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Abstract

We extend models of financial markets by incorporating divergent risk-
free interest rates for borrowing and deposits. Divergent interest rates create
arbitrage opportunities if each market participant is allowed both to borrow
and lend money. In our model, we circumvent such arbitrage opportunities
by allowing only one institution to act as a bank (granting risk-free credits
and financial investments). The surplus of this bank has to be redistributed
to the market participants.

Assuming only one risky asset we show that – while not necessarily
unique – an equilibrium always exists. We investigate the relation to a fi-
nancial markets equilibrium based on a unique interest rate being intuitively
determined as a (weighted) average from borrowing and deposit rate. We
provide proof that this unique interest rate approximately generates correct
asset prices only if every investor trades, the bank’s proceeds are distributed
equally among investors and the number of investors is rather large. Other-
wise severe mispricings may result.
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1. Problem

Every theory of a financial market is based on a number of simplify-
ing assumptions. In particular, one often assumes that a unique risk-free
rate applies to both depositing and borrowing activities. No one would dis-
pute that a unique risk-free rate is an assumption verging on the ridiculous,
yet this is the typical case discussed in the literature. Even textbooks very
seldom mention a model with divergent interest rates.1 We will introduce di-
vergent borrowing and deposit rates and look at the consequences for market
equilibrium. The prevailing response to what would change if we renounce a
unique rf would be: “not much”. We will show that in general this answer
is wrong and only holds under a very particular set of assumptions.

Also, such an insight is by no means obvious. As already Hirshleifer
(1958) observed classical results from the Fisher model do break down if the
interest rate is not unique. So, it is rather surprising that no one has posed
the question as to whether something similar would happen if in a financial
market model (for example, the Capital Asset Pricing Model or CAPM)
borrowing and depositing is carried out with different interest rates.

One reason why divergent interest rates have not sufficiently been in-
vestigated might be due to the following fact. Every equilibrium theory
requires a consistent modelling. If, however, each investor is permitted to
grant risk-free credit in a framework with divergent interest rates, one could
become infinitely rich simply by founding a financial institution and approv-
ing credit at a higher rate than the interest rate which applies to a financial
investment. Such arbitrage opportunities clearly cripple any capital market
model fundamentally since they are by no means reconcilable with an equi-
librium. Any attempt to derive equilibrium prices is foredoomed to failure
because it becomes unclear how supply and demand can be balanced. From
a theoretical point of view, our paper contributes to prior literature by ex-
plicitly creating an arbitrage-free environment that allows for a consistent
equilibrium modelling.

There is another aspect that makes our approach particularly interest-
ing. In a typical Arrow-Debreu setup an equilibrium is characterized by two
conditions: markets clear and each investor maximizes their utility, regard-
less of what other investors are doing. Our modelling will imply that the

1In a former edition of the Brealey/Myers textbook divergent interest rates are men-
tioned as one form of market imperfection. Interestingly, the authors state “Having
glimpsed the problems of imperfect markets, we shall, like an economist in a shipwreck,
simply assume our life jacket and swim safely to shore”, Brealey and Myers (1996, p. 24).
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second condition will not be enough to characterize an equilibrium. Rather,
the action of other investors will influence the trading options of each in-
vestor. This resembles more of a Nash than an Arrow-Debreu equilibrium.
We have to accept that consistent modelling also requires a different equi-
librium concept for an exchange economy.

We believe that most economists do not consider an equilibrium with di-
vergent interest rates to be very different from an equilibrium with a unique
risk-free rate rf . In particular, one would expect that prices with a single
rf are more or less equal to prices with divergent rates if rf is chosen to be
a (weighted) average of both deposit and borrowing rates. Using a simple
example we will show that this intuition is incorrect. If both interest rates
are to be merged into one unique rate, this rate may be quite different from
the original rates.

It is possible to develop our ideas in a general exchange equilibrium.
But we believe that a capital market equilibrium in which we can derive
closed-form solutions allows for a more distinct way of presenting our results.
Therefore, we have opted for an equilibrium with µ-σ utility functions having
constant absolute risk aversion (i.e. a CAPM).

In the next section we explain how no-arbitrage in the context of di-
vergent interest rates can be ensured and provide a literature review that
identifies research gaps. The following section formulates the model, derives
the results and compares them to the traditional financial market model. In
particular, we discuss the following questions: How can we formulate a capi-
tal asset pricing model with divergent interest rates that rules out arbitrage?
How can an equilibrium in such a framework be defined? Does an equilib-
rium exist, and (with appropriate assumptions) is it unique? What kind of
relationship exists between such an equilibrium and a traditional equilibrium
with unique interest rates? The last section provides a summary.

2. The literature

Prior research in the context of models under certainty revealed that the
relaxation of this assumption has a significant impact on the results. E.g.,
as far as the Fisher model2 is concerned it can be shown that investors’
initial endowments as well as their consumption preferences can influence
their investment decisions if deposit and borrowing rates do not coincide.3

2See Fisher (1930).
3See Hirshleifer (1958).
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However, in equilibrium models under uncertainty, such as the neoclassical
capital asset pricing model4, rather few such considerations exist.

In order to prevent our model being subject to arbitrage opportunities
we build on an idea that has already been proposed by Cheng (1980). In the
presence of divergent interest rates, he states that “it is no longer feasible
for the investors to lend and borrow from one another. However this can be
handled by letting a ‘bank’ enter the loan market, or by letting brokerage
firms perform the tasks of granting security loans and/or taking deposits.”5

This is exactly what is assumed throughout our paper: We will allow only
one institution to carry out the granting of risk-free credits and financial
investments. This institution shall be called “bank”.6 Our problem is not
completely solved at this stage, because a difficulty arises that has been
neglected so far: Following Cheng (1980), the bank pockets the difference
between credit and debit rates. But what happens to that surplus?

A similar issue is well known from equilibrium models with taxes: In this
case, the Treasury collects taxes and ends up with a surplus as well. In many
models this surplus is not returned to the taxpayers.7 This circumstance
is hardly compatible with an equilibrium model where we are obliged to
consider the entire market and cannot perform a local analysis. The few
papers that explicitly take into account a redistribution of the tax surplus
to the taxpayers show that this might change the main statements of the
model.8 We cannot at all rule out a similar influence on the results if we look
at divergent interest rates. Therefore, in order to develop a coherent model,
the cash surplus of the bank should not vanish into thin air but should be
redistributed in full to the market participants. Thus, the crucial part of our
approach is not the existence of a bank per se, but the bank’s redistribution
of proceeds among the investors. To the best of our knowledge, such a
redistribution has never been complied with in the relevant literature.

The first and most important paper dealing with divergent interest rates
in context of the CAPM is Brennan (1971). While he derives some prop-
erties of capital market equilibrium, neither the inherent arbitrage nor a

4See Sharpe (1964), Lintner (1965) and Mossin (1966).
5See Cheng (1980, p. 513).
6Note that the model allows the bank to consist of a network of several branch offices

and subsidiaries that consolidate all their cash surpluses. However, the existence of private
(profit maximizing) banks is excluded from our model.

7See Brennan (1970) or Litzenberger and Ramaswamy (1979).
8See e.g., Kruschwitz and Löffler (2009), Eikseth and Lindset (2009), Konrad (1991)

and Sialm (2009).
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redistribution of the interest spread proceeds are discussed. Nevertheless,
Brennan (1971) forms the basis for several further studies. All studies that
build on Brennan, though, do not alter the main setup of the model and in
particular are not able to solve the inherent problem of an arbitrage oppor-
tunity when borrowing and deposit rates are not the same. We therefore
refer this literature to a footnote.9

3. Model

3.1. Setup

In this paper we focus on the appropriate modelling of divergent interest
rates. Hence, we will simplify aspects which we believe are of no particular
relevance. In particular, we will assume that investors have utilities with
constant absolute risk aversion (CARA) because this will enable us to es-
tablish simple solutions. Furthermore, we will only discuss the case of one
risky asset and postpone the debate of a market with several risky assets to
a follow-up paper.10

We start with investors i = 1, . . . , I who trade in a capital market with
only one risky asset. We assume a one-period model and the absence of
short selling restrictions. The risky asset shall be arbitrarily divisible, is
priced S0 in t = 0, and generates a risky payment in t = 1 amounting
to S1.11 Without loss of generality we assume S0 > 0. However, investors
form homogeneous expectations E(S1) and know the variance Var(S1) of the
asset’s future payments. Each investor is initially endowed with n̄i shares
of the risky asset. We designate the sum of the initial endowments as the
market portfolio n̄. The investor’s task is to determine the optimal quantity
of risky assets ni and to adjust his initial portfolio accordingly.

9Davis et al. (2006) expand the model to a multi-period setting and show that (unlike
Brennan) higher borrowing costs can raise the demand for equity. Chua (1975) criticized
Brennan’s argumentation, but was unable to shake his main result. Cheng (1980) pointed
out that Brennan’s research question had been empirically motivated and started to dis-
cuss the topic of divergent interest rates analytically. Above all, he wanted to find out how
to value risky assets “when various forms of financial restrictions and loan market imper-
fections are introduced to the CAPM,” see Cheng (1980, p. 509). The paper of Bamberg
and Firchau (1981) also ties directly to Brennan (1971). Hammami (2014) finally wants
to investigate how the implications of the Brennan-paper should be adressed in empirical
tests using the Fama-MacBeth, the Shanken, and the Kan-Robotti-Shanken t-statistics.

10With multiple risky assets complexity arises due to correlations among the assets. In
order to understand the underlying mechanisms in closed-form solutions we restrict our
analysis of the optimal demand and equilibrium to the case of solely one risky asset.

11Dividends can easily be integrated in the model but do not provide any further insights.
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If the available budget is insufficient to finance the optimal portfolio, the
investor has to borrow money. If, in contrast, the portfolio does not require
the investor’s whole initial endowment, she makes a risk-free investment.
Note, however, that there is no risk-free asset in the market. Instead each
market participant can make use of a risk-free borrowing and risk-free de-
posit opportunity. For simplicity, the payments of such transactions in t = 1
are standardized at one monetary unit.

We will presume that the interest rate for risk-free borrowing (rb) and
the rate for risk-free deposits (rd) do not necessarily have to coincide. In-
stead we allow the borrowing rate to exceed the deposit rate, rb ≥ rd.12

The price of one credit contract in t = 0 then amounts to 1
1+rb

, whereas a

risk-free financial investment costs 1
1+rd

. nb
i denotes the number of credit

contracts an investor i signs. nd
i designates the number of risk-free invest-

ment contracts. In t = 1 the investor liquidates all risky assets for the
purpose of consumption. Also she receives the payments of her risk-free
investment or pays back the credit obligation including interest, neither of
which are subject to any uncertainty. The notation is summarized in Figure
1.

Figure 1: Notation

t = 0 t = 1

price S0 S1

risky asset endowment n̄i
optimal quantity ni

price 1
1+rd

1

riskless investment endowment 0
optimal quantity nd

i

price 1
1+rb

1

riskless boworring endowment 0
optimal quantity held nb

i

Note, that the investor cannot choose negative risk-free quantities,

nb
i , n

d
i ≥ 0. (1)

12A scenario with negative interest rates on deposits is discussed at the end of this
section.
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Also, in optimum they will not be positive at the same time since raising
credit and simultaneous risk-free investing at the lower interest rate cannot
be advantageous,

nb
i · nd

i = 0. (2)

Without any further assumptions, we would have to deal with the afore-
mentioned arbitrage opportunity: by founding a financial institution, any
investor could give credit at a higher rate than the interest rate which ap-
plies to a financial investment that is necessary to finance the credit. Our
model avoids arbitrage by allowing only one specific institution to carry out
this kind of financial business – this “bank” is the only authority that is per-
mitted to grant both, credits and financial investments without risk. There
is no endowment with financial resources of the bank. If the bank generates
a cash surplus, these funds will be redistributed to the investors according
to a previously agreed upon distribution rule.

In order to formulate the individual maximization problem in detail we
have to take a closer look at this redistribution. Since we assume that in
equilibrium13 the bank does not grant more credit than the received amount
of financial investments, the following must hold for the cash balance in t = 0
(“zero-net supply condition”),

0 =
I∑

i=1

(
nd
i

1 + rd
− nb

i

1 + rb

)
. (3)

From rb ≥ rd it follows that 0 ≥
∑

i(n
d
i − nb

i ), meaning no fewer credit
contracts are being signed than financial investment contracts. At date
t = 1 the bank pays off its investors and receives the redemption and interest
payments from its debtors. This necessarily yields a cash surplus of

I∑
i=1

(
nb
i · 1− nd

i · 1
)
≥ 0, (4)

which is redistributed to the investors according to a certain rule. The i-
th investor receives a deterministic share ωi ≥ 0 of the entire surplus from
the bank, whereby these shares sum up to one or

∑I
i=1 ωi = 1.14 If we

13We will define an equilibrium in subsection 3.3.1.
14If we allowed ωi to be random variables, then any equilibrium could be explained,

see Kruschwitz and Löffler (2009, p. 173). Therefore, we believe that it is reasonable to
assume deterministic ωi.
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wish to attain a special income distribution, the shares ωi can be selected
accordingly.

Uncertain future consumption of the i-th investor is denoted by C1i.
All market participants derive their portfolio decision on individual CARA
utility functions based on expectation and variance15

Ui

(
E(C1i),Var(C1i)

)
= E(C1i)−

ai
2
·Var(C1i). (5)

Investors are thus assumed to be unsaturated and risk-averse with an investor-
specific coefficient of risk aversion, ai > 0.

Recently, investors in many major economies experienced negative risk-
free rates on their savings (rd < 0). We have to discuss the implications on
investors’ optimal demand for the risky asset and market clearance.

We will show that the smaller the deposit rate, the higher will be the
demand for risky assets (see below equation (6)). However, if the deposit
rate becomes negative, the optimal demand necessarily equals investors’ ini-
tial endowment, and a balanced situation can only be achieved in form of a
no-trade equilibrium. The reason lies in the zero-net supply condition (3):
For negative deposit rates any investor who wants to make risk-free savings
would prefer holding cash (free of interest) rather than making a risk-free
investment at the bank where savings will shrink in time. Consequently,
the bank does not receive any funds and the zero net supply condition will
only be met if no credit is granted to other investors. Nevertheless, investors
who want to purchase additional shares of the risky asset, depend on credit
financing since our model allows for no other funding possibilities. However,
due to zero net supply, this funding possibility is no longer available, and
the investor necessarily has to keep the initial endowment of the risky as-
set constant. Analogously, if an investor prefers to sell parts of the initial
endowment, she would no longer find buyers. Thus, markets only clear in a
no-trade equilibrium. Therefore, in the following we will focus on positive
interest rates, rb, rd > 0.

Finally, we assume that the asset is traded in a perfect market and that
no transaction costs, taxes or market entry barriers are incurred.

3.2. Individual Maximization Problem

We have moved the calculation of the optimal demand function to Ap-
pendix A. There, we show that in contrast to the capital market model

15These utility functions are typically for the Capital Asset Pricing Model. An axiom-
atization of these utility functions can be found in Löffler (1996).
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with a unique interest rate, the following cases have to be distinguished
depending on the investor’s initial endowment.

Investor is


borrower if n̄i ≤ nb

i and demands nb
i = E(S1)−S0(1+rb)(1−ωi)

ai Var(S1)

depositer if n̄i ≥ nd
i and demands nd

i = E(S1)−S0(1+rd)(1−ωi)
ai Var(S1)

no-trader if nb
i < n̄i < nd

i and keeps initial endowment const.

(6)
This optimal demand is illustrated in Figure 2. It becomes obvious that

the optimal demand for the risky assets is decreasing in its current price S0.
Also, the shape of the function is intuitive: If the price is rather low, the
investor demands a high quantity and will therefore enlarge her portfolio
which she is initially endowed with. In order to finance this enlargement
she borrows funds from the bank. For moderate prices, the investor prefers
to refrain from trading and keeps her initial endowment constant. If, by
contrast, the current price is rather high, it is optimal for the investor to
sell parts of her initial endowment. The proceeds will be invested and the
investor consequently acts as a depositer. Thus, with increasing S0 the
investor becomes a borrower, a no-trader and finally a depositer. The de-
mand function is a continuous and monotonic (but not strictly monotonic)
function.

Figure 2: Optimal demand of the risky asset depending on price S0.

price S0

demand nb,li

n̄

borrowing, nb
i

depositing, nd
i

no-trade

Non-participation in capital markets has been named a stylized fact of
household finance. It is well known that a large proportion of investors hold
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no equity.16 We do not attempt to explain this puzzle but still want to in-
vestigate how our parameters influence the decision not to trade. Therefore,
we will perform a comparative static.

A closer look at (6) reveals that each investor will demand a positive
quantity ni > 0 as long as the expected return of the risky asset E(r)
exceeds the borrowing rate rb. This results from

ni =
E(S1)− S0(1 + max(rb, rd))(1− ωi)

ai Var(S1)
> 0

E(S1)

S0

1

1− ωi
> 1 + rb

1 + E(r)

1− ωi
> 1 + rb.

Even if ωi equals 0 for a specific market participant, this investor will
thus unfold a positive demand for the risky asset if E(r) > rb. An increasing
share in the bank’s surplus ωi > 0 will further raise the demand for equity.

The no-trading area is mainly influenced by five parameters: the endow-
ment, the share of bank’s surplus, the risky asset, the interest rates and the
risk aversion,

no trade ⇐⇒ E(S1)− n̄i ai Var(S1)

S0(1− ωi)
∈
[
1 + rd, 1 + rb

]
. (7)

From this relationship it is evident how these parameters influence the de-
cision of the investor to abstain from trading. We will later consider a
numerical example that illustrates this relationship.

3.3. Equilibrium Analysis

3.3.1. Definition

In a classical Arrow-Debreu equilibrium, prices are defined as such that
investors maximize their utility and supply equals demand. In particular,
investors choose their optimal portfolio regardless of what the other market
participants do. In our model the situation is different.

If one investor chooses to deviate from her optimal portfolio this will have
an impact on her borrowing or depositing decision. This in turn influences
the bank’s surplus that will be distributed to the investors. But then, her

16See Hirshleifer et al. (2017).

10



own optimal decision might be different. In contrast to the Arrow-Debreu
equilibrium concept, decisions of the investors are connected. This resembles
more of a Nash equilibrium where this connection is particularly addressed.
This leads us to the following definition, which is distinct from the classical
exchange equilibrium.

Definition 1. An equilibrium consists of a set of optimal demand ni and
an equilibrium price S0 such that the following two conditions are satisfied:

1. For every investor i the demand ni is optimal, given the other investors
have chosen their optimal demand.

2. Aggregate supply equals aggregate demand.

Although we will apply this definition from now on, it raises interesting
questions that we will not pursue here. For example, one could ask whether
a cooperative solution that is different from our case is possible: Investors
could stipulate to choose a non-optimal demand in order to have lower or
higher redistribution. It is not immediately clear whether such a “bargaining
solution” is subgame perfect and whether investors have an incentive to
deviate from the contract. We will leave those questions unanswered here.

3.3.2. Existence

Markets clear if all demand functions (6) add up to the aggregate en-
dowment

∑
i n̄i. This requires

∑
borrower i

E(S1)− S0(1 + rb)(1− ωi)

ai Var(S1)
+

∑
depositer i

E(S1)− S0(1 + rd)(1− ωi)

ai Var(S1)

+
∑

no-trader i

n̄i =
∑
i

n̄i (8)

and this equation can be further simplified to

S0 =
E(S1)

∑
trader i

1
ai
−Var(S1)

∑
trader i n̄i

(1 + rb)
∑

borrower i
1−ωi
ai

+ (1 + rd)
∑

depositer i
1−ωi
ai

. (9)

At first glance, this equation looks like a closed-form solution. But this
first impression is wrong. The equilibrium price S0 determines whether an
investor is a borrower, depositer or does not trade at all. Hence, (9) is in
fact a fixed-point equation.

Fortunately, it is straightforward to show that such an equilibrium al-
together exists. The individual demand is monotonically decreasing and
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continuous in S0. This is also true for the aggregate demand. For very large
S0 the aggregate demand in (8) will be negative and therefore smaller than
the aggregate supply

∑
i n̄i. On the other hand, for small S0 the aggregate

demand will be very large and therefore higher than aggregate supply. Ac-
cording to the intermediate value theorem17 there must exist a solution in
which demand and supply are equal.

Since the individual demand functions are monotonically decreasing, the
equilibrium is unique unless S0 is in a no-trade region of every investor. In
this case, no trade will occur and the price S0 itself is merely a construction of
thought rather than a result of economic activity. This situation is depicted
for a market with only two investors in Figure 3 .

Figure 3: The Case of a no-Trade Equilibrium

price S0

demand ni

n̄1 = n̄2 n1 + n2

n̄1 + n̄2

3.3.3. Relation to the Case of a Unique Risk-Free Rate

We now want to investigate how our solution differs from the case of a
unique interest rate. This interest rate shall be denoted by r∗.

It is reasonable to assume that our model with divergent interest rates
can easily be replaced by a model with a unique interest rate r∗ when r∗

is equal to the weighted average of the borrowing rate rb and deposit rate
rd. However, this assumption is false as will be illustrated in a numerical
example in the following subsection.

For the following, we prove a theorem that describes the relationship
between the divergent interest rates rb, rd and the unique rate r∗. It can
be shown that in a classical CARA equilibrium every investor holds the
amount of risky assets that corresponds to her risk aversion. Precisely, for

17See for example Rudin (1976, pp. 42, 93).
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a unique interest rate her optimal demand for the risky asset would amount
to a fixed share Hi in the market portfolio n̄. If the investor’s risk tolerance
is a−1

i , then this share is defined as the investor’s share of risk tolerance in
the aggregate risk tolerance18,

Hi :=
a−1
i∑
i a
−1
i

.

These coefficients add up to 1 over all trading investors, i.e.,
∑

j Hj = 1.
We can now prove the following theorem.

Theorem 1. The following relationship between divergent interest rates rb,
rd and a unique interest rate r∗ holds true

(1 + rb)
∑

borrower i

(1− ωi)Hi + (1 + rd)
∑

depositer i

(1− ωi)Hi+

+
∑

no-trader i

(1 + ri)(1− ωi)Hi = (1 + r∗). (10)

Proof. The theorem can be shown as follows. From equation (6) we learn
that investors prefer to refrain from trading if

E(S1)− S0(1 + rb)(1− ωi)

ai Var(S1)
≤ n̄i ≤

E(S1)− S0(1 + rd)(1− ωi)

ai Var(S1)
.

Thus, according to the intermediate value theorem there must exist a rate
ri ∈ (rd, rb) such that

E(S1)− S0(1 + ri)(1− ωi)

ai Var(S1)
= n̄i.

Plugging this into the equilibrium condition (8) yields

∑
borrower i

E(S1)− S0(1 + rb)(1− ωi)

ai Var(S1)
+

∑
depositer i

E(S1)− S0(1 + rd)(1− ωi)

ai Var(S1)
+

+
∑

no-trader i

E(S1)− S0(1 + ri)(1− ωi)

ai Var(S1)
= n̄.

18This can be shown by plugging in the equilibrium price into the investor’s optimal
demand function under the assumption of a unique interest rate. See e.g., Bertomeu and
Cheynel (2016, p.225–226).
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In contrast, the equilibrium in case of a unique interest rate r∗ is character-
ized by ∑

i

E(S1)− S0(1 + r∗)

ai Var(S1)
= n̄.

Both equilibrium situations are identical, if and only if

∑
borrower i

E(S1)− S0(1 + rb)(1− ωi)

ai Var(S1)
+

∑
depositer i

E(S1)− S0(1 + rd)(1− ωi)

ai Var(S1)

+
∑

no-trader i

E(S1)− S0(1 + ri)(1− ωi)

ai Var(S1)
=
∑
i

E(S1)− S0(1 + r∗)

ai Var(S1)
,

which can be further simplified,

(1 + rb)
∑

borrower i

1− ωi

ai
+ (1 + rd)

∑
depositer i

1− ωi

ai
+

+
∑

no-trader i

(1 + ri)(1− ωi)

ai
= (1 + r∗)

∑
i

1

ai
.

Finally, applying the definition of Hi completes the proof.

According to our theorem, (1 + r∗) appears to be a weighted average of
(1+rb), (1+rd) as well as (1+ri) (which ranges between (1+rb) and (1+rd)).
Note, however, that the weights (1−ωi)Hi do not add up to 1 and thus lack
economic interpretation. Nevertheless, our theorem enables us to consider a
special case that highlights the relationship between the interest rates and
allows an interpretation as weighted average under certain conditions. To
this end, let us assume that firstly, every investor trades and secondly, every
investor receives the same redistribution, ωi = 1

I .

Theorem 2. If every investor trades and if every investor receives the same
redistribution, then

1 + r∗ =
(

(1 + rb)b+ (1 + rd)(1− b)
) I − 1

I
, (11)

where b =
∑

borrowers iHi is the proportion of the risky asset held by the
borrowers and (1−b) the proportion of the risky asset held by the depositers.

Approximately, this is

r∗ ≈ rbb+ rd(1− b)− 1

I
.
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Obviously, the unique interest rate r∗ is approximately indeed a weighted
average of the divergent interest rates, if 1

I is sufficiently small. This leads to
the conclusion that in the case of divergent interest rates, a financial market
model based on a unique interest rate can only generate correct asset prices
S0, if everyone trades, if the bank’s proceeds are distributed equally among
investors and if the number of investors is large.

3.3.4. Numerical Example

In order to illustrate how (or to which extent) divergent risk-free interest
rates change the demand for risky assets, we provide the following numerical
example.

Assume there are three investors in the market that aim to optimize
their demand for the risky asset. This asset has an expected future payment
amounting to E(S1) = 10, the variance of the payment is Var(S1) = 1. The
investor-specific parameters are summarized in Figure 4.

Figure 4: Example: Investor-specific parameters

investor 1 investor 2 investor 3

risk aversion ai 1 1 40
share ωi 0.1 0 0.90
risky endowment n̄i 1 1 1

Let us first consider an exchange economy with divergent interest rates.
Accordingly, it is possible to borrow money from the bank at a rb = 10 %
rate, while the interest rate on risk-free investments is only rd = 5 %.19 We
will later show that S0 = 8.3113 turns out to be the equilibrium price. In
this economy investors’ optimal demand results in the numbers as shown in
the first row of Figure 5.20

19For purposes of presentation, we chose rather high interest rates. Real-
world interest rates are published by federal banks, e.g. for Germany https:

//www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/Geld_

und_Kapitalmaerkte/geld_und_kapitalmaerkte_node.html?nodeToClose=1193166.
20See Appendix B for the calculation. Obviously, the optimal demand differs between

the three investors as there are differences in their risk aversion parameters, initial endow-
ments and shares in the banks’ redistribution of cash surplus.
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Figure 5: Example: Optimal demand of the risky asset.

economy optimal risky demand
investor 1 investor 2 investor 3

with divergent interest rates 1.7718 1.0000 0.2282
with interest rate 7.5%, S0 = 8.3113 1.0654 1.0654 0.0266
with interest rate 7.5%, S0 = 7.9242 1.4815 1.4815 0.0370
with interest rate 2.4933%, S0 = 8.3113 1.4815 1.4815 0.0370

The current price of S0 = 8.3113 obviously clears the market, since
aggregate demand equals aggregate supply,

3∑
i=1

ni =

3∑
i=1

n̄i

1.7718 + 1.0000 + 0.2282 = 1 + 1 + 1.

If we consider an economy with the same asset price amounting S0 =
8.3113 but, in contrast, with a unique interest rate amounting to 7.5 %
the optimal demand for the three investors is presented in the second row
of Figure 5.21 However, in this scenario markets do not clear because the
aggregate demand (1.0654+1.0654+0.0266) does not equal aggreagte supply
(1 + 1 + 1).

In order to obtain an equilibrium with a unique interest rate, the asset
price S0 must adjust. The resulting equilibrium price that clears the market
amounts to S0 = 7.9242 and is therefore different from the equilibrium price
above. The optimal demand for the risky asset as shown in the third row
of Figure 5 is different compared to the economy with divergent risk-free
rates since the bank can no longer generate a cash surplus that could be
redistributed to investors in form of risk-free cash income. With respect to
the investor-specific parameters as shown in Figure 4 only the parameter of
risk aversion determines the optimal demand. The initial endowment does
not influence the optimal quantities.

Lastly, we want to determine the unique riskless rate where the equilib-
rium price is the same as in the setting with divergent interest rates. The re-
sult is surprising. If one wants to arrive at the same price (S0 = 8.3113) when
deposit and borrowing rates are equal this requires a rate of r∗ = 2.4933%!
This is far afield from both 5% and 10%. Also, wrongly using r∗ = 5% or

21Again, calculations can be found in Appendix B.
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r∗ = 10% gives values of the risky asset S0 ∈ [7.7441, 8.1129]. This value is
not even close to the correct value above.

In the above examples we have used fixed deposit and borrowing rates.
Finally, we will show using a graph how optimal demand as well as unique
interest rates vary if we change the borrowing rate. The figure 6 shows our
results as a function of the spread rb− rd. The graph of the unique interest
rate reveals an interesting pattern. For spreads [0%,≈ 3%] the interest rate
of the equilibrium with a unique rate would be negative. We have argued
that such a situation is not consistent in our model. Therefore, the only
conclusion to be drawn is that for those spreads there is no equilibrium
such that the price of the risky asset is the same as in the model with
divergent interest rates (the graphs show those negative interest rates using
a dotted line).

Figure 6: Optimal demand and unique interest rate as a function of the spread rb − rd.

spread

3% 6% 9%

optimal demand

0

1

2
investor 1

investor 2

investor 3

(a) Optimal demand.

spread rb − rd

1% 3% 6% 9%

unique rate r∗

-1%

0%

4%

8%

(b) Unique interest rate.

4. Conclusion

Theoretical flaws in the use of common standard asset pricing models
(such as the CAPM) are well-known in literature. This paper deals with an
additional objection that has been neglected in literature so far: divergent
risk-free interest rates on borrowing and depositing. In contrast to most
of the objections that are sometimes hard to remedy, this paper presents a
simple framework with closed-form solutions for investors’ portfolio choice
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that take into account divergent borrowing and deposit rates. We show
that this extension must be handled with care, since arbitrage opportunities
can occur easily whenever market participants simultaneously borrow and
lend money at divergent rates. Therefore, in our model only one institution
is allowed to act as a bank and to grant risk-free credits and financial in-
vestments. We find that this bank necessarily earns a positive cash surplus
which is assumed to be redistributed to the market participants.

Our results are the following: Firstly, the optimal demand for risky assets
depends on the investor’s initial endowment and is therefore investor-specific
even if a homogeneous degree of risk aversion and homogeneous expectations
are assumed. Moreover, the redistribution of the bank’s surplus influences
the optimal allocation of an individual’s resources.

In the context of a general equilibrium analysis we were able to show,
that an equilibrium always exists, but is not necessarily unique.

Finally, we investigated the relationship between the case of divergent
interest rates and the case of a unique interest rate that will lead to the
same price of the risky asset. It seems reasonable to assume that a model
with a unique interest rate will generate the same equilibrium asset prices
as those generated by a model based on divergent interest rates, as long as
this unique interest rate is determined as a weighted average of the deposit
and borrowing rate. However, we showed that this obvious assumption does
not generally hold true. Instead, such a procedure may result in severe
mispricing.

It is only in those circumstances in which every investor trades, the
bank’s proceeds are distributed equally among investors and the number of
investors is rather large, that the unique interest rate approximately equals
a weighted average of the deposit and borrowing rate. Modern financial
markets are rather large with respect to the number of participiants, so the
assumption of a large I does not seem to be far-fetched. Furthermore, if
we interpret the redistribution mainly as the provision of public goods one
can argue that every investor is (more or less) endowed with the same pa-
rameter ωi. Seen in this light, the assumption that every investor receives
the same redistribution is realistic. More problematic is the requirement
that every investor trades; as recent research has shown this is not the case
and was even described as the “nonparticipation puzzle” (see, for example,
Mankiw and Zeldes (1991) who show that a large fraction of households
hold no equity). If this requirement could be omitted the main message of
our paper is summarized as follows: Textbook examples with only a few
investors where borrowing and deposit rates are different should be handled
with care. But in real markets with lots of investors it is fairly unprob-
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lematic to replace the divergent interest rates with a (weighted) average
and simplify the model in such a way that only a unique interest rate ex-
ists. Further research discussing divergent interest rates should focus on the
nonparticipation problem.

Appendix A. Derivation of Individual Optimal Demand

An investor’s objective at date 0 is to choose an admissible trading strat-
egy that maximizes her utility according to equation (5) with

E(C1i) = ni · E(S1) + nd
i · 1− nb

i · 1 + ωi

∑
j

(
nb
j − nd

j

)
(A.1)

Var(C1i) = n2
i ·Var(S1) (A.2)

Plugging these equations into the utility function (5) gives

Ui = ni ·E(S1) +nd
i · 1−nb

i · 1 +ωi

∑
j

(
nb
j − nd

j

)
− ai

2
·n2

i ·Var(S1) . (A.3)

This function has to be maximized given the constraints (1) and (2). In
addition, the investor has to obey her budget constraint in t = 0 which reads
as

n̄i · S0 + nb
i

1

1 + rb
= ni · S0 + nd

i

1

1 + rd
. (A.4)

Because optimization is now subject to several, partly non-linear constraints,
we use the Kuhn-Tucker approach. The optimization fully reads

max
ni,nd

i ,n
b
i

ni ·E(S1) + nd
i · 1− nb

i · 1 + ωi

∑
j

(
nb
j − nd

j

)
− ai

2
· n2

i ·Var(S1),

s.t. nb
i · nd

i = 0, nb
i ≥ 0, nd

i ≥ 0

n̄i · S0 + nb
i

1

1 + rb
= ni · S0 + nd

i

1

1 + rd
. (A.5)

The constraint nb
i ·nd

i = 0 can easily be incorporated into the maximiza-
tion. We know that both variables cannot simultaneously be different from
zero if we achieved a maximum. Hence, we can maximize twice by sequen-
tially setting the variables nb

i and nd
i equal to zero. If we then compare

both utility values and determine the larger one we have solved the opti-
mization problem under (2). This solution will depend on the endowment
of the investor.
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We first look at the FOC for nb
i = 0. Then the optimization problem

(A.5) is reduced to

max
ni,nd

i

ni · E(S1) + nd
i + ωi

∑
j

(
nb
j − nd

j

)
− ai

2
· n2

i ·Var(S1),

s.t. nd
i ≥ 0, n̄i · S0 − ni · S0 = nd

i

1

1 + rd
.

Incorporating the budget constraint into the maximization yields (notice
that S0 > 0)

max
ni≤n̄i

ni E(S1)+(1−ωi)(n̄i−ni)S0(1+rd)+ωi

∑
j 6=i

(
nb
j − nd

j

)
−ai

2
n2
i Var(S1).

Denoting the Lagrange multiplier by λl we get the FOC22

0 = E(S1)− (1− ωi)S0(1 + rd)− aini Var(S1)− λl.

which can be written as

ni =
E(S1)− (1− ωi)S0(1 + rd)− λl

ai Var(S1)

and
λl(ni − n̄i) = 0.

This implies: if

E(S1)− (1− ωi)S0(1 + rd)

ai Var(S1)︸ ︷︷ ︸
:=nd

i

≤ n̄i

then this ni is optimal (because λl = 0). Otherwise ni = n̄i is optimal.
The case of borrowing can be handled analogously.

22Notice that this FOC is only correct if there are divergent interest rates. If deposit
and borrowing can be done with the same rate the sum

∑
j

(
nb
j − nd

j

)
will be zero and

the term ωiS0(1 + rd) will vanish in the equation.
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Appendix B. Numerical Example

Given S0 = 8.3113, for investor 1 nb
1 and nd

1 amount to

nb
1 =

E(S1)− S0(1 + rb)(1− ωi)

ai Var(S1)
=

10− 8.3113(1 + 0.1)(1− 0.2)

1 · 1
= 1.7718

nd
1 =

E(S1)− S0(1 + rd)(1− ωi)

ai Var(S1)
=

10− 8.3113(1 + 0.05)(1− 0.2)

1 · 1
= 2.1458.

Since investor 1 is initially endowed with one share of the risky asset, n̄1 =
1 < nb

1 < nd
1 , it is optimal for her to borrow. Consequently, she buys risky

asset and acts as a borrower. Thus, according to (6) she optimally demands
nd

1 = 1.7718 shares.
Analogously, for investor 2 the following holds true

nb
2 =

E(S1)− S0(1 + rb)(1− ωi)

ai Var(S1)
=

10− 8.3113(1 + 0.1)(1− 0)

10 · 1
= 0.85757

nd
2 =

E(S1)− S0(1 + rd)(1− ωi)

ai Var(S1)
=

10− 8.3113(1 + 0.05)(1− 0)

1 · 1
= 1.27314.

However, her initial endowment of 1 shares lies inbetween these numbers,
nd

2 > n̄2 = 1 > nb
2 . Obviously, she cannot reach either the optimal number

of shares for borrowers nb by increasing her endowment, nor the optimal
value for depositers nd by decreasing her endowment. According to (6) it is
thus optimal for her to leave her initial endowment unchanged and to refrain
from trading.

Finally, for investor 3 nb
3 and nd

3 amount to

nb
3 =

E(S1)− S0(1 + rb)(1− ωi)

ai Var(S1)
=

10− 8.3113(1 + 0.1)(1− 0.9)

1 · 40
= 0.22714

nd
3 =

E(S1)− S0(1 + rd)(1− ωi)

ai Var(S1)
=

10− 8.3113(1 + 0.05)(1− 0.9)

1 · 40
= 0.22818.

Both numbers are smaller than her initial endowment of one share in the
risky asset, n̄3 = 1, which is why she sells her shares in order to maximize
her utility. In doing so she invests the proceeds into riskless asset at rd and
consequently acts as a depositer. According to (6) she thus optimally holds
nd

3 = 0.22818 shares.
Under the assumption of a unique interest rate, no cash surplus can be

generated and redistributed. Therefore, optimal demand for the risky asset
amounts to

ni =
E(S1)− S0(1 + r)

ai Var(S1)
=

10− 8.3113(1 + 0.075)

1 · ai
.
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Without any distinction of cases, the optimal demand is determined as n1 =
1.0654, n2 = 1.0654 and n3 = 0.0266.
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