexia nervosa (AN) is most prevalent in women and is defined by a 

caloric intake reduction driven by a predominant desire to lose body weight (1). Further 

symptoms are a distorted body image and an increased eagerness to exercise often resulting in 

hyperactivity (2,3). AN has a prevalence of 0.9% in European women (4). Many patients of this 

disease suffer from comorbidities (5), mainly depression, anxiety and insomnia but also somatic 

complications of the body weight loss such as cardiac arrhythmias, osteoporosis and 

gastrointestinal dysfunction (6–8). Pharmacological treatment symptomatically targets the 

associated comorbidities, whereas no specific drug treatment is available for AN itself (9). 

Identification of these drugs is hampered by the fact that the pathophysiology of AN is only 

poorly understood. Animal models often represent a suited tool to get further insight into the 

pathophysiology of a respective disease. 

The activity-based anorexia (ABA) paradigm in rats is the most established animal 

model for AN (10). Already in 1967 Routtenberg and Kuznesof observed that a time-restricted 

access to food combined with 24h access to a running wheel led to severe body weight loss 

initially described as “self-starvation” (11). Subsequently, the term “activity-based anorexia” 

was established and the alterations were further studied. A feeding schedule with access to food 

for 1.5h a day and the use of adolescent rats weighing around 150-180g has been shown to 

reproducibly induce a pronounced body weight loss of -20% (12,13). The advantage of this 

model is that it mimics the main features of AN (3), namely decreased caloric intake and 

hyperactivity (14), the latter one being displayed by 31-80% of patients suffering from AN (2). 

For the examination of food intake, it is important to employ a tool which measures not 

only the total amount of food ingested, but which also provides detailed information on the 

underlying food intake microstructure. This can be achieved via an automated food intake-

monitoring system which has been previously validated for the use in mice (15). Therefore, in 

the first study this system was established for the use in rats (16). In the second study, the food 

intake microstructure was investigated under conditions of ABA (17). 

As a further step, the neuronal changes underlying the behavioral changes observed in 

the ABA model were investigated by c-Fos immunohistochemistry, which is a well-established 

marker for neuronal activity (18). A semi-quantitative brain mapping of nuclei activated in 

ABA rats compared to AL rats was conducted (17).  
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Various aspects of the ABA model have been characterized in the past. ABA rats show 

an increased activity of the hypothalamus-pituitary-adrenal axis (19), disrupted dopamine 

(20,21) and endocannabinoid signaling (22), along with an altered pattern of several food 

intake-regulatory hormones (10), e.g. ghrelin (23) and leptin (24). Since nesfatin-1 is an 

anorexigenic peptide (25,26) also strongly linked to the stress response via the hypothalamus-

pituitary-adrenal axis (26–28), nesfatin-1 may play a role in the development of ABA as well. 

The decrease of circulating NUCB2/nesfatin-1 in patients of AN (29) further suggests the 

involvement of altered nesfatin-1 signaling under these conditions. In order to examine a 

possible role of nesfatin-1 in ABA, the third study investigated the activation of nesfatin-1 

immunoreactive cells in different brain nuclei under conditions of ABA (30).  
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4. METHODS 

4.1. Publication: “Treatment with the ghrelin-O-acyltransferase (GOAT) inhibitor GO-

CoA-Tat reduces food intake by reducing meal frequency in rats” 

Monitoring of food intake  

Adult male Sprague Dawley rats (Harlan-Winkelmann Co., Borchen, Germany) weighing 220-

300g upon arrival were used. In order to monitor food intake manually, the rats’ food intake 

was assessed by providing rats with pre-weighed rat chow (standard rodent chow, Altromin™, 

Lage, Germany) from the top of the cage and weighing the remaining food every 12h (6 am and 

6 pm). Subsequently, the BioDAQ episodic food intake-monitoring system (BioDAQ, Research 

Diets, Inc., New Brunswick, NJ, USA), an automated food intake-monitoring system, was 

evaluated for the use in rats (BioDAQ, Research Diets, Inc.). This system allows the continuous 

monitoring of solid rat chow without human interference. Rats were housed in regular single 

housing rat cages that were placed adjacently to each other to allow sight, odor and acoustic 

contact, and which provided bedding material and environmental enrichment. Additionally, a 

low spill food hopper which was placed on an electronic balance was mounted on the cages. 

The food intake assessment system weighs the filled hopper every second (±0.01g). Time 

periods -during which changes in weight are detected- are registered as “eating”. Thereby, every 

interaction with the hopper is recorded in detail (start, duration, amount of the food ingested). 

The food intake microstructure and associated meal parameters (including meal size and 

duration, time spent in meals and rate of ingestion) for any period of interest can be extracted 

from the software (BioDAQ Monitoring Software 2.3.07) afterwards. 

Statistical analysis  

Data were expressed as mean ± SEM. Distribution of the data was determined by the 

Kolmogorov-Smirnov test and the data were further analyzed by the t-test or one-way ANOVA 

followed by the Tukey post hoc test, or by two-way ANOVA followed by the Holm-Sidak 

method. Differences were considered significant when p<0.05 (SigmaStat 3.1., Systat Software, 

San Jose, CA, USA). 

 

4.2. Publication: “Activity-based anorexia reduces body weight without inducing a 

separate food intake microstructure or activity phenotype in female rats – mediation via 

an activation of distinct brain nuclei” 

Animals and groups  

Female Sprague-Dawley rats weighing 150-180g upon arrival were used. After one week of 

acclimatization during which the rats were housed in groups, they were randomly assigned to 



Behavioral and neuronal changes in activity-based anorexia 

 

9 
 

one of four groups: a) control group with ad libitum food (AL), b) control group with ad libitum 

food and access to a running wheel (activity, AC), c) control group with restricted feeding 

regimen (RF) and d) activity-based anorexia group with restricted feeding regimen and activity 

(ABA).  

Activity-based anorexia (assessed parameters)  

According to their group, animals were either housed in standard single housing cages or cages 

with or without a running wheel, all equipped with the automated food intake-monitoring 

system (for a description see publication 1). Wheel rotations were assessed electronically 

(Campden Instruments Ltd., Loughborough, UK). After one week of habituation to the running 

wheel (ABA and AC group) and to the daily interaction with the investigator for body weight 

measurement (8 am - 9 am), food restriction conditions started and ABA and RF animals solely 

had access to food from 9 to 10:30 am. Body weight, food intake and the underlying 

microstructure were assessed over a period of two weeks. If body weight loss exceeded -25% 

of the initial body weight, animals were removed from the experiment. Statistical analysis was 

performed as described above. 

c-Fos immunohistochemistry  

During the last feeding period, food restricted animals (ABA and RF) received only a fixed 

amount of 1.5g in order to avoid brain signals derived from great distention of the stomach or 

nausea. Afterwards, the rats were deeply anesthetized and after thoracotomy, they were 

transcardially perfused by a 1-min flush of sodium chloride (0.9%) followed by 500ml of 

fixative (4% paraformaldehyde and 14% saturated picric acid in 0.1M phosphate buffer). Then, 

brains were removed and further processed for c-Fos immunohistochemistry (postfixation and 

cryoprotection with 10% sucrose, then, snap-frozen). Lastly, the whole brain was cut into 

coronal 25µm sections using a cryostat. Every third section was used for immunohistochemistry 

applying the free-floating technique and every step of the protocol was followed by a 3 x 15min 

washing step with phosphate-buffered saline (PBS). The protocol started with treatment of the 

sections with 0.3% H2O2, followed by 2% normal goat serum. Next, the sections were incubated 

with the primary antibody anti-c-Fos (1:20.000, ABE457, Merck Millipore, Darmstadt, 

Germany) overnight at 4°C. On the second day, sections were incubated with biotinylated 

secondary goat anti-rabbit IgG (1:1000, 111-065-144, Jackson ImmunoResearch Laboratories, 

Inc., West Grove, PA, USA) for 2h, followed by avidin-biotin-peroxidase complex (ABC, 

1:500, Vector Laboratories, Burlingame, CA, USA) in 0.3% Triton-PBS for 1h. Staining was 

visualized with diaminobenzidine tetrachloride (DAB) and nickel ammonium sulfate. 

Immunoreactivity of the sections was examined under a light microscope and the density was 
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described semi-quantitatively as – no; +, low (~ 1-10); ++, medium (~10-20) and +++, high 

(>20 c-Fos positive cells in a 100 x 100µm area of an ocular grid with a 10x objective). Brain 

nuclei were identified according to the rat brain atlas by Paxinos and Watson (31). ABA animals 

were compared to controls (AL, n=3/group) in a descriptive manner.  

 

4.3. Publication: “Activity-based anorexia activates nesfatin-1 immunoreactive neurons 

in distinct brain nuclei of female rats” 

c-Fos and Nesfatin-1 immunohistochemistry  

As mentioned above, animals were exposed to the ABA regimen or one of three control groups. 

Rat brains from all four groups were processed for immunohistochemistry (n=6/group; n=24 in 

total). After performing the two-day c-Fos immunohistochemical protocol as described above, 

sections were incubated with the second primary antibody anti-nesfatin-1 (1:20.000, H-003-22, 

Phoenix Pharmaceuticals Inc., Burlingame, CA, USA) overnight at 4°C. On the third day of the 

protocol all steps were conducted as described above; visualization was performed using DAB 

only. Statistical analysis followed the steps described above. 
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5. RESULTS 

5.1. Publication: “Treatment with the ghrelin-O-acyltransferase (GOAT) inhibitor GO-

CoA-Tat reduces food intake by reducing meal frequency in rats”  

The BioDAQ episodic food intake-monitoring 

system allows for the automated assessment of 

the physiological food intake microstructure in 

undisturbed rats  

Rats quickly adapted to eating from the food 

hopper of the food intake-monitoring system 

and did not show any differences in food intake 

compared to the standard feeding method 

where the food was placed on top of the cage 

(Fig.1). A physiological behavioral satiety 

sequence was detected under these 

conditions (Fig.2).  

An analysis of the food intake 

microstructure shows greater food 

intake at night due to a higher meal 

frequency and a longer duration of 

meals during the dark phase 

compared to the light phase (Fig.3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Assessment of the food intake microstructure in naive rats using an 

automated food intake-monitoring system *p<0.05, **p<0.01, ***p<0.001.     
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Figure 1. Food intake assessed manually (A) or using the 

automated food intake-monitoring system (B) (n=6-9) (16) 
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Figure 2. A physiological behavioral satiety sequence was observed 

with a decrease of dark phase feeding behavior and an increase in 
grooming, locomotion and particularly resting. The rats were single-

housed in the automated feeding monitoring system cages. Each line 

represents the mean  SEM of 8 rats/group. (16) 
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5.2. Publication: “Activity-based anorexia reduces body weight without inducing a 

separate food intake microstructure or activity phenotype in female rats – mediation via 

an activation of distinct brain nuclei” 

ABA rats show the greatest body weight loss   

ABA rats showed a significantly 

higher reduction in body weight 

of -22% (p<0.001) compared to 

the RF group, which reached a 

body weight loss of -13%. Thus, 

the ABA group exhibited an 

additional body weight loss of      

-9% in comparison to the RF 

group (p<0.001), and compared 

to the AC and AL groups, which 

both gained body weight (+10% and +13% respectively; p<0.001; Fig.4).  

ABA and RF rats show a similar 

reduction in food intake  

No significant differences in the 

reduction of food intake were observed 

between ABA and RF rats (p>0.05). 

Significant differences in food intake 

were detected between the two food 

restricted (ABA and RF) and the two ad 

libitum fed (AC and AL) groups (Fig.5).  

ABA does not induce a distinct 

feeding or activity phenotype 

Analysis of the food intake 

microstructure indicated 

similar changes in ABA and RF 

rats in 24h (data not shown) and 

in the 1.5h feeding period 

compared to the two control 

groups (AL, AC, Fig.6).  

 

 

 

 

 

 

 

Figure 5. ABA and RF eat similar amounts in their 1.5h feeding period 

(A) and over 24h (B). ***p<0.001 vs. AL; ###p<0.001 vs. AC. Data 

derived from 4 days of monitoring, starting on day 5 of  food restriction. 

(17) 
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Figure 4. ABA reduces body weight more prominently than RF. +p<0.05, 

++p<0.01, +++p<0.001 vs. RF; *p<0.05, ***p<0.001 vs. AL; #p<0.05, ### p<0.001 

vs. AC. n= 9-12/group (17) 
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Similarly, no differences were observed between the number of daily running wheel rotations 

of ABA and AC rats (p>0.05, data not shown).  

ABA leads to an activation of distinct brain nuclei  

In a further step, brain activity of ABA rats as opposed to AL rats was investigated using c-Fos 

immunohistochemistry. ABA rats showed higher c-Fos activation levels in several different 

brain nuclei compared to AL rats (Table 1). 

 

 

 

 

 

 

 

 

Table 1. Neuronal activation in distinct brain nuclei of ABA compared to AL rats. 

Area Brain structure Ad libitum Activity based 

anorexia 

Forebrain Piriform cortex ++ +++ 

 Cingulate cortex + ++ 

 Somatomotor cortex + +++ 

 Lateral septal nucleus + - ++ +++ 

 Caudate putamen ++ ++ - +++ 

 Amygdala (central, medial and basolateral) - - 

 Hippocampus + - ++ +++ 

Thalamus Paraventricular thalamic nucleus, anterior part + ++ 

 Lateral habenula + - ++ + - ++ 

Hypothalamus Suprachiasmatic nucleus ++ ++ - +++ 

 Supraoptic nucleus - +++ 

 Anterior hypothalamic area + ++ 

 Paraventricular nucleus, magnocellular part + ++ 

 Lateral hypothalamic area ++ +++ 

 Ventromedial hypothalamic nucleus ++ ++ 

 Dorsomedial hypothalamic nucleus - ++ 

 Arcuate nucleus + +++ 

Midbrain Edinger-Westphal nucleus ++ ++ 

 Dorsal raphe nuclei + ++ 

 Locus coeruleus - + 

Medulla Raphe pallidus + ++ 

 Area postrema - + - ++ 

 Nucleus of the solitary tract - + - ++ 

 Dorsal motor nucleus of the vagus nerve - - - + 

– no; +, low (~1-10); ++, medium (~10-20); +++, high (>20 c-Fos positive cells in a 100 x 100µm area 

of an ocular grid with a 10x objective) n=3/group (17) 
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5.3. Publication: “Activity-based anorexia activates nesfatin-1 immunoreactive neurons 

in distinct brain nuclei in female rats” 

ABA induces an increase of nesfatin -1 immunoreactive neurons                                          

ABA significantly increased the number of nesfatin-1 immunoreactive cells in the 

paraventricular nucleus (PVN), dorsomedial hypothalamic nucleus (DMH), arcuate nucleus 

(Arc), and locus coeruleus (LC) in comparison to AL and AC animals, and in the nucleus of the 

solitary tract (NTS) in comparison to AL, AC and RF animals (Table 2) 

ABA leads to an increase in     nesfatin-

1/c-Fos double-labeled neurons 

Moreover, ABA led to a significant 

increase in nesfatin-1 and c-Fos double-

labeled cells in the supraoptic nucleus 

(SON) (Fig.7) compared to all three 

other rat groups (p<0.05), and in the 

PVN, DMH, Arc, dorsal raphe nuclei 

(DR) and raphe pallidus nucleus (Rpa) 

in comparison to AL and AC rats 

(p<0.05) (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. ABA induces an increase in nesfatin-1/c-Fos double-labeled and 

the number of c-Fos positive neurons in the supraoptic nucleus (SON). 

Representative microphotographs. Scale bar 100µm, in insert 10µm.        

opt, optic tract. n=6/group (30) 

 

AC

RF

opt

AL

ABA

Table 2: ABA leads to an increase in nesfatin-1, c-Fos and double-labeled cells in distinct brain nuclei. 
 

Nesfatin -1 c-Fos c-Fos + Nesfatin -1 

Brain 

structure 
AL AC RF ABA AL AC RF ABA AL AC RF ABA 

SON 102.97 ± 

11.96 

90.08 ± 

6.29  

114.55 ± 

6.65 

109.19 ± 

5.97  
0.04 ± 0.04  0.08 ± 0.08  1.32 ± 0.56  

11.76 ± 

4.71 ** # + 
0.04 ± 0.04  0.08 ± 0.08  1.30 ± 0.57  

11.75 ± 

4.70 * # + 

PVN 74.10 ± 

14.94  

65.28 ± 

9.20  
106.60 ± 

7.24 

137.74 ± 

7.57 ** ###  
1.75 ± 0.99  1.21 ± 0.46  4.37 ± 1.51 

7.83 ± 1.75      

* ## 
0.55 ± 0.34  0.69 ± 0.25  2.79 ± 0.97 

4.00 ± 0.76    

** ## 

DMH 18.25 ± 

2.02  

15.58 ± 

1.36  

30.05 ± 

3.34      # 

41.90 ± 5.94    

** ### 
2.48 ± 1.24 0.97 ± 0.62 

10.67 ± 

2.42 

15.36 ± 

4.11 ** ## 
0.62 ± 0.36 0.53 ± 0.32 2.39 ± 0.63 

6.21 ± 1.90     

** ## 

Arc 35.24 ± 
4.89 

26.61 ± 
6.19 

48.71 ± 
6.43 

66.36 ± 

11.42 * # 
0.00 ± 0.00 0.01 ± 0.01 

13.04 ± 
3.66 

26.76 ± 

8.63 ** ##         
0.00 ± 0.00 0.01 ± 0.01 9.07 ± 4.27  

21.79 ± 

9.19 * # 

EW 21.14 ± 

2.95 

19.60 ± 

3.20 

17.97 ± 

0.88 
19.70 ± 3.00  1.33 ± 0.62 0.70 ± 0.25 

7.14 ± 1.94      

* ## 
3.84 ± 0.92 0.62 ± 0.34 0.38 ± 0.21 1.82 ± 0.65 2.21 ± 0.76 

DR 
73.36 ± 

17.83 

63.59 ± 

8.90 

5.65 ± 

10.03 

70.79 ± 

10.72 
3.03 ± 1.32 3.06 ± 1.64 

15.02 ± 

6.43 

20.19 ± 

4.65 * ## 
2.63 ± 1.12 2.37 ± 1.07 

10.72 ± 

4.17 

13.49 ± 

2.11 * # 

LC 80.75 ± 

7.93 

79.18 ± 

4.75 

102.24 ± 

7.71 

117.24 ± 

5.03 * # 
1.05 ± 0.55 1.11 ± 0.43 0.59 ± 0.21 1.35 ± 0.52 1.05 ± 0.55 1.11 ± 0.43 0.59 ± 0.21 1.35 ± 0.52 

Rpa 
20.73 ± 

3.05 

15.57 ± 

3.03 

18.03 ± 

3.41 
19.29 ± 2.43 1.13 ± 0.19 1.50 ± 0.65 4.78 ± 2.38 6.69 ± 1.90 0.97 ± 0.18 0.68 ± 0.18 3.30 ± 1.54 

5.80 ± 1.88      

* # 

NTS 22.34 ± 

2.09 

19.23 ± 

3.63 * 

24.73 ± 

1.61  

31.20 ± 2.97      

# 
0.00 ± 0.00 0.00 ± 0.00 0.19 ± 0.14 0.63 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 0.19 ± 0.14 0.63 ± 0.32 

*p<0,05, **p<0,01, ***p<0,001 vs. AL; #p<0,05, ##p<0,01, ###p<0,001 vs. AC; +p<0,05 vs. RF. n=6/group 

(30) 

 

.  
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6. DISCUSSION 

In the first publication, an automated food intake-monitoring system was established for the use 

in experiments with rats. In the next step, the system was used to examine the food intake 

pattern of rats under conditions of ABA. In the third study, neuronal changes induced by the 

ABA model were assessed using c-Fos and nesfatin-1 immunohistochemistry. 

Compared to conventional manual assessment of food intake, an automated analysis of 

food intake has two main advantages: Firstly, the system allows a notably more detailed 

analysis of the food intake microstructure and secondly, the rats are not disturbed by the 

investigator. Parameters of the food intake microstructure encompass the latency period of the 

first meal, meal size, meal duration, eating rate, inter-meal intervals and the satiety ratio, 

information largely lacking in conventional manual assessment of food intake. Using these 

parameters, two main features of food intake-modulating conditions/hormones can be defined: 

satiation (mechanisms causing meal termination (32)) and satiety (mechanisms causing a later 

onset of the next meal after one meal is completed (33)). The first publication showed that rats 

quickly adapt to the food intake-monitoring system and display a similar overall food intake 

compared to rats assessed under conventional/manual conditions. Moreover, rats housed in the 

automated food intake-monitoring system displayed a physiological behavioral satiety 

sequence, a well-established physiological postprandial behavior in rats (34,35). 

Furthermore, the monitoring system was utilized to investigate the food intake patterns 

observable in rats under the condition of ABA. The model ABA in rats combines a time-

restricted access to food with voluntary physical activity in a running wheel and therefore 

mimics conditions also relevant in human AN. Analysis of body weight showed that all four 

experimental groups displayed a linear body weight gain during the first week of 

acclimatization. The two ad libitum fed animal groups (AL and AC) continued to constantly 

gain weight until the end of the experiment indicating a physiological growth under conditions 

of housing in the food intake-monitoring cages. After two weeks, AL rats reached a body weight 

gain of +13%, while AC rats gained +10% compared to the first day. In the two food restricted 

animal groups (RF and ABA), a body weight loss was observed starting on the second day of 

limited access to food. Both food restricted groups continued to lose weight for about one week 

followed by a stabilization period. After two weeks ABA rats showed a body weight loss of       

-22%, whereas rats of the RF group lost -13%. ABA and RF rats had access to food during the 

early light phase, a period where rats usually do not eat (36), a finding also shown in the present 

study in the AL and AC groups. Although RF and ABA rats increased their 1.5h food intake 
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from days one to ten, they did not reach the levels consumed by the other groups within 24h 

and therefore showed a food intake reduction by -38% and -41% respectively, data consistent 

with previous studies (12,37,38). 

A detailed analysis of the 1.5h food intake microstructure indicated an increase in the 

eating rate and meal size of ABA and RF rats -both food restricted groups- in comparison to 

the ad libitum fed groups, AL and AC. The meal duration and time spent eating meals was also 

significantly increased, indicating that the animals adapt to the restricted feeding schedule by 

eating a large amount of food during a short period of time. However, it should be noted that 

there were no significant differences between the two food restricted or the two ad libitum fed 

groups, respectively, in terms of food intake microstructure, arguing against a distinct food 

intake phenotype induced under conditions of ABA.  

Behavioral changes have been described in ABA rats with a considerable shift in 

running wheel activity from the dark phase, which is the physiological activity phase in rats, to 

the four to five hours before the feeding period and have been termed food-anticipatory activity 

(FAA) (39,40). This shift of circadian rhythm might be associated with the elevated c-Fos signal 

displayed in the DMH and the suprachiasmatic nucleus (Sch) -both being involved in regulation 

of circadian rhythm (41,42)- of ABA rats. Despite the fact that ABA rats showed robust 

physical activity during the light phase, similar to the food intake pattern no distinct activity 

phenotype was observed when compared to AC. 

Based on the food intake and running activity data it can be suggested that the 

combination of the food restriction regimen with the possibility of exercising in a running wheel 

is necessary in order to induce the additional body weight loss of ABA in comparison to RF. 

However, the food restriction seems to exert the predominant influence on body weight 

compared to the running wheel since the AC group did not show a decrease in body weight. 

The present data confirmed that ABA mimics three essential symptoms of AN, namely 

body weight loss, caloric restriction and activity and therefore might be a suited model to study 

pathophysiological alterations also occurring in AN. Nevertheless, several important limitations 

have to be taken into consideration. Firstly, rats do not voluntarily lose body weight, and when 

they are given more/longer access to food, they regain their body weight (37,43). Secondly, rats 

lose body weight very rapidly with an average loss of body weight of -22% within two weeks. 

Therefore, ABA represents a subacute rather than a chronic model and it does not reflect the 

chronic character of the eating disorder AN (44). Thirdly, it is to note that some established 

factors contributing to the development of human AN (e.g. genetic susceptibility (45) and 
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psychosocial aspects (9)) are not mimicked by this model. Lastly, analysis of the food intake 

microstructure indicated that ABA rats display an eating behavior with a greatly increased meal 

size, meal duration and eating rate also occurring in anorexia patients of the binge-purging type 

(1), while the restrictive subtype of AN seems to be less reflected in this model. 

Despite these important limitations, ABA is considered the most established and -so far-

best animal model for human AN (13). Although it does not mimic all aspects of AN, it seems 

to be suited to further characterize the hitherto poorly understood pathophysiology of the 

disease. However, it is important to note that data derived from this model have to be interpreted 

with caution and cannot be directly transferred to humans. 

As a further step, we focused on neuronal changes that could potentially underlie the 

behavioral changes observed under conditions of ABA. c-Fos immunohistochemical analyses 

of brain sections showed that ABA rats display a greater level of activation in neurons of distinct 

brain nuclei distributed throughout the whole brain. In comparison to AL rats ABA rats showed 

a stronger activation of brain nuclei involved in the mediation of food intake, (e.g. in the lateral 

septal nucleus (LS) (46), and lateral hypothalamic area (LHA) (47)) and in areas involved in 

olfaction such as the piriform cortex (48) which probably reflects the drive to eat and the 

occupation with food. In ABA rats, there was also increased activity in areas involved in the 

mediation of physical activity, namely the somatomotor cortex (49). Moreover, ABA rats 

displayed higher neuronal activity in areas involved in thermoregulation (DMH) (50), circadian 

rhythms (namely Sch and DMH (42)), emotional processing (areas with mainly oxytocinergic 

and serotonergic neurons) (51–54), sleep (50) and stress (areas with CRF-containing 

noradrenergic neurons) (55), which may play a role in the pathophysiology and 

symptomatology of AN. 

Based on the results of this mapping experiment, nine distinct brain nuclei were selected 

for a detailed analysis of all four animal groups and phenotyping using c-Fos/nesfatin-1 double 

labeling immunohistochemistry. ABA induced an increase of nesfatin-1 immunoreactive cells 

in five of the nine analyzed nuclei. Nesfatin-1 expression was increased in nuclei involved in 

food intake regulation, stress response and emotional processing, which is important to note 

given that depression and anxiety are common comorbidities in AN (5,6). In line with the results 

of this study, nesfatin-1 was previously shown to play a role in the stress response (56), anxiety 

(56–58) and depression (59) in humans. Interestingly, significant differences were mainly 

observable between ABA and the two ad libitum fed animal groups (AC and AL rats). One may 

speculate that central nesfatin-1 immunoreactivity is inversely correlated with body weight, 
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whereas NUCB2/nesfatin-1 plasma levels were shown to correlate positively with body weight 

in humans (29). We detected elevated levels of immunoreactive nesfatin-1 neurons in many 

brain areas involved in the regulation of food intake, namely the SON, PVN, Arc and DMH, 

which is especially interesting because the anorexigenic nesfatin-1 was shown to play an 

already well-established function in homeostatic feeding (25,26). Nesfatin-1 is also expressed 

in reward-related areas and, therefore, one may speculate that nesfatin-1 might play a role in 

hedonic feeding, as well (60,61). Further analyses of the effects of nesfatin-1 on food intake 

under reward inducing conditions would prove helpful to address this hypothesis. 

The increase of nesfatin-1 immunoreactive neurons was more prominent in ABA rats 

than in RF rats but reached significance only in one analyzed nucleus (namely the SON), 

pointing towards restricted feeding as the main contributing effect. The SON consists of 

neurons prominently expressing oxytocin, a hormone well known for its effects in the mediation 

of social memory and cognition, aggression and anxiety (51). Interestingly, besides the findings 

that AN patients display lower oxytocin plasma levels (62) and an association of AN with 

polymorphisms of the oxytocin receptor (63), further data give rise to the speculation that 

altered oxytocin signaling is involved in the development and/or maintenance of AN symptoms 

(64,65). Whether the observed increase of double-labeled c-Fos/nesfatin-1 immunoreactive 

neurons in the SON leads to altered oxytocin signaling warrants further investigation. 

With regards to the motivation to exercise in a running wheel despite the caloric deficit 

one might assume that the reward system and associated dopamine signaling (66) play an 

important role. It has been shown that a non-selective dopamine antagonist, cis-flupenthixol, 

inhibits anorectic behavior in ABA (20). Furthermore, the antipsychotic drug olanzapine 

increases survival in ABA mice, while the anti-depressive selective serotonin reuptake inhibitor 

(SSRI), fluoxetine had no effect (67,68). Olanzapine exerts its effect not only by a blockade of 

the dopaminergic D2 and D4 receptors, but also influences other receptors such as the 5HT-2A 

receptor (69). The effect of olanzapine is associated with a decrease in hyperactivity in ABA 

rats, which probably contributes to the prolonged survival (70). In line with the data of the ABA 

model, not only fluoxetine and other SSRIs are commonly prescribed to AN patients, probably 

treating mainly the comorbid depression (71,72), but also olanzapine has shown to display 

beneficial effects on AN patients (73–75). However, it is not yet defined which subgroups of 

AN patients benefit the most of an olanzapine treatment (76).  

The nucleus accumbens (Nacc) is one of the major brain areas involved in reward and 

reward-motivated behavior (77,78). Analysis of the Nacc in ABA rats shows that dopamine 
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release was increased during feeding, however, during food-anticipatory behavior neither 

dopamine nor serotonin release were elevated (21). Selective activation of the mesolimbic 

reward pathway firing from the ventral tegmental area (VTA) to the Nacc, mainly consisting of 

dopaminergic neurons (66), drastically increased survival of ABA rats associated with 

increased daily food intake (79). Moreover, an activation of the VTA-Nacc projections helped 

reverse ABA in rats that already fully developed the ABA phenotype (79). In the present 

experiment, an elevated neuronal activation in the striatum of ABA compared to AL rats was 

detected, as assessed by c-Fos immunohistochemistry. Whether a blockade of this pathway 

would exert beneficial effects on the ABA phenotype will have to be further investigated. 

Considering the results of neuroimaging studies in patients suffering from AN, it should 

be noted that altered central reward processing seems to be involved in the development and 

the maintenance of the eating disorder (80–82). Moreover, a decreased endogenous dopamine 

concentration in the striatum was found in AN patients compared to healthy controls (83), 

indicating that a disrupted dopaminergic signaling might play an important role. In line with 

that assumption, several dopamine receptor polymorphisms affecting the dopamine receptor D2 

transcription efficiency, such as 141 C/- insertion/deletion (-141 Indel), are more frequent in 

patients suffering from AN (84).  

In summary, the three studies presented show that the automated food intake-monitoring 

system previously established in mice is also suited for the use in rats. It is a necessary tool in 

order to study food intake of rats in more detail and continuously without disturbance. Using 

this system, the food intake microstructure underlying the reduced food intake in rats 

developing ABA has been investigated. Although ABA seems to be a suited model to study 

pathophysiological alterations possibly also occurring in human AN, this model does not show 

a distinct food intake or activity phenotype. A whole brain mapping indicated that ABA rats 

showed higher activation of several distinct brain nuclei involved in the modulation of food 

intake, thermogenesis, stress and emotional processing. ABA also induces a robust activation 

of nesfatin-1 immunoreactive neurons giving rise to a possible role of nesfatin-1 in the 

development or maintenance of ABA.  
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