Aus der Medizinischen Klinik mit Schwerpunkt Hämatologie und Onkologie am Campus Benjamin Franklin der Medizinischen Fakultät Charité - Universitätsmedizin Berlin

DISSERTATION

Intragenetische IKZF1-Deletionen bei Erwachsenen mit BCR-ABL-negativer akuter lymphatischer Leukämie (ALL)

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät

Charité - Universitätsmedizin Berlin

von
Benjamin Michael Kobitzsch
aus Biberach an der Riß

Inhaltsverzeichnis

Kurzzusammenfassung (deutsch) 3
Abstract (english) 5
Eidesstattliche Versicherung 7
Ausführliche Anteilserklärung 8
Auszug aus der Journal Summary List (ISI Web of Knowledge ${ }^{\text {SM }}$) 10
Druckexemplar der Publikation 11
Lebenslauf 46
Vollständige Publikationsliste. 48
Danksagung 49

Kurzzusammenfassung (deutsch)

Hintergrund: Mutationen des Transkriptionsfaktors IKZF1 wurden in den letzten Jahren bei Patienten mit akuten Leukämien der B-Zell-Reihe (B-ALL) nachgewiesen. Neben komplettem Genverlust und Punktmutationen unterscheidet man zwei Typen von intragenetischen Deletionen: mono-allelischer Funktionsverlust (loss-of-function) und komplette Unterdrückung der Proteinfunktion (dominant-negativ). Für die große Patientengruppe von Erwachsenen mit BCR-ABL-negativer B-ALL gibt es nur begrenzte Daten zur Häufigkeit und der prognostischen Bedeutung von IKZF1-Alterationen.

Methodik: Wir untersuchten DNA-Proben von 482 Patienten mit BCR-ABL-negativer BALL, die im Rahmen der GMALL-Studienprotokolle 06/99 und 07/03 behandelt wurden, mittels PCR auf intragenetische Deletionen ($\Delta 2-7, \Delta 2-8, \Delta 4-7, \Delta 4-8$). Reverse-Transkriptase-PCRs (RT-PCR) wurden durchgeführt um $\Delta 2-3$ und andere seltene Deletionen zu erkennen.

Mittels quantitativer PCRs ($\Delta 2-7, \Delta 4-7, \Delta 4-8$) und Geldensitometrie wurde die relative Konzentration der Zellen mit IKZF1-Deletionen bestimmt. Es wurde zwischen Deletionen in einem Großteil der Zellen ("highdel") und Deletionen in nur einem kleinen Teil der Zellen ("lowdel") unterschieden. Der prognostische Effekt dieser beiden Gruppen wurde separat untersucht. Alle Deletionen wurden sequenziert und die DNABruchpunkte analysiert.

Ergebnisse: 128 Patienten (27\%) zeigten eine intragenetische IKZF1-Deletion, 37 davon wiesen mehr als eine Deletion auf (175 Deletionen insgesamt). 56 Patienten (12\%) hatten nur loss-of-function Deletionen, 50 (10\%) hatten nur dominant-negative Deletionen, während 22 Patienten beide Deletionstypen aufwiesen (5\%). Mindestens eine highdel IKZF1-Deletion konnte bei 98 Patienten (20\%) nachgewiesen werden.

Patienten mit einer loss-of-function IKZF1-Deletion zeigten ein signifikant reduziertes Gesamtüberleben (overall survival (OS) nach 5 Jahren 0.37 vs. $0.59, \mathrm{p}=0.0012$), während dominant-negative Deletionen keinen Effekt auf das Gesamtüberleben hatten (0.54 vs. $0.56, p=0.95$).

In der Patientengruppe mit loss-of-function Deletionen waren nur highdel-Deletionen mit einem reduzierten Gesamtüberleben assoziiert (OS 0.28 vs. 0.59 , $p<0.0001$), während Patienten mit einer lowdel-Deletion einen klinischen Verlauf ähnlich Patienten ohne loss-of-function Deletion aufwiesen. Der Effekt der highdel loss-of-function Deletionen war auch in der Standardrisiko-Subgruppe nach GMALL-Kriterien signifikant (0.37 vs. $0.68, \mathrm{p}=0.0002$).
In der Patientengruppe mit dominant-negativen Deletionen gab es keine Assoziation zwischen dem relativen Anteil an Zellen mit Deletionen und dem Gesamtüberleben ($p=0.62$).
Die Sequenzierung von 193 Deletionen ergab eine Häufung der Bruchpunkte innerhalb vier großer Bruchpunkt-Cluster. Bei 183 der 193 Sequenzen waren sowohl am proximalen als auch am distalen Bruchpunkt kryptische Rekombinations-SignalSequenzen (cRSS) nachweisbar.

Diskussion: In der Patientengruppe der Erwachsenen mit BCR-ABL-negativer B-ALL sind loss-of-function IKZF1-Deletionen mit einem schlechteren klinischen Verlauf assoziiert, wenn sie in einem großen Anteil der leukämischen Zellen auftreten. Diese Patienten sollten engmaschig auf Rezidive überwacht werden. Die unterschiedliche biologische Funktion der loss-of-function und dominant-negativen IKZF1-Deletionen sollte in weiteren Studien untersucht werden.

Abstract (english)

Background: Mutations of transcription factor IKZF1 have recently been reported in Bcell precursor acute lymphoblastic leukemia (B-ALL). Besides deletions of the whole gene and point mutations, there are two types of intragenetic deletions (loss-of-function and dominant-negative). For the large subgroup of adult patients with BCR-ABLnegative B-ALL, there is only limited data on the frequency and the prognostic relevance of IKZF1 alterations.

Methods: DNA samples from 482 patients with BCR-ABL-negative B-ALL treated within the GMALL study protocols 06/99 and 07/03 were analyzed by PCR for intragenetic deletions ($\Delta 2-7, \Delta 2-8, \Delta 4-7, \Delta 4-8$). RT-PCR was conducted to detect $\Delta 2-3$ and other rare deletions.

Quantitative PCRs ($\Delta 2-7, \Delta 4-7, \Delta 4-8$) and gel densitometry were used to quantify the relative concentration of IKZF1-deleted cells. Deletions were considered either present in the majority of cells ("highdel") or in a small fraction of cells only ("lowdel") and their prognostic effect was evaluated separately. All deletions were sequenced and breakpoint sequences were analyzed.

Results: Overall, 128 patients (27\%) showed an intragenetic IKZF1 deletions, 37 of them expressing more than one deletion (175 deletions in total). Fifty-six patients (12\%) carried only loss-of-function deletions, 50 (10\%) had only dominant-negative deletions while 22 patients exhibited both types of deletions (5\%). At least one highdel IKZF1 deletion could be found in 98 patients (20%).

Patients carrying a loss-of-function IKZF1 deletion showed a significantly reduced overall survival (OS at 5 years 0.37 vs. $0.59, \mathrm{p}=0.0012$) while dominant-negative deletions had no effect on OS (0.54 vs. $0.56, p=0.95$).

In the group of patients with loss-of-function deletions, only highdel deletions were linked to a reduced OS (0.28 vs. $0.59, \mathrm{p}<0.0001$) while patients with lowdel deletions showed a clinical course comparable to patients without loss-of-function deletions. This effect of highdel loss-of-function deletions was also significant in a subgroup of standard-risk patients according to GMALL criteria ($0.37 \mathrm{vs} .0 .68, \mathrm{p}=0.0002$).

There was no association between the relative amount of cells with dominant-negative deletions and overall survival ($p=0.62$).

Sequencing of 193 breakpoints revealed four major breakpoint clusters. In 183 of 193 cases, both proximal and distal breakpoints were linked to putative cryptic recombination signal sequences.

Discussion: In adult BCR-ABL-negative leukemia patients, loss-of-function IKZF1 deletions that are present in a large fraction of leukemic cells are linked with an inferior clinical outcome. These patients should be monitored closely for relapses. Consecutive research is needed to further investigate the different biological function of nonfunctional and dominant-negative IKZF1 deletions.

Eidesstattliche Versicherung

„Ich, Benjamin Michael Kobitzsch, versichere an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema: „Intragenetische IKZF1-Deletionen bei Erwachsenen mit BCR-ABL-negativer akuter lymphatischer Leukämie (ALL)" selbstständig und ohne nicht offengelegte Hilfe Dritter verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements for Manuscripts (URM)" des ICMJE -www.icmje.org) kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) entsprechen den URM (s.o.) und werden von mir verantwortet.

Mein Anteil an der ausgewählten Publikation entspricht dem, der in der untenstehenden gemeinsamen Erklärung mit dem Betreuer angegeben ist.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst."

Datum
Unterschrift

Ausführliche Anteilserklärung

Publikation:

Kobitzsch B, Gökbuget N, Schwartz S, Reinhardt R, Brüggemann M, Viardot A, Wäsch R, Starck M, Thiel E, Hoelzer D, and Burmeister T. Loss-of-function but not dominantnegative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR-ABL-negative acute lymphoblastic leukemia.

Haematologica. 2017; 102:xxx. doi:10.3324/haematol.2016.161273

Anteilserklärung wie in der Publikation angegeben:

"BK performed research, designed research and analyzed data, NG is the study physician of the GMALL study and analyzed data, RR organized sequencing, SS performed immunophenotyping, MB provided relapse samples, AV, RW, MS are major patient recruiters, ET supervised immunophenotyping, DH is the GMALL study head, TB is the principal investigator, designed research and analyzed data. All authors approved and made contributions to the manuscript."

Beitrag im Einzelnen:

Studiendesign: Die Idee der Studie stammt von Herrn PD Dr. Dr. Burmeister, der alle Arbeiten auch durchgehend inhaltlich begleitete und betreute. Von Beginn der Forschung an war Herr Kobitzsch an der Entwicklung des Forschungsdesigns beteiligt und machte eigene Beiträge dazu.
Herr Kobitzsch war an der Konzeption der genomischen PCRs beteiligt und etablierte das Verfahren inklusive Kontrollprimern und PCR-Bedingungen selbständig. Die RTPCR und die quantitativen PCRs wurden von Herrn Kobitzsch gestaltet sowie deren Bedingungen im Labor etabliert. Das Verfahren der Quantifizierung mittels Geldensitometrie wurde von ihm entwickelt, ebenso wurden die einzeInen Primer für die Sequenzierung von Herrn Kobitzsch entworfen.

Datenerhebung: Herr Kobitzsch isolierte selbständig Teile des untersuchten Materials aus leukämischen Zellen oder aus archivierten Nukleinsäuren und stellte Teile der untersuchten cDNA her. Alle PCRs und RT-PCRs (insgesamt über 3000 PCRs) sowie alle quantitativen PCRs (über 500 qPCRs) wurden von inm durchgeführt. Er bereitete
alle DNA-Proben für die Sequenzierung auf (über 190 Sequenzen) und isolierte die sequenzierten PCR-Banden aus dem Gel, die Sequenzierung selbst wurde durch das Max Planck Genomzentrum Köln vorgenommen.

Datenauswertung: Herr Kobitzsch wertete die konventionellen PCRs, die RT-PCRs und die quantitativen PCRs aus. Ebenso erfolgten durch inn die Quantifizierung mittels Geldensitometrie und die Analyse der DNA-Sequenzen.

Die Fragestellungen für die statistische Auswertung wurden von Herrn Kobitzsch formuliert, die Auswertung der Daten erfolgte in der GMALL-Studienzentrale in Frankfurt am Main durch Frau Dr. Gökbuget.

Manuskript: Herr Kobitzsch formulierte große Teile des Manuskripts, insbesondere die Abschnitte zu Methoden und wesentliche Teile der Ergebnisse wurden von ihm erstellt. An der Formulierung der Abschnitte „Einleitung" und „Diskussion" hatte er große Anteile. Alle Grafiken sowohl im Haupttext (Figure 1-5) als auch im Supplement (Supplementary Figures 1-4) wurden von Herrn Kobitzsch erstellt, ebenso alle Tabellen (Table 1, Supplementary Tables 1-12) bis auf eine Tabelle im Supplement („Putative cryptic recombination signal sequences near breakpoints").

Datum Unterschrift und Stempel des Unterschrift des Doktoranden

Auszug aus der Journal Summary List (ISI Web of Knowledge ${ }^{\text {SM }}$)

Journal Data Filtered By: Selected JCR Year: 2016 Selected Editions: SCIE,SSCI Selected Categories: "HEMATOLOGY" Selected Category Scheme: WoS

Gesamtanzahl: 70 Journale

Rank	Full Journal Title	Total Cites	Journal Impact Factor	Eigenfactor Score
1	CIRCULATION RESEARCH	49,784	13.965	0.079890
2	BLOOD	161,962	13.164	0.313600
3	IFIJKFMIA	23538	11702	0059800
4	HAEMATOLOGICA	15,075	7.702	0.040460
5	Lancet Haematology	571	7.123	0.002680
6	ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY	32,950	6.607	0.051690
7	Journal of Hematology \& Oncology	2,879	6.350	0.007920
8	BLOOD REVIEWS	2,380	6.342	0.005310
9	TRANSFUSION MEDICINE REVIEWS	1,254	5.745	0.002760
10	BRITISH JOURNAL OF HAEMATOLOGY	23,280	5.670	0.041040
11	THROMBOSIS AND HAEMOSTASIS	17,662	5.627	0.029740
12	STEM CELLS	20,822	5.599	0.038100
13	JOURNAL OF THROMBOSIS AND HAEMOSTASIS	18,059	5.287	0.041260
14	AMERICAN JOURNAL OF HEMATOLOGY	8,776	5.275	0.021330
15	JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM	16,998	5.081	0.029520
16	CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY	6,296	4.971	0.011240
17	BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION	9,904	4.704	0.025270
18	SEMINARS IN HEMATOLOGY	2,157	4.042	0.003430
19	JOURNAL OF LEUKOCYTE BIOLOGY	17,441	4.018	0.023810
20	BONE MARROW TRANSPLANTATION	11,896	3.874	0.021220
21	SEMINARS IN THROMBOSIS AND HEMOSTASIS	4,054	3.629	0.007400
22	HAEMOPHILIA	6,137	3.569	0.012260
23	STEM CELLS AND DEVELOPMENT	7,446	3.562	0.018710
24	TRANSFUSION	12,469	3.386	0.021790
25	HEMATOLOGYONCOLOGY CLINICS OF NORTH AMERICA	2,120	3.226	0.004840
26	CYTOTHERAPY	4,952	3.203	0.008800

Druckexemplar der Publikation

Kobitzsch B, Gökbuget N, Schwartz S, Reinhardt R, Brüggemann M, Viardot A, Wäsch R, Starck M, Thiel E, Hoelzer D, and Burmeister T. Loss-of-function but not dominantnegative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR-ABL-negative acute lymphoblastic leukemia.
Haematologica. 2017; 102:xxx. doi:10.3324/haematol.2016.161273
http://dx.doi.org/10.3324/haematol.2016.161273

EUROPEAN HEMATOLOGY
ASSOCIATION association

Ferrata Storti Foundation

Haematologica 2017
Volume 102(10):xxxx-xxxx

Correspondence:

thomas.burmeister@charite.de

Received: January 12, 2017.
Accepted: July 18, 2017.
Pre-published: July 27, 2017.
doi:10.3324/haematol.2016.161273

Check the online version for the most updated information on this article, online supplements, and information on authorship \& disclosures: www.haematologica.org/content/102/10/xxx

©2017 Ferrata Storti Foundation

Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions:
https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions:
https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher.

Loss-of-function but not dominant-negative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR-ABL-negative acute lymphoblastic leukemia

Benjamin Kobitzsch, ${ }^{1}$ Nicola Gökbuget, ${ }^{2}$ Stefan Schwartz, ${ }^{1}$
Richard Reinhardt, ${ }^{3}$ Monika Brüggemann, ${ }^{4}$ Andreas Viardot, ${ }^{5}$ Ralph Wäsch, ${ }^{6}$ Michael Starck, ${ }^{7}$ Eckhard Thiel, ${ }^{1}$ Dieter Hoelzer ${ }^{2}$ and Thomas Burmeister ${ }^{1}$

${ }^{1}$ Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin; ${ }^{2}$ Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main; ${ }^{3}$ Max Planck Genome Center, Köln; ${ }^{4}$ Department of Hematology, University Hospital Schleswig-Holstein, Kiel; ${ }^{5}$ Department of Medicine III (Hematology, Oncology), Ulm University, Ulm; ${ }^{6}$ Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg and
${ }^{7}$ Department of Hematology, Klinikum München-Schwabing, Munich, Germany

Genetic alterations of the transcription factor IKZF1 ("IKAROS") are detected in around $15-30 \%$ of cases of $B C R-A B L$-negative B-cell precursor acute lymphoblastic leukemia. Different types of intragenic deletions have been observed, resulting in a functionally inactivated allele ("loss-of-function") or in "dominant-negative" isoforms. The prognostic impact of these alterations especially in adult acute lymphoblastic leukemia is not well defined. We analyzed 482 well-characterized cases of adult $B C R-A B L$-negative B-precursor acute lymphoblastic leukemia uniformly treated in the framework of the GMALL studies and detected IKZF1 alterations in 128 cases (27%). In 20%, the IKZF1 alteration was present in a large fraction of leukemic cells ("high deletion load") while in 7% it was detected only in small subclones ("low deletion load"). Some patients showed more than one IKZF1 alteration (8\%). Patients exhibiting a loss-of-function isoform with high deletion load had a shorter overall survival (OS at 5 years 28% vs. 59%; $P<0.0001$), also significant in a subgroup analysis of standard risk patients according to GMALL classification (OS at 5 years 37% vs. $68 \% ; P=0.0002$). Low deletion load or dominant-negative IKZF1 alterations had no prognostic impact. The results thus suggest that there is a clear distinction between loss-of-function and dominant-negative IKZF1 deletions. Affected patients should thus be monitored for minimal residual disease carefully to detect incipient relapses at an early stage and they are potential candidates for alternative or intensified treatment regimes. (clinicaltrials.gov identifiers: 00199056 and 00198991).

Introduction

IKAROS family transcription factors have been identified as key players in lymphopoiesis. ${ }^{1.5}$ Alterations of $I K Z F 1$ in acute lymphoblastic leukemia (ALL) were first described in isolated cases in the early $1990 \mathrm{~s}^{6,7}$ but it took several years to recognize the important role of $I K Z F 1$ in ALL development. ${ }^{8,9}$ The crucial role of IKZF1 in ALL development has also recently been underlined by the finding that certain non-coding single nucleotide polymorphisms in IKZF1 predispose to B lineage ALL development in later life. ${ }^{10-12}$
The first larger studies on the incidence and role of IKZF1 alterations in ALL were exclusively conducted on pediatric patients and revealed a prevalence of 15-30\% of IKZF1 alterations in $B C R-A B L$-negative $\mathrm{ALL}^{3,9}$ compared with a particularly large

Figure 1. Flowchart of the analysis.
fraction in BCR-ABL-positive ALL (more than 60\%). ${ }^{8,13}$ IKZF1-alterated BCR-ABL-negative pediatric ALL patients were reported to have an adverse prognosis ${ }^{9,1417}$ although this is still a subject of dispute. ${ }^{18}$ The negative prognostic effect was even found within $B C R$-ABL-positive pediatric ${ }^{19}$ and adult ${ }^{13,20}$ patients.
In adult $B C R$ - $A B L$-negative ALL patients, studies suggested a worse outcome for IKZF1-mutated patients, albeit there have been inconsistent results concerning the prognostic impact of different IKZF1 alterations (Online Supplementary Table S1). ${ }^{21.24}$ Furthermore, to the best of our knowledge, the effect of multiple IKZF1 alterations or the impact of mutation load ${ }^{25,26}$ has not been systematically studied in this population.
The IKZF1 gene comprises eight exons, of which the first is non-coding. Its gene product is a 519 amino acid protein with six zinc finger domains. ${ }^{4}$ The two carboxyterminal zinc fingers (exon 8) are responsible for dimerization with other IKAROS family members. ${ }^{27}$ The four amino-terminal zinc fingers (exons 4-6) mediate DNA binding. Besides point mutations and the loss of the complete IKZF1 gene, various intragenic types of deletions have been experimentally observed. Loss of two or more amino-terminal zinc fingers encoded by exons 4-6 with deletion of the binding domain but retention of the dimerization domain results in dominant-negative isoforms, i.e. an isoform able to suppress the function of wild-type protein. ${ }^{27}$ Loss of exon 2 with the ATG start codon abolishes gene transcription at all and loss of exon 8 removes the
dimerization domain. The latter two have historically been called "haploinsufficient". ${ }^{3}$ Since this term implies that the other allele is still functional, which could only be proven with certainty by single cell analysis, we will use the term "loss-of-function" for these alterations.
In this study, we present an in-depth analysis of 482 $B C R$-ABL-negative patients with B-precursor ALL with regard to their IKZF1 status. Patients were treated uniformly in the framework of the German Multicenter ALL (GMALL) studies between 1999 and 2009. We present a detailed genetic analysis and an assessment of the prognostic impact of the various IKZF1 alterations.

Methods

Patients' samples

Originally, 507 patients with $B C R$-ABL-negative B-cell precursor (BCP) ALL were studied (Figure 1). Four were excluded because of irreproducible results, and 21 for missing follow-up data (of these only breakpoint sequences are presented).
Of the remaining 482 patients who were treated within the GMALL protocols $06 / 99$ ($\mathrm{n}=84$; clinicaltrials.gov identifier: 00199056) or $07 / 03$ ($\mathrm{n}=398$; clinicaltrials.gov identifier: 00198991), we analyzed bone marrow ($\mathrm{n}=330$) or peripheral blood with peripheral blasts ($\mathrm{n}=132$; bone marrow or peripheral blood not specified in $\mathrm{n}=20$) obtained at the time of diagnosis between 1999 and 2009 (for blast count see Online Supplementary Tables S2 and S3). Matched samples from the time of relapse were available for 16 out of 482 patients

GMALL studies

Detailed information on treatment has been published previously ${ }^{28}$ The GMALL studies were approved by the ethics committee of the University of Frankfurt, Germany, and by local ethics committees of participating institutions, and were conducted according to the Declaration of Helsinki.

Immunophenotyping and molecular genetic analysis

At the time of diagnosis, immunophenotyping and molecular genetic analysis were performed at the GMALL central laboratory in Berlin, Germany. For all BCP-ALL patients, $B C R-A B L$ status was determined by RT-PCR. Other molecular targets (TCF3-PBX1, ETV6-RUNX1 and MLL fusion genes) were analyzed according to our diagnostic guidelines as outlined previously. ${ }^{29,30}$

Genomic PCR for $\Delta 4-7, \Delta 2-7, \Delta 4-8, \Delta 2-8$

For all patients, genomic PCR was performed using HotStarTaq Polymerase Mastermix (QIAGEN) with 40-200 ng DNA and 500 nM of each primer under the following conditions: 15 minutes (min) at $95^{\circ} \mathrm{C}$, followed by 35 cycles of 30 seconds (sec) at $94^{\circ} \mathrm{C}$, 30 sec at $65^{\circ} \mathrm{C}$ and 60 sec at $72^{\circ} \mathrm{C}$. Primers were located in intron 1 (F2A ACTACAGAGACTTCAGCTCTATTCCATTTC, F2B TGATTTGGATGTGTGTGTTTCATGCGTGG), intron 3 (F4 CTTAGAAGTCTGGAGTCTGTGAAGGTC), intron 7 (R7 AGGGACTCTCTAGACAAAATGGCAGGA) and 3'UTR of IKZF1 (R8 CCTCCTGCTATTGCACGTCTCGGT). For primer combinations see Online Supplementary Table S4. In all PCRs, a fragment of intron 7 or 3'UTR was amplified as internal control with primer concentration of 100 nM (F7 ACCATCAAATACAGGTCAACAGGACTGA, product $1,257 \mathrm{bp}$) or 50 nM (F8 CCCACTGCACAGATGAACAGAGCA, product $1,229 \mathrm{bp})$. Primers were manufactured by metabion (Munich, Germany) or TIB Molbiol (Berlin, Germany) and HPLC-purified.

Figure 2. Detection of IKZF1 deletions by RT-PCR and PCR screening. (A-C) RT-PCR ex1/8, PCR $\Delta 4-7$ and PCR $\Delta 2-7$ of the same 9 patients. (A) RT-PCR with primers in exon 1/8. Increased lk6 expression in lanes 4-6 and increased Ik10 expression in lanes 6-8. Reduced full length isoform expression in lanes 1 and 7 is attributed to an additional deletion $\Delta 2-3$ in these 2 patients detected by another RT-PCR (see Online Supplementary Figure S2). (B) PCR $\Delta 4-7$. In lanes 1-3, $\Delta 4-7$ is present with a low deletion load; in lanes 4-6, the deletion is present with a high deletion load. Corresponding qPCR results are given below. Control band of 1257 bp . (C) PCR $\Delta 2-7$ with low deletion load in lanes 3-4 and high deletion load in lanes 6-8. Control band of 1257bp. (D) Structure of the IKZF1 transcript isoforms Ik1 (full-length), Ik6 (loss of exons 4-7) and Ik10 (loss of exons 2-7). (E-F) PCR $\Delta 4-8$ and PCR $\Delta 2-8$ of the identical patients in lanes 10-17. Control band of 1229 bp . (E) PCR $\Delta 4-8$. See double bands in lanes 10 and 11. (F) PCR $\Delta 2-8$. See variant breakpoint in lane 17.

Reverse transcriptase PCR

RT-PCR was performed with $2 \mu \mathrm{cDNA}, 500 \mathrm{nM}$ of each primer and the HotStarTaq Polymerase Mastermix (OIAGEN) using the following conditions: 15 min at $95^{\circ} \mathrm{C}$, followed by 35 cycles of 30 sec at $94^{\circ} \mathrm{C}, 30 \mathrm{sec}$ at $64^{\circ} \mathrm{C}$, and 60 sec at $72^{\circ} \mathrm{C}$. Primers were located in exons 1 and 8 (RT-PCR ex1/8, primers ex1FA AAAGCGCGACGCACAAATCCA and ex8R CGTTGTTGATGGCTTGGTCCATCAC) or in exon 1 and exon 4 for detection of $\Delta 2-3$ (RT-PCR ex1/4, primers ex1FB CGAGGATCAGTCTTGGCCCCAA and ex4R GAATGCCTCCAACTCCCGACAAAG). Long IKZF1 isoforms were used as internal control. Bands of unexpected sizes were excised from the gel and sequenced.
In cases where RNA was not available for RT-PCR, we used our own and the PCR described by Meyer et al. as genomic screening PCR.

Quantitative PCR for $\Delta 4-7, \Delta 2-7, \Delta 4-8$

Quantitative PCR was performed in duplicates either for all patients ($\Delta 4-7$) or for patients positive in genomic PCR ($\Delta 2-7$ and $\Delta 4-8$) using a Rotorgene 6000 cycler (Corbett, Concorde, Australia), the Thermo Scientific ABsolute OPCR Mix (Life Technologies, Darmstadt, Germany) with 200-250 ng DNA per

PCR and the following conditions: 15 min at $95^{\circ} \mathrm{C}$, followed by 55 cycles for 15 sec at $95^{\circ} \mathrm{C}$, and 60 sec at $60^{\circ} \mathrm{C}$.
As DNA standard, we used the cell-line BV-173 for $44-7$ (DSMZ, Braunschweig, Germany) ${ }^{31}$ or patient DNA (\#100 for 42 7, \#101 for $\Delta 4-8$). A PCR for the HCK gene served as internal control as described earlier. ${ }^{32}$ Oligonucleotides are given in Online Supplementary Table S4. Deletions were considered to be present in a large fraction of leukemic cells ("high deletion load", "highdel") when the relative PCR signal was $>10^{-1}$, otherwise they were considered having a "low deletion load" ("lowdel"). The cut-off value was chosen a priori since this threshold appeared to separate samples with a high and low mutation load (Online Supplementary Figure S1). We used MLPA (SALSA MLPA P335 ALL-IKZF1 kit, MRC Holland, Amsterdam, the Netherlands) to correlelate the cut-off values of our quantitative PCRs with MLPA deletion values. We investigated a subset of patients with q PCR signals that we expected to yield a MLPA reduction of 0.3 or more (i.e. qPCR signal of 0.6 or higher). The chosen thresholds distinguishing highdel and lowdel corresponded to 5% deleted alleles in case of $\Delta 2-7$ and $\Delta 4-7$, and 10% in $\Delta 4-8$, but the latter could equally well have been placed at 5%, since there were no samples between 5% and 10%.
In cases negative for $\Delta 4-7$ by conventional PCR but positive by qPCR, qPCR measurements were repeated and were considered

Figure 3. Prevalence of IKZF1 deletions at the time of diagnosis. (A) Frequency of all deletions as detected by PCR ($\Delta 2-7, \Delta 2-8, \Delta 4-7, \Delta 4-8$) and RT-PCR (exon $1 / 4$, exon 1/8). (B) Only deletions classified as high deletion load by quantitative PCR and densitometry.
positive when at least 3 out of 4 measurements were positive.

Gel densitometry

When no quantification by qPCR was possible ($\mathrm{n}=41$), we assessed the relative amount of cells with IKZF1 deletions (high vs. low deletion load) by gel band densitometry using the AlphaEaseFC v.4.0 software (Alpha Innotech, San Leandro, CA, USA). In deletions $\Delta 2(\mathrm{n}=1)$ and $\Delta 2-3(\mathrm{n}=17$, missing values $\mathrm{n}=2)$, we compared deleted isoforms to full-length isoforms on RT-PCR images with a cut-off value of 0.60. In deletions $\Delta 2-7(\mathrm{n}=5), \Delta 4-7$ $(\mathrm{n}=3)$ and $\Delta 5-7(\mathrm{n}=1)$ we compared deleted with long bands on RT-PCR images using a cut-off value of 1.20. In $\Delta 2-8(n=10)$ and $\Delta 4-8(\mathrm{n}=2)$ we calculated the ratio of short PCR products to the long PCR control band with a cut-off value of 1.20 .

Supplementary methods

Nucleic acid preparation, identification of rare genomic breakpoints (primer sequences specified in Online Supplementary Table S5), ${ }^{33}$ DNA sequencing, bioinformatic analysis, ${ }^{34}$ and statistical analysis are all described in the Online Supplementary Methods.

Results

Patients' characteristics

All 482 patients were aged between 16 and 65 years at diagnosis (Online Supplementary Table S6). The median age was 32 years [interquartile range (IQR) 22-47]. Two hundred and eighty-five patients (59%) were male. The distri-
bution of immunophenotypes was 111 pre-B ALL (cyIg+; 23%), 314 common ALL (cyIg ${ }^{-}, \mathrm{CD} 10^{+} ; 65 \%$) and 57 pro-B ALL (CD10; 12\%). Two hundred and fourteen patients (44%) were considered high risk, the remaining standard risk. All patients were $B C R$ - $A B L$-negative and a $M L L$ rearrangement was detected in 44 patients (39 MLL-AF4, 4 MLL-ENL, 1 MLL-AF9), a TCF3-PBX1 fusion in 30, and an ETV6-RUNX1 fusion in 3 cases.

Frequency of IKZF1 deletions

Two RT-PCRs were used to detect short IKZF1 isoforms (Figure 2A and Online Supplementary Figure S2A-C) and four separate PCRs to detect the $\Delta 2-7, \Delta 2-8, \Delta 4-7$ and $\Delta 4-8$ isoforms (Figure 2B-F). Deletions were then quantified using quantitative PCR or gel densitometry. Dominant-negative deletions ($\Delta 4-7, \Delta 5-7$) were compared to loss-of-function deletions ($\Delta 2, \Delta 2-3, \Delta 2-7, \Delta 2-8, \Delta 4-8$).
Overall, 128 of 482 (27%) patients carried an IKZF1 deletion (Figure 3A). Among these patients, we detected 175 different IKZF1 deletions. While 91 (19\%) patients expressed only one deletion, in 37 (8%) patients more than one IKZF1 deletion was detected: $2(\mathrm{n}=28), 3(\mathrm{n}=8)$ or 4 ($\mathrm{n}=1$) deletions (Online Supplementary Table S7; for an example, see lanes 3, 4 and 6 in Figure 2).
Among the 175 IKZF1 deletions, $\Delta 4-7$ was the most frequent ($n=71$). $\Delta 2-7$ was found in $47, \Delta 4-8$ in $26, \Delta 2-3$ in 19 and $\Delta 2-8$ in 10 patients. Rare deletions were $\Delta 5-7(n=1)$ and $\Delta 2(\mathrm{n}=1)$. In summary, 56 patients (12%) carried only

Table 1. Effect of IKZF1 deletions on overall survival.

Dype of IKZF1 deletion	Patient group	$\begin{gathered} \text { Cases } \\ \text { pos/neg } \end{gathered}$	Overall survival		P
			positive	negative	
Any mutation	all patients	128/354	0.46 ± 0.05	0.59 ± 0.03	ns (0.06)
Loss-of-function	all patients	78/404	0.37 ± 0.06	0.59 ± 0.02	0.0012
Dominant-negative	all patients	72/410	0.54 ± 0.06	0.56 ± 0.02	ns (0.95)
High deletion load loss of function	all patients	54/427	0.28 ± 0.06	0.59 ± 0.02	<0.0001
	SR	24/243	0.37 ± 0.10	0.68 ± 0.03	0.0002
	HR	30/184	0.26 ± 0.08	0.46 ± 0.04	ns (0.06)

ns: not significant; SR: standard risk according to GMALL; HR: high risk according to GMALL.
loss-of-function deletions, 50 (10\%) had only dominantnegative deletions while 22 patients exhibited both types of deletions (5\%).
We then quantified the amount of cells with IKZF1 deletions, as a variable deletion load was apparent from gel images (Figure 2B and C). We avoided the simple terminology "clonal" and "subclonal" since we did not prove clonality in a strict sense and did not investigate clonal relationships. Instead, we adopted the terms "high deletion load" (highdel) and "low deletion load" (lowdel) for IKZF1 aberrations present either in the vast majority of leukemic cells or only in a small fraction.

Out of 173 quantifiable deletions ($\mathrm{n}=2$ not quantified), $106(61 \%)$ were considered to have a high deletion load. At least one highdel IKZF1 deletion could be found in 98 of 482 (20\%) patients (Figure 3B). Among these, 50 had a highdel loss-of-function deletion only, 44 patients had a highdel dominant-negative deletion only, and there was a group of 4 patients expressing both deletions with a high deletion load level.
qPCR screening revealed 50 additional cases positive for $\Delta 4-7$ with a low deletion load not detectable by our conventional PCR. In 41 of these cases, the lowdel $\Delta 4-7$ was the only IKZF1 deletion, while in 9 cases a loss-of-function deletion had been detected by conventional PCR. Patients with a lowdel $\Delta 4-7$ detected by qPCR only were considered IKZF1 wild-type.

Prognostic impact of IKZF1 deletions

Four hundred and twenty-eight (89%) patients reached a complete remission, 31 patients (6%) died during induction, and 23 patients (5%) had a treatment failure after induction. The overall survival was 55% at five years.
We first calculated the effect of any IKZF1 deletion ($\mathrm{n}=128$ vs. wild-type $\mathrm{n}=354$) and then analyzed loss-offunction $(\mathrm{n}=78 \mathrm{vs}$. negative $\mathrm{n}=404)$ and dominant-negative deletions ($n=72$ vs. negative $n=410$) separately. We compared the effect of high to low deletion load and no deletion in the group of loss-of-function ($\mathrm{n}=54 / 23 / 404$, missing value $n=1$) and dominant-negative deletions ($\mathrm{n}=48 / 24 / 410$).
There was a non-significant trend towards inferior overall survival (OS) for patients with any IKZF1 deletion (0.46 vs. $0.59 ; P=0.06$) (Online Supplementary Figure S3A). Patients carrying a loss-of-function IKZF1 deletion had a reduced OS (0.37 vs. $0.59 ; P=0.0012$) (Figure 4A) while dominant-negative deletions had no effect on OS (0.54 vs. $0.56 ; P=0.95$) (Figure 4B). Patients with both dominantnegative and loss-of-function deletions showed a clinical course comparable to loss-of-function deletions only (Online Supplementary Figure S3B). Analysis of the amount of IKZF1-deleted cells showed that the inferior survival in
loss-of-function deletions was an effect of highdel loss-offunction deletions only (Figure 4C). Lowdel loss-of-function deletions did not influence the clinical course. In dom-inant-negative deletions, OS was not associated with the relative amount of IKZF1-deleted cells (Figure 4D).
Patients with highdel loss-of-function deletions showed a reduced OS (0.28 vs. $0.59 ; P<0.0001$) (Table 1). In subgroups according to risk stratification, highdel loss-offunction IKZF1 deletions conferred a negative prognostic effect on standard-risk patients (0.37 vs. $0.68 ; P=0.0002$), while in high-risk patients, the trend towards inferior OS narrowly missed statistical significance (0.26 vs. 0.46 ; $P=0.06$).

Clinico-biological characteristics of patients with IKZF1 deletions

Patients with IKZF1 deletion showed a common immunophenotype significantly more often than patients without IKZF1 deletions (98 in 128, 77\%, vs. 216 in 354, $61 \% ; P=0.0064)$. The former were also significantly more likely to be CD34-positive (112 in 127, 88%, vs. 209 of $353,59 \%$; $P<0.0001$; $\mathrm{n}=2$ CD34 N/A). The occurence of IKZF1 deletions was not associated with patients' age, gender, WBC or GMALL risk group, neither for all deletions (Online Supplementary Table S8) nor for different types of deletion (Online Supplementary Table S9).
TCF3-PBX1 and IKZF1 deletions were mutually exclusive (0 of 30 TCF3-PBX1+ vs. 64 of 250 TCF3-PBX1-; $P=0.0004$). One in 3 ETV6-RUNX1-positive patients showed an IKZF1 deletion. There was a trend towards a lower frequency of IKZF1 deletions in MLL-positive patients (7 of 44 MLL+, 16% vs. 7 of 26 MLL-, 26%; $P=0.3556$).

Oligoclonality is more common in loss-of-function deletions

Some patients showed more than one IKZF1 deletion (e.g. $\Delta 2-7$ and $\Delta 4-7$). Forty out of 175 deletions (23%) showed more than one chromosomal breakpoint resulting in the same type of RNA transcript. This oligoclonality may arise from multiple alterations in a single hyperdipoid clone or from alterations in different clones. This was evident either by gel electrophoresis (9 patients; see lanes 910 in Figure 2E and F) or by multiple sequences in chromatograms (2 breakpoints in 5 patients, Figure 5A; more than two breakpoints in 26 patients, Figure 5B). This kind of oligoclonal pattern occurred more often in loss-of-function deletions (31 of 103 deletions, 30%) compared with dominant-negative (9 of $72,13 \% ; P=0.0064$).

Breakpoint sequences

Sequencing of 193 breakpoints revealed four clusters

Figure 4. Overall survival (OS) depending on IKZF1 deletions. (A) OS of patients with loss-of-function IKZF1 deletions. (B) OS of patients with dominant-negative deletions. (C) OS of patients with high or low deletion load loss-of-function IKZF1 deletions. (D) OS of patients with high or low deletion load dominant-negative IKZF1 deletions.
(Figure 5C; for all breakpoints see Online Supplementary Table S10). In intron 1, 66 of 83 were located within 30bp. In intron 3, 106 of 108 proximal breakpoints were located within 40 bp . All 132 distal breakpoints in intron 7 clustered within 43 bp . Thirty-six of 42 breakpoints in the 3 'UTR region were located in a 27 bp region, and an additional 5 breakpoints clustered around 500 bp proximally.
The remaining 17 breakpoints in intron 1 were more diverse, covering a region of 7 kb . Distal (3^{\prime}) breakpoints in intron $3(\Delta 2-3)$ were scattered all over the 40 kb intron. In 183 of 193 (95%) molecularly characterized breakpoints, putative cryptic recombination signal sequences, either with 23 bp or 12 bp spacer, were identified at both breakpoint sites (5^{\prime} and 3^{\prime}). This was the case for the four major breakpoint clusters (Figure 5 and Online Supplementary Table S11) but also true for the majority of the atypical breakpoints in intron 1 and 3. In 10 of 25 atypical breakpoints, only one cRSS could be identified (8 only on the 3' site, 2 only on the 5' site) (Online Supplementary Table S11). There was no evidence of somatic hypermutation near the break sites.

Detection of deletions by RT-PCR

In 13 of 17 patients positive for $\Delta 2-3$ in RT-PCR ex1/4, a genomic breakpoint could be identified by Meyer's PCR (Online Supplementary Figure S2A). ${ }^{33}$ In the remaining 4 patients, breakpoints were identified by a newly developed PCR (Online Supplementary Figure S2B). We also identified $\Delta 2$ once by RT-PCR ex1/4 and confirmed the genomic deletion. One patient expressed isoform $\Delta 2-4$ in RT-PCR ex1/8 but we could only find a deletion $\Delta 2-3$ on the genomic level and no deletion $\Delta 2-4$ or $\Delta 4$.
RT-PCR revealed 3 patients positive for Ik10 (lacking
exons 2-7) but negative for $\Delta 2-7$ by genomic PCR due to a more proximal 5' breakpoint (Online Supplementary Figure S4A). In all 70 cases of RT-PCR positive for Ik6 (lacking exons 4-7) and negative for Ik6 (lacking exons 4-7 but with an additional 60 bp cryptic exon 36), ${ }^{,, 55}$ genomic PCR was positive for deletion $\Delta 4$-7. In one patient with Ik6 and Ik6 Δ we found two deletions $\Delta 4-7$, one with common breakpoints, one with a 5^{\prime} breakpoint distal to the 60bp insert (Online Supplementary Figure S4B). The second patient with Ik6/Ik6 Δ showed only a deletion $\Delta 5-7$ that was supposedly the reason for overexpression of Ik6 and Ik6 (Online Supplementary Figure S4C).

Comparison between diagnosis and relapse

DNA at the time of relapse was available from 16 patients carrying 20 IKZF1 deletions. Four in 7 (57%) $\Delta 4$ 7 and 9 in 13 (69\%) loss-of-function deletions were conserved ($P=0.65$) (Online Supplementary Table S12). Eleven in $15(73 \%)$ highdel and 1 in 4 lowdel deletions were conserved ($P=0.12$; 1 deletion not quantified). All genomic breakpoints were identical at the time of diagnosis and relapse. No newly acquired deletion $\Delta 2-7, \Delta 2-7, \Delta 4-7$ or $\Delta 4-8$ could be detected in relapse samples. We also investigated 5 relapse samples from patients who had shown a lowdel $\triangle 4-7$ IKZF1 deletion at diagnosis, detectable only by quantitative PCR. None of these cases evolved into a major clone, i.e. with high deletion load at relapse.

Discussion

IKZF1 alterations have been recognized as recurrent aberrations in B precursor ALL but their prognostic impact

Figure 5. Distribution of IKZF1 breakpoints and clonality of deletions. (A) Chromatogram of patient \#189 showing two distinguishable clones (sequenced sense and antisense reverse complement). (B) Chromatogram of patient \#395 showing oligoclonality at the breakpoint junction in both sequencing directions. (C) Distribution of breakpoints in the IKZF1 gene locus. Proximal breakpoints are shown in black, distal breakpoints in blue. There are four major breakpoint clusters within intron 1, 3, 7 and 3'UTR of IKZF1.
in adult ALL is still not well defined. Two major studies involving more than 200 patients have focused on the prognostic impact in $B C R$ - $A B L$-negative adult BCP ALL.
Moorman et al. ${ }^{21}$ investigated 304 patients and found IKZF1 deleted patients (29%) to have a lower OS, but this was only seen in a univariate analysis. The authors stated cautiously that "there was evidence to suggest that the poor outcome was not linked to the expression of the IK6 isoform but rather to other types of IKZF1 deletions". ${ }^{21}$ Beldjord et al. ${ }^{22}$ investigated 216 younger adults and observed a significantly higher cumulative incidence of relapse in patients with focal IKZF1 alterations (25%) but not with whole gene deletion. No statistically significant difference between patients with different focal alterations was observed.

Our present study included 482 homogenously treated patients and revealed IKZF1 alterations in 128 cases. The incidence of focal deletions (27%) was comparable to both studies mentioned above. Our study is the first to systematically address the issue of IKZF1 mutation load
and its implications for prognosis on a larger scale. This is of diagnostic interest if IKZF1 alterations are to be used as molecular markers for risk stratification and/or for detecting minimal residual disease. ${ }^{15,26}$ Ninety-eight patients revealed a high deletion load IKZF1 aberration while 29 patients showed low deletion load IKZF1 alterations only ($\mathrm{n}=1$ not quantified). Regarding clinical implications, only high deletion load loss-of-function IKZF1 alterations were of prognostic relevance and conferred an adverse prognosis while low deletion load IKZF1 alterations or dominantnegative IKZF1 alterations did not have a prognostic effect.
In animal studies, double IKZF1 knock-out mice show a total absence of B cells. ${ }^{36}$ Mice with only IKZF1 deletions did not develop BCP ALL, but haploinsufficiency of IKZF1 in $B C R$-ABL-transgenic mice significantly accelerated the development of BCP ALL. ${ }^{37}$ Current evidence suggests that IKZF1 alterations alone are not sufficient to cause leukemia in humans but are an important co-factor or secondary event in the development and acceleration of ALL
disease.
It may seem unexpected that the loss of one IKZF1 allele without apparent functional alteration of the other allele should have such a significant prognostic effect. However, this is supported by the above mentioned mouse model of Virely et al. ${ }^{37}$ The observation that loss-of-function IKZF1 deletions frequently occur in a small fraction of cells, but only seem to have an impact on prognosis if they are found in a large fraction, requires some explanation. A hypothetical explanation is the assumption that RAGmediated IKZF1 deletions occur sporadically during all stages of B-cell maturation because of the ongoing process of VDJ recombination. ${ }^{38,39}$ However, only those IKZF1 aberrations occurring at a very early maturation stage are thought to result in a cell phenotype with the full capacity of self-renewal, i.e. a "leukemia stem cell phenotype".40 IKZF1 alterations occurring at later stages of B-cell maturation should result in low deletion load aberrations.
The extremely narrow clustering of breakpoints in regions comprising only a few nucleotides strongly argues in favor of a specific mechanism. The analysis of the breakpoint junctions revealed four breakpoint clusters in the vicinity of recombination signal sequences suggestive of a break mechanism involving the immunoglobulin VDJ recombination enzyme complex. RAG1 and RAG2 and other genes involved in VDJ rearrangement are not expressed at a very early stage of differentiation but only after lymphoid committment, ${ }^{41}$ which would be in line with the assumption that IKZF1 deletions are a later event in the path towards the malignant phenotype. The fact that cRSS could not be identified in 10 out of 193 breakpoints may be explained by limitations of the RSSsite software, since some of these breaks occurred in near vicinity,
suggesting a specific mechanism.
The PCR method used in this study has the advantage that it can also detect IKZF1 alterations in a small fraction of leukemic cells, which is not possible when using MLPA. ${ }^{26}$ Since we analyzed the final IKZF1 cDNA transcript, we were in principle also able to detect deletions or aberrant splice isoforms arising from alterations involving only a few nucleotides that would escape detection by MLPA. However, MLPA has the advantage of also detecting whole gene deletions that are not detectable with our PCR-based approach. As long as there are no reliable PCRbased detection methods for the former, and given the fact that low deletion load alterations are prognostically irrelevant, we consider MLPA to be a suitable detection method.
To summarize, we detected partial IKZF1 gene deletions in approximately 27% of cases of adult $B C R-A B L$-negative adult ALL. Only high deletion load loss-of-function IKZF1 alterations, but not dominant-negative IKZF1 alterations, had negative prognostic implications and should thus be monitored closely, while those that were found in a small fraction of cells did not influence prognosis. We report extensive molecular data on these alterations which should help to establish suitable diagnostic methods for their detection and which shed additional light on the molecular pathogenesis.

Acknowledgments

The authors are grateful for the excellent technical work of D. Gröger, R. Lippoldt and colleagues and the members of the MPI sequencing team in Cologne. They thank all involved patients and physicians for participating in the GMALL studies. TB was supported by DFG grant BU 2453/1-1.

References

1. Georgopoulos K, Bigby M, Wang JH, et al The Ikaros gene is required for the development of all lymphoid lineages. Cell. 1994;79(1):143-156.
2. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2(3):162-174.
3. Kastner P, Dupuis A, Gaub MP, Herbrecht R, Lutz P, Chan S. Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia. Am J Blood Res. 2013;3(1):1-13
4. Olsson L, Johansson B. Ikaros and leukaemia. Br J Haematol. 2015;169(4):479491.
5. John LB, Ward AC. The Ikaros gene family: Transcriptional regulators of hematopoiesis and immunity. Mol Immunol. 2011;48(9-10):1272-1278.
6. Sun L, Heerema N, Crotty L, et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 1999;96(2):680-685.
7. Sun L, Crotty ML, Sensel M, et al. Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 1999;5(8):21122120.
8. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is
characterized by the deletion of Ikaros. Nature. 2008;453(7191):110-114.
9. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470-480.
10. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, et al. Loci on 7 p12.2, 10 q 21.2 and 14 q 11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1006 1010.
11. Treviño LR, Yang W, French D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1001-1005.
12. Burmeister T, Bartels G, Gröger D, et al. Germline variants in IKZF1, ARID5B, and CEBPE as risk factors for adult-onset acute lymphoblastic leukemia: an analysis from the GMALL study group. Haematologica. 2014;99(2):e23-5.
13. Martinelli G, Iacobucci I, Storlazzi CT, et al. IKZF1 (Ikaros) deletions in BCR-ABL1positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27(31):5202-5207.
14. Kuiper RP, Waanders E, van der Velden VH, et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia. 2010;24(7):1258-1264.
15. Waanders E, van der Velden VH, van der Schoot CE, et al. Integrated use of minimal residual disease classification and IKZF1
alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia. 2011;25(2):254-258.
16. Dörge P, Meissner B, Zimmermann M, et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica. 2013;98(3):428-432.
17. Clappier E, Grardel N, Bakkus M, et al. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children's Leukemia Group study 58951. Leukemia. 2015;29(11):2154-2161.
18. Palmi C, Valsecchi MG, Longinotti G, et al. What is the relevance of Ikaros gene deletions as a prognostic marker in pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia. Haematologica. 2013;98(8):1226-1231.
19. van der Veer A, Zaliova M, Mottadelli F, et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood. 2014;123(11):1691-1698.
20. DeBoer R, Koval G, Mulkey F, et al. Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665. Leuk Lymphoma. 2016;57(10):2298-2306.
21. Moorman AV, Schwab C, Ensor HM, et al.

IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol. 2012;30(25):3100-3108.
22. Beldjord K, Chevret S, Asnafi V, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123(24):3739-3749.
23. Mi JQ, Wang X, Yao Y, et al. Newly diagnosed acute lymphoblastic leukemia in China (II): prognosis related to genetic abnormalities in a series of 1091 cases. Leukemia. 2012;26(7):1507-1516.
24. Dhédin N, Huynh A, Maury S, et al. Role of allogeneic stem cell transplantation in adult patients with Ph -negative acute lymphoblastic leukemia. Blood. 2015; 125(10):2486-2496.
25. Dupuis A, Gaub MP, Legrain M, et al. Biclonal and biallelic deletions occur in 20% of B-ALL cases with IKZF1 mutations. Leukemia. 2013;27(2):503-507.
26. Caye A, Beldjord K, Mass-Malo K, et al. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2013;98(4):597-601.
27. Sun L, Liu A, Georgopoulos K. Zinc fingermediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 1996;15(19):5358-5369.
28. Brüggemann M, Raff T, Flohr T, et al.

Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107(3):1116-1123.
29. Burmeister T, Meyer C, Schwartz S, et al. The MLL recombinome of adult CD10negative B-cell precursor acute lymphoblastic leukemia: results from the GMALL study group. Blood. 2009;113(17):40114015.
30. Burmeister T, Gökbuget N, Schwartz S, et al. Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica. 2010;95(2):241-246.
31. Nakayama M, Suzuki H, YamamotoNagamatsu N , et al. HDAC2 controls IgM H - and L-chain gene expressions via EBF1, Pax5, Ikaros, Aiolos and E2A gene expressions. Genes Cells. 2007;12(3):359-373.
32. Burmeister T, Marschalek R, Schneider B, et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia. 2006;20(3):451-457.
33. Meyer C, zur Stadt U, Escherich G, et al. Refinement of IKZF1 recombination hotspots in pediatric BCP-ALL patients. Am J Blood Res. 2013;3(2):165-173.
34. Merelli I, Guffanti A, Fabbri M, et al. RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes. Nucleic Acids Res. 2010;38 (Web Server Issue):W262-267.
35. Payne KJ, Dovat S. Ikaros and tumor suppression in acute lymphoblastic leukemia. Crit Rev Oncog. 2011;16(1-2):3-12
36. Wang JH, Nichogiannopoulou A, Wu L, et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 1996;5(6):537-549.
37. Virely C, Moulin S, Cobaleda C, et al. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia.[letter]. Leukemia. 2010;24(6):1200-1204.
38. Iacobucci I, Storlazzi CT, Cilloni D, et al. Identification and molecular characterization of recurrent genomic deletions on 7 p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood. 2009;114(10):2159-2167.
39. Yu W, Nagaoka H, Jankovic M, et al. Continued RAG expression in late stages of B cell development and no apparent reinduction after immunization. Nature. 1999;400(6745):682-687.
40. Warner JK, Wang JC, Hope KJ, Jin L, Dick JE. Concepts of human leukemic development. Oncogene. 2004;23(43):7164-7177.
41. Nagaoka H, Yu W, Nussenzweig MC. Regulation of RAG expression in developing lymphocytes. Curr Opin Immunol. 2000;12(2):187-190.

Supplementary Methods

Nucleic acid preparation 2
Identification of rare genomic breakpoints 2
Sequencing and bioinformatic analysis 2
Statistical analysis 3
Supplementary Tables
Supplementary Table 1: Results of previous studies on the prognostic effect of IKZF1 deletions in BCR-ABL-negative adult patients 4
Supplementary Table 2: Blast count of all 482 patient samples 4
Supplementary Table 3: Blast count of 127 patient samples that were IKZF1 deleted and where IKZF1 deletions were quantified 4
Supplementary Table 4: Oligonucleotides used in experiments 5
Supplementary Table 5: Oligonucleotides used on single patients only 6
Supplementary Table 6: Characteristics of all patients 7
Supplementary Table 7: Characteristics of patients with multiple IKZF1 mutations 8
Supplementary Table 8: Characteristics of patients according to IKZF1 status 9
Supplementary Table 9: Characteristics of patients according to different IKZF1 deletion types 10
Supplementary Table 10: Sequence of all breakpoints with accession numbers 11
Supplementary Table 11: Putative cryptic recombination signal sequences near breakpoints 18
Supplementary Table 12: Comparison between diagnosis and relapse of 20 mutations in 16 patients with IKZF1 mutations at the time of diagnosis 21
Supplementary Figures
Supplementary Figure 1: Quantification of deletions $\Delta 4-7, \Delta 2-7$ and $\Delta 4-8$ by quantitative PCR 22
Supplementary Figure 2: Detection of $\Delta 2-3$ by RT-PCR 23
Supplementary Figure 3: Additional evaluation of the prognostic effect of IKZF1 mutations 24
Supplementary Figure 4: Detection of rare breakpoints by RT-PCR 25

Supplementary Methods

Nucleic acid preparation

DNA and RNA were prepared by TRIzol (Life Technologies, Darmstadt, Germany) or by AllPrep DNA/RNA (QIAGEN, Hilden, Germany). TRIzol DNA was purified using DNA Clean \& Concentrate (Zymo Research, Freiburg, Germany). Reverse transcription was performed using between 150ng$1 \mu g$ RNA, either by Ready-To-Go You-Prime First-Strand Beads (GE Healthcare Europe, Freiburg, Germany) or by Transcriptor First Strand cDNA Synthesis Kit (Roche, Mannheim, Germany).

Identification of rare genomic breakpoints

To identify genomic breakpoints in patients positive for $\Delta 2-3$ in RT-PCR ex1/4 we used the multiplex PCR by Meyer et al. ${ }^{1}$ with all 16 primers at 150 nM and the FastStart High Fidelity PCR System kit (Roche) under the following conditions: 2 min at $94^{\circ} \mathrm{C}, 10$ cycles of 10 sec at $94^{\circ} \mathrm{C}, 30$ sec at $64^{\circ} \mathrm{C}, 5 \mathrm{~min}$ at $68^{\circ} \mathrm{C}$ followed by 25 cycles with additional 20 sec elongation for each cycle. Cases negative in this PCR were further investigated with a different PCR $\Delta 2-3 B$ (forward primer by Meyer and reverse primers I3-R1A GTCCTTTGCACTGATGACTTATTCCCATG, I3-R1B CATCTGGGTTTGGATATGTTCATGCTGAC, I3-R1C CTACCCTGTAAATACCATCCCCTAGTCC, I3-R13B CACTGACAGACAAGAAGTTAGCTGAGG, with 250 nM of each primer).

In cases with atypical RT-PCR products, breakpoints were identified using primers as specified in Supplemental Methods (Tables S4-5). For $\Delta 2$ (primer concentration 150 nM) and $\Delta 5-7$ (primer concentration 300 nM) the FastStart High Fidelity PCR System (Roche) was used as described above. PCRs $\Delta 2-7 \mathrm{~B}$ and $\Delta 4-7 \mathrm{~B}$ were used with the HotStarTaq kit (QIAGEN) at 500 nM primer concentration and the following conditions: 15 min at $95^{\circ} \mathrm{C}$, followed by 35 cycles of 30 sec at $94^{\circ} \mathrm{C}, 60 \mathrm{sec} \mathrm{min}$ at $65^{\circ} \mathrm{C}$ and 2.5 min at $72^{\circ} \mathrm{C}$.

Sequencing and bioinformatic analysis

All PCR products were purified using the GenUP PCR Cleanup Kit (Biotechrabbit, Hennigsdorf, Germany). Multiple bands were excised from agarose gel and purified using the Thermoscientific GeneJET Gel Extraction Kit (Life Technologies, Darmstadt, Germany). Products were analyzed by Sanger sequencing using routine methods at the Max Planck Genome Center, Cologne, Germany. All sequences were submitted to the EMBL nucleotide sequence database (accession numbers LN875583-LN875775) and were analyzed using RSSsite for the presence of cryptic recombination signal sequences (cRSS) near the two breakpoint locations. ${ }^{2}$

[^0]
Statistical analysis

Survival analyses were performed according to the Kaplan-Meier method. Overall survival was calculated from date of diagnosis until death or last follow-up. Disease free survival was calculated from date of first complete remission to relapse or death from any cause. Survival rates are given as probabilities of survival at 5 years, with a 95% confidence interval. The log-rank test was used to compare survival curves. Differences between 2 groups were compared by the two-tailed Fisher's test, differences between 3 or more groups by Pearson's chi square. For all analyses, $\mathrm{p} \leq 0.05$ was considered statistically significant. Statistics were calculated using SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and IBM SPSS Statistics v22 (IBM Germany, Ehningen, Germany).

Supplementary Tables

Supplementary Table 1: Results of previous studies on the prognostic effect of IKZF1 deletions in BCR-ABL-negative adult patients (Abbreviations: pts = patients; CIR = cumulative incidence of relapse; EFS = event-free survival; RFS = relapse-free survival; OS = overall survival; HR = hazard ratio; n.s. $=$ not significant)

study	pts	IKZF1 deletion	value	statistic	results
$\begin{aligned} & \text { Beldjord } \\ & 2014 \end{aligned}$	216	focal vs. wildtype	CIR	multivariate Cox model	HR 2.65 (1.48-4.73), $\mathrm{p}=0.001$
	324	focal vs. wildtype		univariate Cox model	HR 2.24 (1.39-3.62), $\mathrm{p}=0.001$
		complete vs. wildtype		univariate Cox model	HR 1.01 (0.91-1.11), n.s. ($p=0.85$)
		$\Delta 4-7 \text { vs. } \Delta 2-7 / \Delta 4-8 \text { vs. }$ other		Kaplan Meyer	n.s. (no p-value given)
Moorman2012	304	any deletion vs. wildtype	$\begin{aligned} & \text { EFS } \\ & \text { RFS } \\ & \text { OS } \\ & \hline \end{aligned}$	multivariate Cox model	$\begin{aligned} & 1.26(0.89-1.78) \text {, n.s. }(p=0.196) \\ & 1.23(0.78-1.93) \text {, n.s. }(p=0.375) \\ & 1.23(0.86-1.76) \text {, n.s. }(p=0.263) \end{aligned}$
		any deletion vs. wildtype	$\begin{aligned} & \text { EFS } \\ & \text { RFS } \\ & \text { OS } \\ & \hline \end{aligned}$	univariate Cox model	$\begin{aligned} & 1.54 \text { (1.12-2.12), } p=0.008 \\ & 1.48 \text { (0.98-2.24), n.s. }(p=0.63) \\ & 1.55 \text { (1.11-2.16), } p=0.010 \end{aligned}$
		other deletions vs. Ik6	EFS	univariate Cox model	HR 2.17 (1.21-3.89), p=0.009
Mi 2012	134	Ik6 vs. wildtype	RFS	Log-rank test	n.s. $(p=0.114)$
$\begin{aligned} & \hline \text { Dupuis } \\ & 2012 \end{aligned}$	113	any deletion vs. wildtype	PFS	Log-rank test	0.004
		haploinsufficient and null-mutations vs. wildtype	$\begin{aligned} & \hline \text { OS } \\ & \text { PFS } \end{aligned}$	Log-rank test	$\begin{array}{l\|} \hline 0.01 \\ 0.003 \end{array}$

Supplementary Table 2: Blast count of all 482 patient samples, percentage by samples type

material	$\mathbf{< 5 0 \%}$ blasts	$\mathbf{5 0 - 7 5 \%}$ blasts	$\boldsymbol{> 7 5 \%}$ blasts	total
bone marrow	$\mathbf{1 4 (4 , 3 \%)}$	$36(10,9 \%)$	$280(84,8 \%)$	330
peripheral blood	$22(16,7 \%)$	$34(25,8 \%)$	$76(57,5 \%)$	132
bone marrow or peripheral blood	$3(15,0 \%)$	$4(20 \%)$	$13(65,0 \%)$	20
total	$39(8,0 \%)$	$74(15,4 \%)$	$369(76,6 \%)$	482

Supplementary Table 3: Blast count of 127 patient samples that were IKZF1 deleted and where IKZF1 deletions were quantified

material	< 50\% blasts	$\mathbf{5 0 - 7 5 \%}$ blasts	$\mathbf{> 7 5 \%}$ blasts	total
bone marrow	$2(2,3 \%)$	$7(7,9 \%)$	$79(89,8 \%)$	88
peripheral blood	$2(5,9 \%)$	$11(32,3 \%)$	$21(61,8 \%)$	34
bone marrow or peripheral blood	$2(40 \%)$	$1(20 \%)$	$2(40 \%)$	5
total	$6(4,7 \%)$	$19(15,0 \%)$	$102(80,3 \%)$	127

Supplementary Table 4: Oligonucleotides used in experiments

Experiment	Name	Oligonucleotide sequence (5'-3')
$\text { PCR } \triangle 2-7$	IKZF1-F2A	ACTACAGAGACTTCAGCTCTATTCCATTTC
	IKZF1-F2B	TGATTTGGATGTGTGTGTTTCATGCGTGG
	IKZF1-F7	ACCATCAAATACAGGTCAACAGGACTGA
	IKZF1-R7	AGGGACTCTCTAGACAAAATGGCAGGA
PCR $\triangle 2-8$	IKZF1-F2A	ACTACAGAGACTTCAGCTCTATTCCATTTC
	IKZF1-F2B	TGATTTGGATGTGTGTGTTTCATGCGTGG
	IKZF1-F8	CCCACTGCACAGATGAACAGAGCA
	IKZF1-R8	CCTCCTGCTATTGCACGTCTCGGT
PCR $\triangle 4-7$	IKZF1-F4	CTTAGAAGTCTGGAGTCTGTGAAGGTC
	IKZF1-F7	ACCATCAAATACAGGTCAACAGGACTGA
	IKZF1-R7	AGGGACTCTCTAGACAAAATGGCAGGA
PCR $44-8$	IKZF1-F4	CTTAGAAGTCTGGAGTCTGTGAAGGTC
	IKZF1-F8	CCCACTGCACAGATGAACAGAGCA
	IKZF1-R8	CCTCCTGCTATTGCACGTCTCGGT
PCR 4 2-3 (Meyer 2013)	IKZF1.I1.F1B	AGTTCACTTCTGTCAAGCGTCTGTTGCTCT
	IKZF1.I1.F2	TGGATGTGTGTGTTTCATGCGTGGTTAATA
	IKZF1.I1.F3	TCATGTGGACCATGGCTTTCTTGTATTTCT
	IKZF1.I1.F4	TGGCTGAAAATGGGTCCTAATTAGTGGAAA
	IKZF1.I3.R2	GATGGCACTGGCAGTCATTTCTCTATGTCT
	IKZF1.I3.R4	TCTAGGAAGGACTTGGGCACATTGAAGAAT
	IKZF1.I3.R5	CTGTTACTGCCTGCAGGATAGACTTCTGGA
	IKZF1.I3.R6	TCTCGGCACTTACACACACTCTCTTTAGGC
	IKZF1.I3.R7	GGTACCCCAACCCATCCTTATACATGACAC
	IKZF1.I3.R8	CTGGCACTTCTGTCAAAACCTCACATCTCT
	IKZF1.I3.R9	CTTCCGGGTCCAGGATCTCCATATAACAAT
	IKZF1.I3.R10	TTTCATATAAAATGCTGCGAACACCTTGGA
	IKZF1.I3.R11	TATTCTCTTTCACAGGACAGTTTCCCAGCA
	IKZF1.I3.R12	AATGTACACTGTTAGTCCCCACCTGACCAA
	IKZF1.I3.R13	TGACTGAGACATAATGGACAAGAGCCCAAT
	IKZF1.I3.R14	CAAGGACTCTATGACTCGGTACCACTTGGA
PCR $42-3 \mathrm{~B}$	IKZF1.I1.F1B	AGTTCACTTCTGTCAAGCGTCTGTTGCTCT
	IKZF1.I1.F2	TGGATGTGTGTGTTTCATGCGTGGTTAATA
	IKZF1.I1.F3	TCATGTGGACCATGGCTTTCTTGTATTTCT
	IKZF1.I1.F4	TGGCTGAAAATGGGTCCTAATTAGTGGAAA
	IKZF1-I3-R1A	GTCCTTTGCACTGATGACTTATTCCCATG
	IKZF1-I3-R1B	CATCTGGGTTTGGATATGTTCATGCTGAC
	IKZF1-I3-R1C	CTACCCTGTAAATACCATCCCCTAGTCC
	IKZF1-I3-R13B	CACTGACAGACAAGAAGTTAGCTGAGG
RT-PCR ex1/8	IKZF1-ex1FA	AAAGCGCGACGCACAAATCCA
	IKZF1-ex8R	CGTTGTTGATGGCTTGGTCCATCAC
RT-PCR ex1/4	IKZF1-ex1FB	CGAGGATCAGTCTTGGCCCCAA
	IKZF1-ex4R	GAATGCCTCCAACTCCCGACAAAG

qPCR $\Delta 2-7$	IKZF1-q27-F1	CATGTACATTTTTGATCTAGGTCTTAG
	IKZF1-q27-R1	GTTAAATAAAGAACCCTCAGGCAT
	IKZF1-q27-P1	FAM-TCAGGAATAAAATGCAAATCACCTTGAAGA-BBQ
qPCR $\Delta 4-7$	IKZF1-q47-F1	CAGCCCATAGGGTATAAATAATCTG
	IKZF1-q47-R1	TTAAATAAAGAACCCTCAGGCATTC
	IKZF1-q47-P1	FAM-AATTGACGGCATCCAGGGATCTCAG-BBQ1
qPCR $\Delta 4-8$	IKZF1-q48-F1	AAAATATTCTTAGAAGTCTGGAGTCTG
	IKZF1-q48-R1	CCAAGCATGTCTCGGCATAC
	IKZF1-q48-R2	GAAAAGCACTATTCCACGTAGAC
	IKZF1-q48-P1	Cy5-TGAAGGTCACACCCTCTGGTCTT-BBQ
	hck-f	TATTAGCACCATCCATAGGAGGCTT
	hck-r	GTTAGGGAAAGTGGAGCGGAAG
	hck-p	HEX-TAACGCGTCCACCAAGGATGCGAA-BHQ1

Supplementary Table 5: Oligonucleotides used on single patients only

Experiment	Patient	Name	Oligonucleotide sequence (5'-3')
PCR $\Delta 2$	\#119	IKZF1.I1.F1B	AGTTCACTTCTGTCAAGCGTCTGTTGCTCT
		IKZF1.I1.F2	TGGATGTGTGTGTTTCATGCGTGGTTAATA
		IKZF1.11.F3	TCATGTGGACCATGGCTTTCTTGTATTTCT
		IKZF1.I1.F4	TGGCTGAAAATGGGTCCTAATTAGTGGAAA
		IKZF1-R2A	CCCCAGCTACCCTATCCTTTGAACAG
		IKZF1-R2B	CCAATGAAGAAATGTCGTACTTTCCGC
		IKZF1-R2C	CTTGCATCCCTTCATCACTGTCTTGG
PCR $\triangle 2-7 \mathrm{~B}$	$\begin{aligned} & \text { \#85, \#199, } \\ & \# 291 \end{aligned}$	IKZF1.I1.F1B	AGTTCACTTCTGTCAAGCGTCTGTTGCTCT
		IKZF1.I1.F2	TGGATGTGTGTGTTTCATGCGTGGTTAATA
		IKZF1.I1.F3	TCATGTGGACCATGGCTTTCTTGTATTTCT
		IKZF1.I1.F4	TGGCTGAAAATGGGTCCTAATTAGTGGAAA
		IKZF1-R7	AGGGACTCTCTAGACAAAATGGCAGGA
PCR $\triangle 4-7 \mathrm{~B}$	\#338	IKZF1-F4B	ACTCTGACTATACTCTCTCCTGGTATCACA
		IKZF1-F4C	CAAACTGTTCTGGGCCAATATCACCAC
		IKZF1-F4D	TTCCCAACCTCCTCCTTCATTAGTGG
		IKZF1-F4E	TTTGGTTCTGTTACAGCTCTCAGTGAC
		IKZF1-F4F	TGCAGCTAAGATTCCAGACCAGGTAT
		IKZF1-R7	AGGGACTCTCTAGACAAAATGGCAGGA
PCR $45-7$	$\begin{aligned} & \# 424 \text { (and } \\ & \# 225) \end{aligned}$	IKZF1-F5A	GAGTGGCCTCCTGTATTGTTTCTTTCAGC
		IKZF1-F5B	GATTGTCTGTGCCTATCTAGTTCCCATCTG
		IKZF1-R7	AGGGACTCTCTAGACAAAATGGCAGGA

Supplementary Table 6: Characteristics of all patients

Sex		
Male	$285(59.1 \%)$	
Female	$197(40.9 \%)$	
Age	$172(35.7 \%)$	
$15-25$	$97(20.1 \%)$	
$26-35$	$78(16.2 \%)$	
$36-45$	$87(18.0 \%)$	
$46-55$	$48(10.0 \%)$	
$56-65$	$111(23.0 \%)$	
Immunophenotype	$314(65.2 \%)$	
pre B ALL	$57(11.8 \%)$	
common ALL		
pro B ALL	$308(64.8 \%)$	
Leukocyte	$167(35.2 \%)$	
$\leq 30 / n L$	7	
$>30 / n L$	$268(55.6 \%)$	
no data	$214(44.4 \%)$	
Risk group		
Standard risk	$372(94.4 \%)$	
High risk	$22(5.6 \%)$	
CNS involvement	88	
No		
Yes	$428(88.8 \%)$	
No data	$31(6.4 \%)$	
Clinical course	$23(4.8 \%)$	
CR	$482(100 \%)$	
ED		
Failure		
Total		

Supplementary Table 7: Characteristics of patients with multiple IKZF1 mutations (high deletion load mutations are shown in dark blue, low deletion load mutations in light blue, unquantified mutations in grey)

patient	-4-7	-2-7	-4-8	-2-8	-2-3	number of mutations
\#29	$\Delta 4-7$	$\Delta 2-7$				2
\#36		$\Delta 2-7$			-2-3	2
\#46			44-8		$\Delta 2-3$	2
\#58	$\Delta 4-7$				$\Delta 2-3$	2
\#100	$\Delta 4-7$	-2-7				2
\#126	$\Delta 4-7$	$\Delta 2-7$				2
\#127	$\Delta 4-7$		$\Delta 4-8$			2
\#133	$\Delta 4-7$	$\Delta 2-7$				2
\#143			$\Delta 4-8$		$\Delta 2-3$	2
\#154		$\Delta 2-7$	$\Delta 4-8$			2
\#157		-2-7			$\Delta 2-3$	2
\#160			$\Delta 4-8$	$\Delta 2-8$		2
\#174	$\Delta 4-7$				-2-3	2
\#189		$\Delta 2-7$	$\Delta 4-8$			2
\#198	$\Delta 4-7$	$\Delta 2-7$				2
\#199		$\Delta 2-7$			-2-3	2
\#204		-2-7			$\Delta 2-3$	2
\#210		$\Delta 2-7$	$\Delta 4-8$			2
\#215		$\Delta 2-7$			-2-3	2
\#243		$\Delta 2-7$	$\Delta 4-8$			2
\#256		$\Delta 2-7$			42-3	2
\#257	$\Delta 4-7$				$\Delta 2-3$	2
\#266		$\Delta 2-7$			$\Delta 2-3$	2
\#276	$\Delta 4-7$	$\Delta 2-7$				2
\#335	$\Delta 4-7$	$\Delta 2-7$				2
\#360		$\Delta 2-7$	$\Delta 4-8$			2
\#400	44-7		$\Delta 4-8$			2
\#414	$\Delta 4-7$	-2-7				2
\#108	$\Delta 4-7$	$\Delta 2-7$	$\Delta 4-8$			3
\#111	$\Delta 4-7$	$\Delta 2-7$	$\Delta 4-8$			3
\#113	$\Delta 4-7$	$\Delta 2-7$			$\Delta 2-3$	3
\#175	$\Delta 4-7$	$\Delta 2-7$	$\Delta 4-8$			3
\#285	$\Delta 4-7$	$\Delta 2-7$			-2-3	3
\#365	$\Delta 4-7$	$\Delta 2-7$	$\Delta 4-8$			3
\#395	$\Delta 4-7$	$\Delta 2-7$	$\Delta 4-8$			3
\#461	$\Delta 4-7$	$\Delta 2-7$		-2-8		3
\#470	$\Delta 4-7$	$\Delta 2-7$	$\Delta 4-8$	-2-8		4

Supplementary Table 8: Characteristics of patients according to IKZF1 status

	mutation	wild-type	P
Sex			
Male	72 (56.3\%)	213 (60.2\%)	$\begin{aligned} & \hline 0.4636 \\ & \text { (Fisher) } \end{aligned}$
Female	56 (43.7\%)	141 (39.8\%)	
Age			
15-25	49 (38.3\%)	123 (34.7\%)	$\begin{aligned} & 0.3843 \\ & \left(X^{2}\right) \end{aligned}$
26-35	26 (20.3\%)	71 (20.1\%)	
36-45	17 (13.3\%)	61 (17.2\%)	
46-55	19 (14.8\%)	68 (19.2\%)	
56-65	17 (13.3\%)	31 (8.8\%)	
Immunophenotype			
pre B ALL	19 (14.8\%)	92 (26.0\%)	$\begin{aligned} & 0.0064 \\ & \left(X^{2}\right) \end{aligned}$
common ALL	98 (76.6\%)	216 (61.0\%)	
pro B ALL	11 (8.6\%)	46 (13.0\%)	
WBC			
<30/nl	79 (62.7\%)	229 (65.6\%)	0.5869(Fisher)
>30/nl	47 (37.3\%)	120 (34.4\%)	
Missing values	7		
Risk group			
Standard Risk	67 (52.3\%)	201 (56.8\%)	$\begin{aligned} & \hline 0.4074 \\ & \text { (Fisher) } \end{aligned}$
High Risk	61 (47.7\%)	153 (43.2\%)	
CNS involvement			
No	100 (94.4\%)	272 (94.4\%)	$\begin{aligned} & 1.0000 \\ & \text { (Fisher) } \end{aligned}$
Yes	6 (5.6\%)	16 (5.6\%)	
Missing values	88		
Clinical course			
CR	114 (89.1\%)	314 (88.7\%)	$\begin{aligned} & 0.9936 \\ & \left(X^{2}\right) \end{aligned}$
ED	8 (6.2\%)	23 (6.5\%)	
Failure	6 (4.7\%)	17 (4.8\%)	

Supplementary Table 9: Characteristics of patients according to different IKZF1 deletion types

	dominantnegative only	both forms of deletion	loss-offunction only	wild-type	$\mathrm{P}\left(\mathrm{X}^{2}\right)$
Sex					
Male	30 (60.0\%)	16 (72.7\%)	26 (46.43\%)	213 (60.2\%)	0.1330
Female	20 (40.0\%)	6 (27.3\%)	30 (53.57\%)	141 (39.8\%)	
Age					
15-25	22 (44.0\%)	7 (31.8\%)	20 (35.7\%)	123 (34.7\%)	0.5485
26-35	8 (16.0\%)	7 (31.8\%)	11 (19.6\%)	71 (20.1\%)	
36-45	6 (12.0\%)	2 (9.1\%)	9 (16.1\%)	61 (17.2\%)	
46-55	6 (12.0\%)	2 (9.1\%)	11 (19.6\%)	68 (19.2\%)	
56-65	8 (16.0\%)	4 (18.2\%)	5 (8.9\%)	31 (8.8\%)	
Immunophenotype					
pre-B	6 (12,0\%)	5 (22.7\%)	8 (14.3\%)	92 (26.0\%)	0.0781
Common	39 (78,0\%)	15 (68.2\%)	44 (78.6\%)	216 (61.0\%)	
pro-B	5 (10,0\%)	2 (9.1\%)	4 (7.1\%)	46 (13.0\%)	
WBC					
$<30 / \mathrm{nl}$	34 (68.0\%)	14 (63.6\%)	31 (57.4\%)	229 (65.6\%)	0.6518
>30/nl	16 (32.0\%)	8 (36.4\%)	23 (42.6\%)	120 (34.4\%)	
Missing values	$\mathrm{n}=7$				
Risk group					
Standard Risk	29 (58.0\%)	12 (54.5\%)	26 (46.4\%)	201 (56.8\%)	0.5252
High Risk	21 (42.0\%)	10 (45.5\%)	30 (53.6\%)	153 (43.2\%)	
CNS involvement					
No	41 (95.4\%)	16 (100\%)	43 (91.5\%)	272 (94.4\%)	0.6190
Yes	2 (4.6\%)	0	4 (8.5\%)	16 (5.6\%)	
Missing values	$\mathrm{n}=88$				
Clinical course					
CR	45 (90.0\%)	20 (90.9\%)	49 (87.5\%)	314 (88.7\%)	0.9042

6． $68 \varepsilon^{\circ} 0 \mathrm{~S}$	190	ナ09○		ELL LOE＇09	ていし\＃	LI9GL8N7	L－ZV
乙 $26{ }^{\circ} \mathrm{S68} 0 \mathrm{O}$		เวОอง		16L LOE＇09	$\begin{gathered} \text { Z əuop } \\ \text { Lレレ } \end{gathered}$	0199L8N7	L－z
896＇${ }^{\circ} 6 \varepsilon^{\prime} 0 \mathrm{~S}$	190	99๐		8LL＇LOE＇09	$\begin{gathered} \text { L əuop } \\ \text { LレL } \end{gathered}$	6099 $28 N 7$	L－Zठ
286 ${ }^{\circ} \mathrm{S68}{ }^{\circ} 0 \mathrm{~S}$		3 1		261 $20 \varepsilon^{\circ} 09$	801\＃	809928N7	L－Zठ
		9サOVO		ELL＇LOE＇09	001\＃	L099L8N7	L－Zठ
$\mathrm{SE}^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		๑งอง		SZL＇S08＇09	S8\＃	909GL8N7	L－てठ
	－О	ององเวอ		06L $20 \varepsilon^{\prime} 09$	OS\＃	G09GL8N7	L－Zठ
ع $86^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		O）	IV $\perp \forall$ SV	261 $20 \varepsilon^{\circ} 09$	98\＃	t099L8N7	L－Zठ
$686^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		วงว		S81．208＇09	$\begin{array}{\|c} Z \text { əuol } \\ 6 Z \# \end{array}$	809GL8N7	L－Zठ
${ }^{\text {¢ } 86}{ }^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		0	OVIVम	761．208＇09	$\begin{array}{\|r} \hline \text { I әuop } \\ 6 Z \# \end{array}$	2099L8N7	L－Zठ
SZO＇$¢ 18{ }^{\circ} 0 \mathrm{G}$				896 $808^{\circ} 09$	と切	L09G28N7	$\varepsilon-z \nabla$
Z8Z＇L98＇09		＊＊OJНОО	OOVOLVOOVOVOH	L8L $20 \varepsilon^{\circ} 09$	LS¢\＃	009GL8N7	$\varepsilon-z \nabla$
L61＇Sté0				80t $90 \varepsilon^{\prime \prime} 09$	LZ¢\＃	669928N7	$\varepsilon-z \nabla$
LDL＇t98＇0G		OOVO	OНОVО	LZ6．908＇09	ヤ0¢\＃	869SL8N7	$\varepsilon-z \nabla$
OLて＇เモと＇0G		VH100	9อ9〇〇〇อ	$616{ }^{\text {c }} 08^{\circ} 09$	992\＃	L6G9L8N7	$\varepsilon-z \nabla$
08Z＇L98＇09				88L $208^{\circ} 09$	LGZ\＃	969928N7	$\varepsilon-z \nabla$
L9Z＇L98＇0G		$9 \bigcirc$	V1甘 $\perp 1 \forall$ OOVO	ع6L $20 \varepsilon^{\circ} 0 \mathrm{~S}$	99Z\＃	G69GL8N7	$\varepsilon-z \nabla$
		$\forall 0$	OVIV $1 \perp \forall$ OSVO	＋6L $20 \varepsilon^{\circ} 09$	slて\＃	t6GGL8N7	$\varepsilon-乙 \nabla$
961－Stを＇0S		9งอง		80t $90 \varepsilon^{\circ} 09$	†0Z\＃	E6GGL8N7	$\varepsilon-乙 \nabla$
S61 Ste 09		V		60t $90 \varepsilon^{\circ} 09$	66ı\＃	Z6G9L8N7	$\varepsilon-z \nabla$
SZZ＇Z9¢0 09			つכJ〇 \Perp－	2980180 09	†くし\＃	16G928N7	$\varepsilon-z \nabla$
S8t＇698．09		OFFVOJI	9อ	$186^{\circ} 808^{\circ} 09$	LSI\＃	06G9L8N7	$\varepsilon-z \nabla$
Z96 ${ }^{\circ} \mathrm{Z} \mathrm{\varepsilon} \mathrm{C}^{\circ} 0 \mathrm{~S}$	VIVOVOVO		Оอ	8L6 808 09	\＆゙っ\＃	689928N7	$\varepsilon-乙 \nabla$
SS6＇Zદと＇09		จงง		OZ6＇SOE＇09	8しっ\＃	889928N7	$\varepsilon-z \nabla$
L9Z＇L98＇09		จงง		76L $20 \varepsilon^{\circ} 09$	عしっ\＃	L8G928N7	$\varepsilon-z \nabla$
	OVFO甘OOLOVO甘	0000		ZLL $20 \varepsilon^{\circ} 09$	8S\＃	989GL8N7	$\varepsilon-z \nabla$
LZZ＇lse＇09				666 908＇09	9t\＃	S8G9L8N7	$\varepsilon-z \nabla$
LZ9＇698＊09		ナ $\$ Sos & & 989 ¢ ¢ ${ }^{\circ} \mathrm{OS}$	98\＃	t89G28N7	$\varepsilon-z \nabla$		
08Z＇618．09	VOНОVV＊		OVFLООО	てレじてLど09	6しI\＃	E8SGL8N7	ZV
$\begin{array}{r} \text { tu!odyeorq } \\ \text { \|ett! } \end{array}$	әэuanbes［els！	นәsu！	әэuənbes ןewixodd	łu！odyеәла ןеш！холd	7uelped	requinu uo！ssəכэe	ןəp

ع $66^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		1110090		062＇L08＇09	6ヶ¢\＃	†t9GL8N7	L－Zठ
986 ${ }^{\text {c } 68.09 ~}$		NNNNNNNNNNNNN		L8L＇L08＇09	0ヶを\＃	\＆t9GL8N7	L－z
$886^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$			OOVOIVOOVO甘О 11 OVOV	L82＇L08＇0G	Lع¢\＃	Zt9GL8N7	L－Zठ
286 ${ }^{\text {c } 68}{ }^{\circ} \mathrm{OS}$		\checkmark		162＇L08＇09	98£\＃	LD9GL8N7	L－ZV
		NNNNNNNNNNN		882＇L0ع＇0G	6Zと\＃	0t9GL8N7	L－ZV
¢ $86{ }^{\circ} \mathrm{G68}{ }^{\circ} \mathrm{OS}$			VOVOH11OVOV1OOV甘VOV	6LL＇L08＇09	918\＃	689GL8N7	L－z
\＆ $86^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	1 －OVV叫	1005	VOSVOLVSOVOVOH1OVOV	882＇L08＇0G	LOع\＃	8E9GL8N7	L－Z
$9766^{\text {c } 68.09 ~}$					162\＃	LE9GL8N7	$L-Z \nabla$
$986{ }^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		NNNNNNNNN		682＇L08＇0S	982\＃	989SL8N7	L－Zठ
$886^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	1－9＊VOНГ	NıVOJOO		682 $208^{\circ} 09$	9LZ\＃	G89GL8N7	L－Zठ
$986^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$			मНVOナVО	062＇L08＇0G	992\＃	†¢9SL8N7	L－ZV
286 $6^{\circ} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		O＊OJoJı		E6L＇L08＇0G	9GZ\＃	ع¢9GL8N7	L－ZV
		О 30 10		062＇L08＇09	とЪて\＃	2E9GL8N7	L－Zठ
$986^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		－ององเ	OVFVOV	992＇L08＇0G	9ZZ\＃	LE9GL8N7	L－Zठ
S $86^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	－ОО		つ〇〇•＊＊	198＇L08＇09	LZZ\＃	0ع9GL8N7	L－Z
2 $26^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		गכО		682＇L08＇09	Lして\＃	6Z9GL8N7	L－Z
LD6＇ $96 \varepsilon^{\circ} 0 \mathrm{~S}$		OVIVOO		S82＇L08＇09	$\begin{array}{r} \text { Z әиор } \\ \text { sIZ\# } \end{array}$	8Z9GL8N7	L－z\％
¢ $86^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		OヤロゅヲО		782＇L08＇09	$\begin{gathered} 1 \text { әuol } \\ \text { siz\# } \end{gathered}$	LZ9GL8N7	L－z\％
†t6＇s68＇09		9NNNNNNNNNNNNN		Z82＇L08＇0G	01て\＃	9Z9GL8N7	L－zठ
		องององ		782＇L08＇0G	t02\＃	Gz9GL8N7	L－Z
SE6 S6E＇09		NNNNNNNNNNN		60t＇908＇09	661\＃	†Z9GL8N7	L－Zठ
St6 ${ }^{\text {c } 68.09 ~}$		150		882＇L08＇09	861\＃	عZ9GL8N7	L－Zठ
186 ${ }^{\circ} \mathrm{S6E}{ }^{\circ} \mathrm{OS}$		๑องอ४		L8L＇L0E＇0S	$\begin{array}{r} \hline \text { च әuop } \\ 68 \mathrm{l} \# \end{array}$	ZZ9GL8N7	L－Zठ
Lเ $6^{\circ} \mathrm{S} 68.09$			O\VOSVOVO	782．L08＇09	$\begin{array}{r} \text { । әиоן } \\ \text { 68।\# } \end{array}$	LZ9GL8N7	L－zठ
¢ $8^{\circ} \mathrm{C} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		ОООヤ1		L8L＇LOE＇0G	8Lı\＃	OZ9GL8N7	L－ZV
286 ${ }^{\circ} 6 \varepsilon^{\circ} 09$		V $\forall \perp \perp$	IVILVOSVOIVOSVOVOL	Z62＇L08＇0S	SLı\＃	619SL8N7	L－zठ
$986{ }^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		10000		S8L＇L08＇09	LSı\＃	819GL8N7	L－Zठ
$\square^{\circ} 6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$			VOSVOLVOSVOVOЦ	882 $108^{\circ} 09$	DGı\＃	LL9GL8N7	L－Zठ
S $6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	1 －	9४ООอऽऽ		S8L＇L08＇09	Lヤし\＃	919GL8N7	L－Z
LE6＇S68＇09		NNNNNNNNNNN		162＇L08＇0G	عとし\＃	Sl9cl8N7	L－z
Lt6 S68＇09		ององษอว1ว	OOVOVOH11－VOV	182＇L08＇09	0عレ\＃	†l9GL8N7	L－zठ
Z $6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$				t62＇L08＇0S	9Zし\＃	عا9GL8N7	L－ZV
2t6 ${ }^{\circ} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		NNNNNNNNNNN		162＇L08＇0S	としっ\＃	Z19SL8N7	L－Zठ

986 ${ }^{\circ} \mathrm{G68}{ }^{\circ} 0 \mathrm{~S}$		IVO		961＇Stを＇09	08\＃	EL9GL8N7	L－カワ
$2 \varepsilon 6^{\circ} \mathrm{S6}$ \％ 0 S	1OOVFOHOम			S61．Sté0S	89\＃	ZL9GL8N7	L－カワ
$986^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		9○४	OJıVО	961．Stど0	0ヶ\＃	LL9GL8N7	L－カワ
$2 \mathrm{76} 6^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$				ع61．Stど0 0	62\＃	0L9GL8N7	L－カワ
${ }^{\text {¢ }}$ ¢ $6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	1－9V＊OHIOHOH		OJıVО	961．Stど0	GZ\＃	699GL8N7	L－カワ
$\angle 86^{\circ} \mathrm{S6} 8^{\circ} 0 \mathrm{O}$		NOפVNONNNN	－\forall OVISV	ヤ61．Sté0	0Z\＃	899GL8N7	L－カワ
LE6＇ $668^{\circ} 0 \mathrm{~S}$		NNNNNNNNN	OVISV	Z61．Sté0	L	L99GL8N7	L－カठ
¢ $86^{\circ} \mathrm{S68}{ }^{\circ} 0 \mathrm{~S}$	－פ丁＊	1005		ع61．Sté0	L\＃	999GL8N7	L－カठ
tSL゙9Ltos				L81． $208^{\circ} 09$	て8t\＃	G99GL8N7	8－ZV
GSL＇91tiog		అอเVว	І丬O丁VJ	68L＇L0ع＇09	t9t\＃	t999L8N7	8－ZV
tSL＇91t＇0G	9อ9	マ100		L8L＇LOE＇0G	$\begin{gathered} z \text { əuop } \\ \text { l9t\# } \end{gathered}$	ع99GL8N7	$8-Z \nabla$
＋92091＊＊		ององเวอง		L82＇L08＇09	$\begin{gathered} 1 \text { əuop } \\ \text { l9t\# } \end{gathered}$	2999L8N7	8－Zจ
992．9しtios	9อऽ			78L＇L0ع＇09	89t\＃	199GL8N7	8－Z7
294．9ltios				L8L＇L0E＇0G	091\＃	099GL8N7	8－ZV
tSL＇91tios		४ОО		06L＇LOE＇0G	十01\＃	6G9GL8N7	$8-Z \nabla$
とZZ＇91がOG		Оวอว100		8LL＇LOE＇0G	66\＃	8G9GL8N7	8－ZV
＋9191509			OVFVOV	991． $00^{\prime \prime} 09$	Zし\＃	LS9GL8N7	8－Z7
Sc ${ }^{\text {coltios }}$		VOO		ع6L＇LOE＇09	เ\＃	9G9GL8N7	8－Zठ
Lt6 ${ }^{\circ} \mathrm{S6E}$ OG			OVFVOVHOLOOVLOLVO	99L＇LOE＇0G	$\begin{gathered} z \text { əuop } \\ 0<\# \end{gathered}$	G99GL8N7	L－Zठ
$\downarrow \varepsilon 6^{\circ} \mathrm{S6} \mathrm{\varepsilon}$＇09		OJOLООN	VOLVOOVV似	98L＇LOE＇09	$\begin{array}{r} \text { l әuop } \\ \text { 0८t\# } \end{array}$	tG9GL8N7	L－Zठ
976 ${ }^{\circ} \mathrm{S68}{ }^{\circ} 0 \mathrm{~S}$		NNNNNNNNNNNNN		682＇L08＇0S	19t\＃	\＆S9GL8N7	L－Zठ
2¢6 ${ }^{\circ} \mathrm{S6} \mathrm{\varepsilon}{ }^{\circ} 0 \mathrm{~S}$			ІVO〇VJ	682＇LOE＇0S	ャ¢ヶ\＃	Z99GL8N7	$L-Z \nabla$
986 ${ }^{\circ} \mathrm{S6} \mathrm{\varepsilon}{ }^{\circ} 0 \mathrm{~S}$		งง		S6L＇LOE＇09	09t\＃	LG9GL8N7	L－Zจ
$986^{\circ} \mathrm{G6} \varepsilon^{\circ} 0 \mathrm{~S}$		9〇VO15		＋6L＇L0ع＇09	て£も\＃	0g9g 28 N 7	L－Z
286 ${ }^{\circ} 66 \varepsilon^{\circ} 09$	199৮VOHI円	NN	IVम	26L＇L0ع＇09	カレロ\＃	6t9GL8N7	$L-Z \nabla$
$186^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$				ع6L $20 \varepsilon^{\circ} 09$	0レヵ\＃	8t9GL8N7	L－Z
LE6 ${ }^{\circ} \mathrm{S} 68^{\circ} 0 \mathrm{~S}$		NNNNNNNN		L8L＇L08＇09	S6¢\＃	Lt9GL8N7	L－ZV
$986^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		－\forall OOJ		88L＇L0ع＇09	G98\＃	9t9GL8N7	L－ZD
${ }^{\dagger} \mathrm{E} 6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		Јององษ		682＇L0ع＇09	098\＃	St9c＜8N7	L－ZD

ゅ

$686^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	1－Ob	OSVOVF	OJıVOV	961＇Sté0S	861\＃	869GL8N7	L－ヵD
SE6 S6E＇09		כVO		961＇Stع＇0S	L61\＃	L69GL8N7	L－カワ
		อเวอวองอวงอ	OJıVOV」О＊	961＇StéOS	98⿺\＃	969GL8N7	L－カठ
286 ${ }^{\circ} 6 \varepsilon^{\circ} 09$	199＊VOHIOHOHIO	00	OJכıVOVLOVILV	L61＇Stéos	6Lı\＃	S69GL8N7	L－カठ
ع $66^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$			OכıVOVLО＊	961．St\＆＇0S	GLI\＃	t69GL8N7	L－カठ
L $16^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		\bigcirc		L61＇StéOS	†LL\＃	E69GL8N7	L－カठ
186 $96 \varepsilon^{\circ} 09$		ООง	OVIOV	261．Ste 09	02L\＃	Z69GL8N7	L－カठ
986 S68＇09				961．str 0 O	8tl\＃	169GL8N7	L－ヤठ
${ }^{\text {¢ }}$ ¢ $6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		כ		961＇Stを＇0S	$\begin{array}{r} \hline \text { च әuol } \\ \text { 9ャレ } \end{array}$	069GL8N7	L－カठ
¢ $86{ }^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 09$			OJıVOV」ОV	961＇stéOS	$\begin{array}{r} \text { l әuop } \\ 9 \downarrow l \# \end{array}$	689GL8N7	L－ヵठ
$086{ }^{\circ} \mathrm{C} 6 \varepsilon^{\circ} 09$				961＇Stع＇0S	てヤし\＃	889GL8N7	L－ヵD
$976{ }^{\circ} \mathrm{s} 6 \varepsilon^{\circ} 0 \mathrm{~S}$				SLl＇stéos	8عし\＃	L89GL8N7	L－巾
¢ $86{ }^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$				S61＇stéos	\＆とし\＃	989GL8N7	L－カठ
ع $86^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$			OOıVO甘	961＇Stéos	LZし\＃	989GL8N7	L－巾
$886^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$					9Zし\＃	b89GL8N7	L－ヵठ
286 ${ }^{\circ} \mathrm{G6} \varepsilon^{\circ} 0 \mathrm{~S}$		ОНО1О	Lכ＊ 1 －	$061 \cdot \mathrm{StE}$ ¢ 0 S	LZ $\#$	E89GL8N7	L－カठ
$686^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	1－О		OLVOSOJVOHV甘O	L91．Ste 0 S	91．\＃	Z89GL8N7	L－ヵワ
286 S68＇09		\forall－	VOVLSV	ع61＇St\＆＇0S	عاし\＃	189GL8N7	L－ヤD
L $266^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		NNNN		S61＇stéos	いレ\＃	089GL8N7	L－ヤठ
¢ $86.56 \varepsilon^{\circ} 09$		90〇ovo	VOVISV	E61＇Stéos	0レヵ\＃	6L9GL8N7	L－カワ
${ }^{\text {¢ }}$ ¢ $6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		9งง	OLVOV	S61＇stéos	801\＃	8L9GL8N7	L－ヵワ
LE6 ¢ $6 \varepsilon^{\circ} 0 \mathrm{~S}$		9งง		S61＇sté0	ع01\＃	LL9GL8N7	L－カठ
		90ง४		981．StéOS	001\＃	9L9GL8N7	L－ヵD
		วЈОНО1	OVL9＊	261．ste 0 ¢	88\＃	GL9GL8N7	L－ヵワ
			OVI9＊	$261.9 t \varepsilon^{\circ} 09$	L8\＃	tL9GL8N7	L－カठ

15

\＆$\varepsilon^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		1	OJНVOV	961＇stéOS	ャ¢ $\#^{\text {\＃}}$	t\＆LGL8N7	L－ヵD
		9 ${ }^{\circ}$		L61＇StE＇09	GZて\＃	ع\＆LGL8N7	L－ヵワ
† $\downarrow 6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	LOפV母OHID	90		961＇St¢ 0 O	Lレも\＃	2\＆LGL8N7	L－カठ
		1000		961＇St\＆＇0s	カレロ	18LGL8N7	L－カठ
		วОО		E61＇St\＆＇0S	L0t\＃	0¢LGL8N7	L－ヤठ
LV6＇S68＇09			OVL〇VЦ	Z61＇St\＆＇0S	S0\％\＃	LZLGL8N7	L－ヤठ
LE6 ${ }^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		\forall OJVO○○	OLVO甘LOVILVLレV	S61＇StE＇0S	ع0t\＃	6ZLGL8N7	L－ヵワ
ع $866^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	1－9V＊OHIOHOH	\Perp	OVL9＊	Z61．St\＆${ }^{\circ} \mathrm{O}$	00t\＃	8ZL9L8N7	L－カठ
St6＇968＇09		NN		Z61．St\＆ 09	G68\＃	tZLGL8N7	L－カठ
${ }^{\text {¢ } 86} 6^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$				881．9tE＇09	9LE\＃	EZLGL8N7	L－カठ
S86 ${ }^{\circ} \mathrm{S68}{ }^{\circ} 0 \mathrm{~S}$		อऽऽธองอ	VO甘	E61＇StE＇09	0L\＆\＃	ZZL9L8N7	L－ヵD
			VOVISV	E61＇StE＇0S	998\＃	LZLGL8N7	L－カワ
$6 \mathrm{t} 6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$				S61＇stéos	298\＃	OZLGL8N7	L－カワ
${ }^{\square} \mathrm{E} 6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		9ऽऽง	OJIVOVISV	961＇StE＇0S	198\＃	6ILGL8N7	L－カठ
$186^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		\bigcirc	OV」ОVЦ	Z61．Ste ${ }^{\circ}$	9¢8\＃	8LLGL8N7	L－カठ
${ }^{9} \varepsilon^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		NNNN	OJIVOVISV	961＇StE＇0S	Sc\＆\＃	LLLGL8N7	L－ヵワ
186 ${ }^{\circ} \mathrm{S6} \varepsilon^{\circ} 0 \mathrm{~S}$		\bigcirc	OJıVO甘ISV	961＇StE＇09	Stを\＃	91LGL8N7	L－カワ
286 ${ }^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		วОО		Z61．Stéos	とャを\＃	GLLGL8N7	L－tD
286 ${ }^{\circ} 6 \varepsilon^{\circ} 09$		$\forall 0$	OSIVOV	961．9tE＇09	てヤを\＃	tLLGL8N7	L－ヵワ
$\mathrm{SE}^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		\perp		เ8て＇$¢ \angle \varepsilon^{\circ} 0 \mathrm{O}$	$\begin{gathered} Z \text { әuop } \\ 8 \varepsilon \varepsilon \# \end{gathered}$	عLLGL8N7	L－ヵワ
Z $26{ }^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	－20 R ${ }^{\text {a }}$	ОヤロНออ」		S61＇stéos		ZLLGL8N7	L－ヤठ
		NNNNNNN		681．StE＇09	¢¢E\＃	ILLGL8N7	L－ヵD
${ }^{\text {¢ } ¢ 6} 6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		勺อग1		L61＇StéOS	0z\＆\＃	OLLGL8N7	L－巾ワ
LV6＇s6e 09			OVЦФVЦ	Z61＇Ste 0 O	96Z\＃	60L9L8N7	L－巾
986 ${ }^{\circ} \mathrm{S68}{ }^{\circ} \mathrm{OS}$				Z61＇StE＇0	98Z\＃	80LGL8N7	L－カワ
986 ${ }^{\circ} \mathrm{S6E}{ }^{\circ} 0 \mathrm{~S}$		\bigcirc		L61＇StE＇0S	9LZ\＃	L0LGL8N7	L－カठ
LE6 ${ }^{\circ} \mathrm{S6E}{ }^{\circ} 0 \mathrm{~S}$			गכıVOVIOV	961＇StE＇09	L9Z\＃	9049L8N7	L－ヵD
	－	$1 \pm$	OVLOVम	261．StE 09	LSZ\＃	g0L9L8N7	L－カワ
$286^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$			OVIOVम	261＇stéos	9عZ\＃	t029L8N7	L－カワ
Lt $6^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$			VFOVO	181．StE＇09	\＆とて\＃	80L9L8N7	L－カワ
		1		S61＇stéos	LIて\＃	20L9L8N7	L－ヵD
$88^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		959	OכLVOV	961＇sté0	LOZ\＃	1029L8N7	L－カワ
$\mathrm{SE}^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		9อง	LVOV	t61＇stéos	G0Z\＃	0029L8N7	L－カワ
$986^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		OVF		961＇StE＇0S	ع0Z\＃	669GL8N7	L－ヤD

tSL＇9Lヤ＊OS		VOVO〇〇อ		961．Sté0S	$\begin{array}{\|c\|} \hline \begin{array}{r} \text { r әuop } \\ 09 \varepsilon \# \end{array} \\ \hline \end{array}$	ع9LSL8N7	8－ヤ\％
LGL＇91t＇09		VFYODOD	OVIOV	261．Sté09	682\＃	Z9L9L8N7	8－ヤV
tGL＇91でOG		\forall V		261－Stを＇09	とャて\＃	L9L9L8N7	8－ヤV
tGL＇9bじos		\forall OO」	OVIOV	261．Sté0S	0レて\＃	09LSL8N7	8－ヤठ
SGL＇9Lヤ＇OS		90〇VО	OJ	961．Stど0	161\＃	6GLGL8N7	8－ヤワ
Sclioltios		NNN	1VOV	t61．Stど09	681\＃	8GLGL8N7	8－カワ
6SL＇91ヤ＊O		NNNNNNNNNNNNNN	OJIVOVIS＊	961．Stど0	GLı\＃	LSLSL8N7	8－カワ
LSL＇91＊＊O		NNNNNNN	OVISV	Z61．Sté0	091\＃	9GLSL8N7	8 －∇
LSL＇9ltios		00	OVISV	261．Sté0	セSı\＃	GGLSL8N7	$8-$－
0LL＇9LでOS		Oп10		8L1．StéOS	\＆もう\＃	tGLSL8N7	8－ヤర
8t8．91がOS		VO〇〇VOJ	OVOЦトVO	191．Sté0	6عı\＃	\＆GLGL8N7	8 －∇－
9GL＇9ltioc		\bigcirc		L61＇StE＇09	LZし\＃	ZgLgL8N7	$8-\downarrow \nabla$
LSL＇9ltios				781．Stど0	とで\＃	LSLSL8N7	8－ヤV
66196しがOS		VIIVISOSV				0GLSL8N7	－${ }^{\text {－}}$
692＇9lがos		NNNNNNNNNNN		LLし「Stど0G	$\begin{gathered} \text { L əuop } \\ \text { LIL\# } \end{gathered}$	6†LGL8N7	8－巾
9GL＇9ltios		$\forall I \forall$	OOLVO甘LOVLIVLIV	961＇StE＇0S	801\＃	8tL9L8N7	$8-\downarrow \nabla$
8Lで9トで0G		＊VOOJ1	OV」⿹勹Ц	Z61．Stど0	$\begin{gathered} z \text { əuop } \\ \text { Lol\# } \end{gathered}$	LDLSL8N7	－－ヤ\％
ESL＇9lt＇0S			IVYO	LS1．Sté0S	$\begin{aligned} & \text { L əuop } \\ & \text { LOL\# } \end{aligned}$	97LSL8N7	8－ヤठ
8920．9しがOS		9010		t91． 5 ¢ど0 0	L6\＃	StLSL8N7	8－7\％
tSL＇91がOG		$\forall 5$		L61．Stど0	69\＃	ttLSL8N7	8－ヶ\％
8GL＇91でOG		\forall O		S61．Sté0	6 t \＃	\＆tLSL8N7	8－ヤठ
8LL＇91でOS				ZZ1．StéOS	9t\＃	ZヤLSL8N7	$8-$－
$\square^{\square} 6^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	19О＊	ОНОО	OVISV	Z61．Sté0S	609\＃	LヵLSL8N7	L－ヤठ
$9866^{\circ} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		9＊О	OOLVO甘	961＇StE＇0S	009\＃	0ヤLGL8N7	L－ヤठ
$9866^{\text {G68 }}$ OS		\pm	OJ \forall OVIOV	961．Stを＇0S	と8\％\＃	68LGL8N7	くカワ
LE6 G68 09		9ององวง	OV」⿹勹䶹	Z61．Sté0	6Lも\＃	8ELGL8N7	L－カठ
		NO		961．Stを＇0S	0Lち\＃	9ZLGL8N7	くヤワ
$1766^{\text {S } 6809 ~}$		NNNNNNNNNNNNN		E61＇StE＇0S	19を\＃	LELGL8N7	L－ヤठ
$2866^{\circ} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		$\forall \bigcirc$	OOLVOV	961．Stを＇0S	てSt\＃	98LGL8N7	くカワ
$986^{\circ} \mathrm{G} 6 \varepsilon^{\circ} 0 \mathrm{~S}$		ОООトVमШ1		S61＇StE＇0	レセせ\＃	GELGL8N7	L－tठ
$286^{\circ} \mathrm{G} 68^{\circ} 0 \mathrm{~S}$			OOSIVOVLO＊	L61＇StE＇0S	Lعゅ\＃	GZLSL8N7	L－ヤठ

$886^{\circ} \mathrm{S} 6 \varepsilon^{\circ} 0 \mathrm{~S}$	199৮ヲО 1 －	วององวอ॥	LOTVO	Oレセ＊8Lど09	†てt\＃	GLLGL8N7	L－GV
986 $6^{\circ} 66^{\circ} 09$				6セt゙8Lど09	¢	DLLSL8N7	L－GV
E0Z91が09				681－Stを＇09	S6ヶ\＃	ELLSL8N7	－カठ
994．91t09		งองเงวง			$\begin{array}{r} \varepsilon \text { әио } \\ 0 \angle t \# \end{array}$	ZLLSL8N7	－ヵه
994．91t＇09		NNNNNNN		ZLL＇Sté0S	$\begin{gathered} z \text { әuol } \\ 0 \angle \# \end{gathered}$	LLLSL8N7	－－ヵ
6Iで91t＊09	OJO＊	OVOVOO1		961．Sté0S	$\begin{array}{r} \hline \text { I әuop } \\ 0 \angle t \# \end{array}$	0LLSL8N7	－ヵヵ
08L91が09			OLVOVLOVLIVLIVFVO甘OLOLVOSOVOJ	S61．Sté0s	69b\＃	69L9L8N7	$8-\nabla$
tSL＇91t＊ 09	－9כ	\forall VOอО	OV」О＊	Z61．Sté0	90t\＃	89LGL8N7	8－伍
Sc＜${ }^{\text {coltos }}$		N	VOVISV	ع61．Sté0S	00t\＃	L9LGL8N7	－ヵ－
	\} \text { \}	NN	OJ	961．Stど0	S68\＃	99LGL8N7	－ヵ－
SSL＇9Lt＇0s		9＊OJ		261．Stど0	S9¢\＃	G9LSL8N7	－－－
994．91t－09	ソ －	๑๑ナ		عLL＇Sté0S	$\begin{array}{r} \mathrm{Z} \text { әиор } \\ 09 \varepsilon \# \end{array}$	t9LGL8N7	－ヵヵ

Supplementary Table 11: Putative cryptic recombination signal sequences near breakpoints

1. four major breakpoint clusters

breakpoint cluster	breakpoint region (cluster unterlined)	RSS (5'-3')	strand	type
intron 1	TCTAGGTCTTAGAAACGTAGAGTTTCAGAGGATCAGCATTAT ACACACTGTCACACACACACACACTTAAAATTCAGATGAGGA	CACTGTCACACACACACACA CTTAAAAT	+	RSS12
intron 3	TAATCTGAATTGACGGCATCCAGGGATCTCAGAAATTATTAG TACATCCCACAGTGAATTACCACCTTACTAAAATATTC	CACAGTGAATTACCACCTTAC TAAAATA	+	RSS12
intron 7	TTTTAGATTTTGCTGATGGCATTGCTTGTTGAATGTTGCTGT GGAAACATCAAGTCTAGTGTAACTGTTTCTTCTTCAAGGTGA	CACAGCAACATTCAACAAGC AATGCCATCAGCAAAATCT	-	RSS23
3'UTR	CATGTGCTTTTTCTCAAGCAGGCACACTGGTCCCTTTCAAGG TGTGGGCTGACATGCTGGCTCTCTTCCCTGTATGCCGA	CACACCTTGAAAGGGACCAG TGTGCCTGCTTGAGAAAAA	-	RSS23

2. atypical breakpoints outside clusters

nr	patient	$\Delta \mathrm{el}$	RSS (5'-3')	strand	location	type
1	\#36	-2-3	CAGAGTGAGGAGGAGCTGATCTGACATT	+	intron 3	RSS12
2			CACTCTGATCTTTACCATCACCAGACTC	+	intron 3	RSS12
3	\#46	-2-3	CACCCCCACTCCCCATATTATAAAAACT	-	intron 3	RSS12
4			CACAGTAACTCTTAATTGTTTAATTCAGTTCGTGTGTTA	+	intron 3	RSS23
5	\#58	-2-3	CACAGCCAGGACAGGAGCTGCAGCAACT	-	intron 1	RSS12
6			CACTGTCACACACACACACACTTAAAAT	+	intron 1	RSS12
7			CATAGAGACACCAGAGAGAGAACAATGTTCACAGCCAGG	-	intron 1	RSS23
8	\#85	-2-7	CAACATCCTCAAAAACAATACAATGATA	-	intron 7	RSS12
9			CACAGCAACATTCAACAAGCAATGCCATCAGCAAAATCT	-	intron 7	RSS23
10	\#113	-2-3	CACTGAGCTGTGACTCTTGGGGGAAAGA	+	intron 3	RSS12
11			CATGCTGGGAAACTGTCCTGTGAAAGAGAATAGAAACCT	+	intron 3	RSS23
12			CACATTGGGTGGGGGAAAAATTCCTGTTTTCCCCAACCA	-	intron 3	RSS23
13			CAATGTGCTGCATTTTCTAATTTTCTATGAACACTTCCT	+	intron 3	RSS23
14			CACTGTCACACACACACACACTTAAAAT	+	intron 1	RSS12
15	\#118	$\Delta 2-3$	CACTGTGAGATGCAAGCTGAAATAAACC	-	intron 3	RSS12
16			CACAGTGTGGTGTTCAGAGGCATAGGCTCTAGGCTCCCT	+	intron 3	RSS23
17			CACACTCAATCATTTGTTCTGGAGTCCAGAGGGAAAATA	-	intron 3	RSS23
18	\#119	$\Delta 2$	CACTGTGACTTCCGGCCCCAGGGAAGCT	-	intron 2	RSS12
19			CACAGTCATGACTGTTTGTTCATTAAGC	+	intron 2	RSS12
20			CACAGTGCTTGGTATGCTCATGGGGGAGGAATAGGGGCT	+	intron 2	RSS23
21	\#143	-2-3	CACTGTGAGATGCAAGCTGAAATAAACC	-	intron 3	RSS12
22			CACAGTGTGGTGTTCAGAGGCATAGGCTCTAGGCTCCCT	+	intron 3	RSS23
23			CACACTCAATCATTTGTTCTGGAGTCCAGAGGGAAAATA	-	intron 3	RSS23
24			CACAGTGGGTGGCCTGAGCCCAGAGCAGCTCCCCATATC	+	intron 1	RSS23
25			CACAGGGATATGGGGAGCTGCTCTGGGCTCAGGCCACCC	-	intron 1	RSS23
26	\#157	$\Delta 2-3$	CACATTTGCATAAATATAGACAGAAAGC	-	intron 3	RSS12
27			CACAGTGGGTGGCCTGAGCCCAGAGCAGCTCCCCATATC	+	intron 1	RSS23
28			CACAGGGATATGGGGAGCTGCTCTGGGCTCAGGCCACCC	-	intron 1	RSS23
29	\#174	$\Delta 2-3$	CACTCTCTTTAGGCACAGTTGTAAAAAT	-	intron 3	RSS12
30			CACAGTATATGGAATTTGATTCAAAAAT	-	intron 1	RSS12
31			CACAGTATATGGAATTTGATTCAAAAATCAGGTTCCTTA	-	intron 1	RSS23
32	\#199	-2-3	CACAGTGAATTACCACCTTACTAAAATA	+	intron 3	RSS12
33			CATATTACTCAGAATCATATTGTCTCCAAAGCACAAACT	+	intron 3	RSS23
34			CACCGTGAAACAAAAGGGGAAGAAAACA	-	intron 1	RSS12
35			CACAGTCAATCAGAGCTGGTGACCAGAACATTTTATTGA	+	intron 1	RSS23
36	\#199	$\Delta 2-7$	CAACATCCTCAAAAACAATACAATGATA	-	intron 7	RSS12

37			CACAGCAACATTCAACAAGCAATGCCATCAGCAAAATCT	-	intron 7	RSS23
38			CACCGTGAAACAAAAGGGGAAGAAAACA	-	intron 1	RSS12
39			CACAGTCAATCAGAGCTGGTGACCAGAACATTTTATTGA	+	intron 1	RSS23
40	\#204	-2-3	CACAGTGAATTACCACCTTACTAAAATA	+	intron 3	RSS12
41			CATATTACTCAGAATCATATTGTCTCCAAAGCACAAACT	+	intron 3	RSS23
42			CACCGTGAAACAAAAGGGGAAGAAAACA	-	intron 1	RSS12
43			CACAGTCAATCAGAGCTGGTGACCAGAACATTTTATTGA	+	intron 1	RSS23
44	\#215	-2-3	CACAGCCAGGACAGGAGCTGCAGCAACT	-	intron 1	RSS12
45			CACTGTCACACACACACACACTTAAAAT	+	intron 1	RSS12
46			CATAGAGACACCAGAGAGAGAACAATGTTCACAGCCAGG	-	intron 1	RSS23
47	\#221	-2-7	CAACATCCTCAAAAACAATACAATGATA	-	intron 7	RSS12
48			CACAGCAACATTCAACAAGCAATGCCATCAGCAAAATCT	-	intron 7	RSS23
49			CAATCTCCCTTAGAATATGACAAGAACC	-	intron 1	RSS12
50			CACAGCCAGGACAGGAGCTGCAGCAACT	-	intron 1	RSS12
51			CATAGAGACACCAGAGAGAGAACAATGTTCACAGCCAGG	-	intron 1	RSS23
52	\#225	-5-7	CAACATCCTCAAAAACAATACAATGATA	-	intron 7	RSS12
53			CACAGCAACATTCAACAAGCAATGCCATCAGCAAAATCT	-	intron 7	RSS23
54			CACTGTACAGTCAGGCTTTAAATGAATT	-	intron 4	RSS12
55			CACACTCAGCCCTAAGTGAAGCAAGCGTGCATGAGAGTA	+	intron 4	RSS23
56	\#256	-2-3	CACTGAGCTGTGACTCTTGGGGGAAAGA	+	intron 3	RSS12
57			CATGCTGGGAAACTGTCCTGTGAAAGAGAATAGAAACCT	+	intron 3	RSS23
58			CACATTGGGTGGGGGAAAAATTCCTGTTTTCCCCAACCA	-	intron 3	RSS23
59			CAATGTGCTGCATTTTCTAATTTTCTATGAACACTTCCT	+	intron 3	RSS23
60			CACTGTCACACACACACACACTTAAAAT	+	intron 1	RSS12
61	\#257	-2-3	CACTGAGCTGTGACTCTTGGGGGAAAGA	+	intron 3	RSS12
62			CATGCTGGGAAACTGTCCTGTGAAAGAGAATAGAAACCT	+	intron 3	RSS23
63			CACATTGGGTGGGGGAAAAATTCCTGTTTTCCCCAACCA	-	intron 3	RSS23
64			CAATGTGCTGCATTTTCTAATTTTCTATGAACACTTCCT	+	intron 3	RSS23
65			CACTGTCACACACACACACACTTAAAAT	+	intron 1	RSS12
66	\#266	-2-3	CACAACACATGTACCACATGCACATATA	-	intron 3	RSS12
67			CACCACATATACCCCCCACATATATACA	-	intron 3	RSS12
68			CACATACATGCACACACAAACATATGAC	-	intron 3	RSS12
69			CACACACATACATGCACACACAAACATA	-	intron 3	RSS12
70			CACAGAACTTCATGACAGTTTTGATTTTAGATTAAAGTA	+	intron 3	RSS23
71			CACATACATATACATACATCACACACCACATATACCCCC	-	intron 3	RSS23
72			CACATACATGCACACACAAACATATGACACACACAACAT	-	intron 3	RSS23
73			CACACACATACATGCACACACAAACATATGACACACACA	-	intron 3	RSS23
74			CACATACACACACACACCACACACATACATGCACACACA	-	intron 3	RSS23
75	\#291	-2-7	CAACATCCTCAAAAACAATACAATGATA	-	intron 7	RSS12
76			CACAGCAACATTCAACAAGCAATGCCATCAGCAAAATCT	-	intron 7	RSS23
77	\#304	-2-3	CATCCAGGGTAGGGACTGAACAAAGTCA	-	intron 3	RSS12
78	\#327	-2-3	CACAGTGAATTACCACCTTACTAAAATA	+	intron 3	RSS12
79			CATATTACTCAGAATCATATTGTCTCCAAAGCACAAACT	+	intron 3	RSS23
80			CACCGTGAAACAAAAGGGGAAGAAAACA	-	intron 1	RSS12
81			CACAGTCAATCAGAGCTGGTGACCAGAACATTTTATTGA	+	intron 1	RSS23
82	\#351	-2-3	CACTGAGCTGTGACTCTTGGGGGAAAGA	+	intron 3	RSS12
83			CATGCTGGGAAACTGTCCTGTGAAAGAGAATAGAAACCT	+	intron 3	RSS23
84			CACATTGGGTGGGGGAAAAATTCCTGTTTTCCCCAACCA	-	intron 3	RSS23
85			CAATGTGCTGCATTTTCTAATTTTCTATGAACACTTCCT	+	intron 3	RSS23
86			CACTGTCACACACACACACACTTAAAAT	+	intron 1	RSS12

87	\#424	$\Delta 5-7$	CAACATCCTCAAAAACAATACAATGATA	-	intron 7	RSS12
88			CACAGCAACATTCAACAAGCAATGCCATCAGCAAAATCT	-	intron 7	RSS23
89			CACTGTACAGTCAGGCTTTAAATGAATT	-	intron 4	RSS12
90			CACACTCAGCCCTAAGTGAAGCAAGCGTGCATGAGAGTA	+	intron 4	RSS23
91	\#443	-2-3	CACTGAGAGCTGTAACAGAACCAAAAGA	-	intron 3	RSS12
92			CACTGTCACTGAGAGCTGTAACAGAACC	-	intron 3	RSS12
93			CACAATGGATGCTGCCTTAGATATCACA	-	intron 3	RSS12
94			CACATTGACCTCAGGACAGTATGTGATAGGCTCTTGTGC	+	intron 3	RSS23
95			CACTCTGGCTCAGGCCCACCCTGGGCTCTTTCACTGACT	-	intron 3	RSS23
96			CACTGTCACTGAGAGCTGTAACAGAACCAAAAGAGAACT	-	intron 3	RSS23
97			CACAGTGGGTGGCCTGAGCCCAGAGCAGCTCCCCATATC	+	intron 1	RSS23
98			CACAGGGATATGGGGAGCTGCTCTGGGCTCAGGCCACCC	-	intron 1	RSS23
99	$\begin{aligned} & \# 101 \\ & \# 111 \\ & \# 495 \end{aligned}$	$\Delta 4-8$	CACAGTGAATTACCACCTTACTAAAATA	+	intron 3	RSS12
100			CATATTACTCAGAATCATATTGTCTCCAAAGCACAAACT	+	intron 3	RSS23
101			CACTGTGCTGCAGGTTCTGGCGTCATGATGTTCCTTCCA	-	3'UTR	RSS23
102			CACAGTGTGTTTCTTTCTTTCCCCACATCAAGGGTCTAC	+	3'UTR	RSS23
103	\#139	$\Delta 4-8$	CACAGTGAATTACCACCTTACTAAAATA	+	intron 3	RSS12
104			CATATTACTCAGAATCATATTGTCTCCAAAGCACAAACT	+	intron 3	RSS23
105			CACACCTTGAAAGGGACCAGTGTGCCTGCTTGAGAAAAA	-	3'UTR	RSS23
106	\#470	$\Delta 4-8$	CACAGTGAATTACCACCTTACTAAAATA	+	intron 3	RSS12
107			CATATTACTCAGAATCATATTGTCTCCAAAGCACAAACT	+	intron 3	RSS23
108			CACTGTGCTGCAGGTTCTGGCGTCATGATGTTCCTTCCA	-	3'UTR	RSS23
109			CACAGTGTGTTTCTTTCTTTCCCCACATCAAGGGTCTAC	+	3'UTR	RSS23
110			CACTGTGCTAGACCTTGGGGAGCTCCAGGGAGCAAGGCA	-	3'UTR	RSS23
111			CACAGTGCCTGGCACAAGGTGAGGGGGGTGCCCAGAAAA	+	3'UTR	RSS23
112			CACAAGGTGAGGGGGGTGCCCAGAAAAGATTCAATTCCC	+	3'UTR	RSS23
113	\#99	-2-8	CACTGTCACACACACACACACTTAAAAT	+	intron 1	RSS12
114			CACTGTGCTGCAGGTTCTGGCGTCATGATGTTCCTTCCA	-	3'UTR	RSS23
115			CACAGTGTGTTTCTTTCTTTCCCCACATCAAGGGTCTAC	+	3'UTR	RSS23
116			CACTGTGCTAGACCTTGGGGAGCTCCAGGGAGCAAGGCA	-	3'UTR	RSS23
117			CACAGTGCCTGGCACAAGGTGAGGGGGGTGCCCAGAAAA	+	3'UTR	RSS23
118			CACAAGGTGAGGGGGGTGCCCAGAAAAGATTCAATTCCC	+	3'UTR	RSS23

Supplementary Table 12: Comparison between diagnosis and relapse of 20 mutations in 16 patients with IKZF1 mutations at the time of diagnosis.

patient	deletion	deletion load	relapse
$\# 110$	$\Delta 4-7$	high deletion load	conserved
$\# 112$	$\Delta 2-7$	high deletion load	conserved
$\# 119$	$\Delta 2$	high deletion load	lost
$\# 121$	$\Delta 4-7$	high deletion load	conserved
$\# 130$	$\Delta 2-7$	high deletion load	conserved
$\# 179$	$\Delta 4-7$	low deletion load	lost
$\# 198$	$\Delta 2-7$	low deletion load	lost
	$\Delta 4-7$	high deletion load	lost
$\# 199$	$\Delta 2-3$	N/A	conserved
	$\Delta 2-7$	low deletion load	conserved
$\# 204$	$\Delta 2-3$	high deletion load	lost
$\# 243$	$\Delta 2-7$	high deletion load	conserved
$\# 287$	high deletion load	conserved	
$\# 289$	$\Delta 4-8$	high deletion load	conserved
$\# 479$	$\Delta 4-7$	high deletion load	conserved
$\# 482$	$\Delta 2-8$	high deletion load	conserved
$\# 483$	$\Delta 4-7$	high deletion load	conserved
$\# 495$	$\Delta 4-8$	high deletion load	conserved
$\# 500$	$\Delta 4-7$	low deletion load	lost

Supplementary Figures

Supplementary Figure 1: Quantification of deletions $\Delta 4-7, \Delta 2-7$ and $\Delta 4-8$ by quantitative PCR. Relative concentration of deleted cells was calculated in relation to a standard curve by cell line BV-173 ($\Delta 4-7$) or patient DNA (\#100 for $\Delta 2-7, \# 101$ for $\Delta 4-8$). Deletions with a relative concentration $>1,00 \mathrm{E}-01$ are considered „high deletion load", all other deletions are considered „low deletion load".

Supplementary Figure 2: Detection of $\Delta 2-3$ by RT-PCR. (A) Patients positive for $\Delta 2-3$ on RT-PCR (above) show a corresponding lesion detectable by the PCR described by Meyer (below). (B) In this subgroup of patients positive for $\Delta 2-3$ in RT-PCR ex1/4, a genomic breakpoint could only by identified by a novel PCR $\Delta 2-3 \mathrm{~B}$. (C) Patients negative for $\Delta 2-3$ on RT-PCR. (D) Structure of the 4 PCR products detectable by RT-PCR ex1/4.

Supplementary Figure 3: Additional evaluation of the prognostic effect of IKZF1 mutations. (A) Overall survival of patients with and without any IKZF1 mutation. (B) Overall survival of patients with IKZF1 loss-of-function mutations only, IKZF1 dominant-negative mutations only or both forms of IKZF1 mutations.

Supplementary Figure 4: Detection of rare breakpoints by RT-PCR. (A) Patients \#85 and \#291 show lk10 expression on RT-PCR (above), no breakpoint by PCR $\Delta 2-7$ (middle) and a breakpoint by PCR $\Delta 2-7$ variant (below). (B) Patient \#338 exhibits Ik6 and Ik6 4 on RT-PCR (above), a breakpoint by PCR $\Delta 4-7$ (middle) and a second breakpoint distal to exon 3 b by PCR $\Delta 4-7$ variant (below). (C) Patient \#424 shows Ik6 and Ik6 4 expression by RT-PCR (above), no PCR $\Delta 4-7$ (middle) and a band by a PCR $\Delta 5-7$ (below). (D) Structure of isoforms Ik6 and Ik6

Lebenslauf

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.

Vollständige Publikationsliste

Paper

Kobitzsch B, Gökbuget N, Schwartz S, Reinhardt R, Brüggemann M, Viardot A, Wäsch R, Starck M, Thiel E, Hoelzer D, and Burmeister T. Loss-of-function but not dominantnegative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR-ABL-negative acute lymphoblastic leukemia.
Haematologica. 2017; 102:xxx. doi:10.3324/haematol.2016.161273
Online abrufbar unter: http://dx.doi.org/10.3324/haematol.2016.161273
Impact factor 2016: 7.702

Posterpräsentation

Kobitzsch B, Gökbuget N, Schwartz S, Reinhardt R, Brueggemann M, Viardot A, Wäsch R, Starck M, Thiel E, Hoelzer D, Burmeister T 2015: Non-Functional ("haploinsufficient"), but Not Dominant Negative Clonal IKZF1 Deletions Confer an Adverse Prognosis in Adult BCR-ABL-Negative Acute Lymphoblastic Leukemia. Poster auf dem 57th Annual Meeting \& Exposition der American Society of Hematology. Orlanda, FL, USA, 05.-08.12.2015.
Online abrufbar unter: http://www.bloodjournal.org/content/126/23/2617

Kongressbeitrag

Wulff I, Kobitzsch B, Hesselbarth U, Peters H 2015: Studentisch generierte POLLernziele im Vergleich zu den Modul-Lernzielen der Fakultät. Kurzvortrag auf der Gemeinsamen Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA) und des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWLZ). Leipzig, 30.09.-03.10.2015.

Online abrufbar unter: http://dx.doi.org/10.3205/15gma106

Danksagung

Mein Dank gilt an erster Stelle Herrn PD Dr. med. Dr. rer. nat. Thomas Burmeister, dem Betreuer dieser Arbeit. Ich danke ihm für die Überlassung des Themas, sein Vertrauen in meine Arbeit und die Finanzierung der Studie. Seiner kontinuierlichen und zuverlässigen Betreuung über mehrere Jahre hinweg ist es zu verdanken, dass meine Dissertation in dieser Form erfolgreich abgeschlossen werden konnte.

Zudem danke ich Daniela Gröger für die Einarbeitung in die unterschiedlichen Forschungsmethoden und die gemeinsame Arbeit im Labor.

Abschließend danke ich allen Mitgliedern der GMALL-Studiengruppe, besonders Frau Dr. Nicola Gökbuget und Herrn Prof. Dr. Dieter Hoelzer, sowie allen Patientinnen und Patienten und den behandelnden Ärztinnen und Ärzten, die diese Studie ermöglicht haben.

[^0]: ${ }^{1}$ Meyer C, zur Stadt U, Escherich G, Hofmann J, Binato R, da Conceição Barbosa T et al. Refinement of IKZF1 recombination hotspots in pediatric BCP-ALL patients. Am J Blood Res 2013; 3: 165-173.
 ${ }^{2}$ Merelli I, Guffanti A, Fabbri M, Cocito A, Furia L, Grazini U et al. RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes. Nucleic Acids Res 2010; 38 Suppl: W262-7.

